fsensor.cpp 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "planner.h"
  8. #include "fastio.h"
  9. #include "io_atmega2560.h"
  10. #include "cmdqueue.h"
  11. #include "ultralcd.h"
  12. #include "ConfigurationStore.h"
  13. #include "mmu.h"
  14. #include "cardreader.h"
  15. #include "adc.h"
  16. #include "temperature.h"
  17. #include "config.h"
  18. //! @name Basic parameters
  19. //! @{
  20. #define FSENSOR_CHUNK_LEN 0.64F //!< filament sensor chunk length 0.64mm
  21. #define FSENSOR_ERR_MAX 17 //!< filament sensor maximum error count for runout detection
  22. //! @}
  23. //! @name Optical quality measurement parameters
  24. //! @{
  25. #define FSENSOR_OQ_MAX_ES 6 //!< maximum error sum while loading (length ~64mm = 100chunks)
  26. #define FSENSOR_OQ_MAX_EM 2 //!< maximum error counter value while loading
  27. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd per chunk (applied to avg value)
  28. #define FSENSOR_OQ_MAX_YD 200 //!< maximum yd per chunk (applied to avg value)
  29. #define FSENSOR_OQ_MAX_PD 4 //!< maximum positive deviation (= yd_max/yd_avg)
  30. #define FSENSOR_OQ_MAX_ND 5 //!< maximum negative deviation (= yd_avg/yd_min)
  31. #define FSENSOR_OQ_MAX_SH 13 //!< maximum shutter value
  32. //! @}
  33. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  34. // PJ7 can not be used (does not have PinChangeInterrupt possibility)
  35. #define FSENSOR_INT_PIN 75 //!< filament sensor interrupt pin PJ4
  36. #define FSENSOR_INT_PIN_MASK 0x10 //!< filament sensor interrupt pin mask (bit4)
  37. #define FSENSOR_INT_PIN_PIN_REG PINJ // PIN register @ PJ4
  38. #define FSENSOR_INT_PIN_VECT PCINT1_vect // PinChange ISR @ PJ4
  39. #define FSENSOR_INT_PIN_PCMSK_REG PCMSK1 // PinChangeMaskRegister @ PJ4
  40. #define FSENSOR_INT_PIN_PCMSK_BIT PCINT13 // PinChange Interrupt / PinChange Enable Mask @ PJ4
  41. #define FSENSOR_INT_PIN_PCICR_BIT PCIE1 // PinChange Interrupt Enable / Flag @ PJ4
  42. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  43. uint8_t fsensor_int_pin_old = 0;
  44. int16_t fsensor_chunk_len = 0;
  45. //! enabled = initialized and sampled every chunk event
  46. bool fsensor_enabled = true;
  47. //! runout watching is done in fsensor_update (called from main loop)
  48. bool fsensor_watch_runout = true;
  49. //! not responding - is set if any communication error occurred during initialization or readout
  50. bool fsensor_not_responding = false;
  51. //! printing saved
  52. bool fsensor_printing_saved = false;
  53. //! enable/disable quality meassurement
  54. bool fsensor_oq_meassure_enabled = false;
  55. //! as explained in the CHECK_FSENSOR macro: this flag is set to true when fsensor posts
  56. //! the M600 into the command queue, which elliminates the hazard of having posted multiple M600's
  57. //! before the first one gets read and started processing.
  58. //! Btw., the IR fsensor could do up to 6 posts before the command queue managed to start processing the first M600 ;)
  59. static bool fsensor_m600_enqueued = false;
  60. //! number of errors, updated in ISR
  61. uint8_t fsensor_err_cnt = 0;
  62. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  63. int16_t fsensor_st_cnt = 0;
  64. //! last dy value from pat9125 sensor (used in ISR)
  65. int16_t fsensor_dy_old = 0;
  66. //! log flag: 0=log disabled, 1=log enabled
  67. uint8_t fsensor_log = 1;
  68. //! @name filament autoload variables
  69. //! @{
  70. //! autoload feature enabled
  71. bool fsensor_autoload_enabled = true;
  72. //! autoload watching enable/disable flag
  73. bool fsensor_watch_autoload = false;
  74. //
  75. uint16_t fsensor_autoload_y;
  76. //
  77. uint8_t fsensor_autoload_c;
  78. //
  79. uint32_t fsensor_autoload_last_millis;
  80. //
  81. uint8_t fsensor_autoload_sum;
  82. //! @}
  83. //! @name filament optical quality measurement variables
  84. //! @{
  85. //! Measurement enable/disable flag
  86. bool fsensor_oq_meassure = false;
  87. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  88. uint8_t fsensor_oq_skipchunk;
  89. //! number of samples from start of measurement
  90. uint8_t fsensor_oq_samples;
  91. //! sum of steps in positive direction movements
  92. uint16_t fsensor_oq_st_sum;
  93. //! sum of deltas in positive direction movements
  94. uint16_t fsensor_oq_yd_sum;
  95. //! sum of errors during measurement
  96. uint16_t fsensor_oq_er_sum;
  97. //! max error counter value during measurement
  98. uint8_t fsensor_oq_er_max;
  99. //! minimum delta value
  100. int16_t fsensor_oq_yd_min;
  101. //! maximum delta value
  102. int16_t fsensor_oq_yd_max;
  103. //! sum of shutter value
  104. uint16_t fsensor_oq_sh_sum;
  105. //! @}
  106. #if IR_SENSOR_ANALOG
  107. ClFsensorPCB oFsensorPCB;
  108. ClFsensorActionNA oFsensorActionNA;
  109. bool bIRsensorStateFlag=false;
  110. unsigned long nIRsensorLastTime;
  111. #endif //IR_SENSOR_ANALOG
  112. void fsensor_stop_and_save_print(void)
  113. {
  114. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  115. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  116. }
  117. void fsensor_restore_print_and_continue(void)
  118. {
  119. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  120. fsensor_watch_runout = true;
  121. fsensor_err_cnt = 0;
  122. fsensor_m600_enqueued = false;
  123. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  124. }
  125. void fsensor_init(void)
  126. {
  127. #ifdef PAT9125
  128. uint8_t pat9125 = pat9125_init();
  129. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  130. #endif //PAT9125
  131. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  132. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  133. fsensor_not_responding = false;
  134. #ifdef PAT9125
  135. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  136. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  137. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * cs.axis_steps_per_unit[E_AXIS]);
  138. if (!pat9125)
  139. {
  140. fsensor = 0; //disable sensor
  141. fsensor_not_responding = true;
  142. }
  143. #endif //PAT9125
  144. #if IR_SENSOR_ANALOG
  145. bIRsensorStateFlag=false;
  146. oFsensorPCB=(ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
  147. oFsensorActionNA=(ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
  148. #endif //IR_SENSOR_ANALOG
  149. if (fsensor)
  150. fsensor_enable(false); // (in this case) EEPROM update is not necessary
  151. else
  152. fsensor_disable(false); // (in this case) EEPROM update is not necessary
  153. printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));
  154. #if IR_SENSOR_ANALOG
  155. printf_P(PSTR(" (sensor board revision: %S)\n"),(oFsensorPCB==ClFsensorPCB::_Rev03b)?PSTR("03b or newer"):PSTR("03 or older"));
  156. #else //IR_SENSOR_ANALOG
  157. printf_P(PSTR("\n"));
  158. #endif //IR_SENSOR_ANALOG
  159. if (check_for_ir_sensor()) ir_sensor_detected = true;
  160. }
  161. bool fsensor_enable(bool bUpdateEEPROM)
  162. {
  163. #ifdef PAT9125
  164. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  165. uint8_t pat9125 = pat9125_init();
  166. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  167. if (pat9125)
  168. fsensor_not_responding = false;
  169. else
  170. fsensor_not_responding = true;
  171. fsensor_enabled = pat9125 ? true : false;
  172. fsensor_watch_runout = true;
  173. fsensor_oq_meassure = false;
  174. fsensor_err_cnt = 0;
  175. fsensor_dy_old = 0;
  176. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  177. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  178. }
  179. else //filament sensor is FINDA, always enable
  180. {
  181. fsensor_enabled = true;
  182. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  183. FSensorStateMenu = 1;
  184. }
  185. #else // PAT9125
  186. #if IR_SENSOR_ANALOG
  187. if(!fsensor_IR_check())
  188. {
  189. bUpdateEEPROM=true;
  190. fsensor_enabled=false;
  191. fsensor_not_responding=true;
  192. FSensorStateMenu=0;
  193. }
  194. else {
  195. #endif //IR_SENSOR_ANALOG
  196. fsensor_enabled=true;
  197. fsensor_not_responding=false;
  198. FSensorStateMenu=1;
  199. #if IR_SENSOR_ANALOG
  200. }
  201. #endif //IR_SENSOR_ANALOG
  202. if(bUpdateEEPROM)
  203. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, FSensorStateMenu);
  204. #endif //PAT9125
  205. return fsensor_enabled;
  206. }
  207. void fsensor_disable(bool bUpdateEEPROM)
  208. {
  209. fsensor_enabled = false;
  210. FSensorStateMenu = 0;
  211. if(bUpdateEEPROM)
  212. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  213. }
  214. void fsensor_autoload_set(bool State)
  215. {
  216. #ifdef PAT9125
  217. if (!State) fsensor_autoload_check_stop();
  218. #endif //PAT9125
  219. fsensor_autoload_enabled = State;
  220. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  221. }
  222. void pciSetup(byte pin)
  223. {
  224. // !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins
  225. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  226. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  227. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  228. }
  229. #ifdef PAT9125
  230. void fsensor_autoload_check_start(void)
  231. {
  232. // puts_P(_N("fsensor_autoload_check_start\n"));
  233. if (!fsensor_enabled) return;
  234. if (!fsensor_autoload_enabled) return;
  235. if (fsensor_watch_autoload) return;
  236. if (!pat9125_update_y()) //update sensor
  237. {
  238. fsensor_disable();
  239. fsensor_not_responding = true;
  240. fsensor_watch_autoload = false;
  241. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  242. return;
  243. }
  244. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  245. fsensor_autoload_y = pat9125_y; //save current y value
  246. fsensor_autoload_c = 0; //reset number of changes counter
  247. fsensor_autoload_sum = 0;
  248. fsensor_autoload_last_millis = _millis();
  249. fsensor_watch_runout = false;
  250. fsensor_watch_autoload = true;
  251. fsensor_err_cnt = 0;
  252. }
  253. void fsensor_autoload_check_stop(void)
  254. {
  255. // puts_P(_N("fsensor_autoload_check_stop\n"));
  256. if (!fsensor_enabled) return;
  257. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  258. if (!fsensor_autoload_enabled) return;
  259. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  260. if (!fsensor_watch_autoload) return;
  261. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  262. fsensor_autoload_sum = 0;
  263. fsensor_watch_autoload = false;
  264. fsensor_watch_runout = true;
  265. fsensor_err_cnt = 0;
  266. }
  267. #endif //PAT9125
  268. bool fsensor_check_autoload(void)
  269. {
  270. if (!fsensor_enabled) return false;
  271. if (!fsensor_autoload_enabled) return false;
  272. if (ir_sensor_detected) {
  273. if (digitalRead(IR_SENSOR_PIN) == 1) {
  274. fsensor_watch_autoload = true;
  275. }
  276. else if (fsensor_watch_autoload == true) {
  277. fsensor_watch_autoload = false;
  278. return true;
  279. }
  280. }
  281. #ifdef PAT9125
  282. if (!fsensor_watch_autoload)
  283. {
  284. fsensor_autoload_check_start();
  285. return false;
  286. }
  287. #if 0
  288. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  289. #endif
  290. if ((_millis() - fsensor_autoload_last_millis) < 25) return false;
  291. fsensor_autoload_last_millis = _millis();
  292. if (!pat9125_update_y()) //update sensor
  293. {
  294. fsensor_disable();
  295. fsensor_not_responding = true;
  296. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  297. return false;
  298. }
  299. int16_t dy = pat9125_y - fsensor_autoload_y;
  300. if (dy) //? dy value is nonzero
  301. {
  302. if (dy > 0) //? delta-y value is positive (inserting)
  303. {
  304. fsensor_autoload_sum += dy;
  305. fsensor_autoload_c += 3; //increment change counter by 3
  306. }
  307. else if (fsensor_autoload_c > 1)
  308. fsensor_autoload_c -= 2; //decrement change counter by 2
  309. fsensor_autoload_y = pat9125_y; //save current value
  310. }
  311. else if (fsensor_autoload_c > 0)
  312. fsensor_autoload_c--;
  313. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  314. #if 0
  315. puts_P(_N("fsensor_check_autoload\n"));
  316. if (fsensor_autoload_c != fsensor_autoload_c_old)
  317. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  318. #endif
  319. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  320. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  321. {
  322. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  323. return true;
  324. }
  325. #endif //PAT9125
  326. return false;
  327. }
  328. void fsensor_oq_meassure_set(bool State)
  329. {
  330. fsensor_oq_meassure_enabled = State;
  331. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  332. }
  333. void fsensor_oq_meassure_start(uint8_t skip)
  334. {
  335. if (!fsensor_enabled) return;
  336. if (!fsensor_oq_meassure_enabled) return;
  337. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  338. fsensor_oq_skipchunk = skip;
  339. fsensor_oq_samples = 0;
  340. fsensor_oq_st_sum = 0;
  341. fsensor_oq_yd_sum = 0;
  342. fsensor_oq_er_sum = 0;
  343. fsensor_oq_er_max = 0;
  344. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  345. fsensor_oq_yd_max = 0;
  346. fsensor_oq_sh_sum = 0;
  347. pat9125_update();
  348. pat9125_y = 0;
  349. fsensor_watch_runout = false;
  350. fsensor_oq_meassure = true;
  351. }
  352. void fsensor_oq_meassure_stop(void)
  353. {
  354. if (!fsensor_enabled) return;
  355. if (!fsensor_oq_meassure_enabled) return;
  356. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  357. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  358. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  359. fsensor_oq_meassure = false;
  360. fsensor_watch_runout = true;
  361. fsensor_err_cnt = 0;
  362. }
  363. const char _OK[] PROGMEM = "OK";
  364. const char _NG[] PROGMEM = "NG!";
  365. bool fsensor_oq_result(void)
  366. {
  367. if (!fsensor_enabled) return true;
  368. if (!fsensor_oq_meassure_enabled) return true;
  369. printf_P(_N("fsensor_oq_result\n"));
  370. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  371. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  372. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  373. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  374. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  375. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  376. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  377. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  378. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  379. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  380. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  381. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  382. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  383. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  384. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  385. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  386. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  387. if (yd_qua >= 8) res_sh_avg = true;
  388. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  389. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  390. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  391. return res;
  392. }
  393. #ifdef PAT9125
  394. ISR(FSENSOR_INT_PIN_VECT)
  395. {
  396. if (mmu_enabled || ir_sensor_detected) return;
  397. if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
  398. fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
  399. static bool _lock = false;
  400. if (_lock) return;
  401. _lock = true;
  402. int st_cnt = fsensor_st_cnt;
  403. fsensor_st_cnt = 0;
  404. sei();
  405. uint8_t old_err_cnt = fsensor_err_cnt;
  406. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  407. if (!pat9125_res)
  408. {
  409. fsensor_disable();
  410. fsensor_not_responding = true;
  411. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  412. }
  413. if (st_cnt != 0)
  414. { //movement
  415. if (st_cnt > 0) //positive movement
  416. {
  417. if (pat9125_y < 0)
  418. {
  419. if (fsensor_err_cnt)
  420. fsensor_err_cnt += 2;
  421. else
  422. fsensor_err_cnt++;
  423. }
  424. else if (pat9125_y > 0)
  425. {
  426. if (fsensor_err_cnt)
  427. fsensor_err_cnt--;
  428. }
  429. else //(pat9125_y == 0)
  430. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  431. fsensor_err_cnt++;
  432. if (fsensor_oq_meassure)
  433. {
  434. if (fsensor_oq_skipchunk)
  435. {
  436. fsensor_oq_skipchunk--;
  437. fsensor_err_cnt = 0;
  438. }
  439. else
  440. {
  441. if (st_cnt == fsensor_chunk_len)
  442. {
  443. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  444. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  445. }
  446. fsensor_oq_samples++;
  447. fsensor_oq_st_sum += st_cnt;
  448. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  449. if (fsensor_err_cnt > old_err_cnt)
  450. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  451. if (fsensor_oq_er_max < fsensor_err_cnt)
  452. fsensor_oq_er_max = fsensor_err_cnt;
  453. fsensor_oq_sh_sum += pat9125_s;
  454. }
  455. }
  456. }
  457. else //negative movement
  458. {
  459. }
  460. }
  461. else
  462. { //no movement
  463. }
  464. #ifdef DEBUG_FSENSOR_LOG
  465. if (fsensor_log)
  466. {
  467. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  468. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  469. }
  470. #endif //DEBUG_FSENSOR_LOG
  471. fsensor_dy_old = pat9125_y;
  472. pat9125_y = 0;
  473. _lock = false;
  474. return;
  475. }
  476. void fsensor_setup_interrupt(void)
  477. {
  478. pinMode(FSENSOR_INT_PIN, OUTPUT);
  479. digitalWrite(FSENSOR_INT_PIN, LOW);
  480. fsensor_int_pin_old = 0;
  481. //pciSetup(FSENSOR_INT_PIN);
  482. // !!! "pciSetup()" does not provide the correct results for some MCU pins
  483. // so interrupt registers settings:
  484. FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)
  485. PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins)
  486. PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins)
  487. }
  488. #endif //PAT9125
  489. void fsensor_st_block_begin(block_t* bl)
  490. {
  491. if (!fsensor_enabled) return;
  492. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  493. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  494. {
  495. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  496. if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
  497. else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
  498. }
  499. }
  500. void fsensor_st_block_chunk(block_t* bl, int cnt)
  501. {
  502. if (!fsensor_enabled) return;
  503. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  504. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  505. {
  506. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  507. if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
  508. else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
  509. }
  510. }
  511. //! Common code for enqueing M600 and supplemental codes into the command queue.
  512. //! Used both for the IR sensor and the PAT9125
  513. void fsensor_enque_M600(){
  514. printf_P(PSTR("fsensor_update - M600\n"));
  515. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  516. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  517. enquecommand_front_P(PSTR("PRUSA fsensor_recover"));
  518. fsensor_m600_enqueued = true;
  519. enquecommand_front_P((PSTR("M600")));
  520. }
  521. //! @brief filament sensor update (perform M600 on filament runout)
  522. //!
  523. //! Works only if filament sensor is enabled.
  524. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  525. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  526. void fsensor_update(void)
  527. {
  528. #ifdef PAT9125
  529. if (fsensor_enabled && fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX) && ( ! fsensor_m600_enqueued) )
  530. {
  531. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  532. fsensor_autoload_enabled = false;
  533. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  534. fsensor_oq_meassure_enabled = true;
  535. fsensor_stop_and_save_print();
  536. fsensor_err_cnt = 0;
  537. fsensor_oq_meassure_start(0);
  538. enquecommand_front_P((PSTR("G1 E-3 F200")));
  539. process_commands();
  540. KEEPALIVE_STATE(IN_HANDLER);
  541. cmdqueue_pop_front();
  542. st_synchronize();
  543. enquecommand_front_P((PSTR("G1 E3 F200")));
  544. process_commands();
  545. KEEPALIVE_STATE(IN_HANDLER);
  546. cmdqueue_pop_front();
  547. st_synchronize();
  548. uint8_t err_cnt = fsensor_err_cnt;
  549. fsensor_oq_meassure_stop();
  550. bool err = false;
  551. err |= (err_cnt > 1);
  552. err |= (fsensor_oq_er_sum > 2);
  553. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  554. if (!err)
  555. {
  556. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  557. fsensor_restore_print_and_continue();
  558. }
  559. else
  560. {
  561. fsensor_enque_M600();
  562. fsensor_watch_runout = false;
  563. }
  564. fsensor_autoload_enabled = autoload_enabled_tmp;
  565. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  566. }
  567. #else //PAT9125
  568. if (CHECK_FSENSOR && fsensor_enabled && ir_sensor_detected && ( ! fsensor_m600_enqueued) )
  569. {
  570. if(digitalRead(IR_SENSOR_PIN))
  571. { // IR_SENSOR_PIN ~ H
  572. #if IR_SENSOR_ANALOG
  573. if(!bIRsensorStateFlag)
  574. {
  575. bIRsensorStateFlag=true;
  576. nIRsensorLastTime=_millis();
  577. }
  578. else
  579. {
  580. if((_millis()-nIRsensorLastTime)>IR_SENSOR_STEADY)
  581. {
  582. uint8_t nMUX1,nMUX2;
  583. uint16_t nADC;
  584. bIRsensorStateFlag=false;
  585. // sequence for direct data reading from AD converter
  586. DISABLE_TEMPERATURE_INTERRUPT();
  587. nMUX1=ADMUX; // ADMUX saving
  588. nMUX2=ADCSRB;
  589. adc_setmux(VOLT_IR_PIN);
  590. ADCSRA|=(1<<ADSC); // first conversion after ADMUX change discarded (preventively)
  591. while(ADCSRA&(1<<ADSC))
  592. ;
  593. ADCSRA|=(1<<ADSC); // second conversion used
  594. while(ADCSRA&(1<<ADSC))
  595. ;
  596. nADC=ADC;
  597. ADMUX=nMUX1; // ADMUX restoring
  598. ADCSRB=nMUX2;
  599. ENABLE_TEMPERATURE_INTERRUPT();
  600. // end of sequence for ...
  601. if((oFsensorPCB==ClFsensorPCB::_Rev03b)&&((nADC*OVERSAMPLENR)>((int)IRsensor_Hopen_TRESHOLD)))
  602. {
  603. fsensor_disable();
  604. fsensor_not_responding = true;
  605. printf_P(PSTR("IR sensor not responding (%d)!\n"),1);
  606. if((ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA)==ClFsensorActionNA::_Pause)
  607. if(oFsensorActionNA==ClFsensorActionNA::_Pause)
  608. lcd_pause_print();
  609. }
  610. else
  611. {
  612. #endif //IR_SENSOR_ANALOG
  613. fsensor_stop_and_save_print();
  614. fsensor_enque_M600();
  615. #if IR_SENSOR_ANALOG
  616. }
  617. }
  618. }
  619. }
  620. else
  621. { // IR_SENSOR_PIN ~ L
  622. bIRsensorStateFlag=false;
  623. #endif //IR_SENSOR_ANALOG
  624. }
  625. }
  626. #endif //PAT9125
  627. }
  628. #if IR_SENSOR_ANALOG
  629. bool fsensor_IR_check()
  630. {
  631. uint16_t volt_IR_int;
  632. bool bCheckResult;
  633. volt_IR_int=current_voltage_raw_IR;
  634. bCheckResult=(volt_IR_int<((int)IRsensor_Lmax_TRESHOLD))||(volt_IR_int>((int)IRsensor_Hmin_TRESHOLD));
  635. bCheckResult=bCheckResult&&(!((oFsensorPCB==ClFsensorPCB::_Rev03b)&&(volt_IR_int>((int)IRsensor_Hopen_TRESHOLD))));
  636. return(bCheckResult);
  637. }
  638. #endif //IR_SENSOR_ANALOG