Marlin_main.cpp 177 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #endif
  33. #include "ultralcd.h"
  34. #include "Configuration_prusa.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #ifdef ULTRALCD
  50. #include "ultralcd.h"
  51. #endif
  52. #if NUM_SERVOS > 0
  53. #include "Servo.h"
  54. #endif
  55. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  56. #include <SPI.h>
  57. #endif
  58. #define VERSION_STRING "1.0.2"
  59. #include "ultralcd.h"
  60. // Macros for bit masks
  61. #define BIT(b) (1<<(b))
  62. #define TEST(n,b) (((n)&BIT(b))!=0)
  63. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  64. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  65. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  66. //Implemented Codes
  67. //-------------------
  68. // PRUSA CODES
  69. // P F - Returns FW versions
  70. // P R - Returns revision of printer
  71. // G0 -> G1
  72. // G1 - Coordinated Movement X Y Z E
  73. // G2 - CW ARC
  74. // G3 - CCW ARC
  75. // G4 - Dwell S<seconds> or P<milliseconds>
  76. // G10 - retract filament according to settings of M207
  77. // G11 - retract recover filament according to settings of M208
  78. // G28 - Home all Axis
  79. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  80. // G30 - Single Z Probe, probes bed at current XY location.
  81. // G31 - Dock sled (Z_PROBE_SLED only)
  82. // G32 - Undock sled (Z_PROBE_SLED only)
  83. // G80 - Automatic mesh bed leveling
  84. // G81 - Print bed profile
  85. // G90 - Use Absolute Coordinates
  86. // G91 - Use Relative Coordinates
  87. // G92 - Set current position to coordinates given
  88. // M Codes
  89. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  90. // M1 - Same as M0
  91. // M17 - Enable/Power all stepper motors
  92. // M18 - Disable all stepper motors; same as M84
  93. // M20 - List SD card
  94. // M21 - Init SD card
  95. // M22 - Release SD card
  96. // M23 - Select SD file (M23 filename.g)
  97. // M24 - Start/resume SD print
  98. // M25 - Pause SD print
  99. // M26 - Set SD position in bytes (M26 S12345)
  100. // M27 - Report SD print status
  101. // M28 - Start SD write (M28 filename.g)
  102. // M29 - Stop SD write
  103. // M30 - Delete file from SD (M30 filename.g)
  104. // M31 - Output time since last M109 or SD card start to serial
  105. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  106. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  107. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  108. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  109. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  110. // M80 - Turn on Power Supply
  111. // M81 - Turn off Power Supply
  112. // M82 - Set E codes absolute (default)
  113. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  114. // M84 - Disable steppers until next move,
  115. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  116. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  117. // M92 - Set axis_steps_per_unit - same syntax as G92
  118. // M104 - Set extruder target temp
  119. // M105 - Read current temp
  120. // M106 - Fan on
  121. // M107 - Fan off
  122. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  123. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  124. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  125. // M112 - Emergency stop
  126. // M114 - Output current position to serial port
  127. // M115 - Capabilities string
  128. // M117 - display message
  129. // M119 - Output Endstop status to serial port
  130. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  131. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  132. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  133. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  134. // M140 - Set bed target temp
  135. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  136. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  137. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  138. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  139. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  140. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  141. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  142. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  143. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  144. // M206 - set additional homing offset
  145. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  146. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  147. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  148. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  149. // M220 S<factor in percent>- set speed factor override percentage
  150. // M221 S<factor in percent>- set extrude factor override percentage
  151. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  152. // M240 - Trigger a camera to take a photograph
  153. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  154. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  155. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  156. // M301 - Set PID parameters P I and D
  157. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  158. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  159. // M304 - Set bed PID parameters P I and D
  160. // M400 - Finish all moves
  161. // M401 - Lower z-probe if present
  162. // M402 - Raise z-probe if present
  163. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  164. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  165. // M406 - Turn off Filament Sensor extrusion control
  166. // M407 - Displays measured filament diameter
  167. // M500 - stores parameters in EEPROM
  168. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  169. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  170. // M503 - print the current settings (from memory not from EEPROM)
  171. // M509 - force language selection on next restart
  172. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  173. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  174. // M665 - set delta configurations
  175. // M666 - set delta endstop adjustment
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // ************ SCARA Specific - This can change to suit future G-code regulations
  182. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  183. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  184. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  185. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  186. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  187. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  188. //************* SCARA End ***************
  189. // M928 - Start SD logging (M928 filename.g) - ended by M29
  190. // M999 - Restart after being stopped by error
  191. //Stepper Movement Variables
  192. //===========================================================================
  193. //=============================imported variables============================
  194. //===========================================================================
  195. //===========================================================================
  196. //=============================public variables=============================
  197. //===========================================================================
  198. #ifdef SDSUPPORT
  199. CardReader card;
  200. #endif
  201. union Data
  202. {
  203. byte b[2];
  204. int value;
  205. };
  206. int babystepLoad[3];
  207. float homing_feedrate[] = HOMING_FEEDRATE;
  208. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  209. int feedmultiply=100; //100->1 200->2
  210. int saved_feedmultiply;
  211. int extrudemultiply=100; //100->1 200->2
  212. int extruder_multiply[EXTRUDERS] = {100
  213. #if EXTRUDERS > 1
  214. , 100
  215. #if EXTRUDERS > 2
  216. , 100
  217. #endif
  218. #endif
  219. };
  220. int lcd_change_fil_state = 0;
  221. int feedmultiplyBckp = 100;
  222. unsigned char lang_selected = 0;
  223. bool volumetric_enabled = false;
  224. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  225. #if EXTRUDERS > 1
  226. , DEFAULT_NOMINAL_FILAMENT_DIA
  227. #if EXTRUDERS > 2
  228. , DEFAULT_NOMINAL_FILAMENT_DIA
  229. #endif
  230. #endif
  231. };
  232. float volumetric_multiplier[EXTRUDERS] = {1.0
  233. #if EXTRUDERS > 1
  234. , 1.0
  235. #if EXTRUDERS > 2
  236. , 1.0
  237. #endif
  238. #endif
  239. };
  240. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  241. float add_homing[3]={0,0,0};
  242. #ifdef DELTA
  243. float endstop_adj[3]={0,0,0};
  244. #endif
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. bool axis_known_position[3] = {false, false, false};
  248. float zprobe_zoffset;
  249. // Extruder offset
  250. #if EXTRUDERS > 1
  251. #ifndef DUAL_X_CARRIAGE
  252. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  253. #else
  254. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  255. #endif
  256. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  257. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  258. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  259. #endif
  260. };
  261. #endif
  262. uint8_t active_extruder = 0;
  263. int fanSpeed=0;
  264. #ifdef SERVO_ENDSTOPS
  265. int servo_endstops[] = SERVO_ENDSTOPS;
  266. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  267. #endif
  268. #ifdef BARICUDA
  269. int ValvePressure=0;
  270. int EtoPPressure=0;
  271. #endif
  272. #ifdef FWRETRACT
  273. bool autoretract_enabled=false;
  274. bool retracted[EXTRUDERS]={false
  275. #if EXTRUDERS > 1
  276. , false
  277. #if EXTRUDERS > 2
  278. , false
  279. #endif
  280. #endif
  281. };
  282. bool retracted_swap[EXTRUDERS]={false
  283. #if EXTRUDERS > 1
  284. , false
  285. #if EXTRUDERS > 2
  286. , false
  287. #endif
  288. #endif
  289. };
  290. float retract_length = RETRACT_LENGTH;
  291. float retract_length_swap = RETRACT_LENGTH_SWAP;
  292. float retract_feedrate = RETRACT_FEEDRATE;
  293. float retract_zlift = RETRACT_ZLIFT;
  294. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  295. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  296. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  297. #endif
  298. #ifdef ULTIPANEL
  299. #ifdef PS_DEFAULT_OFF
  300. bool powersupply = false;
  301. #else
  302. bool powersupply = true;
  303. #endif
  304. #endif
  305. #ifdef DELTA
  306. float delta[3] = {0.0, 0.0, 0.0};
  307. #define SIN_60 0.8660254037844386
  308. #define COS_60 0.5
  309. // these are the default values, can be overriden with M665
  310. float delta_radius= DELTA_RADIUS;
  311. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  312. float delta_tower1_y= -COS_60*delta_radius;
  313. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  314. float delta_tower2_y= -COS_60*delta_radius;
  315. float delta_tower3_x= 0.0; // back middle tower
  316. float delta_tower3_y= delta_radius;
  317. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  318. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  319. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  320. #endif
  321. #ifdef SCARA // Build size scaling
  322. float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
  323. #endif
  324. bool cancel_heatup = false ;
  325. #ifdef FILAMENT_SENSOR
  326. //Variables for Filament Sensor input
  327. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  328. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  329. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  330. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  331. int delay_index1=0; //index into ring buffer
  332. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  333. float delay_dist=0; //delay distance counter
  334. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  335. #endif
  336. const char errormagic[] PROGMEM = "Error:";
  337. const char echomagic[] PROGMEM = "echo:";
  338. //===========================================================================
  339. //=============================Private Variables=============================
  340. //===========================================================================
  341. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  342. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  343. #ifndef DELTA
  344. static float delta[3] = {0.0, 0.0, 0.0};
  345. #endif
  346. static float offset[3] = {0.0, 0.0, 0.0};
  347. static bool home_all_axis = true;
  348. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  349. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  350. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  351. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  352. static bool fromsd[BUFSIZE];
  353. static int bufindr = 0;
  354. static int bufindw = 0;
  355. static int buflen = 0;
  356. //static int i = 0;
  357. static char serial_char;
  358. static int serial_count = 0;
  359. static boolean comment_mode = false;
  360. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  361. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  362. //static float tt = 0;
  363. //static float bt = 0;
  364. //Inactivity shutdown variables
  365. static unsigned long previous_millis_cmd = 0;
  366. static unsigned long max_inactive_time = 0;
  367. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  368. unsigned long starttime=0;
  369. unsigned long stoptime=0;
  370. static uint8_t tmp_extruder;
  371. bool Stopped=false;
  372. #if NUM_SERVOS > 0
  373. Servo servos[NUM_SERVOS];
  374. #endif
  375. bool CooldownNoWait = true;
  376. bool target_direction;
  377. //Insert variables if CHDK is defined
  378. #ifdef CHDK
  379. unsigned long chdkHigh = 0;
  380. boolean chdkActive = false;
  381. #endif
  382. //===========================================================================
  383. //=============================Routines======================================
  384. //===========================================================================
  385. void get_arc_coordinates();
  386. bool setTargetedHotend(int code);
  387. void serial_echopair_P(const char *s_P, float v)
  388. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  389. void serial_echopair_P(const char *s_P, double v)
  390. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  391. void serial_echopair_P(const char *s_P, unsigned long v)
  392. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  393. #ifdef SDSUPPORT
  394. #include "SdFatUtil.h"
  395. int freeMemory() { return SdFatUtil::FreeRam(); }
  396. #else
  397. extern "C" {
  398. extern unsigned int __bss_end;
  399. extern unsigned int __heap_start;
  400. extern void *__brkval;
  401. int freeMemory() {
  402. int free_memory;
  403. if ((int)__brkval == 0)
  404. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  405. else
  406. free_memory = ((int)&free_memory) - ((int)__brkval);
  407. return free_memory;
  408. }
  409. }
  410. #endif //!SDSUPPORT
  411. //adds an command to the main command buffer
  412. //thats really done in a non-safe way.
  413. //needs overworking someday
  414. void enquecommand(const char *cmd)
  415. {
  416. if(buflen < BUFSIZE)
  417. {
  418. //this is dangerous if a mixing of serial and this happens
  419. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  420. SERIAL_ECHO_START;
  421. SERIAL_ECHORPGM(MSG_Enqueing);
  422. SERIAL_ECHO(cmdbuffer[bufindw]);
  423. SERIAL_ECHOLNPGM("\"");
  424. bufindw= (bufindw + 1)%BUFSIZE;
  425. buflen += 1;
  426. }
  427. }
  428. void enquecommand_P(const char *cmd)
  429. {
  430. if(buflen < BUFSIZE)
  431. {
  432. //this is dangerous if a mixing of serial and this happens
  433. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  434. SERIAL_ECHO_START;
  435. SERIAL_ECHORPGM(MSG_Enqueing);
  436. SERIAL_ECHO(cmdbuffer[bufindw]);
  437. SERIAL_ECHOLNPGM("\"");
  438. bufindw= (bufindw + 1)%BUFSIZE;
  439. buflen += 1;
  440. }
  441. }
  442. void setup_killpin()
  443. {
  444. #if defined(KILL_PIN) && KILL_PIN > -1
  445. SET_INPUT(KILL_PIN);
  446. WRITE(KILL_PIN,HIGH);
  447. #endif
  448. }
  449. // Set home pin
  450. void setup_homepin(void)
  451. {
  452. #if defined(HOME_PIN) && HOME_PIN > -1
  453. SET_INPUT(HOME_PIN);
  454. WRITE(HOME_PIN,HIGH);
  455. #endif
  456. }
  457. void setup_photpin()
  458. {
  459. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  460. SET_OUTPUT(PHOTOGRAPH_PIN);
  461. WRITE(PHOTOGRAPH_PIN, LOW);
  462. #endif
  463. }
  464. void setup_powerhold()
  465. {
  466. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  467. SET_OUTPUT(SUICIDE_PIN);
  468. WRITE(SUICIDE_PIN, HIGH);
  469. #endif
  470. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  471. SET_OUTPUT(PS_ON_PIN);
  472. #if defined(PS_DEFAULT_OFF)
  473. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  474. #else
  475. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  476. #endif
  477. #endif
  478. }
  479. void suicide()
  480. {
  481. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  482. SET_OUTPUT(SUICIDE_PIN);
  483. WRITE(SUICIDE_PIN, LOW);
  484. #endif
  485. }
  486. void servo_init()
  487. {
  488. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  489. servos[0].attach(SERVO0_PIN);
  490. #endif
  491. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  492. servos[1].attach(SERVO1_PIN);
  493. #endif
  494. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  495. servos[2].attach(SERVO2_PIN);
  496. #endif
  497. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  498. servos[3].attach(SERVO3_PIN);
  499. #endif
  500. #if (NUM_SERVOS >= 5)
  501. #error "TODO: enter initalisation code for more servos"
  502. #endif
  503. // Set position of Servo Endstops that are defined
  504. #ifdef SERVO_ENDSTOPS
  505. for(int8_t i = 0; i < 3; i++)
  506. {
  507. if(servo_endstops[i] > -1) {
  508. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  509. }
  510. }
  511. #endif
  512. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  513. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  514. servos[servo_endstops[Z_AXIS]].detach();
  515. #endif
  516. }
  517. static void lcd_language_menu();
  518. #ifdef MESH_BED_LEVELING
  519. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  520. #endif
  521. void setup()
  522. {
  523. setup_killpin();
  524. setup_powerhold();
  525. MYSERIAL.begin(BAUDRATE);
  526. SERIAL_PROTOCOLLNPGM("start");
  527. SERIAL_ECHO_START;
  528. // Check startup - does nothing if bootloader sets MCUSR to 0
  529. byte mcu = MCUSR;
  530. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  531. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  532. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  533. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  534. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  535. MCUSR=0;
  536. SERIAL_ECHORPGM(MSG_MARLIN);
  537. SERIAL_ECHOLNRPGM(VERSION_STRING);
  538. #ifdef STRING_VERSION_CONFIG_H
  539. #ifdef STRING_CONFIG_H_AUTHOR
  540. SERIAL_ECHO_START;
  541. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  542. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  543. SERIAL_ECHORPGM(MSG_AUTHOR);
  544. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  545. SERIAL_ECHOPGM("Compiled: ");
  546. SERIAL_ECHOLNPGM(__DATE__);
  547. #endif
  548. #endif
  549. SERIAL_ECHO_START;
  550. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  551. SERIAL_ECHO(freeMemory());
  552. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  553. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  554. for(int8_t i = 0; i < BUFSIZE; i++)
  555. {
  556. fromsd[i] = false;
  557. }
  558. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  559. Config_RetrieveSettings();
  560. tp_init(); // Initialize temperature loop
  561. plan_init(); // Initialize planner;
  562. watchdog_init();
  563. st_init(); // Initialize stepper, this enables interrupts!
  564. setup_photpin();
  565. servo_init();
  566. lcd_init();
  567. if(!READ(BTN_ENC) ){
  568. _delay_ms(1000);
  569. if(!READ(BTN_ENC) ){
  570. SET_OUTPUT(BEEPER);
  571. WRITE(BEEPER,HIGH);
  572. lcd_force_language_selection();
  573. while(!READ(BTN_ENC));
  574. WRITE(BEEPER,LOW);
  575. }
  576. }else{
  577. _delay_ms(1000); // wait 1sec to display the splash screen
  578. }
  579. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  580. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  581. #endif
  582. #ifdef DIGIPOT_I2C
  583. digipot_i2c_init();
  584. #endif
  585. #ifdef Z_PROBE_SLED
  586. pinMode(SERVO0_PIN, OUTPUT);
  587. digitalWrite(SERVO0_PIN, LOW); // turn it off
  588. #endif // Z_PROBE_SLED
  589. setup_homepin();
  590. }
  591. //unsigned char first_run_ever=1;
  592. //void first_time_menu();
  593. void loop()
  594. {
  595. if(buflen < (BUFSIZE-1))
  596. get_command();
  597. #ifdef SDSUPPORT
  598. card.checkautostart(false);
  599. #endif
  600. if(buflen)
  601. {
  602. #ifdef SDSUPPORT
  603. if(card.saving)
  604. {
  605. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  606. {
  607. card.write_command(cmdbuffer[bufindr]);
  608. if(card.logging)
  609. {
  610. process_commands();
  611. }
  612. else
  613. {
  614. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  615. }
  616. }
  617. else
  618. {
  619. card.closefile();
  620. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  621. }
  622. }
  623. else
  624. {
  625. process_commands();
  626. }
  627. #else
  628. process_commands();
  629. #endif //SDSUPPORT
  630. buflen = (buflen-1);
  631. bufindr = (bufindr + 1)%BUFSIZE;
  632. }
  633. //check heater every n milliseconds
  634. manage_heater();
  635. manage_inactivity();
  636. checkHitEndstops();
  637. lcd_update();
  638. }
  639. void get_command()
  640. {
  641. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  642. serial_char = MYSERIAL.read();
  643. if(serial_char == '\n' ||
  644. serial_char == '\r' ||
  645. (serial_char == ':' && comment_mode == false) ||
  646. serial_count >= (MAX_CMD_SIZE - 1) )
  647. {
  648. if(!serial_count) { //if empty line
  649. comment_mode = false; //for new command
  650. return;
  651. }
  652. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  653. if(!comment_mode){
  654. comment_mode = false; //for new command
  655. fromsd[bufindw] = false;
  656. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  657. {
  658. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  659. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  660. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  661. SERIAL_ERROR_START;
  662. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  663. SERIAL_ERRORLN(gcode_LastN);
  664. //Serial.println(gcode_N);
  665. FlushSerialRequestResend();
  666. serial_count = 0;
  667. return;
  668. }
  669. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  670. {
  671. byte checksum = 0;
  672. byte count = 0;
  673. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  674. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  675. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  676. SERIAL_ERROR_START;
  677. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  678. SERIAL_ERRORLN(gcode_LastN);
  679. FlushSerialRequestResend();
  680. serial_count = 0;
  681. return;
  682. }
  683. //if no errors, continue parsing
  684. }
  685. else
  686. {
  687. SERIAL_ERROR_START;
  688. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  689. SERIAL_ERRORLN(gcode_LastN);
  690. FlushSerialRequestResend();
  691. serial_count = 0;
  692. return;
  693. }
  694. gcode_LastN = gcode_N;
  695. //if no errors, continue parsing
  696. }
  697. else // if we don't receive 'N' but still see '*'
  698. {
  699. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  700. {
  701. SERIAL_ERROR_START;
  702. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  703. SERIAL_ERRORLN(gcode_LastN);
  704. serial_count = 0;
  705. return;
  706. }
  707. }
  708. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  709. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  710. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  711. case 0:
  712. case 1:
  713. case 2:
  714. case 3:
  715. if (Stopped == true) {
  716. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  717. LCD_MESSAGERPGM(MSG_STOPPED);
  718. }
  719. break;
  720. default:
  721. break;
  722. }
  723. }
  724. //If command was e-stop process now
  725. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  726. kill();
  727. bufindw = (bufindw + 1)%BUFSIZE;
  728. buflen += 1;
  729. }
  730. serial_count = 0; //clear buffer
  731. }
  732. else
  733. {
  734. if(serial_char == ';') comment_mode = true;
  735. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  736. }
  737. }
  738. #ifdef SDSUPPORT
  739. if(!card.sdprinting || serial_count!=0){
  740. return;
  741. }
  742. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  743. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  744. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  745. static bool stop_buffering=false;
  746. if(buflen==0) stop_buffering=false;
  747. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  748. int16_t n=card.get();
  749. serial_char = (char)n;
  750. if(serial_char == '\n' ||
  751. serial_char == '\r' ||
  752. (serial_char == '#' && comment_mode == false) ||
  753. (serial_char == ':' && comment_mode == false) ||
  754. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  755. {
  756. if(card.eof()){
  757. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  758. stoptime=millis();
  759. char time[30];
  760. unsigned long t=(stoptime-starttime)/1000;
  761. int hours, minutes;
  762. minutes=(t/60)%60;
  763. hours=t/60/60;
  764. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  765. SERIAL_ECHO_START;
  766. SERIAL_ECHOLN(time);
  767. lcd_setstatus(time);
  768. card.printingHasFinished();
  769. card.checkautostart(true);
  770. }
  771. if(serial_char=='#')
  772. stop_buffering=true;
  773. if(!serial_count)
  774. {
  775. comment_mode = false; //for new command
  776. return; //if empty line
  777. }
  778. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  779. // if(!comment_mode){
  780. fromsd[bufindw] = true;
  781. buflen += 1;
  782. bufindw = (bufindw + 1)%BUFSIZE;
  783. // }
  784. comment_mode = false; //for new command
  785. serial_count = 0; //clear buffer
  786. }
  787. else
  788. {
  789. if(serial_char == ';') comment_mode = true;
  790. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  791. }
  792. }
  793. #endif //SDSUPPORT
  794. }
  795. float code_value()
  796. {
  797. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  798. }
  799. long code_value_long()
  800. {
  801. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  802. }
  803. int16_t code_value_short() {
  804. return (int16_t)(strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  805. }
  806. bool code_seen(char code)
  807. {
  808. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  809. return (strchr_pointer != NULL); //Return True if a character was found
  810. }
  811. #define DEFINE_PGM_READ_ANY(type, reader) \
  812. static inline type pgm_read_any(const type *p) \
  813. { return pgm_read_##reader##_near(p); }
  814. DEFINE_PGM_READ_ANY(float, float);
  815. DEFINE_PGM_READ_ANY(signed char, byte);
  816. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  817. static const PROGMEM type array##_P[3] = \
  818. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  819. static inline type array(int axis) \
  820. { return pgm_read_any(&array##_P[axis]); }
  821. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  822. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  823. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  824. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  825. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  826. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  827. #ifdef DUAL_X_CARRIAGE
  828. #if EXTRUDERS == 1 || defined(COREXY) \
  829. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  830. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  831. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  832. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  833. #endif
  834. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  835. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  836. #endif
  837. #define DXC_FULL_CONTROL_MODE 0
  838. #define DXC_AUTO_PARK_MODE 1
  839. #define DXC_DUPLICATION_MODE 2
  840. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  841. static float x_home_pos(int extruder) {
  842. if (extruder == 0)
  843. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  844. else
  845. // In dual carriage mode the extruder offset provides an override of the
  846. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  847. // This allow soft recalibration of the second extruder offset position without firmware reflash
  848. // (through the M218 command).
  849. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  850. }
  851. static int x_home_dir(int extruder) {
  852. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  853. }
  854. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  855. static bool active_extruder_parked = false; // used in mode 1 & 2
  856. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  857. static unsigned long delayed_move_time = 0; // used in mode 1
  858. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  859. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  860. bool extruder_duplication_enabled = false; // used in mode 2
  861. #endif //DUAL_X_CARRIAGE
  862. static void axis_is_at_home(int axis) {
  863. #ifdef DUAL_X_CARRIAGE
  864. if (axis == X_AXIS) {
  865. if (active_extruder != 0) {
  866. current_position[X_AXIS] = x_home_pos(active_extruder);
  867. min_pos[X_AXIS] = X2_MIN_POS;
  868. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  869. return;
  870. }
  871. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  872. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  873. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  874. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  875. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  876. return;
  877. }
  878. }
  879. #endif
  880. #ifdef SCARA
  881. float homeposition[3];
  882. char i;
  883. if (axis < 2)
  884. {
  885. for (i=0; i<3; i++)
  886. {
  887. homeposition[i] = base_home_pos(i);
  888. }
  889. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  890. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  891. // Works out real Homeposition angles using inverse kinematics,
  892. // and calculates homing offset using forward kinematics
  893. calculate_delta(homeposition);
  894. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  895. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  896. for (i=0; i<2; i++)
  897. {
  898. delta[i] -= add_homing[i];
  899. }
  900. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homing[X_AXIS]);
  901. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homing[Y_AXIS]);
  902. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  903. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  904. calculate_SCARA_forward_Transform(delta);
  905. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  906. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  907. current_position[axis] = delta[axis];
  908. // SCARA home positions are based on configuration since the actual limits are determined by the
  909. // inverse kinematic transform.
  910. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  911. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  912. }
  913. else
  914. {
  915. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  916. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  917. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  918. }
  919. #else
  920. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  921. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  922. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  923. #endif
  924. }
  925. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  926. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  927. #ifdef ENABLE_AUTO_BED_LEVELING
  928. #ifdef AUTO_BED_LEVELING_GRID
  929. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  930. {
  931. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  932. planeNormal.debug("planeNormal");
  933. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  934. //bedLevel.debug("bedLevel");
  935. //plan_bed_level_matrix.debug("bed level before");
  936. //vector_3 uncorrected_position = plan_get_position_mm();
  937. //uncorrected_position.debug("position before");
  938. vector_3 corrected_position = plan_get_position();
  939. // corrected_position.debug("position after");
  940. current_position[X_AXIS] = corrected_position.x;
  941. current_position[Y_AXIS] = corrected_position.y;
  942. current_position[Z_AXIS] = corrected_position.z;
  943. // put the bed at 0 so we don't go below it.
  944. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  945. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  946. }
  947. #else // not AUTO_BED_LEVELING_GRID
  948. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  949. plan_bed_level_matrix.set_to_identity();
  950. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  951. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  952. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  953. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  954. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  955. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  956. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  957. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  958. vector_3 corrected_position = plan_get_position();
  959. current_position[X_AXIS] = corrected_position.x;
  960. current_position[Y_AXIS] = corrected_position.y;
  961. current_position[Z_AXIS] = corrected_position.z;
  962. // put the bed at 0 so we don't go below it.
  963. current_position[Z_AXIS] = zprobe_zoffset;
  964. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  965. }
  966. #endif // AUTO_BED_LEVELING_GRID
  967. static void run_z_probe() {
  968. plan_bed_level_matrix.set_to_identity();
  969. feedrate = homing_feedrate[Z_AXIS];
  970. // move down until you find the bed
  971. float zPosition = -10;
  972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  973. st_synchronize();
  974. // we have to let the planner know where we are right now as it is not where we said to go.
  975. zPosition = st_get_position_mm(Z_AXIS);
  976. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  977. // move up the retract distance
  978. zPosition += home_retract_mm(Z_AXIS);
  979. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  980. st_synchronize();
  981. // move back down slowly to find bed
  982. feedrate = homing_feedrate[Z_AXIS]/4;
  983. zPosition -= home_retract_mm(Z_AXIS) * 2;
  984. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  985. st_synchronize();
  986. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  987. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  988. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  989. }
  990. static void do_blocking_move_to(float x, float y, float z) {
  991. float oldFeedRate = feedrate;
  992. feedrate = homing_feedrate[Z_AXIS];
  993. current_position[Z_AXIS] = z;
  994. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  995. st_synchronize();
  996. feedrate = XY_TRAVEL_SPEED;
  997. current_position[X_AXIS] = x;
  998. current_position[Y_AXIS] = y;
  999. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1000. st_synchronize();
  1001. feedrate = oldFeedRate;
  1002. }
  1003. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1004. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1005. }
  1006. static void setup_for_endstop_move() {
  1007. saved_feedrate = feedrate;
  1008. saved_feedmultiply = feedmultiply;
  1009. feedmultiply = 100;
  1010. previous_millis_cmd = millis();
  1011. enable_endstops(true);
  1012. }
  1013. static void clean_up_after_endstop_move() {
  1014. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1015. enable_endstops(false);
  1016. #endif
  1017. feedrate = saved_feedrate;
  1018. feedmultiply = saved_feedmultiply;
  1019. previous_millis_cmd = millis();
  1020. }
  1021. static void engage_z_probe() {
  1022. // Engage Z Servo endstop if enabled
  1023. #ifdef SERVO_ENDSTOPS
  1024. if (servo_endstops[Z_AXIS] > -1) {
  1025. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1026. servos[servo_endstops[Z_AXIS]].attach(0);
  1027. #endif
  1028. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1029. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1030. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1031. servos[servo_endstops[Z_AXIS]].detach();
  1032. #endif
  1033. }
  1034. #endif
  1035. }
  1036. static void retract_z_probe() {
  1037. // Retract Z Servo endstop if enabled
  1038. #ifdef SERVO_ENDSTOPS
  1039. if (servo_endstops[Z_AXIS] > -1) {
  1040. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1041. servos[servo_endstops[Z_AXIS]].attach(0);
  1042. #endif
  1043. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1044. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1045. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1046. servos[servo_endstops[Z_AXIS]].detach();
  1047. #endif
  1048. }
  1049. #endif
  1050. }
  1051. /// Probe bed height at position (x,y), returns the measured z value
  1052. static float probe_pt(float x, float y, float z_before) {
  1053. // move to right place
  1054. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1055. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1056. #ifndef Z_PROBE_SLED
  1057. engage_z_probe(); // Engage Z Servo endstop if available
  1058. #endif // Z_PROBE_SLED
  1059. run_z_probe();
  1060. float measured_z = current_position[Z_AXIS];
  1061. #ifndef Z_PROBE_SLED
  1062. retract_z_probe();
  1063. #endif // Z_PROBE_SLED
  1064. SERIAL_PROTOCOLRPGM(MSG_BED);
  1065. SERIAL_PROTOCOLPGM(" x: ");
  1066. SERIAL_PROTOCOL(x);
  1067. SERIAL_PROTOCOLPGM(" y: ");
  1068. SERIAL_PROTOCOL(y);
  1069. SERIAL_PROTOCOLPGM(" z: ");
  1070. SERIAL_PROTOCOL(measured_z);
  1071. SERIAL_PROTOCOLPGM("\n");
  1072. return measured_z;
  1073. }
  1074. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1075. static void homeaxis(int axis) {
  1076. #define HOMEAXIS_DO(LETTER) \
  1077. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1078. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1079. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1080. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1081. 0) {
  1082. int axis_home_dir = home_dir(axis);
  1083. #ifdef DUAL_X_CARRIAGE
  1084. if (axis == X_AXIS)
  1085. axis_home_dir = x_home_dir(active_extruder);
  1086. #endif
  1087. current_position[axis] = 0;
  1088. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1089. #ifndef Z_PROBE_SLED
  1090. // Engage Servo endstop if enabled
  1091. #ifdef SERVO_ENDSTOPS
  1092. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1093. if (axis==Z_AXIS) {
  1094. engage_z_probe();
  1095. }
  1096. else
  1097. #endif
  1098. if (servo_endstops[axis] > -1) {
  1099. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1100. }
  1101. #endif
  1102. #endif // Z_PROBE_SLED
  1103. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1104. feedrate = homing_feedrate[axis];
  1105. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1106. st_synchronize();
  1107. current_position[axis] = 0;
  1108. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1109. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1110. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1111. st_synchronize();
  1112. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1113. #ifdef DELTA
  1114. feedrate = homing_feedrate[axis]/10;
  1115. #else
  1116. feedrate = homing_feedrate[axis]/2 ;
  1117. #endif
  1118. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1119. st_synchronize();
  1120. #ifdef DELTA
  1121. // retrace by the amount specified in endstop_adj
  1122. if (endstop_adj[axis] * axis_home_dir < 0) {
  1123. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1124. destination[axis] = endstop_adj[axis];
  1125. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1126. st_synchronize();
  1127. }
  1128. #endif
  1129. axis_is_at_home(axis);
  1130. destination[axis] = current_position[axis];
  1131. feedrate = 0.0;
  1132. endstops_hit_on_purpose();
  1133. axis_known_position[axis] = true;
  1134. // Retract Servo endstop if enabled
  1135. #ifdef SERVO_ENDSTOPS
  1136. if (servo_endstops[axis] > -1) {
  1137. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1138. }
  1139. #endif
  1140. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1141. #ifndef Z_PROBE_SLED
  1142. if (axis==Z_AXIS) retract_z_probe();
  1143. #endif
  1144. #endif
  1145. }
  1146. }
  1147. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1148. void refresh_cmd_timeout(void)
  1149. {
  1150. previous_millis_cmd = millis();
  1151. }
  1152. #ifdef FWRETRACT
  1153. void retract(bool retracting, bool swapretract = false) {
  1154. if(retracting && !retracted[active_extruder]) {
  1155. destination[X_AXIS]=current_position[X_AXIS];
  1156. destination[Y_AXIS]=current_position[Y_AXIS];
  1157. destination[Z_AXIS]=current_position[Z_AXIS];
  1158. destination[E_AXIS]=current_position[E_AXIS];
  1159. if (swapretract) {
  1160. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1161. } else {
  1162. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1163. }
  1164. plan_set_e_position(current_position[E_AXIS]);
  1165. float oldFeedrate = feedrate;
  1166. feedrate=retract_feedrate*60;
  1167. retracted[active_extruder]=true;
  1168. prepare_move();
  1169. current_position[Z_AXIS]-=retract_zlift;
  1170. #ifdef DELTA
  1171. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1172. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1173. #else
  1174. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1175. #endif
  1176. prepare_move();
  1177. feedrate = oldFeedrate;
  1178. } else if(!retracting && retracted[active_extruder]) {
  1179. destination[X_AXIS]=current_position[X_AXIS];
  1180. destination[Y_AXIS]=current_position[Y_AXIS];
  1181. destination[Z_AXIS]=current_position[Z_AXIS];
  1182. destination[E_AXIS]=current_position[E_AXIS];
  1183. current_position[Z_AXIS]+=retract_zlift;
  1184. #ifdef DELTA
  1185. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1186. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1187. #else
  1188. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1189. #endif
  1190. //prepare_move();
  1191. if (swapretract) {
  1192. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1193. } else {
  1194. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1195. }
  1196. plan_set_e_position(current_position[E_AXIS]);
  1197. float oldFeedrate = feedrate;
  1198. feedrate=retract_recover_feedrate*60;
  1199. retracted[active_extruder]=false;
  1200. prepare_move();
  1201. feedrate = oldFeedrate;
  1202. }
  1203. } //retract
  1204. #endif //FWRETRACT
  1205. #ifdef Z_PROBE_SLED
  1206. //
  1207. // Method to dock/undock a sled designed by Charles Bell.
  1208. //
  1209. // dock[in] If true, move to MAX_X and engage the electromagnet
  1210. // offset[in] The additional distance to move to adjust docking location
  1211. //
  1212. static void dock_sled(bool dock, int offset=0) {
  1213. int z_loc;
  1214. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1215. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1216. SERIAL_ECHO_START;
  1217. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1218. return;
  1219. }
  1220. if (dock) {
  1221. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1222. current_position[Y_AXIS],
  1223. current_position[Z_AXIS]);
  1224. // turn off magnet
  1225. digitalWrite(SERVO0_PIN, LOW);
  1226. } else {
  1227. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1228. z_loc = Z_RAISE_BEFORE_PROBING;
  1229. else
  1230. z_loc = current_position[Z_AXIS];
  1231. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1232. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1233. // turn on magnet
  1234. digitalWrite(SERVO0_PIN, HIGH);
  1235. }
  1236. }
  1237. #endif
  1238. void process_commands()
  1239. {
  1240. #ifdef FILAMENT_RUNOUT_SUPPORT
  1241. SET_INPUT(FR_SENS);
  1242. #endif
  1243. unsigned long codenum; //throw away variable
  1244. char *starpos = NULL;
  1245. #ifdef ENABLE_AUTO_BED_LEVELING
  1246. float x_tmp, y_tmp, z_tmp, real_z;
  1247. #endif
  1248. // PRUSA GCODES
  1249. if(code_seen('PRUSA')){
  1250. if(code_seen('Fir')){
  1251. SERIAL_PROTOCOLLN(FW_version);
  1252. } else if(code_seen('Rev')){
  1253. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1254. } else if(code_seen('Lang')) {
  1255. lcd_force_language_selection();
  1256. } else if(code_seen('Lz')) {
  1257. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1258. }
  1259. }
  1260. else if(code_seen('G'))
  1261. {
  1262. switch((int)code_value())
  1263. {
  1264. case 0: // G0 -> G1
  1265. case 1: // G1
  1266. if(Stopped == false) {
  1267. #ifdef FILAMENT_RUNOUT_SUPPORT
  1268. if(READ(FR_SENS)){
  1269. feedmultiplyBckp=feedmultiply;
  1270. float target[4];
  1271. float lastpos[4];
  1272. target[X_AXIS]=current_position[X_AXIS];
  1273. target[Y_AXIS]=current_position[Y_AXIS];
  1274. target[Z_AXIS]=current_position[Z_AXIS];
  1275. target[E_AXIS]=current_position[E_AXIS];
  1276. lastpos[X_AXIS]=current_position[X_AXIS];
  1277. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1278. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1279. lastpos[E_AXIS]=current_position[E_AXIS];
  1280. //retract by E
  1281. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1282. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1283. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1284. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1285. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1286. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1287. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1288. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1289. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1290. //finish moves
  1291. st_synchronize();
  1292. //disable extruder steppers so filament can be removed
  1293. disable_e0();
  1294. disable_e1();
  1295. disable_e2();
  1296. delay(100);
  1297. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1298. uint8_t cnt=0;
  1299. int counterBeep = 0;
  1300. lcd_wait_interact();
  1301. while(!lcd_clicked()){
  1302. cnt++;
  1303. manage_heater();
  1304. manage_inactivity(true);
  1305. //lcd_update();
  1306. if(cnt==0)
  1307. {
  1308. #if BEEPER > 0
  1309. if (counterBeep== 500){
  1310. counterBeep = 0;
  1311. }
  1312. SET_OUTPUT(BEEPER);
  1313. if (counterBeep== 0){
  1314. WRITE(BEEPER,HIGH);
  1315. }
  1316. if (counterBeep== 20){
  1317. WRITE(BEEPER,LOW);
  1318. }
  1319. counterBeep++;
  1320. #else
  1321. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1322. lcd_buzz(1000/6,100);
  1323. #else
  1324. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1325. #endif
  1326. #endif
  1327. }
  1328. }
  1329. WRITE(BEEPER,LOW);
  1330. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1331. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1332. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1333. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1334. lcd_change_fil_state = 0;
  1335. lcd_loading_filament();
  1336. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1337. lcd_change_fil_state = 0;
  1338. lcd_alright();
  1339. switch(lcd_change_fil_state){
  1340. case 2:
  1341. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1342. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1343. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1344. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1345. lcd_loading_filament();
  1346. break;
  1347. case 3:
  1348. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1349. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1350. lcd_loading_color();
  1351. break;
  1352. default:
  1353. lcd_change_success();
  1354. break;
  1355. }
  1356. }
  1357. target[E_AXIS]+= 5;
  1358. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1359. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1360. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1361. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1362. //plan_set_e_position(current_position[E_AXIS]);
  1363. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1364. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1365. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1366. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1367. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1368. plan_set_e_position(lastpos[E_AXIS]);
  1369. feedmultiply=feedmultiplyBckp;
  1370. char cmd[9];
  1371. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1372. enquecommand(cmd);
  1373. }
  1374. #endif
  1375. get_coordinates(); // For X Y Z E F
  1376. #ifdef FWRETRACT
  1377. if(autoretract_enabled)
  1378. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1379. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1380. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1381. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1382. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1383. retract(!retracted);
  1384. return;
  1385. }
  1386. }
  1387. #endif //FWRETRACT
  1388. prepare_move();
  1389. //ClearToSend();
  1390. }
  1391. break;
  1392. #ifndef SCARA //disable arc support
  1393. case 2: // G2 - CW ARC
  1394. if(Stopped == false) {
  1395. get_arc_coordinates();
  1396. prepare_arc_move(true);
  1397. }
  1398. break;
  1399. case 3: // G3 - CCW ARC
  1400. if(Stopped == false) {
  1401. get_arc_coordinates();
  1402. prepare_arc_move(false);
  1403. }
  1404. break;
  1405. #endif
  1406. case 4: // G4 dwell
  1407. LCD_MESSAGERPGM(MSG_DWELL);
  1408. codenum = 0;
  1409. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1410. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1411. st_synchronize();
  1412. codenum += millis(); // keep track of when we started waiting
  1413. previous_millis_cmd = millis();
  1414. while(millis() < codenum) {
  1415. manage_heater();
  1416. manage_inactivity();
  1417. lcd_update();
  1418. }
  1419. break;
  1420. #ifdef FWRETRACT
  1421. case 10: // G10 retract
  1422. #if EXTRUDERS > 1
  1423. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1424. retract(true,retracted_swap[active_extruder]);
  1425. #else
  1426. retract(true);
  1427. #endif
  1428. break;
  1429. case 11: // G11 retract_recover
  1430. #if EXTRUDERS > 1
  1431. retract(false,retracted_swap[active_extruder]);
  1432. #else
  1433. retract(false);
  1434. #endif
  1435. break;
  1436. #endif //FWRETRACT
  1437. case 28: //G28 Home all Axis one at a time
  1438. #ifdef ENABLE_AUTO_BED_LEVELING
  1439. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1440. #endif //ENABLE_AUTO_BED_LEVELING
  1441. // For mesh bed leveling deactivate the matrix temporarily
  1442. #ifdef MESH_BED_LEVELING
  1443. mbl.active = 0;
  1444. #endif
  1445. saved_feedrate = feedrate;
  1446. saved_feedmultiply = feedmultiply;
  1447. feedmultiply = 100;
  1448. previous_millis_cmd = millis();
  1449. enable_endstops(true);
  1450. for(int8_t i=0; i < NUM_AXIS; i++) {
  1451. destination[i] = current_position[i];
  1452. }
  1453. feedrate = 0.0;
  1454. #ifdef DELTA
  1455. // A delta can only safely home all axis at the same time
  1456. // all axis have to home at the same time
  1457. // Move all carriages up together until the first endstop is hit.
  1458. current_position[X_AXIS] = 0;
  1459. current_position[Y_AXIS] = 0;
  1460. current_position[Z_AXIS] = 0;
  1461. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1462. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1463. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1464. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1465. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1466. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1467. st_synchronize();
  1468. endstops_hit_on_purpose();
  1469. current_position[X_AXIS] = destination[X_AXIS];
  1470. current_position[Y_AXIS] = destination[Y_AXIS];
  1471. current_position[Z_AXIS] = destination[Z_AXIS];
  1472. // take care of back off and rehome now we are all at the top
  1473. HOMEAXIS(X);
  1474. HOMEAXIS(Y);
  1475. HOMEAXIS(Z);
  1476. calculate_delta(current_position);
  1477. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1478. #else // NOT DELTA
  1479. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1480. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1481. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1482. HOMEAXIS(Z);
  1483. }
  1484. #endif
  1485. #ifdef QUICK_HOME
  1486. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1487. {
  1488. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1489. #ifndef DUAL_X_CARRIAGE
  1490. int x_axis_home_dir = home_dir(X_AXIS);
  1491. #else
  1492. int x_axis_home_dir = x_home_dir(active_extruder);
  1493. extruder_duplication_enabled = false;
  1494. #endif
  1495. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1496. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1497. feedrate = homing_feedrate[X_AXIS];
  1498. if(homing_feedrate[Y_AXIS]<feedrate)
  1499. feedrate = homing_feedrate[Y_AXIS];
  1500. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1501. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1502. } else {
  1503. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1504. }
  1505. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1506. st_synchronize();
  1507. axis_is_at_home(X_AXIS);
  1508. axis_is_at_home(Y_AXIS);
  1509. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1510. destination[X_AXIS] = current_position[X_AXIS];
  1511. destination[Y_AXIS] = current_position[Y_AXIS];
  1512. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1513. feedrate = 0.0;
  1514. st_synchronize();
  1515. endstops_hit_on_purpose();
  1516. current_position[X_AXIS] = destination[X_AXIS];
  1517. current_position[Y_AXIS] = destination[Y_AXIS];
  1518. #ifndef SCARA
  1519. current_position[Z_AXIS] = destination[Z_AXIS];
  1520. #endif
  1521. }
  1522. #endif
  1523. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1524. {
  1525. #ifdef DUAL_X_CARRIAGE
  1526. int tmp_extruder = active_extruder;
  1527. extruder_duplication_enabled = false;
  1528. active_extruder = !active_extruder;
  1529. HOMEAXIS(X);
  1530. inactive_extruder_x_pos = current_position[X_AXIS];
  1531. active_extruder = tmp_extruder;
  1532. HOMEAXIS(X);
  1533. // reset state used by the different modes
  1534. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1535. delayed_move_time = 0;
  1536. active_extruder_parked = true;
  1537. #else
  1538. HOMEAXIS(X);
  1539. #endif
  1540. }
  1541. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1542. HOMEAXIS(Y);
  1543. }
  1544. if(code_seen(axis_codes[X_AXIS]))
  1545. {
  1546. if(code_value_long() != 0) {
  1547. #ifdef SCARA
  1548. current_position[X_AXIS]=code_value();
  1549. #else
  1550. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1551. #endif
  1552. }
  1553. }
  1554. if(code_seen(axis_codes[Y_AXIS])) {
  1555. if(code_value_long() != 0) {
  1556. #ifdef SCARA
  1557. current_position[Y_AXIS]=code_value();
  1558. #else
  1559. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1560. #endif
  1561. }
  1562. }
  1563. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1564. #ifndef Z_SAFE_HOMING
  1565. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1566. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1567. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1568. feedrate = max_feedrate[Z_AXIS];
  1569. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1570. st_synchronize();
  1571. #endif
  1572. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1573. destination[X_AXIS] = MESH_MIN_X - X_PROBE_OFFSET_FROM_EXTRUDER;
  1574. destination[Y_AXIS] = MESH_MIN_Y - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1575. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1576. feedrate = homing_feedrate[Z_AXIS]/10;
  1577. current_position[Z_AXIS] = 0;
  1578. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1579. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1580. st_synchronize();
  1581. current_position[X_AXIS] = destination[X_AXIS];
  1582. current_position[Y_AXIS] = destination[Y_AXIS];
  1583. HOMEAXIS(Z);
  1584. #else
  1585. HOMEAXIS(Z);
  1586. #endif
  1587. }
  1588. #else // Z Safe mode activated.
  1589. if(home_all_axis) {
  1590. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1591. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1592. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1593. feedrate = XY_TRAVEL_SPEED/60;
  1594. current_position[Z_AXIS] = 0;
  1595. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1596. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1597. st_synchronize();
  1598. current_position[X_AXIS] = destination[X_AXIS];
  1599. current_position[Y_AXIS] = destination[Y_AXIS];
  1600. HOMEAXIS(Z);
  1601. }
  1602. // Let's see if X and Y are homed and probe is inside bed area.
  1603. if(code_seen(axis_codes[Z_AXIS])) {
  1604. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1605. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1606. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1607. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1608. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1609. current_position[Z_AXIS] = 0;
  1610. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1611. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1612. feedrate = max_feedrate[Z_AXIS];
  1613. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1614. st_synchronize();
  1615. HOMEAXIS(Z);
  1616. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1617. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1618. SERIAL_ECHO_START;
  1619. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1620. } else {
  1621. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1622. SERIAL_ECHO_START;
  1623. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1624. }
  1625. }
  1626. #endif
  1627. #endif
  1628. if(code_seen(axis_codes[Z_AXIS])) {
  1629. if(code_value_long() != 0) {
  1630. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1631. }
  1632. }
  1633. #ifdef ENABLE_AUTO_BED_LEVELING
  1634. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1635. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1636. }
  1637. #endif
  1638. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1639. #endif // else DELTA
  1640. #ifdef SCARA
  1641. calculate_delta(current_position);
  1642. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1643. #endif // SCARA
  1644. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1645. enable_endstops(false);
  1646. #endif
  1647. feedrate = saved_feedrate;
  1648. feedmultiply = saved_feedmultiply;
  1649. previous_millis_cmd = millis();
  1650. endstops_hit_on_purpose();
  1651. #ifndef MESH_BED_LEVELING
  1652. if(card.sdprinting) {
  1653. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoad[2]);
  1654. if(babystepLoad[2] != 0){
  1655. lcd_adjust_z();
  1656. }
  1657. }
  1658. #endif
  1659. break;
  1660. #ifdef ENABLE_AUTO_BED_LEVELING
  1661. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1662. {
  1663. #if Z_MIN_PIN == -1
  1664. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1665. #endif
  1666. // Prevent user from running a G29 without first homing in X and Y
  1667. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1668. {
  1669. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1670. SERIAL_ECHO_START;
  1671. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1672. break; // abort G29, since we don't know where we are
  1673. }
  1674. #ifdef Z_PROBE_SLED
  1675. dock_sled(false);
  1676. #endif // Z_PROBE_SLED
  1677. st_synchronize();
  1678. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1679. //vector_3 corrected_position = plan_get_position_mm();
  1680. //corrected_position.debug("position before G29");
  1681. plan_bed_level_matrix.set_to_identity();
  1682. vector_3 uncorrected_position = plan_get_position();
  1683. //uncorrected_position.debug("position durring G29");
  1684. current_position[X_AXIS] = uncorrected_position.x;
  1685. current_position[Y_AXIS] = uncorrected_position.y;
  1686. current_position[Z_AXIS] = uncorrected_position.z;
  1687. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1688. setup_for_endstop_move();
  1689. feedrate = homing_feedrate[Z_AXIS];
  1690. #ifdef AUTO_BED_LEVELING_GRID
  1691. // probe at the points of a lattice grid
  1692. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1693. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1694. // solve the plane equation ax + by + d = z
  1695. // A is the matrix with rows [x y 1] for all the probed points
  1696. // B is the vector of the Z positions
  1697. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1698. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1699. // "A" matrix of the linear system of equations
  1700. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1701. // "B" vector of Z points
  1702. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1703. int probePointCounter = 0;
  1704. bool zig = true;
  1705. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1706. {
  1707. int xProbe, xInc;
  1708. if (zig)
  1709. {
  1710. xProbe = LEFT_PROBE_BED_POSITION;
  1711. //xEnd = RIGHT_PROBE_BED_POSITION;
  1712. xInc = xGridSpacing;
  1713. zig = false;
  1714. } else // zag
  1715. {
  1716. xProbe = RIGHT_PROBE_BED_POSITION;
  1717. //xEnd = LEFT_PROBE_BED_POSITION;
  1718. xInc = -xGridSpacing;
  1719. zig = true;
  1720. }
  1721. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1722. {
  1723. float z_before;
  1724. if (probePointCounter == 0)
  1725. {
  1726. // raise before probing
  1727. z_before = Z_RAISE_BEFORE_PROBING;
  1728. } else
  1729. {
  1730. // raise extruder
  1731. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1732. }
  1733. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1734. eqnBVector[probePointCounter] = measured_z;
  1735. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1736. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1737. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1738. probePointCounter++;
  1739. xProbe += xInc;
  1740. }
  1741. }
  1742. clean_up_after_endstop_move();
  1743. // solve lsq problem
  1744. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1745. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1746. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1747. SERIAL_PROTOCOLPGM(" b: ");
  1748. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1749. SERIAL_PROTOCOLPGM(" d: ");
  1750. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1751. set_bed_level_equation_lsq(plane_equation_coefficients);
  1752. free(plane_equation_coefficients);
  1753. #else // AUTO_BED_LEVELING_GRID not defined
  1754. // Probe at 3 arbitrary points
  1755. // probe 1
  1756. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1757. // probe 2
  1758. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1759. // probe 3
  1760. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1761. clean_up_after_endstop_move();
  1762. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1763. #endif // AUTO_BED_LEVELING_GRID
  1764. st_synchronize();
  1765. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1766. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1767. // When the bed is uneven, this height must be corrected.
  1768. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1769. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1770. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1771. z_tmp = current_position[Z_AXIS];
  1772. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1773. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1774. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1775. #ifdef Z_PROBE_SLED
  1776. dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
  1777. #endif // Z_PROBE_SLED
  1778. }
  1779. break;
  1780. #ifndef Z_PROBE_SLED
  1781. case 30: // G30 Single Z Probe
  1782. {
  1783. engage_z_probe(); // Engage Z Servo endstop if available
  1784. st_synchronize();
  1785. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1786. setup_for_endstop_move();
  1787. feedrate = homing_feedrate[Z_AXIS];
  1788. run_z_probe();
  1789. SERIAL_PROTOCOLPGM(MSG_BED);
  1790. SERIAL_PROTOCOLPGM(" X: ");
  1791. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1792. SERIAL_PROTOCOLPGM(" Y: ");
  1793. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1794. SERIAL_PROTOCOLPGM(" Z: ");
  1795. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1796. SERIAL_PROTOCOLPGM("\n");
  1797. clean_up_after_endstop_move();
  1798. retract_z_probe(); // Retract Z Servo endstop if available
  1799. }
  1800. break;
  1801. #else
  1802. case 31: // dock the sled
  1803. dock_sled(true);
  1804. break;
  1805. case 32: // undock the sled
  1806. dock_sled(false);
  1807. break;
  1808. #endif // Z_PROBE_SLED
  1809. #endif // ENABLE_AUTO_BED_LEVELING
  1810. #ifdef MESH_BED_LEVELING
  1811. /**
  1812. * G80: Mesh-based Z probe, probes a grid and produces a
  1813. * mesh to compensate for variable bed height
  1814. *
  1815. * The S0 report the points as below
  1816. *
  1817. * +----> X-axis
  1818. * |
  1819. * |
  1820. * v Y-axis
  1821. *
  1822. */
  1823. case 80:
  1824. {
  1825. // Firstly check if we know where we are
  1826. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1827. // We don't know where we are!!! HOME!
  1828. enquecommand_P((PSTR("G28")));
  1829. enquecommand_P((PSTR("G80")));
  1830. break;
  1831. }
  1832. mbl.reset();
  1833. // Cycle through all points and probe them
  1834. current_position[X_AXIS] = MESH_MIN_X - X_PROBE_OFFSET_FROM_EXTRUDER;
  1835. current_position[Y_AXIS] = MESH_MIN_Y - Y_PROBE_OFFSET_FROM_EXTRUDER;
  1836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  1837. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  1839. st_synchronize();
  1840. int mesh_point = 0;
  1841. int ix = 0;
  1842. int iy = 0;
  1843. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  1844. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  1845. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  1846. while (!(mesh_point == ((MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS)) )) {
  1847. // Move Z to proper distance
  1848. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  1850. st_synchronize();
  1851. // Get cords of measuring point
  1852. ix = mesh_point % MESH_NUM_X_POINTS;
  1853. iy = mesh_point / MESH_NUM_X_POINTS;
  1854. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // Zig zag
  1855. current_position[X_AXIS] = mbl.get_x(ix);
  1856. current_position[Y_AXIS] = mbl.get_y(iy);
  1857. current_position[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  1858. current_position[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  1859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  1860. st_synchronize();
  1861. // Go down until endstop is hit
  1862. while ((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING ) == 0) {
  1863. current_position[Z_AXIS] -= MBL_Z_STEP;
  1864. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_PROBE_FEEDRATE, active_extruder);
  1865. st_synchronize();
  1866. delay(1);
  1867. }
  1868. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1869. mesh_point++;
  1870. }
  1871. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  1873. mbl.active = 1;
  1874. current_position[X_AXIS] = X_MIN_POS+0.2;
  1875. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  1876. current_position[Z_AXIS] = Z_MIN_POS;
  1877. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  1878. st_synchronize();
  1879. }
  1880. break;
  1881. case 81:
  1882. if (mbl.active) {
  1883. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1884. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1885. SERIAL_PROTOCOLPGM(",");
  1886. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1887. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1888. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  1889. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1890. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  1891. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1892. SERIAL_PROTOCOLPGM(" ");
  1893. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1894. }
  1895. SERIAL_PROTOCOLPGM("\n");
  1896. }
  1897. }
  1898. else
  1899. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1900. break;
  1901. #endif // ENABLE_MESH_BED_LEVELING
  1902. case 90: // G90
  1903. relative_mode = false;
  1904. break;
  1905. case 91: // G91
  1906. relative_mode = true;
  1907. break;
  1908. case 92: // G92
  1909. if(!code_seen(axis_codes[E_AXIS]))
  1910. st_synchronize();
  1911. for(int8_t i=0; i < NUM_AXIS; i++) {
  1912. if(code_seen(axis_codes[i])) {
  1913. if(i == E_AXIS) {
  1914. current_position[i] = code_value();
  1915. plan_set_e_position(current_position[E_AXIS]);
  1916. }
  1917. else {
  1918. #ifdef SCARA
  1919. if (i == X_AXIS || i == Y_AXIS) {
  1920. current_position[i] = code_value();
  1921. }
  1922. else {
  1923. current_position[i] = code_value()+add_homing[i];
  1924. }
  1925. #else
  1926. current_position[i] = code_value()+add_homing[i];
  1927. #endif
  1928. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1929. }
  1930. }
  1931. }
  1932. break;
  1933. }
  1934. }
  1935. else if(code_seen('M'))
  1936. {
  1937. switch( (int)code_value() )
  1938. {
  1939. #ifdef ULTIPANEL
  1940. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1941. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1942. {
  1943. char *src = strchr_pointer + 2;
  1944. codenum = 0;
  1945. bool hasP = false, hasS = false;
  1946. if (code_seen('P')) {
  1947. codenum = code_value(); // milliseconds to wait
  1948. hasP = codenum > 0;
  1949. }
  1950. if (code_seen('S')) {
  1951. codenum = code_value() * 1000; // seconds to wait
  1952. hasS = codenum > 0;
  1953. }
  1954. starpos = strchr(src, '*');
  1955. if (starpos != NULL) *(starpos) = '\0';
  1956. while (*src == ' ') ++src;
  1957. if (!hasP && !hasS && *src != '\0') {
  1958. lcd_setstatus(src);
  1959. } else {
  1960. LCD_MESSAGERPGM(MSG_USERWAIT);
  1961. }
  1962. lcd_ignore_click();
  1963. st_synchronize();
  1964. previous_millis_cmd = millis();
  1965. if (codenum > 0){
  1966. codenum += millis(); // keep track of when we started waiting
  1967. while(millis() < codenum && !lcd_clicked()){
  1968. manage_heater();
  1969. manage_inactivity();
  1970. lcd_update();
  1971. }
  1972. lcd_ignore_click(false);
  1973. }else{
  1974. if (!lcd_detected())
  1975. break;
  1976. while(!lcd_clicked()){
  1977. manage_heater();
  1978. manage_inactivity();
  1979. lcd_update();
  1980. }
  1981. }
  1982. if (IS_SD_PRINTING)
  1983. LCD_MESSAGERPGM(MSG_RESUMING);
  1984. else
  1985. LCD_MESSAGERPGM(WELCOME_MSG);
  1986. }
  1987. break;
  1988. #endif
  1989. case 17:
  1990. LCD_MESSAGERPGM(MSG_NO_MOVE);
  1991. enable_x();
  1992. enable_y();
  1993. enable_z();
  1994. enable_e0();
  1995. enable_e1();
  1996. enable_e2();
  1997. break;
  1998. #ifdef SDSUPPORT
  1999. case 20: // M20 - list SD card
  2000. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2001. card.ls();
  2002. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2003. break;
  2004. case 21: // M21 - init SD card
  2005. card.initsd();
  2006. break;
  2007. case 22: //M22 - release SD card
  2008. card.release();
  2009. break;
  2010. case 23: //M23 - Select file
  2011. starpos = (strchr(strchr_pointer + 4,'*'));
  2012. if(starpos!=NULL)
  2013. *(starpos)='\0';
  2014. card.openFile(strchr_pointer + 4,true);
  2015. break;
  2016. case 24: //M24 - Start SD print
  2017. card.startFileprint();
  2018. starttime=millis();
  2019. break;
  2020. case 25: //M25 - Pause SD print
  2021. card.pauseSDPrint();
  2022. break;
  2023. case 26: //M26 - Set SD index
  2024. if(card.cardOK && code_seen('S')) {
  2025. card.setIndex(code_value_long());
  2026. }
  2027. break;
  2028. case 27: //M27 - Get SD status
  2029. card.getStatus();
  2030. break;
  2031. case 28: //M28 - Start SD write
  2032. starpos = (strchr(strchr_pointer + 4,'*'));
  2033. if(starpos != NULL){
  2034. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2035. strchr_pointer = strchr(npos,' ') + 1;
  2036. *(starpos) = '\0';
  2037. }
  2038. card.openFile(strchr_pointer+4,false);
  2039. break;
  2040. case 29: //M29 - Stop SD write
  2041. //processed in write to file routine above
  2042. //card,saving = false;
  2043. break;
  2044. case 30: //M30 <filename> Delete File
  2045. if (card.cardOK){
  2046. card.closefile();
  2047. starpos = (strchr(strchr_pointer + 4,'*'));
  2048. if(starpos != NULL){
  2049. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2050. strchr_pointer = strchr(npos,' ') + 1;
  2051. *(starpos) = '\0';
  2052. }
  2053. card.removeFile(strchr_pointer + 4);
  2054. }
  2055. break;
  2056. case 32: //M32 - Select file and start SD print
  2057. {
  2058. if(card.sdprinting) {
  2059. st_synchronize();
  2060. }
  2061. starpos = (strchr(strchr_pointer + 4,'*'));
  2062. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2063. if(namestartpos==NULL)
  2064. {
  2065. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2066. }
  2067. else
  2068. namestartpos++; //to skip the '!'
  2069. if(starpos!=NULL)
  2070. *(starpos)='\0';
  2071. bool call_procedure=(code_seen('P'));
  2072. if(strchr_pointer>namestartpos)
  2073. call_procedure=false; //false alert, 'P' found within filename
  2074. if( card.cardOK )
  2075. {
  2076. card.openFile(namestartpos,true,!call_procedure);
  2077. if(code_seen('S'))
  2078. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2079. card.setIndex(code_value_long());
  2080. card.startFileprint();
  2081. if(!call_procedure)
  2082. starttime=millis(); //procedure calls count as normal print time.
  2083. }
  2084. } break;
  2085. case 928: //M928 - Start SD write
  2086. starpos = (strchr(strchr_pointer + 5,'*'));
  2087. if(starpos != NULL){
  2088. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2089. strchr_pointer = strchr(npos,' ') + 1;
  2090. *(starpos) = '\0';
  2091. }
  2092. card.openLogFile(strchr_pointer+5);
  2093. break;
  2094. #endif //SDSUPPORT
  2095. case 31: //M31 take time since the start of the SD print or an M109 command
  2096. {
  2097. stoptime=millis();
  2098. char time[30];
  2099. unsigned long t=(stoptime-starttime)/1000;
  2100. int sec,min;
  2101. min=t/60;
  2102. sec=t%60;
  2103. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2104. SERIAL_ECHO_START;
  2105. SERIAL_ECHOLN(time);
  2106. lcd_setstatus(time);
  2107. autotempShutdown();
  2108. }
  2109. break;
  2110. case 42: //M42 -Change pin status via gcode
  2111. if (code_seen('S'))
  2112. {
  2113. int pin_status = code_value();
  2114. int pin_number = LED_PIN;
  2115. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2116. pin_number = code_value();
  2117. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2118. {
  2119. if (sensitive_pins[i] == pin_number)
  2120. {
  2121. pin_number = -1;
  2122. break;
  2123. }
  2124. }
  2125. #if defined(FAN_PIN) && FAN_PIN > -1
  2126. if (pin_number == FAN_PIN)
  2127. fanSpeed = pin_status;
  2128. #endif
  2129. if (pin_number > -1)
  2130. {
  2131. pinMode(pin_number, OUTPUT);
  2132. digitalWrite(pin_number, pin_status);
  2133. analogWrite(pin_number, pin_status);
  2134. }
  2135. }
  2136. break;
  2137. // M48 Z-Probe repeatability measurement function.
  2138. //
  2139. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
  2140. //
  2141. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2142. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2143. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2144. // regenerated.
  2145. //
  2146. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2147. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2148. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2149. //
  2150. #ifdef ENABLE_AUTO_BED_LEVELING
  2151. #ifdef Z_PROBE_REPEATABILITY_TEST
  2152. case 48: // M48 Z-Probe repeatability
  2153. {
  2154. #if Z_MIN_PIN == -1
  2155. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2156. #endif
  2157. double sum=0.0;
  2158. double mean=0.0;
  2159. double sigma=0.0;
  2160. double sample_set[50];
  2161. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ;
  2162. double X_current, Y_current, Z_current;
  2163. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2164. if (code_seen('V') || code_seen('v')) {
  2165. verbose_level = code_value();
  2166. if (verbose_level<0 || verbose_level>4 ) {
  2167. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2168. goto Sigma_Exit;
  2169. }
  2170. }
  2171. if (verbose_level > 0) {
  2172. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2173. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2174. }
  2175. if (code_seen('n')) {
  2176. n_samples = code_value();
  2177. if (n_samples<4 || n_samples>50 ) {
  2178. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2179. goto Sigma_Exit;
  2180. }
  2181. }
  2182. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2183. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2184. Z_current = st_get_position_mm(Z_AXIS);
  2185. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2186. ext_position = st_get_position_mm(E_AXIS);
  2187. if (code_seen('E') || code_seen('e') )
  2188. engage_probe_for_each_reading++;
  2189. if (code_seen('X') || code_seen('x') ) {
  2190. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2191. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2192. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2193. goto Sigma_Exit;
  2194. }
  2195. }
  2196. if (code_seen('Y') || code_seen('y') ) {
  2197. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2198. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2199. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2200. goto Sigma_Exit;
  2201. }
  2202. }
  2203. if (code_seen('L') || code_seen('l') ) {
  2204. n_legs = code_value();
  2205. if ( n_legs==1 )
  2206. n_legs = 2;
  2207. if ( n_legs<0 || n_legs>15 ) {
  2208. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2209. goto Sigma_Exit;
  2210. }
  2211. }
  2212. //
  2213. // Do all the preliminary setup work. First raise the probe.
  2214. //
  2215. st_synchronize();
  2216. plan_bed_level_matrix.set_to_identity();
  2217. plan_buffer_line( X_current, Y_current, Z_start_location,
  2218. ext_position,
  2219. homing_feedrate[Z_AXIS]/60,
  2220. active_extruder);
  2221. st_synchronize();
  2222. //
  2223. // Now get everything to the specified probe point So we can safely do a probe to
  2224. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2225. // use that as a starting point for each probe.
  2226. //
  2227. if (verbose_level > 2)
  2228. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2229. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2230. ext_position,
  2231. homing_feedrate[X_AXIS]/60,
  2232. active_extruder);
  2233. st_synchronize();
  2234. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2235. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2236. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2237. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2238. //
  2239. // OK, do the inital probe to get us close to the bed.
  2240. // Then retrace the right amount and use that in subsequent probes
  2241. //
  2242. engage_z_probe();
  2243. setup_for_endstop_move();
  2244. run_z_probe();
  2245. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2246. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2247. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2248. ext_position,
  2249. homing_feedrate[X_AXIS]/60,
  2250. active_extruder);
  2251. st_synchronize();
  2252. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2253. if (engage_probe_for_each_reading)
  2254. retract_z_probe();
  2255. for( n=0; n<n_samples; n++) {
  2256. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2257. if ( n_legs) {
  2258. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2259. int rotational_direction, l;
  2260. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2261. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2262. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2263. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2264. //SERIAL_ECHOPAIR(" theta: ",theta);
  2265. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2266. //SERIAL_PROTOCOLLNPGM("");
  2267. for( l=0; l<n_legs-1; l++) {
  2268. if (rotational_direction==1)
  2269. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2270. else
  2271. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2272. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2273. if ( radius<0.0 )
  2274. radius = -radius;
  2275. X_current = X_probe_location + cos(theta) * radius;
  2276. Y_current = Y_probe_location + sin(theta) * radius;
  2277. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2278. X_current = X_MIN_POS;
  2279. if ( X_current>X_MAX_POS)
  2280. X_current = X_MAX_POS;
  2281. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2282. Y_current = Y_MIN_POS;
  2283. if ( Y_current>Y_MAX_POS)
  2284. Y_current = Y_MAX_POS;
  2285. if (verbose_level>3 ) {
  2286. SERIAL_ECHOPAIR("x: ", X_current);
  2287. SERIAL_ECHOPAIR("y: ", Y_current);
  2288. SERIAL_PROTOCOLLNPGM("");
  2289. }
  2290. do_blocking_move_to( X_current, Y_current, Z_current );
  2291. }
  2292. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2293. }
  2294. if (engage_probe_for_each_reading) {
  2295. engage_z_probe();
  2296. delay(1000);
  2297. }
  2298. setup_for_endstop_move();
  2299. run_z_probe();
  2300. sample_set[n] = current_position[Z_AXIS];
  2301. //
  2302. // Get the current mean for the data points we have so far
  2303. //
  2304. sum=0.0;
  2305. for( j=0; j<=n; j++) {
  2306. sum = sum + sample_set[j];
  2307. }
  2308. mean = sum / (double (n+1));
  2309. //
  2310. // Now, use that mean to calculate the standard deviation for the
  2311. // data points we have so far
  2312. //
  2313. sum=0.0;
  2314. for( j=0; j<=n; j++) {
  2315. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2316. }
  2317. sigma = sqrt( sum / (double (n+1)) );
  2318. if (verbose_level > 1) {
  2319. SERIAL_PROTOCOL(n+1);
  2320. SERIAL_PROTOCOL(" of ");
  2321. SERIAL_PROTOCOL(n_samples);
  2322. SERIAL_PROTOCOLPGM(" z: ");
  2323. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2324. }
  2325. if (verbose_level > 2) {
  2326. SERIAL_PROTOCOL(" mean: ");
  2327. SERIAL_PROTOCOL_F(mean,6);
  2328. SERIAL_PROTOCOL(" sigma: ");
  2329. SERIAL_PROTOCOL_F(sigma,6);
  2330. }
  2331. if (verbose_level > 0)
  2332. SERIAL_PROTOCOLPGM("\n");
  2333. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2334. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2335. st_synchronize();
  2336. if (engage_probe_for_each_reading) {
  2337. retract_z_probe();
  2338. delay(1000);
  2339. }
  2340. }
  2341. retract_z_probe();
  2342. delay(1000);
  2343. clean_up_after_endstop_move();
  2344. // enable_endstops(true);
  2345. if (verbose_level > 0) {
  2346. SERIAL_PROTOCOLPGM("Mean: ");
  2347. SERIAL_PROTOCOL_F(mean, 6);
  2348. SERIAL_PROTOCOLPGM("\n");
  2349. }
  2350. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2351. SERIAL_PROTOCOL_F(sigma, 6);
  2352. SERIAL_PROTOCOLPGM("\n\n");
  2353. Sigma_Exit:
  2354. break;
  2355. }
  2356. #endif // Z_PROBE_REPEATABILITY_TEST
  2357. #endif // ENABLE_AUTO_BED_LEVELING
  2358. case 104: // M104
  2359. if(setTargetedHotend(104)){
  2360. break;
  2361. }
  2362. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2363. #ifdef DUAL_X_CARRIAGE
  2364. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2365. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2366. #endif
  2367. setWatch();
  2368. break;
  2369. case 112: // M112 -Emergency Stop
  2370. kill();
  2371. break;
  2372. case 140: // M140 set bed temp
  2373. if (code_seen('S')) setTargetBed(code_value());
  2374. break;
  2375. case 105 : // M105
  2376. if(setTargetedHotend(105)){
  2377. break;
  2378. }
  2379. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2380. SERIAL_PROTOCOLPGM("ok T:");
  2381. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2382. SERIAL_PROTOCOLPGM(" /");
  2383. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2384. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2385. SERIAL_PROTOCOLPGM(" B:");
  2386. SERIAL_PROTOCOL_F(degBed(),1);
  2387. SERIAL_PROTOCOLPGM(" /");
  2388. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2389. #endif //TEMP_BED_PIN
  2390. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2391. SERIAL_PROTOCOLPGM(" T");
  2392. SERIAL_PROTOCOL(cur_extruder);
  2393. SERIAL_PROTOCOLPGM(":");
  2394. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2395. SERIAL_PROTOCOLPGM(" /");
  2396. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2397. }
  2398. #else
  2399. SERIAL_ERROR_START;
  2400. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2401. #endif
  2402. SERIAL_PROTOCOLPGM(" @:");
  2403. #ifdef EXTRUDER_WATTS
  2404. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2405. SERIAL_PROTOCOLPGM("W");
  2406. #else
  2407. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2408. #endif
  2409. SERIAL_PROTOCOLPGM(" B@:");
  2410. #ifdef BED_WATTS
  2411. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2412. SERIAL_PROTOCOLPGM("W");
  2413. #else
  2414. SERIAL_PROTOCOL(getHeaterPower(-1));
  2415. #endif
  2416. #ifdef SHOW_TEMP_ADC_VALUES
  2417. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2418. SERIAL_PROTOCOLPGM(" ADC B:");
  2419. SERIAL_PROTOCOL_F(degBed(),1);
  2420. SERIAL_PROTOCOLPGM("C->");
  2421. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2422. #endif
  2423. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2424. SERIAL_PROTOCOLPGM(" T");
  2425. SERIAL_PROTOCOL(cur_extruder);
  2426. SERIAL_PROTOCOLPGM(":");
  2427. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2428. SERIAL_PROTOCOLPGM("C->");
  2429. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2430. }
  2431. #endif
  2432. SERIAL_PROTOCOLLN("");
  2433. return;
  2434. break;
  2435. case 109:
  2436. {// M109 - Wait for extruder heater to reach target.
  2437. if(setTargetedHotend(109)){
  2438. break;
  2439. }
  2440. LCD_MESSAGERPGM(MSG_HEATING);
  2441. #ifdef AUTOTEMP
  2442. autotemp_enabled=false;
  2443. #endif
  2444. if (code_seen('S')) {
  2445. setTargetHotend(code_value(), tmp_extruder);
  2446. #ifdef DUAL_X_CARRIAGE
  2447. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2448. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2449. #endif
  2450. CooldownNoWait = true;
  2451. } else if (code_seen('R')) {
  2452. setTargetHotend(code_value(), tmp_extruder);
  2453. #ifdef DUAL_X_CARRIAGE
  2454. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2455. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2456. #endif
  2457. CooldownNoWait = false;
  2458. }
  2459. #ifdef AUTOTEMP
  2460. if (code_seen('S')) autotemp_min=code_value();
  2461. if (code_seen('B')) autotemp_max=code_value();
  2462. if (code_seen('F'))
  2463. {
  2464. autotemp_factor=code_value();
  2465. autotemp_enabled=true;
  2466. }
  2467. #endif
  2468. setWatch();
  2469. codenum = millis();
  2470. /* See if we are heating up or cooling down */
  2471. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2472. cancel_heatup = false;
  2473. #ifdef TEMP_RESIDENCY_TIME
  2474. long residencyStart;
  2475. residencyStart = -1;
  2476. /* continue to loop until we have reached the target temp
  2477. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2478. while((!cancel_heatup)&&((residencyStart == -1) ||
  2479. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2480. #else
  2481. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2482. #endif //TEMP_RESIDENCY_TIME
  2483. if( (millis() - codenum) > 1000UL )
  2484. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2485. SERIAL_PROTOCOLPGM("T:");
  2486. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2487. SERIAL_PROTOCOLPGM(" E:");
  2488. SERIAL_PROTOCOL((int)tmp_extruder);
  2489. #ifdef TEMP_RESIDENCY_TIME
  2490. SERIAL_PROTOCOLPGM(" W:");
  2491. if(residencyStart > -1)
  2492. {
  2493. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2494. SERIAL_PROTOCOLLN( codenum );
  2495. }
  2496. else
  2497. {
  2498. SERIAL_PROTOCOLLN( "?" );
  2499. }
  2500. #else
  2501. SERIAL_PROTOCOLLN("");
  2502. #endif
  2503. codenum = millis();
  2504. }
  2505. manage_heater();
  2506. manage_inactivity();
  2507. lcd_update();
  2508. #ifdef TEMP_RESIDENCY_TIME
  2509. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2510. or when current temp falls outside the hysteresis after target temp was reached */
  2511. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2512. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2513. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2514. {
  2515. residencyStart = millis();
  2516. }
  2517. #endif //TEMP_RESIDENCY_TIME
  2518. }
  2519. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2520. if(IS_SD_PRINTING){
  2521. lcd_setstatus("SD-PRINTING ");
  2522. }
  2523. starttime=millis();
  2524. previous_millis_cmd = millis();
  2525. }
  2526. break;
  2527. case 190: // M190 - Wait for bed heater to reach target.
  2528. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2529. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2530. if (code_seen('S')) {
  2531. setTargetBed(code_value());
  2532. CooldownNoWait = true;
  2533. } else if (code_seen('R')) {
  2534. setTargetBed(code_value());
  2535. CooldownNoWait = false;
  2536. }
  2537. codenum = millis();
  2538. cancel_heatup = false;
  2539. target_direction = isHeatingBed(); // true if heating, false if cooling
  2540. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2541. {
  2542. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2543. {
  2544. float tt=degHotend(active_extruder);
  2545. SERIAL_PROTOCOLPGM("T:");
  2546. SERIAL_PROTOCOL(tt);
  2547. SERIAL_PROTOCOLPGM(" E:");
  2548. SERIAL_PROTOCOL((int)active_extruder);
  2549. SERIAL_PROTOCOLPGM(" B:");
  2550. SERIAL_PROTOCOL_F(degBed(),1);
  2551. SERIAL_PROTOCOLLN("");
  2552. codenum = millis();
  2553. }
  2554. manage_heater();
  2555. manage_inactivity();
  2556. lcd_update();
  2557. }
  2558. LCD_MESSAGERPGM(MSG_BED_DONE);
  2559. if(IS_SD_PRINTING){
  2560. lcd_setstatus("SD-PRINTING ");
  2561. }
  2562. previous_millis_cmd = millis();
  2563. #endif
  2564. break;
  2565. #if defined(FAN_PIN) && FAN_PIN > -1
  2566. case 106: //M106 Fan On
  2567. if (code_seen('S')){
  2568. fanSpeed=constrain(code_value(),0,255);
  2569. }
  2570. else {
  2571. fanSpeed=255;
  2572. }
  2573. break;
  2574. case 107: //M107 Fan Off
  2575. fanSpeed = 0;
  2576. break;
  2577. #endif //FAN_PIN
  2578. #ifdef BARICUDA
  2579. // PWM for HEATER_1_PIN
  2580. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2581. case 126: //M126 valve open
  2582. if (code_seen('S')){
  2583. ValvePressure=constrain(code_value(),0,255);
  2584. }
  2585. else {
  2586. ValvePressure=255;
  2587. }
  2588. break;
  2589. case 127: //M127 valve closed
  2590. ValvePressure = 0;
  2591. break;
  2592. #endif //HEATER_1_PIN
  2593. // PWM for HEATER_2_PIN
  2594. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2595. case 128: //M128 valve open
  2596. if (code_seen('S')){
  2597. EtoPPressure=constrain(code_value(),0,255);
  2598. }
  2599. else {
  2600. EtoPPressure=255;
  2601. }
  2602. break;
  2603. case 129: //M129 valve closed
  2604. EtoPPressure = 0;
  2605. break;
  2606. #endif //HEATER_2_PIN
  2607. #endif
  2608. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2609. case 80: // M80 - Turn on Power Supply
  2610. SET_OUTPUT(PS_ON_PIN); //GND
  2611. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2612. // If you have a switch on suicide pin, this is useful
  2613. // if you want to start another print with suicide feature after
  2614. // a print without suicide...
  2615. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2616. SET_OUTPUT(SUICIDE_PIN);
  2617. WRITE(SUICIDE_PIN, HIGH);
  2618. #endif
  2619. #ifdef ULTIPANEL
  2620. powersupply = true;
  2621. LCD_MESSAGERPGM(WELCOME_MSG);
  2622. lcd_update();
  2623. #endif
  2624. break;
  2625. #endif
  2626. case 81: // M81 - Turn off Power Supply
  2627. disable_heater();
  2628. st_synchronize();
  2629. disable_e0();
  2630. disable_e1();
  2631. disable_e2();
  2632. finishAndDisableSteppers();
  2633. fanSpeed = 0;
  2634. delay(1000); // Wait a little before to switch off
  2635. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2636. st_synchronize();
  2637. suicide();
  2638. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2639. SET_OUTPUT(PS_ON_PIN);
  2640. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2641. #endif
  2642. #ifdef ULTIPANEL
  2643. powersupply = false;
  2644. LCD_MESSAGERPGM(CAT4(MACHINE_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!!!!!!!!!!!!!
  2645. /*
  2646. MACHNAME = "Prusa i3"
  2647. MSGOFF = "Vypnuto"
  2648. "Prusai3"" ""vypnuto""."
  2649. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  2650. */
  2651. lcd_update();
  2652. #endif
  2653. break;
  2654. case 82:
  2655. axis_relative_modes[3] = false;
  2656. break;
  2657. case 83:
  2658. axis_relative_modes[3] = true;
  2659. break;
  2660. case 18: //compatibility
  2661. case 84: // M84
  2662. if(code_seen('S')){
  2663. stepper_inactive_time = code_value() * 1000;
  2664. }
  2665. else
  2666. {
  2667. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2668. if(all_axis)
  2669. {
  2670. st_synchronize();
  2671. disable_e0();
  2672. disable_e1();
  2673. disable_e2();
  2674. finishAndDisableSteppers();
  2675. }
  2676. else
  2677. {
  2678. st_synchronize();
  2679. if(code_seen('X')) disable_x();
  2680. if(code_seen('Y')) disable_y();
  2681. if(code_seen('Z')) disable_z();
  2682. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2683. if(code_seen('E')) {
  2684. disable_e0();
  2685. disable_e1();
  2686. disable_e2();
  2687. }
  2688. #endif
  2689. }
  2690. }
  2691. break;
  2692. case 85: // M85
  2693. if(code_seen('S')) {
  2694. max_inactive_time = code_value() * 1000;
  2695. }
  2696. break;
  2697. case 92: // M92
  2698. for(int8_t i=0; i < NUM_AXIS; i++)
  2699. {
  2700. if(code_seen(axis_codes[i]))
  2701. {
  2702. if(i == 3) { // E
  2703. float value = code_value();
  2704. if(value < 20.0) {
  2705. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2706. max_e_jerk *= factor;
  2707. max_feedrate[i] *= factor;
  2708. axis_steps_per_sqr_second[i] *= factor;
  2709. }
  2710. axis_steps_per_unit[i] = value;
  2711. }
  2712. else {
  2713. axis_steps_per_unit[i] = code_value();
  2714. }
  2715. }
  2716. }
  2717. break;
  2718. case 115: // M115
  2719. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  2720. break;
  2721. case 117: // M117 display message
  2722. starpos = (strchr(strchr_pointer + 5,'*'));
  2723. if(starpos!=NULL)
  2724. *(starpos)='\0';
  2725. lcd_setstatus(strchr_pointer + 5);
  2726. break;
  2727. case 114: // M114
  2728. SERIAL_PROTOCOLPGM("X:");
  2729. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2730. SERIAL_PROTOCOLPGM(" Y:");
  2731. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2732. SERIAL_PROTOCOLPGM(" Z:");
  2733. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2734. SERIAL_PROTOCOLPGM(" E:");
  2735. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2736. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  2737. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2738. SERIAL_PROTOCOLPGM(" Y:");
  2739. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2740. SERIAL_PROTOCOLPGM(" Z:");
  2741. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2742. SERIAL_PROTOCOLLN("");
  2743. #ifdef SCARA
  2744. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2745. SERIAL_PROTOCOL(delta[X_AXIS]);
  2746. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2747. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2748. SERIAL_PROTOCOLLN("");
  2749. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2750. SERIAL_PROTOCOL(delta[X_AXIS]+add_homing[X_AXIS]);
  2751. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2752. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homing[Y_AXIS]);
  2753. SERIAL_PROTOCOLLN("");
  2754. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2755. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2756. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2757. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2758. SERIAL_PROTOCOLLN("");
  2759. SERIAL_PROTOCOLLN("");
  2760. #endif
  2761. break;
  2762. case 120: // M120
  2763. enable_endstops(false) ;
  2764. break;
  2765. case 121: // M121
  2766. enable_endstops(true) ;
  2767. break;
  2768. case 119: // M119
  2769. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  2770. SERIAL_PROTOCOLLN("");
  2771. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2772. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  2773. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  2774. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2775. }else{
  2776. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2777. }
  2778. SERIAL_PROTOCOLLN("");
  2779. #endif
  2780. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2781. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  2782. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  2783. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2784. }else{
  2785. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2786. }
  2787. SERIAL_PROTOCOLLN("");
  2788. #endif
  2789. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2790. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  2791. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  2792. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2793. }else{
  2794. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2795. }
  2796. SERIAL_PROTOCOLLN("");
  2797. #endif
  2798. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2799. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  2800. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  2801. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2802. }else{
  2803. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2804. }
  2805. SERIAL_PROTOCOLLN("");
  2806. #endif
  2807. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2808. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  2809. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  2810. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2811. }else{
  2812. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2813. }
  2814. SERIAL_PROTOCOLLN("");
  2815. #endif
  2816. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2817. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  2818. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  2819. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  2820. }else{
  2821. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  2822. }
  2823. SERIAL_PROTOCOLLN("");
  2824. #endif
  2825. break;
  2826. //TODO: update for all axis, use for loop
  2827. #ifdef BLINKM
  2828. case 150: // M150
  2829. {
  2830. byte red;
  2831. byte grn;
  2832. byte blu;
  2833. if(code_seen('R')) red = code_value();
  2834. if(code_seen('U')) grn = code_value();
  2835. if(code_seen('B')) blu = code_value();
  2836. SendColors(red,grn,blu);
  2837. }
  2838. break;
  2839. #endif //BLINKM
  2840. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2841. {
  2842. tmp_extruder = active_extruder;
  2843. if(code_seen('T')) {
  2844. tmp_extruder = code_value();
  2845. if(tmp_extruder >= EXTRUDERS) {
  2846. SERIAL_ECHO_START;
  2847. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2848. break;
  2849. }
  2850. }
  2851. float area = .0;
  2852. if(code_seen('D')) {
  2853. float diameter = (float)code_value();
  2854. if (diameter == 0.0) {
  2855. // setting any extruder filament size disables volumetric on the assumption that
  2856. // slicers either generate in extruder values as cubic mm or as as filament feeds
  2857. // for all extruders
  2858. volumetric_enabled = false;
  2859. } else {
  2860. filament_size[tmp_extruder] = (float)code_value();
  2861. // make sure all extruders have some sane value for the filament size
  2862. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  2863. #if EXTRUDERS > 1
  2864. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  2865. #if EXTRUDERS > 2
  2866. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  2867. #endif
  2868. #endif
  2869. volumetric_enabled = true;
  2870. }
  2871. } else {
  2872. //reserved for setting filament diameter via UFID or filament measuring device
  2873. break;
  2874. }
  2875. calculate_volumetric_multipliers();
  2876. }
  2877. break;
  2878. case 201: // M201
  2879. for(int8_t i=0; i < NUM_AXIS; i++)
  2880. {
  2881. if(code_seen(axis_codes[i]))
  2882. {
  2883. max_acceleration_units_per_sq_second[i] = code_value();
  2884. }
  2885. }
  2886. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2887. reset_acceleration_rates();
  2888. break;
  2889. #if 0 // Not used for Sprinter/grbl gen6
  2890. case 202: // M202
  2891. for(int8_t i=0; i < NUM_AXIS; i++) {
  2892. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2893. }
  2894. break;
  2895. #endif
  2896. case 203: // M203 max feedrate mm/sec
  2897. for(int8_t i=0; i < NUM_AXIS; i++) {
  2898. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2899. }
  2900. break;
  2901. case 204: // M204 acclereration S normal moves T filmanent only moves
  2902. {
  2903. if(code_seen('S')) acceleration = code_value() ;
  2904. if(code_seen('T')) retract_acceleration = code_value() ;
  2905. }
  2906. break;
  2907. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2908. {
  2909. if(code_seen('S')) minimumfeedrate = code_value();
  2910. if(code_seen('T')) mintravelfeedrate = code_value();
  2911. if(code_seen('B')) minsegmenttime = code_value() ;
  2912. if(code_seen('X')) max_xy_jerk = code_value() ;
  2913. if(code_seen('Z')) max_z_jerk = code_value() ;
  2914. if(code_seen('E')) max_e_jerk = code_value() ;
  2915. }
  2916. break;
  2917. case 206: // M206 additional homing offset
  2918. for(int8_t i=0; i < 3; i++)
  2919. {
  2920. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  2921. }
  2922. #ifdef SCARA
  2923. if(code_seen('T')) // Theta
  2924. {
  2925. add_homing[X_AXIS] = code_value() ;
  2926. }
  2927. if(code_seen('P')) // Psi
  2928. {
  2929. add_homing[Y_AXIS] = code_value() ;
  2930. }
  2931. #endif
  2932. break;
  2933. #ifdef DELTA
  2934. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2935. if(code_seen('L')) {
  2936. delta_diagonal_rod= code_value();
  2937. }
  2938. if(code_seen('R')) {
  2939. delta_radius= code_value();
  2940. }
  2941. if(code_seen('S')) {
  2942. delta_segments_per_second= code_value();
  2943. }
  2944. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2945. break;
  2946. case 666: // M666 set delta endstop adjustemnt
  2947. for(int8_t i=0; i < 3; i++)
  2948. {
  2949. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2950. }
  2951. break;
  2952. #endif
  2953. #ifdef FWRETRACT
  2954. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2955. {
  2956. if(code_seen('S'))
  2957. {
  2958. retract_length = code_value() ;
  2959. }
  2960. if(code_seen('F'))
  2961. {
  2962. retract_feedrate = code_value()/60 ;
  2963. }
  2964. if(code_seen('Z'))
  2965. {
  2966. retract_zlift = code_value() ;
  2967. }
  2968. }break;
  2969. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2970. {
  2971. if(code_seen('S'))
  2972. {
  2973. retract_recover_length = code_value() ;
  2974. }
  2975. if(code_seen('F'))
  2976. {
  2977. retract_recover_feedrate = code_value()/60 ;
  2978. }
  2979. }break;
  2980. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2981. {
  2982. if(code_seen('S'))
  2983. {
  2984. int t= code_value() ;
  2985. switch(t)
  2986. {
  2987. case 0:
  2988. {
  2989. autoretract_enabled=false;
  2990. retracted[0]=false;
  2991. #if EXTRUDERS > 1
  2992. retracted[1]=false;
  2993. #endif
  2994. #if EXTRUDERS > 2
  2995. retracted[2]=false;
  2996. #endif
  2997. }break;
  2998. case 1:
  2999. {
  3000. autoretract_enabled=true;
  3001. retracted[0]=false;
  3002. #if EXTRUDERS > 1
  3003. retracted[1]=false;
  3004. #endif
  3005. #if EXTRUDERS > 2
  3006. retracted[2]=false;
  3007. #endif
  3008. }break;
  3009. default:
  3010. SERIAL_ECHO_START;
  3011. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3012. SERIAL_ECHO(cmdbuffer[bufindr]);
  3013. SERIAL_ECHOLNPGM("\"");
  3014. }
  3015. }
  3016. }break;
  3017. #endif // FWRETRACT
  3018. #if EXTRUDERS > 1
  3019. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3020. {
  3021. if(setTargetedHotend(218)){
  3022. break;
  3023. }
  3024. if(code_seen('X'))
  3025. {
  3026. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3027. }
  3028. if(code_seen('Y'))
  3029. {
  3030. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3031. }
  3032. #ifdef DUAL_X_CARRIAGE
  3033. if(code_seen('Z'))
  3034. {
  3035. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3036. }
  3037. #endif
  3038. SERIAL_ECHO_START;
  3039. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3040. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3041. {
  3042. SERIAL_ECHO(" ");
  3043. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3044. SERIAL_ECHO(",");
  3045. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3046. #ifdef DUAL_X_CARRIAGE
  3047. SERIAL_ECHO(",");
  3048. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3049. #endif
  3050. }
  3051. SERIAL_ECHOLN("");
  3052. }break;
  3053. #endif
  3054. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3055. {
  3056. if(code_seen('S'))
  3057. {
  3058. feedmultiply = code_value() ;
  3059. }
  3060. }
  3061. break;
  3062. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3063. {
  3064. if(code_seen('S'))
  3065. {
  3066. int tmp_code = code_value();
  3067. if (code_seen('T'))
  3068. {
  3069. if(setTargetedHotend(221)){
  3070. break;
  3071. }
  3072. extruder_multiply[tmp_extruder] = tmp_code;
  3073. }
  3074. else
  3075. {
  3076. extrudemultiply = tmp_code ;
  3077. }
  3078. }
  3079. }
  3080. break;
  3081. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3082. {
  3083. if(code_seen('P')){
  3084. int pin_number = code_value(); // pin number
  3085. int pin_state = -1; // required pin state - default is inverted
  3086. if(code_seen('S')) pin_state = code_value(); // required pin state
  3087. if(pin_state >= -1 && pin_state <= 1){
  3088. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3089. {
  3090. if (sensitive_pins[i] == pin_number)
  3091. {
  3092. pin_number = -1;
  3093. break;
  3094. }
  3095. }
  3096. if (pin_number > -1)
  3097. {
  3098. int target = LOW;
  3099. st_synchronize();
  3100. pinMode(pin_number, INPUT);
  3101. switch(pin_state){
  3102. case 1:
  3103. target = HIGH;
  3104. break;
  3105. case 0:
  3106. target = LOW;
  3107. break;
  3108. case -1:
  3109. target = !digitalRead(pin_number);
  3110. break;
  3111. }
  3112. while(digitalRead(pin_number) != target){
  3113. manage_heater();
  3114. manage_inactivity();
  3115. lcd_update();
  3116. }
  3117. }
  3118. }
  3119. }
  3120. }
  3121. break;
  3122. #if NUM_SERVOS > 0
  3123. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3124. {
  3125. int servo_index = -1;
  3126. int servo_position = 0;
  3127. if (code_seen('P'))
  3128. servo_index = code_value();
  3129. if (code_seen('S')) {
  3130. servo_position = code_value();
  3131. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3132. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3133. servos[servo_index].attach(0);
  3134. #endif
  3135. servos[servo_index].write(servo_position);
  3136. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3137. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3138. servos[servo_index].detach();
  3139. #endif
  3140. }
  3141. else {
  3142. SERIAL_ECHO_START;
  3143. SERIAL_ECHO("Servo ");
  3144. SERIAL_ECHO(servo_index);
  3145. SERIAL_ECHOLN(" out of range");
  3146. }
  3147. }
  3148. else if (servo_index >= 0) {
  3149. SERIAL_PROTOCOL(MSG_OK);
  3150. SERIAL_PROTOCOL(" Servo ");
  3151. SERIAL_PROTOCOL(servo_index);
  3152. SERIAL_PROTOCOL(": ");
  3153. SERIAL_PROTOCOL(servos[servo_index].read());
  3154. SERIAL_PROTOCOLLN("");
  3155. }
  3156. }
  3157. break;
  3158. #endif // NUM_SERVOS > 0
  3159. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3160. case 300: // M300
  3161. {
  3162. int beepS = code_seen('S') ? code_value() : 110;
  3163. int beepP = code_seen('P') ? code_value() : 1000;
  3164. if (beepS > 0)
  3165. {
  3166. #if BEEPER > 0
  3167. tone(BEEPER, beepS);
  3168. delay(beepP);
  3169. noTone(BEEPER);
  3170. #elif defined(ULTRALCD)
  3171. lcd_buzz(beepS, beepP);
  3172. #elif defined(LCD_USE_I2C_BUZZER)
  3173. lcd_buzz(beepP, beepS);
  3174. #endif
  3175. }
  3176. else
  3177. {
  3178. delay(beepP);
  3179. }
  3180. }
  3181. break;
  3182. #endif // M300
  3183. #ifdef PIDTEMP
  3184. case 301: // M301
  3185. {
  3186. if(code_seen('P')) Kp = code_value();
  3187. if(code_seen('I')) Ki = scalePID_i(code_value());
  3188. if(code_seen('D')) Kd = scalePID_d(code_value());
  3189. #ifdef PID_ADD_EXTRUSION_RATE
  3190. if(code_seen('C')) Kc = code_value();
  3191. #endif
  3192. updatePID();
  3193. SERIAL_PROTOCOL(MSG_OK);
  3194. SERIAL_PROTOCOL(" p:");
  3195. SERIAL_PROTOCOL(Kp);
  3196. SERIAL_PROTOCOL(" i:");
  3197. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3198. SERIAL_PROTOCOL(" d:");
  3199. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3200. #ifdef PID_ADD_EXTRUSION_RATE
  3201. SERIAL_PROTOCOL(" c:");
  3202. //Kc does not have scaling applied above, or in resetting defaults
  3203. SERIAL_PROTOCOL(Kc);
  3204. #endif
  3205. SERIAL_PROTOCOLLN("");
  3206. }
  3207. break;
  3208. #endif //PIDTEMP
  3209. #ifdef PIDTEMPBED
  3210. case 304: // M304
  3211. {
  3212. if(code_seen('P')) bedKp = code_value();
  3213. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3214. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3215. updatePID();
  3216. SERIAL_PROTOCOL(MSG_OK);
  3217. SERIAL_PROTOCOL(" p:");
  3218. SERIAL_PROTOCOL(bedKp);
  3219. SERIAL_PROTOCOL(" i:");
  3220. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3221. SERIAL_PROTOCOL(" d:");
  3222. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3223. SERIAL_PROTOCOLLN("");
  3224. }
  3225. break;
  3226. #endif //PIDTEMP
  3227. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3228. {
  3229. #ifdef CHDK
  3230. SET_OUTPUT(CHDK);
  3231. WRITE(CHDK, HIGH);
  3232. chdkHigh = millis();
  3233. chdkActive = true;
  3234. #else
  3235. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3236. const uint8_t NUM_PULSES=16;
  3237. const float PULSE_LENGTH=0.01524;
  3238. for(int i=0; i < NUM_PULSES; i++) {
  3239. WRITE(PHOTOGRAPH_PIN, HIGH);
  3240. _delay_ms(PULSE_LENGTH);
  3241. WRITE(PHOTOGRAPH_PIN, LOW);
  3242. _delay_ms(PULSE_LENGTH);
  3243. }
  3244. delay(7.33);
  3245. for(int i=0; i < NUM_PULSES; i++) {
  3246. WRITE(PHOTOGRAPH_PIN, HIGH);
  3247. _delay_ms(PULSE_LENGTH);
  3248. WRITE(PHOTOGRAPH_PIN, LOW);
  3249. _delay_ms(PULSE_LENGTH);
  3250. }
  3251. #endif
  3252. #endif //chdk end if
  3253. }
  3254. break;
  3255. #ifdef DOGLCD
  3256. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3257. {
  3258. if (code_seen('C')) {
  3259. lcd_setcontrast( ((int)code_value())&63 );
  3260. }
  3261. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3262. SERIAL_PROTOCOL(lcd_contrast);
  3263. SERIAL_PROTOCOLLN("");
  3264. }
  3265. break;
  3266. #endif
  3267. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3268. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3269. {
  3270. float temp = .0;
  3271. if (code_seen('S')) temp=code_value();
  3272. set_extrude_min_temp(temp);
  3273. }
  3274. break;
  3275. #endif
  3276. case 303: // M303 PID autotune
  3277. {
  3278. float temp = 150.0;
  3279. int e=0;
  3280. int c=5;
  3281. if (code_seen('E')) e=code_value();
  3282. if (e<0)
  3283. temp=70;
  3284. if (code_seen('S')) temp=code_value();
  3285. if (code_seen('C')) c=code_value();
  3286. PID_autotune(temp, e, c);
  3287. }
  3288. break;
  3289. #ifdef SCARA
  3290. case 360: // M360 SCARA Theta pos1
  3291. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3292. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3293. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3294. if(Stopped == false) {
  3295. //get_coordinates(); // For X Y Z E F
  3296. delta[X_AXIS] = 0;
  3297. delta[Y_AXIS] = 120;
  3298. calculate_SCARA_forward_Transform(delta);
  3299. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3300. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3301. prepare_move();
  3302. //ClearToSend();
  3303. return;
  3304. }
  3305. break;
  3306. case 361: // SCARA Theta pos2
  3307. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3308. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3309. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3310. if(Stopped == false) {
  3311. //get_coordinates(); // For X Y Z E F
  3312. delta[X_AXIS] = 90;
  3313. delta[Y_AXIS] = 130;
  3314. calculate_SCARA_forward_Transform(delta);
  3315. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3316. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3317. prepare_move();
  3318. //ClearToSend();
  3319. return;
  3320. }
  3321. break;
  3322. case 362: // SCARA Psi pos1
  3323. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3324. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3325. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3326. if(Stopped == false) {
  3327. //get_coordinates(); // For X Y Z E F
  3328. delta[X_AXIS] = 60;
  3329. delta[Y_AXIS] = 180;
  3330. calculate_SCARA_forward_Transform(delta);
  3331. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3332. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3333. prepare_move();
  3334. //ClearToSend();
  3335. return;
  3336. }
  3337. break;
  3338. case 363: // SCARA Psi pos2
  3339. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3340. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3341. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3342. if(Stopped == false) {
  3343. //get_coordinates(); // For X Y Z E F
  3344. delta[X_AXIS] = 50;
  3345. delta[Y_AXIS] = 90;
  3346. calculate_SCARA_forward_Transform(delta);
  3347. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3348. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3349. prepare_move();
  3350. //ClearToSend();
  3351. return;
  3352. }
  3353. break;
  3354. case 364: // SCARA Psi pos3 (90 deg to Theta)
  3355. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3356. // SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3357. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3358. if(Stopped == false) {
  3359. //get_coordinates(); // For X Y Z E F
  3360. delta[X_AXIS] = 45;
  3361. delta[Y_AXIS] = 135;
  3362. calculate_SCARA_forward_Transform(delta);
  3363. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3364. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3365. prepare_move();
  3366. //ClearToSend();
  3367. return;
  3368. }
  3369. break;
  3370. case 365: // M364 Set SCARA scaling for X Y Z
  3371. for(int8_t i=0; i < 3; i++)
  3372. {
  3373. if(code_seen(axis_codes[i]))
  3374. {
  3375. axis_scaling[i] = code_value();
  3376. }
  3377. }
  3378. break;
  3379. #endif
  3380. case 400: // M400 finish all moves
  3381. {
  3382. st_synchronize();
  3383. }
  3384. break;
  3385. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
  3386. case 401:
  3387. {
  3388. engage_z_probe(); // Engage Z Servo endstop if available
  3389. }
  3390. break;
  3391. case 402:
  3392. {
  3393. retract_z_probe(); // Retract Z Servo endstop if enabled
  3394. }
  3395. break;
  3396. #endif
  3397. #ifdef FILAMENT_SENSOR
  3398. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3399. {
  3400. #if (FILWIDTH_PIN > -1)
  3401. if(code_seen('N')) filament_width_nominal=code_value();
  3402. else{
  3403. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3404. SERIAL_PROTOCOLLN(filament_width_nominal);
  3405. }
  3406. #endif
  3407. }
  3408. break;
  3409. case 405: //M405 Turn on filament sensor for control
  3410. {
  3411. if(code_seen('D')) meas_delay_cm=code_value();
  3412. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3413. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3414. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3415. {
  3416. int temp_ratio = widthFil_to_size_ratio();
  3417. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3418. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3419. }
  3420. delay_index1=0;
  3421. delay_index2=0;
  3422. }
  3423. filament_sensor = true ;
  3424. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3425. //SERIAL_PROTOCOL(filament_width_meas);
  3426. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3427. //SERIAL_PROTOCOL(extrudemultiply);
  3428. }
  3429. break;
  3430. case 406: //M406 Turn off filament sensor for control
  3431. {
  3432. filament_sensor = false ;
  3433. }
  3434. break;
  3435. case 407: //M407 Display measured filament diameter
  3436. {
  3437. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3438. SERIAL_PROTOCOLLN(filament_width_meas);
  3439. }
  3440. break;
  3441. #endif
  3442. case 500: // M500 Store settings in EEPROM
  3443. {
  3444. Config_StoreSettings();
  3445. }
  3446. break;
  3447. case 501: // M501 Read settings from EEPROM
  3448. {
  3449. Config_RetrieveSettings();
  3450. }
  3451. break;
  3452. case 502: // M502 Revert to default settings
  3453. {
  3454. Config_ResetDefault();
  3455. }
  3456. break;
  3457. case 503: // M503 print settings currently in memory
  3458. {
  3459. Config_PrintSettings();
  3460. }
  3461. break;
  3462. case 509: //M509 Force language selection
  3463. {
  3464. lcd_force_language_selection();
  3465. SERIAL_ECHO_START;
  3466. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3467. }
  3468. break;
  3469. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3470. case 540:
  3471. {
  3472. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3473. }
  3474. break;
  3475. #endif
  3476. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3477. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3478. {
  3479. float value;
  3480. if (code_seen('Z'))
  3481. {
  3482. value = code_value();
  3483. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3484. {
  3485. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3486. SERIAL_ECHO_START;
  3487. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3488. SERIAL_PROTOCOLLN("");
  3489. }
  3490. else
  3491. {
  3492. SERIAL_ECHO_START;
  3493. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3494. SERIAL_ECHORPGM(MSG_Z_MIN);
  3495. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3496. SERIAL_ECHORPGM(MSG_Z_MAX);
  3497. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3498. SERIAL_PROTOCOLLN("");
  3499. }
  3500. }
  3501. else
  3502. {
  3503. SERIAL_ECHO_START;
  3504. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3505. SERIAL_ECHO(-zprobe_zoffset);
  3506. SERIAL_PROTOCOLLN("");
  3507. }
  3508. break;
  3509. }
  3510. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3511. #ifdef FILAMENTCHANGEENABLE
  3512. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3513. {
  3514. feedmultiplyBckp=feedmultiply;
  3515. int8_t TooLowZ = 0;
  3516. float target[4];
  3517. float lastpos[4];
  3518. target[X_AXIS]=current_position[X_AXIS];
  3519. target[Y_AXIS]=current_position[Y_AXIS];
  3520. target[Z_AXIS]=current_position[Z_AXIS];
  3521. target[E_AXIS]=current_position[E_AXIS];
  3522. lastpos[X_AXIS]=current_position[X_AXIS];
  3523. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3524. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3525. lastpos[E_AXIS]=current_position[E_AXIS];
  3526. //Restract extruder
  3527. if(code_seen('E'))
  3528. {
  3529. target[E_AXIS]+= code_value();
  3530. }
  3531. else
  3532. {
  3533. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3534. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3535. #endif
  3536. }
  3537. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3538. //Lift Z
  3539. if(code_seen('Z'))
  3540. {
  3541. target[Z_AXIS]+= code_value();
  3542. }
  3543. else
  3544. {
  3545. #ifdef FILAMENTCHANGE_ZADD
  3546. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3547. if(target[Z_AXIS] < 10){
  3548. target[Z_AXIS]+= 10 ;
  3549. TooLowZ = 1;
  3550. }else{
  3551. TooLowZ = 0;
  3552. }
  3553. #endif
  3554. }
  3555. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3556. //Move XY to side
  3557. if(code_seen('X'))
  3558. {
  3559. target[X_AXIS]+= code_value();
  3560. }
  3561. else
  3562. {
  3563. #ifdef FILAMENTCHANGE_XPOS
  3564. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3565. #endif
  3566. }
  3567. if(code_seen('Y'))
  3568. {
  3569. target[Y_AXIS]= code_value();
  3570. }
  3571. else
  3572. {
  3573. #ifdef FILAMENTCHANGE_YPOS
  3574. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3575. #endif
  3576. }
  3577. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3578. // Unload filament
  3579. if(code_seen('L'))
  3580. {
  3581. target[E_AXIS]+= code_value();
  3582. }
  3583. else
  3584. {
  3585. #ifdef FILAMENTCHANGE_FINALRETRACT
  3586. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3587. #endif
  3588. }
  3589. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3590. //finish moves
  3591. st_synchronize();
  3592. //disable extruder steppers so filament can be removed
  3593. disable_e0();
  3594. disable_e1();
  3595. disable_e2();
  3596. delay(100);
  3597. //Wait for user to insert filament
  3598. uint8_t cnt=0;
  3599. int counterBeep = 0;
  3600. lcd_wait_interact();
  3601. while(!lcd_clicked()){
  3602. cnt++;
  3603. manage_heater();
  3604. manage_inactivity(true);
  3605. if(cnt==0)
  3606. {
  3607. #if BEEPER > 0
  3608. if (counterBeep== 500){
  3609. counterBeep = 0;
  3610. }
  3611. SET_OUTPUT(BEEPER);
  3612. if (counterBeep== 0){
  3613. WRITE(BEEPER,HIGH);
  3614. }
  3615. if (counterBeep== 20){
  3616. WRITE(BEEPER,LOW);
  3617. }
  3618. counterBeep++;
  3619. #else
  3620. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3621. lcd_buzz(1000/6,100);
  3622. #else
  3623. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3624. #endif
  3625. #endif
  3626. }
  3627. }
  3628. //Filament inserted
  3629. WRITE(BEEPER,LOW);
  3630. //Feed the filament to the end of nozzle quickly
  3631. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3632. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3633. //Extrude some filament
  3634. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3635. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3636. //Wait for user to check the state
  3637. lcd_change_fil_state = 0;
  3638. lcd_loading_filament();
  3639. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3640. lcd_change_fil_state = 0;
  3641. lcd_alright();
  3642. switch(lcd_change_fil_state){
  3643. // Filament failed to load so load it again
  3644. case 2:
  3645. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3646. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3647. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3648. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3649. lcd_loading_filament();
  3650. break;
  3651. // Filament loaded properly but color is not clear
  3652. case 3:
  3653. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3654. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3655. lcd_loading_color();
  3656. break;
  3657. // Everything good
  3658. default:
  3659. lcd_change_success();
  3660. break;
  3661. }
  3662. }
  3663. //Not let's go back to print
  3664. //Feed a little of filament to stabilize pressure
  3665. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3666. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3667. //Retract
  3668. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3669. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3670. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3671. //Move XY back
  3672. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3673. //Move Z back
  3674. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3675. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3676. //Unretract
  3677. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3678. //Set E position to original
  3679. plan_set_e_position(lastpos[E_AXIS]);
  3680. //Recover feed rate
  3681. feedmultiply=feedmultiplyBckp;
  3682. char cmd[9];
  3683. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3684. enquecommand(cmd);
  3685. }
  3686. break;
  3687. #endif //FILAMENTCHANGEENABLE
  3688. #ifdef DUAL_X_CARRIAGE
  3689. case 605: // Set dual x-carriage movement mode:
  3690. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3691. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3692. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3693. // millimeters x-offset and an optional differential hotend temperature of
  3694. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3695. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3696. //
  3697. // Note: the X axis should be homed after changing dual x-carriage mode.
  3698. {
  3699. st_synchronize();
  3700. if (code_seen('S'))
  3701. dual_x_carriage_mode = code_value();
  3702. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3703. {
  3704. if (code_seen('X'))
  3705. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3706. if (code_seen('R'))
  3707. duplicate_extruder_temp_offset = code_value();
  3708. SERIAL_ECHO_START;
  3709. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3710. SERIAL_ECHO(" ");
  3711. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3712. SERIAL_ECHO(",");
  3713. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3714. SERIAL_ECHO(" ");
  3715. SERIAL_ECHO(duplicate_extruder_x_offset);
  3716. SERIAL_ECHO(",");
  3717. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3718. }
  3719. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3720. {
  3721. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3722. }
  3723. active_extruder_parked = false;
  3724. extruder_duplication_enabled = false;
  3725. delayed_move_time = 0;
  3726. }
  3727. break;
  3728. #endif //DUAL_X_CARRIAGE
  3729. case 907: // M907 Set digital trimpot motor current using axis codes.
  3730. {
  3731. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3732. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3733. if(code_seen('B')) digipot_current(4,code_value());
  3734. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3735. #endif
  3736. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3737. if(code_seen('X')) digipot_current(0, code_value());
  3738. #endif
  3739. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3740. if(code_seen('Z')) digipot_current(1, code_value());
  3741. #endif
  3742. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3743. if(code_seen('E')) digipot_current(2, code_value());
  3744. #endif
  3745. #ifdef DIGIPOT_I2C
  3746. // this one uses actual amps in floating point
  3747. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3748. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3749. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3750. #endif
  3751. }
  3752. break;
  3753. case 908: // M908 Control digital trimpot directly.
  3754. {
  3755. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3756. uint8_t channel,current;
  3757. if(code_seen('P')) channel=code_value();
  3758. if(code_seen('S')) current=code_value();
  3759. digitalPotWrite(channel, current);
  3760. #endif
  3761. }
  3762. break;
  3763. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3764. {
  3765. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3766. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3767. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3768. if(code_seen('B')) microstep_mode(4,code_value());
  3769. microstep_readings();
  3770. #endif
  3771. }
  3772. break;
  3773. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3774. {
  3775. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3776. if(code_seen('S')) switch((int)code_value())
  3777. {
  3778. case 1:
  3779. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3780. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3781. break;
  3782. case 2:
  3783. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3784. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3785. break;
  3786. }
  3787. microstep_readings();
  3788. #endif
  3789. }
  3790. break;
  3791. case 999: // M999: Restart after being stopped
  3792. Stopped = false;
  3793. lcd_reset_alert_level();
  3794. gcode_LastN = Stopped_gcode_LastN;
  3795. FlushSerialRequestResend();
  3796. break;
  3797. }
  3798. }
  3799. else if(code_seen('T'))
  3800. {
  3801. tmp_extruder = code_value();
  3802. if(tmp_extruder >= EXTRUDERS) {
  3803. SERIAL_ECHO_START;
  3804. SERIAL_ECHO("T");
  3805. SERIAL_ECHO(tmp_extruder);
  3806. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3807. }
  3808. else {
  3809. boolean make_move = false;
  3810. if(code_seen('F')) {
  3811. make_move = true;
  3812. next_feedrate = code_value();
  3813. if(next_feedrate > 0.0) {
  3814. feedrate = next_feedrate;
  3815. }
  3816. }
  3817. #if EXTRUDERS > 1
  3818. if(tmp_extruder != active_extruder) {
  3819. // Save current position to return to after applying extruder offset
  3820. memcpy(destination, current_position, sizeof(destination));
  3821. #ifdef DUAL_X_CARRIAGE
  3822. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3823. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  3824. {
  3825. // Park old head: 1) raise 2) move to park position 3) lower
  3826. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3827. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3828. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3829. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3830. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3831. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3832. st_synchronize();
  3833. }
  3834. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3835. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3836. extruder_offset[Y_AXIS][active_extruder] +
  3837. extruder_offset[Y_AXIS][tmp_extruder];
  3838. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3839. extruder_offset[Z_AXIS][active_extruder] +
  3840. extruder_offset[Z_AXIS][tmp_extruder];
  3841. active_extruder = tmp_extruder;
  3842. // This function resets the max/min values - the current position may be overwritten below.
  3843. axis_is_at_home(X_AXIS);
  3844. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  3845. {
  3846. current_position[X_AXIS] = inactive_extruder_x_pos;
  3847. inactive_extruder_x_pos = destination[X_AXIS];
  3848. }
  3849. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3850. {
  3851. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3852. if (active_extruder == 0 || active_extruder_parked)
  3853. current_position[X_AXIS] = inactive_extruder_x_pos;
  3854. else
  3855. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3856. inactive_extruder_x_pos = destination[X_AXIS];
  3857. extruder_duplication_enabled = false;
  3858. }
  3859. else
  3860. {
  3861. // record raised toolhead position for use by unpark
  3862. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3863. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3864. active_extruder_parked = true;
  3865. delayed_move_time = 0;
  3866. }
  3867. #else
  3868. // Offset extruder (only by XY)
  3869. int i;
  3870. for(i = 0; i < 2; i++) {
  3871. current_position[i] = current_position[i] -
  3872. extruder_offset[i][active_extruder] +
  3873. extruder_offset[i][tmp_extruder];
  3874. }
  3875. // Set the new active extruder and position
  3876. active_extruder = tmp_extruder;
  3877. #endif //else DUAL_X_CARRIAGE
  3878. #ifdef DELTA
  3879. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3880. //sent position to plan_set_position();
  3881. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3882. #else
  3883. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3884. #endif
  3885. // Move to the old position if 'F' was in the parameters
  3886. if(make_move && Stopped == false) {
  3887. prepare_move();
  3888. }
  3889. }
  3890. #endif
  3891. SERIAL_ECHO_START;
  3892. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3893. SERIAL_PROTOCOLLN((int)active_extruder);
  3894. }
  3895. }
  3896. else
  3897. {
  3898. SERIAL_ECHO_START;
  3899. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3900. SERIAL_ECHO(cmdbuffer[bufindr]);
  3901. SERIAL_ECHOLNPGM("\"");
  3902. }
  3903. ClearToSend();
  3904. }
  3905. void FlushSerialRequestResend()
  3906. {
  3907. //char cmdbuffer[bufindr][100]="Resend:";
  3908. MYSERIAL.flush();
  3909. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  3910. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3911. ClearToSend();
  3912. }
  3913. void ClearToSend()
  3914. {
  3915. previous_millis_cmd = millis();
  3916. #ifdef SDSUPPORT
  3917. if(fromsd[bufindr])
  3918. return;
  3919. #endif //SDSUPPORT
  3920. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  3921. }
  3922. void get_coordinates()
  3923. {
  3924. bool seen[4]={false,false,false,false};
  3925. for(int8_t i=0; i < NUM_AXIS; i++) {
  3926. if(code_seen(axis_codes[i]))
  3927. {
  3928. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3929. seen[i]=true;
  3930. }
  3931. else destination[i] = current_position[i]; //Are these else lines really needed?
  3932. }
  3933. if(code_seen('F')) {
  3934. next_feedrate = code_value();
  3935. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3936. }
  3937. }
  3938. void get_arc_coordinates()
  3939. {
  3940. #ifdef SF_ARC_FIX
  3941. bool relative_mode_backup = relative_mode;
  3942. relative_mode = true;
  3943. #endif
  3944. get_coordinates();
  3945. #ifdef SF_ARC_FIX
  3946. relative_mode=relative_mode_backup;
  3947. #endif
  3948. if(code_seen('I')) {
  3949. offset[0] = code_value();
  3950. }
  3951. else {
  3952. offset[0] = 0.0;
  3953. }
  3954. if(code_seen('J')) {
  3955. offset[1] = code_value();
  3956. }
  3957. else {
  3958. offset[1] = 0.0;
  3959. }
  3960. }
  3961. void clamp_to_software_endstops(float target[3])
  3962. {
  3963. if (min_software_endstops) {
  3964. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3965. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3966. float negative_z_offset = 0;
  3967. #ifdef ENABLE_AUTO_BED_LEVELING
  3968. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3969. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3970. #endif
  3971. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3972. }
  3973. if (max_software_endstops) {
  3974. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3975. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3976. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3977. }
  3978. }
  3979. #ifdef DELTA
  3980. void recalc_delta_settings(float radius, float diagonal_rod)
  3981. {
  3982. delta_tower1_x= -SIN_60*radius; // front left tower
  3983. delta_tower1_y= -COS_60*radius;
  3984. delta_tower2_x= SIN_60*radius; // front right tower
  3985. delta_tower2_y= -COS_60*radius;
  3986. delta_tower3_x= 0.0; // back middle tower
  3987. delta_tower3_y= radius;
  3988. delta_diagonal_rod_2= sq(diagonal_rod);
  3989. }
  3990. void calculate_delta(float cartesian[3])
  3991. {
  3992. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3993. - sq(delta_tower1_x-cartesian[X_AXIS])
  3994. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3995. ) + cartesian[Z_AXIS];
  3996. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3997. - sq(delta_tower2_x-cartesian[X_AXIS])
  3998. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3999. ) + cartesian[Z_AXIS];
  4000. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4001. - sq(delta_tower3_x-cartesian[X_AXIS])
  4002. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4003. ) + cartesian[Z_AXIS];
  4004. /*
  4005. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4006. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4007. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4008. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4009. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4010. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4011. */
  4012. }
  4013. #endif
  4014. #ifdef MESH_BED_LEVELING
  4015. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4016. #define X_MID_POS (0.5f*(X_MIN_POS+X_MAX_POS))
  4017. #define Y_MID_POS (0.5f*(Y_MIN_POS+Y_MAX_POS))
  4018. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder) {
  4019. int tileDiff = 0;
  4020. if (mbl.active) {
  4021. // In which of the four tiles the start and the end points fall?
  4022. // tileDiff is a bitmask,
  4023. // 1st bit indicates a crossing of the tile boundary in the X axis,
  4024. // 2nd bit indicates a crossing of the tile boundary in the Y axis.
  4025. tileDiff =
  4026. ((current_position[X_AXIS] > X_MID_POS) | ((current_position[Y_AXIS] > Y_MID_POS) << 1)) ^
  4027. ((x > X_MID_POS) | ((y > Y_MID_POS) << 1));
  4028. }
  4029. // Normalized parameters for the crossing of the tile boundary.
  4030. float s1, s2;
  4031. // Interpolate a linear movement at the tile boundary, in X, Y and E axes.
  4032. #define INRPL_X(u) (current_position[X_AXIS] + (x - current_position[X_AXIS]) * u)
  4033. #define INRPL_Y(u) (current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * u)
  4034. #define INRPL_E(u) (current_position[E_AXIS] + (e - current_position[E_AXIS]) * u)
  4035. switch (tileDiff) {
  4036. case 0:
  4037. // The start and end points on same tile, or the mesh bed leveling is not active.
  4038. break;
  4039. case 1:
  4040. // The start and end tiles differ in X only.
  4041. s1 = (X_MID_POS - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  4042. plan_buffer_line(X_MID_POS, INRPL_Y(s1), z, INRPL_E(s1), feed_rate, extruder);
  4043. break;
  4044. case 2:
  4045. // The start and end tiles differ in Y only.
  4046. s1 = (Y_MID_POS - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  4047. plan_buffer_line(INRPL_X(s1), Y_MID_POS, z, INRPL_E(s1), feed_rate, extruder);
  4048. break;
  4049. default:
  4050. // The start and end tiles differ in both coordinates.
  4051. // assert(tileDiff == 3);
  4052. s1 = (X_MID_POS - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  4053. s2 = (Y_MID_POS - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  4054. if (s1 < s2) {
  4055. plan_buffer_line(X_MID_POS, INRPL_Y(s1), z, INRPL_E(s1), feed_rate, extruder);
  4056. plan_buffer_line(INRPL_X(s2), Y_MID_POS, z, INRPL_E(s2), feed_rate, extruder);
  4057. } else {
  4058. plan_buffer_line(INRPL_X(s1), Y_MID_POS, z, INRPL_E(s1), feed_rate, extruder);
  4059. plan_buffer_line(X_MID_POS, INRPL_Y(s2), z, INRPL_E(s2), feed_rate, extruder);
  4060. }
  4061. }
  4062. #undef INRPL_X
  4063. #undef INRPL_Y
  4064. #undef INRPL_E
  4065. // The rest of the path.
  4066. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4067. set_current_to_destination();
  4068. }
  4069. #endif // MESH_BED_LEVELING
  4070. void prepare_move()
  4071. {
  4072. clamp_to_software_endstops(destination);
  4073. previous_millis_cmd = millis();
  4074. #ifdef SCARA //for now same as delta-code
  4075. float difference[NUM_AXIS];
  4076. for (int8_t i=0; i < NUM_AXIS; i++) {
  4077. difference[i] = destination[i] - current_position[i];
  4078. }
  4079. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4080. sq(difference[Y_AXIS]) +
  4081. sq(difference[Z_AXIS]));
  4082. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4083. if (cartesian_mm < 0.000001) { return; }
  4084. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4085. int steps = max(1, int(scara_segments_per_second * seconds));
  4086. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4087. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4088. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4089. for (int s = 1; s <= steps; s++) {
  4090. float fraction = float(s) / float(steps);
  4091. for(int8_t i=0; i < NUM_AXIS; i++) {
  4092. destination[i] = current_position[i] + difference[i] * fraction;
  4093. }
  4094. calculate_delta(destination);
  4095. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4096. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4097. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4098. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4099. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4100. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4101. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4102. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4103. active_extruder);
  4104. }
  4105. #endif // SCARA
  4106. #ifdef DELTA
  4107. float difference[NUM_AXIS];
  4108. for (int8_t i=0; i < NUM_AXIS; i++) {
  4109. difference[i] = destination[i] - current_position[i];
  4110. }
  4111. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4112. sq(difference[Y_AXIS]) +
  4113. sq(difference[Z_AXIS]));
  4114. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4115. if (cartesian_mm < 0.000001) { return; }
  4116. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4117. int steps = max(1, int(delta_segments_per_second * seconds));
  4118. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4119. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4120. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4121. for (int s = 1; s <= steps; s++) {
  4122. float fraction = float(s) / float(steps);
  4123. for(int8_t i=0; i < NUM_AXIS; i++) {
  4124. destination[i] = current_position[i] + difference[i] * fraction;
  4125. }
  4126. calculate_delta(destination);
  4127. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4128. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4129. active_extruder);
  4130. }
  4131. #endif // DELTA
  4132. #ifdef DUAL_X_CARRIAGE
  4133. if (active_extruder_parked)
  4134. {
  4135. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4136. {
  4137. // move duplicate extruder into correct duplication position.
  4138. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4139. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4140. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4141. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4142. st_synchronize();
  4143. extruder_duplication_enabled = true;
  4144. active_extruder_parked = false;
  4145. }
  4146. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4147. {
  4148. if (current_position[E_AXIS] == destination[E_AXIS])
  4149. {
  4150. // this is a travel move - skit it but keep track of current position (so that it can later
  4151. // be used as start of first non-travel move)
  4152. if (delayed_move_time != 0xFFFFFFFFUL)
  4153. {
  4154. memcpy(current_position, destination, sizeof(current_position));
  4155. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4156. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4157. delayed_move_time = millis();
  4158. return;
  4159. }
  4160. }
  4161. delayed_move_time = 0;
  4162. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4163. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4165. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4167. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4168. active_extruder_parked = false;
  4169. }
  4170. }
  4171. #endif //DUAL_X_CARRIAGE
  4172. #if ! (defined DELTA || defined SCARA)
  4173. // Do not use feedmultiply for E or Z only moves
  4174. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4175. #ifdef MESH_BED_LEVELING
  4176. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4177. #else
  4178. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4179. #endif
  4180. }
  4181. else {
  4182. #ifdef MESH_BED_LEVELING
  4183. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4184. #else
  4185. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4186. #endif
  4187. }
  4188. #endif // !(DELTA || SCARA)
  4189. for(int8_t i=0; i < NUM_AXIS; i++) {
  4190. current_position[i] = destination[i];
  4191. }
  4192. }
  4193. void prepare_arc_move(char isclockwise) {
  4194. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4195. // Trace the arc
  4196. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4197. // As far as the parser is concerned, the position is now == target. In reality the
  4198. // motion control system might still be processing the action and the real tool position
  4199. // in any intermediate location.
  4200. for(int8_t i=0; i < NUM_AXIS; i++) {
  4201. current_position[i] = destination[i];
  4202. }
  4203. previous_millis_cmd = millis();
  4204. }
  4205. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4206. #if defined(FAN_PIN)
  4207. #if CONTROLLERFAN_PIN == FAN_PIN
  4208. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4209. #endif
  4210. #endif
  4211. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4212. unsigned long lastMotorCheck = 0;
  4213. void controllerFan()
  4214. {
  4215. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4216. {
  4217. lastMotorCheck = millis();
  4218. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4219. #if EXTRUDERS > 2
  4220. || !READ(E2_ENABLE_PIN)
  4221. #endif
  4222. #if EXTRUDER > 1
  4223. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4224. || !READ(X2_ENABLE_PIN)
  4225. #endif
  4226. || !READ(E1_ENABLE_PIN)
  4227. #endif
  4228. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4229. {
  4230. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4231. }
  4232. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4233. {
  4234. digitalWrite(CONTROLLERFAN_PIN, 0);
  4235. analogWrite(CONTROLLERFAN_PIN, 0);
  4236. }
  4237. else
  4238. {
  4239. // allows digital or PWM fan output to be used (see M42 handling)
  4240. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4241. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4242. }
  4243. }
  4244. }
  4245. #endif
  4246. #ifdef SCARA
  4247. void calculate_SCARA_forward_Transform(float f_scara[3])
  4248. {
  4249. // Perform forward kinematics, and place results in delta[3]
  4250. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4251. float x_sin, x_cos, y_sin, y_cos;
  4252. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4253. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4254. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4255. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4256. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4257. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4258. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4259. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4260. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4261. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4262. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4263. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4264. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4265. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4266. }
  4267. void calculate_delta(float cartesian[3]){
  4268. //reverse kinematics.
  4269. // Perform reversed kinematics, and place results in delta[3]
  4270. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4271. float SCARA_pos[2];
  4272. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4273. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4274. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4275. #if (Linkage_1 == Linkage_2)
  4276. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4277. #else
  4278. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4279. #endif
  4280. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4281. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4282. SCARA_K2 = Linkage_2 * SCARA_S2;
  4283. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4284. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4285. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4286. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4287. delta[Z_AXIS] = cartesian[Z_AXIS];
  4288. /*
  4289. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4290. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4291. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4292. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4293. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4294. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4295. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4296. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4297. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4298. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4299. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4300. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4301. SERIAL_ECHOLN(" ");*/
  4302. }
  4303. #endif
  4304. #ifdef TEMP_STAT_LEDS
  4305. static bool blue_led = false;
  4306. static bool red_led = false;
  4307. static uint32_t stat_update = 0;
  4308. void handle_status_leds(void) {
  4309. float max_temp = 0.0;
  4310. if(millis() > stat_update) {
  4311. stat_update += 500; // Update every 0.5s
  4312. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4313. max_temp = max(max_temp, degHotend(cur_extruder));
  4314. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4315. }
  4316. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4317. max_temp = max(max_temp, degTargetBed());
  4318. max_temp = max(max_temp, degBed());
  4319. #endif
  4320. if((max_temp > 55.0) && (red_led == false)) {
  4321. digitalWrite(STAT_LED_RED, 1);
  4322. digitalWrite(STAT_LED_BLUE, 0);
  4323. red_led = true;
  4324. blue_led = false;
  4325. }
  4326. if((max_temp < 54.0) && (blue_led == false)) {
  4327. digitalWrite(STAT_LED_RED, 0);
  4328. digitalWrite(STAT_LED_BLUE, 1);
  4329. red_led = false;
  4330. blue_led = true;
  4331. }
  4332. }
  4333. }
  4334. #endif
  4335. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4336. {
  4337. #if defined(KILL_PIN) && KILL_PIN > -1
  4338. static int killCount = 0; // make the inactivity button a bit less responsive
  4339. const int KILL_DELAY = 10000;
  4340. #endif
  4341. #if defined(HOME_PIN) && HOME_PIN > -1
  4342. static int homeDebounceCount = 0; // poor man's debouncing count
  4343. const int HOME_DEBOUNCE_DELAY = 10000;
  4344. #endif
  4345. if(buflen < (BUFSIZE-1))
  4346. get_command();
  4347. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4348. if(max_inactive_time)
  4349. kill();
  4350. if(stepper_inactive_time) {
  4351. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4352. {
  4353. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4354. disable_x();
  4355. disable_y();
  4356. disable_z();
  4357. disable_e0();
  4358. disable_e1();
  4359. disable_e2();
  4360. }
  4361. }
  4362. }
  4363. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4364. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4365. {
  4366. chdkActive = false;
  4367. WRITE(CHDK, LOW);
  4368. }
  4369. #endif
  4370. #if defined(KILL_PIN) && KILL_PIN > -1
  4371. // Check if the kill button was pressed and wait just in case it was an accidental
  4372. // key kill key press
  4373. // -------------------------------------------------------------------------------
  4374. if( 0 == READ(KILL_PIN) )
  4375. {
  4376. killCount++;
  4377. }
  4378. else if (killCount > 0)
  4379. {
  4380. killCount--;
  4381. }
  4382. // Exceeded threshold and we can confirm that it was not accidental
  4383. // KILL the machine
  4384. // ----------------------------------------------------------------
  4385. if ( killCount >= KILL_DELAY)
  4386. {
  4387. kill();
  4388. }
  4389. #endif
  4390. #if defined(HOME_PIN) && HOME_PIN > -1
  4391. // Check to see if we have to home, use poor man's debouncer
  4392. // ---------------------------------------------------------
  4393. if ( 0 == READ(HOME_PIN) )
  4394. {
  4395. if (homeDebounceCount == 0)
  4396. {
  4397. enquecommand_P((PSTR("G28")));
  4398. homeDebounceCount++;
  4399. LCD_ALERTMESSAGERPGM(MSG_AUTO_HOME);
  4400. }
  4401. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4402. {
  4403. homeDebounceCount++;
  4404. }
  4405. else
  4406. {
  4407. homeDebounceCount = 0;
  4408. }
  4409. }
  4410. #endif
  4411. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4412. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4413. #endif
  4414. #ifdef EXTRUDER_RUNOUT_PREVENT
  4415. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4416. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4417. {
  4418. bool oldstatus=READ(E0_ENABLE_PIN);
  4419. enable_e0();
  4420. float oldepos=current_position[E_AXIS];
  4421. float oldedes=destination[E_AXIS];
  4422. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4423. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4424. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4425. current_position[E_AXIS]=oldepos;
  4426. destination[E_AXIS]=oldedes;
  4427. plan_set_e_position(oldepos);
  4428. previous_millis_cmd=millis();
  4429. st_synchronize();
  4430. WRITE(E0_ENABLE_PIN,oldstatus);
  4431. }
  4432. #endif
  4433. #if defined(DUAL_X_CARRIAGE)
  4434. // handle delayed move timeout
  4435. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4436. {
  4437. // travel moves have been received so enact them
  4438. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4439. memcpy(destination,current_position,sizeof(destination));
  4440. prepare_move();
  4441. }
  4442. #endif
  4443. #ifdef TEMP_STAT_LEDS
  4444. handle_status_leds();
  4445. #endif
  4446. check_axes_activity();
  4447. }
  4448. void kill()
  4449. {
  4450. cli(); // Stop interrupts
  4451. disable_heater();
  4452. disable_x();
  4453. disable_y();
  4454. disable_z();
  4455. disable_e0();
  4456. disable_e1();
  4457. disable_e2();
  4458. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4459. pinMode(PS_ON_PIN,INPUT);
  4460. #endif
  4461. SERIAL_ERROR_START;
  4462. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4463. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4464. // FMC small patch to update the LCD before ending
  4465. sei(); // enable interrupts
  4466. for ( int i=5; i--; lcd_update())
  4467. {
  4468. delay(200);
  4469. }
  4470. cli(); // disable interrupts
  4471. suicide();
  4472. while(1) { /* Intentionally left empty */ } // Wait for reset
  4473. }
  4474. void Stop()
  4475. {
  4476. disable_heater();
  4477. if(Stopped == false) {
  4478. Stopped = true;
  4479. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4480. SERIAL_ERROR_START;
  4481. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4482. LCD_MESSAGERPGM(MSG_STOPPED);
  4483. }
  4484. }
  4485. bool IsStopped() { return Stopped; };
  4486. #ifdef FAST_PWM_FAN
  4487. void setPwmFrequency(uint8_t pin, int val)
  4488. {
  4489. val &= 0x07;
  4490. switch(digitalPinToTimer(pin))
  4491. {
  4492. #if defined(TCCR0A)
  4493. case TIMER0A:
  4494. case TIMER0B:
  4495. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4496. // TCCR0B |= val;
  4497. break;
  4498. #endif
  4499. #if defined(TCCR1A)
  4500. case TIMER1A:
  4501. case TIMER1B:
  4502. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4503. // TCCR1B |= val;
  4504. break;
  4505. #endif
  4506. #if defined(TCCR2)
  4507. case TIMER2:
  4508. case TIMER2:
  4509. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4510. TCCR2 |= val;
  4511. break;
  4512. #endif
  4513. #if defined(TCCR2A)
  4514. case TIMER2A:
  4515. case TIMER2B:
  4516. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4517. TCCR2B |= val;
  4518. break;
  4519. #endif
  4520. #if defined(TCCR3A)
  4521. case TIMER3A:
  4522. case TIMER3B:
  4523. case TIMER3C:
  4524. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4525. TCCR3B |= val;
  4526. break;
  4527. #endif
  4528. #if defined(TCCR4A)
  4529. case TIMER4A:
  4530. case TIMER4B:
  4531. case TIMER4C:
  4532. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4533. TCCR4B |= val;
  4534. break;
  4535. #endif
  4536. #if defined(TCCR5A)
  4537. case TIMER5A:
  4538. case TIMER5B:
  4539. case TIMER5C:
  4540. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4541. TCCR5B |= val;
  4542. break;
  4543. #endif
  4544. }
  4545. }
  4546. #endif //FAST_PWM_FAN
  4547. bool setTargetedHotend(int code){
  4548. tmp_extruder = active_extruder;
  4549. if(code_seen('T')) {
  4550. tmp_extruder = code_value();
  4551. if(tmp_extruder >= EXTRUDERS) {
  4552. SERIAL_ECHO_START;
  4553. switch(code){
  4554. case 104:
  4555. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4556. break;
  4557. case 105:
  4558. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4559. break;
  4560. case 109:
  4561. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4562. break;
  4563. case 218:
  4564. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4565. break;
  4566. case 221:
  4567. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4568. break;
  4569. }
  4570. SERIAL_ECHOLN(tmp_extruder);
  4571. return true;
  4572. }
  4573. }
  4574. return false;
  4575. }
  4576. float calculate_volumetric_multiplier(float diameter) {
  4577. float area = .0;
  4578. float radius = .0;
  4579. radius = diameter * .5;
  4580. if (! volumetric_enabled || radius == 0) {
  4581. area = 1;
  4582. }
  4583. else {
  4584. area = M_PI * pow(radius, 2);
  4585. }
  4586. return 1.0 / area;
  4587. }
  4588. void calculate_volumetric_multipliers() {
  4589. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4590. #if EXTRUDERS > 1
  4591. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4592. #if EXTRUDERS > 2
  4593. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4594. #endif
  4595. #endif
  4596. }