| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949 | #include "Dcodes.h"//#include "Marlin.h"#include "Configuration.h"#include "language.h"#include "cmdqueue.h"#include <stdio.h>#include <avr/pgmspace.h>#define SHOW_TEMP_ADC_VALUES#include "temperature.h"#define DBG(args...) printf_P(args)inline void print_hex_nibble(uint8_t val){	putchar((val > 9)?(val - 10 + 'a'):(val + '0'));}void print_hex_byte(uint8_t val){	print_hex_nibble(val >> 4);	print_hex_nibble(val & 15);}void print_hex_word(uint16_t val){	print_hex_byte(val >> 8);	print_hex_byte(val & 255);}void print_eeprom(uint16_t address, uint16_t count, uint8_t countperline = 16){	while (count)	{		print_hex_word(address);		putchar(' ');		uint8_t count_line = countperline;		while (count && count_line)		{			putchar(' ');			print_hex_byte(eeprom_read_byte((uint8_t*)address++));			count_line--;			count--;		}		putchar('\n');	}}int parse_hex(char* hex, uint8_t* data, int count){	int parsed = 0;	while (*hex)	{		if (count && (parsed >= count)) break;		char c = *(hex++);		if (c == ' ') continue;		if (c == '\n') break;		uint8_t val = 0x00;		if ((c >= '0') && (c <= '9')) val |= ((c - '0') << 4);		else if ((c >= 'a') && (c <= 'f')) val |= ((c - 'a' + 10) << 4);		else return -parsed;		c = *(hex++);		if ((c >= '0') && (c <= '9')) val |= (c - '0');		else if ((c >= 'a') && (c <= 'f')) val |= (c - 'a' + 10);		else return -parsed;		data[parsed] = val;		parsed++;	}	return parsed;}void print_mem(uint32_t address, uint16_t count, uint8_t type, uint8_t countperline = 16){	while (count)	{		if (type == 2)			print_hex_nibble(address >> 16);		print_hex_word(address);		putchar(' ');		uint8_t count_line = countperline;		while (count && count_line)		{			uint8_t data = 0;			switch (type)			{			case 0: data = *((uint8_t*)address++); break;			case 1: data = eeprom_read_byte((uint8_t*)address++); break;			case 2: data = pgm_read_byte_far((uint8_t*)address++); break;			}			putchar(' ');			print_hex_byte(data);			count_line--;			count--;		}		putchar('\n');	}}#if defined DEBUG_DCODE3 || defined DEBUG_DCODES#define EEPROM_SIZE 0x1000    /*!    ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>    This command can be used without any additional parameters. It will read the entire eeprom.    #### Usage            D3 [ A | C | X ]        #### Parameters    - `A` - Address (x0000-x0fff)    - `C` - Count (1-4096)    - `X` - Data (hex)		#### Notes	- The hex address needs to be lowercase without the 0 before the x	- Count is decimal 	- The hex data needs to be lowercase	    */void dcode_3(){	DBG(_N("D3 - Read/Write EEPROM\n"));	uint16_t address = 0x0000; //default 0x0000	uint16_t count = EEPROM_SIZE; //default 0x1000 (entire eeprom)	if (code_seen('A')) // Address (0x0000-0x0fff)		address = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();	if (code_seen('C')) // Count (0x0001-0x1000)		count = (int)code_value();	address &= 0x1fff;	if (count > EEPROM_SIZE) count = EEPROM_SIZE;	if ((address + count) > EEPROM_SIZE) count = EEPROM_SIZE - address;	if (code_seen('X')) // Data	{		uint8_t data[16];		count = parse_hex(strchr_pointer + 1, data, 16);		if (count > 0)		{			for (uint16_t i = 0; i < count; i++)				eeprom_write_byte((uint8_t*)(address + i), data[i]);			printf_P(_N("%d bytes written to EEPROM at address 0x%04x"), count, address);			putchar('\n');		}		else			count = 0;	}	print_mem(address, count, 1);/*	while (count)	{		print_hex_word(address);		putchar(' ');		uint8_t countperline = 16;		while (count && countperline)		{			uint8_t data = eeprom_read_byte((uint8_t*)address++);			putchar(' ');			print_hex_byte(data);			countperline--;			count--;		}		putchar('\n');	}*/}#endif //DEBUG_DCODE3#include "ConfigurationStore.h"#include "cmdqueue.h"#include "pat9125.h"#include "adc.h"#include "temperature.h"#include <avr/wdt.h>#include "bootapp.h"#if 0#define FLASHSIZE     0x40000#define RAMSIZE        0x2000#define boot_src_addr  (*((uint32_t*)(RAMSIZE - 16)))#define boot_dst_addr  (*((uint32_t*)(RAMSIZE - 12)))#define boot_copy_size (*((uint16_t*)(RAMSIZE - 8)))#define boot_reserved  (*((uint8_t*)(RAMSIZE - 6)))#define boot_app_flags (*((uint8_t*)(RAMSIZE - 5)))#define boot_app_magic (*((uint32_t*)(RAMSIZE - 4)))#define BOOT_APP_FLG_ERASE 0x01#define BOOT_APP_FLG_COPY  0x02#define BOOT_APP_FLG_FLASH 0x04extern float current_temperature_pinda;extern float axis_steps_per_unit[NUM_AXIS];#define LOG(args...) printf(args)#endif //0#define LOG(args...)    /*!    *    ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">D-1: Endless Loop</a>                D-1          *    */void dcode__1(){	printf_P(PSTR("D-1 - Endless loop\n"));//	cli();	while (1);}#ifdef DEBUG_DCODES    /*!    ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>    #### Usage            D0 [ B ]        #### Parameters    - `B` - Bootloader    */void dcode_0(){	if (*(strchr_pointer + 1) == 0) return;	LOG("D0 - Reset\n");	if (code_seen('B')) //bootloader	{		cli();		wdt_enable(WDTO_15MS);		while(1);	}	else //reset	{#ifndef _NO_ASM		asm volatile("jmp 0x00000");#endif //_NO_ASM	}}    /*!    *    ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>                D1          *    */void dcode_1(){	LOG("D1 - Clear EEPROM and RESET\n");	cli();	for (int i = 0; i < 8192; i++)		eeprom_write_byte((unsigned char*)i, (unsigned char)0xff);	wdt_enable(WDTO_15MS);	while(1);}    /*!    ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>    This command can be used without any additional parameters. It will read the entire RAM.    #### Usage            D2 [ A | C | X ]        #### Parameters    - `A` - Address (x0000-x1fff)    - `C` - Count (1-8192)    - `X` - Data	#### Notes	- The hex address needs to be lowercase without the 0 before the x	- Count is decimal 	- The hex data needs to be lowercase	    */void dcode_2(){	LOG("D2 - Read/Write RAM\n");	uint16_t address = 0x0000; //default 0x0000	uint16_t count = 0x2000; //default 0x2000 (entire ram)	if (code_seen('A')) // Address (0x0000-0x1fff)		address = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();	if (code_seen('C')) // Count (0x0001-0x2000)		count = (int)code_value();	address &= 0x1fff;	if (count > 0x2000) count = 0x2000;	if ((address + count) > 0x2000) count = 0x2000 - address;	if (code_seen('X')) // Data	{		uint8_t data[16];		count = parse_hex(strchr_pointer + 1, data, 16);		if (count > 0)		{			for (uint16_t i = 0; i < count; i++)				*((uint8_t*)(address + i)) =  data[i];			LOG("%d bytes written to RAM at address %04x", count, address);		}		else			count = 0;	}	print_mem(address, count, 0);/*	while (count)	{		print_hex_word(address);		putchar(' ');		uint8_t countperline = 16;		while (count && countperline)		{			uint8_t data = *((uint8_t*)address++);			putchar(' ');			print_hex_byte(data);			countperline--;			count--;		}		putchar('\n');	}*/}    /*!        ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>    To read the digital value of a pin you need only to define the pin number.    #### Usage            D4 [ P | F | V ]        #### Parameters    - `P` - Pin (0-255)    - `F` - Function in/out (0/1)    - `V` - Value (0/1)    */void dcode_4(){	LOG("D4 - Read/Write PIN\n");	if (code_seen('P')) // Pin (0-255)	{		int pin = (int)code_value();		if ((pin >= 0) && (pin <= 255))		{			if (code_seen('F')) // Function in/out (0/1)			{				int fnc = (int)code_value();				if (fnc == 0) pinMode(pin, INPUT);				else if (fnc == 1) pinMode(pin, OUTPUT);			}			if (code_seen('V')) // Value (0/1)			{				int val = (int)code_value();				if (val == 0) digitalWrite(pin, LOW);				else if (val == 1) digitalWrite(pin, HIGH);			}			else			{				int val = (digitalRead(pin) != LOW)?1:0;				printf("PIN%d=%d", pin, val);			}		}	}}#endif //DEBUG_DCODES#if defined DEBUG_DCODE5 || defined DEBUG_DCODES    /*!    ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>    This command can be used without any additional parameters. It will read the 1kb FLASH.    #### Usage            D5 [ A | C | X | E ]        #### Parameters    - `A` - Address (x00000-x3ffff)    - `C` - Count (1-8192)    - `X` - Data (hex)    - `E` - Erase 		#### Notes	- The hex address needs to be lowercase without the 0 before the x	- Count is decimal 	- The hex data needs to be lowercase	   */void dcode_5(){	printf_P(PSTR("D5 - Read/Write FLASH\n"));	uint32_t address = 0x0000; //default 0x0000	uint16_t count = 0x0400; //default 0x0400 (1kb block)	if (code_seen('A')) // Address (0x00000-0x3ffff)		address = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();	if (code_seen('C')) // Count (0x0001-0x2000)		count = (int)code_value();	address &= 0x3ffff;	if (count > 0x2000) count = 0x2000;	if ((address + count) > 0x40000) count = 0x40000 - address;	bool bErase = false;	bool bCopy = false;	if (code_seen('E')) //Erase		bErase = true;	uint8_t data[16];	if (code_seen('X')) // Data	{		count = parse_hex(strchr_pointer + 1, data, 16);		if (count > 0) bCopy = true;	}	if (bErase || bCopy)	{		if (bErase)		{			printf_P(PSTR("%d bytes of FLASH at address %05x will be erased\n"), count, address);		}		if (bCopy)		{			printf_P(PSTR("%d  bytes will be written to FLASH at address %05x\n"), count, address);		}		cli();		boot_app_magic = 0x55aa55aa;		boot_app_flags = (bErase?(BOOT_APP_FLG_ERASE):0) | (bCopy?(BOOT_APP_FLG_COPY):0);		boot_copy_size = (uint16_t)count;		boot_dst_addr = (uint32_t)address;		boot_src_addr = (uint32_t)(&data);		bootapp_print_vars();		wdt_enable(WDTO_15MS);		while(1);	}	while (count)	{		print_hex_nibble(address >> 16);		print_hex_word(address);		putchar(' ');		uint8_t countperline = 16;		while (count && countperline)		{			uint8_t data = pgm_read_byte_far((uint8_t*)address++);			putchar(' ');			print_hex_byte(data);			countperline--;			count--;		}		putchar('\n');	}}#endif //DEBUG_DCODE5#ifdef DEBUG_DCODES    /*!    ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>    Reserved    */void dcode_6(){	LOG("D6 - Read/Write external FLASH\n");}    /*!    ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>    Reserved    */void dcode_7(){	LOG("D7 - Read/Write Bootloader\n");/*	cli();	boot_app_magic = 0x55aa55aa;	boot_app_flags = BOOT_APP_FLG_ERASE | BOOT_APP_FLG_COPY | BOOT_APP_FLG_FLASH;	boot_copy_size = (uint16_t)0xc00;	boot_src_addr = (uint32_t)0x0003e400;	boot_dst_addr = (uint32_t)0x0003f400;	wdt_enable(WDTO_15MS);	while(1);*/}    /*!    ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>    #### Usage            D8 [ ? | ! | P | Z ]        #### Parameters    - `?` - Read PINDA temperature shift values    - `!` - Reset PINDA temperature shift values to default    - `P` - Pinda temperature [C]    - `Z` - Z Offset [mm]    */void dcode_8(){	printf_P(PSTR("D8 - Read/Write PINDA\n"));	uint8_t cal_status = calibration_status_pinda();	float temp_pinda = current_temperature_pinda;	float offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda);	if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0))	{		printf_P(PSTR("cal_status=%d\n"), cal_status?1:0);		for (uint8_t i = 0; i < 6; i++)		{			uint16_t offs = 0;			if (i > 0) offs = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1));			float foffs = ((float)offs) / cs.axis_steps_per_unit[Z_AXIS];			offs = 1000 * foffs;			printf_P(PSTR("temp_pinda=%dC temp_shift=%dum\n"), 35 + i * 5, offs);		}	}	else if (strchr_pointer[1+1] == '!')	{		cal_status = 1;		eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, cal_status);		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0,   8); //40C -  20um -   8usteps		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1,  24); //45C -  60um -  24usteps		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2,  48); //50C - 120um -  48usteps		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3,  80); //55C - 200um -  80usteps		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps	}	else	{		if (code_seen('P')) // Pinda temperature [C]			temp_pinda = code_value();		offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda);		if (code_seen('Z')) // Z Offset [mm]		{			offset_z = code_value();		}	}	printf_P(PSTR("temp_pinda=%d offset_z=%d.%03d\n"), (int)temp_pinda, (int)offset_z, ((int)(1000 * offset_z) % 1000));}    /*!    ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>    #### Usage            D9 [ I | V ]        #### Parameters    - `I` - ADC channel index         - `0` - Heater 0 temperature        - `1` - Heater 1 temperature        - `2` - Bed temperature        - `3` - PINDA temperature        - `4` - PWR voltage        - `5` - Ambient temperature        - `6` - BED voltage    - `V` Value to be written as simulated    */const char* dcode_9_ADC_name(uint8_t i){	switch (i)	{	case 0: return PSTR("TEMP_HEATER0");	case 1: return PSTR("TEMP_HEATER1");	case 2: return PSTR("TEMP_BED");	case 3: return PSTR("TEMP_PINDA");	case 4: return PSTR("VOLT_PWR");	case 5: return PSTR("TEMP_AMBIENT");	case 6: return PSTR("VOLT_BED");	}	return 0;}#ifdef AMBIENT_THERMISTORextern int current_temperature_raw_ambient;#endif //AMBIENT_THERMISTOR#ifdef VOLT_PWR_PINextern int current_voltage_raw_pwr;#endif //VOLT_PWR_PIN#ifdef VOLT_BED_PINextern int current_voltage_raw_bed;#endif //VOLT_BED_PINuint16_t dcode_9_ADC_val(uint8_t i){	switch (i)	{	case 0: return current_temperature_raw[0];	case 1: return 0;	case 2: return current_temperature_bed_raw;	case 3: return current_temperature_raw_pinda;#ifdef VOLT_PWR_PIN	case 4: return current_voltage_raw_pwr;#endif //VOLT_PWR_PIN#ifdef AMBIENT_THERMISTOR	case 5: return current_temperature_raw_ambient;#endif //AMBIENT_THERMISTOR#ifdef VOLT_BED_PIN	case 6: return current_voltage_raw_bed;#endif //VOLT_BED_PIN	}	return 0;}void dcode_9(){	printf_P(PSTR("D9 - Read/Write ADC\n"));	if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0))	{		for (uint8_t i = 0; i < ADC_CHAN_CNT; i++)			printf_P(PSTR("\tADC%d=%4d\t(%S)\n"), i, dcode_9_ADC_val(i) >> 4, dcode_9_ADC_name(i));	}	else	{		uint8_t index = 0xff;		if (code_seen('I')) // index (index of used channel, not avr channel index)			index = code_value();		if (index < ADC_CHAN_CNT)		{			if (code_seen('V')) // value to be written as simulated			{				adc_sim_mask |= (1 << index);				adc_values[index] = (((int)code_value()) << 4);				printf_P(PSTR("ADC%d=%4d\n"), index, adc_values[index] >> 4);			}		}	}}    /*!    ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>    */void dcode_10(){//Tell the printer that XYZ calibration went OK	LOG("D10 - XYZ calibration = OK\n");	calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); }    /*!    ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>    Writes the current time in the log file.    */void dcode_12(){//Time	LOG("D12 - Time\n");}#ifdef HEATBED_ANALYSIS    /*!    ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>    This command will log data to SD card file "mesh.txt".    #### Usage            D80 [ E | F | G | H | I | J ]        #### Parameters    - `E` - Dimension X (default 40)    - `F` - Dimention Y (default 40)    - `G` - Points X (default 40)    - `H` - Points Y (default 40)    - `I` - Offset X (default 74)    - `J` - Offset Y (default 34)  */void dcode_80(){	float dimension_x = 40;	float dimension_y = 40;	int points_x = 40;	int points_y = 40;	float offset_x = 74;	float offset_y = 33;	if (code_seen('E')) dimension_x = code_value();	if (code_seen('F')) dimension_y = code_value();	if (code_seen('G')) {points_x = code_value(); }	if (code_seen('H')) {points_y = code_value(); }	if (code_seen('I')) {offset_x = code_value(); }	if (code_seen('J')) {offset_y = code_value(); }	printf_P(PSTR("DIM X: %f\n"), dimension_x);	printf_P(PSTR("DIM Y: %f\n"), dimension_y);	printf_P(PSTR("POINTS X: %d\n"), points_x);	printf_P(PSTR("POINTS Y: %d\n"), points_y);	printf_P(PSTR("OFFSET X: %f\n"), offset_x);	printf_P(PSTR("OFFSET Y: %f\n"), offset_y);		bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);}    /*!    ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>    This command will log data to SD card file "wldsd.txt".    #### Usage            D81 [ E | F | G | H | I | J ]        #### Parameters    - `E` - Dimension X (default 40)    - `F` - Dimention Y (default 40)    - `G` - Points X (default 40)    - `H` - Points Y (default 40)    - `I` - Offset X (default 74)    - `J` - Offset Y (default 34)  */void dcode_81(){	float dimension_x = 40;	float dimension_y = 40;	int points_x = 40;	int points_y = 40;	float offset_x = 74;	float offset_y = 33;	if (code_seen('E')) dimension_x = code_value();	if (code_seen('F')) dimension_y = code_value();	if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }	if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }	if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }	if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }		bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);	}#endif //HEATBED_ANALYSIS    /*!    ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>    */void dcode_106(){	for (int i = 255; i > 0; i = i - 5) {		fanSpeed = i;		//delay_keep_alive(2000);		for (int j = 0; j < 100; j++) {			delay_keep_alive(100);			}			printf_P(_N("%d: %d\n"), i, fan_speed[1]);	}}#ifdef TMC2130#include "planner.h"#include "tmc2130.h"extern void st_synchronize();    /*!    ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>    @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.        #### Usage            D2130 [ Axis | Command | Subcommand | Value ]        #### Parameters    - Axis      - `X` - X stepper driver      - `Y` - Y stepper driver      - `Z` - Z stepper driver      - `E` - Extruder stepper driver    - Commands      - `0`   - Current off      - `1`   - Current on      - `+`   - Single step      - `-`   - Single step oposite direction      - `NNN` - Value sereval steps      - `?`   - Read register      - Subcommands for read register        - `mres`     - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'        - `step`     - Step        - `mscnt`    - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'        - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'        - `wave`     - Microstep linearity compensation curve      - `!`   - Set register      - Subcommands for set register        - `mres`     - Micro step resolution        - `step`     - Step        - `wave`     - Microstep linearity compensation curve        - Values for set register          - `0, 180 --> 250` - Off          - `0.9 --> 1.25`   - Valid values (recommended is 1.1)      - `@`   - Home calibrate axis        Examples:                D2130E?wave            Print extruder microstep linearity compensation curve                D2130E!wave0            Disable extruder linearity compensation curve, (sine curve is used)                D2130E!wave220            (sin(x))^1.1 extruder microstep compensation curve used        Notes:      For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf    *	*/void dcode_2130(){	printf_P(PSTR("D2130 - TMC2130\n"));	uint8_t axis = 0xff;	switch (strchr_pointer[1+4])	{	case 'X': axis = X_AXIS; break;	case 'Y': axis = Y_AXIS; break;	case 'Z': axis = Z_AXIS; break;	case 'E': axis = E_AXIS; break;	}	if (axis != 0xff)	{		char ch_axis = strchr_pointer[1+4];		if (strchr_pointer[1+5] == '0') { tmc2130_set_pwr(axis, 0); }		else if (strchr_pointer[1+5] == '1') { tmc2130_set_pwr(axis, 1); }		else if (strchr_pointer[1+5] == '+')		{			if (strchr_pointer[1+6] == 0)			{				tmc2130_set_dir(axis, 0);				tmc2130_do_step(axis);			}			else			{				uint8_t steps = atoi(strchr_pointer + 1 + 6);				tmc2130_do_steps(axis, steps, 0, 1000);			}		}		else if (strchr_pointer[1+5] == '-')		{			if (strchr_pointer[1+6] == 0)			{				tmc2130_set_dir(axis, 1);				tmc2130_do_step(axis);			}			else			{				uint8_t steps = atoi(strchr_pointer + 1 + 6);				tmc2130_do_steps(axis, steps, 1, 1000);			}		}		else if (strchr_pointer[1+5] == '?')		{			if (strcmp(strchr_pointer + 7, "mres") == 0) printf_P(PSTR("%c mres=%d\n"), ch_axis, tmc2130_mres[axis]);			else if (strcmp(strchr_pointer + 7, "step") == 0) printf_P(PSTR("%c step=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis) >> tmc2130_mres[axis]);			else if (strcmp(strchr_pointer + 7, "mscnt") == 0) printf_P(PSTR("%c MSCNT=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis));			else if (strcmp(strchr_pointer + 7, "mscuract") == 0)			{				uint32_t val = tmc2130_rd_MSCURACT(axis);				int curA = (val & 0xff);				int curB = ((val >> 16) & 0xff);				if ((val << 7) & 0x8000) curA -= 256;				if ((val >> 9) & 0x8000) curB -= 256;				printf_P(PSTR("%c MSCURACT=0x%08lx A=%d B=%d\n"), ch_axis, val, curA, curB);			}			else if (strcmp(strchr_pointer + 7, "wave") == 0)			{				tmc2130_get_wave(axis, 0, stdout);			}		}		else if (strchr_pointer[1+5] == '!')		{			if (strncmp(strchr_pointer + 7, "step", 4) == 0)			{				uint8_t step = atoi(strchr_pointer + 11);				uint16_t res = tmc2130_get_res(axis);				tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);			}			else if (strncmp(strchr_pointer + 7, "mres", 4) == 0)			{				uint8_t mres = strchr_pointer[11] - '0';				if (mres <= 8)				{					st_synchronize();					uint16_t res = tmc2130_get_res(axis);					uint16_t res_new = tmc2130_mres2usteps(mres);					tmc2130_set_res(axis, res_new);					if (res_new > res)						cs.axis_steps_per_unit[axis] *= (res_new / res);					else						cs.axis_steps_per_unit[axis] /= (res / res_new);				}			}			else if (strncmp(strchr_pointer + 7, "wave", 4) == 0)			{				uint8_t fac1000 = atoi(strchr_pointer + 11) & 0xffff;				if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0;				if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX;				tmc2130_set_wave(axis, 247, fac1000);				tmc2130_wave_fac[axis] = fac1000;			}		}		else if (strchr_pointer[1+5] == '@')		{			tmc2130_home_calibrate(axis);		}	}}#endif //TMC2130#ifdef PAT9125    /*!    ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>    #### Usage            D9125 [ ? | ! | R | X | Y | L ]        #### Parameters    - `?` - Print values    - `!` - Print values    - `R` - Resolution. Not active in code    - `X` - X values    - `Y` - Y values    - `L` - Activate filament sensor log    */void dcode_9125(){	LOG("D9125 - PAT9125\n");	if ((strchr_pointer[1+4] == '?') || (strchr_pointer[1+4] == 0))	{//		printf("res_x=%d res_y=%d x=%d y=%d b=%d s=%d\n", pat9125_xres, pat9125_yres, pat9125_x, pat9125_y, pat9125_b, pat9125_s);		printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s);		return;	}	if (strchr_pointer[1+4] == '!')	{		pat9125_update();		printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s);		return;	}/*	if (code_seen('R'))	{		unsigned char res = (int)code_value();		LOG("pat9125_init(xres=yres=%d)=%d\n", res, pat9125_init(res, res));	}*/	if (code_seen('X'))	{		pat9125_x = (int)code_value();		LOG("pat9125_x=%d\n", pat9125_x);	}	if (code_seen('Y'))	{		pat9125_y = (int)code_value();		LOG("pat9125_y=%d\n", pat9125_y);	}#ifdef DEBUG_FSENSOR_LOG	if (code_seen('L'))	{		fsensor_log = (int)code_value();		LOG("fsensor_log=%d\n", fsensor_log);	}#endif //DEBUG_FSENSOR_LOG}#endif //PAT9125#endif //DEBUG_DCODES
 |