mmu.cpp 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. #include "fsensor.h"
  10. #include "cardreader.h"
  11. #include "ultralcd.h"
  12. #include "sound.h"
  13. #include "printers.h"
  14. #include <avr/pgmspace.h>
  15. #define CHECK_FINDA ((IS_SD_PRINTING || is_usb_printing) && (mcode_in_progress != 600) && !saved_printing && e_active())
  16. #define MMU_TODELAY 100
  17. #define MMU_TIMEOUT 10
  18. #define MMU_CMD_TIMEOUT 300000ul //5min timeout for mmu commands (except P0)
  19. #define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds
  20. #ifdef MMU_HWRESET
  21. #define MMU_RST_PIN 76
  22. #endif //MMU_HWRESET
  23. bool mmu_enabled = false;
  24. bool mmu_ready = false;
  25. static int8_t mmu_state = 0;
  26. uint8_t mmu_cmd = 0;
  27. uint8_t mmu_extruder = 0;
  28. //! This variable probably has no meaning and is planed to be removed
  29. uint8_t tmp_extruder = 0;
  30. int8_t mmu_finda = -1;
  31. int16_t mmu_version = -1;
  32. int16_t mmu_buildnr = -1;
  33. uint32_t mmu_last_request = 0;
  34. uint32_t mmu_last_response = 0;
  35. //clear rx buffer
  36. void mmu_clr_rx_buf(void)
  37. {
  38. while (fgetc(uart2io) >= 0);
  39. }
  40. //send command - puts
  41. int mmu_puts_P(const char* str)
  42. {
  43. mmu_clr_rx_buf(); //clear rx buffer
  44. int r = fputs_P(str, uart2io); //send command
  45. mmu_last_request = millis();
  46. return r;
  47. }
  48. //send command - printf
  49. int mmu_printf_P(const char* format, ...)
  50. {
  51. va_list args;
  52. va_start(args, format);
  53. mmu_clr_rx_buf(); //clear rx buffer
  54. int r = vfprintf_P(uart2io, format, args); //send command
  55. va_end(args);
  56. mmu_last_request = millis();
  57. return r;
  58. }
  59. //check 'ok' response
  60. int8_t mmu_rx_ok(void)
  61. {
  62. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  63. if (res == 1) mmu_last_response = millis();
  64. return res;
  65. }
  66. //check 'start' response
  67. int8_t mmu_rx_start(void)
  68. {
  69. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  70. if (res == 1) mmu_last_response = millis();
  71. return res;
  72. }
  73. //initialize mmu2 unit - first part - should be done at begining of startup process
  74. void mmu_init(void)
  75. {
  76. #ifdef MMU_HWRESET
  77. digitalWrite(MMU_RST_PIN, HIGH);
  78. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  79. #endif //MMU_HWRESET
  80. uart2_init(); //init uart2
  81. _delay_ms(10); //wait 10ms for sure
  82. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  83. mmu_state = -1;
  84. }
  85. //mmu main loop - state machine processing
  86. void mmu_loop(void)
  87. {
  88. int filament = 0;
  89. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  90. switch (mmu_state)
  91. {
  92. case 0:
  93. return;
  94. case -1:
  95. if (mmu_rx_start() > 0)
  96. {
  97. #ifdef MMU_DEBUG
  98. puts_P(PSTR("MMU => 'start'"));
  99. puts_P(PSTR("MMU <= 'S1'"));
  100. #endif //MMU_DEBUG
  101. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  102. mmu_state = -2;
  103. }
  104. else if (millis() > 30000) //30sec after reset disable mmu
  105. {
  106. puts_P(PSTR("MMU not responding - DISABLED"));
  107. mmu_state = 0;
  108. }
  109. return;
  110. case -2:
  111. if (mmu_rx_ok() > 0)
  112. {
  113. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  114. #ifdef MMU_DEBUG
  115. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  116. puts_P(PSTR("MMU <= 'S2'"));
  117. #endif //MMU_DEBUG
  118. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  119. mmu_state = -3;
  120. }
  121. return;
  122. case -3:
  123. if (mmu_rx_ok() > 0)
  124. {
  125. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  126. #ifdef MMU_DEBUG
  127. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  128. #endif //MMU_DEBUG
  129. bool version_valid = mmu_check_version();
  130. if (!version_valid) mmu_show_warning();
  131. else puts_P(PSTR("MMU version valid"));
  132. if ((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3_SNMM))
  133. {
  134. #ifdef MMU_DEBUG
  135. puts_P(PSTR("MMU <= 'P0'"));
  136. #endif //MMU_DEBUG
  137. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  138. mmu_state = -4;
  139. }
  140. else
  141. {
  142. #ifdef MMU_DEBUG
  143. puts_P(PSTR("MMU <= 'M1'"));
  144. #endif //MMU_DEBUG
  145. mmu_puts_P(PSTR("M1\n")); //set mmu mode to stealth
  146. mmu_state = -5;
  147. }
  148. }
  149. return;
  150. case -5:
  151. if (mmu_rx_ok() > 0)
  152. {
  153. #ifdef MMU_DEBUG
  154. puts_P(PSTR("MMU <= 'P0'"));
  155. #endif //MMU_DEBUG
  156. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  157. mmu_state = -4;
  158. }
  159. return;
  160. case -4:
  161. if (mmu_rx_ok() > 0)
  162. {
  163. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  164. #ifdef MMU_DEBUG
  165. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  166. #endif //MMU_DEBUG
  167. puts_P(PSTR("MMU - ENABLED"));
  168. mmu_enabled = true;
  169. mmu_state = 1;
  170. }
  171. return;
  172. case 1:
  173. if (mmu_cmd) //command request ?
  174. {
  175. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  176. {
  177. filament = mmu_cmd - MMU_CMD_T0;
  178. #ifdef MMU_DEBUG
  179. printf_P(PSTR("MMU <= 'T%d'\n"), filament);
  180. #endif //MMU_DEBUG
  181. mmu_printf_P(PSTR("T%d\n"), filament);
  182. mmu_state = 3; // wait for response
  183. }
  184. else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
  185. {
  186. filament = mmu_cmd - MMU_CMD_L0;
  187. #ifdef MMU_DEBUG
  188. printf_P(PSTR("MMU <= 'L%d'\n"), filament);
  189. #endif //MMU_DEBUG
  190. mmu_printf_P(PSTR("L%d\n"), filament);
  191. mmu_state = 3; // wait for response
  192. }
  193. else if (mmu_cmd == MMU_CMD_C0)
  194. {
  195. #ifdef MMU_DEBUG
  196. printf_P(PSTR("MMU <= 'C0'\n"));
  197. #endif //MMU_DEBUG
  198. mmu_puts_P(PSTR("C0\n")); //send 'continue loading'
  199. mmu_state = 3;
  200. }
  201. else if (mmu_cmd == MMU_CMD_U0)
  202. {
  203. #ifdef MMU_DEBUG
  204. printf_P(PSTR("MMU <= 'U0'\n"));
  205. #endif //MMU_DEBUG
  206. mmu_puts_P(PSTR("U0\n")); //send 'unload current filament'
  207. mmu_state = 3;
  208. }
  209. else if ((mmu_cmd >= MMU_CMD_E0) && (mmu_cmd <= MMU_CMD_E4))
  210. {
  211. int filament = mmu_cmd - MMU_CMD_E0;
  212. #ifdef MMU_DEBUG
  213. printf_P(PSTR("MMU <= 'E%d'\n"), filament);
  214. #endif //MMU_DEBUG
  215. mmu_printf_P(PSTR("E%d\n"), filament); //send eject filament
  216. mmu_state = 3; // wait for response
  217. }
  218. else if (mmu_cmd == MMU_CMD_R0)
  219. {
  220. #ifdef MMU_DEBUG
  221. printf_P(PSTR("MMU <= 'R0'\n"));
  222. #endif //MMU_DEBUG
  223. mmu_puts_P(PSTR("R0\n")); //send recover after eject
  224. mmu_state = 3; // wait for response
  225. }
  226. mmu_cmd = 0;
  227. }
  228. else if ((mmu_last_response + 300) < millis()) //request every 300ms
  229. {
  230. #ifdef MMU_DEBUG
  231. puts_P(PSTR("MMU <= 'P0'"));
  232. #endif //MMU_DEBUG
  233. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  234. mmu_state = 2;
  235. }
  236. return;
  237. case 2: //response to command P0
  238. if (mmu_rx_ok() > 0)
  239. {
  240. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  241. #ifdef MMU_DEBUG
  242. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  243. #endif //MMU_DEBUG
  244. //printf_P(PSTR("Eact: %d\n"), int(e_active()));
  245. if (!mmu_finda && CHECK_FINDA && fsensor_enabled) {
  246. fsensor_stop_and_save_print();
  247. enquecommand_front_P(PSTR("FSENSOR_RECOVER")); //then recover
  248. if (lcd_autoDepleteEnabled()) enquecommand_front_P(PSTR("M600 AUTO")); //save print and run M600 command
  249. else enquecommand_front_P(PSTR("M600")); //save print and run M600 command
  250. }
  251. mmu_state = 1;
  252. if (mmu_cmd == 0)
  253. mmu_ready = true;
  254. }
  255. else if ((mmu_last_request + MMU_P0_TIMEOUT) < millis())
  256. { //resend request after timeout (30s)
  257. mmu_state = 1;
  258. }
  259. return;
  260. case 3: //response to mmu commands
  261. if (mmu_rx_ok() > 0)
  262. {
  263. #ifdef MMU_DEBUG
  264. printf_P(PSTR("MMU => 'ok'\n"));
  265. #endif //MMU_DEBUG
  266. mmu_ready = true;
  267. mmu_state = 1;
  268. }
  269. else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
  270. { //resend request after timeout (5 min)
  271. mmu_state = 1;
  272. }
  273. return;
  274. }
  275. }
  276. void mmu_reset(void)
  277. {
  278. #ifdef MMU_HWRESET //HW - pulse reset pin
  279. digitalWrite(MMU_RST_PIN, LOW);
  280. _delay_us(100);
  281. digitalWrite(MMU_RST_PIN, HIGH);
  282. #else //SW - send X0 command
  283. mmu_puts_P(PSTR("X0\n"));
  284. #endif
  285. }
  286. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  287. {
  288. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  289. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  290. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  291. while ((mmu_rx_ok() <= 0) && (--timeout))
  292. delay_keep_alive(MMU_TODELAY);
  293. return timeout?1:0;
  294. }
  295. void mmu_command(uint8_t cmd)
  296. {
  297. mmu_cmd = cmd;
  298. mmu_ready = false;
  299. }
  300. bool mmu_get_response(void)
  301. {
  302. // printf_P(PSTR("mmu_get_response - begin\n"));
  303. KEEPALIVE_STATE(IN_PROCESS);
  304. while (mmu_cmd != 0)
  305. {
  306. // mmu_loop();
  307. delay_keep_alive(100);
  308. }
  309. while (!mmu_ready)
  310. {
  311. // mmu_loop();
  312. if (mmu_state != 3)
  313. break;
  314. delay_keep_alive(100);
  315. }
  316. bool ret = mmu_ready;
  317. mmu_ready = false;
  318. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  319. return ret;
  320. /* //waits for "ok" from mmu
  321. //function returns true if "ok" was received
  322. //if timeout is set to true function return false if there is no "ok" received before timeout
  323. bool response = true;
  324. LongTimer mmu_get_reponse_timeout;
  325. KEEPALIVE_STATE(IN_PROCESS);
  326. mmu_get_reponse_timeout.start();
  327. while (mmu_rx_ok() <= 0)
  328. {
  329. delay_keep_alive(100);
  330. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  331. { //5 minutes timeout
  332. response = false;
  333. break;
  334. }
  335. }
  336. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  337. return response;*/
  338. }
  339. void manage_response(bool move_axes, bool turn_off_nozzle)
  340. {
  341. bool response = false;
  342. mmu_print_saved = false;
  343. bool lcd_update_was_enabled = false;
  344. float hotend_temp_bckp = degTargetHotend(active_extruder);
  345. float z_position_bckp = current_position[Z_AXIS];
  346. float x_position_bckp = current_position[X_AXIS];
  347. float y_position_bckp = current_position[Y_AXIS];
  348. uint8_t screen = 0; //used for showing multiscreen messages
  349. while(!response)
  350. {
  351. response = mmu_get_response(); //wait for "ok" from mmu
  352. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  353. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  354. if (lcd_update_enabled) {
  355. lcd_update_was_enabled = true;
  356. lcd_update_enable(false);
  357. }
  358. st_synchronize();
  359. mmu_print_saved = true;
  360. printf_P(PSTR("MMU not responding\n"));
  361. hotend_temp_bckp = degTargetHotend(active_extruder);
  362. if (move_axes) {
  363. z_position_bckp = current_position[Z_AXIS];
  364. x_position_bckp = current_position[X_AXIS];
  365. y_position_bckp = current_position[Y_AXIS];
  366. //lift z
  367. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  368. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  369. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  370. st_synchronize();
  371. //Move XY to side
  372. current_position[X_AXIS] = X_PAUSE_POS;
  373. current_position[Y_AXIS] = Y_PAUSE_POS;
  374. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  375. st_synchronize();
  376. }
  377. if (turn_off_nozzle) {
  378. //set nozzle target temperature to 0
  379. setAllTargetHotends(0);
  380. }
  381. }
  382. //first three lines are used for printing multiscreen message; last line contains measured and target nozzle temperature
  383. if (screen == 0) { //screen 0
  384. lcd_display_message_fullscreen_P(_i("MMU needs user attention."));
  385. screen++;
  386. }
  387. else { //screen 1
  388. if((degTargetHotend(active_extruder) == 0) && turn_off_nozzle) lcd_display_message_fullscreen_P(_i("Press the knob to resume nozzle temperature."));
  389. else lcd_display_message_fullscreen_P(_i("Fix the issue and then press button on MMU unit."));
  390. screen=0;
  391. }
  392. lcd_set_degree();
  393. lcd_set_cursor(0, 4); //line 4
  394. //Print the hotend temperature (9 chars total) and fill rest of the line with space
  395. int chars = lcd_printf_P(_N("%c%3d/%d%c"), LCD_STR_THERMOMETER[0],(int)(degHotend(active_extruder) + 0.5), (int)(degTargetHotend(active_extruder) + 0.5), LCD_STR_DEGREE[0]);
  396. lcd_space(9 - chars);
  397. //5 seconds delay
  398. for (uint8_t i = 0; i < 50; i++) {
  399. if (lcd_clicked()) {
  400. setTargetHotend(hotend_temp_bckp, active_extruder);
  401. break;
  402. }
  403. delay_keep_alive(100);
  404. }
  405. }
  406. else if (mmu_print_saved) {
  407. printf_P(PSTR("MMU starts responding\n"));
  408. if (turn_off_nozzle)
  409. {
  410. lcd_clear();
  411. setTargetHotend(hotend_temp_bckp, active_extruder);
  412. if (((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)) {
  413. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature..."));
  414. delay_keep_alive(3000);
  415. }
  416. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)
  417. {
  418. delay_keep_alive(1000);
  419. lcd_wait_for_heater();
  420. }
  421. }
  422. if (move_axes) {
  423. lcd_clear();
  424. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming position..."));
  425. current_position[X_AXIS] = x_position_bckp;
  426. current_position[Y_AXIS] = y_position_bckp;
  427. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  428. st_synchronize();
  429. current_position[Z_AXIS] = z_position_bckp;
  430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  431. st_synchronize();
  432. }
  433. else {
  434. lcd_clear();
  435. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  436. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  437. }
  438. }
  439. }
  440. if (lcd_update_was_enabled) lcd_update_enable(true);
  441. }
  442. //! @brief load filament to nozzle of multimaterial printer
  443. //!
  444. //! This function is used only only after T? (user select filament) and M600 (change filament).
  445. //! It is not used after T0 .. T4 command (select filament), in such case, gcode is responsible for loading
  446. //! filament to nozzle.
  447. //!
  448. void mmu_load_to_nozzle()
  449. {
  450. st_synchronize();
  451. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  452. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  453. current_position[E_AXIS] += 7.2f;
  454. float feedrate = 562;
  455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  456. st_synchronize();
  457. current_position[E_AXIS] += 14.4f;
  458. feedrate = 871;
  459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  460. st_synchronize();
  461. current_position[E_AXIS] += 36.0f;
  462. feedrate = 1393;
  463. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  464. st_synchronize();
  465. current_position[E_AXIS] += 14.4f;
  466. feedrate = 871;
  467. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  468. st_synchronize();
  469. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  470. }
  471. void mmu_M600_wait_and_beep() {
  472. //Beep and wait for user to remove old filament and prepare new filament for load
  473. KEEPALIVE_STATE(PAUSED_FOR_USER);
  474. int counterBeep = 0;
  475. lcd_display_message_fullscreen_P(_i("Remove old filament and press the knob to start loading new filament."));
  476. bool bFirst=true;
  477. while (!lcd_clicked()){
  478. manage_heater();
  479. manage_inactivity(true);
  480. #if BEEPER > 0
  481. if (counterBeep == 500) {
  482. counterBeep = 0;
  483. }
  484. SET_OUTPUT(BEEPER);
  485. if (counterBeep == 0) {
  486. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  487. {
  488. bFirst=false;
  489. WRITE(BEEPER, HIGH);
  490. }
  491. }
  492. if (counterBeep == 20) {
  493. WRITE(BEEPER, LOW);
  494. }
  495. counterBeep++;
  496. #endif //BEEPER > 0
  497. delay_keep_alive(4);
  498. }
  499. WRITE(BEEPER, LOW);
  500. }
  501. void mmu_M600_load_filament(bool automatic)
  502. {
  503. //load filament for mmu v2
  504. tmp_extruder = mmu_extruder;
  505. if (!automatic) {
  506. #ifdef MMU_M600_SWITCH_EXTRUDER
  507. bool yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  508. if(yes) tmp_extruder = choose_extruder_menu();
  509. #endif //MMU_M600_SWITCH_EXTRUDER
  510. }
  511. else {
  512. tmp_extruder = (tmp_extruder+1)%5;
  513. }
  514. lcd_update_enable(false);
  515. lcd_clear();
  516. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  517. lcd_print(" ");
  518. lcd_print(tmp_extruder + 1);
  519. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  520. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  521. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  522. mmu_command(MMU_CMD_T0 + tmp_extruder);
  523. manage_response(false, true);
  524. mmu_command(MMU_CMD_C0);
  525. mmu_extruder = tmp_extruder; //filament change is finished
  526. mmu_load_to_nozzle();
  527. load_filament_final_feed();
  528. st_synchronize();
  529. }
  530. void extr_mov(float shift, float feed_rate)
  531. { //move extruder no matter what the current heater temperature is
  532. set_extrude_min_temp(.0);
  533. current_position[E_AXIS] += shift;
  534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  535. set_extrude_min_temp(EXTRUDE_MINTEMP);
  536. }
  537. void change_extr(int
  538. #ifdef SNMM
  539. extr
  540. #endif //SNMM
  541. ) { //switches multiplexer for extruders
  542. #ifdef SNMM
  543. st_synchronize();
  544. delay(100);
  545. disable_e0();
  546. disable_e1();
  547. disable_e2();
  548. mmu_extruder = extr;
  549. pinMode(E_MUX0_PIN, OUTPUT);
  550. pinMode(E_MUX1_PIN, OUTPUT);
  551. switch (extr) {
  552. case 1:
  553. WRITE(E_MUX0_PIN, HIGH);
  554. WRITE(E_MUX1_PIN, LOW);
  555. break;
  556. case 2:
  557. WRITE(E_MUX0_PIN, LOW);
  558. WRITE(E_MUX1_PIN, HIGH);
  559. break;
  560. case 3:
  561. WRITE(E_MUX0_PIN, HIGH);
  562. WRITE(E_MUX1_PIN, HIGH);
  563. break;
  564. default:
  565. WRITE(E_MUX0_PIN, LOW);
  566. WRITE(E_MUX1_PIN, LOW);
  567. break;
  568. }
  569. delay(100);
  570. #endif
  571. }
  572. int get_ext_nr()
  573. { //reads multiplexer input pins and return current extruder number (counted from 0)
  574. #ifndef SNMM
  575. return(mmu_extruder); //update needed
  576. #else
  577. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  578. #endif
  579. }
  580. void display_loading()
  581. {
  582. switch (mmu_extruder)
  583. {
  584. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  585. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  586. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  587. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  588. }
  589. }
  590. void extr_adj(int extruder) //loading filament for SNMM
  591. {
  592. #ifndef SNMM
  593. uint8_t cmd = MMU_CMD_L0 + extruder;
  594. if (cmd > MMU_CMD_L4)
  595. {
  596. printf_P(PSTR("Filament out of range %d \n"),extruder);
  597. return;
  598. }
  599. mmu_command(cmd);
  600. //show which filament is currently loaded
  601. lcd_update_enable(false);
  602. lcd_clear();
  603. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  604. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  605. //else lcd.print(" ");
  606. lcd_print(" ");
  607. lcd_print(extruder + 1);
  608. // get response
  609. manage_response(false, false);
  610. lcd_update_enable(true);
  611. //lcd_return_to_status();
  612. #else
  613. bool correct;
  614. max_feedrate[E_AXIS] =80;
  615. //max_feedrate[E_AXIS] = 50;
  616. START:
  617. lcd_clear();
  618. lcd_set_cursor(0, 0);
  619. switch (extruder) {
  620. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  621. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  622. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  623. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  624. }
  625. KEEPALIVE_STATE(PAUSED_FOR_USER);
  626. do{
  627. extr_mov(0.001,1000);
  628. delay_keep_alive(2);
  629. } while (!lcd_clicked());
  630. //delay_keep_alive(500);
  631. KEEPALIVE_STATE(IN_HANDLER);
  632. st_synchronize();
  633. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  634. //if (!correct) goto START;
  635. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  636. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  637. extr_mov(bowden_length[extruder], 500);
  638. lcd_clear();
  639. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  640. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  641. else lcd_print(" ");
  642. lcd_print(mmu_extruder + 1);
  643. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  644. st_synchronize();
  645. max_feedrate[E_AXIS] = 50;
  646. lcd_update_enable(true);
  647. lcd_return_to_status();
  648. lcdDrawUpdate = 2;
  649. #endif
  650. }
  651. struct E_step
  652. {
  653. float extrude; //!< extrude distance in mm
  654. float feed_rate; //!< feed rate in mm/s
  655. };
  656. static const E_step ramming_sequence[] PROGMEM =
  657. {
  658. {1.0, 1000.0/60},
  659. {1.0, 1500.0/60},
  660. {2.0, 2000.0/60},
  661. {1.5, 3000.0/60},
  662. {2.5, 4000.0/60},
  663. {-15.0, 5000.0/60},
  664. {-14.0, 1200.0/60},
  665. {-6.0, 600.0/60},
  666. {10.0, 700.0/60},
  667. {-10.0, 400.0/60},
  668. {-50.0, 2000.0/60},
  669. };
  670. //! @brief Unload sequence to optimize shape of the tip of the unloaded filament
  671. static void filament_ramming()
  672. {
  673. for(uint8_t i = 0; i < (sizeof(ramming_sequence)/sizeof(E_step));++i)
  674. {
  675. current_position[E_AXIS] += pgm_read_float(&(ramming_sequence[i].extrude));
  676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  677. current_position[E_AXIS], pgm_read_float(&(ramming_sequence[i].feed_rate)), active_extruder);
  678. st_synchronize();
  679. }
  680. }
  681. void extr_unload()
  682. { //unload just current filament for multimaterial printers
  683. #ifdef SNMM
  684. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  685. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  686. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  687. #endif
  688. if (degHotend0() > EXTRUDE_MINTEMP)
  689. {
  690. #ifndef SNMM
  691. st_synchronize();
  692. //show which filament is currently unloaded
  693. lcd_update_enable(false);
  694. lcd_clear();
  695. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  696. lcd_print(" ");
  697. lcd_print(mmu_extruder + 1);
  698. filament_ramming();
  699. mmu_command(MMU_CMD_U0);
  700. // get response
  701. manage_response(false, true);
  702. lcd_update_enable(true);
  703. #else //SNMM
  704. lcd_clear();
  705. lcd_display_message_fullscreen_P(PSTR(""));
  706. max_feedrate[E_AXIS] = 50;
  707. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  708. lcd_print(" ");
  709. lcd_print(mmu_extruder + 1);
  710. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  711. if (current_position[Z_AXIS] < 15) {
  712. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  713. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  714. }
  715. current_position[E_AXIS] += 10; //extrusion
  716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  717. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  718. if (current_temperature[0] < 230) { //PLA & all other filaments
  719. current_position[E_AXIS] += 5.4;
  720. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  721. current_position[E_AXIS] += 3.2;
  722. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  723. current_position[E_AXIS] += 3;
  724. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  725. }
  726. else { //ABS
  727. current_position[E_AXIS] += 3.1;
  728. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  729. current_position[E_AXIS] += 3.1;
  730. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  731. current_position[E_AXIS] += 4;
  732. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  733. /*current_position[X_AXIS] += 23; //delay
  734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  735. current_position[X_AXIS] -= 23; //delay
  736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  737. delay_keep_alive(4700);
  738. }
  739. max_feedrate[E_AXIS] = 80;
  740. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  741. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  742. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  744. st_synchronize();
  745. //st_current_init();
  746. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  747. else st_current_set(2, tmp_motor_loud[2]);
  748. lcd_update_enable(true);
  749. lcd_return_to_status();
  750. max_feedrate[E_AXIS] = 50;
  751. #endif //SNMM
  752. }
  753. else
  754. {
  755. show_preheat_nozzle_warning();
  756. }
  757. //lcd_return_to_status();
  758. }
  759. //wrapper functions for loading filament
  760. void extr_adj_0()
  761. {
  762. #ifndef SNMM
  763. enquecommand_P(PSTR("M701 E0"));
  764. #else
  765. change_extr(0);
  766. extr_adj(0);
  767. #endif
  768. }
  769. void extr_adj_1()
  770. {
  771. #ifndef SNMM
  772. enquecommand_P(PSTR("M701 E1"));
  773. #else
  774. change_extr(1);
  775. extr_adj(1);
  776. #endif
  777. }
  778. void extr_adj_2()
  779. {
  780. #ifndef SNMM
  781. enquecommand_P(PSTR("M701 E2"));
  782. #else
  783. change_extr(2);
  784. extr_adj(2);
  785. #endif
  786. }
  787. void extr_adj_3()
  788. {
  789. #ifndef SNMM
  790. enquecommand_P(PSTR("M701 E3"));
  791. #else
  792. change_extr(3);
  793. extr_adj(3);
  794. #endif
  795. }
  796. void extr_adj_4()
  797. {
  798. #ifndef SNMM
  799. enquecommand_P(PSTR("M701 E4"));
  800. #else
  801. change_extr(4);
  802. extr_adj(4);
  803. #endif
  804. }
  805. void mmu_load_to_nozzle_0()
  806. {
  807. lcd_mmu_load_to_nozzle(0);
  808. }
  809. void mmu_load_to_nozzle_1()
  810. {
  811. lcd_mmu_load_to_nozzle(1);
  812. }
  813. void mmu_load_to_nozzle_2()
  814. {
  815. lcd_mmu_load_to_nozzle(2);
  816. }
  817. void mmu_load_to_nozzle_3()
  818. {
  819. lcd_mmu_load_to_nozzle(3);
  820. }
  821. void mmu_load_to_nozzle_4()
  822. {
  823. lcd_mmu_load_to_nozzle(4);
  824. }
  825. void mmu_eject_fil_0()
  826. {
  827. mmu_eject_filament(0, true);
  828. }
  829. void mmu_eject_fil_1()
  830. {
  831. mmu_eject_filament(1, true);
  832. }
  833. void mmu_eject_fil_2()
  834. {
  835. mmu_eject_filament(2, true);
  836. }
  837. void mmu_eject_fil_3()
  838. {
  839. mmu_eject_filament(3, true);
  840. }
  841. void mmu_eject_fil_4()
  842. {
  843. mmu_eject_filament(4, true);
  844. }
  845. void load_all()
  846. {
  847. #ifndef SNMM
  848. enquecommand_P(PSTR("M701 E0"));
  849. enquecommand_P(PSTR("M701 E1"));
  850. enquecommand_P(PSTR("M701 E2"));
  851. enquecommand_P(PSTR("M701 E3"));
  852. enquecommand_P(PSTR("M701 E4"));
  853. #else
  854. for (int i = 0; i < 4; i++)
  855. {
  856. change_extr(i);
  857. extr_adj(i);
  858. }
  859. #endif
  860. }
  861. //wrapper functions for changing extruders
  862. void extr_change_0()
  863. {
  864. change_extr(0);
  865. lcd_return_to_status();
  866. }
  867. void extr_change_1()
  868. {
  869. change_extr(1);
  870. lcd_return_to_status();
  871. }
  872. void extr_change_2()
  873. {
  874. change_extr(2);
  875. lcd_return_to_status();
  876. }
  877. void extr_change_3()
  878. {
  879. change_extr(3);
  880. lcd_return_to_status();
  881. }
  882. #ifdef SNMM
  883. //wrapper functions for unloading filament
  884. void extr_unload_all()
  885. {
  886. if (degHotend0() > EXTRUDE_MINTEMP)
  887. {
  888. for (int i = 0; i < 4; i++)
  889. {
  890. change_extr(i);
  891. extr_unload();
  892. }
  893. }
  894. else
  895. {
  896. show_preheat_nozzle_warning();
  897. lcd_return_to_status();
  898. }
  899. }
  900. //unloading just used filament (for snmm)
  901. void extr_unload_used()
  902. {
  903. if (degHotend0() > EXTRUDE_MINTEMP) {
  904. for (int i = 0; i < 4; i++) {
  905. if (snmm_filaments_used & (1 << i)) {
  906. change_extr(i);
  907. extr_unload();
  908. }
  909. }
  910. snmm_filaments_used = 0;
  911. }
  912. else {
  913. show_preheat_nozzle_warning();
  914. lcd_return_to_status();
  915. }
  916. }
  917. #endif //SNMM
  918. void extr_unload_0()
  919. {
  920. change_extr(0);
  921. extr_unload();
  922. }
  923. void extr_unload_1()
  924. {
  925. change_extr(1);
  926. extr_unload();
  927. }
  928. void extr_unload_2()
  929. {
  930. change_extr(2);
  931. extr_unload();
  932. }
  933. void extr_unload_3()
  934. {
  935. change_extr(3);
  936. extr_unload();
  937. }
  938. void extr_unload_4()
  939. {
  940. change_extr(4);
  941. extr_unload();
  942. }
  943. bool mmu_check_version()
  944. {
  945. return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
  946. }
  947. void mmu_show_warning()
  948. {
  949. printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
  950. kill(_i("Please update firmware in your MMU2. Waiting for reset."));
  951. }
  952. void lcd_mmu_load_to_nozzle(uint8_t filament_nr)
  953. {
  954. if (degHotend0() > EXTRUDE_MINTEMP)
  955. {
  956. tmp_extruder = filament_nr;
  957. lcd_update_enable(false);
  958. lcd_clear();
  959. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  960. lcd_print(" ");
  961. lcd_print(tmp_extruder + 1);
  962. mmu_command(MMU_CMD_T0 + tmp_extruder);
  963. manage_response(true, true);
  964. mmu_command(MMU_CMD_C0);
  965. mmu_extruder = tmp_extruder; //filament change is finished
  966. mmu_load_to_nozzle();
  967. load_filament_final_feed();
  968. st_synchronize();
  969. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  970. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  971. lcd_return_to_status();
  972. lcd_update_enable(true);
  973. lcd_load_filament_color_check();
  974. lcd_setstatuspgm(_T(WELCOME_MSG));
  975. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  976. }
  977. else
  978. {
  979. show_preheat_nozzle_warning();
  980. }
  981. }
  982. void mmu_eject_filament(uint8_t filament, bool recover)
  983. {
  984. if (filament < 5)
  985. {
  986. if (degHotend0() > EXTRUDE_MINTEMP)
  987. {
  988. st_synchronize();
  989. {
  990. LcdUpdateDisabler disableLcdUpdate;
  991. lcd_clear();
  992. lcd_set_cursor(0, 1); lcd_puts_P(_i("Ejecting filament"));
  993. current_position[E_AXIS] -= 80;
  994. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  995. st_synchronize();
  996. mmu_command(MMU_CMD_E0 + filament);
  997. manage_response(false, false);
  998. if (recover)
  999. {
  1000. lcd_show_fullscreen_message_and_wait_P(_i("Please remove filament and then press the knob."));
  1001. mmu_command(MMU_CMD_R0);
  1002. manage_response(false, false);
  1003. }
  1004. }
  1005. }
  1006. else
  1007. {
  1008. show_preheat_nozzle_warning();
  1009. }
  1010. }
  1011. else
  1012. {
  1013. puts_P(PSTR("Filament nr out of range!"));
  1014. }
  1015. }