fsensor.cpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "planner.h"
  8. #include "fastio.h"
  9. #include "io_atmega2560.h"
  10. #include "cmdqueue.h"
  11. #include "ultralcd.h"
  12. #include "ConfigurationStore.h"
  13. #include "mmu.h"
  14. //! @name Basic parameters
  15. //! @{
  16. #define FSENSOR_CHUNK_LEN 0.64F //!< filament sensor chunk length 0.64mm
  17. #define FSENSOR_ERR_MAX 17 //!< filament sensor maximum error count for runout detection
  18. //! @}
  19. //! @name Optical quality measurement parameters
  20. //! @{
  21. #define FSENSOR_OQ_MAX_ES 6 //!< maximum error sum while loading (length ~64mm = 100chunks)
  22. #define FSENSOR_OQ_MAX_EM 2 //!< maximum error counter value while loading
  23. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd per chunk (applied to avg value)
  24. #define FSENSOR_OQ_MAX_YD 200 //!< maximum yd per chunk (applied to avg value)
  25. #define FSENSOR_OQ_MAX_PD 4 //!< maximum positive deviation (= yd_max/yd_avg)
  26. #define FSENSOR_OQ_MAX_ND 5 //!< maximum negative deviation (= yd_avg/yd_min)
  27. #define FSENSOR_OQ_MAX_SH 13 //!< maximum shutter value
  28. //! @}
  29. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  30. // PJ7 can not be used (does not have PinChangeInterrupt possibility)
  31. #define FSENSOR_INT_PIN 75 //!< filament sensor interrupt pin PJ4
  32. #define FSENSOR_INT_PIN_MASK 0x10 //!< filament sensor interrupt pin mask (bit4)
  33. #define FSENSOR_INT_PIN_PIN_REG PINJ // PIN register @ PJ4
  34. #define FSENSOR_INT_PIN_VECT PCINT1_vect // PinChange ISR @ PJ4
  35. #define FSENSOR_INT_PIN_PCMSK_REG PCMSK1 // PinChangeMaskRegister @ PJ4
  36. #define FSENSOR_INT_PIN_PCMSK_BIT PCINT13 // PinChange Interrupt / PinChange Enable Mask @ PJ4
  37. #define FSENSOR_INT_PIN_PCICR_BIT PCIE1 // PinChange Interrupt Enable / Flag @ PJ4
  38. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  39. uint8_t fsensor_int_pin_old = 0;
  40. int16_t fsensor_chunk_len = 0;
  41. //! enabled = initialized and sampled every chunk event
  42. bool fsensor_enabled = true;
  43. //! runout watching is done in fsensor_update (called from main loop)
  44. bool fsensor_watch_runout = true;
  45. //! not responding - is set if any communication error occurred during initialization or readout
  46. bool fsensor_not_responding = false;
  47. //! printing saved
  48. bool fsensor_printing_saved = false;
  49. //! enable/disable quality meassurement
  50. bool fsensor_oq_meassure_enabled = false;
  51. //! number of errors, updated in ISR
  52. uint8_t fsensor_err_cnt = 0;
  53. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  54. int16_t fsensor_st_cnt = 0;
  55. //! last dy value from pat9125 sensor (used in ISR)
  56. int16_t fsensor_dy_old = 0;
  57. //! log flag: 0=log disabled, 1=log enabled
  58. uint8_t fsensor_log = 1;
  59. //! @name filament autoload variables
  60. //! @{
  61. //! autoload feature enabled
  62. bool fsensor_autoload_enabled = true;
  63. //! autoload watching enable/disable flag
  64. bool fsensor_watch_autoload = false;
  65. //
  66. uint16_t fsensor_autoload_y;
  67. //
  68. uint8_t fsensor_autoload_c;
  69. //
  70. uint32_t fsensor_autoload_last_millis;
  71. //
  72. uint8_t fsensor_autoload_sum;
  73. //! @}
  74. //! @name filament optical quality measurement variables
  75. //! @{
  76. //! Measurement enable/disable flag
  77. bool fsensor_oq_meassure = false;
  78. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  79. uint8_t fsensor_oq_skipchunk;
  80. //! number of samples from start of measurement
  81. uint8_t fsensor_oq_samples;
  82. //! sum of steps in positive direction movements
  83. uint16_t fsensor_oq_st_sum;
  84. //! sum of deltas in positive direction movements
  85. uint16_t fsensor_oq_yd_sum;
  86. //! sum of errors during measurement
  87. uint16_t fsensor_oq_er_sum;
  88. //! max error counter value during measurement
  89. uint8_t fsensor_oq_er_max;
  90. //! minimum delta value
  91. int16_t fsensor_oq_yd_min;
  92. //! maximum delta value
  93. int16_t fsensor_oq_yd_max;
  94. //! sum of shutter value
  95. uint16_t fsensor_oq_sh_sum;
  96. //! @}
  97. void fsensor_stop_and_save_print(void)
  98. {
  99. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  100. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  101. }
  102. void fsensor_restore_print_and_continue(void)
  103. {
  104. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  105. fsensor_watch_runout = true;
  106. fsensor_err_cnt = 0;
  107. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  108. }
  109. void fsensor_init(void)
  110. {
  111. uint8_t pat9125 = pat9125_init();
  112. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  113. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  114. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  115. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  116. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  117. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * cs.axis_steps_per_unit[E_AXIS]);
  118. if (!pat9125)
  119. {
  120. fsensor = 0; //disable sensor
  121. fsensor_not_responding = true;
  122. }
  123. else
  124. fsensor_not_responding = false;
  125. if (fsensor)
  126. fsensor_enable();
  127. else
  128. fsensor_disable();
  129. printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n")));
  130. }
  131. bool fsensor_enable(void)
  132. {
  133. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  134. uint8_t pat9125 = pat9125_init();
  135. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  136. if (pat9125)
  137. fsensor_not_responding = false;
  138. else
  139. fsensor_not_responding = true;
  140. fsensor_enabled = pat9125 ? true : false;
  141. fsensor_watch_runout = true;
  142. fsensor_oq_meassure = false;
  143. fsensor_err_cnt = 0;
  144. fsensor_dy_old = 0;
  145. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  146. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  147. }
  148. else //filament sensor is FINDA, always enable
  149. {
  150. fsensor_enabled = true;
  151. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  152. FSensorStateMenu = 1;
  153. }
  154. return fsensor_enabled;
  155. }
  156. void fsensor_disable(void)
  157. {
  158. fsensor_enabled = false;
  159. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  160. FSensorStateMenu = 0;
  161. }
  162. void fsensor_autoload_set(bool State)
  163. {
  164. fsensor_autoload_enabled = State;
  165. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  166. }
  167. void pciSetup(byte pin)
  168. {
  169. // !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins
  170. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  171. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  172. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  173. }
  174. void fsensor_autoload_check_start(void)
  175. {
  176. // puts_P(_N("fsensor_autoload_check_start\n"));
  177. if (!fsensor_enabled) return;
  178. if (!fsensor_autoload_enabled) return;
  179. if (fsensor_watch_autoload) return;
  180. if (!pat9125_update_y()) //update sensor
  181. {
  182. fsensor_disable();
  183. fsensor_not_responding = true;
  184. fsensor_watch_autoload = false;
  185. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  186. return;
  187. }
  188. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  189. fsensor_autoload_y = pat9125_y; //save current y value
  190. fsensor_autoload_c = 0; //reset number of changes counter
  191. fsensor_autoload_sum = 0;
  192. fsensor_autoload_last_millis = millis();
  193. fsensor_watch_runout = false;
  194. fsensor_watch_autoload = true;
  195. fsensor_err_cnt = 0;
  196. }
  197. void fsensor_autoload_check_stop(void)
  198. {
  199. // puts_P(_N("fsensor_autoload_check_stop\n"));
  200. if (!fsensor_enabled) return;
  201. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  202. if (!fsensor_autoload_enabled) return;
  203. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  204. if (!fsensor_watch_autoload) return;
  205. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  206. fsensor_autoload_sum = 0;
  207. fsensor_watch_autoload = false;
  208. fsensor_watch_runout = true;
  209. fsensor_err_cnt = 0;
  210. }
  211. bool fsensor_check_autoload(void)
  212. {
  213. if (!fsensor_enabled) return false;
  214. if (!fsensor_autoload_enabled) return false;
  215. if (!fsensor_watch_autoload)
  216. {
  217. fsensor_autoload_check_start();
  218. return false;
  219. }
  220. #if 0
  221. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  222. #endif
  223. if ((millis() - fsensor_autoload_last_millis) < 25) return false;
  224. fsensor_autoload_last_millis = millis();
  225. if (!pat9125_update_y()) //update sensor
  226. {
  227. fsensor_disable();
  228. fsensor_not_responding = true;
  229. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  230. return false;
  231. }
  232. int16_t dy = pat9125_y - fsensor_autoload_y;
  233. if (dy) //? dy value is nonzero
  234. {
  235. if (dy > 0) //? delta-y value is positive (inserting)
  236. {
  237. fsensor_autoload_sum += dy;
  238. fsensor_autoload_c += 3; //increment change counter by 3
  239. }
  240. else if (fsensor_autoload_c > 1)
  241. fsensor_autoload_c -= 2; //decrement change counter by 2
  242. fsensor_autoload_y = pat9125_y; //save current value
  243. }
  244. else if (fsensor_autoload_c > 0)
  245. fsensor_autoload_c--;
  246. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  247. #if 0
  248. puts_P(_N("fsensor_check_autoload\n"));
  249. if (fsensor_autoload_c != fsensor_autoload_c_old)
  250. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  251. #endif
  252. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  253. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  254. {
  255. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  256. return true;
  257. }
  258. return false;
  259. }
  260. void fsensor_oq_meassure_set(bool State)
  261. {
  262. fsensor_oq_meassure_enabled = State;
  263. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  264. }
  265. void fsensor_oq_meassure_start(uint8_t skip)
  266. {
  267. if (!fsensor_enabled) return;
  268. if (!fsensor_oq_meassure_enabled) return;
  269. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  270. fsensor_oq_skipchunk = skip;
  271. fsensor_oq_samples = 0;
  272. fsensor_oq_st_sum = 0;
  273. fsensor_oq_yd_sum = 0;
  274. fsensor_oq_er_sum = 0;
  275. fsensor_oq_er_max = 0;
  276. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  277. fsensor_oq_yd_max = 0;
  278. fsensor_oq_sh_sum = 0;
  279. pat9125_update();
  280. pat9125_y = 0;
  281. fsensor_watch_runout = false;
  282. fsensor_oq_meassure = true;
  283. }
  284. void fsensor_oq_meassure_stop(void)
  285. {
  286. if (!fsensor_enabled) return;
  287. if (!fsensor_oq_meassure_enabled) return;
  288. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  289. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  290. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  291. fsensor_oq_meassure = false;
  292. fsensor_watch_runout = true;
  293. fsensor_err_cnt = 0;
  294. }
  295. const char _OK[] PROGMEM = "OK";
  296. const char _NG[] PROGMEM = "NG!";
  297. bool fsensor_oq_result(void)
  298. {
  299. if (!fsensor_enabled) return true;
  300. if (!fsensor_oq_meassure_enabled) return true;
  301. printf_P(_N("fsensor_oq_result\n"));
  302. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  303. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  304. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  305. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  306. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  307. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  308. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  309. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  310. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  311. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  312. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  313. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  314. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  315. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  316. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  317. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  318. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  319. if (yd_qua >= 8) res_sh_avg = true;
  320. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  321. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  322. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  323. return res;
  324. }
  325. ISR(FSENSOR_INT_PIN_VECT)
  326. {
  327. if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
  328. fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
  329. static bool _lock = false;
  330. if (_lock) return;
  331. _lock = true;
  332. int st_cnt = fsensor_st_cnt;
  333. fsensor_st_cnt = 0;
  334. sei();
  335. uint8_t old_err_cnt = fsensor_err_cnt;
  336. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  337. if (!pat9125_res)
  338. {
  339. fsensor_disable();
  340. fsensor_not_responding = true;
  341. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  342. }
  343. if (st_cnt != 0)
  344. { //movement
  345. if (st_cnt > 0) //positive movement
  346. {
  347. if (pat9125_y < 0)
  348. {
  349. if (fsensor_err_cnt)
  350. fsensor_err_cnt += 2;
  351. else
  352. fsensor_err_cnt++;
  353. }
  354. else if (pat9125_y > 0)
  355. {
  356. if (fsensor_err_cnt)
  357. fsensor_err_cnt--;
  358. }
  359. else //(pat9125_y == 0)
  360. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  361. fsensor_err_cnt++;
  362. if (fsensor_oq_meassure)
  363. {
  364. if (fsensor_oq_skipchunk)
  365. {
  366. fsensor_oq_skipchunk--;
  367. fsensor_err_cnt = 0;
  368. }
  369. else
  370. {
  371. if (st_cnt == fsensor_chunk_len)
  372. {
  373. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  374. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  375. }
  376. fsensor_oq_samples++;
  377. fsensor_oq_st_sum += st_cnt;
  378. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  379. if (fsensor_err_cnt > old_err_cnt)
  380. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  381. if (fsensor_oq_er_max < fsensor_err_cnt)
  382. fsensor_oq_er_max = fsensor_err_cnt;
  383. fsensor_oq_sh_sum += pat9125_s;
  384. }
  385. }
  386. }
  387. else //negative movement
  388. {
  389. }
  390. }
  391. else
  392. { //no movement
  393. }
  394. #ifdef DEBUG_FSENSOR_LOG
  395. if (fsensor_log)
  396. {
  397. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  398. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  399. }
  400. #endif //DEBUG_FSENSOR_LOG
  401. fsensor_dy_old = pat9125_y;
  402. pat9125_y = 0;
  403. _lock = false;
  404. return;
  405. }
  406. void fsensor_st_block_begin(block_t* bl)
  407. {
  408. if (!fsensor_enabled) return;
  409. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  410. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  411. {
  412. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  413. if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
  414. else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
  415. }
  416. }
  417. void fsensor_st_block_chunk(block_t* bl, int cnt)
  418. {
  419. if (!fsensor_enabled) return;
  420. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  421. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  422. {
  423. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  424. if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
  425. else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
  426. }
  427. }
  428. //! @brief filament sensor update (perform M600 on filament runout)
  429. //!
  430. //! Works only if filament sensor is enabled.
  431. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  432. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  433. void fsensor_update(void)
  434. {
  435. if (fsensor_enabled && fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  436. {
  437. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  438. fsensor_autoload_enabled = false;
  439. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  440. fsensor_oq_meassure_enabled = true;
  441. fsensor_stop_and_save_print();
  442. fsensor_err_cnt = 0;
  443. fsensor_oq_meassure_start(0);
  444. enquecommand_front_P((PSTR("G1 E-3 F200")));
  445. process_commands();
  446. KEEPALIVE_STATE(IN_HANDLER);
  447. cmdqueue_pop_front();
  448. st_synchronize();
  449. enquecommand_front_P((PSTR("G1 E3 F200")));
  450. process_commands();
  451. KEEPALIVE_STATE(IN_HANDLER);
  452. cmdqueue_pop_front();
  453. st_synchronize();
  454. uint8_t err_cnt = fsensor_err_cnt;
  455. fsensor_oq_meassure_stop();
  456. bool err = false;
  457. err |= (err_cnt > 1);
  458. err |= (fsensor_oq_er_sum > 2);
  459. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  460. if (!err)
  461. {
  462. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  463. fsensor_restore_print_and_continue();
  464. }
  465. else
  466. {
  467. printf_P(PSTR("fsensor_update - M600\n"));
  468. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  469. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  470. enquecommand_front_P(PSTR("FSENSOR_RECOVER"));
  471. enquecommand_front_P((PSTR("M600")));
  472. fsensor_watch_runout = false;
  473. }
  474. fsensor_autoload_enabled = autoload_enabled_tmp;
  475. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  476. }
  477. }
  478. void fsensor_setup_interrupt(void)
  479. {
  480. pinMode(FSENSOR_INT_PIN, OUTPUT);
  481. digitalWrite(FSENSOR_INT_PIN, LOW);
  482. fsensor_int_pin_old = 0;
  483. //pciSetup(FSENSOR_INT_PIN);
  484. // !!! "pciSetup()" does not provide the correct results for some MCU pins
  485. // so interrupt registers settings:
  486. FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)
  487. PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins)
  488. PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins)
  489. }