mmu.cpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908
  1. //mmu.cpp
  2. #include "mmu.h"
  3. #include "planner.h"
  4. #include "language.h"
  5. #include "lcd.h"
  6. #include "uart2.h"
  7. #include "temperature.h"
  8. #include "Configuration_prusa.h"
  9. #include "fsensor.h"
  10. #include "cardreader.h"
  11. #include "sound.h"
  12. extern const char* lcd_display_message_fullscreen_P(const char *msg);
  13. extern void lcd_show_fullscreen_message_and_wait_P(const char *msg);
  14. extern int8_t lcd_show_fullscreen_message_yes_no_and_wait_P(const char *msg, bool allow_timeouting = true, bool default_yes = false);
  15. extern void lcd_return_to_status();
  16. extern void lcd_wait_for_heater();
  17. extern char choose_extruder_menu();
  18. #define CHECK_FINDA ((IS_SD_PRINTING || is_usb_printing) && (mcode_in_progress != 600) && !saved_printing && e_active())
  19. #define MMU_TODELAY 100
  20. #define MMU_TIMEOUT 10
  21. #define MMU_CMD_TIMEOUT 300000ul //5min timeout for mmu commands (except P0)
  22. #define MMU_P0_TIMEOUT 3000ul //timeout for P0 command: 3seconds
  23. #define MMU_HWRESET
  24. #define MMU_RST_PIN 76
  25. #define MMU_REQUIRED_FW_BUILDNR 81
  26. bool mmu_enabled = false;
  27. bool mmu_ready = false;
  28. int8_t mmu_state = 0;
  29. uint8_t mmu_cmd = 0;
  30. uint8_t mmu_extruder = 0;
  31. uint8_t tmp_extruder = 0;
  32. int8_t mmu_finda = -1;
  33. int16_t mmu_version = -1;
  34. int16_t mmu_buildnr = -1;
  35. uint32_t mmu_last_request = 0;
  36. uint32_t mmu_last_response = 0;
  37. //clear rx buffer
  38. void mmu_clr_rx_buf(void)
  39. {
  40. while (fgetc(uart2io) >= 0);
  41. }
  42. //send command - puts
  43. int mmu_puts_P(const char* str)
  44. {
  45. mmu_clr_rx_buf(); //clear rx buffer
  46. int r = fputs_P(str, uart2io); //send command
  47. mmu_last_request = millis();
  48. return r;
  49. }
  50. //send command - printf
  51. int mmu_printf_P(const char* format, ...)
  52. {
  53. va_list args;
  54. va_start(args, format);
  55. mmu_clr_rx_buf(); //clear rx buffer
  56. int r = vfprintf_P(uart2io, format, args); //send command
  57. va_end(args);
  58. mmu_last_request = millis();
  59. return r;
  60. }
  61. //check 'ok' response
  62. int8_t mmu_rx_ok(void)
  63. {
  64. int8_t res = uart2_rx_str_P(PSTR("ok\n"));
  65. if (res == 1) mmu_last_response = millis();
  66. return res;
  67. }
  68. //check 'start' response
  69. int8_t mmu_rx_start(void)
  70. {
  71. int8_t res = uart2_rx_str_P(PSTR("start\n"));
  72. if (res == 1) mmu_last_response = millis();
  73. return res;
  74. }
  75. //initialize mmu2 unit - first part - should be done at begining of startup process
  76. void mmu_init(void)
  77. {
  78. digitalWrite(MMU_RST_PIN, HIGH);
  79. pinMode(MMU_RST_PIN, OUTPUT); //setup reset pin
  80. uart2_init(); //init uart2
  81. _delay_ms(10); //wait 10ms for sure
  82. mmu_reset(); //reset mmu (HW or SW), do not wait for response
  83. mmu_state = -1;
  84. }
  85. //mmu main loop - state machine processing
  86. void mmu_loop(void)
  87. {
  88. // printf_P(PSTR("MMU loop, state=%d\n"), mmu_state);
  89. switch (mmu_state)
  90. {
  91. case 0:
  92. return;
  93. case -1:
  94. if (mmu_rx_start() > 0)
  95. {
  96. puts_P(PSTR("MMU => 'start'"));
  97. puts_P(PSTR("MMU <= 'S1'"));
  98. mmu_puts_P(PSTR("S1\n")); //send 'read version' request
  99. mmu_state = -2;
  100. }
  101. else if (millis() > 30000) //30sec after reset disable mmu
  102. {
  103. puts_P(PSTR("MMU not responding - DISABLED"));
  104. mmu_state = 0;
  105. }
  106. return;
  107. case -2:
  108. if (mmu_rx_ok() > 0)
  109. {
  110. fscanf_P(uart2io, PSTR("%u"), &mmu_version); //scan version from buffer
  111. printf_P(PSTR("MMU => '%dok'\n"), mmu_version);
  112. puts_P(PSTR("MMU <= 'S2'"));
  113. mmu_puts_P(PSTR("S2\n")); //send 'read buildnr' request
  114. mmu_state = -3;
  115. }
  116. return;
  117. case -3:
  118. if (mmu_rx_ok() > 0)
  119. {
  120. fscanf_P(uart2io, PSTR("%u"), &mmu_buildnr); //scan buildnr from buffer
  121. printf_P(PSTR("MMU => '%dok'\n"), mmu_buildnr);
  122. bool version_valid = mmu_check_version();
  123. if (!version_valid) mmu_show_warning();
  124. else puts_P(PSTR("MMU version valid"));
  125. puts_P(PSTR("MMU <= 'P0'"));
  126. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  127. mmu_state = -4;
  128. }
  129. return;
  130. case -4:
  131. if (mmu_rx_ok() > 0)
  132. {
  133. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  134. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  135. puts_P(PSTR("MMU - ENABLED"));
  136. mmu_enabled = true;
  137. mmu_state = 1;
  138. }
  139. return;
  140. case 1:
  141. if (mmu_cmd) //command request ?
  142. {
  143. if ((mmu_cmd >= MMU_CMD_T0) && (mmu_cmd <= MMU_CMD_T4))
  144. {
  145. int extruder = mmu_cmd - MMU_CMD_T0;
  146. printf_P(PSTR("MMU <= 'T%d'\n"), extruder);
  147. mmu_printf_P(PSTR("T%d\n"), extruder);
  148. mmu_state = 3; // wait for response
  149. }
  150. else if ((mmu_cmd >= MMU_CMD_L0) && (mmu_cmd <= MMU_CMD_L4))
  151. {
  152. int filament = mmu_cmd - MMU_CMD_L0;
  153. printf_P(PSTR("MMU <= 'L%d'\n"), filament);
  154. mmu_printf_P(PSTR("L%d\n"), filament);
  155. mmu_state = 3; // wait for response
  156. }
  157. else if (mmu_cmd == MMU_CMD_C0)
  158. {
  159. printf_P(PSTR("MMU <= 'C0'\n"));
  160. mmu_puts_P(PSTR("C0\n")); //send 'continue loading'
  161. mmu_state = 3;
  162. }
  163. else if (mmu_cmd == MMU_CMD_U0)
  164. {
  165. printf_P(PSTR("MMU <= 'U0'\n"));
  166. mmu_puts_P(PSTR("U0\n")); //send 'unload current filament'
  167. mmu_state = 3;
  168. }
  169. mmu_cmd = 0;
  170. }
  171. else if ((mmu_last_response + 800) < millis()) //request every 800ms
  172. {
  173. puts_P(PSTR("MMU <= 'P0'"));
  174. mmu_puts_P(PSTR("P0\n")); //send 'read finda' request
  175. mmu_state = 2;
  176. }
  177. return;
  178. case 2: //response to command P0
  179. if (mmu_rx_ok() > 0)
  180. {
  181. fscanf_P(uart2io, PSTR("%hhu"), &mmu_finda); //scan finda from buffer
  182. printf_P(PSTR("MMU => '%dok'\n"), mmu_finda);
  183. //printf_P(PSTR("Eact: %d\n"), int(e_active()));
  184. if (!mmu_finda && CHECK_FINDA && fsensor_enabled) {
  185. fsensor_stop_and_save_print();
  186. enquecommand_front_P(PSTR("FSENSOR_RECOVER")); //then recover
  187. enquecommand_front_P(PSTR("M600")); //save print and run M600 command
  188. }
  189. mmu_state = 1;
  190. if (mmu_cmd == 0)
  191. mmu_ready = true;
  192. }
  193. else if ((mmu_last_request + MMU_P0_TIMEOUT) < millis())
  194. { //resend request after timeout (30s)
  195. mmu_state = 1;
  196. }
  197. return;
  198. case 3: //response to commands T0-T4
  199. if (mmu_rx_ok() > 0)
  200. {
  201. printf_P(PSTR("MMU => 'ok'\n"));
  202. mmu_ready = true;
  203. mmu_state = 1;
  204. }
  205. else if ((mmu_last_request + MMU_CMD_TIMEOUT) < millis())
  206. { //resend request after timeout (5 min)
  207. mmu_state = 1;
  208. }
  209. return;
  210. }
  211. }
  212. void mmu_reset(void)
  213. {
  214. #ifdef MMU_HWRESET //HW - pulse reset pin
  215. digitalWrite(MMU_RST_PIN, LOW);
  216. _delay_us(100);
  217. digitalWrite(MMU_RST_PIN, HIGH);
  218. #else //SW - send X0 command
  219. mmu_puts_P(PSTR("X0\n"));
  220. #endif
  221. }
  222. int8_t mmu_set_filament_type(uint8_t extruder, uint8_t filament)
  223. {
  224. printf_P(PSTR("MMU <= 'F%d %d'\n"), extruder, filament);
  225. mmu_printf_P(PSTR("F%d %d\n"), extruder, filament);
  226. unsigned char timeout = MMU_TIMEOUT; //10x100ms
  227. while ((mmu_rx_ok() <= 0) && (--timeout))
  228. delay_keep_alive(MMU_TODELAY);
  229. return timeout?1:0;
  230. }
  231. void mmu_command(uint8_t cmd)
  232. {
  233. mmu_cmd = cmd;
  234. mmu_ready = false;
  235. }
  236. bool mmu_get_response(void)
  237. {
  238. // printf_P(PSTR("mmu_get_response - begin\n"));
  239. KEEPALIVE_STATE(IN_PROCESS);
  240. while (mmu_cmd != 0)
  241. {
  242. // mmu_loop();
  243. delay_keep_alive(100);
  244. }
  245. while (!mmu_ready)
  246. {
  247. // mmu_loop();
  248. if (mmu_state != 3)
  249. break;
  250. delay_keep_alive(100);
  251. }
  252. bool ret = mmu_ready;
  253. mmu_ready = false;
  254. // printf_P(PSTR("mmu_get_response - end %d\n"), ret?1:0);
  255. return ret;
  256. /* //waits for "ok" from mmu
  257. //function returns true if "ok" was received
  258. //if timeout is set to true function return false if there is no "ok" received before timeout
  259. bool response = true;
  260. LongTimer mmu_get_reponse_timeout;
  261. KEEPALIVE_STATE(IN_PROCESS);
  262. mmu_get_reponse_timeout.start();
  263. while (mmu_rx_ok() <= 0)
  264. {
  265. delay_keep_alive(100);
  266. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul))
  267. { //5 minutes timeout
  268. response = false;
  269. break;
  270. }
  271. }
  272. printf_P(PSTR("mmu_get_response - end %d\n"), response?1:0);
  273. return response;*/
  274. }
  275. void manage_response(bool move_axes, bool turn_off_nozzle)
  276. {
  277. bool response = false;
  278. mmu_print_saved = false;
  279. bool lcd_update_was_enabled = false;
  280. float hotend_temp_bckp = degTargetHotend(active_extruder);
  281. float z_position_bckp = current_position[Z_AXIS];
  282. float x_position_bckp = current_position[X_AXIS];
  283. float y_position_bckp = current_position[Y_AXIS];
  284. while(!response)
  285. {
  286. response = mmu_get_response(); //wait for "ok" from mmu
  287. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  288. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  289. if (lcd_update_enabled) {
  290. lcd_update_was_enabled = true;
  291. lcd_update_enable(false);
  292. }
  293. st_synchronize();
  294. mmu_print_saved = true;
  295. printf_P(PSTR("MMU not responding\n"));
  296. hotend_temp_bckp = degTargetHotend(active_extruder);
  297. if (move_axes) {
  298. z_position_bckp = current_position[Z_AXIS];
  299. x_position_bckp = current_position[X_AXIS];
  300. y_position_bckp = current_position[Y_AXIS];
  301. //lift z
  302. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  303. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  304. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  305. st_synchronize();
  306. //Move XY to side
  307. current_position[X_AXIS] = X_PAUSE_POS;
  308. current_position[Y_AXIS] = Y_PAUSE_POS;
  309. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  310. st_synchronize();
  311. }
  312. if (turn_off_nozzle) {
  313. //set nozzle target temperature to 0
  314. setAllTargetHotends(0);
  315. }
  316. }
  317. lcd_display_message_fullscreen_P(_i("MMU needs user attention. Fix the issue and then press button on MMU unit."));
  318. delay_keep_alive(1000);
  319. }
  320. else if (mmu_print_saved) {
  321. printf_P(PSTR("MMU starts responding\n"));
  322. if (turn_off_nozzle)
  323. {
  324. lcd_clear();
  325. setTargetHotend(hotend_temp_bckp, active_extruder);
  326. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming temperature..."));
  327. delay_keep_alive(3000);
  328. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5)
  329. {
  330. delay_keep_alive(1000);
  331. lcd_wait_for_heater();
  332. }
  333. }
  334. if (move_axes) {
  335. lcd_clear();
  336. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming position..."));
  337. current_position[X_AXIS] = x_position_bckp;
  338. current_position[Y_AXIS] = y_position_bckp;
  339. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  340. st_synchronize();
  341. current_position[Z_AXIS] = z_position_bckp;
  342. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  343. st_synchronize();
  344. }
  345. else {
  346. lcd_clear();
  347. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  348. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  349. }
  350. }
  351. }
  352. if (lcd_update_was_enabled) lcd_update_enable(true);
  353. }
  354. void mmu_load_to_nozzle()
  355. {
  356. st_synchronize();
  357. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  358. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  359. current_position[E_AXIS] += 7.2f;
  360. float feedrate = 562;
  361. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  362. st_synchronize();
  363. current_position[E_AXIS] += 14.4f;
  364. feedrate = 871;
  365. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  366. st_synchronize();
  367. current_position[E_AXIS] += 36.0f;
  368. feedrate = 1393;
  369. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  370. st_synchronize();
  371. current_position[E_AXIS] += 14.4f;
  372. feedrate = 871;
  373. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  374. st_synchronize();
  375. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  376. }
  377. void mmu_M600_wait_and_beep() {
  378. //Beep and wait for user to remove old filament and prepare new filament for load
  379. KEEPALIVE_STATE(PAUSED_FOR_USER);
  380. int counterBeep = 0;
  381. lcd_display_message_fullscreen_P(_i("Remove old filament and press the knob to start loading new filament."));
  382. bool bFirst=true;
  383. while (!lcd_clicked()){
  384. manage_heater();
  385. manage_inactivity(true);
  386. #if BEEPER > 0
  387. if (counterBeep == 500) {
  388. counterBeep = 0;
  389. }
  390. SET_OUTPUT(BEEPER);
  391. if (counterBeep == 0) {
  392. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  393. {
  394. bFirst=false;
  395. WRITE(BEEPER, HIGH);
  396. }
  397. }
  398. if (counterBeep == 20) {
  399. WRITE(BEEPER, LOW);
  400. }
  401. counterBeep++;
  402. #endif //BEEPER > 0
  403. delay_keep_alive(4);
  404. }
  405. WRITE(BEEPER, LOW);
  406. }
  407. void mmu_M600_load_filament(bool automatic)
  408. {
  409. //load filament for mmu v2
  410. bool response = false;
  411. bool yes = false;
  412. if (!automatic) {
  413. mmu_M600_wait_and_beep();
  414. #ifdef MMU_M600_SWITCH_EXTRUDER
  415. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  416. if(yes) tmp_extruder = choose_extruder_menu();
  417. else tmp_extruder = mmu_extruder;
  418. #else
  419. tmp_extruder = mmu_extruder;
  420. #endif //MMU_M600_SWITCH_EXTRUDER
  421. }
  422. else {
  423. tmp_extruder = (tmp_extruder+1)%5;
  424. }
  425. lcd_update_enable(false);
  426. lcd_clear();
  427. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  428. lcd_print(" ");
  429. lcd_print(tmp_extruder + 1);
  430. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  431. // printf_P(PSTR("T code: %d \n"), tmp_extruder);
  432. // mmu_printf_P(PSTR("T%d\n"), tmp_extruder);
  433. mmu_command(MMU_CMD_T0 + tmp_extruder);
  434. manage_response(false, true);
  435. mmu_command(MMU_CMD_C0);
  436. mmu_extruder = tmp_extruder; //filament change is finished
  437. mmu_load_to_nozzle();
  438. st_synchronize();
  439. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  440. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  441. }
  442. void extr_mov(float shift, float feed_rate)
  443. { //move extruder no matter what the current heater temperature is
  444. set_extrude_min_temp(.0);
  445. current_position[E_AXIS] += shift;
  446. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, active_extruder);
  447. set_extrude_min_temp(EXTRUDE_MINTEMP);
  448. }
  449. void change_extr(int extr) { //switches multiplexer for extruders
  450. #ifdef SNMM
  451. st_synchronize();
  452. delay(100);
  453. disable_e0();
  454. disable_e1();
  455. disable_e2();
  456. mmu_extruder = extr;
  457. pinMode(E_MUX0_PIN, OUTPUT);
  458. pinMode(E_MUX1_PIN, OUTPUT);
  459. switch (extr) {
  460. case 1:
  461. WRITE(E_MUX0_PIN, HIGH);
  462. WRITE(E_MUX1_PIN, LOW);
  463. break;
  464. case 2:
  465. WRITE(E_MUX0_PIN, LOW);
  466. WRITE(E_MUX1_PIN, HIGH);
  467. break;
  468. case 3:
  469. WRITE(E_MUX0_PIN, HIGH);
  470. WRITE(E_MUX1_PIN, HIGH);
  471. break;
  472. default:
  473. WRITE(E_MUX0_PIN, LOW);
  474. WRITE(E_MUX1_PIN, LOW);
  475. break;
  476. }
  477. delay(100);
  478. #endif
  479. }
  480. int get_ext_nr()
  481. { //reads multiplexer input pins and return current extruder number (counted from 0)
  482. #ifndef SNMM
  483. return(mmu_extruder); //update needed
  484. #else
  485. return(2 * READ(E_MUX1_PIN) + READ(E_MUX0_PIN));
  486. #endif
  487. }
  488. void display_loading()
  489. {
  490. switch (mmu_extruder)
  491. {
  492. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  493. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  494. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  495. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  496. }
  497. }
  498. void extr_adj(int extruder) //loading filament for SNMM
  499. {
  500. #ifndef SNMM
  501. uint8_t cmd = MMU_CMD_L0 + extruder;
  502. if (cmd > MMU_CMD_L4)
  503. {
  504. printf_P(PSTR("Filament out of range %d \n"),extruder);
  505. return;
  506. }
  507. mmu_command(cmd);
  508. //show which filament is currently loaded
  509. lcd_update_enable(false);
  510. lcd_clear();
  511. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  512. //if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd.setCursor(0, 1);
  513. //else lcd.print(" ");
  514. lcd_print(" ");
  515. lcd_print(extruder + 1);
  516. // get response
  517. manage_response(false, false);
  518. lcd_update_enable(true);
  519. //lcd_return_to_status();
  520. #else
  521. bool correct;
  522. max_feedrate[E_AXIS] =80;
  523. //max_feedrate[E_AXIS] = 50;
  524. START:
  525. lcd_clear();
  526. lcd_set_cursor(0, 0);
  527. switch (extruder) {
  528. case 1: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T1)); break;
  529. case 2: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T2)); break;
  530. case 3: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T3)); break;
  531. default: lcd_display_message_fullscreen_P(_T(MSG_FILAMENT_LOADING_T0)); break;
  532. }
  533. KEEPALIVE_STATE(PAUSED_FOR_USER);
  534. do{
  535. extr_mov(0.001,1000);
  536. delay_keep_alive(2);
  537. } while (!lcd_clicked());
  538. //delay_keep_alive(500);
  539. KEEPALIVE_STATE(IN_HANDLER);
  540. st_synchronize();
  541. //correct = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FIL_LOADED_CHECK, false);
  542. //if (!correct) goto START;
  543. //extr_mov(BOWDEN_LENGTH/2.f, 500); //dividing by 2 is there because of max. extrusion length limitation (x_max + y_max)
  544. //extr_mov(BOWDEN_LENGTH/2.f, 500);
  545. extr_mov(bowden_length[extruder], 500);
  546. lcd_clear();
  547. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  548. if(strlen(_T(MSG_LOADING_FILAMENT))>18) lcd_set_cursor(0, 1);
  549. else lcd_print(" ");
  550. lcd_print(mmu_extruder + 1);
  551. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  552. st_synchronize();
  553. max_feedrate[E_AXIS] = 50;
  554. lcd_update_enable(true);
  555. lcd_return_to_status();
  556. lcdDrawUpdate = 2;
  557. #endif
  558. }
  559. void extr_unload()
  560. { //unload just current filament for multimaterial printers
  561. #ifdef SNMM
  562. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  563. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  564. uint8_t SilentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  565. #endif
  566. if (degHotend0() > EXTRUDE_MINTEMP)
  567. {
  568. #ifndef SNMM
  569. st_synchronize();
  570. //show which filament is currently unloaded
  571. lcd_update_enable(false);
  572. lcd_clear();
  573. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  574. lcd_print(" ");
  575. lcd_print(mmu_extruder + 1);
  576. current_position[E_AXIS] -= 80;
  577. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  578. st_synchronize();
  579. mmu_command(MMU_CMD_U0);
  580. // get response
  581. manage_response(false, true);
  582. lcd_update_enable(true);
  583. #else //SNMM
  584. lcd_clear();
  585. lcd_display_message_fullscreen_P(PSTR(""));
  586. max_feedrate[E_AXIS] = 50;
  587. lcd_set_cursor(0, 0); lcd_puts_P(_T(MSG_UNLOADING_FILAMENT));
  588. lcd_print(" ");
  589. lcd_print(mmu_extruder + 1);
  590. lcd_set_cursor(0, 2); lcd_puts_P(_T(MSG_PLEASE_WAIT));
  591. if (current_position[Z_AXIS] < 15) {
  592. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  593. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  594. }
  595. current_position[E_AXIS] += 10; //extrusion
  596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  597. st_current_set(2, E_MOTOR_HIGH_CURRENT);
  598. if (current_temperature[0] < 230) { //PLA & all other filaments
  599. current_position[E_AXIS] += 5.4;
  600. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  601. current_position[E_AXIS] += 3.2;
  602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  603. current_position[E_AXIS] += 3;
  604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  605. }
  606. else { //ABS
  607. current_position[E_AXIS] += 3.1;
  608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  609. current_position[E_AXIS] += 3.1;
  610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  611. current_position[E_AXIS] += 4;
  612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  613. /*current_position[X_AXIS] += 23; //delay
  614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  615. current_position[X_AXIS] -= 23; //delay
  616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  617. delay_keep_alive(4700);
  618. }
  619. max_feedrate[E_AXIS] = 80;
  620. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  621. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  622. current_position[E_AXIS] -= (bowden_length[mmu_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  624. st_synchronize();
  625. //st_current_init();
  626. if (SilentMode != SILENT_MODE_OFF) st_current_set(2, tmp_motor[2]); //set back to normal operation currents
  627. else st_current_set(2, tmp_motor_loud[2]);
  628. lcd_update_enable(true);
  629. lcd_return_to_status();
  630. max_feedrate[E_AXIS] = 50;
  631. #endif //SNMM
  632. }
  633. else
  634. {
  635. lcd_clear();
  636. lcd_set_cursor(0, 0);
  637. lcd_puts_P(_T(MSG_ERROR));
  638. lcd_set_cursor(0, 2);
  639. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  640. delay(2000);
  641. lcd_clear();
  642. }
  643. //lcd_return_to_status();
  644. }
  645. //wrapper functions for loading filament
  646. void extr_adj_0()
  647. {
  648. #ifndef SNMM
  649. enquecommand_P(PSTR("M701 E0"));
  650. #else
  651. change_extr(0);
  652. extr_adj(0);
  653. #endif
  654. }
  655. void extr_adj_1()
  656. {
  657. #ifndef SNMM
  658. enquecommand_P(PSTR("M701 E1"));
  659. #else
  660. change_extr(1);
  661. extr_adj(1);
  662. #endif
  663. }
  664. void extr_adj_2()
  665. {
  666. #ifndef SNMM
  667. enquecommand_P(PSTR("M701 E2"));
  668. #else
  669. change_extr(2);
  670. extr_adj(2);
  671. #endif
  672. }
  673. void extr_adj_3()
  674. {
  675. #ifndef SNMM
  676. enquecommand_P(PSTR("M701 E3"));
  677. #else
  678. change_extr(3);
  679. extr_adj(3);
  680. #endif
  681. }
  682. void extr_adj_4()
  683. {
  684. #ifndef SNMM
  685. enquecommand_P(PSTR("M701 E4"));
  686. #else
  687. change_extr(4);
  688. extr_adj(4);
  689. #endif
  690. }
  691. void load_all()
  692. {
  693. #ifndef SNMM
  694. enquecommand_P(PSTR("M701 E0"));
  695. enquecommand_P(PSTR("M701 E1"));
  696. enquecommand_P(PSTR("M701 E2"));
  697. enquecommand_P(PSTR("M701 E3"));
  698. enquecommand_P(PSTR("M701 E4"));
  699. #else
  700. for (int i = 0; i < 4; i++)
  701. {
  702. change_extr(i);
  703. extr_adj(i);
  704. }
  705. #endif
  706. }
  707. //wrapper functions for changing extruders
  708. void extr_change_0()
  709. {
  710. change_extr(0);
  711. lcd_return_to_status();
  712. }
  713. void extr_change_1()
  714. {
  715. change_extr(1);
  716. lcd_return_to_status();
  717. }
  718. void extr_change_2()
  719. {
  720. change_extr(2);
  721. lcd_return_to_status();
  722. }
  723. void extr_change_3()
  724. {
  725. change_extr(3);
  726. lcd_return_to_status();
  727. }
  728. //wrapper functions for unloading filament
  729. void extr_unload_all()
  730. {
  731. if (degHotend0() > EXTRUDE_MINTEMP)
  732. {
  733. for (int i = 0; i < 4; i++)
  734. {
  735. change_extr(i);
  736. extr_unload();
  737. }
  738. }
  739. else
  740. {
  741. lcd_clear();
  742. lcd_set_cursor(0, 0);
  743. lcd_puts_P(_T(MSG_ERROR));
  744. lcd_set_cursor(0, 2);
  745. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  746. delay(2000);
  747. lcd_clear();
  748. lcd_return_to_status();
  749. }
  750. }
  751. //unloading just used filament (for snmm)
  752. void extr_unload_used()
  753. {
  754. if (degHotend0() > EXTRUDE_MINTEMP) {
  755. for (int i = 0; i < 4; i++) {
  756. if (snmm_filaments_used & (1 << i)) {
  757. change_extr(i);
  758. extr_unload();
  759. }
  760. }
  761. snmm_filaments_used = 0;
  762. }
  763. else {
  764. lcd_clear();
  765. lcd_set_cursor(0, 0);
  766. lcd_puts_P(_T(MSG_ERROR));
  767. lcd_set_cursor(0, 2);
  768. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  769. delay(2000);
  770. lcd_clear();
  771. lcd_return_to_status();
  772. }
  773. }
  774. void extr_unload_0()
  775. {
  776. change_extr(0);
  777. extr_unload();
  778. }
  779. void extr_unload_1()
  780. {
  781. change_extr(1);
  782. extr_unload();
  783. }
  784. void extr_unload_2()
  785. {
  786. change_extr(2);
  787. extr_unload();
  788. }
  789. void extr_unload_3()
  790. {
  791. change_extr(3);
  792. extr_unload();
  793. }
  794. void extr_unload_4()
  795. {
  796. change_extr(4);
  797. extr_unload();
  798. }
  799. bool mmu_check_version()
  800. {
  801. return (mmu_buildnr >= MMU_REQUIRED_FW_BUILDNR);
  802. }
  803. void mmu_show_warning()
  804. {
  805. printf_P(PSTR("MMU2 firmware version invalid. Required version: build number %d or higher."), MMU_REQUIRED_FW_BUILDNR);
  806. kill(_i("Please update firmware in your MMU2. Waiting for reset."));
  807. }