Marlin_main.cpp 276 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. extern int8_t CrashDetectMenu;
  492. void crashdet_enable()
  493. {
  494. // MYSERIAL.println("crashdet_enable");
  495. tmc2130_sg_stop_on_crash = true;
  496. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  497. CrashDetectMenu = 1;
  498. }
  499. void crashdet_disable()
  500. {
  501. // MYSERIAL.println("crashdet_disable");
  502. tmc2130_sg_stop_on_crash = false;
  503. tmc2130_sg_crash = 0;
  504. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  505. CrashDetectMenu = 0;
  506. }
  507. void crashdet_stop_and_save_print()
  508. {
  509. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  510. }
  511. void crashdet_restore_print_and_continue()
  512. {
  513. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  514. // babystep_apply();
  515. }
  516. void crashdet_stop_and_save_print2()
  517. {
  518. cli();
  519. planner_abort_hard(); //abort printing
  520. cmdqueue_reset(); //empty cmdqueue
  521. card.sdprinting = false;
  522. card.closefile();
  523. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  524. st_reset_timer();
  525. sei();
  526. }
  527. void crashdet_detected(uint8_t mask)
  528. {
  529. // printf("CRASH_DETECTED");
  530. /* while (!is_buffer_empty())
  531. {
  532. process_commands();
  533. cmdqueue_pop_front();
  534. }*/
  535. st_synchronize();
  536. lcd_update_enable(true);
  537. lcd_implementation_clear();
  538. lcd_update(2);
  539. if (mask & X_AXIS_MASK)
  540. {
  541. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  542. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  543. }
  544. if (mask & Y_AXIS_MASK)
  545. {
  546. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  547. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  548. }
  549. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  550. bool yesno = true;
  551. #else
  552. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  553. #endif
  554. lcd_update_enable(true);
  555. lcd_update(2);
  556. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  557. if (yesno)
  558. {
  559. enquecommand_P(PSTR("G28 X Y"));
  560. enquecommand_P(PSTR("CRASH_RECOVER"));
  561. }
  562. else
  563. {
  564. enquecommand_P(PSTR("CRASH_CANCEL"));
  565. }
  566. }
  567. void crashdet_recover()
  568. {
  569. crashdet_restore_print_and_continue();
  570. tmc2130_sg_stop_on_crash = true;
  571. }
  572. void crashdet_cancel()
  573. {
  574. card.sdprinting = false;
  575. card.closefile();
  576. tmc2130_sg_stop_on_crash = true;
  577. }
  578. void failstats_reset_print()
  579. {
  580. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  581. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  582. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  584. }
  585. #ifdef MESH_BED_LEVELING
  586. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  587. #endif
  588. // Factory reset function
  589. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  590. // Level input parameter sets depth of reset
  591. // Quiet parameter masks all waitings for user interact.
  592. int er_progress = 0;
  593. void factory_reset(char level, bool quiet)
  594. {
  595. lcd_implementation_clear();
  596. int cursor_pos = 0;
  597. switch (level) {
  598. // Level 0: Language reset
  599. case 0:
  600. WRITE(BEEPER, HIGH);
  601. _delay_ms(100);
  602. WRITE(BEEPER, LOW);
  603. lcd_force_language_selection();
  604. break;
  605. //Level 1: Reset statistics
  606. case 1:
  607. WRITE(BEEPER, HIGH);
  608. _delay_ms(100);
  609. WRITE(BEEPER, LOW);
  610. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  611. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  612. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  613. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  614. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  615. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  616. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  617. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  618. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  619. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  620. lcd_menu_statistics();
  621. break;
  622. // Level 2: Prepare for shipping
  623. case 2:
  624. //lcd_printPGM(PSTR("Factory RESET"));
  625. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  626. // Force language selection at the next boot up.
  627. lcd_force_language_selection();
  628. // Force the "Follow calibration flow" message at the next boot up.
  629. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  630. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  631. farm_no = 0;
  632. farm_mode == false;
  633. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  634. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  635. WRITE(BEEPER, HIGH);
  636. _delay_ms(100);
  637. WRITE(BEEPER, LOW);
  638. //_delay_ms(2000);
  639. break;
  640. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  641. case 3:
  642. lcd_printPGM(PSTR("Factory RESET"));
  643. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  644. WRITE(BEEPER, HIGH);
  645. _delay_ms(100);
  646. WRITE(BEEPER, LOW);
  647. er_progress = 0;
  648. lcd_print_at_PGM(3, 3, PSTR(" "));
  649. lcd_implementation_print_at(3, 3, er_progress);
  650. // Erase EEPROM
  651. for (int i = 0; i < 4096; i++) {
  652. eeprom_write_byte((uint8_t*)i, 0xFF);
  653. if (i % 41 == 0) {
  654. er_progress++;
  655. lcd_print_at_PGM(3, 3, PSTR(" "));
  656. lcd_implementation_print_at(3, 3, er_progress);
  657. lcd_printPGM(PSTR("%"));
  658. }
  659. }
  660. break;
  661. case 4:
  662. bowden_menu();
  663. break;
  664. default:
  665. break;
  666. }
  667. }
  668. #include "LiquidCrystal.h"
  669. extern LiquidCrystal lcd;
  670. FILE _lcdout = {0};
  671. int lcd_putchar(char c, FILE *stream)
  672. {
  673. lcd.write(c);
  674. return 0;
  675. }
  676. FILE _uartout = {0};
  677. int uart_putchar(char c, FILE *stream)
  678. {
  679. MYSERIAL.write(c);
  680. return 0;
  681. }
  682. void lcd_splash()
  683. {
  684. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  685. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  686. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  687. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  688. }
  689. void factory_reset()
  690. {
  691. KEEPALIVE_STATE(PAUSED_FOR_USER);
  692. if (!READ(BTN_ENC))
  693. {
  694. _delay_ms(1000);
  695. if (!READ(BTN_ENC))
  696. {
  697. lcd_implementation_clear();
  698. lcd_printPGM(PSTR("Factory RESET"));
  699. SET_OUTPUT(BEEPER);
  700. WRITE(BEEPER, HIGH);
  701. while (!READ(BTN_ENC));
  702. WRITE(BEEPER, LOW);
  703. _delay_ms(2000);
  704. char level = reset_menu();
  705. factory_reset(level, false);
  706. switch (level) {
  707. case 0: _delay_ms(0); break;
  708. case 1: _delay_ms(0); break;
  709. case 2: _delay_ms(0); break;
  710. case 3: _delay_ms(0); break;
  711. }
  712. // _delay_ms(100);
  713. /*
  714. #ifdef MESH_BED_LEVELING
  715. _delay_ms(2000);
  716. if (!READ(BTN_ENC))
  717. {
  718. WRITE(BEEPER, HIGH);
  719. _delay_ms(100);
  720. WRITE(BEEPER, LOW);
  721. _delay_ms(200);
  722. WRITE(BEEPER, HIGH);
  723. _delay_ms(100);
  724. WRITE(BEEPER, LOW);
  725. int _z = 0;
  726. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  727. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  728. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  729. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  730. }
  731. else
  732. {
  733. WRITE(BEEPER, HIGH);
  734. _delay_ms(100);
  735. WRITE(BEEPER, LOW);
  736. }
  737. #endif // mesh */
  738. }
  739. }
  740. else
  741. {
  742. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  743. }
  744. KEEPALIVE_STATE(IN_HANDLER);
  745. }
  746. void show_fw_version_warnings() {
  747. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  748. switch (FW_DEV_VERSION) {
  749. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  750. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  751. case(FW_VERSION_DEVEL):
  752. case(FW_VERSION_DEBUG):
  753. lcd_update_enable(false);
  754. lcd_implementation_clear();
  755. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  756. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  757. #else
  758. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  759. #endif
  760. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  761. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  762. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  763. lcd_wait_for_click();
  764. break;
  765. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  766. }
  767. lcd_update_enable(true);
  768. }
  769. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  770. {
  771. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  772. }
  773. // "Setup" function is called by the Arduino framework on startup.
  774. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  775. // are initialized by the main() routine provided by the Arduino framework.
  776. void setup()
  777. {
  778. lcd_init();
  779. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  780. lcd_splash();
  781. setup_killpin();
  782. setup_powerhold();
  783. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  784. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  785. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  786. if (farm_no == 0xFFFF) farm_no = 0;
  787. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  788. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  789. if (farm_mode)
  790. {
  791. prusa_statistics(8);
  792. selectedSerialPort = 1;
  793. }
  794. MYSERIAL.begin(BAUDRATE);
  795. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  796. stdout = uartout;
  797. SERIAL_PROTOCOLLNPGM("start");
  798. SERIAL_ECHO_START;
  799. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  800. #if 0
  801. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  802. for (int i = 0; i < 4096; ++i) {
  803. int b = eeprom_read_byte((unsigned char*)i);
  804. if (b != 255) {
  805. SERIAL_ECHO(i);
  806. SERIAL_ECHO(":");
  807. SERIAL_ECHO(b);
  808. SERIAL_ECHOLN("");
  809. }
  810. }
  811. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  812. #endif
  813. // Check startup - does nothing if bootloader sets MCUSR to 0
  814. byte mcu = MCUSR;
  815. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  816. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  817. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  818. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  819. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  820. if (mcu & 1) puts_P(MSG_POWERUP);
  821. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  822. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  823. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  824. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  825. MCUSR = 0;
  826. //SERIAL_ECHORPGM(MSG_MARLIN);
  827. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  828. #ifdef STRING_VERSION_CONFIG_H
  829. #ifdef STRING_CONFIG_H_AUTHOR
  830. SERIAL_ECHO_START;
  831. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  832. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  833. SERIAL_ECHORPGM(MSG_AUTHOR);
  834. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  835. SERIAL_ECHOPGM("Compiled: ");
  836. SERIAL_ECHOLNPGM(__DATE__);
  837. #endif
  838. #endif
  839. SERIAL_ECHO_START;
  840. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  841. SERIAL_ECHO(freeMemory());
  842. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  843. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  844. //lcd_update_enable(false); // why do we need this?? - andre
  845. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  846. bool previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  847. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  848. tp_init(); // Initialize temperature loop
  849. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  850. plan_init(); // Initialize planner;
  851. watchdog_init();
  852. factory_reset();
  853. #ifdef TMC2130
  854. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  855. if (silentMode == 0xff) silentMode = 0;
  856. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  857. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  858. if (crashdet)
  859. {
  860. crashdet_enable();
  861. MYSERIAL.println("CrashDetect ENABLED!");
  862. }
  863. else
  864. {
  865. crashdet_disable();
  866. MYSERIAL.println("CrashDetect DISABLED");
  867. }
  868. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  869. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  870. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  871. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  872. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  873. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  874. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  875. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  876. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  877. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  878. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  879. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  880. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  881. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  882. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  883. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  884. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  885. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  886. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  887. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  888. #endif //TMC2130
  889. st_init(); // Initialize stepper, this enables interrupts!
  890. setup_photpin();
  891. servo_init();
  892. // Reset the machine correction matrix.
  893. // It does not make sense to load the correction matrix until the machine is homed.
  894. world2machine_reset();
  895. #ifdef PAT9125
  896. fsensor_init();
  897. #endif //PAT9125
  898. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  899. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  900. #endif
  901. #ifdef DIGIPOT_I2C
  902. digipot_i2c_init();
  903. #endif
  904. setup_homepin();
  905. if (1) {
  906. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  907. // try to run to zero phase before powering the Z motor.
  908. // Move in negative direction
  909. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  910. // Round the current micro-micro steps to micro steps.
  911. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  912. // Until the phase counter is reset to zero.
  913. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  914. delay(2);
  915. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  916. delay(2);
  917. }
  918. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  919. }
  920. #if defined(Z_AXIS_ALWAYS_ON)
  921. enable_z();
  922. #endif
  923. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  924. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  925. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  926. if (farm_no == 0xFFFF) farm_no = 0;
  927. if (farm_mode)
  928. {
  929. prusa_statistics(8);
  930. }
  931. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  932. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  933. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  934. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  935. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  936. // where all the EEPROM entries are set to 0x0ff.
  937. // Once a firmware boots up, it forces at least a language selection, which changes
  938. // EEPROM_LANG to number lower than 0x0ff.
  939. // 1) Set a high power mode.
  940. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  941. tmc2130_mode = TMC2130_MODE_NORMAL;
  942. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  943. }
  944. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  945. // but this times out if a blocking dialog is shown in setup().
  946. card.initsd();
  947. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  948. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  949. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  950. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  951. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  952. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  953. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  954. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  955. #ifdef SNMM
  956. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  957. int _z = BOWDEN_LENGTH;
  958. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  959. }
  960. #endif
  961. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  962. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  963. // is being written into the EEPROM, so the update procedure will be triggered only once.
  964. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  965. if (lang_selected >= LANG_NUM){
  966. lcd_mylang();
  967. }
  968. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  969. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  970. temp_cal_active = false;
  971. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  972. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  973. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  974. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  975. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  976. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  977. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  978. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  979. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  980. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  981. temp_cal_active = true;
  982. }
  983. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  984. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  985. }
  986. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  987. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  988. }
  989. check_babystep(); //checking if Z babystep is in allowed range
  990. setup_uvlo_interrupt();
  991. #ifndef DEBUG_DISABLE_FANCHECK
  992. setup_fan_interrupt();
  993. #endif //DEBUG_DISABLE_FANCHECK
  994. #ifndef DEBUG_DISABLE_FSENSORCHECK
  995. fsensor_setup_interrupt();
  996. #endif //DEBUG_DISABLE_FSENSORCHECK
  997. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  998. #ifndef DEBUG_DISABLE_STARTMSGS
  999. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1000. show_fw_version_warnings();
  1001. if (!previous_settings_retrieved) {
  1002. lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version was changed, inform user that default setting were loaded
  1003. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1004. }
  1005. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1006. lcd_wizard(0);
  1007. }
  1008. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1009. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1010. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1011. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1012. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1013. // Show the message.
  1014. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1015. }
  1016. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1017. // Show the message.
  1018. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1019. lcd_update_enable(true);
  1020. }
  1021. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1022. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1023. lcd_update_enable(true);
  1024. }
  1025. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1026. // Show the message.
  1027. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1028. }
  1029. }
  1030. KEEPALIVE_STATE(IN_PROCESS);
  1031. #endif //DEBUG_DISABLE_STARTMSGS
  1032. lcd_update_enable(true);
  1033. lcd_implementation_clear();
  1034. lcd_update(2);
  1035. // Store the currently running firmware into an eeprom,
  1036. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1037. update_current_firmware_version_to_eeprom();
  1038. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1039. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1040. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1041. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1042. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1043. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1044. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1045. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1046. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1047. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1048. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1049. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1050. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1051. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1052. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1053. /*
  1054. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1055. else {
  1056. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1057. lcd_update_enable(true);
  1058. lcd_update(2);
  1059. lcd_setstatuspgm(WELCOME_MSG);
  1060. }
  1061. */
  1062. manage_heater(); // Update temperatures
  1063. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1064. MYSERIAL.println("Power panic detected!");
  1065. MYSERIAL.print("Current bed temp:");
  1066. MYSERIAL.println(degBed());
  1067. MYSERIAL.print("Saved bed temp:");
  1068. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1069. #endif
  1070. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1071. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1072. MYSERIAL.println("Automatic recovery!");
  1073. #endif
  1074. recover_print(1);
  1075. }
  1076. else{
  1077. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1078. MYSERIAL.println("Normal recovery!");
  1079. #endif
  1080. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1081. else {
  1082. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1083. lcd_update_enable(true);
  1084. lcd_update(2);
  1085. lcd_setstatuspgm(WELCOME_MSG);
  1086. }
  1087. }
  1088. }
  1089. KEEPALIVE_STATE(NOT_BUSY);
  1090. wdt_enable(WDTO_4S);
  1091. }
  1092. #ifdef PAT9125
  1093. void fsensor_init() {
  1094. int pat9125 = pat9125_init();
  1095. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1096. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1097. if (!pat9125)
  1098. {
  1099. fsensor = 0; //disable sensor
  1100. fsensor_not_responding = true;
  1101. }
  1102. else {
  1103. fsensor_not_responding = false;
  1104. }
  1105. puts_P(PSTR("FSensor "));
  1106. if (fsensor)
  1107. {
  1108. puts_P(PSTR("ENABLED\n"));
  1109. fsensor_enable();
  1110. }
  1111. else
  1112. {
  1113. puts_P(PSTR("DISABLED\n"));
  1114. fsensor_disable();
  1115. }
  1116. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1117. filament_autoload_enabled = false;
  1118. fsensor_disable();
  1119. #endif //DEBUG_DISABLE_FSENSORCHECK
  1120. }
  1121. #endif //PAT9125
  1122. void trace();
  1123. #define CHUNK_SIZE 64 // bytes
  1124. #define SAFETY_MARGIN 1
  1125. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1126. int chunkHead = 0;
  1127. int serial_read_stream() {
  1128. setTargetHotend(0, 0);
  1129. setTargetBed(0);
  1130. lcd_implementation_clear();
  1131. lcd_printPGM(PSTR(" Upload in progress"));
  1132. // first wait for how many bytes we will receive
  1133. uint32_t bytesToReceive;
  1134. // receive the four bytes
  1135. char bytesToReceiveBuffer[4];
  1136. for (int i=0; i<4; i++) {
  1137. int data;
  1138. while ((data = MYSERIAL.read()) == -1) {};
  1139. bytesToReceiveBuffer[i] = data;
  1140. }
  1141. // make it a uint32
  1142. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1143. // we're ready, notify the sender
  1144. MYSERIAL.write('+');
  1145. // lock in the routine
  1146. uint32_t receivedBytes = 0;
  1147. while (prusa_sd_card_upload) {
  1148. int i;
  1149. for (i=0; i<CHUNK_SIZE; i++) {
  1150. int data;
  1151. // check if we're not done
  1152. if (receivedBytes == bytesToReceive) {
  1153. break;
  1154. }
  1155. // read the next byte
  1156. while ((data = MYSERIAL.read()) == -1) {};
  1157. receivedBytes++;
  1158. // save it to the chunk
  1159. chunk[i] = data;
  1160. }
  1161. // write the chunk to SD
  1162. card.write_command_no_newline(&chunk[0]);
  1163. // notify the sender we're ready for more data
  1164. MYSERIAL.write('+');
  1165. // for safety
  1166. manage_heater();
  1167. // check if we're done
  1168. if(receivedBytes == bytesToReceive) {
  1169. trace(); // beep
  1170. card.closefile();
  1171. prusa_sd_card_upload = false;
  1172. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1173. return 0;
  1174. }
  1175. }
  1176. }
  1177. #ifdef HOST_KEEPALIVE_FEATURE
  1178. /**
  1179. * Output a "busy" message at regular intervals
  1180. * while the machine is not accepting commands.
  1181. */
  1182. void host_keepalive() {
  1183. if (farm_mode) return;
  1184. long ms = millis();
  1185. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1186. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1187. switch (busy_state) {
  1188. case IN_HANDLER:
  1189. case IN_PROCESS:
  1190. SERIAL_ECHO_START;
  1191. SERIAL_ECHOLNPGM("busy: processing");
  1192. break;
  1193. case PAUSED_FOR_USER:
  1194. SERIAL_ECHO_START;
  1195. SERIAL_ECHOLNPGM("busy: paused for user");
  1196. break;
  1197. case PAUSED_FOR_INPUT:
  1198. SERIAL_ECHO_START;
  1199. SERIAL_ECHOLNPGM("busy: paused for input");
  1200. break;
  1201. default:
  1202. break;
  1203. }
  1204. }
  1205. prev_busy_signal_ms = ms;
  1206. }
  1207. #endif
  1208. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1209. // Before loop(), the setup() function is called by the main() routine.
  1210. void loop()
  1211. {
  1212. KEEPALIVE_STATE(NOT_BUSY);
  1213. bool stack_integrity = true;
  1214. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1215. {
  1216. is_usb_printing = true;
  1217. usb_printing_counter--;
  1218. _usb_timer = millis();
  1219. }
  1220. if (usb_printing_counter == 0)
  1221. {
  1222. is_usb_printing = false;
  1223. }
  1224. if (prusa_sd_card_upload)
  1225. {
  1226. //we read byte-by byte
  1227. serial_read_stream();
  1228. } else
  1229. {
  1230. get_command();
  1231. #ifdef SDSUPPORT
  1232. card.checkautostart(false);
  1233. #endif
  1234. if(buflen)
  1235. {
  1236. cmdbuffer_front_already_processed = false;
  1237. #ifdef SDSUPPORT
  1238. if(card.saving)
  1239. {
  1240. // Saving a G-code file onto an SD-card is in progress.
  1241. // Saving starts with M28, saving until M29 is seen.
  1242. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1243. card.write_command(CMDBUFFER_CURRENT_STRING);
  1244. if(card.logging)
  1245. process_commands();
  1246. else
  1247. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1248. } else {
  1249. card.closefile();
  1250. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1251. }
  1252. } else {
  1253. process_commands();
  1254. }
  1255. #else
  1256. process_commands();
  1257. #endif //SDSUPPORT
  1258. if (! cmdbuffer_front_already_processed && buflen)
  1259. {
  1260. // ptr points to the start of the block currently being processed.
  1261. // The first character in the block is the block type.
  1262. char *ptr = cmdbuffer + bufindr;
  1263. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1264. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1265. union {
  1266. struct {
  1267. char lo;
  1268. char hi;
  1269. } lohi;
  1270. uint16_t value;
  1271. } sdlen;
  1272. sdlen.value = 0;
  1273. {
  1274. // This block locks the interrupts globally for 3.25 us,
  1275. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1276. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1277. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1278. cli();
  1279. // Reset the command to something, which will be ignored by the power panic routine,
  1280. // so this buffer length will not be counted twice.
  1281. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1282. // Extract the current buffer length.
  1283. sdlen.lohi.lo = *ptr ++;
  1284. sdlen.lohi.hi = *ptr;
  1285. // and pass it to the planner queue.
  1286. planner_add_sd_length(sdlen.value);
  1287. sei();
  1288. }
  1289. }
  1290. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1291. // this block's SD card length will not be counted twice as its command type has been replaced
  1292. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1293. cmdqueue_pop_front();
  1294. }
  1295. host_keepalive();
  1296. }
  1297. }
  1298. //check heater every n milliseconds
  1299. manage_heater();
  1300. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1301. checkHitEndstops();
  1302. lcd_update();
  1303. #ifdef PAT9125
  1304. fsensor_update();
  1305. #endif //PAT9125
  1306. #ifdef TMC2130
  1307. tmc2130_check_overtemp();
  1308. if (tmc2130_sg_crash)
  1309. {
  1310. uint8_t crash = tmc2130_sg_crash;
  1311. tmc2130_sg_crash = 0;
  1312. // crashdet_stop_and_save_print();
  1313. switch (crash)
  1314. {
  1315. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1316. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1317. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1318. }
  1319. }
  1320. #endif //TMC2130
  1321. }
  1322. #define DEFINE_PGM_READ_ANY(type, reader) \
  1323. static inline type pgm_read_any(const type *p) \
  1324. { return pgm_read_##reader##_near(p); }
  1325. DEFINE_PGM_READ_ANY(float, float);
  1326. DEFINE_PGM_READ_ANY(signed char, byte);
  1327. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1328. static const PROGMEM type array##_P[3] = \
  1329. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1330. static inline type array(int axis) \
  1331. { return pgm_read_any(&array##_P[axis]); } \
  1332. type array##_ext(int axis) \
  1333. { return pgm_read_any(&array##_P[axis]); }
  1334. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1335. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1336. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1337. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1338. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1339. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1340. static void axis_is_at_home(int axis) {
  1341. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1342. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1343. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1344. }
  1345. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1346. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1347. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1348. saved_feedrate = feedrate;
  1349. saved_feedmultiply = feedmultiply;
  1350. feedmultiply = 100;
  1351. previous_millis_cmd = millis();
  1352. enable_endstops(enable_endstops_now);
  1353. }
  1354. static void clean_up_after_endstop_move() {
  1355. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1356. enable_endstops(false);
  1357. #endif
  1358. feedrate = saved_feedrate;
  1359. feedmultiply = saved_feedmultiply;
  1360. previous_millis_cmd = millis();
  1361. }
  1362. #ifdef ENABLE_AUTO_BED_LEVELING
  1363. #ifdef AUTO_BED_LEVELING_GRID
  1364. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1365. {
  1366. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1367. planeNormal.debug("planeNormal");
  1368. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1369. //bedLevel.debug("bedLevel");
  1370. //plan_bed_level_matrix.debug("bed level before");
  1371. //vector_3 uncorrected_position = plan_get_position_mm();
  1372. //uncorrected_position.debug("position before");
  1373. vector_3 corrected_position = plan_get_position();
  1374. // corrected_position.debug("position after");
  1375. current_position[X_AXIS] = corrected_position.x;
  1376. current_position[Y_AXIS] = corrected_position.y;
  1377. current_position[Z_AXIS] = corrected_position.z;
  1378. // put the bed at 0 so we don't go below it.
  1379. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1380. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1381. }
  1382. #else // not AUTO_BED_LEVELING_GRID
  1383. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1384. plan_bed_level_matrix.set_to_identity();
  1385. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1386. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1387. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1388. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1389. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1390. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1391. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1392. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1393. vector_3 corrected_position = plan_get_position();
  1394. current_position[X_AXIS] = corrected_position.x;
  1395. current_position[Y_AXIS] = corrected_position.y;
  1396. current_position[Z_AXIS] = corrected_position.z;
  1397. // put the bed at 0 so we don't go below it.
  1398. current_position[Z_AXIS] = zprobe_zoffset;
  1399. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1400. }
  1401. #endif // AUTO_BED_LEVELING_GRID
  1402. static void run_z_probe() {
  1403. plan_bed_level_matrix.set_to_identity();
  1404. feedrate = homing_feedrate[Z_AXIS];
  1405. // move down until you find the bed
  1406. float zPosition = -10;
  1407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1408. st_synchronize();
  1409. // we have to let the planner know where we are right now as it is not where we said to go.
  1410. zPosition = st_get_position_mm(Z_AXIS);
  1411. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1412. // move up the retract distance
  1413. zPosition += home_retract_mm(Z_AXIS);
  1414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1415. st_synchronize();
  1416. // move back down slowly to find bed
  1417. feedrate = homing_feedrate[Z_AXIS]/4;
  1418. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1419. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1420. st_synchronize();
  1421. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1422. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1423. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1424. }
  1425. static void do_blocking_move_to(float x, float y, float z) {
  1426. float oldFeedRate = feedrate;
  1427. feedrate = homing_feedrate[Z_AXIS];
  1428. current_position[Z_AXIS] = z;
  1429. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1430. st_synchronize();
  1431. feedrate = XY_TRAVEL_SPEED;
  1432. current_position[X_AXIS] = x;
  1433. current_position[Y_AXIS] = y;
  1434. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1435. st_synchronize();
  1436. feedrate = oldFeedRate;
  1437. }
  1438. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1439. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1440. }
  1441. /// Probe bed height at position (x,y), returns the measured z value
  1442. static float probe_pt(float x, float y, float z_before) {
  1443. // move to right place
  1444. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1445. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1446. run_z_probe();
  1447. float measured_z = current_position[Z_AXIS];
  1448. SERIAL_PROTOCOLRPGM(MSG_BED);
  1449. SERIAL_PROTOCOLPGM(" x: ");
  1450. SERIAL_PROTOCOL(x);
  1451. SERIAL_PROTOCOLPGM(" y: ");
  1452. SERIAL_PROTOCOL(y);
  1453. SERIAL_PROTOCOLPGM(" z: ");
  1454. SERIAL_PROTOCOL(measured_z);
  1455. SERIAL_PROTOCOLPGM("\n");
  1456. return measured_z;
  1457. }
  1458. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1459. #ifdef LIN_ADVANCE
  1460. /**
  1461. * M900: Set and/or Get advance K factor and WH/D ratio
  1462. *
  1463. * K<factor> Set advance K factor
  1464. * R<ratio> Set ratio directly (overrides WH/D)
  1465. * W<width> H<height> D<diam> Set ratio from WH/D
  1466. */
  1467. inline void gcode_M900() {
  1468. st_synchronize();
  1469. const float newK = code_seen('K') ? code_value_float() : -1;
  1470. if (newK >= 0) extruder_advance_k = newK;
  1471. float newR = code_seen('R') ? code_value_float() : -1;
  1472. if (newR < 0) {
  1473. const float newD = code_seen('D') ? code_value_float() : -1,
  1474. newW = code_seen('W') ? code_value_float() : -1,
  1475. newH = code_seen('H') ? code_value_float() : -1;
  1476. if (newD >= 0 && newW >= 0 && newH >= 0)
  1477. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1478. }
  1479. if (newR >= 0) advance_ed_ratio = newR;
  1480. SERIAL_ECHO_START;
  1481. SERIAL_ECHOPGM("Advance K=");
  1482. SERIAL_ECHOLN(extruder_advance_k);
  1483. SERIAL_ECHOPGM(" E/D=");
  1484. const float ratio = advance_ed_ratio;
  1485. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1486. }
  1487. #endif // LIN_ADVANCE
  1488. bool check_commands() {
  1489. bool end_command_found = false;
  1490. while (buflen)
  1491. {
  1492. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1493. if (!cmdbuffer_front_already_processed)
  1494. cmdqueue_pop_front();
  1495. cmdbuffer_front_already_processed = false;
  1496. }
  1497. return end_command_found;
  1498. }
  1499. #ifdef TMC2130
  1500. bool calibrate_z_auto()
  1501. {
  1502. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1503. lcd_implementation_clear();
  1504. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1505. bool endstops_enabled = enable_endstops(true);
  1506. int axis_up_dir = -home_dir(Z_AXIS);
  1507. tmc2130_home_enter(Z_AXIS_MASK);
  1508. current_position[Z_AXIS] = 0;
  1509. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1510. set_destination_to_current();
  1511. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1512. feedrate = homing_feedrate[Z_AXIS];
  1513. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1514. st_synchronize();
  1515. // current_position[axis] = 0;
  1516. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1517. tmc2130_home_exit();
  1518. enable_endstops(false);
  1519. current_position[Z_AXIS] = 0;
  1520. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1521. set_destination_to_current();
  1522. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1523. feedrate = homing_feedrate[Z_AXIS] / 2;
  1524. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1525. st_synchronize();
  1526. enable_endstops(endstops_enabled);
  1527. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1528. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1529. return true;
  1530. }
  1531. #endif //TMC2130
  1532. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1533. {
  1534. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1535. #define HOMEAXIS_DO(LETTER) \
  1536. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1537. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1538. {
  1539. int axis_home_dir = home_dir(axis);
  1540. feedrate = homing_feedrate[axis];
  1541. #ifdef TMC2130
  1542. tmc2130_home_enter(X_AXIS_MASK << axis);
  1543. #endif //TMC2130
  1544. // Move right a bit, so that the print head does not touch the left end position,
  1545. // and the following left movement has a chance to achieve the required velocity
  1546. // for the stall guard to work.
  1547. current_position[axis] = 0;
  1548. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1549. // destination[axis] = 11.f;
  1550. destination[axis] = 3.f;
  1551. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1552. st_synchronize();
  1553. // Move left away from the possible collision with the collision detection disabled.
  1554. endstops_hit_on_purpose();
  1555. enable_endstops(false);
  1556. current_position[axis] = 0;
  1557. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1558. destination[axis] = - 1.;
  1559. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1560. st_synchronize();
  1561. // Now continue to move up to the left end stop with the collision detection enabled.
  1562. enable_endstops(true);
  1563. destination[axis] = - 1.1 * max_length(axis);
  1564. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1565. st_synchronize();
  1566. for (uint8_t i = 0; i < cnt; i++)
  1567. {
  1568. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1569. endstops_hit_on_purpose();
  1570. enable_endstops(false);
  1571. current_position[axis] = 0;
  1572. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1573. destination[axis] = 10.f;
  1574. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1575. st_synchronize();
  1576. endstops_hit_on_purpose();
  1577. // Now move left up to the collision, this time with a repeatable velocity.
  1578. enable_endstops(true);
  1579. destination[axis] = - 11.f;
  1580. #ifdef TMC2130
  1581. feedrate = homing_feedrate[axis];
  1582. #else //TMC2130
  1583. feedrate = homing_feedrate[axis] / 2;
  1584. #endif //TMC2130
  1585. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1586. st_synchronize();
  1587. #ifdef TMC2130
  1588. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1589. if (pstep) pstep[i] = mscnt >> 4;
  1590. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1591. #endif //TMC2130
  1592. }
  1593. endstops_hit_on_purpose();
  1594. enable_endstops(false);
  1595. #ifdef TMC2130
  1596. uint8_t orig = tmc2130_home_origin[axis];
  1597. uint8_t back = tmc2130_home_bsteps[axis];
  1598. if (tmc2130_home_enabled && (orig <= 63))
  1599. {
  1600. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1601. if (back > 0)
  1602. tmc2130_do_steps(axis, back, 1, 1000);
  1603. }
  1604. else
  1605. tmc2130_do_steps(axis, 8, 2, 1000);
  1606. tmc2130_home_exit();
  1607. #endif //TMC2130
  1608. axis_is_at_home(axis);
  1609. axis_known_position[axis] = true;
  1610. // Move from minimum
  1611. #ifdef TMC2130
  1612. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1613. #else //TMC2130
  1614. float dist = 0.01f * 64;
  1615. #endif //TMC2130
  1616. current_position[axis] -= dist;
  1617. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1618. current_position[axis] += dist;
  1619. destination[axis] = current_position[axis];
  1620. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1621. st_synchronize();
  1622. feedrate = 0.0;
  1623. }
  1624. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1625. {
  1626. int axis_home_dir = home_dir(axis);
  1627. current_position[axis] = 0;
  1628. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1629. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1630. feedrate = homing_feedrate[axis];
  1631. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1632. st_synchronize();
  1633. current_position[axis] = 0;
  1634. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1635. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1636. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1637. st_synchronize();
  1638. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1639. feedrate = homing_feedrate[axis]/2 ;
  1640. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1641. st_synchronize();
  1642. axis_is_at_home(axis);
  1643. destination[axis] = current_position[axis];
  1644. feedrate = 0.0;
  1645. endstops_hit_on_purpose();
  1646. axis_known_position[axis] = true;
  1647. }
  1648. enable_endstops(endstops_enabled);
  1649. }
  1650. /**/
  1651. void home_xy()
  1652. {
  1653. set_destination_to_current();
  1654. homeaxis(X_AXIS);
  1655. homeaxis(Y_AXIS);
  1656. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1657. endstops_hit_on_purpose();
  1658. }
  1659. void refresh_cmd_timeout(void)
  1660. {
  1661. previous_millis_cmd = millis();
  1662. }
  1663. #ifdef FWRETRACT
  1664. void retract(bool retracting, bool swapretract = false) {
  1665. if(retracting && !retracted[active_extruder]) {
  1666. destination[X_AXIS]=current_position[X_AXIS];
  1667. destination[Y_AXIS]=current_position[Y_AXIS];
  1668. destination[Z_AXIS]=current_position[Z_AXIS];
  1669. destination[E_AXIS]=current_position[E_AXIS];
  1670. if (swapretract) {
  1671. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1672. } else {
  1673. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1674. }
  1675. plan_set_e_position(current_position[E_AXIS]);
  1676. float oldFeedrate = feedrate;
  1677. feedrate=retract_feedrate*60;
  1678. retracted[active_extruder]=true;
  1679. prepare_move();
  1680. current_position[Z_AXIS]-=retract_zlift;
  1681. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1682. prepare_move();
  1683. feedrate = oldFeedrate;
  1684. } else if(!retracting && retracted[active_extruder]) {
  1685. destination[X_AXIS]=current_position[X_AXIS];
  1686. destination[Y_AXIS]=current_position[Y_AXIS];
  1687. destination[Z_AXIS]=current_position[Z_AXIS];
  1688. destination[E_AXIS]=current_position[E_AXIS];
  1689. current_position[Z_AXIS]+=retract_zlift;
  1690. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1691. //prepare_move();
  1692. if (swapretract) {
  1693. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1694. } else {
  1695. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1696. }
  1697. plan_set_e_position(current_position[E_AXIS]);
  1698. float oldFeedrate = feedrate;
  1699. feedrate=retract_recover_feedrate*60;
  1700. retracted[active_extruder]=false;
  1701. prepare_move();
  1702. feedrate = oldFeedrate;
  1703. }
  1704. } //retract
  1705. #endif //FWRETRACT
  1706. void trace() {
  1707. tone(BEEPER, 440);
  1708. delay(25);
  1709. noTone(BEEPER);
  1710. delay(20);
  1711. }
  1712. /*
  1713. void ramming() {
  1714. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1715. if (current_temperature[0] < 230) {
  1716. //PLA
  1717. max_feedrate[E_AXIS] = 50;
  1718. //current_position[E_AXIS] -= 8;
  1719. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1720. //current_position[E_AXIS] += 8;
  1721. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1722. current_position[E_AXIS] += 5.4;
  1723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1724. current_position[E_AXIS] += 3.2;
  1725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1726. current_position[E_AXIS] += 3;
  1727. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1728. st_synchronize();
  1729. max_feedrate[E_AXIS] = 80;
  1730. current_position[E_AXIS] -= 82;
  1731. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1732. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1733. current_position[E_AXIS] -= 20;
  1734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1735. current_position[E_AXIS] += 5;
  1736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1737. current_position[E_AXIS] += 5;
  1738. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1739. current_position[E_AXIS] -= 10;
  1740. st_synchronize();
  1741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1742. current_position[E_AXIS] += 10;
  1743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1744. current_position[E_AXIS] -= 10;
  1745. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1746. current_position[E_AXIS] += 10;
  1747. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1748. current_position[E_AXIS] -= 10;
  1749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1750. st_synchronize();
  1751. }
  1752. else {
  1753. //ABS
  1754. max_feedrate[E_AXIS] = 50;
  1755. //current_position[E_AXIS] -= 8;
  1756. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1757. //current_position[E_AXIS] += 8;
  1758. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1759. current_position[E_AXIS] += 3.1;
  1760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1761. current_position[E_AXIS] += 3.1;
  1762. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1763. current_position[E_AXIS] += 4;
  1764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1765. st_synchronize();
  1766. //current_position[X_AXIS] += 23; //delay
  1767. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1768. //current_position[X_AXIS] -= 23; //delay
  1769. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1770. delay(4700);
  1771. max_feedrate[E_AXIS] = 80;
  1772. current_position[E_AXIS] -= 92;
  1773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1774. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1775. current_position[E_AXIS] -= 5;
  1776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1777. current_position[E_AXIS] += 5;
  1778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1779. current_position[E_AXIS] -= 5;
  1780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1781. st_synchronize();
  1782. current_position[E_AXIS] += 5;
  1783. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1784. current_position[E_AXIS] -= 5;
  1785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1786. current_position[E_AXIS] += 5;
  1787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1788. current_position[E_AXIS] -= 5;
  1789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1790. st_synchronize();
  1791. }
  1792. }
  1793. */
  1794. #ifdef TMC2130
  1795. void force_high_power_mode(bool start_high_power_section) {
  1796. uint8_t silent;
  1797. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1798. if (silent == 1) {
  1799. //we are in silent mode, set to normal mode to enable crash detection
  1800. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1801. st_synchronize();
  1802. cli();
  1803. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1804. tmc2130_init();
  1805. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1806. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1807. st_reset_timer();
  1808. sei();
  1809. digipot_init();
  1810. }
  1811. }
  1812. #endif //TMC2130
  1813. bool gcode_M45(bool onlyZ)
  1814. {
  1815. bool final_result = false;
  1816. #ifdef TMC2130
  1817. FORCE_HIGH_POWER_START;
  1818. #endif // TMC2130
  1819. // Only Z calibration?
  1820. if (!onlyZ)
  1821. {
  1822. setTargetBed(0);
  1823. setTargetHotend(0, 0);
  1824. setTargetHotend(0, 1);
  1825. setTargetHotend(0, 2);
  1826. adjust_bed_reset(); //reset bed level correction
  1827. }
  1828. // Disable the default update procedure of the display. We will do a modal dialog.
  1829. lcd_update_enable(false);
  1830. // Let the planner use the uncorrected coordinates.
  1831. mbl.reset();
  1832. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1833. // the planner will not perform any adjustments in the XY plane.
  1834. // Wait for the motors to stop and update the current position with the absolute values.
  1835. world2machine_revert_to_uncorrected();
  1836. // Reset the baby step value applied without moving the axes.
  1837. babystep_reset();
  1838. // Mark all axes as in a need for homing.
  1839. memset(axis_known_position, 0, sizeof(axis_known_position));
  1840. // Home in the XY plane.
  1841. //set_destination_to_current();
  1842. setup_for_endstop_move();
  1843. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1844. home_xy();
  1845. enable_endstops(false);
  1846. current_position[X_AXIS] += 5;
  1847. current_position[Y_AXIS] += 5;
  1848. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1849. st_synchronize();
  1850. // Let the user move the Z axes up to the end stoppers.
  1851. #ifdef TMC2130
  1852. if (calibrate_z_auto())
  1853. {
  1854. #else //TMC2130
  1855. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1856. {
  1857. #endif //TMC2130
  1858. refresh_cmd_timeout();
  1859. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1860. //{
  1861. // lcd_wait_for_cool_down();
  1862. //}
  1863. if(!onlyZ)
  1864. {
  1865. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1866. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1867. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1868. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1869. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1870. KEEPALIVE_STATE(IN_HANDLER);
  1871. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1872. lcd_implementation_print_at(0, 2, 1);
  1873. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1874. }
  1875. // Move the print head close to the bed.
  1876. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1877. bool endstops_enabled = enable_endstops(true);
  1878. tmc2130_home_enter(Z_AXIS_MASK);
  1879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1880. st_synchronize();
  1881. tmc2130_home_exit();
  1882. enable_endstops(endstops_enabled);
  1883. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1884. {
  1885. //#ifdef TMC2130
  1886. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1887. //#endif
  1888. int8_t verbosity_level = 0;
  1889. if (code_seen('V'))
  1890. {
  1891. // Just 'V' without a number counts as V1.
  1892. char c = strchr_pointer[1];
  1893. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1894. }
  1895. if (onlyZ)
  1896. {
  1897. clean_up_after_endstop_move();
  1898. // Z only calibration.
  1899. // Load the machine correction matrix
  1900. world2machine_initialize();
  1901. // and correct the current_position to match the transformed coordinate system.
  1902. world2machine_update_current();
  1903. //FIXME
  1904. bool result = sample_mesh_and_store_reference();
  1905. if (result)
  1906. {
  1907. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1908. // Shipped, the nozzle height has been set already. The user can start printing now.
  1909. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1910. final_result = true;
  1911. // babystep_apply();
  1912. }
  1913. }
  1914. else
  1915. {
  1916. // Reset the baby step value and the baby step applied flag.
  1917. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1918. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1919. // Complete XYZ calibration.
  1920. uint8_t point_too_far_mask = 0;
  1921. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1922. clean_up_after_endstop_move();
  1923. // Print head up.
  1924. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1925. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1926. st_synchronize();
  1927. if (result >= 0)
  1928. {
  1929. point_too_far_mask = 0;
  1930. // Second half: The fine adjustment.
  1931. // Let the planner use the uncorrected coordinates.
  1932. mbl.reset();
  1933. world2machine_reset();
  1934. // Home in the XY plane.
  1935. setup_for_endstop_move();
  1936. home_xy();
  1937. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1938. clean_up_after_endstop_move();
  1939. // Print head up.
  1940. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1941. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1942. st_synchronize();
  1943. // if (result >= 0) babystep_apply();
  1944. }
  1945. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1946. if (result >= 0)
  1947. {
  1948. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1949. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1950. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1951. final_result = true;
  1952. }
  1953. }
  1954. #ifdef TMC2130
  1955. tmc2130_home_exit();
  1956. #endif
  1957. }
  1958. else
  1959. {
  1960. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1961. final_result = false;
  1962. }
  1963. }
  1964. else
  1965. {
  1966. // Timeouted.
  1967. }
  1968. lcd_update_enable(true);
  1969. #ifdef TMC2130
  1970. FORCE_HIGH_POWER_END;
  1971. #endif // TMC2130
  1972. return final_result;
  1973. }
  1974. void gcode_M701()
  1975. {
  1976. #ifdef SNMM
  1977. extr_adj(snmm_extruder);//loads current extruder
  1978. #else
  1979. enable_z();
  1980. custom_message = true;
  1981. custom_message_type = 2;
  1982. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1983. current_position[E_AXIS] += 70;
  1984. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1985. current_position[E_AXIS] += 25;
  1986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1987. st_synchronize();
  1988. tone(BEEPER, 500);
  1989. delay_keep_alive(50);
  1990. noTone(BEEPER);
  1991. if (!farm_mode && loading_flag) {
  1992. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1993. while (!clean) {
  1994. lcd_update_enable(true);
  1995. lcd_update(2);
  1996. current_position[E_AXIS] += 25;
  1997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1998. st_synchronize();
  1999. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  2000. }
  2001. }
  2002. lcd_update_enable(true);
  2003. lcd_update(2);
  2004. lcd_setstatuspgm(WELCOME_MSG);
  2005. disable_z();
  2006. loading_flag = false;
  2007. custom_message = false;
  2008. custom_message_type = 0;
  2009. #endif
  2010. }
  2011. void process_commands()
  2012. {
  2013. #ifdef FILAMENT_RUNOUT_SUPPORT
  2014. SET_INPUT(FR_SENS);
  2015. #endif
  2016. #ifdef CMDBUFFER_DEBUG
  2017. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2018. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2019. SERIAL_ECHOLNPGM("");
  2020. SERIAL_ECHOPGM("In cmdqueue: ");
  2021. SERIAL_ECHO(buflen);
  2022. SERIAL_ECHOLNPGM("");
  2023. #endif /* CMDBUFFER_DEBUG */
  2024. unsigned long codenum; //throw away variable
  2025. char *starpos = NULL;
  2026. #ifdef ENABLE_AUTO_BED_LEVELING
  2027. float x_tmp, y_tmp, z_tmp, real_z;
  2028. #endif
  2029. // PRUSA GCODES
  2030. KEEPALIVE_STATE(IN_HANDLER);
  2031. #ifdef SNMM
  2032. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2033. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2034. int8_t SilentMode;
  2035. #endif
  2036. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2037. starpos = (strchr(strchr_pointer + 5, '*'));
  2038. if (starpos != NULL)
  2039. *(starpos) = '\0';
  2040. lcd_setstatus(strchr_pointer + 5);
  2041. }
  2042. else if(code_seen("CRASH_DETECTED"))
  2043. {
  2044. uint8_t mask = 0;
  2045. if (code_seen("X")) mask |= X_AXIS_MASK;
  2046. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2047. crashdet_detected(mask);
  2048. }
  2049. else if(code_seen("CRASH_RECOVER"))
  2050. crashdet_recover();
  2051. else if(code_seen("CRASH_CANCEL"))
  2052. crashdet_cancel();
  2053. else if(code_seen("PRUSA")){
  2054. if (code_seen("Ping")) { //PRUSA Ping
  2055. if (farm_mode) {
  2056. PingTime = millis();
  2057. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2058. }
  2059. }
  2060. else if (code_seen("PRN")) {
  2061. MYSERIAL.println(status_number);
  2062. }else if (code_seen("FAN")) {
  2063. MYSERIAL.print("E0:");
  2064. MYSERIAL.print(60*fan_speed[0]);
  2065. MYSERIAL.println(" RPM");
  2066. MYSERIAL.print("PRN0:");
  2067. MYSERIAL.print(60*fan_speed[1]);
  2068. MYSERIAL.println(" RPM");
  2069. }else if (code_seen("fn")) {
  2070. if (farm_mode) {
  2071. MYSERIAL.println(farm_no);
  2072. }
  2073. else {
  2074. MYSERIAL.println("Not in farm mode.");
  2075. }
  2076. }else if (code_seen("fv")) {
  2077. // get file version
  2078. #ifdef SDSUPPORT
  2079. card.openFile(strchr_pointer + 3,true);
  2080. while (true) {
  2081. uint16_t readByte = card.get();
  2082. MYSERIAL.write(readByte);
  2083. if (readByte=='\n') {
  2084. break;
  2085. }
  2086. }
  2087. card.closefile();
  2088. #endif // SDSUPPORT
  2089. } else if (code_seen("M28")) {
  2090. trace();
  2091. prusa_sd_card_upload = true;
  2092. card.openFile(strchr_pointer+4,false);
  2093. } else if (code_seen("SN")) {
  2094. if (farm_mode) {
  2095. selectedSerialPort = 0;
  2096. MSerial.write(";S");
  2097. // S/N is:CZPX0917X003XC13518
  2098. int numbersRead = 0;
  2099. while (numbersRead < 19) {
  2100. while (MSerial.available() > 0) {
  2101. uint8_t serial_char = MSerial.read();
  2102. selectedSerialPort = 1;
  2103. MSerial.write(serial_char);
  2104. numbersRead++;
  2105. selectedSerialPort = 0;
  2106. }
  2107. }
  2108. selectedSerialPort = 1;
  2109. MSerial.write('\n');
  2110. /*for (int b = 0; b < 3; b++) {
  2111. tone(BEEPER, 110);
  2112. delay(50);
  2113. noTone(BEEPER);
  2114. delay(50);
  2115. }*/
  2116. } else {
  2117. MYSERIAL.println("Not in farm mode.");
  2118. }
  2119. } else if(code_seen("Fir")){
  2120. SERIAL_PROTOCOLLN(FW_VERSION);
  2121. } else if(code_seen("Rev")){
  2122. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2123. } else if(code_seen("Lang")) {
  2124. lcd_force_language_selection();
  2125. } else if(code_seen("Lz")) {
  2126. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2127. } else if (code_seen("SERIAL LOW")) {
  2128. MYSERIAL.println("SERIAL LOW");
  2129. MYSERIAL.begin(BAUDRATE);
  2130. return;
  2131. } else if (code_seen("SERIAL HIGH")) {
  2132. MYSERIAL.println("SERIAL HIGH");
  2133. MYSERIAL.begin(1152000);
  2134. return;
  2135. } else if(code_seen("Beat")) {
  2136. // Kick farm link timer
  2137. kicktime = millis();
  2138. } else if(code_seen("FR")) {
  2139. // Factory full reset
  2140. factory_reset(0,true);
  2141. }
  2142. //else if (code_seen('Cal')) {
  2143. // lcd_calibration();
  2144. // }
  2145. }
  2146. else if (code_seen('^')) {
  2147. // nothing, this is a version line
  2148. } else if(code_seen('G'))
  2149. {
  2150. switch((int)code_value())
  2151. {
  2152. case 0: // G0 -> G1
  2153. case 1: // G1
  2154. if(Stopped == false) {
  2155. #ifdef FILAMENT_RUNOUT_SUPPORT
  2156. if(READ(FR_SENS)){
  2157. feedmultiplyBckp=feedmultiply;
  2158. float target[4];
  2159. float lastpos[4];
  2160. target[X_AXIS]=current_position[X_AXIS];
  2161. target[Y_AXIS]=current_position[Y_AXIS];
  2162. target[Z_AXIS]=current_position[Z_AXIS];
  2163. target[E_AXIS]=current_position[E_AXIS];
  2164. lastpos[X_AXIS]=current_position[X_AXIS];
  2165. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2166. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2167. lastpos[E_AXIS]=current_position[E_AXIS];
  2168. //retract by E
  2169. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2170. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2171. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2172. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2173. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2174. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2175. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2176. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2177. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2178. //finish moves
  2179. st_synchronize();
  2180. //disable extruder steppers so filament can be removed
  2181. disable_e0();
  2182. disable_e1();
  2183. disable_e2();
  2184. delay(100);
  2185. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2186. uint8_t cnt=0;
  2187. int counterBeep = 0;
  2188. lcd_wait_interact();
  2189. while(!lcd_clicked()){
  2190. cnt++;
  2191. manage_heater();
  2192. manage_inactivity(true);
  2193. //lcd_update();
  2194. if(cnt==0)
  2195. {
  2196. #if BEEPER > 0
  2197. if (counterBeep== 500){
  2198. counterBeep = 0;
  2199. }
  2200. SET_OUTPUT(BEEPER);
  2201. if (counterBeep== 0){
  2202. WRITE(BEEPER,HIGH);
  2203. }
  2204. if (counterBeep== 20){
  2205. WRITE(BEEPER,LOW);
  2206. }
  2207. counterBeep++;
  2208. #else
  2209. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2210. lcd_buzz(1000/6,100);
  2211. #else
  2212. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2213. #endif
  2214. #endif
  2215. }
  2216. }
  2217. WRITE(BEEPER,LOW);
  2218. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2219. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2220. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2221. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2222. lcd_change_fil_state = 0;
  2223. lcd_loading_filament();
  2224. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2225. lcd_change_fil_state = 0;
  2226. lcd_alright();
  2227. switch(lcd_change_fil_state){
  2228. case 2:
  2229. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2230. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2231. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2232. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2233. lcd_loading_filament();
  2234. break;
  2235. case 3:
  2236. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2237. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2238. lcd_loading_color();
  2239. break;
  2240. default:
  2241. lcd_change_success();
  2242. break;
  2243. }
  2244. }
  2245. target[E_AXIS]+= 5;
  2246. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2247. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2248. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2249. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2250. //plan_set_e_position(current_position[E_AXIS]);
  2251. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2252. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2253. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2254. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2255. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2256. plan_set_e_position(lastpos[E_AXIS]);
  2257. feedmultiply=feedmultiplyBckp;
  2258. char cmd[9];
  2259. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2260. enquecommand(cmd);
  2261. }
  2262. #endif
  2263. get_coordinates(); // For X Y Z E F
  2264. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2265. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2266. }
  2267. #ifdef FWRETRACT
  2268. if(autoretract_enabled)
  2269. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2270. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2271. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2272. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2273. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2274. retract(!retracted);
  2275. return;
  2276. }
  2277. }
  2278. #endif //FWRETRACT
  2279. prepare_move();
  2280. //ClearToSend();
  2281. }
  2282. break;
  2283. case 2: // G2 - CW ARC
  2284. if(Stopped == false) {
  2285. get_arc_coordinates();
  2286. prepare_arc_move(true);
  2287. }
  2288. break;
  2289. case 3: // G3 - CCW ARC
  2290. if(Stopped == false) {
  2291. get_arc_coordinates();
  2292. prepare_arc_move(false);
  2293. }
  2294. break;
  2295. case 4: // G4 dwell
  2296. codenum = 0;
  2297. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2298. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2299. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2300. st_synchronize();
  2301. codenum += millis(); // keep track of when we started waiting
  2302. previous_millis_cmd = millis();
  2303. while(millis() < codenum) {
  2304. manage_heater();
  2305. manage_inactivity();
  2306. lcd_update();
  2307. }
  2308. break;
  2309. #ifdef FWRETRACT
  2310. case 10: // G10 retract
  2311. #if EXTRUDERS > 1
  2312. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2313. retract(true,retracted_swap[active_extruder]);
  2314. #else
  2315. retract(true);
  2316. #endif
  2317. break;
  2318. case 11: // G11 retract_recover
  2319. #if EXTRUDERS > 1
  2320. retract(false,retracted_swap[active_extruder]);
  2321. #else
  2322. retract(false);
  2323. #endif
  2324. break;
  2325. #endif //FWRETRACT
  2326. case 28: //G28 Home all Axis one at a time
  2327. {
  2328. st_synchronize();
  2329. #if 0
  2330. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2331. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2332. #endif
  2333. // Flag for the display update routine and to disable the print cancelation during homing.
  2334. homing_flag = true;
  2335. // Which axes should be homed?
  2336. bool home_x = code_seen(axis_codes[X_AXIS]);
  2337. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2338. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2339. // calibrate?
  2340. bool calib = code_seen('C');
  2341. // Either all X,Y,Z codes are present, or none of them.
  2342. bool home_all_axes = home_x == home_y && home_x == home_z;
  2343. if (home_all_axes)
  2344. // No X/Y/Z code provided means to home all axes.
  2345. home_x = home_y = home_z = true;
  2346. #ifdef ENABLE_AUTO_BED_LEVELING
  2347. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2348. #endif //ENABLE_AUTO_BED_LEVELING
  2349. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2350. // the planner will not perform any adjustments in the XY plane.
  2351. // Wait for the motors to stop and update the current position with the absolute values.
  2352. world2machine_revert_to_uncorrected();
  2353. // For mesh bed leveling deactivate the matrix temporarily.
  2354. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2355. // in a single axis only.
  2356. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2357. #ifdef MESH_BED_LEVELING
  2358. uint8_t mbl_was_active = mbl.active;
  2359. mbl.active = 0;
  2360. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2361. #endif
  2362. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2363. // consumed during the first movements following this statement.
  2364. if (home_z)
  2365. babystep_undo();
  2366. saved_feedrate = feedrate;
  2367. saved_feedmultiply = feedmultiply;
  2368. feedmultiply = 100;
  2369. previous_millis_cmd = millis();
  2370. enable_endstops(true);
  2371. memcpy(destination, current_position, sizeof(destination));
  2372. feedrate = 0.0;
  2373. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2374. if(home_z)
  2375. homeaxis(Z_AXIS);
  2376. #endif
  2377. #ifdef QUICK_HOME
  2378. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2379. if(home_x && home_y) //first diagonal move
  2380. {
  2381. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2382. int x_axis_home_dir = home_dir(X_AXIS);
  2383. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2384. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2385. feedrate = homing_feedrate[X_AXIS];
  2386. if(homing_feedrate[Y_AXIS]<feedrate)
  2387. feedrate = homing_feedrate[Y_AXIS];
  2388. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2389. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2390. } else {
  2391. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2392. }
  2393. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2394. st_synchronize();
  2395. axis_is_at_home(X_AXIS);
  2396. axis_is_at_home(Y_AXIS);
  2397. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2398. destination[X_AXIS] = current_position[X_AXIS];
  2399. destination[Y_AXIS] = current_position[Y_AXIS];
  2400. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2401. feedrate = 0.0;
  2402. st_synchronize();
  2403. endstops_hit_on_purpose();
  2404. current_position[X_AXIS] = destination[X_AXIS];
  2405. current_position[Y_AXIS] = destination[Y_AXIS];
  2406. current_position[Z_AXIS] = destination[Z_AXIS];
  2407. }
  2408. #endif /* QUICK_HOME */
  2409. if(home_x)
  2410. {
  2411. if (!calib)
  2412. homeaxis(X_AXIS);
  2413. else
  2414. tmc2130_home_calibrate(X_AXIS);
  2415. }
  2416. if(home_y)
  2417. {
  2418. if (!calib)
  2419. homeaxis(Y_AXIS);
  2420. else
  2421. tmc2130_home_calibrate(Y_AXIS);
  2422. }
  2423. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2424. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2425. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2426. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2427. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2428. #ifndef Z_SAFE_HOMING
  2429. if(home_z) {
  2430. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2431. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2432. feedrate = max_feedrate[Z_AXIS];
  2433. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2434. st_synchronize();
  2435. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2436. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2437. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2438. {
  2439. homeaxis(X_AXIS);
  2440. homeaxis(Y_AXIS);
  2441. }
  2442. // 1st mesh bed leveling measurement point, corrected.
  2443. world2machine_initialize();
  2444. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2445. world2machine_reset();
  2446. if (destination[Y_AXIS] < Y_MIN_POS)
  2447. destination[Y_AXIS] = Y_MIN_POS;
  2448. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2449. feedrate = homing_feedrate[Z_AXIS]/10;
  2450. current_position[Z_AXIS] = 0;
  2451. enable_endstops(false);
  2452. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2453. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2454. st_synchronize();
  2455. current_position[X_AXIS] = destination[X_AXIS];
  2456. current_position[Y_AXIS] = destination[Y_AXIS];
  2457. enable_endstops(true);
  2458. endstops_hit_on_purpose();
  2459. homeaxis(Z_AXIS);
  2460. #else // MESH_BED_LEVELING
  2461. homeaxis(Z_AXIS);
  2462. #endif // MESH_BED_LEVELING
  2463. }
  2464. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2465. if(home_all_axes) {
  2466. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2467. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2468. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2469. feedrate = XY_TRAVEL_SPEED/60;
  2470. current_position[Z_AXIS] = 0;
  2471. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2472. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2473. st_synchronize();
  2474. current_position[X_AXIS] = destination[X_AXIS];
  2475. current_position[Y_AXIS] = destination[Y_AXIS];
  2476. homeaxis(Z_AXIS);
  2477. }
  2478. // Let's see if X and Y are homed and probe is inside bed area.
  2479. if(home_z) {
  2480. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2481. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2482. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2483. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2484. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2485. current_position[Z_AXIS] = 0;
  2486. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2487. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2488. feedrate = max_feedrate[Z_AXIS];
  2489. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2490. st_synchronize();
  2491. homeaxis(Z_AXIS);
  2492. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2493. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2494. SERIAL_ECHO_START;
  2495. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2496. } else {
  2497. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2498. SERIAL_ECHO_START;
  2499. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2500. }
  2501. }
  2502. #endif // Z_SAFE_HOMING
  2503. #endif // Z_HOME_DIR < 0
  2504. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2505. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2506. #ifdef ENABLE_AUTO_BED_LEVELING
  2507. if(home_z)
  2508. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2509. #endif
  2510. // Set the planner and stepper routine positions.
  2511. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2512. // contains the machine coordinates.
  2513. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2514. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2515. enable_endstops(false);
  2516. #endif
  2517. feedrate = saved_feedrate;
  2518. feedmultiply = saved_feedmultiply;
  2519. previous_millis_cmd = millis();
  2520. endstops_hit_on_purpose();
  2521. #ifndef MESH_BED_LEVELING
  2522. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2523. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2524. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2525. lcd_adjust_z();
  2526. #endif
  2527. // Load the machine correction matrix
  2528. world2machine_initialize();
  2529. // and correct the current_position XY axes to match the transformed coordinate system.
  2530. world2machine_update_current();
  2531. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2532. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2533. {
  2534. if (! home_z && mbl_was_active) {
  2535. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2536. mbl.active = true;
  2537. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2538. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2539. }
  2540. }
  2541. else
  2542. {
  2543. st_synchronize();
  2544. homing_flag = false;
  2545. // Push the commands to the front of the message queue in the reverse order!
  2546. // There shall be always enough space reserved for these commands.
  2547. // enquecommand_front_P((PSTR("G80")));
  2548. goto case_G80;
  2549. }
  2550. #endif
  2551. if (farm_mode) { prusa_statistics(20); };
  2552. homing_flag = false;
  2553. #if 0
  2554. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2555. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2556. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2557. #endif
  2558. break;
  2559. }
  2560. #ifdef ENABLE_AUTO_BED_LEVELING
  2561. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2562. {
  2563. #if Z_MIN_PIN == -1
  2564. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2565. #endif
  2566. // Prevent user from running a G29 without first homing in X and Y
  2567. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2568. {
  2569. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2570. SERIAL_ECHO_START;
  2571. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2572. break; // abort G29, since we don't know where we are
  2573. }
  2574. st_synchronize();
  2575. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2576. //vector_3 corrected_position = plan_get_position_mm();
  2577. //corrected_position.debug("position before G29");
  2578. plan_bed_level_matrix.set_to_identity();
  2579. vector_3 uncorrected_position = plan_get_position();
  2580. //uncorrected_position.debug("position durring G29");
  2581. current_position[X_AXIS] = uncorrected_position.x;
  2582. current_position[Y_AXIS] = uncorrected_position.y;
  2583. current_position[Z_AXIS] = uncorrected_position.z;
  2584. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2585. setup_for_endstop_move();
  2586. feedrate = homing_feedrate[Z_AXIS];
  2587. #ifdef AUTO_BED_LEVELING_GRID
  2588. // probe at the points of a lattice grid
  2589. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2590. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2591. // solve the plane equation ax + by + d = z
  2592. // A is the matrix with rows [x y 1] for all the probed points
  2593. // B is the vector of the Z positions
  2594. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2595. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2596. // "A" matrix of the linear system of equations
  2597. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2598. // "B" vector of Z points
  2599. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2600. int probePointCounter = 0;
  2601. bool zig = true;
  2602. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2603. {
  2604. int xProbe, xInc;
  2605. if (zig)
  2606. {
  2607. xProbe = LEFT_PROBE_BED_POSITION;
  2608. //xEnd = RIGHT_PROBE_BED_POSITION;
  2609. xInc = xGridSpacing;
  2610. zig = false;
  2611. } else // zag
  2612. {
  2613. xProbe = RIGHT_PROBE_BED_POSITION;
  2614. //xEnd = LEFT_PROBE_BED_POSITION;
  2615. xInc = -xGridSpacing;
  2616. zig = true;
  2617. }
  2618. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2619. {
  2620. float z_before;
  2621. if (probePointCounter == 0)
  2622. {
  2623. // raise before probing
  2624. z_before = Z_RAISE_BEFORE_PROBING;
  2625. } else
  2626. {
  2627. // raise extruder
  2628. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2629. }
  2630. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2631. eqnBVector[probePointCounter] = measured_z;
  2632. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2633. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2634. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2635. probePointCounter++;
  2636. xProbe += xInc;
  2637. }
  2638. }
  2639. clean_up_after_endstop_move();
  2640. // solve lsq problem
  2641. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2642. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2643. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2644. SERIAL_PROTOCOLPGM(" b: ");
  2645. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2646. SERIAL_PROTOCOLPGM(" d: ");
  2647. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2648. set_bed_level_equation_lsq(plane_equation_coefficients);
  2649. free(plane_equation_coefficients);
  2650. #else // AUTO_BED_LEVELING_GRID not defined
  2651. // Probe at 3 arbitrary points
  2652. // probe 1
  2653. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2654. // probe 2
  2655. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2656. // probe 3
  2657. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2658. clean_up_after_endstop_move();
  2659. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2660. #endif // AUTO_BED_LEVELING_GRID
  2661. st_synchronize();
  2662. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2663. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2664. // When the bed is uneven, this height must be corrected.
  2665. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2666. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2667. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2668. z_tmp = current_position[Z_AXIS];
  2669. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2670. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2671. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2672. }
  2673. break;
  2674. #ifndef Z_PROBE_SLED
  2675. case 30: // G30 Single Z Probe
  2676. {
  2677. st_synchronize();
  2678. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2679. setup_for_endstop_move();
  2680. feedrate = homing_feedrate[Z_AXIS];
  2681. run_z_probe();
  2682. SERIAL_PROTOCOLPGM(MSG_BED);
  2683. SERIAL_PROTOCOLPGM(" X: ");
  2684. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2685. SERIAL_PROTOCOLPGM(" Y: ");
  2686. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2687. SERIAL_PROTOCOLPGM(" Z: ");
  2688. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2689. SERIAL_PROTOCOLPGM("\n");
  2690. clean_up_after_endstop_move();
  2691. }
  2692. break;
  2693. #else
  2694. case 31: // dock the sled
  2695. dock_sled(true);
  2696. break;
  2697. case 32: // undock the sled
  2698. dock_sled(false);
  2699. break;
  2700. #endif // Z_PROBE_SLED
  2701. #endif // ENABLE_AUTO_BED_LEVELING
  2702. #ifdef MESH_BED_LEVELING
  2703. case 30: // G30 Single Z Probe
  2704. {
  2705. st_synchronize();
  2706. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2707. setup_for_endstop_move();
  2708. feedrate = homing_feedrate[Z_AXIS];
  2709. find_bed_induction_sensor_point_z(-10.f, 3);
  2710. SERIAL_PROTOCOLRPGM(MSG_BED);
  2711. SERIAL_PROTOCOLPGM(" X: ");
  2712. MYSERIAL.print(current_position[X_AXIS], 5);
  2713. SERIAL_PROTOCOLPGM(" Y: ");
  2714. MYSERIAL.print(current_position[Y_AXIS], 5);
  2715. SERIAL_PROTOCOLPGM(" Z: ");
  2716. MYSERIAL.print(current_position[Z_AXIS], 5);
  2717. SERIAL_PROTOCOLPGM("\n");
  2718. clean_up_after_endstop_move();
  2719. }
  2720. break;
  2721. case 75:
  2722. {
  2723. for (int i = 40; i <= 110; i++) {
  2724. MYSERIAL.print(i);
  2725. MYSERIAL.print(" ");
  2726. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2727. }
  2728. }
  2729. break;
  2730. case 76: //PINDA probe temperature calibration
  2731. {
  2732. #ifdef PINDA_THERMISTOR
  2733. if (true)
  2734. {
  2735. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2736. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2737. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2738. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2739. // We don't know where we are! HOME!
  2740. // Push the commands to the front of the message queue in the reverse order!
  2741. // There shall be always enough space reserved for these commands.
  2742. repeatcommand_front(); // repeat G76 with all its parameters
  2743. enquecommand_front_P((PSTR("G28 W0")));
  2744. break;
  2745. }
  2746. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2747. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2748. float zero_z;
  2749. int z_shift = 0; //unit: steps
  2750. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2751. if (start_temp < 35) start_temp = 35;
  2752. if (start_temp < current_temperature_pinda) start_temp += 5;
  2753. SERIAL_ECHOPGM("start temperature: ");
  2754. MYSERIAL.println(start_temp);
  2755. // setTargetHotend(200, 0);
  2756. setTargetBed(70 + (start_temp - 30));
  2757. custom_message = true;
  2758. custom_message_type = 4;
  2759. custom_message_state = 1;
  2760. custom_message = MSG_TEMP_CALIBRATION;
  2761. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2762. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2763. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2764. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2765. st_synchronize();
  2766. while (current_temperature_pinda < start_temp)
  2767. {
  2768. delay_keep_alive(1000);
  2769. serialecho_temperatures();
  2770. }
  2771. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2772. current_position[Z_AXIS] = 5;
  2773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2774. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2775. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2777. st_synchronize();
  2778. find_bed_induction_sensor_point_z(-1.f);
  2779. zero_z = current_position[Z_AXIS];
  2780. //current_position[Z_AXIS]
  2781. SERIAL_ECHOLNPGM("");
  2782. SERIAL_ECHOPGM("ZERO: ");
  2783. MYSERIAL.print(current_position[Z_AXIS]);
  2784. SERIAL_ECHOLNPGM("");
  2785. int i = -1; for (; i < 5; i++)
  2786. {
  2787. float temp = (40 + i * 5);
  2788. SERIAL_ECHOPGM("Step: ");
  2789. MYSERIAL.print(i + 2);
  2790. SERIAL_ECHOLNPGM("/6 (skipped)");
  2791. SERIAL_ECHOPGM("PINDA temperature: ");
  2792. MYSERIAL.print((40 + i*5));
  2793. SERIAL_ECHOPGM(" Z shift (mm):");
  2794. MYSERIAL.print(0);
  2795. SERIAL_ECHOLNPGM("");
  2796. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2797. if (start_temp <= temp) break;
  2798. }
  2799. for (i++; i < 5; i++)
  2800. {
  2801. float temp = (40 + i * 5);
  2802. SERIAL_ECHOPGM("Step: ");
  2803. MYSERIAL.print(i + 2);
  2804. SERIAL_ECHOLNPGM("/6");
  2805. custom_message_state = i + 2;
  2806. setTargetBed(50 + 10 * (temp - 30) / 5);
  2807. // setTargetHotend(255, 0);
  2808. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2809. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2810. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2812. st_synchronize();
  2813. while (current_temperature_pinda < temp)
  2814. {
  2815. delay_keep_alive(1000);
  2816. serialecho_temperatures();
  2817. }
  2818. current_position[Z_AXIS] = 5;
  2819. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2820. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2821. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2823. st_synchronize();
  2824. find_bed_induction_sensor_point_z(-1.f);
  2825. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2826. SERIAL_ECHOLNPGM("");
  2827. SERIAL_ECHOPGM("PINDA temperature: ");
  2828. MYSERIAL.print(current_temperature_pinda);
  2829. SERIAL_ECHOPGM(" Z shift (mm):");
  2830. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2831. SERIAL_ECHOLNPGM("");
  2832. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2833. }
  2834. custom_message_type = 0;
  2835. custom_message = false;
  2836. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2837. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2838. disable_x();
  2839. disable_y();
  2840. disable_z();
  2841. disable_e0();
  2842. disable_e1();
  2843. disable_e2();
  2844. setTargetBed(0); //set bed target temperature back to 0
  2845. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2846. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2847. lcd_update_enable(true);
  2848. lcd_update(2);
  2849. break;
  2850. }
  2851. #endif //PINDA_THERMISTOR
  2852. setTargetBed(PINDA_MIN_T);
  2853. float zero_z;
  2854. int z_shift = 0; //unit: steps
  2855. int t_c; // temperature
  2856. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2857. // We don't know where we are! HOME!
  2858. // Push the commands to the front of the message queue in the reverse order!
  2859. // There shall be always enough space reserved for these commands.
  2860. repeatcommand_front(); // repeat G76 with all its parameters
  2861. enquecommand_front_P((PSTR("G28 W0")));
  2862. break;
  2863. }
  2864. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2865. custom_message = true;
  2866. custom_message_type = 4;
  2867. custom_message_state = 1;
  2868. custom_message = MSG_TEMP_CALIBRATION;
  2869. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2870. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2871. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2873. st_synchronize();
  2874. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2875. delay_keep_alive(1000);
  2876. serialecho_temperatures();
  2877. }
  2878. //enquecommand_P(PSTR("M190 S50"));
  2879. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2880. delay_keep_alive(1000);
  2881. serialecho_temperatures();
  2882. }
  2883. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2884. current_position[Z_AXIS] = 5;
  2885. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2886. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2887. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2889. st_synchronize();
  2890. find_bed_induction_sensor_point_z(-1.f);
  2891. zero_z = current_position[Z_AXIS];
  2892. //current_position[Z_AXIS]
  2893. SERIAL_ECHOLNPGM("");
  2894. SERIAL_ECHOPGM("ZERO: ");
  2895. MYSERIAL.print(current_position[Z_AXIS]);
  2896. SERIAL_ECHOLNPGM("");
  2897. for (int i = 0; i<5; i++) {
  2898. SERIAL_ECHOPGM("Step: ");
  2899. MYSERIAL.print(i+2);
  2900. SERIAL_ECHOLNPGM("/6");
  2901. custom_message_state = i + 2;
  2902. t_c = 60 + i * 10;
  2903. setTargetBed(t_c);
  2904. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2905. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2906. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2907. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2908. st_synchronize();
  2909. while (degBed() < t_c) {
  2910. delay_keep_alive(1000);
  2911. serialecho_temperatures();
  2912. }
  2913. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2914. delay_keep_alive(1000);
  2915. serialecho_temperatures();
  2916. }
  2917. current_position[Z_AXIS] = 5;
  2918. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2919. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2920. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2921. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2922. st_synchronize();
  2923. find_bed_induction_sensor_point_z(-1.f);
  2924. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2925. SERIAL_ECHOLNPGM("");
  2926. SERIAL_ECHOPGM("Temperature: ");
  2927. MYSERIAL.print(t_c);
  2928. SERIAL_ECHOPGM(" Z shift (mm):");
  2929. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2930. SERIAL_ECHOLNPGM("");
  2931. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2932. }
  2933. custom_message_type = 0;
  2934. custom_message = false;
  2935. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2936. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2937. disable_x();
  2938. disable_y();
  2939. disable_z();
  2940. disable_e0();
  2941. disable_e1();
  2942. disable_e2();
  2943. setTargetBed(0); //set bed target temperature back to 0
  2944. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2945. lcd_update_enable(true);
  2946. lcd_update(2);
  2947. }
  2948. break;
  2949. #ifdef DIS
  2950. case 77:
  2951. {
  2952. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2953. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2954. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2955. float dimension_x = 40;
  2956. float dimension_y = 40;
  2957. int points_x = 40;
  2958. int points_y = 40;
  2959. float offset_x = 74;
  2960. float offset_y = 33;
  2961. if (code_seen('X')) dimension_x = code_value();
  2962. if (code_seen('Y')) dimension_y = code_value();
  2963. if (code_seen('XP')) points_x = code_value();
  2964. if (code_seen('YP')) points_y = code_value();
  2965. if (code_seen('XO')) offset_x = code_value();
  2966. if (code_seen('YO')) offset_y = code_value();
  2967. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2968. } break;
  2969. #endif
  2970. case 79: {
  2971. for (int i = 255; i > 0; i = i - 5) {
  2972. fanSpeed = i;
  2973. //delay_keep_alive(2000);
  2974. for (int j = 0; j < 100; j++) {
  2975. delay_keep_alive(100);
  2976. }
  2977. fan_speed[1];
  2978. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2979. }
  2980. }break;
  2981. /**
  2982. * G80: Mesh-based Z probe, probes a grid and produces a
  2983. * mesh to compensate for variable bed height
  2984. *
  2985. * The S0 report the points as below
  2986. *
  2987. * +----> X-axis
  2988. * |
  2989. * |
  2990. * v Y-axis
  2991. *
  2992. */
  2993. case 80:
  2994. #ifdef MK1BP
  2995. break;
  2996. #endif //MK1BP
  2997. case_G80:
  2998. {
  2999. mesh_bed_leveling_flag = true;
  3000. int8_t verbosity_level = 0;
  3001. static bool run = false;
  3002. if (code_seen('V')) {
  3003. // Just 'V' without a number counts as V1.
  3004. char c = strchr_pointer[1];
  3005. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3006. }
  3007. // Firstly check if we know where we are
  3008. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3009. // We don't know where we are! HOME!
  3010. // Push the commands to the front of the message queue in the reverse order!
  3011. // There shall be always enough space reserved for these commands.
  3012. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3013. repeatcommand_front(); // repeat G80 with all its parameters
  3014. enquecommand_front_P((PSTR("G28 W0")));
  3015. }
  3016. else {
  3017. mesh_bed_leveling_flag = false;
  3018. }
  3019. break;
  3020. }
  3021. bool temp_comp_start = true;
  3022. #ifdef PINDA_THERMISTOR
  3023. temp_comp_start = false;
  3024. #endif //PINDA_THERMISTOR
  3025. if (temp_comp_start)
  3026. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3027. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3028. temp_compensation_start();
  3029. run = true;
  3030. repeatcommand_front(); // repeat G80 with all its parameters
  3031. enquecommand_front_P((PSTR("G28 W0")));
  3032. }
  3033. else {
  3034. mesh_bed_leveling_flag = false;
  3035. }
  3036. break;
  3037. }
  3038. run = false;
  3039. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3040. mesh_bed_leveling_flag = false;
  3041. break;
  3042. }
  3043. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3044. bool custom_message_old = custom_message;
  3045. unsigned int custom_message_type_old = custom_message_type;
  3046. unsigned int custom_message_state_old = custom_message_state;
  3047. custom_message = true;
  3048. custom_message_type = 1;
  3049. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3050. lcd_update(1);
  3051. mbl.reset(); //reset mesh bed leveling
  3052. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3053. // consumed during the first movements following this statement.
  3054. babystep_undo();
  3055. // Cycle through all points and probe them
  3056. // First move up. During this first movement, the babystepping will be reverted.
  3057. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3058. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3059. // The move to the first calibration point.
  3060. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3061. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3062. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3063. #ifdef SUPPORT_VERBOSITY
  3064. if (verbosity_level >= 1) {
  3065. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3066. }
  3067. #endif //SUPPORT_VERBOSITY
  3068. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3070. // Wait until the move is finished.
  3071. st_synchronize();
  3072. int mesh_point = 0; //index number of calibration point
  3073. int ix = 0;
  3074. int iy = 0;
  3075. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3076. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3077. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3078. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3079. #ifdef SUPPORT_VERBOSITY
  3080. if (verbosity_level >= 1) {
  3081. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3082. }
  3083. #endif // SUPPORT_VERBOSITY
  3084. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3085. const char *kill_message = NULL;
  3086. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3087. // Get coords of a measuring point.
  3088. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3089. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3090. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3091. float z0 = 0.f;
  3092. if (has_z && mesh_point > 0) {
  3093. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3094. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3095. //#if 0
  3096. #ifdef SUPPORT_VERBOSITY
  3097. if (verbosity_level >= 1) {
  3098. SERIAL_ECHOLNPGM("");
  3099. SERIAL_ECHOPGM("Bed leveling, point: ");
  3100. MYSERIAL.print(mesh_point);
  3101. SERIAL_ECHOPGM(", calibration z: ");
  3102. MYSERIAL.print(z0, 5);
  3103. SERIAL_ECHOLNPGM("");
  3104. }
  3105. #endif // SUPPORT_VERBOSITY
  3106. //#endif
  3107. }
  3108. // Move Z up to MESH_HOME_Z_SEARCH.
  3109. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3111. st_synchronize();
  3112. // Move to XY position of the sensor point.
  3113. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3114. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3115. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3116. #ifdef SUPPORT_VERBOSITY
  3117. if (verbosity_level >= 1) {
  3118. SERIAL_PROTOCOL(mesh_point);
  3119. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3120. }
  3121. #endif // SUPPORT_VERBOSITY
  3122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3123. st_synchronize();
  3124. // Go down until endstop is hit
  3125. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3126. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3127. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3128. break;
  3129. }
  3130. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3131. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3132. break;
  3133. }
  3134. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3135. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3136. break;
  3137. }
  3138. #ifdef SUPPORT_VERBOSITY
  3139. if (verbosity_level >= 10) {
  3140. SERIAL_ECHOPGM("X: ");
  3141. MYSERIAL.print(current_position[X_AXIS], 5);
  3142. SERIAL_ECHOLNPGM("");
  3143. SERIAL_ECHOPGM("Y: ");
  3144. MYSERIAL.print(current_position[Y_AXIS], 5);
  3145. SERIAL_PROTOCOLPGM("\n");
  3146. }
  3147. #endif // SUPPORT_VERBOSITY
  3148. float offset_z = 0;
  3149. #ifdef PINDA_THERMISTOR
  3150. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3151. #endif //PINDA_THERMISTOR
  3152. // #ifdef SUPPORT_VERBOSITY
  3153. /* if (verbosity_level >= 1)
  3154. {
  3155. SERIAL_ECHOPGM("mesh bed leveling: ");
  3156. MYSERIAL.print(current_position[Z_AXIS], 5);
  3157. SERIAL_ECHOPGM(" offset: ");
  3158. MYSERIAL.print(offset_z, 5);
  3159. SERIAL_ECHOLNPGM("");
  3160. }*/
  3161. // #endif // SUPPORT_VERBOSITY
  3162. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3163. custom_message_state--;
  3164. mesh_point++;
  3165. lcd_update(1);
  3166. }
  3167. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3168. #ifdef SUPPORT_VERBOSITY
  3169. if (verbosity_level >= 20) {
  3170. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3171. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3172. MYSERIAL.print(current_position[Z_AXIS], 5);
  3173. }
  3174. #endif // SUPPORT_VERBOSITY
  3175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3176. st_synchronize();
  3177. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3178. kill(kill_message);
  3179. SERIAL_ECHOLNPGM("killed");
  3180. }
  3181. clean_up_after_endstop_move();
  3182. // SERIAL_ECHOLNPGM("clean up finished ");
  3183. bool apply_temp_comp = true;
  3184. #ifdef PINDA_THERMISTOR
  3185. apply_temp_comp = false;
  3186. #endif
  3187. if (apply_temp_comp)
  3188. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3189. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3190. // SERIAL_ECHOLNPGM("babystep applied");
  3191. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3192. #ifdef SUPPORT_VERBOSITY
  3193. if (verbosity_level >= 1) {
  3194. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3195. }
  3196. #endif // SUPPORT_VERBOSITY
  3197. for (uint8_t i = 0; i < 4; ++i) {
  3198. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3199. long correction = 0;
  3200. if (code_seen(codes[i]))
  3201. correction = code_value_long();
  3202. else if (eeprom_bed_correction_valid) {
  3203. unsigned char *addr = (i < 2) ?
  3204. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3205. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3206. correction = eeprom_read_int8(addr);
  3207. }
  3208. if (correction == 0)
  3209. continue;
  3210. float offset = float(correction) * 0.001f;
  3211. if (fabs(offset) > 0.101f) {
  3212. SERIAL_ERROR_START;
  3213. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3214. SERIAL_ECHO(offset);
  3215. SERIAL_ECHOLNPGM(" microns");
  3216. }
  3217. else {
  3218. switch (i) {
  3219. case 0:
  3220. for (uint8_t row = 0; row < 3; ++row) {
  3221. mbl.z_values[row][1] += 0.5f * offset;
  3222. mbl.z_values[row][0] += offset;
  3223. }
  3224. break;
  3225. case 1:
  3226. for (uint8_t row = 0; row < 3; ++row) {
  3227. mbl.z_values[row][1] += 0.5f * offset;
  3228. mbl.z_values[row][2] += offset;
  3229. }
  3230. break;
  3231. case 2:
  3232. for (uint8_t col = 0; col < 3; ++col) {
  3233. mbl.z_values[1][col] += 0.5f * offset;
  3234. mbl.z_values[0][col] += offset;
  3235. }
  3236. break;
  3237. case 3:
  3238. for (uint8_t col = 0; col < 3; ++col) {
  3239. mbl.z_values[1][col] += 0.5f * offset;
  3240. mbl.z_values[2][col] += offset;
  3241. }
  3242. break;
  3243. }
  3244. }
  3245. }
  3246. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3247. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3248. // SERIAL_ECHOLNPGM("Upsample finished");
  3249. mbl.active = 1; //activate mesh bed leveling
  3250. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3251. go_home_with_z_lift();
  3252. // SERIAL_ECHOLNPGM("Go home finished");
  3253. //unretract (after PINDA preheat retraction)
  3254. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3255. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3256. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3257. }
  3258. KEEPALIVE_STATE(NOT_BUSY);
  3259. // Restore custom message state
  3260. custom_message = custom_message_old;
  3261. custom_message_type = custom_message_type_old;
  3262. custom_message_state = custom_message_state_old;
  3263. mesh_bed_leveling_flag = false;
  3264. mesh_bed_run_from_menu = false;
  3265. lcd_update(2);
  3266. }
  3267. break;
  3268. /**
  3269. * G81: Print mesh bed leveling status and bed profile if activated
  3270. */
  3271. case 81:
  3272. if (mbl.active) {
  3273. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3274. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3275. SERIAL_PROTOCOLPGM(",");
  3276. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3277. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3278. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3279. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3280. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3281. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3282. SERIAL_PROTOCOLPGM(" ");
  3283. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3284. }
  3285. SERIAL_PROTOCOLPGM("\n");
  3286. }
  3287. }
  3288. else
  3289. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3290. break;
  3291. #if 0
  3292. /**
  3293. * G82: Single Z probe at current location
  3294. *
  3295. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3296. *
  3297. */
  3298. case 82:
  3299. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3300. setup_for_endstop_move();
  3301. find_bed_induction_sensor_point_z();
  3302. clean_up_after_endstop_move();
  3303. SERIAL_PROTOCOLPGM("Bed found at: ");
  3304. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3305. SERIAL_PROTOCOLPGM("\n");
  3306. break;
  3307. /**
  3308. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3309. */
  3310. case 83:
  3311. {
  3312. int babystepz = code_seen('S') ? code_value() : 0;
  3313. int BabyPosition = code_seen('P') ? code_value() : 0;
  3314. if (babystepz != 0) {
  3315. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3316. // Is the axis indexed starting with zero or one?
  3317. if (BabyPosition > 4) {
  3318. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3319. }else{
  3320. // Save it to the eeprom
  3321. babystepLoadZ = babystepz;
  3322. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3323. // adjust the Z
  3324. babystepsTodoZadd(babystepLoadZ);
  3325. }
  3326. }
  3327. }
  3328. break;
  3329. /**
  3330. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3331. */
  3332. case 84:
  3333. babystepsTodoZsubtract(babystepLoadZ);
  3334. // babystepLoadZ = 0;
  3335. break;
  3336. /**
  3337. * G85: Prusa3D specific: Pick best babystep
  3338. */
  3339. case 85:
  3340. lcd_pick_babystep();
  3341. break;
  3342. #endif
  3343. /**
  3344. * G86: Prusa3D specific: Disable babystep correction after home.
  3345. * This G-code will be performed at the start of a calibration script.
  3346. */
  3347. case 86:
  3348. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3349. break;
  3350. /**
  3351. * G87: Prusa3D specific: Enable babystep correction after home
  3352. * This G-code will be performed at the end of a calibration script.
  3353. */
  3354. case 87:
  3355. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3356. break;
  3357. /**
  3358. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3359. */
  3360. case 88:
  3361. break;
  3362. #endif // ENABLE_MESH_BED_LEVELING
  3363. case 90: // G90
  3364. relative_mode = false;
  3365. break;
  3366. case 91: // G91
  3367. relative_mode = true;
  3368. break;
  3369. case 92: // G92
  3370. if(!code_seen(axis_codes[E_AXIS]))
  3371. st_synchronize();
  3372. for(int8_t i=0; i < NUM_AXIS; i++) {
  3373. if(code_seen(axis_codes[i])) {
  3374. if(i == E_AXIS) {
  3375. current_position[i] = code_value();
  3376. plan_set_e_position(current_position[E_AXIS]);
  3377. }
  3378. else {
  3379. current_position[i] = code_value()+add_homing[i];
  3380. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3381. }
  3382. }
  3383. }
  3384. break;
  3385. case 98: //activate farm mode
  3386. farm_mode = 1;
  3387. PingTime = millis();
  3388. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3389. break;
  3390. case 99: //deactivate farm mode
  3391. farm_mode = 0;
  3392. lcd_printer_connected();
  3393. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3394. lcd_update(2);
  3395. break;
  3396. default:
  3397. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3398. }
  3399. } // end if(code_seen('G'))
  3400. else if(code_seen('M'))
  3401. {
  3402. int index;
  3403. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3404. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3405. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3406. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3407. } else
  3408. switch((int)code_value())
  3409. {
  3410. #ifdef ULTIPANEL
  3411. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3412. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3413. {
  3414. char *src = strchr_pointer + 2;
  3415. codenum = 0;
  3416. bool hasP = false, hasS = false;
  3417. if (code_seen('P')) {
  3418. codenum = code_value(); // milliseconds to wait
  3419. hasP = codenum > 0;
  3420. }
  3421. if (code_seen('S')) {
  3422. codenum = code_value() * 1000; // seconds to wait
  3423. hasS = codenum > 0;
  3424. }
  3425. starpos = strchr(src, '*');
  3426. if (starpos != NULL) *(starpos) = '\0';
  3427. while (*src == ' ') ++src;
  3428. if (!hasP && !hasS && *src != '\0') {
  3429. lcd_setstatus(src);
  3430. } else {
  3431. LCD_MESSAGERPGM(MSG_USERWAIT);
  3432. }
  3433. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3434. st_synchronize();
  3435. previous_millis_cmd = millis();
  3436. if (codenum > 0){
  3437. codenum += millis(); // keep track of when we started waiting
  3438. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3439. while(millis() < codenum && !lcd_clicked()){
  3440. manage_heater();
  3441. manage_inactivity(true);
  3442. lcd_update();
  3443. }
  3444. KEEPALIVE_STATE(IN_HANDLER);
  3445. lcd_ignore_click(false);
  3446. }else{
  3447. if (!lcd_detected())
  3448. break;
  3449. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3450. while(!lcd_clicked()){
  3451. manage_heater();
  3452. manage_inactivity(true);
  3453. lcd_update();
  3454. }
  3455. KEEPALIVE_STATE(IN_HANDLER);
  3456. }
  3457. if (IS_SD_PRINTING)
  3458. LCD_MESSAGERPGM(MSG_RESUMING);
  3459. else
  3460. LCD_MESSAGERPGM(WELCOME_MSG);
  3461. }
  3462. break;
  3463. #endif
  3464. case 17:
  3465. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3466. enable_x();
  3467. enable_y();
  3468. enable_z();
  3469. enable_e0();
  3470. enable_e1();
  3471. enable_e2();
  3472. break;
  3473. #ifdef SDSUPPORT
  3474. case 20: // M20 - list SD card
  3475. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3476. card.ls();
  3477. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3478. break;
  3479. case 21: // M21 - init SD card
  3480. card.initsd();
  3481. break;
  3482. case 22: //M22 - release SD card
  3483. card.release();
  3484. break;
  3485. case 23: //M23 - Select file
  3486. starpos = (strchr(strchr_pointer + 4,'*'));
  3487. if(starpos!=NULL)
  3488. *(starpos)='\0';
  3489. card.openFile(strchr_pointer + 4,true);
  3490. break;
  3491. case 24: //M24 - Start SD print
  3492. if (!card.paused)
  3493. failstats_reset_print();
  3494. card.startFileprint();
  3495. starttime=millis();
  3496. break;
  3497. case 25: //M25 - Pause SD print
  3498. card.pauseSDPrint();
  3499. break;
  3500. case 26: //M26 - Set SD index
  3501. if(card.cardOK && code_seen('S')) {
  3502. card.setIndex(code_value_long());
  3503. }
  3504. break;
  3505. case 27: //M27 - Get SD status
  3506. card.getStatus();
  3507. break;
  3508. case 28: //M28 - Start SD write
  3509. starpos = (strchr(strchr_pointer + 4,'*'));
  3510. if(starpos != NULL){
  3511. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3512. strchr_pointer = strchr(npos,' ') + 1;
  3513. *(starpos) = '\0';
  3514. }
  3515. card.openFile(strchr_pointer+4,false);
  3516. break;
  3517. case 29: //M29 - Stop SD write
  3518. //processed in write to file routine above
  3519. //card,saving = false;
  3520. break;
  3521. case 30: //M30 <filename> Delete File
  3522. if (card.cardOK){
  3523. card.closefile();
  3524. starpos = (strchr(strchr_pointer + 4,'*'));
  3525. if(starpos != NULL){
  3526. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3527. strchr_pointer = strchr(npos,' ') + 1;
  3528. *(starpos) = '\0';
  3529. }
  3530. card.removeFile(strchr_pointer + 4);
  3531. }
  3532. break;
  3533. case 32: //M32 - Select file and start SD print
  3534. {
  3535. if(card.sdprinting) {
  3536. st_synchronize();
  3537. }
  3538. starpos = (strchr(strchr_pointer + 4,'*'));
  3539. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3540. if(namestartpos==NULL)
  3541. {
  3542. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3543. }
  3544. else
  3545. namestartpos++; //to skip the '!'
  3546. if(starpos!=NULL)
  3547. *(starpos)='\0';
  3548. bool call_procedure=(code_seen('P'));
  3549. if(strchr_pointer>namestartpos)
  3550. call_procedure=false; //false alert, 'P' found within filename
  3551. if( card.cardOK )
  3552. {
  3553. card.openFile(namestartpos,true,!call_procedure);
  3554. if(code_seen('S'))
  3555. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3556. card.setIndex(code_value_long());
  3557. card.startFileprint();
  3558. if(!call_procedure)
  3559. starttime=millis(); //procedure calls count as normal print time.
  3560. }
  3561. } break;
  3562. case 928: //M928 - Start SD write
  3563. starpos = (strchr(strchr_pointer + 5,'*'));
  3564. if(starpos != NULL){
  3565. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3566. strchr_pointer = strchr(npos,' ') + 1;
  3567. *(starpos) = '\0';
  3568. }
  3569. card.openLogFile(strchr_pointer+5);
  3570. break;
  3571. #endif //SDSUPPORT
  3572. case 31: //M31 take time since the start of the SD print or an M109 command
  3573. {
  3574. stoptime=millis();
  3575. char time[30];
  3576. unsigned long t=(stoptime-starttime)/1000;
  3577. int sec,min;
  3578. min=t/60;
  3579. sec=t%60;
  3580. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3581. SERIAL_ECHO_START;
  3582. SERIAL_ECHOLN(time);
  3583. lcd_setstatus(time);
  3584. autotempShutdown();
  3585. }
  3586. break;
  3587. #ifndef _DISABLE_M42_M226
  3588. case 42: //M42 -Change pin status via gcode
  3589. if (code_seen('S'))
  3590. {
  3591. int pin_status = code_value();
  3592. int pin_number = LED_PIN;
  3593. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3594. pin_number = code_value();
  3595. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3596. {
  3597. if (sensitive_pins[i] == pin_number)
  3598. {
  3599. pin_number = -1;
  3600. break;
  3601. }
  3602. }
  3603. #if defined(FAN_PIN) && FAN_PIN > -1
  3604. if (pin_number == FAN_PIN)
  3605. fanSpeed = pin_status;
  3606. #endif
  3607. if (pin_number > -1)
  3608. {
  3609. pinMode(pin_number, OUTPUT);
  3610. digitalWrite(pin_number, pin_status);
  3611. analogWrite(pin_number, pin_status);
  3612. }
  3613. }
  3614. break;
  3615. #endif //_DISABLE_M42_M226
  3616. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3617. // Reset the baby step value and the baby step applied flag.
  3618. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3619. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3620. // Reset the skew and offset in both RAM and EEPROM.
  3621. reset_bed_offset_and_skew();
  3622. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3623. // the planner will not perform any adjustments in the XY plane.
  3624. // Wait for the motors to stop and update the current position with the absolute values.
  3625. world2machine_revert_to_uncorrected();
  3626. break;
  3627. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3628. {
  3629. bool only_Z = code_seen('Z');
  3630. gcode_M45(only_Z);
  3631. }
  3632. break;
  3633. /*
  3634. case 46:
  3635. {
  3636. // M46: Prusa3D: Show the assigned IP address.
  3637. uint8_t ip[4];
  3638. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3639. if (hasIP) {
  3640. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3641. SERIAL_ECHO(int(ip[0]));
  3642. SERIAL_ECHOPGM(".");
  3643. SERIAL_ECHO(int(ip[1]));
  3644. SERIAL_ECHOPGM(".");
  3645. SERIAL_ECHO(int(ip[2]));
  3646. SERIAL_ECHOPGM(".");
  3647. SERIAL_ECHO(int(ip[3]));
  3648. SERIAL_ECHOLNPGM("");
  3649. } else {
  3650. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3651. }
  3652. break;
  3653. }
  3654. */
  3655. case 47:
  3656. // M47: Prusa3D: Show end stops dialog on the display.
  3657. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3658. lcd_diag_show_end_stops();
  3659. KEEPALIVE_STATE(IN_HANDLER);
  3660. break;
  3661. #if 0
  3662. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3663. {
  3664. // Disable the default update procedure of the display. We will do a modal dialog.
  3665. lcd_update_enable(false);
  3666. // Let the planner use the uncorrected coordinates.
  3667. mbl.reset();
  3668. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3669. // the planner will not perform any adjustments in the XY plane.
  3670. // Wait for the motors to stop and update the current position with the absolute values.
  3671. world2machine_revert_to_uncorrected();
  3672. // Move the print head close to the bed.
  3673. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3675. st_synchronize();
  3676. // Home in the XY plane.
  3677. set_destination_to_current();
  3678. setup_for_endstop_move();
  3679. home_xy();
  3680. int8_t verbosity_level = 0;
  3681. if (code_seen('V')) {
  3682. // Just 'V' without a number counts as V1.
  3683. char c = strchr_pointer[1];
  3684. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3685. }
  3686. bool success = scan_bed_induction_points(verbosity_level);
  3687. clean_up_after_endstop_move();
  3688. // Print head up.
  3689. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3690. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3691. st_synchronize();
  3692. lcd_update_enable(true);
  3693. break;
  3694. }
  3695. #endif
  3696. // M48 Z-Probe repeatability measurement function.
  3697. //
  3698. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3699. //
  3700. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3701. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3702. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3703. // regenerated.
  3704. //
  3705. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3706. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3707. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3708. //
  3709. #ifdef ENABLE_AUTO_BED_LEVELING
  3710. #ifdef Z_PROBE_REPEATABILITY_TEST
  3711. case 48: // M48 Z-Probe repeatability
  3712. {
  3713. #if Z_MIN_PIN == -1
  3714. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3715. #endif
  3716. double sum=0.0;
  3717. double mean=0.0;
  3718. double sigma=0.0;
  3719. double sample_set[50];
  3720. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3721. double X_current, Y_current, Z_current;
  3722. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3723. if (code_seen('V') || code_seen('v')) {
  3724. verbose_level = code_value();
  3725. if (verbose_level<0 || verbose_level>4 ) {
  3726. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3727. goto Sigma_Exit;
  3728. }
  3729. }
  3730. if (verbose_level > 0) {
  3731. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3732. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3733. }
  3734. if (code_seen('n')) {
  3735. n_samples = code_value();
  3736. if (n_samples<4 || n_samples>50 ) {
  3737. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3738. goto Sigma_Exit;
  3739. }
  3740. }
  3741. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3742. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3743. Z_current = st_get_position_mm(Z_AXIS);
  3744. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3745. ext_position = st_get_position_mm(E_AXIS);
  3746. if (code_seen('X') || code_seen('x') ) {
  3747. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3748. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3749. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3750. goto Sigma_Exit;
  3751. }
  3752. }
  3753. if (code_seen('Y') || code_seen('y') ) {
  3754. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3755. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3756. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3757. goto Sigma_Exit;
  3758. }
  3759. }
  3760. if (code_seen('L') || code_seen('l') ) {
  3761. n_legs = code_value();
  3762. if ( n_legs==1 )
  3763. n_legs = 2;
  3764. if ( n_legs<0 || n_legs>15 ) {
  3765. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3766. goto Sigma_Exit;
  3767. }
  3768. }
  3769. //
  3770. // Do all the preliminary setup work. First raise the probe.
  3771. //
  3772. st_synchronize();
  3773. plan_bed_level_matrix.set_to_identity();
  3774. plan_buffer_line( X_current, Y_current, Z_start_location,
  3775. ext_position,
  3776. homing_feedrate[Z_AXIS]/60,
  3777. active_extruder);
  3778. st_synchronize();
  3779. //
  3780. // Now get everything to the specified probe point So we can safely do a probe to
  3781. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3782. // use that as a starting point for each probe.
  3783. //
  3784. if (verbose_level > 2)
  3785. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3786. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3787. ext_position,
  3788. homing_feedrate[X_AXIS]/60,
  3789. active_extruder);
  3790. st_synchronize();
  3791. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3792. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3793. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3794. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3795. //
  3796. // OK, do the inital probe to get us close to the bed.
  3797. // Then retrace the right amount and use that in subsequent probes
  3798. //
  3799. setup_for_endstop_move();
  3800. run_z_probe();
  3801. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3802. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3803. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3804. ext_position,
  3805. homing_feedrate[X_AXIS]/60,
  3806. active_extruder);
  3807. st_synchronize();
  3808. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3809. for( n=0; n<n_samples; n++) {
  3810. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3811. if ( n_legs) {
  3812. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3813. int rotational_direction, l;
  3814. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3815. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3816. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3817. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3818. //SERIAL_ECHOPAIR(" theta: ",theta);
  3819. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3820. //SERIAL_PROTOCOLLNPGM("");
  3821. for( l=0; l<n_legs-1; l++) {
  3822. if (rotational_direction==1)
  3823. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3824. else
  3825. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3826. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3827. if ( radius<0.0 )
  3828. radius = -radius;
  3829. X_current = X_probe_location + cos(theta) * radius;
  3830. Y_current = Y_probe_location + sin(theta) * radius;
  3831. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3832. X_current = X_MIN_POS;
  3833. if ( X_current>X_MAX_POS)
  3834. X_current = X_MAX_POS;
  3835. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3836. Y_current = Y_MIN_POS;
  3837. if ( Y_current>Y_MAX_POS)
  3838. Y_current = Y_MAX_POS;
  3839. if (verbose_level>3 ) {
  3840. SERIAL_ECHOPAIR("x: ", X_current);
  3841. SERIAL_ECHOPAIR("y: ", Y_current);
  3842. SERIAL_PROTOCOLLNPGM("");
  3843. }
  3844. do_blocking_move_to( X_current, Y_current, Z_current );
  3845. }
  3846. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3847. }
  3848. setup_for_endstop_move();
  3849. run_z_probe();
  3850. sample_set[n] = current_position[Z_AXIS];
  3851. //
  3852. // Get the current mean for the data points we have so far
  3853. //
  3854. sum=0.0;
  3855. for( j=0; j<=n; j++) {
  3856. sum = sum + sample_set[j];
  3857. }
  3858. mean = sum / (double (n+1));
  3859. //
  3860. // Now, use that mean to calculate the standard deviation for the
  3861. // data points we have so far
  3862. //
  3863. sum=0.0;
  3864. for( j=0; j<=n; j++) {
  3865. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3866. }
  3867. sigma = sqrt( sum / (double (n+1)) );
  3868. if (verbose_level > 1) {
  3869. SERIAL_PROTOCOL(n+1);
  3870. SERIAL_PROTOCOL(" of ");
  3871. SERIAL_PROTOCOL(n_samples);
  3872. SERIAL_PROTOCOLPGM(" z: ");
  3873. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3874. }
  3875. if (verbose_level > 2) {
  3876. SERIAL_PROTOCOL(" mean: ");
  3877. SERIAL_PROTOCOL_F(mean,6);
  3878. SERIAL_PROTOCOL(" sigma: ");
  3879. SERIAL_PROTOCOL_F(sigma,6);
  3880. }
  3881. if (verbose_level > 0)
  3882. SERIAL_PROTOCOLPGM("\n");
  3883. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3884. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3885. st_synchronize();
  3886. }
  3887. delay(1000);
  3888. clean_up_after_endstop_move();
  3889. // enable_endstops(true);
  3890. if (verbose_level > 0) {
  3891. SERIAL_PROTOCOLPGM("Mean: ");
  3892. SERIAL_PROTOCOL_F(mean, 6);
  3893. SERIAL_PROTOCOLPGM("\n");
  3894. }
  3895. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3896. SERIAL_PROTOCOL_F(sigma, 6);
  3897. SERIAL_PROTOCOLPGM("\n\n");
  3898. Sigma_Exit:
  3899. break;
  3900. }
  3901. #endif // Z_PROBE_REPEATABILITY_TEST
  3902. #endif // ENABLE_AUTO_BED_LEVELING
  3903. case 104: // M104
  3904. if(setTargetedHotend(104)){
  3905. break;
  3906. }
  3907. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3908. setWatch();
  3909. break;
  3910. case 112: // M112 -Emergency Stop
  3911. kill("", 3);
  3912. break;
  3913. case 140: // M140 set bed temp
  3914. if (code_seen('S')) setTargetBed(code_value());
  3915. break;
  3916. case 105 : // M105
  3917. if(setTargetedHotend(105)){
  3918. break;
  3919. }
  3920. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3921. SERIAL_PROTOCOLPGM("ok T:");
  3922. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3923. SERIAL_PROTOCOLPGM(" /");
  3924. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3925. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3926. SERIAL_PROTOCOLPGM(" B:");
  3927. SERIAL_PROTOCOL_F(degBed(),1);
  3928. SERIAL_PROTOCOLPGM(" /");
  3929. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3930. #endif //TEMP_BED_PIN
  3931. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3932. SERIAL_PROTOCOLPGM(" T");
  3933. SERIAL_PROTOCOL(cur_extruder);
  3934. SERIAL_PROTOCOLPGM(":");
  3935. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3936. SERIAL_PROTOCOLPGM(" /");
  3937. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3938. }
  3939. #else
  3940. SERIAL_ERROR_START;
  3941. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3942. #endif
  3943. SERIAL_PROTOCOLPGM(" @:");
  3944. #ifdef EXTRUDER_WATTS
  3945. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3946. SERIAL_PROTOCOLPGM("W");
  3947. #else
  3948. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3949. #endif
  3950. SERIAL_PROTOCOLPGM(" B@:");
  3951. #ifdef BED_WATTS
  3952. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3953. SERIAL_PROTOCOLPGM("W");
  3954. #else
  3955. SERIAL_PROTOCOL(getHeaterPower(-1));
  3956. #endif
  3957. #ifdef PINDA_THERMISTOR
  3958. SERIAL_PROTOCOLPGM(" P:");
  3959. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3960. #endif //PINDA_THERMISTOR
  3961. #ifdef AMBIENT_THERMISTOR
  3962. SERIAL_PROTOCOLPGM(" A:");
  3963. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3964. #endif //AMBIENT_THERMISTOR
  3965. #ifdef SHOW_TEMP_ADC_VALUES
  3966. {float raw = 0.0;
  3967. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3968. SERIAL_PROTOCOLPGM(" ADC B:");
  3969. SERIAL_PROTOCOL_F(degBed(),1);
  3970. SERIAL_PROTOCOLPGM("C->");
  3971. raw = rawBedTemp();
  3972. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3973. SERIAL_PROTOCOLPGM(" Rb->");
  3974. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3975. SERIAL_PROTOCOLPGM(" Rxb->");
  3976. SERIAL_PROTOCOL_F(raw, 5);
  3977. #endif
  3978. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3979. SERIAL_PROTOCOLPGM(" T");
  3980. SERIAL_PROTOCOL(cur_extruder);
  3981. SERIAL_PROTOCOLPGM(":");
  3982. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3983. SERIAL_PROTOCOLPGM("C->");
  3984. raw = rawHotendTemp(cur_extruder);
  3985. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3986. SERIAL_PROTOCOLPGM(" Rt");
  3987. SERIAL_PROTOCOL(cur_extruder);
  3988. SERIAL_PROTOCOLPGM("->");
  3989. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3990. SERIAL_PROTOCOLPGM(" Rx");
  3991. SERIAL_PROTOCOL(cur_extruder);
  3992. SERIAL_PROTOCOLPGM("->");
  3993. SERIAL_PROTOCOL_F(raw, 5);
  3994. }}
  3995. #endif
  3996. SERIAL_PROTOCOLLN("");
  3997. KEEPALIVE_STATE(NOT_BUSY);
  3998. return;
  3999. break;
  4000. case 109:
  4001. {// M109 - Wait for extruder heater to reach target.
  4002. if(setTargetedHotend(109)){
  4003. break;
  4004. }
  4005. LCD_MESSAGERPGM(MSG_HEATING);
  4006. heating_status = 1;
  4007. if (farm_mode) { prusa_statistics(1); };
  4008. #ifdef AUTOTEMP
  4009. autotemp_enabled=false;
  4010. #endif
  4011. if (code_seen('S')) {
  4012. setTargetHotend(code_value(), tmp_extruder);
  4013. CooldownNoWait = true;
  4014. } else if (code_seen('R')) {
  4015. setTargetHotend(code_value(), tmp_extruder);
  4016. CooldownNoWait = false;
  4017. }
  4018. #ifdef AUTOTEMP
  4019. if (code_seen('S')) autotemp_min=code_value();
  4020. if (code_seen('B')) autotemp_max=code_value();
  4021. if (code_seen('F'))
  4022. {
  4023. autotemp_factor=code_value();
  4024. autotemp_enabled=true;
  4025. }
  4026. #endif
  4027. setWatch();
  4028. codenum = millis();
  4029. /* See if we are heating up or cooling down */
  4030. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4031. KEEPALIVE_STATE(NOT_BUSY);
  4032. cancel_heatup = false;
  4033. wait_for_heater(codenum); //loops until target temperature is reached
  4034. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  4035. KEEPALIVE_STATE(IN_HANDLER);
  4036. heating_status = 2;
  4037. if (farm_mode) { prusa_statistics(2); };
  4038. //starttime=millis();
  4039. previous_millis_cmd = millis();
  4040. }
  4041. break;
  4042. case 190: // M190 - Wait for bed heater to reach target.
  4043. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4044. LCD_MESSAGERPGM(MSG_BED_HEATING);
  4045. heating_status = 3;
  4046. if (farm_mode) { prusa_statistics(1); };
  4047. if (code_seen('S'))
  4048. {
  4049. setTargetBed(code_value());
  4050. CooldownNoWait = true;
  4051. }
  4052. else if (code_seen('R'))
  4053. {
  4054. setTargetBed(code_value());
  4055. CooldownNoWait = false;
  4056. }
  4057. codenum = millis();
  4058. cancel_heatup = false;
  4059. target_direction = isHeatingBed(); // true if heating, false if cooling
  4060. KEEPALIVE_STATE(NOT_BUSY);
  4061. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4062. {
  4063. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4064. {
  4065. if (!farm_mode) {
  4066. float tt = degHotend(active_extruder);
  4067. SERIAL_PROTOCOLPGM("T:");
  4068. SERIAL_PROTOCOL(tt);
  4069. SERIAL_PROTOCOLPGM(" E:");
  4070. SERIAL_PROTOCOL((int)active_extruder);
  4071. SERIAL_PROTOCOLPGM(" B:");
  4072. SERIAL_PROTOCOL_F(degBed(), 1);
  4073. SERIAL_PROTOCOLLN("");
  4074. }
  4075. codenum = millis();
  4076. }
  4077. manage_heater();
  4078. manage_inactivity();
  4079. lcd_update();
  4080. }
  4081. LCD_MESSAGERPGM(MSG_BED_DONE);
  4082. KEEPALIVE_STATE(IN_HANDLER);
  4083. heating_status = 4;
  4084. previous_millis_cmd = millis();
  4085. #endif
  4086. break;
  4087. #if defined(FAN_PIN) && FAN_PIN > -1
  4088. case 106: //M106 Fan On
  4089. if (code_seen('S')){
  4090. fanSpeed=constrain(code_value(),0,255);
  4091. }
  4092. else {
  4093. fanSpeed=255;
  4094. }
  4095. break;
  4096. case 107: //M107 Fan Off
  4097. fanSpeed = 0;
  4098. break;
  4099. #endif //FAN_PIN
  4100. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4101. case 80: // M80 - Turn on Power Supply
  4102. SET_OUTPUT(PS_ON_PIN); //GND
  4103. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4104. // If you have a switch on suicide pin, this is useful
  4105. // if you want to start another print with suicide feature after
  4106. // a print without suicide...
  4107. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4108. SET_OUTPUT(SUICIDE_PIN);
  4109. WRITE(SUICIDE_PIN, HIGH);
  4110. #endif
  4111. #ifdef ULTIPANEL
  4112. powersupply = true;
  4113. LCD_MESSAGERPGM(WELCOME_MSG);
  4114. lcd_update();
  4115. #endif
  4116. break;
  4117. #endif
  4118. case 81: // M81 - Turn off Power Supply
  4119. disable_heater();
  4120. st_synchronize();
  4121. disable_e0();
  4122. disable_e1();
  4123. disable_e2();
  4124. finishAndDisableSteppers();
  4125. fanSpeed = 0;
  4126. delay(1000); // Wait a little before to switch off
  4127. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4128. st_synchronize();
  4129. suicide();
  4130. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4131. SET_OUTPUT(PS_ON_PIN);
  4132. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4133. #endif
  4134. #ifdef ULTIPANEL
  4135. powersupply = false;
  4136. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4137. /*
  4138. MACHNAME = "Prusa i3"
  4139. MSGOFF = "Vypnuto"
  4140. "Prusai3"" ""vypnuto""."
  4141. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4142. */
  4143. lcd_update();
  4144. #endif
  4145. break;
  4146. case 82:
  4147. axis_relative_modes[3] = false;
  4148. break;
  4149. case 83:
  4150. axis_relative_modes[3] = true;
  4151. break;
  4152. case 18: //compatibility
  4153. case 84: // M84
  4154. if(code_seen('S')){
  4155. stepper_inactive_time = code_value() * 1000;
  4156. }
  4157. else
  4158. {
  4159. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4160. if(all_axis)
  4161. {
  4162. st_synchronize();
  4163. disable_e0();
  4164. disable_e1();
  4165. disable_e2();
  4166. finishAndDisableSteppers();
  4167. }
  4168. else
  4169. {
  4170. st_synchronize();
  4171. if (code_seen('X')) disable_x();
  4172. if (code_seen('Y')) disable_y();
  4173. if (code_seen('Z')) disable_z();
  4174. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4175. if (code_seen('E')) {
  4176. disable_e0();
  4177. disable_e1();
  4178. disable_e2();
  4179. }
  4180. #endif
  4181. }
  4182. }
  4183. snmm_filaments_used = 0;
  4184. break;
  4185. case 85: // M85
  4186. if(code_seen('S')) {
  4187. max_inactive_time = code_value() * 1000;
  4188. }
  4189. break;
  4190. case 92: // M92
  4191. for(int8_t i=0; i < NUM_AXIS; i++)
  4192. {
  4193. if(code_seen(axis_codes[i]))
  4194. {
  4195. if(i == 3) { // E
  4196. float value = code_value();
  4197. if(value < 20.0) {
  4198. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4199. max_jerk[E_AXIS] *= factor;
  4200. max_feedrate[i] *= factor;
  4201. axis_steps_per_sqr_second[i] *= factor;
  4202. }
  4203. axis_steps_per_unit[i] = value;
  4204. }
  4205. else {
  4206. axis_steps_per_unit[i] = code_value();
  4207. }
  4208. }
  4209. }
  4210. break;
  4211. case 110: // M110 - reset line pos
  4212. if (code_seen('N'))
  4213. gcode_LastN = code_value_long();
  4214. break;
  4215. #ifdef HOST_KEEPALIVE_FEATURE
  4216. case 113: // M113 - Get or set Host Keepalive interval
  4217. if (code_seen('S')) {
  4218. host_keepalive_interval = (uint8_t)code_value_short();
  4219. // NOMORE(host_keepalive_interval, 60);
  4220. }
  4221. else {
  4222. SERIAL_ECHO_START;
  4223. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4224. SERIAL_PROTOCOLLN("");
  4225. }
  4226. break;
  4227. #endif
  4228. case 115: // M115
  4229. if (code_seen('V')) {
  4230. // Report the Prusa version number.
  4231. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4232. } else if (code_seen('U')) {
  4233. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4234. // pause the print and ask the user to upgrade the firmware.
  4235. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4236. } else {
  4237. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4238. }
  4239. break;
  4240. /* case 117: // M117 display message
  4241. starpos = (strchr(strchr_pointer + 5,'*'));
  4242. if(starpos!=NULL)
  4243. *(starpos)='\0';
  4244. lcd_setstatus(strchr_pointer + 5);
  4245. break;*/
  4246. case 114: // M114
  4247. SERIAL_PROTOCOLPGM("X:");
  4248. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4249. SERIAL_PROTOCOLPGM(" Y:");
  4250. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4251. SERIAL_PROTOCOLPGM(" Z:");
  4252. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4253. SERIAL_PROTOCOLPGM(" E:");
  4254. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4255. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4256. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4257. SERIAL_PROTOCOLPGM(" Y:");
  4258. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4259. SERIAL_PROTOCOLPGM(" Z:");
  4260. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4261. SERIAL_PROTOCOLPGM(" E:");
  4262. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4263. SERIAL_PROTOCOLLN("");
  4264. break;
  4265. case 120: // M120
  4266. enable_endstops(false) ;
  4267. break;
  4268. case 121: // M121
  4269. enable_endstops(true) ;
  4270. break;
  4271. case 119: // M119
  4272. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4273. SERIAL_PROTOCOLLN("");
  4274. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4275. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4276. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4277. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4278. }else{
  4279. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4280. }
  4281. SERIAL_PROTOCOLLN("");
  4282. #endif
  4283. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4284. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4285. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4286. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4287. }else{
  4288. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4289. }
  4290. SERIAL_PROTOCOLLN("");
  4291. #endif
  4292. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4293. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4294. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4295. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4296. }else{
  4297. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4298. }
  4299. SERIAL_PROTOCOLLN("");
  4300. #endif
  4301. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4302. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4303. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4304. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4305. }else{
  4306. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4307. }
  4308. SERIAL_PROTOCOLLN("");
  4309. #endif
  4310. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4311. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4312. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4313. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4314. }else{
  4315. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4316. }
  4317. SERIAL_PROTOCOLLN("");
  4318. #endif
  4319. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4320. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4321. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4322. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4323. }else{
  4324. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4325. }
  4326. SERIAL_PROTOCOLLN("");
  4327. #endif
  4328. break;
  4329. //TODO: update for all axis, use for loop
  4330. #ifdef BLINKM
  4331. case 150: // M150
  4332. {
  4333. byte red;
  4334. byte grn;
  4335. byte blu;
  4336. if(code_seen('R')) red = code_value();
  4337. if(code_seen('U')) grn = code_value();
  4338. if(code_seen('B')) blu = code_value();
  4339. SendColors(red,grn,blu);
  4340. }
  4341. break;
  4342. #endif //BLINKM
  4343. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4344. {
  4345. tmp_extruder = active_extruder;
  4346. if(code_seen('T')) {
  4347. tmp_extruder = code_value();
  4348. if(tmp_extruder >= EXTRUDERS) {
  4349. SERIAL_ECHO_START;
  4350. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4351. break;
  4352. }
  4353. }
  4354. float area = .0;
  4355. if(code_seen('D')) {
  4356. float diameter = (float)code_value();
  4357. if (diameter == 0.0) {
  4358. // setting any extruder filament size disables volumetric on the assumption that
  4359. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4360. // for all extruders
  4361. volumetric_enabled = false;
  4362. } else {
  4363. filament_size[tmp_extruder] = (float)code_value();
  4364. // make sure all extruders have some sane value for the filament size
  4365. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4366. #if EXTRUDERS > 1
  4367. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4368. #if EXTRUDERS > 2
  4369. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4370. #endif
  4371. #endif
  4372. volumetric_enabled = true;
  4373. }
  4374. } else {
  4375. //reserved for setting filament diameter via UFID or filament measuring device
  4376. break;
  4377. }
  4378. calculate_volumetric_multipliers();
  4379. }
  4380. break;
  4381. case 201: // M201
  4382. for(int8_t i=0; i < NUM_AXIS; i++)
  4383. {
  4384. if(code_seen(axis_codes[i]))
  4385. {
  4386. max_acceleration_units_per_sq_second[i] = code_value();
  4387. }
  4388. }
  4389. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4390. reset_acceleration_rates();
  4391. break;
  4392. #if 0 // Not used for Sprinter/grbl gen6
  4393. case 202: // M202
  4394. for(int8_t i=0; i < NUM_AXIS; i++) {
  4395. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4396. }
  4397. break;
  4398. #endif
  4399. case 203: // M203 max feedrate mm/sec
  4400. for(int8_t i=0; i < NUM_AXIS; i++) {
  4401. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4402. }
  4403. break;
  4404. case 204: // M204 acclereration S normal moves T filmanent only moves
  4405. {
  4406. if(code_seen('S')) acceleration = code_value() ;
  4407. if(code_seen('T')) retract_acceleration = code_value() ;
  4408. }
  4409. break;
  4410. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4411. {
  4412. if(code_seen('S')) minimumfeedrate = code_value();
  4413. if(code_seen('T')) mintravelfeedrate = code_value();
  4414. if(code_seen('B')) minsegmenttime = code_value() ;
  4415. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4416. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4417. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4418. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4419. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4420. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4421. }
  4422. break;
  4423. case 206: // M206 additional homing offset
  4424. for(int8_t i=0; i < 3; i++)
  4425. {
  4426. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4427. }
  4428. break;
  4429. #ifdef FWRETRACT
  4430. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4431. {
  4432. if(code_seen('S'))
  4433. {
  4434. retract_length = code_value() ;
  4435. }
  4436. if(code_seen('F'))
  4437. {
  4438. retract_feedrate = code_value()/60 ;
  4439. }
  4440. if(code_seen('Z'))
  4441. {
  4442. retract_zlift = code_value() ;
  4443. }
  4444. }break;
  4445. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4446. {
  4447. if(code_seen('S'))
  4448. {
  4449. retract_recover_length = code_value() ;
  4450. }
  4451. if(code_seen('F'))
  4452. {
  4453. retract_recover_feedrate = code_value()/60 ;
  4454. }
  4455. }break;
  4456. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4457. {
  4458. if(code_seen('S'))
  4459. {
  4460. int t= code_value() ;
  4461. switch(t)
  4462. {
  4463. case 0:
  4464. {
  4465. autoretract_enabled=false;
  4466. retracted[0]=false;
  4467. #if EXTRUDERS > 1
  4468. retracted[1]=false;
  4469. #endif
  4470. #if EXTRUDERS > 2
  4471. retracted[2]=false;
  4472. #endif
  4473. }break;
  4474. case 1:
  4475. {
  4476. autoretract_enabled=true;
  4477. retracted[0]=false;
  4478. #if EXTRUDERS > 1
  4479. retracted[1]=false;
  4480. #endif
  4481. #if EXTRUDERS > 2
  4482. retracted[2]=false;
  4483. #endif
  4484. }break;
  4485. default:
  4486. SERIAL_ECHO_START;
  4487. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4488. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4489. SERIAL_ECHOLNPGM("\"(1)");
  4490. }
  4491. }
  4492. }break;
  4493. #endif // FWRETRACT
  4494. #if EXTRUDERS > 1
  4495. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4496. {
  4497. if(setTargetedHotend(218)){
  4498. break;
  4499. }
  4500. if(code_seen('X'))
  4501. {
  4502. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4503. }
  4504. if(code_seen('Y'))
  4505. {
  4506. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4507. }
  4508. SERIAL_ECHO_START;
  4509. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4510. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4511. {
  4512. SERIAL_ECHO(" ");
  4513. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4514. SERIAL_ECHO(",");
  4515. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4516. }
  4517. SERIAL_ECHOLN("");
  4518. }break;
  4519. #endif
  4520. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4521. {
  4522. if(code_seen('S'))
  4523. {
  4524. feedmultiply = code_value() ;
  4525. }
  4526. }
  4527. break;
  4528. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4529. {
  4530. if(code_seen('S'))
  4531. {
  4532. int tmp_code = code_value();
  4533. if (code_seen('T'))
  4534. {
  4535. if(setTargetedHotend(221)){
  4536. break;
  4537. }
  4538. extruder_multiply[tmp_extruder] = tmp_code;
  4539. }
  4540. else
  4541. {
  4542. extrudemultiply = tmp_code ;
  4543. }
  4544. }
  4545. }
  4546. break;
  4547. #ifndef _DISABLE_M42_M226
  4548. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4549. {
  4550. if(code_seen('P')){
  4551. int pin_number = code_value(); // pin number
  4552. int pin_state = -1; // required pin state - default is inverted
  4553. if(code_seen('S')) pin_state = code_value(); // required pin state
  4554. if(pin_state >= -1 && pin_state <= 1){
  4555. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4556. {
  4557. if (sensitive_pins[i] == pin_number)
  4558. {
  4559. pin_number = -1;
  4560. break;
  4561. }
  4562. }
  4563. if (pin_number > -1)
  4564. {
  4565. int target = LOW;
  4566. st_synchronize();
  4567. pinMode(pin_number, INPUT);
  4568. switch(pin_state){
  4569. case 1:
  4570. target = HIGH;
  4571. break;
  4572. case 0:
  4573. target = LOW;
  4574. break;
  4575. case -1:
  4576. target = !digitalRead(pin_number);
  4577. break;
  4578. }
  4579. while(digitalRead(pin_number) != target){
  4580. manage_heater();
  4581. manage_inactivity();
  4582. lcd_update();
  4583. }
  4584. }
  4585. }
  4586. }
  4587. }
  4588. break;
  4589. #endif //_DISABLE_M42_M226
  4590. #if NUM_SERVOS > 0
  4591. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4592. {
  4593. int servo_index = -1;
  4594. int servo_position = 0;
  4595. if (code_seen('P'))
  4596. servo_index = code_value();
  4597. if (code_seen('S')) {
  4598. servo_position = code_value();
  4599. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4600. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4601. servos[servo_index].attach(0);
  4602. #endif
  4603. servos[servo_index].write(servo_position);
  4604. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4605. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4606. servos[servo_index].detach();
  4607. #endif
  4608. }
  4609. else {
  4610. SERIAL_ECHO_START;
  4611. SERIAL_ECHO("Servo ");
  4612. SERIAL_ECHO(servo_index);
  4613. SERIAL_ECHOLN(" out of range");
  4614. }
  4615. }
  4616. else if (servo_index >= 0) {
  4617. SERIAL_PROTOCOL(MSG_OK);
  4618. SERIAL_PROTOCOL(" Servo ");
  4619. SERIAL_PROTOCOL(servo_index);
  4620. SERIAL_PROTOCOL(": ");
  4621. SERIAL_PROTOCOL(servos[servo_index].read());
  4622. SERIAL_PROTOCOLLN("");
  4623. }
  4624. }
  4625. break;
  4626. #endif // NUM_SERVOS > 0
  4627. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4628. case 300: // M300
  4629. {
  4630. int beepS = code_seen('S') ? code_value() : 110;
  4631. int beepP = code_seen('P') ? code_value() : 1000;
  4632. if (beepS > 0)
  4633. {
  4634. #if BEEPER > 0
  4635. tone(BEEPER, beepS);
  4636. delay(beepP);
  4637. noTone(BEEPER);
  4638. #elif defined(ULTRALCD)
  4639. lcd_buzz(beepS, beepP);
  4640. #elif defined(LCD_USE_I2C_BUZZER)
  4641. lcd_buzz(beepP, beepS);
  4642. #endif
  4643. }
  4644. else
  4645. {
  4646. delay(beepP);
  4647. }
  4648. }
  4649. break;
  4650. #endif // M300
  4651. #ifdef PIDTEMP
  4652. case 301: // M301
  4653. {
  4654. if(code_seen('P')) Kp = code_value();
  4655. if(code_seen('I')) Ki = scalePID_i(code_value());
  4656. if(code_seen('D')) Kd = scalePID_d(code_value());
  4657. #ifdef PID_ADD_EXTRUSION_RATE
  4658. if(code_seen('C')) Kc = code_value();
  4659. #endif
  4660. updatePID();
  4661. SERIAL_PROTOCOLRPGM(MSG_OK);
  4662. SERIAL_PROTOCOL(" p:");
  4663. SERIAL_PROTOCOL(Kp);
  4664. SERIAL_PROTOCOL(" i:");
  4665. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4666. SERIAL_PROTOCOL(" d:");
  4667. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4668. #ifdef PID_ADD_EXTRUSION_RATE
  4669. SERIAL_PROTOCOL(" c:");
  4670. //Kc does not have scaling applied above, or in resetting defaults
  4671. SERIAL_PROTOCOL(Kc);
  4672. #endif
  4673. SERIAL_PROTOCOLLN("");
  4674. }
  4675. break;
  4676. #endif //PIDTEMP
  4677. #ifdef PIDTEMPBED
  4678. case 304: // M304
  4679. {
  4680. if(code_seen('P')) bedKp = code_value();
  4681. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4682. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4683. updatePID();
  4684. SERIAL_PROTOCOLRPGM(MSG_OK);
  4685. SERIAL_PROTOCOL(" p:");
  4686. SERIAL_PROTOCOL(bedKp);
  4687. SERIAL_PROTOCOL(" i:");
  4688. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4689. SERIAL_PROTOCOL(" d:");
  4690. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4691. SERIAL_PROTOCOLLN("");
  4692. }
  4693. break;
  4694. #endif //PIDTEMP
  4695. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4696. {
  4697. #ifdef CHDK
  4698. SET_OUTPUT(CHDK);
  4699. WRITE(CHDK, HIGH);
  4700. chdkHigh = millis();
  4701. chdkActive = true;
  4702. #else
  4703. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4704. const uint8_t NUM_PULSES=16;
  4705. const float PULSE_LENGTH=0.01524;
  4706. for(int i=0; i < NUM_PULSES; i++) {
  4707. WRITE(PHOTOGRAPH_PIN, HIGH);
  4708. _delay_ms(PULSE_LENGTH);
  4709. WRITE(PHOTOGRAPH_PIN, LOW);
  4710. _delay_ms(PULSE_LENGTH);
  4711. }
  4712. delay(7.33);
  4713. for(int i=0; i < NUM_PULSES; i++) {
  4714. WRITE(PHOTOGRAPH_PIN, HIGH);
  4715. _delay_ms(PULSE_LENGTH);
  4716. WRITE(PHOTOGRAPH_PIN, LOW);
  4717. _delay_ms(PULSE_LENGTH);
  4718. }
  4719. #endif
  4720. #endif //chdk end if
  4721. }
  4722. break;
  4723. #ifdef DOGLCD
  4724. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4725. {
  4726. if (code_seen('C')) {
  4727. lcd_setcontrast( ((int)code_value())&63 );
  4728. }
  4729. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4730. SERIAL_PROTOCOL(lcd_contrast);
  4731. SERIAL_PROTOCOLLN("");
  4732. }
  4733. break;
  4734. #endif
  4735. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4736. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4737. {
  4738. float temp = .0;
  4739. if (code_seen('S')) temp=code_value();
  4740. set_extrude_min_temp(temp);
  4741. }
  4742. break;
  4743. #endif
  4744. case 303: // M303 PID autotune
  4745. {
  4746. float temp = 150.0;
  4747. int e=0;
  4748. int c=5;
  4749. if (code_seen('E')) e=code_value();
  4750. if (e<0)
  4751. temp=70;
  4752. if (code_seen('S')) temp=code_value();
  4753. if (code_seen('C')) c=code_value();
  4754. PID_autotune(temp, e, c);
  4755. }
  4756. break;
  4757. case 400: // M400 finish all moves
  4758. {
  4759. st_synchronize();
  4760. }
  4761. break;
  4762. #ifdef FILAMENT_SENSOR
  4763. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4764. {
  4765. #if (FILWIDTH_PIN > -1)
  4766. if(code_seen('N')) filament_width_nominal=code_value();
  4767. else{
  4768. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4769. SERIAL_PROTOCOLLN(filament_width_nominal);
  4770. }
  4771. #endif
  4772. }
  4773. break;
  4774. case 405: //M405 Turn on filament sensor for control
  4775. {
  4776. if(code_seen('D')) meas_delay_cm=code_value();
  4777. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4778. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4779. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4780. {
  4781. int temp_ratio = widthFil_to_size_ratio();
  4782. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4783. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4784. }
  4785. delay_index1=0;
  4786. delay_index2=0;
  4787. }
  4788. filament_sensor = true ;
  4789. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4790. //SERIAL_PROTOCOL(filament_width_meas);
  4791. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4792. //SERIAL_PROTOCOL(extrudemultiply);
  4793. }
  4794. break;
  4795. case 406: //M406 Turn off filament sensor for control
  4796. {
  4797. filament_sensor = false ;
  4798. }
  4799. break;
  4800. case 407: //M407 Display measured filament diameter
  4801. {
  4802. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4803. SERIAL_PROTOCOLLN(filament_width_meas);
  4804. }
  4805. break;
  4806. #endif
  4807. case 500: // M500 Store settings in EEPROM
  4808. {
  4809. Config_StoreSettings(EEPROM_OFFSET);
  4810. }
  4811. break;
  4812. case 501: // M501 Read settings from EEPROM
  4813. {
  4814. Config_RetrieveSettings(EEPROM_OFFSET);
  4815. }
  4816. break;
  4817. case 502: // M502 Revert to default settings
  4818. {
  4819. Config_ResetDefault();
  4820. }
  4821. break;
  4822. case 503: // M503 print settings currently in memory
  4823. {
  4824. Config_PrintSettings();
  4825. }
  4826. break;
  4827. case 509: //M509 Force language selection
  4828. {
  4829. lcd_force_language_selection();
  4830. SERIAL_ECHO_START;
  4831. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4832. }
  4833. break;
  4834. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4835. case 540:
  4836. {
  4837. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4838. }
  4839. break;
  4840. #endif
  4841. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4842. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4843. {
  4844. float value;
  4845. if (code_seen('Z'))
  4846. {
  4847. value = code_value();
  4848. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4849. {
  4850. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4851. SERIAL_ECHO_START;
  4852. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4853. SERIAL_PROTOCOLLN("");
  4854. }
  4855. else
  4856. {
  4857. SERIAL_ECHO_START;
  4858. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4859. SERIAL_ECHORPGM(MSG_Z_MIN);
  4860. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4861. SERIAL_ECHORPGM(MSG_Z_MAX);
  4862. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4863. SERIAL_PROTOCOLLN("");
  4864. }
  4865. }
  4866. else
  4867. {
  4868. SERIAL_ECHO_START;
  4869. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4870. SERIAL_ECHO(-zprobe_zoffset);
  4871. SERIAL_PROTOCOLLN("");
  4872. }
  4873. break;
  4874. }
  4875. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4876. #ifdef FILAMENTCHANGEENABLE
  4877. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4878. {
  4879. bool old_fsensor_enabled = fsensor_enabled;
  4880. fsensor_enabled = false; //temporary solution for unexpected restarting
  4881. st_synchronize();
  4882. float target[4];
  4883. float lastpos[4];
  4884. if (farm_mode)
  4885. {
  4886. prusa_statistics(22);
  4887. }
  4888. feedmultiplyBckp=feedmultiply;
  4889. int8_t TooLowZ = 0;
  4890. float HotendTempBckp = degTargetHotend(active_extruder);
  4891. int fanSpeedBckp = fanSpeed;
  4892. target[X_AXIS]=current_position[X_AXIS];
  4893. target[Y_AXIS]=current_position[Y_AXIS];
  4894. target[Z_AXIS]=current_position[Z_AXIS];
  4895. target[E_AXIS]=current_position[E_AXIS];
  4896. lastpos[X_AXIS]=current_position[X_AXIS];
  4897. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4898. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4899. lastpos[E_AXIS]=current_position[E_AXIS];
  4900. //Restract extruder
  4901. if(code_seen('E'))
  4902. {
  4903. target[E_AXIS]+= code_value();
  4904. }
  4905. else
  4906. {
  4907. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4908. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4909. #endif
  4910. }
  4911. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4912. //Lift Z
  4913. if(code_seen('Z'))
  4914. {
  4915. target[Z_AXIS]+= code_value();
  4916. }
  4917. else
  4918. {
  4919. #ifdef FILAMENTCHANGE_ZADD
  4920. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4921. if(target[Z_AXIS] < 10){
  4922. target[Z_AXIS]+= 10 ;
  4923. TooLowZ = 1;
  4924. }else{
  4925. TooLowZ = 0;
  4926. }
  4927. #endif
  4928. }
  4929. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4930. //Move XY to side
  4931. if(code_seen('X'))
  4932. {
  4933. target[X_AXIS]+= code_value();
  4934. }
  4935. else
  4936. {
  4937. #ifdef FILAMENTCHANGE_XPOS
  4938. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4939. #endif
  4940. }
  4941. if(code_seen('Y'))
  4942. {
  4943. target[Y_AXIS]= code_value();
  4944. }
  4945. else
  4946. {
  4947. #ifdef FILAMENTCHANGE_YPOS
  4948. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4949. #endif
  4950. }
  4951. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4952. st_synchronize();
  4953. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4954. uint8_t cnt = 0;
  4955. int counterBeep = 0;
  4956. fanSpeed = 0;
  4957. unsigned long waiting_start_time = millis();
  4958. uint8_t wait_for_user_state = 0;
  4959. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4960. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4961. //cnt++;
  4962. manage_heater();
  4963. manage_inactivity(true);
  4964. /*#ifdef SNMM
  4965. target[E_AXIS] += 0.002;
  4966. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4967. #endif // SNMM*/
  4968. //if (cnt == 0)
  4969. {
  4970. #if BEEPER > 0
  4971. if (counterBeep == 500) {
  4972. counterBeep = 0;
  4973. }
  4974. SET_OUTPUT(BEEPER);
  4975. if (counterBeep == 0) {
  4976. WRITE(BEEPER, HIGH);
  4977. }
  4978. if (counterBeep == 20) {
  4979. WRITE(BEEPER, LOW);
  4980. }
  4981. counterBeep++;
  4982. #else
  4983. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4984. lcd_buzz(1000 / 6, 100);
  4985. #else
  4986. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4987. #endif
  4988. #endif
  4989. }
  4990. switch (wait_for_user_state) {
  4991. case 0:
  4992. delay_keep_alive(4);
  4993. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  4994. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4995. wait_for_user_state = 1;
  4996. setTargetHotend(0, 0);
  4997. setTargetHotend(0, 1);
  4998. setTargetHotend(0, 2);
  4999. st_synchronize();
  5000. disable_e0();
  5001. disable_e1();
  5002. disable_e2();
  5003. }
  5004. break;
  5005. case 1:
  5006. delay_keep_alive(4);
  5007. if (lcd_clicked()) {
  5008. setTargetHotend(HotendTempBckp, active_extruder);
  5009. lcd_wait_for_heater();
  5010. wait_for_user_state = 2;
  5011. }
  5012. break;
  5013. case 2:
  5014. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5015. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  5016. waiting_start_time = millis();
  5017. wait_for_user_state = 0;
  5018. }
  5019. else {
  5020. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5021. lcd.setCursor(1, 4);
  5022. lcd.print(ftostr3(degHotend(active_extruder)));
  5023. }
  5024. break;
  5025. }
  5026. }
  5027. WRITE(BEEPER, LOW);
  5028. lcd_change_fil_state = 0;
  5029. // Unload filament
  5030. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  5031. KEEPALIVE_STATE(IN_HANDLER);
  5032. custom_message = true;
  5033. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5034. if (code_seen('L'))
  5035. {
  5036. target[E_AXIS] += code_value();
  5037. }
  5038. else
  5039. {
  5040. #ifdef SNMM
  5041. #else
  5042. #ifdef FILAMENTCHANGE_FINALRETRACT
  5043. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5044. #endif
  5045. #endif // SNMM
  5046. }
  5047. #ifdef SNMM
  5048. target[E_AXIS] += 12;
  5049. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5050. target[E_AXIS] += 6;
  5051. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5052. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5053. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5054. st_synchronize();
  5055. target[E_AXIS] += (FIL_COOLING);
  5056. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5057. target[E_AXIS] += (FIL_COOLING*-1);
  5058. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5059. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5060. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5061. st_synchronize();
  5062. #else
  5063. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5064. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5065. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5066. st_synchronize();
  5067. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5068. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5069. target[E_AXIS] -= 45;
  5070. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5071. st_synchronize();
  5072. target[E_AXIS] -= 15;
  5073. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5074. st_synchronize();
  5075. target[E_AXIS] -= 20;
  5076. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5077. st_synchronize();
  5078. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5079. #endif // SNMM
  5080. //finish moves
  5081. st_synchronize();
  5082. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5083. //disable extruder steppers so filament can be removed
  5084. disable_e0();
  5085. disable_e1();
  5086. disable_e2();
  5087. delay(100);
  5088. WRITE(BEEPER, HIGH);
  5089. counterBeep = 0;
  5090. while(!lcd_clicked() && (counterBeep < 50)) {
  5091. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5092. delay_keep_alive(100);
  5093. counterBeep++;
  5094. }
  5095. WRITE(BEEPER, LOW);
  5096. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5097. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5098. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5099. //lcd_return_to_status();
  5100. lcd_update_enable(true);
  5101. //Wait for user to insert filament
  5102. lcd_wait_interact();
  5103. //load_filament_time = millis();
  5104. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5105. #ifdef PAT9125
  5106. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5107. #endif //PAT9125
  5108. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5109. while(!lcd_clicked())
  5110. {
  5111. manage_heater();
  5112. manage_inactivity(true);
  5113. #ifdef PAT9125
  5114. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5115. {
  5116. tone(BEEPER, 1000);
  5117. delay_keep_alive(50);
  5118. noTone(BEEPER);
  5119. break;
  5120. }
  5121. #endif //PAT9125
  5122. /*#ifdef SNMM
  5123. target[E_AXIS] += 0.002;
  5124. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5125. #endif // SNMM*/
  5126. }
  5127. #ifdef PAT9125
  5128. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5129. #endif //PAT9125
  5130. //WRITE(BEEPER, LOW);
  5131. KEEPALIVE_STATE(IN_HANDLER);
  5132. #ifdef SNMM
  5133. display_loading();
  5134. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5135. do {
  5136. target[E_AXIS] += 0.002;
  5137. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5138. delay_keep_alive(2);
  5139. } while (!lcd_clicked());
  5140. KEEPALIVE_STATE(IN_HANDLER);
  5141. /*if (millis() - load_filament_time > 2) {
  5142. load_filament_time = millis();
  5143. target[E_AXIS] += 0.001;
  5144. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5145. }*/
  5146. //Filament inserted
  5147. //Feed the filament to the end of nozzle quickly
  5148. st_synchronize();
  5149. target[E_AXIS] += bowden_length[snmm_extruder];
  5150. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5151. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5152. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5153. target[E_AXIS] += 40;
  5154. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5155. target[E_AXIS] += 10;
  5156. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5157. #else
  5158. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5159. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5160. #endif // SNMM
  5161. //Extrude some filament
  5162. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5163. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5164. //Wait for user to check the state
  5165. lcd_change_fil_state = 0;
  5166. lcd_loading_filament();
  5167. tone(BEEPER, 500);
  5168. delay_keep_alive(50);
  5169. noTone(BEEPER);
  5170. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5171. lcd_change_fil_state = 0;
  5172. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5173. lcd_alright();
  5174. KEEPALIVE_STATE(IN_HANDLER);
  5175. switch(lcd_change_fil_state){
  5176. // Filament failed to load so load it again
  5177. case 2:
  5178. #ifdef SNMM
  5179. display_loading();
  5180. do {
  5181. target[E_AXIS] += 0.002;
  5182. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5183. delay_keep_alive(2);
  5184. } while (!lcd_clicked());
  5185. st_synchronize();
  5186. target[E_AXIS] += bowden_length[snmm_extruder];
  5187. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5188. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5189. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5190. target[E_AXIS] += 40;
  5191. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5192. target[E_AXIS] += 10;
  5193. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5194. #else
  5195. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5196. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5197. #endif
  5198. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5199. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5200. lcd_loading_filament();
  5201. break;
  5202. // Filament loaded properly but color is not clear
  5203. case 3:
  5204. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5205. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5206. lcd_loading_color();
  5207. break;
  5208. // Everything good
  5209. default:
  5210. lcd_change_success();
  5211. lcd_update_enable(true);
  5212. break;
  5213. }
  5214. }
  5215. //Not let's go back to print
  5216. fanSpeed = fanSpeedBckp;
  5217. //Feed a little of filament to stabilize pressure
  5218. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5219. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5220. //Retract
  5221. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5222. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5223. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5224. //Move XY back
  5225. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5226. //Move Z back
  5227. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5228. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5229. //Unretract
  5230. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5231. //Set E position to original
  5232. plan_set_e_position(lastpos[E_AXIS]);
  5233. //Recover feed rate
  5234. feedmultiply=feedmultiplyBckp;
  5235. char cmd[9];
  5236. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5237. enquecommand(cmd);
  5238. lcd_setstatuspgm(WELCOME_MSG);
  5239. custom_message = false;
  5240. custom_message_type = 0;
  5241. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5242. #ifdef PAT9125
  5243. if (fsensor_M600)
  5244. {
  5245. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5246. st_synchronize();
  5247. while (!is_buffer_empty())
  5248. {
  5249. process_commands();
  5250. cmdqueue_pop_front();
  5251. }
  5252. fsensor_enable();
  5253. fsensor_restore_print_and_continue();
  5254. }
  5255. #endif //PAT9125
  5256. }
  5257. break;
  5258. #endif //FILAMENTCHANGEENABLE
  5259. case 601: {
  5260. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5261. }
  5262. break;
  5263. case 602: {
  5264. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5265. }
  5266. break;
  5267. #ifdef LIN_ADVANCE
  5268. case 900: // M900: Set LIN_ADVANCE options.
  5269. gcode_M900();
  5270. break;
  5271. #endif
  5272. case 907: // M907 Set digital trimpot motor current using axis codes.
  5273. {
  5274. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5275. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5276. if(code_seen('B')) digipot_current(4,code_value());
  5277. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5278. #endif
  5279. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5280. if(code_seen('X')) digipot_current(0, code_value());
  5281. #endif
  5282. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5283. if(code_seen('Z')) digipot_current(1, code_value());
  5284. #endif
  5285. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5286. if(code_seen('E')) digipot_current(2, code_value());
  5287. #endif
  5288. #ifdef DIGIPOT_I2C
  5289. // this one uses actual amps in floating point
  5290. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5291. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5292. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5293. #endif
  5294. }
  5295. break;
  5296. case 908: // M908 Control digital trimpot directly.
  5297. {
  5298. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5299. uint8_t channel,current;
  5300. if(code_seen('P')) channel=code_value();
  5301. if(code_seen('S')) current=code_value();
  5302. digitalPotWrite(channel, current);
  5303. #endif
  5304. }
  5305. break;
  5306. case 910: // M910 TMC2130 init
  5307. {
  5308. tmc2130_init();
  5309. }
  5310. break;
  5311. case 911: // M911 Set TMC2130 holding currents
  5312. {
  5313. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5314. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5315. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5316. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5317. }
  5318. break;
  5319. case 912: // M912 Set TMC2130 running currents
  5320. {
  5321. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5322. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5323. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5324. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5325. }
  5326. break;
  5327. case 913: // M913 Print TMC2130 currents
  5328. {
  5329. tmc2130_print_currents();
  5330. }
  5331. break;
  5332. case 914: // M914 Set normal mode
  5333. {
  5334. tmc2130_mode = TMC2130_MODE_NORMAL;
  5335. tmc2130_init();
  5336. }
  5337. break;
  5338. case 915: // M915 Set silent mode
  5339. {
  5340. tmc2130_mode = TMC2130_MODE_SILENT;
  5341. tmc2130_init();
  5342. }
  5343. break;
  5344. case 916: // M916 Set sg_thrs
  5345. {
  5346. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5347. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5348. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5349. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5350. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5351. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5352. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5353. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5354. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5355. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5356. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5357. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5358. }
  5359. break;
  5360. case 917: // M917 Set TMC2130 pwm_ampl
  5361. {
  5362. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5363. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5364. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5365. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5366. }
  5367. break;
  5368. case 918: // M918 Set TMC2130 pwm_grad
  5369. {
  5370. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5371. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5372. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5373. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5374. }
  5375. break;
  5376. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5377. {
  5378. #ifdef TMC2130
  5379. if(code_seen('E'))
  5380. {
  5381. uint16_t res_new = code_value();
  5382. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5383. {
  5384. st_synchronize();
  5385. uint8_t axis = E_AXIS;
  5386. uint16_t res = tmc2130_get_res(axis);
  5387. tmc2130_set_res(axis, res_new);
  5388. if (res_new > res)
  5389. {
  5390. uint16_t fac = (res_new / res);
  5391. axis_steps_per_unit[axis] *= fac;
  5392. position[E_AXIS] *= fac;
  5393. }
  5394. else
  5395. {
  5396. uint16_t fac = (res / res_new);
  5397. axis_steps_per_unit[axis] /= fac;
  5398. position[E_AXIS] /= fac;
  5399. }
  5400. }
  5401. }
  5402. #else //TMC2130
  5403. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5404. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5405. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5406. if(code_seen('B')) microstep_mode(4,code_value());
  5407. microstep_readings();
  5408. #endif
  5409. #endif //TMC2130
  5410. }
  5411. break;
  5412. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5413. {
  5414. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5415. if(code_seen('S')) switch((int)code_value())
  5416. {
  5417. case 1:
  5418. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5419. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5420. break;
  5421. case 2:
  5422. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5423. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5424. break;
  5425. }
  5426. microstep_readings();
  5427. #endif
  5428. }
  5429. break;
  5430. case 701: //M701: load filament
  5431. {
  5432. gcode_M701();
  5433. }
  5434. break;
  5435. case 702:
  5436. {
  5437. #ifdef SNMM
  5438. if (code_seen('U')) {
  5439. extr_unload_used(); //unload all filaments which were used in current print
  5440. }
  5441. else if (code_seen('C')) {
  5442. extr_unload(); //unload just current filament
  5443. }
  5444. else {
  5445. extr_unload_all(); //unload all filaments
  5446. }
  5447. #else
  5448. bool old_fsensor_enabled = fsensor_enabled;
  5449. fsensor_enabled = false;
  5450. custom_message = true;
  5451. custom_message_type = 2;
  5452. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5453. // extr_unload2();
  5454. current_position[E_AXIS] -= 45;
  5455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5456. st_synchronize();
  5457. current_position[E_AXIS] -= 15;
  5458. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5459. st_synchronize();
  5460. current_position[E_AXIS] -= 20;
  5461. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5462. st_synchronize();
  5463. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5464. //disable extruder steppers so filament can be removed
  5465. disable_e0();
  5466. disable_e1();
  5467. disable_e2();
  5468. delay(100);
  5469. WRITE(BEEPER, HIGH);
  5470. uint8_t counterBeep = 0;
  5471. while (!lcd_clicked() && (counterBeep < 50)) {
  5472. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5473. delay_keep_alive(100);
  5474. counterBeep++;
  5475. }
  5476. WRITE(BEEPER, LOW);
  5477. st_synchronize();
  5478. while (lcd_clicked()) delay_keep_alive(100);
  5479. lcd_update_enable(true);
  5480. lcd_setstatuspgm(WELCOME_MSG);
  5481. custom_message = false;
  5482. custom_message_type = 0;
  5483. fsensor_enabled = old_fsensor_enabled;
  5484. #endif
  5485. }
  5486. break;
  5487. case 999: // M999: Restart after being stopped
  5488. Stopped = false;
  5489. lcd_reset_alert_level();
  5490. gcode_LastN = Stopped_gcode_LastN;
  5491. FlushSerialRequestResend();
  5492. break;
  5493. default:
  5494. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5495. }
  5496. } // end if(code_seen('M')) (end of M codes)
  5497. else if(code_seen('T'))
  5498. {
  5499. int index;
  5500. st_synchronize();
  5501. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5502. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5503. SERIAL_ECHOLNPGM("Invalid T code.");
  5504. }
  5505. else {
  5506. if (*(strchr_pointer + index) == '?') {
  5507. tmp_extruder = choose_extruder_menu();
  5508. }
  5509. else {
  5510. tmp_extruder = code_value();
  5511. }
  5512. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5513. #ifdef SNMM
  5514. #ifdef LIN_ADVANCE
  5515. if (snmm_extruder != tmp_extruder)
  5516. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5517. #endif
  5518. snmm_extruder = tmp_extruder;
  5519. delay(100);
  5520. disable_e0();
  5521. disable_e1();
  5522. disable_e2();
  5523. pinMode(E_MUX0_PIN, OUTPUT);
  5524. pinMode(E_MUX1_PIN, OUTPUT);
  5525. pinMode(E_MUX2_PIN, OUTPUT);
  5526. delay(100);
  5527. SERIAL_ECHO_START;
  5528. SERIAL_ECHO("T:");
  5529. SERIAL_ECHOLN((int)tmp_extruder);
  5530. switch (tmp_extruder) {
  5531. case 1:
  5532. WRITE(E_MUX0_PIN, HIGH);
  5533. WRITE(E_MUX1_PIN, LOW);
  5534. WRITE(E_MUX2_PIN, LOW);
  5535. break;
  5536. case 2:
  5537. WRITE(E_MUX0_PIN, LOW);
  5538. WRITE(E_MUX1_PIN, HIGH);
  5539. WRITE(E_MUX2_PIN, LOW);
  5540. break;
  5541. case 3:
  5542. WRITE(E_MUX0_PIN, HIGH);
  5543. WRITE(E_MUX1_PIN, HIGH);
  5544. WRITE(E_MUX2_PIN, LOW);
  5545. break;
  5546. default:
  5547. WRITE(E_MUX0_PIN, LOW);
  5548. WRITE(E_MUX1_PIN, LOW);
  5549. WRITE(E_MUX2_PIN, LOW);
  5550. break;
  5551. }
  5552. delay(100);
  5553. #else
  5554. if (tmp_extruder >= EXTRUDERS) {
  5555. SERIAL_ECHO_START;
  5556. SERIAL_ECHOPGM("T");
  5557. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5558. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5559. }
  5560. else {
  5561. boolean make_move = false;
  5562. if (code_seen('F')) {
  5563. make_move = true;
  5564. next_feedrate = code_value();
  5565. if (next_feedrate > 0.0) {
  5566. feedrate = next_feedrate;
  5567. }
  5568. }
  5569. #if EXTRUDERS > 1
  5570. if (tmp_extruder != active_extruder) {
  5571. // Save current position to return to after applying extruder offset
  5572. memcpy(destination, current_position, sizeof(destination));
  5573. // Offset extruder (only by XY)
  5574. int i;
  5575. for (i = 0; i < 2; i++) {
  5576. current_position[i] = current_position[i] -
  5577. extruder_offset[i][active_extruder] +
  5578. extruder_offset[i][tmp_extruder];
  5579. }
  5580. // Set the new active extruder and position
  5581. active_extruder = tmp_extruder;
  5582. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5583. // Move to the old position if 'F' was in the parameters
  5584. if (make_move && Stopped == false) {
  5585. prepare_move();
  5586. }
  5587. }
  5588. #endif
  5589. SERIAL_ECHO_START;
  5590. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5591. SERIAL_PROTOCOLLN((int)active_extruder);
  5592. }
  5593. #endif
  5594. }
  5595. } // end if(code_seen('T')) (end of T codes)
  5596. #ifdef DEBUG_DCODES
  5597. else if (code_seen('D')) // D codes (debug)
  5598. {
  5599. switch((int)code_value())
  5600. {
  5601. case -1: // D-1 - Endless loop
  5602. dcode__1(); break;
  5603. case 0: // D0 - Reset
  5604. dcode_0(); break;
  5605. case 1: // D1 - Clear EEPROM
  5606. dcode_1(); break;
  5607. case 2: // D2 - Read/Write RAM
  5608. dcode_2(); break;
  5609. case 3: // D3 - Read/Write EEPROM
  5610. dcode_3(); break;
  5611. case 4: // D4 - Read/Write PIN
  5612. dcode_4(); break;
  5613. case 5: // D5 - Read/Write FLASH
  5614. // dcode_5(); break;
  5615. break;
  5616. case 6: // D6 - Read/Write external FLASH
  5617. dcode_6(); break;
  5618. case 7: // D7 - Read/Write Bootloader
  5619. dcode_7(); break;
  5620. case 8: // D8 - Read/Write PINDA
  5621. dcode_8(); break;
  5622. case 9: // D9 - Read/Write ADC
  5623. dcode_9(); break;
  5624. case 10: // D10 - XYZ calibration = OK
  5625. dcode_10(); break;
  5626. case 2130: // D9125 - TMC2130
  5627. dcode_2130(); break;
  5628. case 9125: // D9125 - PAT9125
  5629. dcode_9125(); break;
  5630. }
  5631. }
  5632. #endif //DEBUG_DCODES
  5633. else
  5634. {
  5635. SERIAL_ECHO_START;
  5636. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5637. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5638. SERIAL_ECHOLNPGM("\"(2)");
  5639. }
  5640. KEEPALIVE_STATE(NOT_BUSY);
  5641. ClearToSend();
  5642. }
  5643. void FlushSerialRequestResend()
  5644. {
  5645. //char cmdbuffer[bufindr][100]="Resend:";
  5646. MYSERIAL.flush();
  5647. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5648. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5649. previous_millis_cmd = millis();
  5650. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5651. }
  5652. // Confirm the execution of a command, if sent from a serial line.
  5653. // Execution of a command from a SD card will not be confirmed.
  5654. void ClearToSend()
  5655. {
  5656. previous_millis_cmd = millis();
  5657. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5658. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5659. }
  5660. void get_coordinates()
  5661. {
  5662. bool seen[4]={false,false,false,false};
  5663. for(int8_t i=0; i < NUM_AXIS; i++) {
  5664. if(code_seen(axis_codes[i]))
  5665. {
  5666. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5667. seen[i]=true;
  5668. }
  5669. else destination[i] = current_position[i]; //Are these else lines really needed?
  5670. }
  5671. if(code_seen('F')) {
  5672. next_feedrate = code_value();
  5673. #ifdef MAX_SILENT_FEEDRATE
  5674. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5675. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5676. #endif //MAX_SILENT_FEEDRATE
  5677. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5678. }
  5679. }
  5680. void get_arc_coordinates()
  5681. {
  5682. #ifdef SF_ARC_FIX
  5683. bool relative_mode_backup = relative_mode;
  5684. relative_mode = true;
  5685. #endif
  5686. get_coordinates();
  5687. #ifdef SF_ARC_FIX
  5688. relative_mode=relative_mode_backup;
  5689. #endif
  5690. if(code_seen('I')) {
  5691. offset[0] = code_value();
  5692. }
  5693. else {
  5694. offset[0] = 0.0;
  5695. }
  5696. if(code_seen('J')) {
  5697. offset[1] = code_value();
  5698. }
  5699. else {
  5700. offset[1] = 0.0;
  5701. }
  5702. }
  5703. void clamp_to_software_endstops(float target[3])
  5704. {
  5705. #ifdef DEBUG_DISABLE_SWLIMITS
  5706. return;
  5707. #endif //DEBUG_DISABLE_SWLIMITS
  5708. world2machine_clamp(target[0], target[1]);
  5709. // Clamp the Z coordinate.
  5710. if (min_software_endstops) {
  5711. float negative_z_offset = 0;
  5712. #ifdef ENABLE_AUTO_BED_LEVELING
  5713. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5714. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5715. #endif
  5716. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5717. }
  5718. if (max_software_endstops) {
  5719. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5720. }
  5721. }
  5722. #ifdef MESH_BED_LEVELING
  5723. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5724. float dx = x - current_position[X_AXIS];
  5725. float dy = y - current_position[Y_AXIS];
  5726. float dz = z - current_position[Z_AXIS];
  5727. int n_segments = 0;
  5728. if (mbl.active) {
  5729. float len = abs(dx) + abs(dy);
  5730. if (len > 0)
  5731. // Split to 3cm segments or shorter.
  5732. n_segments = int(ceil(len / 30.f));
  5733. }
  5734. if (n_segments > 1) {
  5735. float de = e - current_position[E_AXIS];
  5736. for (int i = 1; i < n_segments; ++ i) {
  5737. float t = float(i) / float(n_segments);
  5738. plan_buffer_line(
  5739. current_position[X_AXIS] + t * dx,
  5740. current_position[Y_AXIS] + t * dy,
  5741. current_position[Z_AXIS] + t * dz,
  5742. current_position[E_AXIS] + t * de,
  5743. feed_rate, extruder);
  5744. }
  5745. }
  5746. // The rest of the path.
  5747. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5748. current_position[X_AXIS] = x;
  5749. current_position[Y_AXIS] = y;
  5750. current_position[Z_AXIS] = z;
  5751. current_position[E_AXIS] = e;
  5752. }
  5753. #endif // MESH_BED_LEVELING
  5754. void prepare_move()
  5755. {
  5756. clamp_to_software_endstops(destination);
  5757. previous_millis_cmd = millis();
  5758. // Do not use feedmultiply for E or Z only moves
  5759. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5760. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5761. }
  5762. else {
  5763. #ifdef MESH_BED_LEVELING
  5764. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5765. #else
  5766. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5767. #endif
  5768. }
  5769. for(int8_t i=0; i < NUM_AXIS; i++) {
  5770. current_position[i] = destination[i];
  5771. }
  5772. }
  5773. void prepare_arc_move(char isclockwise) {
  5774. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5775. // Trace the arc
  5776. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5777. // As far as the parser is concerned, the position is now == target. In reality the
  5778. // motion control system might still be processing the action and the real tool position
  5779. // in any intermediate location.
  5780. for(int8_t i=0; i < NUM_AXIS; i++) {
  5781. current_position[i] = destination[i];
  5782. }
  5783. previous_millis_cmd = millis();
  5784. }
  5785. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5786. #if defined(FAN_PIN)
  5787. #if CONTROLLERFAN_PIN == FAN_PIN
  5788. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5789. #endif
  5790. #endif
  5791. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5792. unsigned long lastMotorCheck = 0;
  5793. void controllerFan()
  5794. {
  5795. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5796. {
  5797. lastMotorCheck = millis();
  5798. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5799. #if EXTRUDERS > 2
  5800. || !READ(E2_ENABLE_PIN)
  5801. #endif
  5802. #if EXTRUDER > 1
  5803. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5804. || !READ(X2_ENABLE_PIN)
  5805. #endif
  5806. || !READ(E1_ENABLE_PIN)
  5807. #endif
  5808. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5809. {
  5810. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5811. }
  5812. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5813. {
  5814. digitalWrite(CONTROLLERFAN_PIN, 0);
  5815. analogWrite(CONTROLLERFAN_PIN, 0);
  5816. }
  5817. else
  5818. {
  5819. // allows digital or PWM fan output to be used (see M42 handling)
  5820. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5821. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5822. }
  5823. }
  5824. }
  5825. #endif
  5826. #ifdef TEMP_STAT_LEDS
  5827. static bool blue_led = false;
  5828. static bool red_led = false;
  5829. static uint32_t stat_update = 0;
  5830. void handle_status_leds(void) {
  5831. float max_temp = 0.0;
  5832. if(millis() > stat_update) {
  5833. stat_update += 500; // Update every 0.5s
  5834. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5835. max_temp = max(max_temp, degHotend(cur_extruder));
  5836. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5837. }
  5838. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5839. max_temp = max(max_temp, degTargetBed());
  5840. max_temp = max(max_temp, degBed());
  5841. #endif
  5842. if((max_temp > 55.0) && (red_led == false)) {
  5843. digitalWrite(STAT_LED_RED, 1);
  5844. digitalWrite(STAT_LED_BLUE, 0);
  5845. red_led = true;
  5846. blue_led = false;
  5847. }
  5848. if((max_temp < 54.0) && (blue_led == false)) {
  5849. digitalWrite(STAT_LED_RED, 0);
  5850. digitalWrite(STAT_LED_BLUE, 1);
  5851. red_led = false;
  5852. blue_led = true;
  5853. }
  5854. }
  5855. }
  5856. #endif
  5857. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5858. {
  5859. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5860. {
  5861. if (fsensor_autoload_enabled)
  5862. {
  5863. if (fsensor_check_autoload())
  5864. {
  5865. if (degHotend0() > EXTRUDE_MINTEMP)
  5866. {
  5867. fsensor_autoload_check_stop();
  5868. tone(BEEPER, 1000);
  5869. delay_keep_alive(50);
  5870. noTone(BEEPER);
  5871. loading_flag = true;
  5872. enquecommand_front_P((PSTR("M701")));
  5873. }
  5874. else
  5875. {
  5876. lcd_update_enable(false);
  5877. lcd_implementation_clear();
  5878. lcd.setCursor(0, 0);
  5879. lcd_printPGM(MSG_ERROR);
  5880. lcd.setCursor(0, 2);
  5881. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5882. delay(2000);
  5883. lcd_implementation_clear();
  5884. lcd_update_enable(true);
  5885. }
  5886. }
  5887. }
  5888. else
  5889. fsensor_autoload_check_start();
  5890. }
  5891. else
  5892. if (fsensor_autoload_enabled)
  5893. fsensor_autoload_check_stop();
  5894. #if defined(KILL_PIN) && KILL_PIN > -1
  5895. static int killCount = 0; // make the inactivity button a bit less responsive
  5896. const int KILL_DELAY = 10000;
  5897. #endif
  5898. if(buflen < (BUFSIZE-1)){
  5899. get_command();
  5900. }
  5901. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5902. if(max_inactive_time)
  5903. kill("", 4);
  5904. if(stepper_inactive_time) {
  5905. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5906. {
  5907. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5908. disable_x();
  5909. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5910. disable_y();
  5911. disable_z();
  5912. disable_e0();
  5913. disable_e1();
  5914. disable_e2();
  5915. }
  5916. }
  5917. }
  5918. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5919. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5920. {
  5921. chdkActive = false;
  5922. WRITE(CHDK, LOW);
  5923. }
  5924. #endif
  5925. #if defined(KILL_PIN) && KILL_PIN > -1
  5926. // Check if the kill button was pressed and wait just in case it was an accidental
  5927. // key kill key press
  5928. // -------------------------------------------------------------------------------
  5929. if( 0 == READ(KILL_PIN) )
  5930. {
  5931. killCount++;
  5932. }
  5933. else if (killCount > 0)
  5934. {
  5935. killCount--;
  5936. }
  5937. // Exceeded threshold and we can confirm that it was not accidental
  5938. // KILL the machine
  5939. // ----------------------------------------------------------------
  5940. if ( killCount >= KILL_DELAY)
  5941. {
  5942. kill("", 5);
  5943. }
  5944. #endif
  5945. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5946. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5947. #endif
  5948. #ifdef EXTRUDER_RUNOUT_PREVENT
  5949. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5950. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5951. {
  5952. bool oldstatus=READ(E0_ENABLE_PIN);
  5953. enable_e0();
  5954. float oldepos=current_position[E_AXIS];
  5955. float oldedes=destination[E_AXIS];
  5956. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5957. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5958. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5959. current_position[E_AXIS]=oldepos;
  5960. destination[E_AXIS]=oldedes;
  5961. plan_set_e_position(oldepos);
  5962. previous_millis_cmd=millis();
  5963. st_synchronize();
  5964. WRITE(E0_ENABLE_PIN,oldstatus);
  5965. }
  5966. #endif
  5967. #ifdef TEMP_STAT_LEDS
  5968. handle_status_leds();
  5969. #endif
  5970. check_axes_activity();
  5971. }
  5972. void kill(const char *full_screen_message, unsigned char id)
  5973. {
  5974. SERIAL_ECHOPGM("KILL: ");
  5975. MYSERIAL.println(int(id));
  5976. //return;
  5977. cli(); // Stop interrupts
  5978. disable_heater();
  5979. disable_x();
  5980. // SERIAL_ECHOLNPGM("kill - disable Y");
  5981. disable_y();
  5982. disable_z();
  5983. disable_e0();
  5984. disable_e1();
  5985. disable_e2();
  5986. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5987. pinMode(PS_ON_PIN,INPUT);
  5988. #endif
  5989. SERIAL_ERROR_START;
  5990. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5991. if (full_screen_message != NULL) {
  5992. SERIAL_ERRORLNRPGM(full_screen_message);
  5993. lcd_display_message_fullscreen_P(full_screen_message);
  5994. } else {
  5995. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5996. }
  5997. // FMC small patch to update the LCD before ending
  5998. sei(); // enable interrupts
  5999. for ( int i=5; i--; lcd_update())
  6000. {
  6001. delay(200);
  6002. }
  6003. cli(); // disable interrupts
  6004. suicide();
  6005. while(1)
  6006. {
  6007. wdt_reset();
  6008. /* Intentionally left empty */
  6009. } // Wait for reset
  6010. }
  6011. void Stop()
  6012. {
  6013. disable_heater();
  6014. if(Stopped == false) {
  6015. Stopped = true;
  6016. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6017. SERIAL_ERROR_START;
  6018. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6019. LCD_MESSAGERPGM(MSG_STOPPED);
  6020. }
  6021. }
  6022. bool IsStopped() { return Stopped; };
  6023. #ifdef FAST_PWM_FAN
  6024. void setPwmFrequency(uint8_t pin, int val)
  6025. {
  6026. val &= 0x07;
  6027. switch(digitalPinToTimer(pin))
  6028. {
  6029. #if defined(TCCR0A)
  6030. case TIMER0A:
  6031. case TIMER0B:
  6032. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6033. // TCCR0B |= val;
  6034. break;
  6035. #endif
  6036. #if defined(TCCR1A)
  6037. case TIMER1A:
  6038. case TIMER1B:
  6039. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6040. // TCCR1B |= val;
  6041. break;
  6042. #endif
  6043. #if defined(TCCR2)
  6044. case TIMER2:
  6045. case TIMER2:
  6046. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6047. TCCR2 |= val;
  6048. break;
  6049. #endif
  6050. #if defined(TCCR2A)
  6051. case TIMER2A:
  6052. case TIMER2B:
  6053. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6054. TCCR2B |= val;
  6055. break;
  6056. #endif
  6057. #if defined(TCCR3A)
  6058. case TIMER3A:
  6059. case TIMER3B:
  6060. case TIMER3C:
  6061. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6062. TCCR3B |= val;
  6063. break;
  6064. #endif
  6065. #if defined(TCCR4A)
  6066. case TIMER4A:
  6067. case TIMER4B:
  6068. case TIMER4C:
  6069. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6070. TCCR4B |= val;
  6071. break;
  6072. #endif
  6073. #if defined(TCCR5A)
  6074. case TIMER5A:
  6075. case TIMER5B:
  6076. case TIMER5C:
  6077. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6078. TCCR5B |= val;
  6079. break;
  6080. #endif
  6081. }
  6082. }
  6083. #endif //FAST_PWM_FAN
  6084. bool setTargetedHotend(int code){
  6085. tmp_extruder = active_extruder;
  6086. if(code_seen('T')) {
  6087. tmp_extruder = code_value();
  6088. if(tmp_extruder >= EXTRUDERS) {
  6089. SERIAL_ECHO_START;
  6090. switch(code){
  6091. case 104:
  6092. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  6093. break;
  6094. case 105:
  6095. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  6096. break;
  6097. case 109:
  6098. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  6099. break;
  6100. case 218:
  6101. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6102. break;
  6103. case 221:
  6104. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6105. break;
  6106. }
  6107. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6108. return true;
  6109. }
  6110. }
  6111. return false;
  6112. }
  6113. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6114. {
  6115. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6116. {
  6117. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6118. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6119. }
  6120. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6121. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6122. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6123. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6124. total_filament_used = 0;
  6125. }
  6126. float calculate_volumetric_multiplier(float diameter) {
  6127. float area = .0;
  6128. float radius = .0;
  6129. radius = diameter * .5;
  6130. if (! volumetric_enabled || radius == 0) {
  6131. area = 1;
  6132. }
  6133. else {
  6134. area = M_PI * pow(radius, 2);
  6135. }
  6136. return 1.0 / area;
  6137. }
  6138. void calculate_volumetric_multipliers() {
  6139. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  6140. #if EXTRUDERS > 1
  6141. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  6142. #if EXTRUDERS > 2
  6143. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  6144. #endif
  6145. #endif
  6146. }
  6147. void delay_keep_alive(unsigned int ms)
  6148. {
  6149. for (;;) {
  6150. manage_heater();
  6151. // Manage inactivity, but don't disable steppers on timeout.
  6152. manage_inactivity(true);
  6153. lcd_update();
  6154. if (ms == 0)
  6155. break;
  6156. else if (ms >= 50) {
  6157. delay(50);
  6158. ms -= 50;
  6159. } else {
  6160. delay(ms);
  6161. ms = 0;
  6162. }
  6163. }
  6164. }
  6165. void wait_for_heater(long codenum) {
  6166. #ifdef TEMP_RESIDENCY_TIME
  6167. long residencyStart;
  6168. residencyStart = -1;
  6169. /* continue to loop until we have reached the target temp
  6170. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6171. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6172. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6173. #else
  6174. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6175. #endif //TEMP_RESIDENCY_TIME
  6176. if ((millis() - codenum) > 1000UL)
  6177. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6178. if (!farm_mode) {
  6179. SERIAL_PROTOCOLPGM("T:");
  6180. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6181. SERIAL_PROTOCOLPGM(" E:");
  6182. SERIAL_PROTOCOL((int)tmp_extruder);
  6183. #ifdef TEMP_RESIDENCY_TIME
  6184. SERIAL_PROTOCOLPGM(" W:");
  6185. if (residencyStart > -1)
  6186. {
  6187. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6188. SERIAL_PROTOCOLLN(codenum);
  6189. }
  6190. else
  6191. {
  6192. SERIAL_PROTOCOLLN("?");
  6193. }
  6194. }
  6195. #else
  6196. SERIAL_PROTOCOLLN("");
  6197. #endif
  6198. codenum = millis();
  6199. }
  6200. manage_heater();
  6201. manage_inactivity();
  6202. lcd_update();
  6203. #ifdef TEMP_RESIDENCY_TIME
  6204. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6205. or when current temp falls outside the hysteresis after target temp was reached */
  6206. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6207. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6208. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6209. {
  6210. residencyStart = millis();
  6211. }
  6212. #endif //TEMP_RESIDENCY_TIME
  6213. }
  6214. }
  6215. void check_babystep() {
  6216. int babystep_z;
  6217. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6218. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6219. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6220. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6221. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6222. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6223. lcd_update_enable(true);
  6224. }
  6225. }
  6226. #ifdef DIS
  6227. void d_setup()
  6228. {
  6229. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6230. pinMode(D_DATA, INPUT_PULLUP);
  6231. pinMode(D_REQUIRE, OUTPUT);
  6232. digitalWrite(D_REQUIRE, HIGH);
  6233. }
  6234. float d_ReadData()
  6235. {
  6236. int digit[13];
  6237. String mergeOutput;
  6238. float output;
  6239. digitalWrite(D_REQUIRE, HIGH);
  6240. for (int i = 0; i<13; i++)
  6241. {
  6242. for (int j = 0; j < 4; j++)
  6243. {
  6244. while (digitalRead(D_DATACLOCK) == LOW) {}
  6245. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6246. bitWrite(digit[i], j, digitalRead(D_DATA));
  6247. }
  6248. }
  6249. digitalWrite(D_REQUIRE, LOW);
  6250. mergeOutput = "";
  6251. output = 0;
  6252. for (int r = 5; r <= 10; r++) //Merge digits
  6253. {
  6254. mergeOutput += digit[r];
  6255. }
  6256. output = mergeOutput.toFloat();
  6257. if (digit[4] == 8) //Handle sign
  6258. {
  6259. output *= -1;
  6260. }
  6261. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6262. {
  6263. output /= 10;
  6264. }
  6265. return output;
  6266. }
  6267. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6268. int t1 = 0;
  6269. int t_delay = 0;
  6270. int digit[13];
  6271. int m;
  6272. char str[3];
  6273. //String mergeOutput;
  6274. char mergeOutput[15];
  6275. float output;
  6276. int mesh_point = 0; //index number of calibration point
  6277. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6278. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6279. float mesh_home_z_search = 4;
  6280. float row[x_points_num];
  6281. int ix = 0;
  6282. int iy = 0;
  6283. char* filename_wldsd = "wldsd.txt";
  6284. char data_wldsd[70];
  6285. char numb_wldsd[10];
  6286. d_setup();
  6287. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6288. // We don't know where we are! HOME!
  6289. // Push the commands to the front of the message queue in the reverse order!
  6290. // There shall be always enough space reserved for these commands.
  6291. repeatcommand_front(); // repeat G80 with all its parameters
  6292. enquecommand_front_P((PSTR("G28 W0")));
  6293. enquecommand_front_P((PSTR("G1 Z5")));
  6294. return;
  6295. }
  6296. bool custom_message_old = custom_message;
  6297. unsigned int custom_message_type_old = custom_message_type;
  6298. unsigned int custom_message_state_old = custom_message_state;
  6299. custom_message = true;
  6300. custom_message_type = 1;
  6301. custom_message_state = (x_points_num * y_points_num) + 10;
  6302. lcd_update(1);
  6303. mbl.reset();
  6304. babystep_undo();
  6305. card.openFile(filename_wldsd, false);
  6306. current_position[Z_AXIS] = mesh_home_z_search;
  6307. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6308. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6309. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6310. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6311. setup_for_endstop_move(false);
  6312. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6313. SERIAL_PROTOCOL(x_points_num);
  6314. SERIAL_PROTOCOLPGM(",");
  6315. SERIAL_PROTOCOL(y_points_num);
  6316. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6317. SERIAL_PROTOCOL(mesh_home_z_search);
  6318. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6319. SERIAL_PROTOCOL(x_dimension);
  6320. SERIAL_PROTOCOLPGM(",");
  6321. SERIAL_PROTOCOL(y_dimension);
  6322. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6323. while (mesh_point != x_points_num * y_points_num) {
  6324. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6325. iy = mesh_point / x_points_num;
  6326. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6327. float z0 = 0.f;
  6328. current_position[Z_AXIS] = mesh_home_z_search;
  6329. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6330. st_synchronize();
  6331. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6332. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6333. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6334. st_synchronize();
  6335. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6336. break;
  6337. card.closefile();
  6338. }
  6339. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6340. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6341. //strcat(data_wldsd, numb_wldsd);
  6342. //MYSERIAL.println(data_wldsd);
  6343. //delay(1000);
  6344. //delay(3000);
  6345. //t1 = millis();
  6346. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6347. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6348. memset(digit, 0, sizeof(digit));
  6349. //cli();
  6350. digitalWrite(D_REQUIRE, LOW);
  6351. for (int i = 0; i<13; i++)
  6352. {
  6353. //t1 = millis();
  6354. for (int j = 0; j < 4; j++)
  6355. {
  6356. while (digitalRead(D_DATACLOCK) == LOW) {}
  6357. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6358. bitWrite(digit[i], j, digitalRead(D_DATA));
  6359. }
  6360. //t_delay = (millis() - t1);
  6361. //SERIAL_PROTOCOLPGM(" ");
  6362. //SERIAL_PROTOCOL_F(t_delay, 5);
  6363. //SERIAL_PROTOCOLPGM(" ");
  6364. }
  6365. //sei();
  6366. digitalWrite(D_REQUIRE, HIGH);
  6367. mergeOutput[0] = '\0';
  6368. output = 0;
  6369. for (int r = 5; r <= 10; r++) //Merge digits
  6370. {
  6371. sprintf(str, "%d", digit[r]);
  6372. strcat(mergeOutput, str);
  6373. }
  6374. output = atof(mergeOutput);
  6375. if (digit[4] == 8) //Handle sign
  6376. {
  6377. output *= -1;
  6378. }
  6379. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6380. {
  6381. output *= 0.1;
  6382. }
  6383. //output = d_ReadData();
  6384. //row[ix] = current_position[Z_AXIS];
  6385. memset(data_wldsd, 0, sizeof(data_wldsd));
  6386. for (int i = 0; i <3; i++) {
  6387. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6388. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6389. strcat(data_wldsd, numb_wldsd);
  6390. strcat(data_wldsd, ";");
  6391. }
  6392. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6393. dtostrf(output, 8, 5, numb_wldsd);
  6394. strcat(data_wldsd, numb_wldsd);
  6395. //strcat(data_wldsd, ";");
  6396. card.write_command(data_wldsd);
  6397. //row[ix] = d_ReadData();
  6398. row[ix] = output; // current_position[Z_AXIS];
  6399. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6400. for (int i = 0; i < x_points_num; i++) {
  6401. SERIAL_PROTOCOLPGM(" ");
  6402. SERIAL_PROTOCOL_F(row[i], 5);
  6403. }
  6404. SERIAL_PROTOCOLPGM("\n");
  6405. }
  6406. custom_message_state--;
  6407. mesh_point++;
  6408. lcd_update(1);
  6409. }
  6410. card.closefile();
  6411. }
  6412. #endif
  6413. void temp_compensation_start() {
  6414. custom_message = true;
  6415. custom_message_type = 5;
  6416. custom_message_state = PINDA_HEAT_T + 1;
  6417. lcd_update(2);
  6418. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6419. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6420. }
  6421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6422. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6423. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6424. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6425. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6426. st_synchronize();
  6427. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6428. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6429. delay_keep_alive(1000);
  6430. custom_message_state = PINDA_HEAT_T - i;
  6431. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6432. else lcd_update(1);
  6433. }
  6434. custom_message_type = 0;
  6435. custom_message_state = 0;
  6436. custom_message = false;
  6437. }
  6438. void temp_compensation_apply() {
  6439. int i_add;
  6440. int compensation_value;
  6441. int z_shift = 0;
  6442. float z_shift_mm;
  6443. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6444. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6445. i_add = (target_temperature_bed - 60) / 10;
  6446. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6447. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6448. }else {
  6449. //interpolation
  6450. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6451. }
  6452. SERIAL_PROTOCOLPGM("\n");
  6453. SERIAL_PROTOCOLPGM("Z shift applied:");
  6454. MYSERIAL.print(z_shift_mm);
  6455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6456. st_synchronize();
  6457. plan_set_z_position(current_position[Z_AXIS]);
  6458. }
  6459. else {
  6460. //we have no temp compensation data
  6461. }
  6462. }
  6463. float temp_comp_interpolation(float inp_temperature) {
  6464. //cubic spline interpolation
  6465. int n, i, j, k;
  6466. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6467. int shift[10];
  6468. int temp_C[10];
  6469. n = 6; //number of measured points
  6470. shift[0] = 0;
  6471. for (i = 0; i < n; i++) {
  6472. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6473. temp_C[i] = 50 + i * 10; //temperature in C
  6474. #ifdef PINDA_THERMISTOR
  6475. temp_C[i] = 35 + i * 5; //temperature in C
  6476. #else
  6477. temp_C[i] = 50 + i * 10; //temperature in C
  6478. #endif
  6479. x[i] = (float)temp_C[i];
  6480. f[i] = (float)shift[i];
  6481. }
  6482. if (inp_temperature < x[0]) return 0;
  6483. for (i = n - 1; i>0; i--) {
  6484. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6485. h[i - 1] = x[i] - x[i - 1];
  6486. }
  6487. //*********** formation of h, s , f matrix **************
  6488. for (i = 1; i<n - 1; i++) {
  6489. m[i][i] = 2 * (h[i - 1] + h[i]);
  6490. if (i != 1) {
  6491. m[i][i - 1] = h[i - 1];
  6492. m[i - 1][i] = h[i - 1];
  6493. }
  6494. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6495. }
  6496. //*********** forward elimination **************
  6497. for (i = 1; i<n - 2; i++) {
  6498. temp = (m[i + 1][i] / m[i][i]);
  6499. for (j = 1; j <= n - 1; j++)
  6500. m[i + 1][j] -= temp*m[i][j];
  6501. }
  6502. //*********** backward substitution *********
  6503. for (i = n - 2; i>0; i--) {
  6504. sum = 0;
  6505. for (j = i; j <= n - 2; j++)
  6506. sum += m[i][j] * s[j];
  6507. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6508. }
  6509. for (i = 0; i<n - 1; i++)
  6510. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6511. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6512. b = s[i] / 2;
  6513. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6514. d = f[i];
  6515. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6516. }
  6517. return sum;
  6518. }
  6519. #ifdef PINDA_THERMISTOR
  6520. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6521. {
  6522. if (!temp_cal_active) return 0;
  6523. if (!calibration_status_pinda()) return 0;
  6524. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6525. }
  6526. #endif //PINDA_THERMISTOR
  6527. void long_pause() //long pause print
  6528. {
  6529. st_synchronize();
  6530. //save currently set parameters to global variables
  6531. saved_feedmultiply = feedmultiply;
  6532. HotendTempBckp = degTargetHotend(active_extruder);
  6533. fanSpeedBckp = fanSpeed;
  6534. start_pause_print = millis();
  6535. //save position
  6536. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6537. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6538. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6539. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6540. //retract
  6541. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6542. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6543. //lift z
  6544. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6545. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6547. //set nozzle target temperature to 0
  6548. setTargetHotend(0, 0);
  6549. setTargetHotend(0, 1);
  6550. setTargetHotend(0, 2);
  6551. //Move XY to side
  6552. current_position[X_AXIS] = X_PAUSE_POS;
  6553. current_position[Y_AXIS] = Y_PAUSE_POS;
  6554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6555. // Turn off the print fan
  6556. fanSpeed = 0;
  6557. st_synchronize();
  6558. }
  6559. void serialecho_temperatures() {
  6560. float tt = degHotend(active_extruder);
  6561. SERIAL_PROTOCOLPGM("T:");
  6562. SERIAL_PROTOCOL(tt);
  6563. SERIAL_PROTOCOLPGM(" E:");
  6564. SERIAL_PROTOCOL((int)active_extruder);
  6565. SERIAL_PROTOCOLPGM(" B:");
  6566. SERIAL_PROTOCOL_F(degBed(), 1);
  6567. SERIAL_PROTOCOLLN("");
  6568. }
  6569. extern uint32_t sdpos_atomic;
  6570. void uvlo_()
  6571. {
  6572. unsigned long time_start = millis();
  6573. bool sd_print = card.sdprinting;
  6574. // Conserve power as soon as possible.
  6575. disable_x();
  6576. disable_y();
  6577. disable_e0();
  6578. tmc2130_set_current_h(Z_AXIS, 20);
  6579. tmc2130_set_current_r(Z_AXIS, 20);
  6580. tmc2130_set_current_h(E_AXIS, 20);
  6581. tmc2130_set_current_r(E_AXIS, 20);
  6582. // Indicate that the interrupt has been triggered.
  6583. // SERIAL_ECHOLNPGM("UVLO");
  6584. // Read out the current Z motor microstep counter. This will be later used
  6585. // for reaching the zero full step before powering off.
  6586. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  6587. // Calculate the file position, from which to resume this print.
  6588. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6589. {
  6590. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6591. sd_position -= sdlen_planner;
  6592. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6593. sd_position -= sdlen_cmdqueue;
  6594. if (sd_position < 0) sd_position = 0;
  6595. }
  6596. // Backup the feedrate in mm/min.
  6597. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6598. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6599. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6600. // are in action.
  6601. planner_abort_hard();
  6602. // Store the current extruder position.
  6603. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6604. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6605. // Clean the input command queue.
  6606. cmdqueue_reset();
  6607. card.sdprinting = false;
  6608. // card.closefile();
  6609. // Enable stepper driver interrupt to move Z axis.
  6610. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6611. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6612. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6613. sei();
  6614. plan_buffer_line(
  6615. current_position[X_AXIS],
  6616. current_position[Y_AXIS],
  6617. current_position[Z_AXIS],
  6618. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6619. 95, active_extruder);
  6620. st_synchronize();
  6621. disable_e0();
  6622. plan_buffer_line(
  6623. current_position[X_AXIS],
  6624. current_position[Y_AXIS],
  6625. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6626. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6627. 40, active_extruder);
  6628. st_synchronize();
  6629. disable_e0();
  6630. plan_buffer_line(
  6631. current_position[X_AXIS],
  6632. current_position[Y_AXIS],
  6633. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6634. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6635. 40, active_extruder);
  6636. st_synchronize();
  6637. disable_e0();
  6638. disable_z();
  6639. // Move Z up to the next 0th full step.
  6640. // Write the file position.
  6641. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6642. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6643. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6644. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6645. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6646. // Scale the z value to 1u resolution.
  6647. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6648. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6649. }
  6650. // Read out the current Z motor microstep counter. This will be later used
  6651. // for reaching the zero full step before powering off.
  6652. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6653. // Store the current position.
  6654. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6655. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6656. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6657. // Store the current feed rate, temperatures and fan speed.
  6658. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6659. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6660. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6661. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6662. // Finaly store the "power outage" flag.
  6663. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6664. st_synchronize();
  6665. SERIAL_ECHOPGM("stps");
  6666. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  6667. disable_z();
  6668. // Increment power failure counter
  6669. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6670. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6671. SERIAL_ECHOLNPGM("UVLO - end");
  6672. MYSERIAL.println(millis() - time_start);
  6673. #if 0
  6674. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6675. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6677. st_synchronize();
  6678. #endif
  6679. cli();
  6680. volatile unsigned int ppcount = 0;
  6681. SET_OUTPUT(BEEPER);
  6682. WRITE(BEEPER, HIGH);
  6683. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6684. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6685. }
  6686. WRITE(BEEPER, LOW);
  6687. while(1){
  6688. #if 1
  6689. WRITE(BEEPER, LOW);
  6690. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6691. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6692. }
  6693. #endif
  6694. };
  6695. }
  6696. void setup_fan_interrupt() {
  6697. //INT7
  6698. DDRE &= ~(1 << 7); //input pin
  6699. PORTE &= ~(1 << 7); //no internal pull-up
  6700. //start with sensing rising edge
  6701. EICRB &= ~(1 << 6);
  6702. EICRB |= (1 << 7);
  6703. //enable INT7 interrupt
  6704. EIMSK |= (1 << 7);
  6705. }
  6706. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6707. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6708. ISR(INT7_vect) {
  6709. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6710. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6711. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6712. t_fan_rising_edge = millis_nc();
  6713. }
  6714. else { //interrupt was triggered by falling edge
  6715. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6716. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6717. }
  6718. }
  6719. EICRB ^= (1 << 6); //change edge
  6720. }
  6721. void setup_uvlo_interrupt() {
  6722. DDRE &= ~(1 << 4); //input pin
  6723. PORTE &= ~(1 << 4); //no internal pull-up
  6724. //sensing falling edge
  6725. EICRB |= (1 << 0);
  6726. EICRB &= ~(1 << 1);
  6727. //enable INT4 interrupt
  6728. EIMSK |= (1 << 4);
  6729. }
  6730. ISR(INT4_vect) {
  6731. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6732. SERIAL_ECHOLNPGM("INT4");
  6733. if (IS_SD_PRINTING) uvlo_();
  6734. }
  6735. void recover_print(uint8_t automatic) {
  6736. char cmd[30];
  6737. lcd_update_enable(true);
  6738. lcd_update(2);
  6739. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6740. recover_machine_state_after_power_panic();
  6741. // Set the target bed and nozzle temperatures.
  6742. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6743. enquecommand(cmd);
  6744. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6745. enquecommand(cmd);
  6746. // Lift the print head, so one may remove the excess priming material.
  6747. if (current_position[Z_AXIS] < 25)
  6748. enquecommand_P(PSTR("G1 Z25 F800"));
  6749. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6750. enquecommand_P(PSTR("G28 X Y"));
  6751. // Set the target bed and nozzle temperatures and wait.
  6752. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6753. enquecommand(cmd);
  6754. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6755. enquecommand(cmd);
  6756. enquecommand_P(PSTR("M83")); //E axis relative mode
  6757. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6758. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6759. if(automatic == 0){
  6760. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6761. }
  6762. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6763. // Mark the power panic status as inactive.
  6764. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6765. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6766. delay_keep_alive(1000);
  6767. }*/
  6768. SERIAL_ECHOPGM("After waiting for temp:");
  6769. SERIAL_ECHOPGM("Current position X_AXIS:");
  6770. MYSERIAL.println(current_position[X_AXIS]);
  6771. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6772. MYSERIAL.println(current_position[Y_AXIS]);
  6773. // Restart the print.
  6774. restore_print_from_eeprom();
  6775. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6776. MYSERIAL.print(current_position[Z_AXIS]);
  6777. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6778. MYSERIAL.print(current_position[E_AXIS]);
  6779. }
  6780. void recover_machine_state_after_power_panic()
  6781. {
  6782. char cmd[30];
  6783. // 1) Recover the logical cordinates at the time of the power panic.
  6784. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6785. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6786. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6787. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6788. // The current position after power panic is moved to the next closest 0th full step.
  6789. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6790. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6791. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6792. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6793. sprintf_P(cmd, PSTR("G92 E"));
  6794. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6795. enquecommand(cmd);
  6796. }
  6797. memcpy(destination, current_position, sizeof(destination));
  6798. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6799. print_world_coordinates();
  6800. // 2) Initialize the logical to physical coordinate system transformation.
  6801. world2machine_initialize();
  6802. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6803. mbl.active = false;
  6804. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6805. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6806. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6807. // Scale the z value to 10u resolution.
  6808. int16_t v;
  6809. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6810. if (v != 0)
  6811. mbl.active = true;
  6812. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6813. }
  6814. if (mbl.active)
  6815. mbl.upsample_3x3();
  6816. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6817. // print_mesh_bed_leveling_table();
  6818. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6819. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6820. babystep_load();
  6821. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6822. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6823. // 6) Power up the motors, mark their positions as known.
  6824. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6825. axis_known_position[X_AXIS] = true; enable_x();
  6826. axis_known_position[Y_AXIS] = true; enable_y();
  6827. axis_known_position[Z_AXIS] = true; enable_z();
  6828. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6829. print_physical_coordinates();
  6830. // 7) Recover the target temperatures.
  6831. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6832. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6833. }
  6834. void restore_print_from_eeprom() {
  6835. float x_rec, y_rec, z_pos;
  6836. int feedrate_rec;
  6837. uint8_t fan_speed_rec;
  6838. char cmd[30];
  6839. char* c;
  6840. char filename[13];
  6841. uint8_t depth = 0;
  6842. char dir_name[9];
  6843. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6844. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6845. SERIAL_ECHOPGM("Feedrate:");
  6846. MYSERIAL.println(feedrate_rec);
  6847. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6848. MYSERIAL.println(int(depth));
  6849. for (int i = 0; i < depth; i++) {
  6850. for (int j = 0; j < 8; j++) {
  6851. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6852. }
  6853. dir_name[8] = '\0';
  6854. MYSERIAL.println(dir_name);
  6855. card.chdir(dir_name);
  6856. }
  6857. for (int i = 0; i < 8; i++) {
  6858. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6859. }
  6860. filename[8] = '\0';
  6861. MYSERIAL.print(filename);
  6862. strcat_P(filename, PSTR(".gco"));
  6863. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6864. for (c = &cmd[4]; *c; c++)
  6865. *c = tolower(*c);
  6866. enquecommand(cmd);
  6867. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6868. SERIAL_ECHOPGM("Position read from eeprom:");
  6869. MYSERIAL.println(position);
  6870. // E axis relative mode.
  6871. enquecommand_P(PSTR("M83"));
  6872. // Move to the XY print position in logical coordinates, where the print has been killed.
  6873. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6874. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6875. strcat_P(cmd, PSTR(" F2000"));
  6876. enquecommand(cmd);
  6877. // Move the Z axis down to the print, in logical coordinates.
  6878. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6879. enquecommand(cmd);
  6880. // Unretract.
  6881. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6882. // Set the feedrate saved at the power panic.
  6883. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6884. enquecommand(cmd);
  6885. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6886. {
  6887. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6888. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6889. }
  6890. // Set the fan speed saved at the power panic.
  6891. strcpy_P(cmd, PSTR("M106 S"));
  6892. strcat(cmd, itostr3(int(fan_speed_rec)));
  6893. enquecommand(cmd);
  6894. // Set a position in the file.
  6895. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6896. enquecommand(cmd);
  6897. // Start SD print.
  6898. enquecommand_P(PSTR("M24"));
  6899. }
  6900. ////////////////////////////////////////////////////////////////////////////////
  6901. // new save/restore printing
  6902. //extern uint32_t sdpos_atomic;
  6903. bool saved_printing = false;
  6904. uint32_t saved_sdpos = 0;
  6905. float saved_pos[4] = {0, 0, 0, 0};
  6906. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6907. float saved_feedrate2 = 0;
  6908. uint8_t saved_active_extruder = 0;
  6909. bool saved_extruder_under_pressure = false;
  6910. void stop_and_save_print_to_ram(float z_move, float e_move)
  6911. {
  6912. if (saved_printing) return;
  6913. cli();
  6914. unsigned char nplanner_blocks = number_of_blocks();
  6915. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6916. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6917. saved_sdpos -= sdlen_planner;
  6918. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6919. saved_sdpos -= sdlen_cmdqueue;
  6920. #if 0
  6921. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6922. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6923. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6924. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6925. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6926. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6927. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6928. {
  6929. card.setIndex(saved_sdpos);
  6930. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6931. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6932. MYSERIAL.print(char(card.get()));
  6933. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6934. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6935. MYSERIAL.print(char(card.get()));
  6936. SERIAL_ECHOLNPGM("End of command buffer");
  6937. }
  6938. {
  6939. // Print the content of the planner buffer, line by line:
  6940. card.setIndex(saved_sdpos);
  6941. int8_t iline = 0;
  6942. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6943. SERIAL_ECHOPGM("Planner line (from file): ");
  6944. MYSERIAL.print(int(iline), DEC);
  6945. SERIAL_ECHOPGM(", length: ");
  6946. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6947. SERIAL_ECHOPGM(", steps: (");
  6948. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6949. SERIAL_ECHOPGM(",");
  6950. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6951. SERIAL_ECHOPGM(",");
  6952. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6953. SERIAL_ECHOPGM(",");
  6954. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6955. SERIAL_ECHOPGM("), events: ");
  6956. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6957. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6958. MYSERIAL.print(char(card.get()));
  6959. }
  6960. }
  6961. {
  6962. // Print the content of the command buffer, line by line:
  6963. int8_t iline = 0;
  6964. union {
  6965. struct {
  6966. char lo;
  6967. char hi;
  6968. } lohi;
  6969. uint16_t value;
  6970. } sdlen_single;
  6971. int _bufindr = bufindr;
  6972. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6973. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6974. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6975. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6976. }
  6977. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6978. MYSERIAL.print(int(iline), DEC);
  6979. SERIAL_ECHOPGM(", type: ");
  6980. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6981. SERIAL_ECHOPGM(", len: ");
  6982. MYSERIAL.println(sdlen_single.value, DEC);
  6983. // Print the content of the buffer line.
  6984. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6985. SERIAL_ECHOPGM("Buffer line (from file): ");
  6986. MYSERIAL.print(int(iline), DEC);
  6987. MYSERIAL.println(int(iline), DEC);
  6988. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6989. MYSERIAL.print(char(card.get()));
  6990. if (-- _buflen == 0)
  6991. break;
  6992. // First skip the current command ID and iterate up to the end of the string.
  6993. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6994. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6995. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6996. // If the end of the buffer was empty,
  6997. if (_bufindr == sizeof(cmdbuffer)) {
  6998. // skip to the start and find the nonzero command.
  6999. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7000. }
  7001. }
  7002. }
  7003. #endif
  7004. #if 0
  7005. saved_feedrate2 = feedrate; //save feedrate
  7006. #else
  7007. // Try to deduce the feedrate from the first block of the planner.
  7008. // Speed is in mm/min.
  7009. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7010. #endif
  7011. planner_abort_hard(); //abort printing
  7012. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7013. saved_active_extruder = active_extruder; //save active_extruder
  7014. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7015. cmdqueue_reset(); //empty cmdqueue
  7016. card.sdprinting = false;
  7017. // card.closefile();
  7018. saved_printing = true;
  7019. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7020. st_reset_timer();
  7021. sei();
  7022. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7023. #if 1
  7024. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7025. char buf[48];
  7026. strcpy_P(buf, PSTR("G1 Z"));
  7027. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7028. strcat_P(buf, PSTR(" E"));
  7029. // Relative extrusion
  7030. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7031. strcat_P(buf, PSTR(" F"));
  7032. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7033. // At this point the command queue is empty.
  7034. enquecommand(buf, false);
  7035. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7036. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7037. repeatcommand_front();
  7038. #else
  7039. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7040. st_synchronize(); //wait moving
  7041. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7042. memcpy(destination, current_position, sizeof(destination));
  7043. #endif
  7044. }
  7045. }
  7046. void restore_print_from_ram_and_continue(float e_move)
  7047. {
  7048. if (!saved_printing) return;
  7049. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7050. // current_position[axis] = st_get_position_mm(axis);
  7051. active_extruder = saved_active_extruder; //restore active_extruder
  7052. feedrate = saved_feedrate2; //restore feedrate
  7053. float e = saved_pos[E_AXIS] - e_move;
  7054. plan_set_e_position(e);
  7055. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7056. st_synchronize();
  7057. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7058. memcpy(destination, current_position, sizeof(destination));
  7059. card.setIndex(saved_sdpos);
  7060. sdpos_atomic = saved_sdpos;
  7061. card.sdprinting = true;
  7062. saved_printing = false;
  7063. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7064. }
  7065. void print_world_coordinates()
  7066. {
  7067. SERIAL_ECHOPGM("world coordinates: (");
  7068. MYSERIAL.print(current_position[X_AXIS], 3);
  7069. SERIAL_ECHOPGM(", ");
  7070. MYSERIAL.print(current_position[Y_AXIS], 3);
  7071. SERIAL_ECHOPGM(", ");
  7072. MYSERIAL.print(current_position[Z_AXIS], 3);
  7073. SERIAL_ECHOLNPGM(")");
  7074. }
  7075. void print_physical_coordinates()
  7076. {
  7077. SERIAL_ECHOPGM("physical coordinates: (");
  7078. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7079. SERIAL_ECHOPGM(", ");
  7080. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7081. SERIAL_ECHOPGM(", ");
  7082. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7083. SERIAL_ECHOLNPGM(")");
  7084. }
  7085. void print_mesh_bed_leveling_table()
  7086. {
  7087. SERIAL_ECHOPGM("mesh bed leveling: ");
  7088. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7089. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7090. MYSERIAL.print(mbl.z_values[y][x], 3);
  7091. SERIAL_ECHOPGM(" ");
  7092. }
  7093. SERIAL_ECHOLNPGM("");
  7094. }
  7095. #define FIL_LOAD_LENGTH 60
  7096. void extr_unload2() { //unloads filament
  7097. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7098. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7099. // int8_t SilentMode;
  7100. uint8_t snmm_extruder = 0;
  7101. if (degHotend0() > EXTRUDE_MINTEMP) {
  7102. lcd_implementation_clear();
  7103. lcd_display_message_fullscreen_P(PSTR(""));
  7104. max_feedrate[E_AXIS] = 50;
  7105. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7106. // lcd.print(" ");
  7107. // lcd.print(snmm_extruder + 1);
  7108. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7109. if (current_position[Z_AXIS] < 15) {
  7110. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7111. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7112. }
  7113. current_position[E_AXIS] += 10; //extrusion
  7114. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7115. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7116. if (current_temperature[0] < 230) { //PLA & all other filaments
  7117. current_position[E_AXIS] += 5.4;
  7118. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7119. current_position[E_AXIS] += 3.2;
  7120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7121. current_position[E_AXIS] += 3;
  7122. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7123. }
  7124. else { //ABS
  7125. current_position[E_AXIS] += 3.1;
  7126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7127. current_position[E_AXIS] += 3.1;
  7128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7129. current_position[E_AXIS] += 4;
  7130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7131. /*current_position[X_AXIS] += 23; //delay
  7132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7133. current_position[X_AXIS] -= 23; //delay
  7134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7135. delay_keep_alive(4700);
  7136. }
  7137. max_feedrate[E_AXIS] = 80;
  7138. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7140. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7142. st_synchronize();
  7143. //digipot_init();
  7144. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7145. // else digipot_current(2, tmp_motor_loud[2]);
  7146. lcd_update_enable(true);
  7147. // lcd_return_to_status();
  7148. max_feedrate[E_AXIS] = 50;
  7149. }
  7150. else {
  7151. lcd_implementation_clear();
  7152. lcd.setCursor(0, 0);
  7153. lcd_printPGM(MSG_ERROR);
  7154. lcd.setCursor(0, 2);
  7155. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7156. delay(2000);
  7157. lcd_implementation_clear();
  7158. }
  7159. // lcd_return_to_status();
  7160. }