Marlin_main.cpp 251 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool volumetric_enabled = false;
  269. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  270. #if EXTRUDERS > 1
  271. , DEFAULT_NOMINAL_FILAMENT_DIA
  272. #if EXTRUDERS > 2
  273. , DEFAULT_NOMINAL_FILAMENT_DIA
  274. #endif
  275. #endif
  276. };
  277. float volumetric_multiplier[EXTRUDERS] = {1.0
  278. #if EXTRUDERS > 1
  279. , 1.0
  280. #if EXTRUDERS > 2
  281. , 1.0
  282. #endif
  283. #endif
  284. };
  285. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  286. float add_homing[3]={0,0,0};
  287. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  288. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  289. bool axis_known_position[3] = {false, false, false};
  290. float zprobe_zoffset;
  291. // Extruder offset
  292. #if EXTRUDERS > 1
  293. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  294. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  295. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  296. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  297. #endif
  298. };
  299. #endif
  300. uint8_t active_extruder = 0;
  301. int fanSpeed=0;
  302. #ifdef FWRETRACT
  303. bool autoretract_enabled=false;
  304. bool retracted[EXTRUDERS]={false
  305. #if EXTRUDERS > 1
  306. , false
  307. #if EXTRUDERS > 2
  308. , false
  309. #endif
  310. #endif
  311. };
  312. bool retracted_swap[EXTRUDERS]={false
  313. #if EXTRUDERS > 1
  314. , false
  315. #if EXTRUDERS > 2
  316. , false
  317. #endif
  318. #endif
  319. };
  320. float retract_length = RETRACT_LENGTH;
  321. float retract_length_swap = RETRACT_LENGTH_SWAP;
  322. float retract_feedrate = RETRACT_FEEDRATE;
  323. float retract_zlift = RETRACT_ZLIFT;
  324. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  325. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  326. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  327. #endif
  328. #ifdef ULTIPANEL
  329. #ifdef PS_DEFAULT_OFF
  330. bool powersupply = false;
  331. #else
  332. bool powersupply = true;
  333. #endif
  334. #endif
  335. bool cancel_heatup = false ;
  336. #ifdef HOST_KEEPALIVE_FEATURE
  337. int busy_state = NOT_BUSY;
  338. static long prev_busy_signal_ms = -1;
  339. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  340. #else
  341. #define host_keepalive();
  342. #define KEEPALIVE_STATE(n);
  343. #endif
  344. #ifdef FILAMENT_SENSOR
  345. //Variables for Filament Sensor input
  346. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  347. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  348. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  349. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  350. int delay_index1=0; //index into ring buffer
  351. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  352. float delay_dist=0; //delay distance counter
  353. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  354. #endif
  355. const char errormagic[] PROGMEM = "Error:";
  356. const char echomagic[] PROGMEM = "echo:";
  357. //===========================================================================
  358. //=============================Private Variables=============================
  359. //===========================================================================
  360. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  361. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  362. static float delta[3] = {0.0, 0.0, 0.0};
  363. // For tracing an arc
  364. static float offset[3] = {0.0, 0.0, 0.0};
  365. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  366. // Determines Absolute or Relative Coordinates.
  367. // Also there is bool axis_relative_modes[] per axis flag.
  368. static bool relative_mode = false;
  369. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  370. //static float tt = 0;
  371. //static float bt = 0;
  372. //Inactivity shutdown variables
  373. static unsigned long previous_millis_cmd = 0;
  374. unsigned long max_inactive_time = 0;
  375. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  376. unsigned long starttime=0;
  377. unsigned long stoptime=0;
  378. unsigned long _usb_timer = 0;
  379. static uint8_t tmp_extruder;
  380. bool extruder_under_pressure = true;
  381. bool Stopped=false;
  382. #if NUM_SERVOS > 0
  383. Servo servos[NUM_SERVOS];
  384. #endif
  385. bool CooldownNoWait = true;
  386. bool target_direction;
  387. //Insert variables if CHDK is defined
  388. #ifdef CHDK
  389. unsigned long chdkHigh = 0;
  390. boolean chdkActive = false;
  391. #endif
  392. //===========================================================================
  393. //=============================Routines======================================
  394. //===========================================================================
  395. void get_arc_coordinates();
  396. bool setTargetedHotend(int code);
  397. void serial_echopair_P(const char *s_P, float v)
  398. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  399. void serial_echopair_P(const char *s_P, double v)
  400. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  401. void serial_echopair_P(const char *s_P, unsigned long v)
  402. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  403. #ifdef SDSUPPORT
  404. #include "SdFatUtil.h"
  405. int freeMemory() { return SdFatUtil::FreeRam(); }
  406. #else
  407. extern "C" {
  408. extern unsigned int __bss_end;
  409. extern unsigned int __heap_start;
  410. extern void *__brkval;
  411. int freeMemory() {
  412. int free_memory;
  413. if ((int)__brkval == 0)
  414. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  415. else
  416. free_memory = ((int)&free_memory) - ((int)__brkval);
  417. return free_memory;
  418. }
  419. }
  420. #endif //!SDSUPPORT
  421. void setup_killpin()
  422. {
  423. #if defined(KILL_PIN) && KILL_PIN > -1
  424. SET_INPUT(KILL_PIN);
  425. WRITE(KILL_PIN,HIGH);
  426. #endif
  427. }
  428. // Set home pin
  429. void setup_homepin(void)
  430. {
  431. #if defined(HOME_PIN) && HOME_PIN > -1
  432. SET_INPUT(HOME_PIN);
  433. WRITE(HOME_PIN,HIGH);
  434. #endif
  435. }
  436. void setup_photpin()
  437. {
  438. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  439. SET_OUTPUT(PHOTOGRAPH_PIN);
  440. WRITE(PHOTOGRAPH_PIN, LOW);
  441. #endif
  442. }
  443. void setup_powerhold()
  444. {
  445. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  446. SET_OUTPUT(SUICIDE_PIN);
  447. WRITE(SUICIDE_PIN, HIGH);
  448. #endif
  449. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  450. SET_OUTPUT(PS_ON_PIN);
  451. #if defined(PS_DEFAULT_OFF)
  452. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  453. #else
  454. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  455. #endif
  456. #endif
  457. }
  458. void suicide()
  459. {
  460. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  461. SET_OUTPUT(SUICIDE_PIN);
  462. WRITE(SUICIDE_PIN, LOW);
  463. #endif
  464. }
  465. void servo_init()
  466. {
  467. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  468. servos[0].attach(SERVO0_PIN);
  469. #endif
  470. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  471. servos[1].attach(SERVO1_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  474. servos[2].attach(SERVO2_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  477. servos[3].attach(SERVO3_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 5)
  480. #error "TODO: enter initalisation code for more servos"
  481. #endif
  482. }
  483. static void lcd_language_menu();
  484. void stop_and_save_print_to_ram(float z_move, float e_move);
  485. void restore_print_from_ram_and_continue(float e_move);
  486. extern int8_t CrashDetectMenu;
  487. void crashdet_enable()
  488. {
  489. MYSERIAL.println("crashdet_enable");
  490. tmc2130_sg_stop_on_crash = true;
  491. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  492. CrashDetectMenu = 1;
  493. }
  494. void crashdet_disable()
  495. {
  496. MYSERIAL.println("crashdet_disable");
  497. tmc2130_sg_stop_on_crash = false;
  498. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  499. CrashDetectMenu = 0;
  500. }
  501. void crashdet_stop_and_save_print()
  502. {
  503. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  504. }
  505. void crashdet_restore_print_and_continue()
  506. {
  507. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  508. // babystep_apply();
  509. }
  510. void crashdet_stop_and_save_print2()
  511. {
  512. cli();
  513. planner_abort_hard(); //abort printing
  514. cmdqueue_reset(); //empty cmdqueue
  515. card.sdprinting = false;
  516. card.closefile();
  517. sei();
  518. }
  519. void crashdet_detected()
  520. {
  521. printf("CRASH_DETECTED");
  522. /* while (!is_buffer_empty())
  523. {
  524. process_commands();
  525. cmdqueue_pop_front();
  526. }*/
  527. st_synchronize();
  528. lcd_update_enable(true);
  529. lcd_implementation_clear();
  530. lcd_update(2);
  531. // Increment crash counter
  532. uint8_t crash_count = eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT);
  533. crash_count++;
  534. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT, crash_count);
  535. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  536. bool yesno = true;
  537. #else
  538. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  539. #endif
  540. lcd_update_enable(true);
  541. lcd_update(2);
  542. lcd_setstatuspgm(WELCOME_MSG);
  543. if (yesno)
  544. {
  545. enquecommand_P(PSTR("G28 X"));
  546. enquecommand_P(PSTR("G28 Y"));
  547. enquecommand_P(PSTR("CRASH_RECOVER"));
  548. }
  549. else
  550. {
  551. enquecommand_P(PSTR("CRASH_CANCEL"));
  552. }
  553. }
  554. void crashdet_recover()
  555. {
  556. crashdet_restore_print_and_continue();
  557. tmc2130_sg_stop_on_crash = true;
  558. }
  559. void crashdet_cancel()
  560. {
  561. card.sdprinting = false;
  562. card.closefile();
  563. tmc2130_sg_stop_on_crash = true;
  564. }
  565. #ifdef MESH_BED_LEVELING
  566. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  567. #endif
  568. // Factory reset function
  569. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  570. // Level input parameter sets depth of reset
  571. // Quiet parameter masks all waitings for user interact.
  572. int er_progress = 0;
  573. void factory_reset(char level, bool quiet)
  574. {
  575. lcd_implementation_clear();
  576. int cursor_pos = 0;
  577. switch (level) {
  578. // Level 0: Language reset
  579. case 0:
  580. WRITE(BEEPER, HIGH);
  581. _delay_ms(100);
  582. WRITE(BEEPER, LOW);
  583. lcd_force_language_selection();
  584. break;
  585. //Level 1: Reset statistics
  586. case 1:
  587. WRITE(BEEPER, HIGH);
  588. _delay_ms(100);
  589. WRITE(BEEPER, LOW);
  590. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  591. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  592. lcd_menu_statistics();
  593. break;
  594. // Level 2: Prepare for shipping
  595. case 2:
  596. //lcd_printPGM(PSTR("Factory RESET"));
  597. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  598. // Force language selection at the next boot up.
  599. lcd_force_language_selection();
  600. // Force the "Follow calibration flow" message at the next boot up.
  601. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  602. farm_no = 0;
  603. farm_mode == false;
  604. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  605. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  606. WRITE(BEEPER, HIGH);
  607. _delay_ms(100);
  608. WRITE(BEEPER, LOW);
  609. //_delay_ms(2000);
  610. break;
  611. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  612. case 3:
  613. lcd_printPGM(PSTR("Factory RESET"));
  614. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  615. WRITE(BEEPER, HIGH);
  616. _delay_ms(100);
  617. WRITE(BEEPER, LOW);
  618. er_progress = 0;
  619. lcd_print_at_PGM(3, 3, PSTR(" "));
  620. lcd_implementation_print_at(3, 3, er_progress);
  621. // Erase EEPROM
  622. for (int i = 0; i < 4096; i++) {
  623. eeprom_write_byte((uint8_t*)i, 0xFF);
  624. if (i % 41 == 0) {
  625. er_progress++;
  626. lcd_print_at_PGM(3, 3, PSTR(" "));
  627. lcd_implementation_print_at(3, 3, er_progress);
  628. lcd_printPGM(PSTR("%"));
  629. }
  630. }
  631. break;
  632. case 4:
  633. bowden_menu();
  634. break;
  635. default:
  636. break;
  637. }
  638. }
  639. #include "LiquidCrystal.h"
  640. extern LiquidCrystal lcd;
  641. FILE _lcdout = {0};
  642. int lcd_putchar(char c, FILE *stream)
  643. {
  644. lcd.write(c);
  645. return 0;
  646. }
  647. FILE _uartout = {0};
  648. int uart_putchar(char c, FILE *stream)
  649. {
  650. MYSERIAL.write(c);
  651. return 0;
  652. }
  653. void lcd_splash()
  654. {
  655. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  656. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  657. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  658. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  659. }
  660. // "Setup" function is called by the Arduino framework on startup.
  661. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  662. // are initialized by the main() routine provided by the Arduino framework.
  663. void setup()
  664. {
  665. lcd_init();
  666. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  667. lcd_splash();
  668. setup_killpin();
  669. setup_powerhold();
  670. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  671. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  672. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  673. if (farm_no == 0xFFFF) farm_no = 0;
  674. if (farm_mode)
  675. {
  676. prusa_statistics(8);
  677. selectedSerialPort = 1;
  678. }
  679. else
  680. selectedSerialPort = 0;
  681. MYSERIAL.begin(BAUDRATE);
  682. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  683. stdout = uartout;
  684. SERIAL_PROTOCOLLNPGM("start");
  685. SERIAL_ECHO_START;
  686. #if 0
  687. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  688. for (int i = 0; i < 4096; ++i) {
  689. int b = eeprom_read_byte((unsigned char*)i);
  690. if (b != 255) {
  691. SERIAL_ECHO(i);
  692. SERIAL_ECHO(":");
  693. SERIAL_ECHO(b);
  694. SERIAL_ECHOLN("");
  695. }
  696. }
  697. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  698. #endif
  699. // Check startup - does nothing if bootloader sets MCUSR to 0
  700. byte mcu = MCUSR;
  701. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  702. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  703. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  704. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  705. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  706. MCUSR = 0;
  707. //SERIAL_ECHORPGM(MSG_MARLIN);
  708. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  709. #ifdef STRING_VERSION_CONFIG_H
  710. #ifdef STRING_CONFIG_H_AUTHOR
  711. SERIAL_ECHO_START;
  712. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  713. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  714. SERIAL_ECHORPGM(MSG_AUTHOR);
  715. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  716. SERIAL_ECHOPGM("Compiled: ");
  717. SERIAL_ECHOLNPGM(__DATE__);
  718. #endif
  719. #endif
  720. SERIAL_ECHO_START;
  721. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  722. SERIAL_ECHO(freeMemory());
  723. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  724. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  725. //lcd_update_enable(false); // why do we need this?? - andre
  726. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  727. Config_RetrieveSettings(EEPROM_OFFSET);
  728. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  729. tp_init(); // Initialize temperature loop
  730. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  731. plan_init(); // Initialize planner;
  732. watchdog_init();
  733. #ifdef TMC2130
  734. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  735. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  736. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  737. if (crashdet)
  738. {
  739. crashdet_enable();
  740. MYSERIAL.println("CrashDetect ENABLED!");
  741. }
  742. else
  743. {
  744. crashdet_disable();
  745. MYSERIAL.println("CrashDetect DISABLED");
  746. }
  747. #endif //TMC2130
  748. #ifdef PAT9125
  749. MYSERIAL.print("PAT9125_init:");
  750. int pat9125 = pat9125_init(200, 200);
  751. MYSERIAL.println(pat9125);
  752. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  753. if (!pat9125) fsensor = 0; //disable sensor
  754. if (fsensor)
  755. {
  756. fsensor_enable();
  757. MYSERIAL.println("Filament Sensor ENABLED!");
  758. }
  759. else
  760. {
  761. fsensor_disable();
  762. MYSERIAL.println("Filament Sensor DISABLED");
  763. }
  764. #endif //PAT9125
  765. st_init(); // Initialize stepper, this enables interrupts!
  766. setup_photpin();
  767. servo_init();
  768. // Reset the machine correction matrix.
  769. // It does not make sense to load the correction matrix until the machine is homed.
  770. world2machine_reset();
  771. KEEPALIVE_STATE(PAUSED_FOR_USER);
  772. if (!READ(BTN_ENC))
  773. {
  774. _delay_ms(1000);
  775. if (!READ(BTN_ENC))
  776. {
  777. lcd_implementation_clear();
  778. lcd_printPGM(PSTR("Factory RESET"));
  779. SET_OUTPUT(BEEPER);
  780. WRITE(BEEPER, HIGH);
  781. while (!READ(BTN_ENC));
  782. WRITE(BEEPER, LOW);
  783. _delay_ms(2000);
  784. char level = reset_menu();
  785. factory_reset(level, false);
  786. switch (level) {
  787. case 0: _delay_ms(0); break;
  788. case 1: _delay_ms(0); break;
  789. case 2: _delay_ms(0); break;
  790. case 3: _delay_ms(0); break;
  791. }
  792. // _delay_ms(100);
  793. /*
  794. #ifdef MESH_BED_LEVELING
  795. _delay_ms(2000);
  796. if (!READ(BTN_ENC))
  797. {
  798. WRITE(BEEPER, HIGH);
  799. _delay_ms(100);
  800. WRITE(BEEPER, LOW);
  801. _delay_ms(200);
  802. WRITE(BEEPER, HIGH);
  803. _delay_ms(100);
  804. WRITE(BEEPER, LOW);
  805. int _z = 0;
  806. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  807. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  808. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  809. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  810. }
  811. else
  812. {
  813. WRITE(BEEPER, HIGH);
  814. _delay_ms(100);
  815. WRITE(BEEPER, LOW);
  816. }
  817. #endif // mesh */
  818. }
  819. }
  820. else
  821. {
  822. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  823. }
  824. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  825. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  826. #endif
  827. #if defined(LCD_PWM_PIN) && (LCD_PWM_PIN > -1)
  828. SET_OUTPUT(LCD_PWM_PIN); //Set pin used for driver cooling fan
  829. #endif
  830. #ifdef DIGIPOT_I2C
  831. digipot_i2c_init();
  832. #endif
  833. setup_homepin();
  834. if (1) {
  835. SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  836. // try to run to zero phase before powering the Z motor.
  837. // Move in negative direction
  838. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  839. // Round the current micro-micro steps to micro steps.
  840. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  841. // Until the phase counter is reset to zero.
  842. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  843. delay(2);
  844. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  845. delay(2);
  846. }
  847. SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  848. }
  849. #if defined(Z_AXIS_ALWAYS_ON)
  850. enable_z();
  851. #endif
  852. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  853. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  854. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  855. if (farm_no == 0xFFFF) farm_no = 0;
  856. if (farm_mode)
  857. {
  858. prusa_statistics(8);
  859. }
  860. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  861. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  862. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  863. // but this times out if a blocking dialog is shown in setup().
  864. card.initsd();
  865. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  866. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  867. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  868. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  869. // where all the EEPROM entries are set to 0x0ff.
  870. // Once a firmware boots up, it forces at least a language selection, which changes
  871. // EEPROM_LANG to number lower than 0x0ff.
  872. // 1) Set a high power mode.
  873. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  874. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  875. }
  876. #ifdef SNMM
  877. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  878. int _z = BOWDEN_LENGTH;
  879. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  880. }
  881. #endif
  882. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  883. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  884. // is being written into the EEPROM, so the update procedure will be triggered only once.
  885. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  886. if (lang_selected >= LANG_NUM){
  887. lcd_mylang();
  888. }
  889. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  890. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  891. temp_cal_active = false;
  892. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  893. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  894. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  895. }
  896. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  897. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  898. }
  899. check_babystep(); //checking if Z babystep is in allowed range
  900. setup_uvlo_interrupt();
  901. setup_fan_interrupt();
  902. fsensor_setup_interrupt();
  903. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  904. #ifndef DEBUG_DISABLE_STARTMSGS
  905. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  906. lcd_wizard(0);
  907. }
  908. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  909. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  910. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  911. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  912. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  913. // Show the message.
  914. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  915. }
  916. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  917. // Show the message.
  918. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  919. lcd_update_enable(true);
  920. }
  921. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  922. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  923. lcd_update_enable(true);
  924. }
  925. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  926. // Show the message.
  927. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  928. }
  929. }
  930. KEEPALIVE_STATE(IN_PROCESS);
  931. #endif //DEBUG_DISABLE_STARTMSGS
  932. lcd_update_enable(true);
  933. lcd_implementation_clear();
  934. lcd_update(2);
  935. // Store the currently running firmware into an eeprom,
  936. // so the next time the firmware gets updated, it will know from which version it has been updated.
  937. update_current_firmware_version_to_eeprom();
  938. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  939. /*
  940. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  941. else {
  942. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  943. lcd_update_enable(true);
  944. lcd_update(2);
  945. lcd_setstatuspgm(WELCOME_MSG);
  946. }
  947. */
  948. manage_heater(); // Update temperatures
  949. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  950. MYSERIAL.println("Power panic detected!");
  951. MYSERIAL.print("Current bed temp:");
  952. MYSERIAL.println(degBed());
  953. MYSERIAL.print("Saved bed temp:");
  954. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  955. #endif
  956. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  957. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  958. MYSERIAL.println("Automatic recovery!");
  959. #endif
  960. recover_print(1);
  961. }
  962. else{
  963. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  964. MYSERIAL.println("Normal recovery!");
  965. #endif
  966. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  967. else {
  968. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  969. lcd_update_enable(true);
  970. lcd_update(2);
  971. lcd_setstatuspgm(WELCOME_MSG);
  972. }
  973. }
  974. }
  975. KEEPALIVE_STATE(NOT_BUSY);
  976. wdt_enable(WDTO_4S);
  977. }
  978. void trace();
  979. #define CHUNK_SIZE 64 // bytes
  980. #define SAFETY_MARGIN 1
  981. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  982. int chunkHead = 0;
  983. int serial_read_stream() {
  984. setTargetHotend(0, 0);
  985. setTargetBed(0);
  986. lcd_implementation_clear();
  987. lcd_printPGM(PSTR(" Upload in progress"));
  988. // first wait for how many bytes we will receive
  989. uint32_t bytesToReceive;
  990. // receive the four bytes
  991. char bytesToReceiveBuffer[4];
  992. for (int i=0; i<4; i++) {
  993. int data;
  994. while ((data = MYSERIAL.read()) == -1) {};
  995. bytesToReceiveBuffer[i] = data;
  996. }
  997. // make it a uint32
  998. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  999. // we're ready, notify the sender
  1000. MYSERIAL.write('+');
  1001. // lock in the routine
  1002. uint32_t receivedBytes = 0;
  1003. while (prusa_sd_card_upload) {
  1004. int i;
  1005. for (i=0; i<CHUNK_SIZE; i++) {
  1006. int data;
  1007. // check if we're not done
  1008. if (receivedBytes == bytesToReceive) {
  1009. break;
  1010. }
  1011. // read the next byte
  1012. while ((data = MYSERIAL.read()) == -1) {};
  1013. receivedBytes++;
  1014. // save it to the chunk
  1015. chunk[i] = data;
  1016. }
  1017. // write the chunk to SD
  1018. card.write_command_no_newline(&chunk[0]);
  1019. // notify the sender we're ready for more data
  1020. MYSERIAL.write('+');
  1021. // for safety
  1022. manage_heater();
  1023. // check if we're done
  1024. if(receivedBytes == bytesToReceive) {
  1025. trace(); // beep
  1026. card.closefile();
  1027. prusa_sd_card_upload = false;
  1028. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1029. return 0;
  1030. }
  1031. }
  1032. }
  1033. #ifdef HOST_KEEPALIVE_FEATURE
  1034. /**
  1035. * Output a "busy" message at regular intervals
  1036. * while the machine is not accepting commands.
  1037. */
  1038. void host_keepalive() {
  1039. if (farm_mode) return;
  1040. long ms = millis();
  1041. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1042. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1043. switch (busy_state) {
  1044. case IN_HANDLER:
  1045. case IN_PROCESS:
  1046. SERIAL_ECHO_START;
  1047. SERIAL_ECHOLNPGM("busy: processing");
  1048. break;
  1049. case PAUSED_FOR_USER:
  1050. SERIAL_ECHO_START;
  1051. SERIAL_ECHOLNPGM("busy: paused for user");
  1052. break;
  1053. case PAUSED_FOR_INPUT:
  1054. SERIAL_ECHO_START;
  1055. SERIAL_ECHOLNPGM("busy: paused for input");
  1056. break;
  1057. default:
  1058. break;
  1059. }
  1060. }
  1061. prev_busy_signal_ms = ms;
  1062. }
  1063. #endif
  1064. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1065. // Before loop(), the setup() function is called by the main() routine.
  1066. void loop()
  1067. {
  1068. KEEPALIVE_STATE(NOT_BUSY);
  1069. bool stack_integrity = true;
  1070. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1071. {
  1072. is_usb_printing = true;
  1073. usb_printing_counter--;
  1074. _usb_timer = millis();
  1075. }
  1076. if (usb_printing_counter == 0)
  1077. {
  1078. is_usb_printing = false;
  1079. }
  1080. if (prusa_sd_card_upload)
  1081. {
  1082. //we read byte-by byte
  1083. serial_read_stream();
  1084. } else
  1085. {
  1086. get_command();
  1087. #ifdef SDSUPPORT
  1088. card.checkautostart(false);
  1089. #endif
  1090. if(buflen)
  1091. {
  1092. cmdbuffer_front_already_processed = false;
  1093. #ifdef SDSUPPORT
  1094. if(card.saving)
  1095. {
  1096. // Saving a G-code file onto an SD-card is in progress.
  1097. // Saving starts with M28, saving until M29 is seen.
  1098. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1099. card.write_command(CMDBUFFER_CURRENT_STRING);
  1100. if(card.logging)
  1101. process_commands();
  1102. else
  1103. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1104. } else {
  1105. card.closefile();
  1106. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1107. }
  1108. } else {
  1109. process_commands();
  1110. }
  1111. #else
  1112. process_commands();
  1113. #endif //SDSUPPORT
  1114. if (! cmdbuffer_front_already_processed && buflen)
  1115. {
  1116. cli();
  1117. union {
  1118. struct {
  1119. char lo;
  1120. char hi;
  1121. } lohi;
  1122. uint16_t value;
  1123. } sdlen;
  1124. sdlen.value = 0;
  1125. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1126. sdlen.lohi.lo = cmdbuffer[bufindr + 1];
  1127. sdlen.lohi.hi = cmdbuffer[bufindr + 2];
  1128. }
  1129. cmdqueue_pop_front();
  1130. planner_add_sd_length(sdlen.value);
  1131. sei();
  1132. }
  1133. host_keepalive();
  1134. }
  1135. }
  1136. //check heater every n milliseconds
  1137. manage_heater();
  1138. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1139. checkHitEndstops();
  1140. lcd_update();
  1141. #ifdef PAT9125
  1142. fsensor_update();
  1143. #endif //PAT9125
  1144. #ifdef TMC2130
  1145. tmc2130_check_overtemp();
  1146. if (tmc2130_sg_crash)
  1147. {
  1148. tmc2130_sg_crash = false;
  1149. // crashdet_stop_and_save_print();
  1150. enquecommand_P((PSTR("CRASH_DETECTED")));
  1151. }
  1152. #endif //TMC2130
  1153. }
  1154. #define DEFINE_PGM_READ_ANY(type, reader) \
  1155. static inline type pgm_read_any(const type *p) \
  1156. { return pgm_read_##reader##_near(p); }
  1157. DEFINE_PGM_READ_ANY(float, float);
  1158. DEFINE_PGM_READ_ANY(signed char, byte);
  1159. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1160. static const PROGMEM type array##_P[3] = \
  1161. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1162. static inline type array(int axis) \
  1163. { return pgm_read_any(&array##_P[axis]); } \
  1164. type array##_ext(int axis) \
  1165. { return pgm_read_any(&array##_P[axis]); }
  1166. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1167. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1168. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1169. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1170. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1171. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1172. static void axis_is_at_home(int axis) {
  1173. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1174. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1175. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1176. }
  1177. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1178. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1179. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1180. saved_feedrate = feedrate;
  1181. saved_feedmultiply = feedmultiply;
  1182. feedmultiply = 100;
  1183. previous_millis_cmd = millis();
  1184. enable_endstops(enable_endstops_now);
  1185. }
  1186. static void clean_up_after_endstop_move() {
  1187. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1188. enable_endstops(false);
  1189. #endif
  1190. feedrate = saved_feedrate;
  1191. feedmultiply = saved_feedmultiply;
  1192. previous_millis_cmd = millis();
  1193. }
  1194. #ifdef ENABLE_AUTO_BED_LEVELING
  1195. #ifdef AUTO_BED_LEVELING_GRID
  1196. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1197. {
  1198. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1199. planeNormal.debug("planeNormal");
  1200. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1201. //bedLevel.debug("bedLevel");
  1202. //plan_bed_level_matrix.debug("bed level before");
  1203. //vector_3 uncorrected_position = plan_get_position_mm();
  1204. //uncorrected_position.debug("position before");
  1205. vector_3 corrected_position = plan_get_position();
  1206. // corrected_position.debug("position after");
  1207. current_position[X_AXIS] = corrected_position.x;
  1208. current_position[Y_AXIS] = corrected_position.y;
  1209. current_position[Z_AXIS] = corrected_position.z;
  1210. // put the bed at 0 so we don't go below it.
  1211. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1212. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1213. }
  1214. #else // not AUTO_BED_LEVELING_GRID
  1215. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1216. plan_bed_level_matrix.set_to_identity();
  1217. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1218. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1219. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1220. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1221. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1222. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1223. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1224. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1225. vector_3 corrected_position = plan_get_position();
  1226. current_position[X_AXIS] = corrected_position.x;
  1227. current_position[Y_AXIS] = corrected_position.y;
  1228. current_position[Z_AXIS] = corrected_position.z;
  1229. // put the bed at 0 so we don't go below it.
  1230. current_position[Z_AXIS] = zprobe_zoffset;
  1231. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1232. }
  1233. #endif // AUTO_BED_LEVELING_GRID
  1234. static void run_z_probe() {
  1235. plan_bed_level_matrix.set_to_identity();
  1236. feedrate = homing_feedrate[Z_AXIS];
  1237. // move down until you find the bed
  1238. float zPosition = -10;
  1239. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1240. st_synchronize();
  1241. // we have to let the planner know where we are right now as it is not where we said to go.
  1242. zPosition = st_get_position_mm(Z_AXIS);
  1243. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1244. // move up the retract distance
  1245. zPosition += home_retract_mm(Z_AXIS);
  1246. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1247. st_synchronize();
  1248. // move back down slowly to find bed
  1249. feedrate = homing_feedrate[Z_AXIS]/4;
  1250. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1251. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1252. st_synchronize();
  1253. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1254. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1255. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1256. }
  1257. static void do_blocking_move_to(float x, float y, float z) {
  1258. float oldFeedRate = feedrate;
  1259. feedrate = homing_feedrate[Z_AXIS];
  1260. current_position[Z_AXIS] = z;
  1261. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1262. st_synchronize();
  1263. feedrate = XY_TRAVEL_SPEED;
  1264. current_position[X_AXIS] = x;
  1265. current_position[Y_AXIS] = y;
  1266. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1267. st_synchronize();
  1268. feedrate = oldFeedRate;
  1269. }
  1270. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1271. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1272. }
  1273. /// Probe bed height at position (x,y), returns the measured z value
  1274. static float probe_pt(float x, float y, float z_before) {
  1275. // move to right place
  1276. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1277. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1278. run_z_probe();
  1279. float measured_z = current_position[Z_AXIS];
  1280. SERIAL_PROTOCOLRPGM(MSG_BED);
  1281. SERIAL_PROTOCOLPGM(" x: ");
  1282. SERIAL_PROTOCOL(x);
  1283. SERIAL_PROTOCOLPGM(" y: ");
  1284. SERIAL_PROTOCOL(y);
  1285. SERIAL_PROTOCOLPGM(" z: ");
  1286. SERIAL_PROTOCOL(measured_z);
  1287. SERIAL_PROTOCOLPGM("\n");
  1288. return measured_z;
  1289. }
  1290. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1291. #ifdef LIN_ADVANCE
  1292. /**
  1293. * M900: Set and/or Get advance K factor and WH/D ratio
  1294. *
  1295. * K<factor> Set advance K factor
  1296. * R<ratio> Set ratio directly (overrides WH/D)
  1297. * W<width> H<height> D<diam> Set ratio from WH/D
  1298. */
  1299. inline void gcode_M900() {
  1300. st_synchronize();
  1301. const float newK = code_seen('K') ? code_value_float() : -1;
  1302. if (newK >= 0) extruder_advance_k = newK;
  1303. float newR = code_seen('R') ? code_value_float() : -1;
  1304. if (newR < 0) {
  1305. const float newD = code_seen('D') ? code_value_float() : -1,
  1306. newW = code_seen('W') ? code_value_float() : -1,
  1307. newH = code_seen('H') ? code_value_float() : -1;
  1308. if (newD >= 0 && newW >= 0 && newH >= 0)
  1309. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1310. }
  1311. if (newR >= 0) advance_ed_ratio = newR;
  1312. SERIAL_ECHO_START;
  1313. SERIAL_ECHOPGM("Advance K=");
  1314. SERIAL_ECHOLN(extruder_advance_k);
  1315. SERIAL_ECHOPGM(" E/D=");
  1316. const float ratio = advance_ed_ratio;
  1317. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1318. }
  1319. #endif // LIN_ADVANCE
  1320. #ifdef TMC2130
  1321. bool calibrate_z_auto()
  1322. {
  1323. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1324. lcd_implementation_clear();
  1325. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1326. bool endstops_enabled = enable_endstops(true);
  1327. int axis_up_dir = -home_dir(Z_AXIS);
  1328. tmc2130_home_enter(Z_AXIS_MASK);
  1329. current_position[Z_AXIS] = 0;
  1330. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1331. set_destination_to_current();
  1332. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1333. feedrate = homing_feedrate[Z_AXIS];
  1334. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1335. tmc2130_home_restart(Z_AXIS);
  1336. st_synchronize();
  1337. // current_position[axis] = 0;
  1338. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1339. tmc2130_home_exit();
  1340. enable_endstops(false);
  1341. current_position[Z_AXIS] = 0;
  1342. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1343. set_destination_to_current();
  1344. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1345. feedrate = homing_feedrate[Z_AXIS] / 2;
  1346. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1347. st_synchronize();
  1348. enable_endstops(endstops_enabled);
  1349. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1350. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1351. return true;
  1352. }
  1353. #endif //TMC2130
  1354. void homeaxis(int axis)
  1355. {
  1356. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1357. #define HOMEAXIS_DO(LETTER) \
  1358. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1359. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1360. {
  1361. int axis_home_dir = home_dir(axis);
  1362. feedrate = homing_feedrate[axis];
  1363. #ifdef TMC2130
  1364. tmc2130_home_enter(X_AXIS_MASK << axis);
  1365. #endif
  1366. // Move right a bit, so that the print head does not touch the left end position,
  1367. // and the following left movement has a chance to achieve the required velocity
  1368. // for the stall guard to work.
  1369. current_position[axis] = 0;
  1370. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1371. // destination[axis] = 11.f;
  1372. destination[axis] = 3.f;
  1373. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1374. st_synchronize();
  1375. // Move left away from the possible collision with the collision detection disabled.
  1376. endstops_hit_on_purpose();
  1377. enable_endstops(false);
  1378. current_position[axis] = 0;
  1379. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1380. destination[axis] = - 1.;
  1381. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1382. st_synchronize();
  1383. // Now continue to move up to the left end stop with the collision detection enabled.
  1384. enable_endstops(true);
  1385. destination[axis] = - 1.1 * max_length(axis);
  1386. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1387. st_synchronize();
  1388. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1389. endstops_hit_on_purpose();
  1390. enable_endstops(false);
  1391. current_position[axis] = 0;
  1392. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1393. destination[axis] = 10.f;
  1394. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1395. st_synchronize();
  1396. endstops_hit_on_purpose();
  1397. // Now move left up to the collision, this time with a repeatable velocity.
  1398. enable_endstops(true);
  1399. destination[axis] = - 15.f;
  1400. feedrate = homing_feedrate[axis]/2;
  1401. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1402. st_synchronize();
  1403. axis_is_at_home(axis);
  1404. axis_known_position[axis] = true;
  1405. #ifdef TMC2130
  1406. tmc2130_home_exit();
  1407. #endif
  1408. // Move the X carriage away from the collision.
  1409. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1410. endstops_hit_on_purpose();
  1411. enable_endstops(false);
  1412. {
  1413. // Two full periods (4 full steps).
  1414. float gap = 0.32f * 2.f;
  1415. current_position[axis] -= gap;
  1416. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1417. current_position[axis] += gap;
  1418. }
  1419. destination[axis] = current_position[axis];
  1420. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1421. st_synchronize();
  1422. feedrate = 0.0;
  1423. }
  1424. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1425. {
  1426. int axis_home_dir = home_dir(axis);
  1427. current_position[axis] = 0;
  1428. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1429. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1430. feedrate = homing_feedrate[axis];
  1431. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1432. st_synchronize();
  1433. current_position[axis] = 0;
  1434. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1435. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1436. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1437. st_synchronize();
  1438. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1439. feedrate = homing_feedrate[axis]/2 ;
  1440. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1441. st_synchronize();
  1442. axis_is_at_home(axis);
  1443. destination[axis] = current_position[axis];
  1444. feedrate = 0.0;
  1445. endstops_hit_on_purpose();
  1446. axis_known_position[axis] = true;
  1447. }
  1448. enable_endstops(endstops_enabled);
  1449. }
  1450. /**/
  1451. void home_xy()
  1452. {
  1453. set_destination_to_current();
  1454. homeaxis(X_AXIS);
  1455. homeaxis(Y_AXIS);
  1456. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1457. endstops_hit_on_purpose();
  1458. }
  1459. void refresh_cmd_timeout(void)
  1460. {
  1461. previous_millis_cmd = millis();
  1462. }
  1463. #ifdef FWRETRACT
  1464. void retract(bool retracting, bool swapretract = false) {
  1465. if(retracting && !retracted[active_extruder]) {
  1466. destination[X_AXIS]=current_position[X_AXIS];
  1467. destination[Y_AXIS]=current_position[Y_AXIS];
  1468. destination[Z_AXIS]=current_position[Z_AXIS];
  1469. destination[E_AXIS]=current_position[E_AXIS];
  1470. if (swapretract) {
  1471. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1472. } else {
  1473. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1474. }
  1475. plan_set_e_position(current_position[E_AXIS]);
  1476. float oldFeedrate = feedrate;
  1477. feedrate=retract_feedrate*60;
  1478. retracted[active_extruder]=true;
  1479. prepare_move();
  1480. current_position[Z_AXIS]-=retract_zlift;
  1481. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1482. prepare_move();
  1483. feedrate = oldFeedrate;
  1484. } else if(!retracting && retracted[active_extruder]) {
  1485. destination[X_AXIS]=current_position[X_AXIS];
  1486. destination[Y_AXIS]=current_position[Y_AXIS];
  1487. destination[Z_AXIS]=current_position[Z_AXIS];
  1488. destination[E_AXIS]=current_position[E_AXIS];
  1489. current_position[Z_AXIS]+=retract_zlift;
  1490. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1491. //prepare_move();
  1492. if (swapretract) {
  1493. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1494. } else {
  1495. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1496. }
  1497. plan_set_e_position(current_position[E_AXIS]);
  1498. float oldFeedrate = feedrate;
  1499. feedrate=retract_recover_feedrate*60;
  1500. retracted[active_extruder]=false;
  1501. prepare_move();
  1502. feedrate = oldFeedrate;
  1503. }
  1504. } //retract
  1505. #endif //FWRETRACT
  1506. void trace() {
  1507. tone(BEEPER, 440);
  1508. delay(25);
  1509. noTone(BEEPER);
  1510. delay(20);
  1511. }
  1512. /*
  1513. void ramming() {
  1514. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1515. if (current_temperature[0] < 230) {
  1516. //PLA
  1517. max_feedrate[E_AXIS] = 50;
  1518. //current_position[E_AXIS] -= 8;
  1519. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1520. //current_position[E_AXIS] += 8;
  1521. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1522. current_position[E_AXIS] += 5.4;
  1523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1524. current_position[E_AXIS] += 3.2;
  1525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1526. current_position[E_AXIS] += 3;
  1527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1528. st_synchronize();
  1529. max_feedrate[E_AXIS] = 80;
  1530. current_position[E_AXIS] -= 82;
  1531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1532. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1533. current_position[E_AXIS] -= 20;
  1534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1535. current_position[E_AXIS] += 5;
  1536. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1537. current_position[E_AXIS] += 5;
  1538. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1539. current_position[E_AXIS] -= 10;
  1540. st_synchronize();
  1541. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1542. current_position[E_AXIS] += 10;
  1543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1544. current_position[E_AXIS] -= 10;
  1545. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1546. current_position[E_AXIS] += 10;
  1547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1548. current_position[E_AXIS] -= 10;
  1549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1550. st_synchronize();
  1551. }
  1552. else {
  1553. //ABS
  1554. max_feedrate[E_AXIS] = 50;
  1555. //current_position[E_AXIS] -= 8;
  1556. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1557. //current_position[E_AXIS] += 8;
  1558. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1559. current_position[E_AXIS] += 3.1;
  1560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1561. current_position[E_AXIS] += 3.1;
  1562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1563. current_position[E_AXIS] += 4;
  1564. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1565. st_synchronize();
  1566. //current_position[X_AXIS] += 23; //delay
  1567. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1568. //current_position[X_AXIS] -= 23; //delay
  1569. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1570. delay(4700);
  1571. max_feedrate[E_AXIS] = 80;
  1572. current_position[E_AXIS] -= 92;
  1573. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1574. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1575. current_position[E_AXIS] -= 5;
  1576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1577. current_position[E_AXIS] += 5;
  1578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1579. current_position[E_AXIS] -= 5;
  1580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1581. st_synchronize();
  1582. current_position[E_AXIS] += 5;
  1583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1584. current_position[E_AXIS] -= 5;
  1585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1586. current_position[E_AXIS] += 5;
  1587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1588. current_position[E_AXIS] -= 5;
  1589. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1590. st_synchronize();
  1591. }
  1592. }
  1593. */
  1594. bool gcode_M45(bool onlyZ) {
  1595. bool final_result = false;
  1596. // Only Z calibration?
  1597. if (!onlyZ) {
  1598. setTargetBed(0);
  1599. setTargetHotend(0, 0);
  1600. setTargetHotend(0, 1);
  1601. setTargetHotend(0, 2);
  1602. adjust_bed_reset(); //reset bed level correction
  1603. }
  1604. // Disable the default update procedure of the display. We will do a modal dialog.
  1605. lcd_update_enable(false);
  1606. // Let the planner use the uncorrected coordinates.
  1607. mbl.reset();
  1608. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1609. // the planner will not perform any adjustments in the XY plane.
  1610. // Wait for the motors to stop and update the current position with the absolute values.
  1611. world2machine_revert_to_uncorrected();
  1612. // Reset the baby step value applied without moving the axes.
  1613. babystep_reset();
  1614. // Mark all axes as in a need for homing.
  1615. memset(axis_known_position, 0, sizeof(axis_known_position));
  1616. // Home in the XY plane.
  1617. //set_destination_to_current();
  1618. setup_for_endstop_move();
  1619. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1620. home_xy();
  1621. // Let the user move the Z axes up to the end stoppers.
  1622. #ifdef TMC2130
  1623. if (calibrate_z_auto()) {
  1624. #else //TMC2130
  1625. if (lcd_calibrate_z_end_stop_manual(onlyZ)) {
  1626. #endif //TMC2130
  1627. refresh_cmd_timeout();
  1628. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  1629. // lcd_wait_for_cool_down();
  1630. //}
  1631. if(!onlyZ){
  1632. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1633. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1634. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1635. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1636. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1637. KEEPALIVE_STATE(IN_HANDLER);
  1638. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1639. lcd_implementation_print_at(0, 2, 1);
  1640. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1641. }
  1642. // Move the print head close to the bed.
  1643. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1645. st_synchronize();
  1646. //#ifdef TMC2130
  1647. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1648. //#endif
  1649. int8_t verbosity_level = 0;
  1650. if (code_seen('V')) {
  1651. // Just 'V' without a number counts as V1.
  1652. char c = strchr_pointer[1];
  1653. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1654. }
  1655. if (onlyZ) {
  1656. clean_up_after_endstop_move();
  1657. // Z only calibration.
  1658. // Load the machine correction matrix
  1659. world2machine_initialize();
  1660. // and correct the current_position to match the transformed coordinate system.
  1661. world2machine_update_current();
  1662. //FIXME
  1663. bool result = sample_mesh_and_store_reference();
  1664. if (result) {
  1665. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1666. // Shipped, the nozzle height has been set already. The user can start printing now.
  1667. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1668. // babystep_apply();
  1669. }
  1670. }
  1671. else {
  1672. // Reset the baby step value and the baby step applied flag.
  1673. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  1674. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1675. // Complete XYZ calibration.
  1676. uint8_t point_too_far_mask = 0;
  1677. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1678. clean_up_after_endstop_move();
  1679. // Print head up.
  1680. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1682. st_synchronize();
  1683. if (result >= 0) {
  1684. point_too_far_mask = 0;
  1685. // Second half: The fine adjustment.
  1686. // Let the planner use the uncorrected coordinates.
  1687. mbl.reset();
  1688. world2machine_reset();
  1689. // Home in the XY plane.
  1690. setup_for_endstop_move();
  1691. home_xy();
  1692. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1693. clean_up_after_endstop_move();
  1694. // Print head up.
  1695. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1697. st_synchronize();
  1698. // if (result >= 0) babystep_apply();
  1699. }
  1700. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1701. if (result >= 0) {
  1702. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1703. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1704. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1705. final_result = true;
  1706. }
  1707. }
  1708. #ifdef TMC2130
  1709. tmc2130_home_exit();
  1710. #endif
  1711. }
  1712. else {
  1713. // Timeouted.
  1714. }
  1715. lcd_update_enable(true);
  1716. return final_result;
  1717. }
  1718. void gcode_M701() {
  1719. #ifdef SNMM
  1720. extr_adj(snmm_extruder);//loads current extruder
  1721. #else
  1722. enable_z();
  1723. custom_message = true;
  1724. custom_message_type = 2;
  1725. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1726. current_position[E_AXIS] += 70;
  1727. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1728. current_position[E_AXIS] += 25;
  1729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1730. st_synchronize();
  1731. if (!farm_mode && loading_flag) {
  1732. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1733. while (!clean) {
  1734. lcd_update_enable(true);
  1735. lcd_update(2);
  1736. current_position[E_AXIS] += 25;
  1737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1738. st_synchronize();
  1739. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1740. }
  1741. }
  1742. lcd_update_enable(true);
  1743. lcd_update(2);
  1744. lcd_setstatuspgm(WELCOME_MSG);
  1745. disable_z();
  1746. loading_flag = false;
  1747. custom_message = false;
  1748. custom_message_type = 0;
  1749. #endif
  1750. }
  1751. void process_commands()
  1752. {
  1753. #ifdef FILAMENT_RUNOUT_SUPPORT
  1754. SET_INPUT(FR_SENS);
  1755. #endif
  1756. #ifdef CMDBUFFER_DEBUG
  1757. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1758. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1759. SERIAL_ECHOLNPGM("");
  1760. SERIAL_ECHOPGM("In cmdqueue: ");
  1761. SERIAL_ECHO(buflen);
  1762. SERIAL_ECHOLNPGM("");
  1763. #endif /* CMDBUFFER_DEBUG */
  1764. unsigned long codenum; //throw away variable
  1765. char *starpos = NULL;
  1766. #ifdef ENABLE_AUTO_BED_LEVELING
  1767. float x_tmp, y_tmp, z_tmp, real_z;
  1768. #endif
  1769. // PRUSA GCODES
  1770. KEEPALIVE_STATE(IN_HANDLER);
  1771. #ifdef SNMM
  1772. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1773. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1774. int8_t SilentMode;
  1775. #endif
  1776. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1777. starpos = (strchr(strchr_pointer + 5, '*'));
  1778. if (starpos != NULL)
  1779. *(starpos) = '\0';
  1780. lcd_setstatus(strchr_pointer + 5);
  1781. }
  1782. else if(code_seen("CRASH_DETECTED"))
  1783. crashdet_detected();
  1784. else if(code_seen("CRASH_RECOVER"))
  1785. crashdet_recover();
  1786. else if(code_seen("CRASH_CANCEL"))
  1787. crashdet_cancel();
  1788. else if(code_seen("PRUSA")){
  1789. if (code_seen("Ping")) { //PRUSA Ping
  1790. if (farm_mode) {
  1791. PingTime = millis();
  1792. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1793. }
  1794. }
  1795. else if (code_seen("PRN")) {
  1796. MYSERIAL.println(status_number);
  1797. }else if (code_seen("FAN")) {
  1798. MYSERIAL.print("E0:");
  1799. MYSERIAL.print(60*fan_speed[0]);
  1800. MYSERIAL.println(" RPM");
  1801. MYSERIAL.print("PRN0:");
  1802. MYSERIAL.print(60*fan_speed[1]);
  1803. MYSERIAL.println(" RPM");
  1804. }else if (code_seen("fn")) {
  1805. if (farm_mode) {
  1806. MYSERIAL.println(farm_no);
  1807. }
  1808. else {
  1809. MYSERIAL.println("Not in farm mode.");
  1810. }
  1811. }else if (code_seen("fv")) {
  1812. // get file version
  1813. #ifdef SDSUPPORT
  1814. card.openFile(strchr_pointer + 3,true);
  1815. while (true) {
  1816. uint16_t readByte = card.get();
  1817. MYSERIAL.write(readByte);
  1818. if (readByte=='\n') {
  1819. break;
  1820. }
  1821. }
  1822. card.closefile();
  1823. #endif // SDSUPPORT
  1824. } else if (code_seen("M28")) {
  1825. trace();
  1826. prusa_sd_card_upload = true;
  1827. card.openFile(strchr_pointer+4,false);
  1828. } else if (code_seen("SN")) {
  1829. if (farm_mode) {
  1830. selectedSerialPort = 0;
  1831. MSerial.write(";S");
  1832. // S/N is:CZPX0917X003XC13518
  1833. int numbersRead = 0;
  1834. while (numbersRead < 19) {
  1835. while (MSerial.available() > 0) {
  1836. uint8_t serial_char = MSerial.read();
  1837. selectedSerialPort = 1;
  1838. MSerial.write(serial_char);
  1839. numbersRead++;
  1840. selectedSerialPort = 0;
  1841. }
  1842. }
  1843. selectedSerialPort = 1;
  1844. MSerial.write('\n');
  1845. /*for (int b = 0; b < 3; b++) {
  1846. tone(BEEPER, 110);
  1847. delay(50);
  1848. noTone(BEEPER);
  1849. delay(50);
  1850. }*/
  1851. } else {
  1852. MYSERIAL.println("Not in farm mode.");
  1853. }
  1854. } else if(code_seen("Fir")){
  1855. SERIAL_PROTOCOLLN(FW_version);
  1856. } else if(code_seen("Rev")){
  1857. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1858. } else if(code_seen("Lang")) {
  1859. lcd_force_language_selection();
  1860. } else if(code_seen("Lz")) {
  1861. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1862. } else if (code_seen("SERIAL LOW")) {
  1863. MYSERIAL.println("SERIAL LOW");
  1864. MYSERIAL.begin(BAUDRATE);
  1865. return;
  1866. } else if (code_seen("SERIAL HIGH")) {
  1867. MYSERIAL.println("SERIAL HIGH");
  1868. MYSERIAL.begin(1152000);
  1869. return;
  1870. } else if(code_seen("Beat")) {
  1871. // Kick farm link timer
  1872. kicktime = millis();
  1873. } else if(code_seen("FR")) {
  1874. // Factory full reset
  1875. factory_reset(0,true);
  1876. }
  1877. //else if (code_seen('Cal')) {
  1878. // lcd_calibration();
  1879. // }
  1880. }
  1881. else if (code_seen('^')) {
  1882. // nothing, this is a version line
  1883. } else if(code_seen('G'))
  1884. {
  1885. switch((int)code_value())
  1886. {
  1887. case 0: // G0 -> G1
  1888. case 1: // G1
  1889. if(Stopped == false) {
  1890. #ifdef FILAMENT_RUNOUT_SUPPORT
  1891. if(READ(FR_SENS)){
  1892. feedmultiplyBckp=feedmultiply;
  1893. float target[4];
  1894. float lastpos[4];
  1895. target[X_AXIS]=current_position[X_AXIS];
  1896. target[Y_AXIS]=current_position[Y_AXIS];
  1897. target[Z_AXIS]=current_position[Z_AXIS];
  1898. target[E_AXIS]=current_position[E_AXIS];
  1899. lastpos[X_AXIS]=current_position[X_AXIS];
  1900. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1901. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1902. lastpos[E_AXIS]=current_position[E_AXIS];
  1903. //retract by E
  1904. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1905. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1906. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1907. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1908. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1909. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1910. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1911. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1912. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1913. //finish moves
  1914. st_synchronize();
  1915. //disable extruder steppers so filament can be removed
  1916. disable_e0();
  1917. disable_e1();
  1918. disable_e2();
  1919. delay(100);
  1920. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1921. uint8_t cnt=0;
  1922. int counterBeep = 0;
  1923. lcd_wait_interact();
  1924. while(!lcd_clicked()){
  1925. cnt++;
  1926. manage_heater();
  1927. manage_inactivity(true);
  1928. //lcd_update();
  1929. if(cnt==0)
  1930. {
  1931. #if BEEPER > 0
  1932. if (counterBeep== 500){
  1933. counterBeep = 0;
  1934. }
  1935. SET_OUTPUT(BEEPER);
  1936. if (counterBeep== 0){
  1937. WRITE(BEEPER,HIGH);
  1938. }
  1939. if (counterBeep== 20){
  1940. WRITE(BEEPER,LOW);
  1941. }
  1942. counterBeep++;
  1943. #else
  1944. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1945. lcd_buzz(1000/6,100);
  1946. #else
  1947. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1948. #endif
  1949. #endif
  1950. }
  1951. }
  1952. WRITE(BEEPER,LOW);
  1953. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1954. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1955. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1956. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1957. lcd_change_fil_state = 0;
  1958. lcd_loading_filament();
  1959. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1960. lcd_change_fil_state = 0;
  1961. lcd_alright();
  1962. switch(lcd_change_fil_state){
  1963. case 2:
  1964. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1965. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1966. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1967. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1968. lcd_loading_filament();
  1969. break;
  1970. case 3:
  1971. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1972. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1973. lcd_loading_color();
  1974. break;
  1975. default:
  1976. lcd_change_success();
  1977. break;
  1978. }
  1979. }
  1980. target[E_AXIS]+= 5;
  1981. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1982. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1983. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1984. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1985. //plan_set_e_position(current_position[E_AXIS]);
  1986. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1987. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1988. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1989. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1990. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1991. plan_set_e_position(lastpos[E_AXIS]);
  1992. feedmultiply=feedmultiplyBckp;
  1993. char cmd[9];
  1994. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1995. enquecommand(cmd);
  1996. }
  1997. #endif
  1998. get_coordinates(); // For X Y Z E F
  1999. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2000. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2001. }
  2002. #ifdef FWRETRACT
  2003. if(autoretract_enabled)
  2004. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2005. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2006. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2007. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2008. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2009. retract(!retracted);
  2010. return;
  2011. }
  2012. }
  2013. #endif //FWRETRACT
  2014. prepare_move();
  2015. //ClearToSend();
  2016. }
  2017. break;
  2018. case 2: // G2 - CW ARC
  2019. if(Stopped == false) {
  2020. get_arc_coordinates();
  2021. prepare_arc_move(true);
  2022. }
  2023. break;
  2024. case 3: // G3 - CCW ARC
  2025. if(Stopped == false) {
  2026. get_arc_coordinates();
  2027. prepare_arc_move(false);
  2028. }
  2029. break;
  2030. case 4: // G4 dwell
  2031. codenum = 0;
  2032. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2033. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2034. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2035. st_synchronize();
  2036. codenum += millis(); // keep track of when we started waiting
  2037. previous_millis_cmd = millis();
  2038. while(millis() < codenum) {
  2039. manage_heater();
  2040. manage_inactivity();
  2041. lcd_update();
  2042. }
  2043. break;
  2044. #ifdef FWRETRACT
  2045. case 10: // G10 retract
  2046. #if EXTRUDERS > 1
  2047. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2048. retract(true,retracted_swap[active_extruder]);
  2049. #else
  2050. retract(true);
  2051. #endif
  2052. break;
  2053. case 11: // G11 retract_recover
  2054. #if EXTRUDERS > 1
  2055. retract(false,retracted_swap[active_extruder]);
  2056. #else
  2057. retract(false);
  2058. #endif
  2059. break;
  2060. #endif //FWRETRACT
  2061. case 28: //G28 Home all Axis one at a time
  2062. {
  2063. st_synchronize();
  2064. #if 1
  2065. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2066. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2067. #endif
  2068. // Flag for the display update routine and to disable the print cancelation during homing.
  2069. homing_flag = true;
  2070. // Which axes should be homed?
  2071. bool home_x = code_seen(axis_codes[X_AXIS]);
  2072. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2073. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2074. // Either all X,Y,Z codes are present, or none of them.
  2075. bool home_all_axes = home_x == home_y && home_x == home_z;
  2076. if (home_all_axes)
  2077. // No X/Y/Z code provided means to home all axes.
  2078. home_x = home_y = home_z = true;
  2079. #ifdef ENABLE_AUTO_BED_LEVELING
  2080. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2081. #endif //ENABLE_AUTO_BED_LEVELING
  2082. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2083. // the planner will not perform any adjustments in the XY plane.
  2084. // Wait for the motors to stop and update the current position with the absolute values.
  2085. world2machine_revert_to_uncorrected();
  2086. // For mesh bed leveling deactivate the matrix temporarily.
  2087. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2088. // in a single axis only.
  2089. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2090. #ifdef MESH_BED_LEVELING
  2091. uint8_t mbl_was_active = mbl.active;
  2092. mbl.active = 0;
  2093. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2094. #endif
  2095. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2096. // consumed during the first movements following this statement.
  2097. if (home_z)
  2098. babystep_undo();
  2099. saved_feedrate = feedrate;
  2100. saved_feedmultiply = feedmultiply;
  2101. feedmultiply = 100;
  2102. previous_millis_cmd = millis();
  2103. enable_endstops(true);
  2104. memcpy(destination, current_position, sizeof(destination));
  2105. feedrate = 0.0;
  2106. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2107. if(home_z)
  2108. homeaxis(Z_AXIS);
  2109. #endif
  2110. #ifdef QUICK_HOME
  2111. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2112. if(home_x && home_y) //first diagonal move
  2113. {
  2114. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2115. int x_axis_home_dir = home_dir(X_AXIS);
  2116. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2117. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2118. feedrate = homing_feedrate[X_AXIS];
  2119. if(homing_feedrate[Y_AXIS]<feedrate)
  2120. feedrate = homing_feedrate[Y_AXIS];
  2121. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2122. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2123. } else {
  2124. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2125. }
  2126. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2127. st_synchronize();
  2128. axis_is_at_home(X_AXIS);
  2129. axis_is_at_home(Y_AXIS);
  2130. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2131. destination[X_AXIS] = current_position[X_AXIS];
  2132. destination[Y_AXIS] = current_position[Y_AXIS];
  2133. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2134. feedrate = 0.0;
  2135. st_synchronize();
  2136. endstops_hit_on_purpose();
  2137. current_position[X_AXIS] = destination[X_AXIS];
  2138. current_position[Y_AXIS] = destination[Y_AXIS];
  2139. current_position[Z_AXIS] = destination[Z_AXIS];
  2140. }
  2141. #endif /* QUICK_HOME */
  2142. if(home_x)
  2143. homeaxis(X_AXIS);
  2144. if(home_y)
  2145. homeaxis(Y_AXIS);
  2146. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2147. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2148. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2149. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2150. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2151. #ifndef Z_SAFE_HOMING
  2152. if(home_z) {
  2153. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2154. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2155. feedrate = max_feedrate[Z_AXIS];
  2156. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2157. st_synchronize();
  2158. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2159. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2160. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2161. {
  2162. homeaxis(X_AXIS);
  2163. homeaxis(Y_AXIS);
  2164. }
  2165. // 1st mesh bed leveling measurement point, corrected.
  2166. world2machine_initialize();
  2167. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2168. world2machine_reset();
  2169. if (destination[Y_AXIS] < Y_MIN_POS)
  2170. destination[Y_AXIS] = Y_MIN_POS;
  2171. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2172. feedrate = homing_feedrate[Z_AXIS]/10;
  2173. current_position[Z_AXIS] = 0;
  2174. enable_endstops(false);
  2175. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2176. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2177. st_synchronize();
  2178. current_position[X_AXIS] = destination[X_AXIS];
  2179. current_position[Y_AXIS] = destination[Y_AXIS];
  2180. enable_endstops(true);
  2181. endstops_hit_on_purpose();
  2182. homeaxis(Z_AXIS);
  2183. #else // MESH_BED_LEVELING
  2184. homeaxis(Z_AXIS);
  2185. #endif // MESH_BED_LEVELING
  2186. }
  2187. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2188. if(home_all_axes) {
  2189. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2190. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2191. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2192. feedrate = XY_TRAVEL_SPEED/60;
  2193. current_position[Z_AXIS] = 0;
  2194. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2195. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2196. st_synchronize();
  2197. current_position[X_AXIS] = destination[X_AXIS];
  2198. current_position[Y_AXIS] = destination[Y_AXIS];
  2199. homeaxis(Z_AXIS);
  2200. }
  2201. // Let's see if X and Y are homed and probe is inside bed area.
  2202. if(home_z) {
  2203. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2204. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2205. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2206. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2207. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2208. current_position[Z_AXIS] = 0;
  2209. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2210. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2211. feedrate = max_feedrate[Z_AXIS];
  2212. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2213. st_synchronize();
  2214. homeaxis(Z_AXIS);
  2215. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2216. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2217. SERIAL_ECHO_START;
  2218. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2219. } else {
  2220. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2221. SERIAL_ECHO_START;
  2222. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2223. }
  2224. }
  2225. #endif // Z_SAFE_HOMING
  2226. #endif // Z_HOME_DIR < 0
  2227. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2228. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2229. #ifdef ENABLE_AUTO_BED_LEVELING
  2230. if(home_z)
  2231. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2232. #endif
  2233. // Set the planner and stepper routine positions.
  2234. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2235. // contains the machine coordinates.
  2236. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2237. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2238. enable_endstops(false);
  2239. #endif
  2240. feedrate = saved_feedrate;
  2241. feedmultiply = saved_feedmultiply;
  2242. previous_millis_cmd = millis();
  2243. endstops_hit_on_purpose();
  2244. #ifndef MESH_BED_LEVELING
  2245. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2246. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2247. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2248. lcd_adjust_z();
  2249. #endif
  2250. // Load the machine correction matrix
  2251. world2machine_initialize();
  2252. // and correct the current_position XY axes to match the transformed coordinate system.
  2253. world2machine_update_current();
  2254. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2255. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2256. {
  2257. if (! home_z && mbl_was_active) {
  2258. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2259. mbl.active = true;
  2260. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2261. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2262. }
  2263. }
  2264. else
  2265. {
  2266. st_synchronize();
  2267. homing_flag = false;
  2268. // Push the commands to the front of the message queue in the reverse order!
  2269. // There shall be always enough space reserved for these commands.
  2270. // enquecommand_front_P((PSTR("G80")));
  2271. goto case_G80;
  2272. }
  2273. #endif
  2274. if (farm_mode) { prusa_statistics(20); };
  2275. homing_flag = false;
  2276. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2277. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2278. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2279. break;
  2280. }
  2281. #ifdef ENABLE_AUTO_BED_LEVELING
  2282. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2283. {
  2284. #if Z_MIN_PIN == -1
  2285. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2286. #endif
  2287. // Prevent user from running a G29 without first homing in X and Y
  2288. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2289. {
  2290. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2291. SERIAL_ECHO_START;
  2292. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2293. break; // abort G29, since we don't know where we are
  2294. }
  2295. st_synchronize();
  2296. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2297. //vector_3 corrected_position = plan_get_position_mm();
  2298. //corrected_position.debug("position before G29");
  2299. plan_bed_level_matrix.set_to_identity();
  2300. vector_3 uncorrected_position = plan_get_position();
  2301. //uncorrected_position.debug("position durring G29");
  2302. current_position[X_AXIS] = uncorrected_position.x;
  2303. current_position[Y_AXIS] = uncorrected_position.y;
  2304. current_position[Z_AXIS] = uncorrected_position.z;
  2305. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2306. setup_for_endstop_move();
  2307. feedrate = homing_feedrate[Z_AXIS];
  2308. #ifdef AUTO_BED_LEVELING_GRID
  2309. // probe at the points of a lattice grid
  2310. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2311. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2312. // solve the plane equation ax + by + d = z
  2313. // A is the matrix with rows [x y 1] for all the probed points
  2314. // B is the vector of the Z positions
  2315. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2316. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2317. // "A" matrix of the linear system of equations
  2318. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2319. // "B" vector of Z points
  2320. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2321. int probePointCounter = 0;
  2322. bool zig = true;
  2323. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2324. {
  2325. int xProbe, xInc;
  2326. if (zig)
  2327. {
  2328. xProbe = LEFT_PROBE_BED_POSITION;
  2329. //xEnd = RIGHT_PROBE_BED_POSITION;
  2330. xInc = xGridSpacing;
  2331. zig = false;
  2332. } else // zag
  2333. {
  2334. xProbe = RIGHT_PROBE_BED_POSITION;
  2335. //xEnd = LEFT_PROBE_BED_POSITION;
  2336. xInc = -xGridSpacing;
  2337. zig = true;
  2338. }
  2339. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2340. {
  2341. float z_before;
  2342. if (probePointCounter == 0)
  2343. {
  2344. // raise before probing
  2345. z_before = Z_RAISE_BEFORE_PROBING;
  2346. } else
  2347. {
  2348. // raise extruder
  2349. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2350. }
  2351. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2352. eqnBVector[probePointCounter] = measured_z;
  2353. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2354. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2355. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2356. probePointCounter++;
  2357. xProbe += xInc;
  2358. }
  2359. }
  2360. clean_up_after_endstop_move();
  2361. // solve lsq problem
  2362. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2363. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2364. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2365. SERIAL_PROTOCOLPGM(" b: ");
  2366. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2367. SERIAL_PROTOCOLPGM(" d: ");
  2368. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2369. set_bed_level_equation_lsq(plane_equation_coefficients);
  2370. free(plane_equation_coefficients);
  2371. #else // AUTO_BED_LEVELING_GRID not defined
  2372. // Probe at 3 arbitrary points
  2373. // probe 1
  2374. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2375. // probe 2
  2376. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2377. // probe 3
  2378. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2379. clean_up_after_endstop_move();
  2380. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2381. #endif // AUTO_BED_LEVELING_GRID
  2382. st_synchronize();
  2383. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2384. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2385. // When the bed is uneven, this height must be corrected.
  2386. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2387. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2388. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2389. z_tmp = current_position[Z_AXIS];
  2390. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2391. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2392. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2393. }
  2394. break;
  2395. #ifndef Z_PROBE_SLED
  2396. case 30: // G30 Single Z Probe
  2397. {
  2398. st_synchronize();
  2399. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2400. setup_for_endstop_move();
  2401. feedrate = homing_feedrate[Z_AXIS];
  2402. run_z_probe();
  2403. SERIAL_PROTOCOLPGM(MSG_BED);
  2404. SERIAL_PROTOCOLPGM(" X: ");
  2405. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2406. SERIAL_PROTOCOLPGM(" Y: ");
  2407. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2408. SERIAL_PROTOCOLPGM(" Z: ");
  2409. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2410. SERIAL_PROTOCOLPGM("\n");
  2411. clean_up_after_endstop_move();
  2412. }
  2413. break;
  2414. #else
  2415. case 31: // dock the sled
  2416. dock_sled(true);
  2417. break;
  2418. case 32: // undock the sled
  2419. dock_sled(false);
  2420. break;
  2421. #endif // Z_PROBE_SLED
  2422. #endif // ENABLE_AUTO_BED_LEVELING
  2423. #ifdef MESH_BED_LEVELING
  2424. case 30: // G30 Single Z Probe
  2425. {
  2426. st_synchronize();
  2427. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2428. setup_for_endstop_move();
  2429. feedrate = homing_feedrate[Z_AXIS];
  2430. find_bed_induction_sensor_point_z(-10.f, 3);
  2431. SERIAL_PROTOCOLRPGM(MSG_BED);
  2432. SERIAL_PROTOCOLPGM(" X: ");
  2433. MYSERIAL.print(current_position[X_AXIS], 5);
  2434. SERIAL_PROTOCOLPGM(" Y: ");
  2435. MYSERIAL.print(current_position[Y_AXIS], 5);
  2436. SERIAL_PROTOCOLPGM(" Z: ");
  2437. MYSERIAL.print(current_position[Z_AXIS], 5);
  2438. SERIAL_PROTOCOLPGM("\n");
  2439. clean_up_after_endstop_move();
  2440. }
  2441. break;
  2442. case 75:
  2443. {
  2444. for (int i = 40; i <= 110; i++) {
  2445. MYSERIAL.print(i);
  2446. MYSERIAL.print(" ");
  2447. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2448. }
  2449. }
  2450. break;
  2451. case 76: //PINDA probe temperature calibration
  2452. {
  2453. #ifdef PINDA_THERMISTOR
  2454. if (true)
  2455. {
  2456. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2457. // We don't know where we are! HOME!
  2458. // Push the commands to the front of the message queue in the reverse order!
  2459. // There shall be always enough space reserved for these commands.
  2460. repeatcommand_front(); // repeat G76 with all its parameters
  2461. enquecommand_front_P((PSTR("G28 W0")));
  2462. break;
  2463. }
  2464. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2465. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2466. float zero_z;
  2467. int z_shift = 0; //unit: steps
  2468. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2469. if (start_temp < 35) start_temp = 35;
  2470. if (start_temp < current_temperature_pinda) start_temp += 5;
  2471. SERIAL_ECHOPGM("start temperature: ");
  2472. MYSERIAL.println(start_temp);
  2473. // setTargetHotend(200, 0);
  2474. setTargetBed(50 + 10 * (start_temp - 30) / 5);
  2475. custom_message = true;
  2476. custom_message_type = 4;
  2477. custom_message_state = 1;
  2478. custom_message = MSG_TEMP_CALIBRATION;
  2479. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2480. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2481. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2482. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2483. st_synchronize();
  2484. while (current_temperature_pinda < start_temp)
  2485. {
  2486. delay_keep_alive(1000);
  2487. serialecho_temperatures();
  2488. }
  2489. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2490. current_position[Z_AXIS] = 5;
  2491. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2492. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2493. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2495. st_synchronize();
  2496. find_bed_induction_sensor_point_z(-1.f);
  2497. zero_z = current_position[Z_AXIS];
  2498. //current_position[Z_AXIS]
  2499. SERIAL_ECHOLNPGM("");
  2500. SERIAL_ECHOPGM("ZERO: ");
  2501. MYSERIAL.print(current_position[Z_AXIS]);
  2502. SERIAL_ECHOLNPGM("");
  2503. int i = -1; for (; i < 5; i++)
  2504. {
  2505. float temp = (40 + i * 5);
  2506. SERIAL_ECHOPGM("Step: ");
  2507. MYSERIAL.print(i + 2);
  2508. SERIAL_ECHOLNPGM("/6 (skipped)");
  2509. SERIAL_ECHOPGM("PINDA temperature: ");
  2510. MYSERIAL.print((40 + i*5));
  2511. SERIAL_ECHOPGM(" Z shift (mm):");
  2512. MYSERIAL.print(0);
  2513. SERIAL_ECHOLNPGM("");
  2514. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2515. if (start_temp <= temp) break;
  2516. }
  2517. for (i++; i < 5; i++)
  2518. {
  2519. float temp = (40 + i * 5);
  2520. SERIAL_ECHOPGM("Step: ");
  2521. MYSERIAL.print(i + 2);
  2522. SERIAL_ECHOLNPGM("/6");
  2523. custom_message_state = i + 2;
  2524. setTargetBed(50 + 10 * (temp - 30) / 5);
  2525. // setTargetHotend(255, 0);
  2526. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2527. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2528. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2529. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2530. st_synchronize();
  2531. while (current_temperature_pinda < temp)
  2532. {
  2533. delay_keep_alive(1000);
  2534. serialecho_temperatures();
  2535. }
  2536. current_position[Z_AXIS] = 5;
  2537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2538. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2539. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2540. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2541. st_synchronize();
  2542. find_bed_induction_sensor_point_z(-1.f);
  2543. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2544. SERIAL_ECHOLNPGM("");
  2545. SERIAL_ECHOPGM("PINDA temperature: ");
  2546. MYSERIAL.print(current_temperature_pinda);
  2547. SERIAL_ECHOPGM(" Z shift (mm):");
  2548. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2549. SERIAL_ECHOLNPGM("");
  2550. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2551. }
  2552. custom_message_type = 0;
  2553. custom_message = false;
  2554. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2555. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2556. disable_x();
  2557. disable_y();
  2558. disable_z();
  2559. disable_e0();
  2560. disable_e1();
  2561. disable_e2();
  2562. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2563. lcd_update_enable(true);
  2564. lcd_update(2);
  2565. setTargetBed(0); //set bed target temperature back to 0
  2566. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2567. break;
  2568. }
  2569. #endif //PINDA_THERMISTOR
  2570. setTargetBed(PINDA_MIN_T);
  2571. float zero_z;
  2572. int z_shift = 0; //unit: steps
  2573. int t_c; // temperature
  2574. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2575. // We don't know where we are! HOME!
  2576. // Push the commands to the front of the message queue in the reverse order!
  2577. // There shall be always enough space reserved for these commands.
  2578. repeatcommand_front(); // repeat G76 with all its parameters
  2579. enquecommand_front_P((PSTR("G28 W0")));
  2580. break;
  2581. }
  2582. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2583. custom_message = true;
  2584. custom_message_type = 4;
  2585. custom_message_state = 1;
  2586. custom_message = MSG_TEMP_CALIBRATION;
  2587. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2588. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2589. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2591. st_synchronize();
  2592. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2593. delay_keep_alive(1000);
  2594. serialecho_temperatures();
  2595. }
  2596. //enquecommand_P(PSTR("M190 S50"));
  2597. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2598. delay_keep_alive(1000);
  2599. serialecho_temperatures();
  2600. }
  2601. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2602. current_position[Z_AXIS] = 5;
  2603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2604. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2605. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2607. st_synchronize();
  2608. find_bed_induction_sensor_point_z(-1.f);
  2609. zero_z = current_position[Z_AXIS];
  2610. //current_position[Z_AXIS]
  2611. SERIAL_ECHOLNPGM("");
  2612. SERIAL_ECHOPGM("ZERO: ");
  2613. MYSERIAL.print(current_position[Z_AXIS]);
  2614. SERIAL_ECHOLNPGM("");
  2615. for (int i = 0; i<5; i++) {
  2616. SERIAL_ECHOPGM("Step: ");
  2617. MYSERIAL.print(i+2);
  2618. SERIAL_ECHOLNPGM("/6");
  2619. custom_message_state = i + 2;
  2620. t_c = 60 + i * 10;
  2621. setTargetBed(t_c);
  2622. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2623. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2624. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2626. st_synchronize();
  2627. while (degBed() < t_c) {
  2628. delay_keep_alive(1000);
  2629. serialecho_temperatures();
  2630. }
  2631. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2632. delay_keep_alive(1000);
  2633. serialecho_temperatures();
  2634. }
  2635. current_position[Z_AXIS] = 5;
  2636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2637. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2638. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2640. st_synchronize();
  2641. find_bed_induction_sensor_point_z(-1.f);
  2642. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2643. SERIAL_ECHOLNPGM("");
  2644. SERIAL_ECHOPGM("Temperature: ");
  2645. MYSERIAL.print(t_c);
  2646. SERIAL_ECHOPGM(" Z shift (mm):");
  2647. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2648. SERIAL_ECHOLNPGM("");
  2649. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2650. }
  2651. custom_message_type = 0;
  2652. custom_message = false;
  2653. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2654. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2655. disable_x();
  2656. disable_y();
  2657. disable_z();
  2658. disable_e0();
  2659. disable_e1();
  2660. disable_e2();
  2661. setTargetBed(0); //set bed target temperature back to 0
  2662. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2663. lcd_update_enable(true);
  2664. lcd_update(2);
  2665. }
  2666. break;
  2667. #ifdef DIS
  2668. case 77:
  2669. {
  2670. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2671. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2672. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2673. float dimension_x = 40;
  2674. float dimension_y = 40;
  2675. int points_x = 40;
  2676. int points_y = 40;
  2677. float offset_x = 74;
  2678. float offset_y = 33;
  2679. if (code_seen('X')) dimension_x = code_value();
  2680. if (code_seen('Y')) dimension_y = code_value();
  2681. if (code_seen('XP')) points_x = code_value();
  2682. if (code_seen('YP')) points_y = code_value();
  2683. if (code_seen('XO')) offset_x = code_value();
  2684. if (code_seen('YO')) offset_y = code_value();
  2685. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2686. } break;
  2687. #endif
  2688. case 79: {
  2689. for (int i = 255; i > 0; i = i - 5) {
  2690. fanSpeed = i;
  2691. //delay_keep_alive(2000);
  2692. for (int j = 0; j < 100; j++) {
  2693. delay_keep_alive(100);
  2694. }
  2695. fan_speed[1];
  2696. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2697. }
  2698. }break;
  2699. /**
  2700. * G80: Mesh-based Z probe, probes a grid and produces a
  2701. * mesh to compensate for variable bed height
  2702. *
  2703. * The S0 report the points as below
  2704. *
  2705. * +----> X-axis
  2706. * |
  2707. * |
  2708. * v Y-axis
  2709. *
  2710. */
  2711. case 80:
  2712. #ifdef MK1BP
  2713. break;
  2714. #endif //MK1BP
  2715. case_G80:
  2716. {
  2717. mesh_bed_leveling_flag = true;
  2718. int8_t verbosity_level = 0;
  2719. static bool run = false;
  2720. if (code_seen('V')) {
  2721. // Just 'V' without a number counts as V1.
  2722. char c = strchr_pointer[1];
  2723. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2724. }
  2725. // Firstly check if we know where we are
  2726. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2727. // We don't know where we are! HOME!
  2728. // Push the commands to the front of the message queue in the reverse order!
  2729. // There shall be always enough space reserved for these commands.
  2730. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2731. repeatcommand_front(); // repeat G80 with all its parameters
  2732. enquecommand_front_P((PSTR("G28 W0")));
  2733. }
  2734. else {
  2735. mesh_bed_leveling_flag = false;
  2736. }
  2737. break;
  2738. }
  2739. bool temp_comp_start = true;
  2740. #ifdef PINDA_THERMISTOR
  2741. temp_comp_start = false;
  2742. #endif //PINDA_THERMISTOR
  2743. if (temp_comp_start)
  2744. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2745. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2746. temp_compensation_start();
  2747. run = true;
  2748. repeatcommand_front(); // repeat G80 with all its parameters
  2749. enquecommand_front_P((PSTR("G28 W0")));
  2750. }
  2751. else {
  2752. mesh_bed_leveling_flag = false;
  2753. }
  2754. break;
  2755. }
  2756. run = false;
  2757. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2758. mesh_bed_leveling_flag = false;
  2759. break;
  2760. }
  2761. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2762. bool custom_message_old = custom_message;
  2763. unsigned int custom_message_type_old = custom_message_type;
  2764. unsigned int custom_message_state_old = custom_message_state;
  2765. custom_message = true;
  2766. custom_message_type = 1;
  2767. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2768. lcd_update(1);
  2769. mbl.reset(); //reset mesh bed leveling
  2770. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2771. // consumed during the first movements following this statement.
  2772. babystep_undo();
  2773. // Cycle through all points and probe them
  2774. // First move up. During this first movement, the babystepping will be reverted.
  2775. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2777. // The move to the first calibration point.
  2778. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2779. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2780. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2781. #ifdef SUPPORT_VERBOSITY
  2782. if (verbosity_level >= 1) {
  2783. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2784. }
  2785. #endif //SUPPORT_VERBOSITY
  2786. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2787. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2788. // Wait until the move is finished.
  2789. st_synchronize();
  2790. int mesh_point = 0; //index number of calibration point
  2791. int ix = 0;
  2792. int iy = 0;
  2793. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2794. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2795. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2796. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2797. #ifdef SUPPORT_VERBOSITY
  2798. if (verbosity_level >= 1) {
  2799. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2800. }
  2801. #endif // SUPPORT_VERBOSITY
  2802. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2803. const char *kill_message = NULL;
  2804. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2805. // Get coords of a measuring point.
  2806. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2807. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2808. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2809. float z0 = 0.f;
  2810. if (has_z && mesh_point > 0) {
  2811. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2812. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2813. //#if 0
  2814. #ifdef SUPPORT_VERBOSITY
  2815. if (verbosity_level >= 1) {
  2816. SERIAL_ECHOLNPGM("");
  2817. SERIAL_ECHOPGM("Bed leveling, point: ");
  2818. MYSERIAL.print(mesh_point);
  2819. SERIAL_ECHOPGM(", calibration z: ");
  2820. MYSERIAL.print(z0, 5);
  2821. SERIAL_ECHOLNPGM("");
  2822. }
  2823. #endif // SUPPORT_VERBOSITY
  2824. //#endif
  2825. }
  2826. // Move Z up to MESH_HOME_Z_SEARCH.
  2827. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2828. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2829. st_synchronize();
  2830. // Move to XY position of the sensor point.
  2831. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2832. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2833. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2834. #ifdef SUPPORT_VERBOSITY
  2835. if (verbosity_level >= 1) {
  2836. SERIAL_PROTOCOL(mesh_point);
  2837. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2838. }
  2839. #endif // SUPPORT_VERBOSITY
  2840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2841. st_synchronize();
  2842. // Go down until endstop is hit
  2843. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2844. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2845. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2846. break;
  2847. }
  2848. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2849. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2850. break;
  2851. }
  2852. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2853. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2854. break;
  2855. }
  2856. #ifdef SUPPORT_VERBOSITY
  2857. if (verbosity_level >= 10) {
  2858. SERIAL_ECHOPGM("X: ");
  2859. MYSERIAL.print(current_position[X_AXIS], 5);
  2860. SERIAL_ECHOLNPGM("");
  2861. SERIAL_ECHOPGM("Y: ");
  2862. MYSERIAL.print(current_position[Y_AXIS], 5);
  2863. SERIAL_PROTOCOLPGM("\n");
  2864. }
  2865. #endif // SUPPORT_VERBOSITY
  2866. float offset_z = 0;
  2867. #ifdef PINDA_THERMISTOR
  2868. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  2869. #endif //PINDA_THERMISTOR
  2870. // #ifdef SUPPORT_VERBOSITY
  2871. // if (verbosity_level >= 1)
  2872. {
  2873. SERIAL_ECHOPGM("mesh bed leveling: ");
  2874. MYSERIAL.print(current_position[Z_AXIS], 5);
  2875. SERIAL_ECHOPGM(" offset: ");
  2876. MYSERIAL.print(offset_z, 5);
  2877. SERIAL_ECHOLNPGM("");
  2878. }
  2879. // #endif // SUPPORT_VERBOSITY
  2880. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  2881. custom_message_state--;
  2882. mesh_point++;
  2883. lcd_update(1);
  2884. }
  2885. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2886. #ifdef SUPPORT_VERBOSITY
  2887. if (verbosity_level >= 20) {
  2888. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2889. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2890. MYSERIAL.print(current_position[Z_AXIS], 5);
  2891. }
  2892. #endif // SUPPORT_VERBOSITY
  2893. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2894. st_synchronize();
  2895. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2896. kill(kill_message);
  2897. SERIAL_ECHOLNPGM("killed");
  2898. }
  2899. clean_up_after_endstop_move();
  2900. SERIAL_ECHOLNPGM("clean up finished ");
  2901. bool apply_temp_comp = true;
  2902. #ifdef PINDA_THERMISTOR
  2903. apply_temp_comp = false;
  2904. #endif
  2905. if (apply_temp_comp)
  2906. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2907. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2908. SERIAL_ECHOLNPGM("babystep applied");
  2909. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2910. #ifdef SUPPORT_VERBOSITY
  2911. if (verbosity_level >= 1) {
  2912. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2913. }
  2914. #endif // SUPPORT_VERBOSITY
  2915. for (uint8_t i = 0; i < 4; ++i) {
  2916. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2917. long correction = 0;
  2918. if (code_seen(codes[i]))
  2919. correction = code_value_long();
  2920. else if (eeprom_bed_correction_valid) {
  2921. unsigned char *addr = (i < 2) ?
  2922. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2923. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2924. correction = eeprom_read_int8(addr);
  2925. }
  2926. if (correction == 0)
  2927. continue;
  2928. float offset = float(correction) * 0.001f;
  2929. if (fabs(offset) > 0.101f) {
  2930. SERIAL_ERROR_START;
  2931. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2932. SERIAL_ECHO(offset);
  2933. SERIAL_ECHOLNPGM(" microns");
  2934. }
  2935. else {
  2936. switch (i) {
  2937. case 0:
  2938. for (uint8_t row = 0; row < 3; ++row) {
  2939. mbl.z_values[row][1] += 0.5f * offset;
  2940. mbl.z_values[row][0] += offset;
  2941. }
  2942. break;
  2943. case 1:
  2944. for (uint8_t row = 0; row < 3; ++row) {
  2945. mbl.z_values[row][1] += 0.5f * offset;
  2946. mbl.z_values[row][2] += offset;
  2947. }
  2948. break;
  2949. case 2:
  2950. for (uint8_t col = 0; col < 3; ++col) {
  2951. mbl.z_values[1][col] += 0.5f * offset;
  2952. mbl.z_values[0][col] += offset;
  2953. }
  2954. break;
  2955. case 3:
  2956. for (uint8_t col = 0; col < 3; ++col) {
  2957. mbl.z_values[1][col] += 0.5f * offset;
  2958. mbl.z_values[2][col] += offset;
  2959. }
  2960. break;
  2961. }
  2962. }
  2963. }
  2964. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2965. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2966. SERIAL_ECHOLNPGM("Upsample finished");
  2967. mbl.active = 1; //activate mesh bed leveling
  2968. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2969. go_home_with_z_lift();
  2970. SERIAL_ECHOLNPGM("Go home finished");
  2971. //unretract (after PINDA preheat retraction)
  2972. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2973. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2974. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2975. }
  2976. KEEPALIVE_STATE(NOT_BUSY);
  2977. // Restore custom message state
  2978. custom_message = custom_message_old;
  2979. custom_message_type = custom_message_type_old;
  2980. custom_message_state = custom_message_state_old;
  2981. mesh_bed_leveling_flag = false;
  2982. mesh_bed_run_from_menu = false;
  2983. lcd_update(2);
  2984. }
  2985. break;
  2986. /**
  2987. * G81: Print mesh bed leveling status and bed profile if activated
  2988. */
  2989. case 81:
  2990. if (mbl.active) {
  2991. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2992. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2993. SERIAL_PROTOCOLPGM(",");
  2994. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2995. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2996. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2997. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2998. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2999. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3000. SERIAL_PROTOCOLPGM(" ");
  3001. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3002. }
  3003. SERIAL_PROTOCOLPGM("\n");
  3004. }
  3005. }
  3006. else
  3007. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3008. break;
  3009. #if 0
  3010. /**
  3011. * G82: Single Z probe at current location
  3012. *
  3013. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3014. *
  3015. */
  3016. case 82:
  3017. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3018. setup_for_endstop_move();
  3019. find_bed_induction_sensor_point_z();
  3020. clean_up_after_endstop_move();
  3021. SERIAL_PROTOCOLPGM("Bed found at: ");
  3022. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3023. SERIAL_PROTOCOLPGM("\n");
  3024. break;
  3025. /**
  3026. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3027. */
  3028. case 83:
  3029. {
  3030. int babystepz = code_seen('S') ? code_value() : 0;
  3031. int BabyPosition = code_seen('P') ? code_value() : 0;
  3032. if (babystepz != 0) {
  3033. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3034. // Is the axis indexed starting with zero or one?
  3035. if (BabyPosition > 4) {
  3036. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3037. }else{
  3038. // Save it to the eeprom
  3039. babystepLoadZ = babystepz;
  3040. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3041. // adjust the Z
  3042. babystepsTodoZadd(babystepLoadZ);
  3043. }
  3044. }
  3045. }
  3046. break;
  3047. /**
  3048. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3049. */
  3050. case 84:
  3051. babystepsTodoZsubtract(babystepLoadZ);
  3052. // babystepLoadZ = 0;
  3053. break;
  3054. /**
  3055. * G85: Prusa3D specific: Pick best babystep
  3056. */
  3057. case 85:
  3058. lcd_pick_babystep();
  3059. break;
  3060. #endif
  3061. /**
  3062. * G86: Prusa3D specific: Disable babystep correction after home.
  3063. * This G-code will be performed at the start of a calibration script.
  3064. */
  3065. case 86:
  3066. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3067. break;
  3068. /**
  3069. * G87: Prusa3D specific: Enable babystep correction after home
  3070. * This G-code will be performed at the end of a calibration script.
  3071. */
  3072. case 87:
  3073. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3074. break;
  3075. /**
  3076. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3077. */
  3078. case 88:
  3079. break;
  3080. #endif // ENABLE_MESH_BED_LEVELING
  3081. case 90: // G90
  3082. relative_mode = false;
  3083. break;
  3084. case 91: // G91
  3085. relative_mode = true;
  3086. break;
  3087. case 92: // G92
  3088. if(!code_seen(axis_codes[E_AXIS]))
  3089. st_synchronize();
  3090. for(int8_t i=0; i < NUM_AXIS; i++) {
  3091. if(code_seen(axis_codes[i])) {
  3092. if(i == E_AXIS) {
  3093. current_position[i] = code_value();
  3094. plan_set_e_position(current_position[E_AXIS]);
  3095. }
  3096. else {
  3097. current_position[i] = code_value()+add_homing[i];
  3098. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3099. }
  3100. }
  3101. }
  3102. break;
  3103. case 98: //activate farm mode
  3104. farm_mode = 1;
  3105. PingTime = millis();
  3106. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3107. break;
  3108. case 99: //deactivate farm mode
  3109. farm_mode = 0;
  3110. lcd_printer_connected();
  3111. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3112. lcd_update(2);
  3113. break;
  3114. }
  3115. } // end if(code_seen('G'))
  3116. else if(code_seen('M'))
  3117. {
  3118. int index;
  3119. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3120. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3121. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3122. SERIAL_ECHOLNPGM("Invalid M code");
  3123. } else
  3124. switch((int)code_value())
  3125. {
  3126. #ifdef ULTIPANEL
  3127. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3128. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3129. {
  3130. char *src = strchr_pointer + 2;
  3131. codenum = 0;
  3132. bool hasP = false, hasS = false;
  3133. if (code_seen('P')) {
  3134. codenum = code_value(); // milliseconds to wait
  3135. hasP = codenum > 0;
  3136. }
  3137. if (code_seen('S')) {
  3138. codenum = code_value() * 1000; // seconds to wait
  3139. hasS = codenum > 0;
  3140. }
  3141. starpos = strchr(src, '*');
  3142. if (starpos != NULL) *(starpos) = '\0';
  3143. while (*src == ' ') ++src;
  3144. if (!hasP && !hasS && *src != '\0') {
  3145. lcd_setstatus(src);
  3146. } else {
  3147. LCD_MESSAGERPGM(MSG_USERWAIT);
  3148. }
  3149. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3150. st_synchronize();
  3151. previous_millis_cmd = millis();
  3152. if (codenum > 0){
  3153. codenum += millis(); // keep track of when we started waiting
  3154. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3155. while(millis() < codenum && !lcd_clicked()){
  3156. manage_heater();
  3157. manage_inactivity(true);
  3158. lcd_update();
  3159. }
  3160. KEEPALIVE_STATE(IN_HANDLER);
  3161. lcd_ignore_click(false);
  3162. }else{
  3163. if (!lcd_detected())
  3164. break;
  3165. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3166. while(!lcd_clicked()){
  3167. manage_heater();
  3168. manage_inactivity(true);
  3169. lcd_update();
  3170. }
  3171. KEEPALIVE_STATE(IN_HANDLER);
  3172. }
  3173. if (IS_SD_PRINTING)
  3174. LCD_MESSAGERPGM(MSG_RESUMING);
  3175. else
  3176. LCD_MESSAGERPGM(WELCOME_MSG);
  3177. }
  3178. break;
  3179. #endif
  3180. case 17:
  3181. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3182. enable_x();
  3183. enable_y();
  3184. enable_z();
  3185. enable_e0();
  3186. enable_e1();
  3187. enable_e2();
  3188. break;
  3189. #ifdef SDSUPPORT
  3190. case 20: // M20 - list SD card
  3191. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3192. card.ls();
  3193. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3194. break;
  3195. case 21: // M21 - init SD card
  3196. card.initsd();
  3197. break;
  3198. case 22: //M22 - release SD card
  3199. card.release();
  3200. break;
  3201. case 23: //M23 - Select file
  3202. starpos = (strchr(strchr_pointer + 4,'*'));
  3203. if(starpos!=NULL)
  3204. *(starpos)='\0';
  3205. card.openFile(strchr_pointer + 4,true);
  3206. break;
  3207. case 24: //M24 - Start SD print
  3208. card.startFileprint();
  3209. starttime=millis();
  3210. break;
  3211. case 25: //M25 - Pause SD print
  3212. card.pauseSDPrint();
  3213. break;
  3214. case 26: //M26 - Set SD index
  3215. if(card.cardOK && code_seen('S')) {
  3216. card.setIndex(code_value_long());
  3217. }
  3218. break;
  3219. case 27: //M27 - Get SD status
  3220. card.getStatus();
  3221. break;
  3222. case 28: //M28 - Start SD write
  3223. starpos = (strchr(strchr_pointer + 4,'*'));
  3224. if(starpos != NULL){
  3225. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3226. strchr_pointer = strchr(npos,' ') + 1;
  3227. *(starpos) = '\0';
  3228. }
  3229. card.openFile(strchr_pointer+4,false);
  3230. break;
  3231. case 29: //M29 - Stop SD write
  3232. //processed in write to file routine above
  3233. //card,saving = false;
  3234. break;
  3235. case 30: //M30 <filename> Delete File
  3236. if (card.cardOK){
  3237. card.closefile();
  3238. starpos = (strchr(strchr_pointer + 4,'*'));
  3239. if(starpos != NULL){
  3240. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3241. strchr_pointer = strchr(npos,' ') + 1;
  3242. *(starpos) = '\0';
  3243. }
  3244. card.removeFile(strchr_pointer + 4);
  3245. }
  3246. break;
  3247. case 32: //M32 - Select file and start SD print
  3248. {
  3249. if(card.sdprinting) {
  3250. st_synchronize();
  3251. }
  3252. starpos = (strchr(strchr_pointer + 4,'*'));
  3253. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3254. if(namestartpos==NULL)
  3255. {
  3256. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3257. }
  3258. else
  3259. namestartpos++; //to skip the '!'
  3260. if(starpos!=NULL)
  3261. *(starpos)='\0';
  3262. bool call_procedure=(code_seen('P'));
  3263. if(strchr_pointer>namestartpos)
  3264. call_procedure=false; //false alert, 'P' found within filename
  3265. if( card.cardOK )
  3266. {
  3267. card.openFile(namestartpos,true,!call_procedure);
  3268. if(code_seen('S'))
  3269. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3270. card.setIndex(code_value_long());
  3271. card.startFileprint();
  3272. if(!call_procedure)
  3273. starttime=millis(); //procedure calls count as normal print time.
  3274. }
  3275. } break;
  3276. case 928: //M928 - Start SD write
  3277. starpos = (strchr(strchr_pointer + 5,'*'));
  3278. if(starpos != NULL){
  3279. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3280. strchr_pointer = strchr(npos,' ') + 1;
  3281. *(starpos) = '\0';
  3282. }
  3283. card.openLogFile(strchr_pointer+5);
  3284. break;
  3285. #endif //SDSUPPORT
  3286. case 31: //M31 take time since the start of the SD print or an M109 command
  3287. {
  3288. stoptime=millis();
  3289. char time[30];
  3290. unsigned long t=(stoptime-starttime)/1000;
  3291. int sec,min;
  3292. min=t/60;
  3293. sec=t%60;
  3294. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3295. SERIAL_ECHO_START;
  3296. SERIAL_ECHOLN(time);
  3297. lcd_setstatus(time);
  3298. autotempShutdown();
  3299. }
  3300. break;
  3301. case 42: //M42 -Change pin status via gcode
  3302. if (code_seen('S'))
  3303. {
  3304. int pin_status = code_value();
  3305. int pin_number = LED_PIN;
  3306. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3307. pin_number = code_value();
  3308. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3309. {
  3310. if (sensitive_pins[i] == pin_number)
  3311. {
  3312. pin_number = -1;
  3313. break;
  3314. }
  3315. }
  3316. #if defined(FAN_PIN) && FAN_PIN > -1
  3317. if (pin_number == FAN_PIN)
  3318. fanSpeed = pin_status;
  3319. #endif
  3320. if (pin_number > -1)
  3321. {
  3322. pinMode(pin_number, OUTPUT);
  3323. digitalWrite(pin_number, pin_status);
  3324. analogWrite(pin_number, pin_status);
  3325. }
  3326. }
  3327. break;
  3328. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3329. // Reset the baby step value and the baby step applied flag.
  3330. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3331. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3332. // Reset the skew and offset in both RAM and EEPROM.
  3333. reset_bed_offset_and_skew();
  3334. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3335. // the planner will not perform any adjustments in the XY plane.
  3336. // Wait for the motors to stop and update the current position with the absolute values.
  3337. world2machine_revert_to_uncorrected();
  3338. break;
  3339. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3340. {
  3341. bool only_Z = code_seen('Z');
  3342. gcode_M45(only_Z);
  3343. }
  3344. break;
  3345. /*
  3346. case 46:
  3347. {
  3348. // M46: Prusa3D: Show the assigned IP address.
  3349. uint8_t ip[4];
  3350. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3351. if (hasIP) {
  3352. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3353. SERIAL_ECHO(int(ip[0]));
  3354. SERIAL_ECHOPGM(".");
  3355. SERIAL_ECHO(int(ip[1]));
  3356. SERIAL_ECHOPGM(".");
  3357. SERIAL_ECHO(int(ip[2]));
  3358. SERIAL_ECHOPGM(".");
  3359. SERIAL_ECHO(int(ip[3]));
  3360. SERIAL_ECHOLNPGM("");
  3361. } else {
  3362. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3363. }
  3364. break;
  3365. }
  3366. */
  3367. case 47:
  3368. // M47: Prusa3D: Show end stops dialog on the display.
  3369. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3370. lcd_diag_show_end_stops();
  3371. KEEPALIVE_STATE(IN_HANDLER);
  3372. break;
  3373. #if 0
  3374. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3375. {
  3376. // Disable the default update procedure of the display. We will do a modal dialog.
  3377. lcd_update_enable(false);
  3378. // Let the planner use the uncorrected coordinates.
  3379. mbl.reset();
  3380. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3381. // the planner will not perform any adjustments in the XY plane.
  3382. // Wait for the motors to stop and update the current position with the absolute values.
  3383. world2machine_revert_to_uncorrected();
  3384. // Move the print head close to the bed.
  3385. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3387. st_synchronize();
  3388. // Home in the XY plane.
  3389. set_destination_to_current();
  3390. setup_for_endstop_move();
  3391. home_xy();
  3392. int8_t verbosity_level = 0;
  3393. if (code_seen('V')) {
  3394. // Just 'V' without a number counts as V1.
  3395. char c = strchr_pointer[1];
  3396. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3397. }
  3398. bool success = scan_bed_induction_points(verbosity_level);
  3399. clean_up_after_endstop_move();
  3400. // Print head up.
  3401. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3403. st_synchronize();
  3404. lcd_update_enable(true);
  3405. break;
  3406. }
  3407. #endif
  3408. // M48 Z-Probe repeatability measurement function.
  3409. //
  3410. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3411. //
  3412. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3413. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3414. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3415. // regenerated.
  3416. //
  3417. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3418. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3419. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3420. //
  3421. #ifdef ENABLE_AUTO_BED_LEVELING
  3422. #ifdef Z_PROBE_REPEATABILITY_TEST
  3423. case 48: // M48 Z-Probe repeatability
  3424. {
  3425. #if Z_MIN_PIN == -1
  3426. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3427. #endif
  3428. double sum=0.0;
  3429. double mean=0.0;
  3430. double sigma=0.0;
  3431. double sample_set[50];
  3432. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3433. double X_current, Y_current, Z_current;
  3434. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3435. if (code_seen('V') || code_seen('v')) {
  3436. verbose_level = code_value();
  3437. if (verbose_level<0 || verbose_level>4 ) {
  3438. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3439. goto Sigma_Exit;
  3440. }
  3441. }
  3442. if (verbose_level > 0) {
  3443. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3444. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3445. }
  3446. if (code_seen('n')) {
  3447. n_samples = code_value();
  3448. if (n_samples<4 || n_samples>50 ) {
  3449. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3450. goto Sigma_Exit;
  3451. }
  3452. }
  3453. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3454. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3455. Z_current = st_get_position_mm(Z_AXIS);
  3456. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3457. ext_position = st_get_position_mm(E_AXIS);
  3458. if (code_seen('X') || code_seen('x') ) {
  3459. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3460. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3461. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3462. goto Sigma_Exit;
  3463. }
  3464. }
  3465. if (code_seen('Y') || code_seen('y') ) {
  3466. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3467. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3468. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3469. goto Sigma_Exit;
  3470. }
  3471. }
  3472. if (code_seen('L') || code_seen('l') ) {
  3473. n_legs = code_value();
  3474. if ( n_legs==1 )
  3475. n_legs = 2;
  3476. if ( n_legs<0 || n_legs>15 ) {
  3477. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3478. goto Sigma_Exit;
  3479. }
  3480. }
  3481. //
  3482. // Do all the preliminary setup work. First raise the probe.
  3483. //
  3484. st_synchronize();
  3485. plan_bed_level_matrix.set_to_identity();
  3486. plan_buffer_line( X_current, Y_current, Z_start_location,
  3487. ext_position,
  3488. homing_feedrate[Z_AXIS]/60,
  3489. active_extruder);
  3490. st_synchronize();
  3491. //
  3492. // Now get everything to the specified probe point So we can safely do a probe to
  3493. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3494. // use that as a starting point for each probe.
  3495. //
  3496. if (verbose_level > 2)
  3497. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3498. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3499. ext_position,
  3500. homing_feedrate[X_AXIS]/60,
  3501. active_extruder);
  3502. st_synchronize();
  3503. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3504. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3505. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3506. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3507. //
  3508. // OK, do the inital probe to get us close to the bed.
  3509. // Then retrace the right amount and use that in subsequent probes
  3510. //
  3511. setup_for_endstop_move();
  3512. run_z_probe();
  3513. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3514. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3515. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3516. ext_position,
  3517. homing_feedrate[X_AXIS]/60,
  3518. active_extruder);
  3519. st_synchronize();
  3520. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3521. for( n=0; n<n_samples; n++) {
  3522. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3523. if ( n_legs) {
  3524. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3525. int rotational_direction, l;
  3526. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3527. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3528. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3529. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3530. //SERIAL_ECHOPAIR(" theta: ",theta);
  3531. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3532. //SERIAL_PROTOCOLLNPGM("");
  3533. for( l=0; l<n_legs-1; l++) {
  3534. if (rotational_direction==1)
  3535. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3536. else
  3537. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3538. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3539. if ( radius<0.0 )
  3540. radius = -radius;
  3541. X_current = X_probe_location + cos(theta) * radius;
  3542. Y_current = Y_probe_location + sin(theta) * radius;
  3543. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3544. X_current = X_MIN_POS;
  3545. if ( X_current>X_MAX_POS)
  3546. X_current = X_MAX_POS;
  3547. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3548. Y_current = Y_MIN_POS;
  3549. if ( Y_current>Y_MAX_POS)
  3550. Y_current = Y_MAX_POS;
  3551. if (verbose_level>3 ) {
  3552. SERIAL_ECHOPAIR("x: ", X_current);
  3553. SERIAL_ECHOPAIR("y: ", Y_current);
  3554. SERIAL_PROTOCOLLNPGM("");
  3555. }
  3556. do_blocking_move_to( X_current, Y_current, Z_current );
  3557. }
  3558. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3559. }
  3560. setup_for_endstop_move();
  3561. run_z_probe();
  3562. sample_set[n] = current_position[Z_AXIS];
  3563. //
  3564. // Get the current mean for the data points we have so far
  3565. //
  3566. sum=0.0;
  3567. for( j=0; j<=n; j++) {
  3568. sum = sum + sample_set[j];
  3569. }
  3570. mean = sum / (double (n+1));
  3571. //
  3572. // Now, use that mean to calculate the standard deviation for the
  3573. // data points we have so far
  3574. //
  3575. sum=0.0;
  3576. for( j=0; j<=n; j++) {
  3577. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3578. }
  3579. sigma = sqrt( sum / (double (n+1)) );
  3580. if (verbose_level > 1) {
  3581. SERIAL_PROTOCOL(n+1);
  3582. SERIAL_PROTOCOL(" of ");
  3583. SERIAL_PROTOCOL(n_samples);
  3584. SERIAL_PROTOCOLPGM(" z: ");
  3585. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3586. }
  3587. if (verbose_level > 2) {
  3588. SERIAL_PROTOCOL(" mean: ");
  3589. SERIAL_PROTOCOL_F(mean,6);
  3590. SERIAL_PROTOCOL(" sigma: ");
  3591. SERIAL_PROTOCOL_F(sigma,6);
  3592. }
  3593. if (verbose_level > 0)
  3594. SERIAL_PROTOCOLPGM("\n");
  3595. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3596. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3597. st_synchronize();
  3598. }
  3599. delay(1000);
  3600. clean_up_after_endstop_move();
  3601. // enable_endstops(true);
  3602. if (verbose_level > 0) {
  3603. SERIAL_PROTOCOLPGM("Mean: ");
  3604. SERIAL_PROTOCOL_F(mean, 6);
  3605. SERIAL_PROTOCOLPGM("\n");
  3606. }
  3607. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3608. SERIAL_PROTOCOL_F(sigma, 6);
  3609. SERIAL_PROTOCOLPGM("\n\n");
  3610. Sigma_Exit:
  3611. break;
  3612. }
  3613. #endif // Z_PROBE_REPEATABILITY_TEST
  3614. #endif // ENABLE_AUTO_BED_LEVELING
  3615. case 104: // M104
  3616. if(setTargetedHotend(104)){
  3617. break;
  3618. }
  3619. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3620. setWatch();
  3621. break;
  3622. case 112: // M112 -Emergency Stop
  3623. kill("", 3);
  3624. break;
  3625. case 140: // M140 set bed temp
  3626. if (code_seen('S')) setTargetBed(code_value());
  3627. break;
  3628. case 105 : // M105
  3629. if(setTargetedHotend(105)){
  3630. break;
  3631. }
  3632. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3633. SERIAL_PROTOCOLPGM("ok T:");
  3634. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3635. SERIAL_PROTOCOLPGM(" /");
  3636. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3637. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3638. SERIAL_PROTOCOLPGM(" B:");
  3639. SERIAL_PROTOCOL_F(degBed(),1);
  3640. SERIAL_PROTOCOLPGM(" /");
  3641. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3642. #endif //TEMP_BED_PIN
  3643. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3644. SERIAL_PROTOCOLPGM(" T");
  3645. SERIAL_PROTOCOL(cur_extruder);
  3646. SERIAL_PROTOCOLPGM(":");
  3647. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3648. SERIAL_PROTOCOLPGM(" /");
  3649. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3650. }
  3651. #else
  3652. SERIAL_ERROR_START;
  3653. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3654. #endif
  3655. SERIAL_PROTOCOLPGM(" @:");
  3656. #ifdef EXTRUDER_WATTS
  3657. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3658. SERIAL_PROTOCOLPGM("W");
  3659. #else
  3660. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3661. #endif
  3662. SERIAL_PROTOCOLPGM(" B@:");
  3663. #ifdef BED_WATTS
  3664. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3665. SERIAL_PROTOCOLPGM("W");
  3666. #else
  3667. SERIAL_PROTOCOL(getHeaterPower(-1));
  3668. #endif
  3669. #ifdef PINDA_THERMISTOR
  3670. SERIAL_PROTOCOLPGM(" P:");
  3671. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3672. #endif //PINDA_THERMISTOR
  3673. #ifdef AMBIENT_THERMISTOR
  3674. SERIAL_PROTOCOLPGM(" A:");
  3675. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3676. #endif //AMBIENT_THERMISTOR
  3677. #ifdef SHOW_TEMP_ADC_VALUES
  3678. {float raw = 0.0;
  3679. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3680. SERIAL_PROTOCOLPGM(" ADC B:");
  3681. SERIAL_PROTOCOL_F(degBed(),1);
  3682. SERIAL_PROTOCOLPGM("C->");
  3683. raw = rawBedTemp();
  3684. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3685. SERIAL_PROTOCOLPGM(" Rb->");
  3686. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3687. SERIAL_PROTOCOLPGM(" Rxb->");
  3688. SERIAL_PROTOCOL_F(raw, 5);
  3689. #endif
  3690. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3691. SERIAL_PROTOCOLPGM(" T");
  3692. SERIAL_PROTOCOL(cur_extruder);
  3693. SERIAL_PROTOCOLPGM(":");
  3694. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3695. SERIAL_PROTOCOLPGM("C->");
  3696. raw = rawHotendTemp(cur_extruder);
  3697. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3698. SERIAL_PROTOCOLPGM(" Rt");
  3699. SERIAL_PROTOCOL(cur_extruder);
  3700. SERIAL_PROTOCOLPGM("->");
  3701. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3702. SERIAL_PROTOCOLPGM(" Rx");
  3703. SERIAL_PROTOCOL(cur_extruder);
  3704. SERIAL_PROTOCOLPGM("->");
  3705. SERIAL_PROTOCOL_F(raw, 5);
  3706. }}
  3707. #endif
  3708. SERIAL_PROTOCOLLN("");
  3709. KEEPALIVE_STATE(NOT_BUSY);
  3710. return;
  3711. break;
  3712. case 109:
  3713. {// M109 - Wait for extruder heater to reach target.
  3714. if(setTargetedHotend(109)){
  3715. break;
  3716. }
  3717. LCD_MESSAGERPGM(MSG_HEATING);
  3718. heating_status = 1;
  3719. if (farm_mode) { prusa_statistics(1); };
  3720. #ifdef AUTOTEMP
  3721. autotemp_enabled=false;
  3722. #endif
  3723. if (code_seen('S')) {
  3724. setTargetHotend(code_value(), tmp_extruder);
  3725. CooldownNoWait = true;
  3726. } else if (code_seen('R')) {
  3727. setTargetHotend(code_value(), tmp_extruder);
  3728. CooldownNoWait = false;
  3729. }
  3730. #ifdef AUTOTEMP
  3731. if (code_seen('S')) autotemp_min=code_value();
  3732. if (code_seen('B')) autotemp_max=code_value();
  3733. if (code_seen('F'))
  3734. {
  3735. autotemp_factor=code_value();
  3736. autotemp_enabled=true;
  3737. }
  3738. #endif
  3739. setWatch();
  3740. codenum = millis();
  3741. /* See if we are heating up or cooling down */
  3742. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3743. KEEPALIVE_STATE(NOT_BUSY);
  3744. cancel_heatup = false;
  3745. wait_for_heater(codenum); //loops until target temperature is reached
  3746. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3747. KEEPALIVE_STATE(IN_HANDLER);
  3748. heating_status = 2;
  3749. if (farm_mode) { prusa_statistics(2); };
  3750. //starttime=millis();
  3751. previous_millis_cmd = millis();
  3752. }
  3753. break;
  3754. case 190: // M190 - Wait for bed heater to reach target.
  3755. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3756. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3757. heating_status = 3;
  3758. if (farm_mode) { prusa_statistics(1); };
  3759. if (code_seen('S'))
  3760. {
  3761. setTargetBed(code_value());
  3762. CooldownNoWait = true;
  3763. }
  3764. else if (code_seen('R'))
  3765. {
  3766. setTargetBed(code_value());
  3767. CooldownNoWait = false;
  3768. }
  3769. codenum = millis();
  3770. cancel_heatup = false;
  3771. target_direction = isHeatingBed(); // true if heating, false if cooling
  3772. KEEPALIVE_STATE(NOT_BUSY);
  3773. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3774. {
  3775. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3776. {
  3777. if (!farm_mode) {
  3778. float tt = degHotend(active_extruder);
  3779. SERIAL_PROTOCOLPGM("T:");
  3780. SERIAL_PROTOCOL(tt);
  3781. SERIAL_PROTOCOLPGM(" E:");
  3782. SERIAL_PROTOCOL((int)active_extruder);
  3783. SERIAL_PROTOCOLPGM(" B:");
  3784. SERIAL_PROTOCOL_F(degBed(), 1);
  3785. SERIAL_PROTOCOLLN("");
  3786. }
  3787. codenum = millis();
  3788. }
  3789. manage_heater();
  3790. manage_inactivity();
  3791. lcd_update();
  3792. }
  3793. LCD_MESSAGERPGM(MSG_BED_DONE);
  3794. KEEPALIVE_STATE(IN_HANDLER);
  3795. heating_status = 4;
  3796. previous_millis_cmd = millis();
  3797. #endif
  3798. break;
  3799. #if defined(FAN_PIN) && FAN_PIN > -1
  3800. case 106: //M106 Fan On
  3801. if (code_seen('S')){
  3802. fanSpeed=constrain(code_value(),0,255);
  3803. }
  3804. else {
  3805. fanSpeed=255;
  3806. }
  3807. break;
  3808. case 107: //M107 Fan Off
  3809. fanSpeed = 0;
  3810. break;
  3811. #endif //FAN_PIN
  3812. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3813. case 80: // M80 - Turn on Power Supply
  3814. SET_OUTPUT(PS_ON_PIN); //GND
  3815. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3816. // If you have a switch on suicide pin, this is useful
  3817. // if you want to start another print with suicide feature after
  3818. // a print without suicide...
  3819. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3820. SET_OUTPUT(SUICIDE_PIN);
  3821. WRITE(SUICIDE_PIN, HIGH);
  3822. #endif
  3823. #ifdef ULTIPANEL
  3824. powersupply = true;
  3825. LCD_MESSAGERPGM(WELCOME_MSG);
  3826. lcd_update();
  3827. #endif
  3828. break;
  3829. #endif
  3830. case 81: // M81 - Turn off Power Supply
  3831. disable_heater();
  3832. st_synchronize();
  3833. disable_e0();
  3834. disable_e1();
  3835. disable_e2();
  3836. finishAndDisableSteppers();
  3837. fanSpeed = 0;
  3838. delay(1000); // Wait a little before to switch off
  3839. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3840. st_synchronize();
  3841. suicide();
  3842. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3843. SET_OUTPUT(PS_ON_PIN);
  3844. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3845. #endif
  3846. #ifdef ULTIPANEL
  3847. powersupply = false;
  3848. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3849. /*
  3850. MACHNAME = "Prusa i3"
  3851. MSGOFF = "Vypnuto"
  3852. "Prusai3"" ""vypnuto""."
  3853. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3854. */
  3855. lcd_update();
  3856. #endif
  3857. break;
  3858. case 82:
  3859. axis_relative_modes[3] = false;
  3860. break;
  3861. case 83:
  3862. axis_relative_modes[3] = true;
  3863. break;
  3864. case 18: //compatibility
  3865. case 84: // M84
  3866. if(code_seen('S')){
  3867. stepper_inactive_time = code_value() * 1000;
  3868. }
  3869. else
  3870. {
  3871. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3872. if(all_axis)
  3873. {
  3874. st_synchronize();
  3875. disable_e0();
  3876. disable_e1();
  3877. disable_e2();
  3878. finishAndDisableSteppers();
  3879. }
  3880. else
  3881. {
  3882. st_synchronize();
  3883. if (code_seen('X')) disable_x();
  3884. if (code_seen('Y')) disable_y();
  3885. if (code_seen('Z')) disable_z();
  3886. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3887. if (code_seen('E')) {
  3888. disable_e0();
  3889. disable_e1();
  3890. disable_e2();
  3891. }
  3892. #endif
  3893. }
  3894. }
  3895. snmm_filaments_used = 0;
  3896. break;
  3897. case 85: // M85
  3898. if(code_seen('S')) {
  3899. max_inactive_time = code_value() * 1000;
  3900. }
  3901. break;
  3902. case 92: // M92
  3903. for(int8_t i=0; i < NUM_AXIS; i++)
  3904. {
  3905. if(code_seen(axis_codes[i]))
  3906. {
  3907. if(i == 3) { // E
  3908. float value = code_value();
  3909. if(value < 20.0) {
  3910. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3911. max_jerk[E_AXIS] *= factor;
  3912. max_feedrate[i] *= factor;
  3913. axis_steps_per_sqr_second[i] *= factor;
  3914. }
  3915. axis_steps_per_unit[i] = value;
  3916. }
  3917. else {
  3918. axis_steps_per_unit[i] = code_value();
  3919. }
  3920. }
  3921. }
  3922. break;
  3923. #ifdef HOST_KEEPALIVE_FEATURE
  3924. case 113: // M113 - Get or set Host Keepalive interval
  3925. if (code_seen('S')) {
  3926. host_keepalive_interval = (uint8_t)code_value_short();
  3927. // NOMORE(host_keepalive_interval, 60);
  3928. }
  3929. else {
  3930. SERIAL_ECHO_START;
  3931. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3932. SERIAL_PROTOCOLLN("");
  3933. }
  3934. break;
  3935. #endif
  3936. case 115: // M115
  3937. if (code_seen('V')) {
  3938. // Report the Prusa version number.
  3939. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3940. } else if (code_seen('U')) {
  3941. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3942. // pause the print and ask the user to upgrade the firmware.
  3943. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3944. } else {
  3945. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3946. }
  3947. break;
  3948. /* case 117: // M117 display message
  3949. starpos = (strchr(strchr_pointer + 5,'*'));
  3950. if(starpos!=NULL)
  3951. *(starpos)='\0';
  3952. lcd_setstatus(strchr_pointer + 5);
  3953. break;*/
  3954. case 114: // M114
  3955. SERIAL_PROTOCOLPGM("X:");
  3956. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3957. SERIAL_PROTOCOLPGM(" Y:");
  3958. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3959. SERIAL_PROTOCOLPGM(" Z:");
  3960. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3961. SERIAL_PROTOCOLPGM(" E:");
  3962. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3963. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3964. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3965. SERIAL_PROTOCOLPGM(" Y:");
  3966. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3967. SERIAL_PROTOCOLPGM(" Z:");
  3968. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3969. SERIAL_PROTOCOLPGM(" E:");
  3970. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  3971. SERIAL_PROTOCOLLN("");
  3972. break;
  3973. case 120: // M120
  3974. enable_endstops(false) ;
  3975. break;
  3976. case 121: // M121
  3977. enable_endstops(true) ;
  3978. break;
  3979. case 119: // M119
  3980. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3981. SERIAL_PROTOCOLLN("");
  3982. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3983. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3984. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3985. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3986. }else{
  3987. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3988. }
  3989. SERIAL_PROTOCOLLN("");
  3990. #endif
  3991. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3992. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3993. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3994. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3995. }else{
  3996. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3997. }
  3998. SERIAL_PROTOCOLLN("");
  3999. #endif
  4000. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4001. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4002. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4003. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4004. }else{
  4005. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4006. }
  4007. SERIAL_PROTOCOLLN("");
  4008. #endif
  4009. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4010. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4011. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4012. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4013. }else{
  4014. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4015. }
  4016. SERIAL_PROTOCOLLN("");
  4017. #endif
  4018. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4019. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4020. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4021. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4022. }else{
  4023. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4024. }
  4025. SERIAL_PROTOCOLLN("");
  4026. #endif
  4027. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4028. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4029. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4030. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4031. }else{
  4032. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4033. }
  4034. SERIAL_PROTOCOLLN("");
  4035. #endif
  4036. break;
  4037. //TODO: update for all axis, use for loop
  4038. #ifdef BLINKM
  4039. case 150: // M150
  4040. {
  4041. byte red;
  4042. byte grn;
  4043. byte blu;
  4044. if(code_seen('R')) red = code_value();
  4045. if(code_seen('U')) grn = code_value();
  4046. if(code_seen('B')) blu = code_value();
  4047. SendColors(red,grn,blu);
  4048. }
  4049. break;
  4050. #endif //BLINKM
  4051. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4052. {
  4053. tmp_extruder = active_extruder;
  4054. if(code_seen('T')) {
  4055. tmp_extruder = code_value();
  4056. if(tmp_extruder >= EXTRUDERS) {
  4057. SERIAL_ECHO_START;
  4058. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4059. break;
  4060. }
  4061. }
  4062. float area = .0;
  4063. if(code_seen('D')) {
  4064. float diameter = (float)code_value();
  4065. if (diameter == 0.0) {
  4066. // setting any extruder filament size disables volumetric on the assumption that
  4067. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4068. // for all extruders
  4069. volumetric_enabled = false;
  4070. } else {
  4071. filament_size[tmp_extruder] = (float)code_value();
  4072. // make sure all extruders have some sane value for the filament size
  4073. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4074. #if EXTRUDERS > 1
  4075. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4076. #if EXTRUDERS > 2
  4077. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4078. #endif
  4079. #endif
  4080. volumetric_enabled = true;
  4081. }
  4082. } else {
  4083. //reserved for setting filament diameter via UFID or filament measuring device
  4084. break;
  4085. }
  4086. calculate_volumetric_multipliers();
  4087. }
  4088. break;
  4089. case 201: // M201
  4090. for(int8_t i=0; i < NUM_AXIS; i++)
  4091. {
  4092. if(code_seen(axis_codes[i]))
  4093. {
  4094. max_acceleration_units_per_sq_second[i] = code_value();
  4095. }
  4096. }
  4097. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4098. reset_acceleration_rates();
  4099. break;
  4100. #if 0 // Not used for Sprinter/grbl gen6
  4101. case 202: // M202
  4102. for(int8_t i=0; i < NUM_AXIS; i++) {
  4103. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4104. }
  4105. break;
  4106. #endif
  4107. case 203: // M203 max feedrate mm/sec
  4108. for(int8_t i=0; i < NUM_AXIS; i++) {
  4109. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4110. }
  4111. break;
  4112. case 204: // M204 acclereration S normal moves T filmanent only moves
  4113. {
  4114. if(code_seen('S')) acceleration = code_value() ;
  4115. if(code_seen('T')) retract_acceleration = code_value() ;
  4116. }
  4117. break;
  4118. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4119. {
  4120. if(code_seen('S')) minimumfeedrate = code_value();
  4121. if(code_seen('T')) mintravelfeedrate = code_value();
  4122. if(code_seen('B')) minsegmenttime = code_value() ;
  4123. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4124. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4125. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4126. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4127. }
  4128. break;
  4129. case 206: // M206 additional homing offset
  4130. for(int8_t i=0; i < 3; i++)
  4131. {
  4132. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4133. }
  4134. break;
  4135. #ifdef FWRETRACT
  4136. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4137. {
  4138. if(code_seen('S'))
  4139. {
  4140. retract_length = code_value() ;
  4141. }
  4142. if(code_seen('F'))
  4143. {
  4144. retract_feedrate = code_value()/60 ;
  4145. }
  4146. if(code_seen('Z'))
  4147. {
  4148. retract_zlift = code_value() ;
  4149. }
  4150. }break;
  4151. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4152. {
  4153. if(code_seen('S'))
  4154. {
  4155. retract_recover_length = code_value() ;
  4156. }
  4157. if(code_seen('F'))
  4158. {
  4159. retract_recover_feedrate = code_value()/60 ;
  4160. }
  4161. }break;
  4162. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4163. {
  4164. if(code_seen('S'))
  4165. {
  4166. int t= code_value() ;
  4167. switch(t)
  4168. {
  4169. case 0:
  4170. {
  4171. autoretract_enabled=false;
  4172. retracted[0]=false;
  4173. #if EXTRUDERS > 1
  4174. retracted[1]=false;
  4175. #endif
  4176. #if EXTRUDERS > 2
  4177. retracted[2]=false;
  4178. #endif
  4179. }break;
  4180. case 1:
  4181. {
  4182. autoretract_enabled=true;
  4183. retracted[0]=false;
  4184. #if EXTRUDERS > 1
  4185. retracted[1]=false;
  4186. #endif
  4187. #if EXTRUDERS > 2
  4188. retracted[2]=false;
  4189. #endif
  4190. }break;
  4191. default:
  4192. SERIAL_ECHO_START;
  4193. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4194. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4195. SERIAL_ECHOLNPGM("\"(1)");
  4196. }
  4197. }
  4198. }break;
  4199. #endif // FWRETRACT
  4200. #if EXTRUDERS > 1
  4201. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4202. {
  4203. if(setTargetedHotend(218)){
  4204. break;
  4205. }
  4206. if(code_seen('X'))
  4207. {
  4208. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4209. }
  4210. if(code_seen('Y'))
  4211. {
  4212. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4213. }
  4214. SERIAL_ECHO_START;
  4215. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4216. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4217. {
  4218. SERIAL_ECHO(" ");
  4219. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4220. SERIAL_ECHO(",");
  4221. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4222. }
  4223. SERIAL_ECHOLN("");
  4224. }break;
  4225. #endif
  4226. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4227. {
  4228. if(code_seen('S'))
  4229. {
  4230. feedmultiply = code_value() ;
  4231. }
  4232. }
  4233. break;
  4234. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4235. {
  4236. if(code_seen('S'))
  4237. {
  4238. int tmp_code = code_value();
  4239. if (code_seen('T'))
  4240. {
  4241. if(setTargetedHotend(221)){
  4242. break;
  4243. }
  4244. extruder_multiply[tmp_extruder] = tmp_code;
  4245. }
  4246. else
  4247. {
  4248. extrudemultiply = tmp_code ;
  4249. }
  4250. }
  4251. }
  4252. break;
  4253. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4254. {
  4255. if(code_seen('P')){
  4256. int pin_number = code_value(); // pin number
  4257. int pin_state = -1; // required pin state - default is inverted
  4258. if(code_seen('S')) pin_state = code_value(); // required pin state
  4259. if(pin_state >= -1 && pin_state <= 1){
  4260. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4261. {
  4262. if (sensitive_pins[i] == pin_number)
  4263. {
  4264. pin_number = -1;
  4265. break;
  4266. }
  4267. }
  4268. if (pin_number > -1)
  4269. {
  4270. int target = LOW;
  4271. st_synchronize();
  4272. pinMode(pin_number, INPUT);
  4273. switch(pin_state){
  4274. case 1:
  4275. target = HIGH;
  4276. break;
  4277. case 0:
  4278. target = LOW;
  4279. break;
  4280. case -1:
  4281. target = !digitalRead(pin_number);
  4282. break;
  4283. }
  4284. while(digitalRead(pin_number) != target){
  4285. manage_heater();
  4286. manage_inactivity();
  4287. lcd_update();
  4288. }
  4289. }
  4290. }
  4291. }
  4292. }
  4293. break;
  4294. #if NUM_SERVOS > 0
  4295. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4296. {
  4297. int servo_index = -1;
  4298. int servo_position = 0;
  4299. if (code_seen('P'))
  4300. servo_index = code_value();
  4301. if (code_seen('S')) {
  4302. servo_position = code_value();
  4303. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4304. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4305. servos[servo_index].attach(0);
  4306. #endif
  4307. servos[servo_index].write(servo_position);
  4308. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4309. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4310. servos[servo_index].detach();
  4311. #endif
  4312. }
  4313. else {
  4314. SERIAL_ECHO_START;
  4315. SERIAL_ECHO("Servo ");
  4316. SERIAL_ECHO(servo_index);
  4317. SERIAL_ECHOLN(" out of range");
  4318. }
  4319. }
  4320. else if (servo_index >= 0) {
  4321. SERIAL_PROTOCOL(MSG_OK);
  4322. SERIAL_PROTOCOL(" Servo ");
  4323. SERIAL_PROTOCOL(servo_index);
  4324. SERIAL_PROTOCOL(": ");
  4325. SERIAL_PROTOCOL(servos[servo_index].read());
  4326. SERIAL_PROTOCOLLN("");
  4327. }
  4328. }
  4329. break;
  4330. #endif // NUM_SERVOS > 0
  4331. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4332. case 300: // M300
  4333. {
  4334. int beepS = code_seen('S') ? code_value() : 110;
  4335. int beepP = code_seen('P') ? code_value() : 1000;
  4336. if (beepS > 0)
  4337. {
  4338. #if BEEPER > 0
  4339. tone(BEEPER, beepS);
  4340. delay(beepP);
  4341. noTone(BEEPER);
  4342. #elif defined(ULTRALCD)
  4343. lcd_buzz(beepS, beepP);
  4344. #elif defined(LCD_USE_I2C_BUZZER)
  4345. lcd_buzz(beepP, beepS);
  4346. #endif
  4347. }
  4348. else
  4349. {
  4350. delay(beepP);
  4351. }
  4352. }
  4353. break;
  4354. #endif // M300
  4355. #ifdef PIDTEMP
  4356. case 301: // M301
  4357. {
  4358. if(code_seen('P')) Kp = code_value();
  4359. if(code_seen('I')) Ki = scalePID_i(code_value());
  4360. if(code_seen('D')) Kd = scalePID_d(code_value());
  4361. #ifdef PID_ADD_EXTRUSION_RATE
  4362. if(code_seen('C')) Kc = code_value();
  4363. #endif
  4364. updatePID();
  4365. SERIAL_PROTOCOLRPGM(MSG_OK);
  4366. SERIAL_PROTOCOL(" p:");
  4367. SERIAL_PROTOCOL(Kp);
  4368. SERIAL_PROTOCOL(" i:");
  4369. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4370. SERIAL_PROTOCOL(" d:");
  4371. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4372. #ifdef PID_ADD_EXTRUSION_RATE
  4373. SERIAL_PROTOCOL(" c:");
  4374. //Kc does not have scaling applied above, or in resetting defaults
  4375. SERIAL_PROTOCOL(Kc);
  4376. #endif
  4377. SERIAL_PROTOCOLLN("");
  4378. }
  4379. break;
  4380. #endif //PIDTEMP
  4381. #ifdef PIDTEMPBED
  4382. case 304: // M304
  4383. {
  4384. if(code_seen('P')) bedKp = code_value();
  4385. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4386. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4387. updatePID();
  4388. SERIAL_PROTOCOLRPGM(MSG_OK);
  4389. SERIAL_PROTOCOL(" p:");
  4390. SERIAL_PROTOCOL(bedKp);
  4391. SERIAL_PROTOCOL(" i:");
  4392. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4393. SERIAL_PROTOCOL(" d:");
  4394. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4395. SERIAL_PROTOCOLLN("");
  4396. }
  4397. break;
  4398. #endif //PIDTEMP
  4399. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4400. {
  4401. #ifdef CHDK
  4402. SET_OUTPUT(CHDK);
  4403. WRITE(CHDK, HIGH);
  4404. chdkHigh = millis();
  4405. chdkActive = true;
  4406. #else
  4407. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4408. const uint8_t NUM_PULSES=16;
  4409. const float PULSE_LENGTH=0.01524;
  4410. for(int i=0; i < NUM_PULSES; i++) {
  4411. WRITE(PHOTOGRAPH_PIN, HIGH);
  4412. _delay_ms(PULSE_LENGTH);
  4413. WRITE(PHOTOGRAPH_PIN, LOW);
  4414. _delay_ms(PULSE_LENGTH);
  4415. }
  4416. delay(7.33);
  4417. for(int i=0; i < NUM_PULSES; i++) {
  4418. WRITE(PHOTOGRAPH_PIN, HIGH);
  4419. _delay_ms(PULSE_LENGTH);
  4420. WRITE(PHOTOGRAPH_PIN, LOW);
  4421. _delay_ms(PULSE_LENGTH);
  4422. }
  4423. #endif
  4424. #endif //chdk end if
  4425. }
  4426. break;
  4427. #ifdef DOGLCD
  4428. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4429. {
  4430. if (code_seen('C')) {
  4431. lcd_setcontrast( ((int)code_value())&63 );
  4432. }
  4433. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4434. SERIAL_PROTOCOL(lcd_contrast);
  4435. SERIAL_PROTOCOLLN("");
  4436. }
  4437. break;
  4438. #endif
  4439. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4440. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4441. {
  4442. float temp = .0;
  4443. if (code_seen('S')) temp=code_value();
  4444. set_extrude_min_temp(temp);
  4445. }
  4446. break;
  4447. #endif
  4448. case 303: // M303 PID autotune
  4449. {
  4450. float temp = 150.0;
  4451. int e=0;
  4452. int c=5;
  4453. if (code_seen('E')) e=code_value();
  4454. if (e<0)
  4455. temp=70;
  4456. if (code_seen('S')) temp=code_value();
  4457. if (code_seen('C')) c=code_value();
  4458. PID_autotune(temp, e, c);
  4459. }
  4460. break;
  4461. case 400: // M400 finish all moves
  4462. {
  4463. st_synchronize();
  4464. }
  4465. break;
  4466. #ifdef FILAMENT_SENSOR
  4467. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4468. {
  4469. #if (FILWIDTH_PIN > -1)
  4470. if(code_seen('N')) filament_width_nominal=code_value();
  4471. else{
  4472. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4473. SERIAL_PROTOCOLLN(filament_width_nominal);
  4474. }
  4475. #endif
  4476. }
  4477. break;
  4478. case 405: //M405 Turn on filament sensor for control
  4479. {
  4480. if(code_seen('D')) meas_delay_cm=code_value();
  4481. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4482. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4483. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4484. {
  4485. int temp_ratio = widthFil_to_size_ratio();
  4486. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4487. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4488. }
  4489. delay_index1=0;
  4490. delay_index2=0;
  4491. }
  4492. filament_sensor = true ;
  4493. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4494. //SERIAL_PROTOCOL(filament_width_meas);
  4495. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4496. //SERIAL_PROTOCOL(extrudemultiply);
  4497. }
  4498. break;
  4499. case 406: //M406 Turn off filament sensor for control
  4500. {
  4501. filament_sensor = false ;
  4502. }
  4503. break;
  4504. case 407: //M407 Display measured filament diameter
  4505. {
  4506. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4507. SERIAL_PROTOCOLLN(filament_width_meas);
  4508. }
  4509. break;
  4510. #endif
  4511. case 500: // M500 Store settings in EEPROM
  4512. {
  4513. Config_StoreSettings(EEPROM_OFFSET);
  4514. }
  4515. break;
  4516. case 501: // M501 Read settings from EEPROM
  4517. {
  4518. Config_RetrieveSettings(EEPROM_OFFSET);
  4519. }
  4520. break;
  4521. case 502: // M502 Revert to default settings
  4522. {
  4523. Config_ResetDefault();
  4524. }
  4525. break;
  4526. case 503: // M503 print settings currently in memory
  4527. {
  4528. Config_PrintSettings();
  4529. }
  4530. break;
  4531. case 509: //M509 Force language selection
  4532. {
  4533. lcd_force_language_selection();
  4534. SERIAL_ECHO_START;
  4535. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4536. }
  4537. break;
  4538. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4539. case 540:
  4540. {
  4541. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4542. }
  4543. break;
  4544. #endif
  4545. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4546. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4547. {
  4548. float value;
  4549. if (code_seen('Z'))
  4550. {
  4551. value = code_value();
  4552. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4553. {
  4554. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4555. SERIAL_ECHO_START;
  4556. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4557. SERIAL_PROTOCOLLN("");
  4558. }
  4559. else
  4560. {
  4561. SERIAL_ECHO_START;
  4562. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4563. SERIAL_ECHORPGM(MSG_Z_MIN);
  4564. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4565. SERIAL_ECHORPGM(MSG_Z_MAX);
  4566. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4567. SERIAL_PROTOCOLLN("");
  4568. }
  4569. }
  4570. else
  4571. {
  4572. SERIAL_ECHO_START;
  4573. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4574. SERIAL_ECHO(-zprobe_zoffset);
  4575. SERIAL_PROTOCOLLN("");
  4576. }
  4577. break;
  4578. }
  4579. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4580. #ifdef FILAMENTCHANGEENABLE
  4581. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4582. {
  4583. MYSERIAL.println("!!!!M600!!!!");
  4584. st_synchronize();
  4585. float target[4];
  4586. float lastpos[4];
  4587. if (farm_mode)
  4588. {
  4589. prusa_statistics(22);
  4590. }
  4591. feedmultiplyBckp=feedmultiply;
  4592. int8_t TooLowZ = 0;
  4593. target[X_AXIS]=current_position[X_AXIS];
  4594. target[Y_AXIS]=current_position[Y_AXIS];
  4595. target[Z_AXIS]=current_position[Z_AXIS];
  4596. target[E_AXIS]=current_position[E_AXIS];
  4597. lastpos[X_AXIS]=current_position[X_AXIS];
  4598. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4599. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4600. lastpos[E_AXIS]=current_position[E_AXIS];
  4601. //Restract extruder
  4602. if(code_seen('E'))
  4603. {
  4604. target[E_AXIS]+= code_value();
  4605. }
  4606. else
  4607. {
  4608. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4609. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4610. #endif
  4611. }
  4612. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4613. //Lift Z
  4614. if(code_seen('Z'))
  4615. {
  4616. target[Z_AXIS]+= code_value();
  4617. }
  4618. else
  4619. {
  4620. #ifdef FILAMENTCHANGE_ZADD
  4621. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4622. if(target[Z_AXIS] < 10){
  4623. target[Z_AXIS]+= 10 ;
  4624. TooLowZ = 1;
  4625. }else{
  4626. TooLowZ = 0;
  4627. }
  4628. #endif
  4629. }
  4630. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4631. //Move XY to side
  4632. if(code_seen('X'))
  4633. {
  4634. target[X_AXIS]+= code_value();
  4635. }
  4636. else
  4637. {
  4638. #ifdef FILAMENTCHANGE_XPOS
  4639. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4640. #endif
  4641. }
  4642. if(code_seen('Y'))
  4643. {
  4644. target[Y_AXIS]= code_value();
  4645. }
  4646. else
  4647. {
  4648. #ifdef FILAMENTCHANGE_YPOS
  4649. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4650. #endif
  4651. }
  4652. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4653. st_synchronize();
  4654. custom_message = true;
  4655. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4656. // Unload filament
  4657. if(code_seen('L'))
  4658. {
  4659. target[E_AXIS]+= code_value();
  4660. }
  4661. else
  4662. {
  4663. #ifdef SNMM
  4664. #else
  4665. #ifdef FILAMENTCHANGE_FINALRETRACT
  4666. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4667. #endif
  4668. #endif // SNMM
  4669. }
  4670. #ifdef SNMM
  4671. target[E_AXIS] += 12;
  4672. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4673. target[E_AXIS] += 6;
  4674. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4675. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4676. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4677. st_synchronize();
  4678. target[E_AXIS] += (FIL_COOLING);
  4679. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4680. target[E_AXIS] += (FIL_COOLING*-1);
  4681. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4682. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4683. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4684. st_synchronize();
  4685. #else
  4686. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4687. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500/60, active_extruder);
  4688. #endif // SNMM
  4689. //finish moves
  4690. st_synchronize();
  4691. //disable extruder steppers so filament can be removed
  4692. disable_e0();
  4693. disable_e1();
  4694. disable_e2();
  4695. delay(100);
  4696. //Wait for user to insert filament
  4697. uint8_t cnt=0;
  4698. int counterBeep = 0;
  4699. lcd_wait_interact();
  4700. load_filament_time = millis();
  4701. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4702. while(!lcd_clicked()){
  4703. cnt++;
  4704. manage_heater();
  4705. manage_inactivity(true);
  4706. /*#ifdef SNMM
  4707. target[E_AXIS] += 0.002;
  4708. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4709. #endif // SNMM*/
  4710. if(cnt==0)
  4711. {
  4712. #if BEEPER > 0
  4713. if (counterBeep== 500){
  4714. counterBeep = 0;
  4715. }
  4716. SET_OUTPUT(BEEPER);
  4717. if (counterBeep== 0){
  4718. WRITE(BEEPER,HIGH);
  4719. }
  4720. if (counterBeep== 20){
  4721. WRITE(BEEPER,LOW);
  4722. }
  4723. counterBeep++;
  4724. #else
  4725. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4726. lcd_buzz(1000/6,100);
  4727. #else
  4728. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4729. #endif
  4730. #endif
  4731. }
  4732. }
  4733. WRITE(BEEPER, LOW);
  4734. KEEPALIVE_STATE(IN_HANDLER);
  4735. #ifdef SNMM
  4736. display_loading();
  4737. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4738. do {
  4739. target[E_AXIS] += 0.002;
  4740. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4741. delay_keep_alive(2);
  4742. } while (!lcd_clicked());
  4743. KEEPALIVE_STATE(IN_HANDLER);
  4744. /*if (millis() - load_filament_time > 2) {
  4745. load_filament_time = millis();
  4746. target[E_AXIS] += 0.001;
  4747. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4748. }*/
  4749. //Filament inserted
  4750. //Feed the filament to the end of nozzle quickly
  4751. st_synchronize();
  4752. target[E_AXIS] += bowden_length[snmm_extruder];
  4753. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4754. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4755. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4756. target[E_AXIS] += 40;
  4757. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4758. target[E_AXIS] += 10;
  4759. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4760. #else
  4761. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4762. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4763. #endif // SNMM
  4764. //Extrude some filament
  4765. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4766. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4767. //Wait for user to check the state
  4768. lcd_change_fil_state = 0;
  4769. lcd_loading_filament();
  4770. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4771. lcd_change_fil_state = 0;
  4772. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4773. lcd_alright();
  4774. KEEPALIVE_STATE(IN_HANDLER);
  4775. switch(lcd_change_fil_state){
  4776. // Filament failed to load so load it again
  4777. case 2:
  4778. #ifdef SNMM
  4779. display_loading();
  4780. do {
  4781. target[E_AXIS] += 0.002;
  4782. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4783. delay_keep_alive(2);
  4784. } while (!lcd_clicked());
  4785. st_synchronize();
  4786. target[E_AXIS] += bowden_length[snmm_extruder];
  4787. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4788. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4789. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4790. target[E_AXIS] += 40;
  4791. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4792. target[E_AXIS] += 10;
  4793. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4794. #else
  4795. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4796. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4797. #endif
  4798. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4799. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4800. lcd_loading_filament();
  4801. break;
  4802. // Filament loaded properly but color is not clear
  4803. case 3:
  4804. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4805. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4806. lcd_loading_color();
  4807. break;
  4808. // Everything good
  4809. default:
  4810. lcd_change_success();
  4811. lcd_update_enable(true);
  4812. break;
  4813. }
  4814. }
  4815. //Not let's go back to print
  4816. //Feed a little of filament to stabilize pressure
  4817. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4818. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4819. //Retract
  4820. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4821. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4822. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4823. //Move XY back
  4824. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4825. //Move Z back
  4826. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4827. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4828. //Unretract
  4829. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4830. //Set E position to original
  4831. plan_set_e_position(lastpos[E_AXIS]);
  4832. //Recover feed rate
  4833. feedmultiply=feedmultiplyBckp;
  4834. char cmd[9];
  4835. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4836. enquecommand(cmd);
  4837. lcd_setstatuspgm(WELCOME_MSG);
  4838. custom_message = false;
  4839. custom_message_type = 0;
  4840. #ifdef PAT9125
  4841. if (fsensor_M600)
  4842. {
  4843. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  4844. st_synchronize();
  4845. while (!is_buffer_empty())
  4846. {
  4847. process_commands();
  4848. cmdqueue_pop_front();
  4849. }
  4850. fsensor_enable();
  4851. fsensor_restore_print_and_continue();
  4852. }
  4853. #endif //PAT9125
  4854. }
  4855. break;
  4856. #endif //FILAMENTCHANGEENABLE
  4857. case 601: {
  4858. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4859. }
  4860. break;
  4861. case 602: {
  4862. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4863. }
  4864. break;
  4865. #ifdef LIN_ADVANCE
  4866. case 900: // M900: Set LIN_ADVANCE options.
  4867. gcode_M900();
  4868. break;
  4869. #endif
  4870. case 907: // M907 Set digital trimpot motor current using axis codes.
  4871. {
  4872. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4873. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4874. if(code_seen('B')) digipot_current(4,code_value());
  4875. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4876. #endif
  4877. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4878. if(code_seen('X')) digipot_current(0, code_value());
  4879. #endif
  4880. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4881. if(code_seen('Z')) digipot_current(1, code_value());
  4882. #endif
  4883. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4884. if(code_seen('E')) digipot_current(2, code_value());
  4885. #endif
  4886. #ifdef DIGIPOT_I2C
  4887. // this one uses actual amps in floating point
  4888. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4889. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4890. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4891. #endif
  4892. }
  4893. break;
  4894. case 908: // M908 Control digital trimpot directly.
  4895. {
  4896. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4897. uint8_t channel,current;
  4898. if(code_seen('P')) channel=code_value();
  4899. if(code_seen('S')) current=code_value();
  4900. digitalPotWrite(channel, current);
  4901. #endif
  4902. }
  4903. break;
  4904. case 910: // M910 TMC2130 init
  4905. {
  4906. tmc2130_init();
  4907. }
  4908. break;
  4909. case 911: // M911 Set TMC2130 holding currents
  4910. {
  4911. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4912. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4913. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4914. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4915. }
  4916. break;
  4917. case 912: // M912 Set TMC2130 running currents
  4918. {
  4919. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4920. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4921. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4922. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4923. }
  4924. break;
  4925. case 913: // M913 Print TMC2130 currents
  4926. {
  4927. tmc2130_print_currents();
  4928. }
  4929. break;
  4930. case 914: // M914 Set normal mode
  4931. {
  4932. tmc2130_mode = TMC2130_MODE_NORMAL;
  4933. tmc2130_init();
  4934. }
  4935. break;
  4936. case 915: // M915 Set silent mode
  4937. {
  4938. tmc2130_mode = TMC2130_MODE_SILENT;
  4939. tmc2130_init();
  4940. }
  4941. break;
  4942. case 916: // M916 Set sg_thrs
  4943. {
  4944. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  4945. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  4946. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  4947. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  4948. MYSERIAL.print("tmc2130_sg_thr[X]=");
  4949. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  4950. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  4951. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  4952. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  4953. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  4954. MYSERIAL.print("tmc2130_sg_thr[E]=");
  4955. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  4956. }
  4957. break;
  4958. case 917: // M917 Set TMC2130 pwm_ampl
  4959. {
  4960. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  4961. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  4962. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  4963. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  4964. }
  4965. break;
  4966. case 918: // M918 Set TMC2130 pwm_grad
  4967. {
  4968. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  4969. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  4970. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  4971. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  4972. }
  4973. break;
  4974. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4975. {
  4976. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4977. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4978. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4979. if(code_seen('B')) microstep_mode(4,code_value());
  4980. microstep_readings();
  4981. #endif
  4982. }
  4983. break;
  4984. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4985. {
  4986. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4987. if(code_seen('S')) switch((int)code_value())
  4988. {
  4989. case 1:
  4990. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4991. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4992. break;
  4993. case 2:
  4994. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4995. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4996. break;
  4997. }
  4998. microstep_readings();
  4999. #endif
  5000. }
  5001. break;
  5002. case 701: //M701: load filament
  5003. {
  5004. gcode_M701();
  5005. }
  5006. break;
  5007. case 702:
  5008. {
  5009. #ifdef SNMM
  5010. if (code_seen('U')) {
  5011. extr_unload_used(); //unload all filaments which were used in current print
  5012. }
  5013. else if (code_seen('C')) {
  5014. extr_unload(); //unload just current filament
  5015. }
  5016. else {
  5017. extr_unload_all(); //unload all filaments
  5018. }
  5019. #else
  5020. bool old_fsensor_enabled = fsensor_enabled;
  5021. fsensor_enabled = false;
  5022. custom_message = true;
  5023. custom_message_type = 2;
  5024. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5025. current_position[E_AXIS] -= 80;
  5026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  5027. st_synchronize();
  5028. lcd_setstatuspgm(WELCOME_MSG);
  5029. custom_message = false;
  5030. custom_message_type = 0;
  5031. fsensor_enabled = old_fsensor_enabled;
  5032. #endif
  5033. }
  5034. break;
  5035. case 999: // M999: Restart after being stopped
  5036. Stopped = false;
  5037. lcd_reset_alert_level();
  5038. gcode_LastN = Stopped_gcode_LastN;
  5039. FlushSerialRequestResend();
  5040. break;
  5041. default: SERIAL_ECHOLNPGM("Invalid M code.");
  5042. }
  5043. } // end if(code_seen('M')) (end of M codes)
  5044. else if(code_seen('T'))
  5045. {
  5046. int index;
  5047. st_synchronize();
  5048. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5049. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5050. SERIAL_ECHOLNPGM("Invalid T code.");
  5051. }
  5052. else {
  5053. if (*(strchr_pointer + index) == '?') {
  5054. tmp_extruder = choose_extruder_menu();
  5055. }
  5056. else {
  5057. tmp_extruder = code_value();
  5058. }
  5059. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5060. #ifdef SNMM
  5061. #ifdef LIN_ADVANCE
  5062. if (snmm_extruder != tmp_extruder)
  5063. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5064. #endif
  5065. snmm_extruder = tmp_extruder;
  5066. delay(100);
  5067. disable_e0();
  5068. disable_e1();
  5069. disable_e2();
  5070. pinMode(E_MUX0_PIN, OUTPUT);
  5071. pinMode(E_MUX1_PIN, OUTPUT);
  5072. pinMode(E_MUX2_PIN, OUTPUT);
  5073. delay(100);
  5074. SERIAL_ECHO_START;
  5075. SERIAL_ECHO("T:");
  5076. SERIAL_ECHOLN((int)tmp_extruder);
  5077. switch (tmp_extruder) {
  5078. case 1:
  5079. WRITE(E_MUX0_PIN, HIGH);
  5080. WRITE(E_MUX1_PIN, LOW);
  5081. WRITE(E_MUX2_PIN, LOW);
  5082. break;
  5083. case 2:
  5084. WRITE(E_MUX0_PIN, LOW);
  5085. WRITE(E_MUX1_PIN, HIGH);
  5086. WRITE(E_MUX2_PIN, LOW);
  5087. break;
  5088. case 3:
  5089. WRITE(E_MUX0_PIN, HIGH);
  5090. WRITE(E_MUX1_PIN, HIGH);
  5091. WRITE(E_MUX2_PIN, LOW);
  5092. break;
  5093. default:
  5094. WRITE(E_MUX0_PIN, LOW);
  5095. WRITE(E_MUX1_PIN, LOW);
  5096. WRITE(E_MUX2_PIN, LOW);
  5097. break;
  5098. }
  5099. delay(100);
  5100. #else
  5101. if (tmp_extruder >= EXTRUDERS) {
  5102. SERIAL_ECHO_START;
  5103. SERIAL_ECHOPGM("T");
  5104. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5105. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5106. }
  5107. else {
  5108. boolean make_move = false;
  5109. if (code_seen('F')) {
  5110. make_move = true;
  5111. next_feedrate = code_value();
  5112. if (next_feedrate > 0.0) {
  5113. feedrate = next_feedrate;
  5114. }
  5115. }
  5116. #if EXTRUDERS > 1
  5117. if (tmp_extruder != active_extruder) {
  5118. // Save current position to return to after applying extruder offset
  5119. memcpy(destination, current_position, sizeof(destination));
  5120. // Offset extruder (only by XY)
  5121. int i;
  5122. for (i = 0; i < 2; i++) {
  5123. current_position[i] = current_position[i] -
  5124. extruder_offset[i][active_extruder] +
  5125. extruder_offset[i][tmp_extruder];
  5126. }
  5127. // Set the new active extruder and position
  5128. active_extruder = tmp_extruder;
  5129. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5130. // Move to the old position if 'F' was in the parameters
  5131. if (make_move && Stopped == false) {
  5132. prepare_move();
  5133. }
  5134. }
  5135. #endif
  5136. SERIAL_ECHO_START;
  5137. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5138. SERIAL_PROTOCOLLN((int)active_extruder);
  5139. }
  5140. #endif
  5141. }
  5142. } // end if(code_seen('T')) (end of T codes)
  5143. #ifdef DEBUG_DCODES
  5144. else if (code_seen('D')) // D codes (debug)
  5145. {
  5146. switch((int)code_value())
  5147. {
  5148. case -1: // D-1 - Endless loop
  5149. dcode__1(); break;
  5150. case 0: // D0 - Reset
  5151. dcode_0(); break;
  5152. case 1: // D1 - Clear EEPROM
  5153. dcode_1(); break;
  5154. case 2: // D2 - Read/Write RAM
  5155. dcode_2(); break;
  5156. case 3: // D3 - Read/Write EEPROM
  5157. dcode_3(); break;
  5158. case 4: // D4 - Read/Write PIN
  5159. dcode_4(); break;
  5160. case 5: // D5 - Read/Write FLASH
  5161. // dcode_5(); break;
  5162. break;
  5163. case 6: // D6 - Read/Write external FLASH
  5164. dcode_6(); break;
  5165. case 7: // D7 - Read/Write Bootloader
  5166. dcode_7(); break;
  5167. case 8: // D8 - Read/Write PINDA
  5168. dcode_8(); break;
  5169. case 10: // D10 - XYZ calibration = OK
  5170. dcode_10(); break;
  5171. case 12: //D12 - Reset failstat counters
  5172. dcode_12(); break;
  5173. case 2130: // D9125 - TMC2130
  5174. dcode_2130(); break;
  5175. case 9125: // D9125 - PAT9125
  5176. dcode_9125(); break;
  5177. }
  5178. }
  5179. #endif //DEBUG_DCODES
  5180. else
  5181. {
  5182. SERIAL_ECHO_START;
  5183. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5184. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5185. SERIAL_ECHOLNPGM("\"(2)");
  5186. }
  5187. KEEPALIVE_STATE(NOT_BUSY);
  5188. ClearToSend();
  5189. }
  5190. void FlushSerialRequestResend()
  5191. {
  5192. //char cmdbuffer[bufindr][100]="Resend:";
  5193. MYSERIAL.flush();
  5194. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5195. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5196. ClearToSend();
  5197. }
  5198. // Confirm the execution of a command, if sent from a serial line.
  5199. // Execution of a command from a SD card will not be confirmed.
  5200. void ClearToSend()
  5201. {
  5202. previous_millis_cmd = millis();
  5203. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5204. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5205. }
  5206. void get_coordinates()
  5207. {
  5208. bool seen[4]={false,false,false,false};
  5209. for(int8_t i=0; i < NUM_AXIS; i++) {
  5210. if(code_seen(axis_codes[i]))
  5211. {
  5212. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5213. seen[i]=true;
  5214. }
  5215. else destination[i] = current_position[i]; //Are these else lines really needed?
  5216. }
  5217. if(code_seen('F')) {
  5218. next_feedrate = code_value();
  5219. #ifdef MAX_SILENT_FEEDRATE
  5220. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5221. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5222. #endif //MAX_SILENT_FEEDRATE
  5223. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5224. }
  5225. }
  5226. void get_arc_coordinates()
  5227. {
  5228. #ifdef SF_ARC_FIX
  5229. bool relative_mode_backup = relative_mode;
  5230. relative_mode = true;
  5231. #endif
  5232. get_coordinates();
  5233. #ifdef SF_ARC_FIX
  5234. relative_mode=relative_mode_backup;
  5235. #endif
  5236. if(code_seen('I')) {
  5237. offset[0] = code_value();
  5238. }
  5239. else {
  5240. offset[0] = 0.0;
  5241. }
  5242. if(code_seen('J')) {
  5243. offset[1] = code_value();
  5244. }
  5245. else {
  5246. offset[1] = 0.0;
  5247. }
  5248. }
  5249. void clamp_to_software_endstops(float target[3])
  5250. {
  5251. #ifdef DEBUG_DISABLE_SWLIMITS
  5252. return;
  5253. #endif //DEBUG_DISABLE_SWLIMITS
  5254. world2machine_clamp(target[0], target[1]);
  5255. // Clamp the Z coordinate.
  5256. if (min_software_endstops) {
  5257. float negative_z_offset = 0;
  5258. #ifdef ENABLE_AUTO_BED_LEVELING
  5259. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5260. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5261. #endif
  5262. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5263. }
  5264. if (max_software_endstops) {
  5265. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5266. }
  5267. }
  5268. #ifdef MESH_BED_LEVELING
  5269. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5270. float dx = x - current_position[X_AXIS];
  5271. float dy = y - current_position[Y_AXIS];
  5272. float dz = z - current_position[Z_AXIS];
  5273. int n_segments = 0;
  5274. if (mbl.active) {
  5275. float len = abs(dx) + abs(dy);
  5276. if (len > 0)
  5277. // Split to 3cm segments or shorter.
  5278. n_segments = int(ceil(len / 30.f));
  5279. }
  5280. if (n_segments > 1) {
  5281. float de = e - current_position[E_AXIS];
  5282. for (int i = 1; i < n_segments; ++ i) {
  5283. float t = float(i) / float(n_segments);
  5284. plan_buffer_line(
  5285. current_position[X_AXIS] + t * dx,
  5286. current_position[Y_AXIS] + t * dy,
  5287. current_position[Z_AXIS] + t * dz,
  5288. current_position[E_AXIS] + t * de,
  5289. feed_rate, extruder);
  5290. }
  5291. }
  5292. // The rest of the path.
  5293. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5294. current_position[X_AXIS] = x;
  5295. current_position[Y_AXIS] = y;
  5296. current_position[Z_AXIS] = z;
  5297. current_position[E_AXIS] = e;
  5298. }
  5299. #endif // MESH_BED_LEVELING
  5300. void prepare_move()
  5301. {
  5302. clamp_to_software_endstops(destination);
  5303. previous_millis_cmd = millis();
  5304. // Do not use feedmultiply for E or Z only moves
  5305. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5306. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5307. }
  5308. else {
  5309. #ifdef MESH_BED_LEVELING
  5310. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5311. #else
  5312. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5313. #endif
  5314. }
  5315. for(int8_t i=0; i < NUM_AXIS; i++) {
  5316. current_position[i] = destination[i];
  5317. }
  5318. }
  5319. void prepare_arc_move(char isclockwise) {
  5320. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5321. // Trace the arc
  5322. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5323. // As far as the parser is concerned, the position is now == target. In reality the
  5324. // motion control system might still be processing the action and the real tool position
  5325. // in any intermediate location.
  5326. for(int8_t i=0; i < NUM_AXIS; i++) {
  5327. current_position[i] = destination[i];
  5328. }
  5329. previous_millis_cmd = millis();
  5330. }
  5331. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5332. #if defined(FAN_PIN)
  5333. #if CONTROLLERFAN_PIN == FAN_PIN
  5334. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5335. #endif
  5336. #endif
  5337. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5338. unsigned long lastMotorCheck = 0;
  5339. void controllerFan()
  5340. {
  5341. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5342. {
  5343. lastMotorCheck = millis();
  5344. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5345. #if EXTRUDERS > 2
  5346. || !READ(E2_ENABLE_PIN)
  5347. #endif
  5348. #if EXTRUDER > 1
  5349. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5350. || !READ(X2_ENABLE_PIN)
  5351. #endif
  5352. || !READ(E1_ENABLE_PIN)
  5353. #endif
  5354. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5355. {
  5356. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5357. }
  5358. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5359. {
  5360. digitalWrite(CONTROLLERFAN_PIN, 0);
  5361. analogWrite(CONTROLLERFAN_PIN, 0);
  5362. }
  5363. else
  5364. {
  5365. // allows digital or PWM fan output to be used (see M42 handling)
  5366. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5367. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5368. }
  5369. }
  5370. }
  5371. #endif
  5372. #ifdef TEMP_STAT_LEDS
  5373. static bool blue_led = false;
  5374. static bool red_led = false;
  5375. static uint32_t stat_update = 0;
  5376. void handle_status_leds(void) {
  5377. float max_temp = 0.0;
  5378. if(millis() > stat_update) {
  5379. stat_update += 500; // Update every 0.5s
  5380. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5381. max_temp = max(max_temp, degHotend(cur_extruder));
  5382. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5383. }
  5384. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5385. max_temp = max(max_temp, degTargetBed());
  5386. max_temp = max(max_temp, degBed());
  5387. #endif
  5388. if((max_temp > 55.0) && (red_led == false)) {
  5389. digitalWrite(STAT_LED_RED, 1);
  5390. digitalWrite(STAT_LED_BLUE, 0);
  5391. red_led = true;
  5392. blue_led = false;
  5393. }
  5394. if((max_temp < 54.0) && (blue_led == false)) {
  5395. digitalWrite(STAT_LED_RED, 0);
  5396. digitalWrite(STAT_LED_BLUE, 1);
  5397. red_led = false;
  5398. blue_led = true;
  5399. }
  5400. }
  5401. }
  5402. #endif
  5403. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5404. {
  5405. #if defined(KILL_PIN) && KILL_PIN > -1
  5406. static int killCount = 0; // make the inactivity button a bit less responsive
  5407. const int KILL_DELAY = 10000;
  5408. #endif
  5409. if(buflen < (BUFSIZE-1)){
  5410. get_command();
  5411. }
  5412. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5413. if(max_inactive_time)
  5414. kill("", 4);
  5415. if(stepper_inactive_time) {
  5416. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5417. {
  5418. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5419. disable_x();
  5420. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5421. disable_y();
  5422. disable_z();
  5423. disable_e0();
  5424. disable_e1();
  5425. disable_e2();
  5426. }
  5427. }
  5428. }
  5429. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5430. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5431. {
  5432. chdkActive = false;
  5433. WRITE(CHDK, LOW);
  5434. }
  5435. #endif
  5436. #if defined(KILL_PIN) && KILL_PIN > -1
  5437. // Check if the kill button was pressed and wait just in case it was an accidental
  5438. // key kill key press
  5439. // -------------------------------------------------------------------------------
  5440. if( 0 == READ(KILL_PIN) )
  5441. {
  5442. killCount++;
  5443. }
  5444. else if (killCount > 0)
  5445. {
  5446. killCount--;
  5447. }
  5448. // Exceeded threshold and we can confirm that it was not accidental
  5449. // KILL the machine
  5450. // ----------------------------------------------------------------
  5451. if ( killCount >= KILL_DELAY)
  5452. {
  5453. kill("", 5);
  5454. }
  5455. #endif
  5456. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5457. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5458. #endif
  5459. #ifdef EXTRUDER_RUNOUT_PREVENT
  5460. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5461. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5462. {
  5463. bool oldstatus=READ(E0_ENABLE_PIN);
  5464. enable_e0();
  5465. float oldepos=current_position[E_AXIS];
  5466. float oldedes=destination[E_AXIS];
  5467. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5468. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5469. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5470. current_position[E_AXIS]=oldepos;
  5471. destination[E_AXIS]=oldedes;
  5472. plan_set_e_position(oldepos);
  5473. previous_millis_cmd=millis();
  5474. st_synchronize();
  5475. WRITE(E0_ENABLE_PIN,oldstatus);
  5476. }
  5477. #endif
  5478. #ifdef TEMP_STAT_LEDS
  5479. handle_status_leds();
  5480. #endif
  5481. check_axes_activity();
  5482. }
  5483. void kill(const char *full_screen_message, unsigned char id)
  5484. {
  5485. SERIAL_ECHOPGM("KILL: ");
  5486. MYSERIAL.println(int(id));
  5487. //return;
  5488. cli(); // Stop interrupts
  5489. disable_heater();
  5490. disable_x();
  5491. // SERIAL_ECHOLNPGM("kill - disable Y");
  5492. disable_y();
  5493. disable_z();
  5494. disable_e0();
  5495. disable_e1();
  5496. disable_e2();
  5497. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5498. pinMode(PS_ON_PIN,INPUT);
  5499. #endif
  5500. SERIAL_ERROR_START;
  5501. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5502. if (full_screen_message != NULL) {
  5503. SERIAL_ERRORLNRPGM(full_screen_message);
  5504. lcd_display_message_fullscreen_P(full_screen_message);
  5505. } else {
  5506. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5507. }
  5508. // FMC small patch to update the LCD before ending
  5509. sei(); // enable interrupts
  5510. for ( int i=5; i--; lcd_update())
  5511. {
  5512. delay(200);
  5513. }
  5514. cli(); // disable interrupts
  5515. suicide();
  5516. while(1) { /* Intentionally left empty */ } // Wait for reset
  5517. }
  5518. void Stop()
  5519. {
  5520. disable_heater();
  5521. if(Stopped == false) {
  5522. Stopped = true;
  5523. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5524. SERIAL_ERROR_START;
  5525. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5526. LCD_MESSAGERPGM(MSG_STOPPED);
  5527. }
  5528. }
  5529. bool IsStopped() { return Stopped; };
  5530. #ifdef FAST_PWM_FAN
  5531. void setPwmFrequency(uint8_t pin, int val)
  5532. {
  5533. val &= 0x07;
  5534. switch(digitalPinToTimer(pin))
  5535. {
  5536. #if defined(TCCR0A)
  5537. case TIMER0A:
  5538. case TIMER0B:
  5539. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5540. // TCCR0B |= val;
  5541. break;
  5542. #endif
  5543. #if defined(TCCR1A)
  5544. case TIMER1A:
  5545. case TIMER1B:
  5546. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5547. // TCCR1B |= val;
  5548. break;
  5549. #endif
  5550. #if defined(TCCR2)
  5551. case TIMER2:
  5552. case TIMER2:
  5553. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5554. TCCR2 |= val;
  5555. break;
  5556. #endif
  5557. #if defined(TCCR2A)
  5558. case TIMER2A:
  5559. case TIMER2B:
  5560. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5561. TCCR2B |= val;
  5562. break;
  5563. #endif
  5564. #if defined(TCCR3A)
  5565. case TIMER3A:
  5566. case TIMER3B:
  5567. case TIMER3C:
  5568. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5569. TCCR3B |= val;
  5570. break;
  5571. #endif
  5572. #if defined(TCCR4A)
  5573. case TIMER4A:
  5574. case TIMER4B:
  5575. case TIMER4C:
  5576. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5577. TCCR4B |= val;
  5578. break;
  5579. #endif
  5580. #if defined(TCCR5A)
  5581. case TIMER5A:
  5582. case TIMER5B:
  5583. case TIMER5C:
  5584. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5585. TCCR5B |= val;
  5586. break;
  5587. #endif
  5588. }
  5589. }
  5590. #endif //FAST_PWM_FAN
  5591. bool setTargetedHotend(int code){
  5592. tmp_extruder = active_extruder;
  5593. if(code_seen('T')) {
  5594. tmp_extruder = code_value();
  5595. if(tmp_extruder >= EXTRUDERS) {
  5596. SERIAL_ECHO_START;
  5597. switch(code){
  5598. case 104:
  5599. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5600. break;
  5601. case 105:
  5602. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5603. break;
  5604. case 109:
  5605. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5606. break;
  5607. case 218:
  5608. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5609. break;
  5610. case 221:
  5611. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5612. break;
  5613. }
  5614. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5615. return true;
  5616. }
  5617. }
  5618. return false;
  5619. }
  5620. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5621. {
  5622. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5623. {
  5624. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5625. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5626. }
  5627. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5628. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5629. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5630. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5631. total_filament_used = 0;
  5632. }
  5633. float calculate_volumetric_multiplier(float diameter) {
  5634. float area = .0;
  5635. float radius = .0;
  5636. radius = diameter * .5;
  5637. if (! volumetric_enabled || radius == 0) {
  5638. area = 1;
  5639. }
  5640. else {
  5641. area = M_PI * pow(radius, 2);
  5642. }
  5643. return 1.0 / area;
  5644. }
  5645. void calculate_volumetric_multipliers() {
  5646. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5647. #if EXTRUDERS > 1
  5648. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5649. #if EXTRUDERS > 2
  5650. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5651. #endif
  5652. #endif
  5653. }
  5654. void delay_keep_alive(unsigned int ms)
  5655. {
  5656. for (;;) {
  5657. manage_heater();
  5658. // Manage inactivity, but don't disable steppers on timeout.
  5659. manage_inactivity(true);
  5660. lcd_update();
  5661. if (ms == 0)
  5662. break;
  5663. else if (ms >= 50) {
  5664. delay(50);
  5665. ms -= 50;
  5666. } else {
  5667. delay(ms);
  5668. ms = 0;
  5669. }
  5670. }
  5671. }
  5672. void wait_for_heater(long codenum) {
  5673. #ifdef TEMP_RESIDENCY_TIME
  5674. long residencyStart;
  5675. residencyStart = -1;
  5676. /* continue to loop until we have reached the target temp
  5677. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5678. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5679. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5680. #else
  5681. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5682. #endif //TEMP_RESIDENCY_TIME
  5683. if ((millis() - codenum) > 1000UL)
  5684. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5685. if (!farm_mode) {
  5686. SERIAL_PROTOCOLPGM("T:");
  5687. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5688. SERIAL_PROTOCOLPGM(" E:");
  5689. SERIAL_PROTOCOL((int)tmp_extruder);
  5690. #ifdef TEMP_RESIDENCY_TIME
  5691. SERIAL_PROTOCOLPGM(" W:");
  5692. if (residencyStart > -1)
  5693. {
  5694. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5695. SERIAL_PROTOCOLLN(codenum);
  5696. }
  5697. else
  5698. {
  5699. SERIAL_PROTOCOLLN("?");
  5700. }
  5701. }
  5702. #else
  5703. SERIAL_PROTOCOLLN("");
  5704. #endif
  5705. codenum = millis();
  5706. }
  5707. manage_heater();
  5708. manage_inactivity();
  5709. lcd_update();
  5710. #ifdef TEMP_RESIDENCY_TIME
  5711. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5712. or when current temp falls outside the hysteresis after target temp was reached */
  5713. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5714. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5715. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5716. {
  5717. residencyStart = millis();
  5718. }
  5719. #endif //TEMP_RESIDENCY_TIME
  5720. }
  5721. }
  5722. void check_babystep() {
  5723. int babystep_z;
  5724. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5725. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5726. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5727. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5728. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5729. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5730. lcd_update_enable(true);
  5731. }
  5732. }
  5733. #ifdef DIS
  5734. void d_setup()
  5735. {
  5736. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5737. pinMode(D_DATA, INPUT_PULLUP);
  5738. pinMode(D_REQUIRE, OUTPUT);
  5739. digitalWrite(D_REQUIRE, HIGH);
  5740. }
  5741. float d_ReadData()
  5742. {
  5743. int digit[13];
  5744. String mergeOutput;
  5745. float output;
  5746. digitalWrite(D_REQUIRE, HIGH);
  5747. for (int i = 0; i<13; i++)
  5748. {
  5749. for (int j = 0; j < 4; j++)
  5750. {
  5751. while (digitalRead(D_DATACLOCK) == LOW) {}
  5752. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5753. bitWrite(digit[i], j, digitalRead(D_DATA));
  5754. }
  5755. }
  5756. digitalWrite(D_REQUIRE, LOW);
  5757. mergeOutput = "";
  5758. output = 0;
  5759. for (int r = 5; r <= 10; r++) //Merge digits
  5760. {
  5761. mergeOutput += digit[r];
  5762. }
  5763. output = mergeOutput.toFloat();
  5764. if (digit[4] == 8) //Handle sign
  5765. {
  5766. output *= -1;
  5767. }
  5768. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5769. {
  5770. output /= 10;
  5771. }
  5772. return output;
  5773. }
  5774. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5775. int t1 = 0;
  5776. int t_delay = 0;
  5777. int digit[13];
  5778. int m;
  5779. char str[3];
  5780. //String mergeOutput;
  5781. char mergeOutput[15];
  5782. float output;
  5783. int mesh_point = 0; //index number of calibration point
  5784. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5785. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5786. float mesh_home_z_search = 4;
  5787. float row[x_points_num];
  5788. int ix = 0;
  5789. int iy = 0;
  5790. char* filename_wldsd = "wldsd.txt";
  5791. char data_wldsd[70];
  5792. char numb_wldsd[10];
  5793. d_setup();
  5794. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5795. // We don't know where we are! HOME!
  5796. // Push the commands to the front of the message queue in the reverse order!
  5797. // There shall be always enough space reserved for these commands.
  5798. repeatcommand_front(); // repeat G80 with all its parameters
  5799. enquecommand_front_P((PSTR("G28 W0")));
  5800. enquecommand_front_P((PSTR("G1 Z5")));
  5801. return;
  5802. }
  5803. bool custom_message_old = custom_message;
  5804. unsigned int custom_message_type_old = custom_message_type;
  5805. unsigned int custom_message_state_old = custom_message_state;
  5806. custom_message = true;
  5807. custom_message_type = 1;
  5808. custom_message_state = (x_points_num * y_points_num) + 10;
  5809. lcd_update(1);
  5810. mbl.reset();
  5811. babystep_undo();
  5812. card.openFile(filename_wldsd, false);
  5813. current_position[Z_AXIS] = mesh_home_z_search;
  5814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5815. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5816. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5817. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5818. setup_for_endstop_move(false);
  5819. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5820. SERIAL_PROTOCOL(x_points_num);
  5821. SERIAL_PROTOCOLPGM(",");
  5822. SERIAL_PROTOCOL(y_points_num);
  5823. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5824. SERIAL_PROTOCOL(mesh_home_z_search);
  5825. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5826. SERIAL_PROTOCOL(x_dimension);
  5827. SERIAL_PROTOCOLPGM(",");
  5828. SERIAL_PROTOCOL(y_dimension);
  5829. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5830. while (mesh_point != x_points_num * y_points_num) {
  5831. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5832. iy = mesh_point / x_points_num;
  5833. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5834. float z0 = 0.f;
  5835. current_position[Z_AXIS] = mesh_home_z_search;
  5836. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5837. st_synchronize();
  5838. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5839. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5840. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5841. st_synchronize();
  5842. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5843. break;
  5844. card.closefile();
  5845. }
  5846. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5847. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5848. //strcat(data_wldsd, numb_wldsd);
  5849. //MYSERIAL.println(data_wldsd);
  5850. //delay(1000);
  5851. //delay(3000);
  5852. //t1 = millis();
  5853. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5854. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5855. memset(digit, 0, sizeof(digit));
  5856. //cli();
  5857. digitalWrite(D_REQUIRE, LOW);
  5858. for (int i = 0; i<13; i++)
  5859. {
  5860. //t1 = millis();
  5861. for (int j = 0; j < 4; j++)
  5862. {
  5863. while (digitalRead(D_DATACLOCK) == LOW) {}
  5864. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5865. bitWrite(digit[i], j, digitalRead(D_DATA));
  5866. }
  5867. //t_delay = (millis() - t1);
  5868. //SERIAL_PROTOCOLPGM(" ");
  5869. //SERIAL_PROTOCOL_F(t_delay, 5);
  5870. //SERIAL_PROTOCOLPGM(" ");
  5871. }
  5872. //sei();
  5873. digitalWrite(D_REQUIRE, HIGH);
  5874. mergeOutput[0] = '\0';
  5875. output = 0;
  5876. for (int r = 5; r <= 10; r++) //Merge digits
  5877. {
  5878. sprintf(str, "%d", digit[r]);
  5879. strcat(mergeOutput, str);
  5880. }
  5881. output = atof(mergeOutput);
  5882. if (digit[4] == 8) //Handle sign
  5883. {
  5884. output *= -1;
  5885. }
  5886. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5887. {
  5888. output *= 0.1;
  5889. }
  5890. //output = d_ReadData();
  5891. //row[ix] = current_position[Z_AXIS];
  5892. memset(data_wldsd, 0, sizeof(data_wldsd));
  5893. for (int i = 0; i <3; i++) {
  5894. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5895. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5896. strcat(data_wldsd, numb_wldsd);
  5897. strcat(data_wldsd, ";");
  5898. }
  5899. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5900. dtostrf(output, 8, 5, numb_wldsd);
  5901. strcat(data_wldsd, numb_wldsd);
  5902. //strcat(data_wldsd, ";");
  5903. card.write_command(data_wldsd);
  5904. //row[ix] = d_ReadData();
  5905. row[ix] = output; // current_position[Z_AXIS];
  5906. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5907. for (int i = 0; i < x_points_num; i++) {
  5908. SERIAL_PROTOCOLPGM(" ");
  5909. SERIAL_PROTOCOL_F(row[i], 5);
  5910. }
  5911. SERIAL_PROTOCOLPGM("\n");
  5912. }
  5913. custom_message_state--;
  5914. mesh_point++;
  5915. lcd_update(1);
  5916. }
  5917. card.closefile();
  5918. }
  5919. #endif
  5920. void temp_compensation_start() {
  5921. custom_message = true;
  5922. custom_message_type = 5;
  5923. custom_message_state = PINDA_HEAT_T + 1;
  5924. lcd_update(2);
  5925. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5926. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5927. }
  5928. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5929. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5930. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5931. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5932. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5933. st_synchronize();
  5934. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5935. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5936. delay_keep_alive(1000);
  5937. custom_message_state = PINDA_HEAT_T - i;
  5938. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5939. else lcd_update(1);
  5940. }
  5941. custom_message_type = 0;
  5942. custom_message_state = 0;
  5943. custom_message = false;
  5944. }
  5945. void temp_compensation_apply() {
  5946. int i_add;
  5947. int compensation_value;
  5948. int z_shift = 0;
  5949. float z_shift_mm;
  5950. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5951. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5952. i_add = (target_temperature_bed - 60) / 10;
  5953. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5954. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5955. }else {
  5956. //interpolation
  5957. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5958. }
  5959. SERIAL_PROTOCOLPGM("\n");
  5960. SERIAL_PROTOCOLPGM("Z shift applied:");
  5961. MYSERIAL.print(z_shift_mm);
  5962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5963. st_synchronize();
  5964. plan_set_z_position(current_position[Z_AXIS]);
  5965. }
  5966. else {
  5967. //we have no temp compensation data
  5968. }
  5969. }
  5970. float temp_comp_interpolation(float inp_temperature) {
  5971. //cubic spline interpolation
  5972. int n, i, j, k;
  5973. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5974. int shift[10];
  5975. int temp_C[10];
  5976. n = 6; //number of measured points
  5977. shift[0] = 0;
  5978. for (i = 0; i < n; i++) {
  5979. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5980. temp_C[i] = 50 + i * 10; //temperature in C
  5981. #ifdef PINDA_THERMISTOR
  5982. temp_C[i] = 35 + i * 5; //temperature in C
  5983. #else
  5984. temp_C[i] = 50 + i * 10; //temperature in C
  5985. #endif
  5986. x[i] = (float)temp_C[i];
  5987. f[i] = (float)shift[i];
  5988. }
  5989. if (inp_temperature < x[0]) return 0;
  5990. for (i = n - 1; i>0; i--) {
  5991. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5992. h[i - 1] = x[i] - x[i - 1];
  5993. }
  5994. //*********** formation of h, s , f matrix **************
  5995. for (i = 1; i<n - 1; i++) {
  5996. m[i][i] = 2 * (h[i - 1] + h[i]);
  5997. if (i != 1) {
  5998. m[i][i - 1] = h[i - 1];
  5999. m[i - 1][i] = h[i - 1];
  6000. }
  6001. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6002. }
  6003. //*********** forward elimination **************
  6004. for (i = 1; i<n - 2; i++) {
  6005. temp = (m[i + 1][i] / m[i][i]);
  6006. for (j = 1; j <= n - 1; j++)
  6007. m[i + 1][j] -= temp*m[i][j];
  6008. }
  6009. //*********** backward substitution *********
  6010. for (i = n - 2; i>0; i--) {
  6011. sum = 0;
  6012. for (j = i; j <= n - 2; j++)
  6013. sum += m[i][j] * s[j];
  6014. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6015. }
  6016. for (i = 0; i<n - 1; i++)
  6017. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6018. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6019. b = s[i] / 2;
  6020. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6021. d = f[i];
  6022. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6023. }
  6024. return sum;
  6025. }
  6026. #ifdef PINDA_THERMISTOR
  6027. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6028. {
  6029. if (!temp_cal_active) return 0;
  6030. if (!calibration_status_pinda()) return 0;
  6031. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6032. }
  6033. #endif //PINDA_THERMISTOR
  6034. void long_pause() //long pause print
  6035. {
  6036. st_synchronize();
  6037. //save currently set parameters to global variables
  6038. saved_feedmultiply = feedmultiply;
  6039. HotendTempBckp = degTargetHotend(active_extruder);
  6040. fanSpeedBckp = fanSpeed;
  6041. start_pause_print = millis();
  6042. //save position
  6043. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6044. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6045. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6046. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6047. //retract
  6048. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6050. //lift z
  6051. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6052. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6054. //set nozzle target temperature to 0
  6055. setTargetHotend(0, 0);
  6056. setTargetHotend(0, 1);
  6057. setTargetHotend(0, 2);
  6058. //Move XY to side
  6059. current_position[X_AXIS] = X_PAUSE_POS;
  6060. current_position[Y_AXIS] = Y_PAUSE_POS;
  6061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6062. // Turn off the print fan
  6063. fanSpeed = 0;
  6064. st_synchronize();
  6065. }
  6066. void serialecho_temperatures() {
  6067. float tt = degHotend(active_extruder);
  6068. SERIAL_PROTOCOLPGM("T:");
  6069. SERIAL_PROTOCOL(tt);
  6070. SERIAL_PROTOCOLPGM(" E:");
  6071. SERIAL_PROTOCOL((int)active_extruder);
  6072. SERIAL_PROTOCOLPGM(" B:");
  6073. SERIAL_PROTOCOL_F(degBed(), 1);
  6074. SERIAL_PROTOCOLLN("");
  6075. }
  6076. extern uint32_t sdpos_atomic;
  6077. void uvlo_()
  6078. {
  6079. unsigned long time_start = millis();
  6080. // Conserve power as soon as possible.
  6081. disable_x();
  6082. disable_y();
  6083. // Indicate that the interrupt has been triggered.
  6084. SERIAL_ECHOLNPGM("UVLO");
  6085. // Read out the current Z motor microstep counter. This will be later used
  6086. // for reaching the zero full step before powering off.
  6087. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6088. // Calculate the file position, from which to resume this print.
  6089. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6090. {
  6091. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6092. sd_position -= sdlen_planner;
  6093. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6094. sd_position -= sdlen_cmdqueue;
  6095. if (sd_position < 0) sd_position = 0;
  6096. }
  6097. // Backup the feedrate in mm/min.
  6098. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6099. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6100. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6101. // are in action.
  6102. planner_abort_hard();
  6103. // Clean the input command queue.
  6104. cmdqueue_reset();
  6105. card.sdprinting = false;
  6106. // card.closefile();
  6107. // Enable stepper driver interrupt to move Z axis.
  6108. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6109. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6110. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6111. sei();
  6112. plan_buffer_line(
  6113. current_position[X_AXIS],
  6114. current_position[Y_AXIS],
  6115. current_position[Z_AXIS],
  6116. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6117. 400, active_extruder);
  6118. plan_buffer_line(
  6119. current_position[X_AXIS],
  6120. current_position[Y_AXIS],
  6121. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6122. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6123. 40, active_extruder);
  6124. // Move Z up to the next 0th full step.
  6125. // Write the file position.
  6126. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6127. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6128. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6129. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6130. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6131. // Scale the z value to 1u resolution.
  6132. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6133. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6134. }
  6135. // Read out the current Z motor microstep counter. This will be later used
  6136. // for reaching the zero full step before powering off.
  6137. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6138. // Store the current position.
  6139. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6140. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6141. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6142. // Store the current feed rate, temperatures and fan speed.
  6143. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6144. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6145. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6146. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6147. // Finaly store the "power outage" flag.
  6148. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6149. st_synchronize();
  6150. SERIAL_ECHOPGM("stps");
  6151. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6152. #if 0
  6153. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6154. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6156. st_synchronize();
  6157. #endif
  6158. disable_z();
  6159. // Increment power failure counter
  6160. uint8_t power_count = eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT);
  6161. power_count++;
  6162. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, power_count);
  6163. SERIAL_ECHOLNPGM("UVLO - end");
  6164. MYSERIAL.println(millis() - time_start);
  6165. cli();
  6166. while(1);
  6167. }
  6168. void setup_fan_interrupt() {
  6169. //INT7
  6170. DDRE &= ~(1 << 7); //input pin
  6171. PORTE &= ~(1 << 7); //no internal pull-up
  6172. //start with sensing rising edge
  6173. EICRB &= ~(1 << 6);
  6174. EICRB |= (1 << 7);
  6175. //enable INT7 interrupt
  6176. EIMSK |= (1 << 7);
  6177. }
  6178. ISR(INT7_vect) {
  6179. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6180. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6181. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6182. t_fan_rising_edge = millis();
  6183. }
  6184. else { //interrupt was triggered by falling edge
  6185. if ((millis() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6186. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6187. }
  6188. }
  6189. EICRB ^= (1 << 6); //change edge
  6190. }
  6191. void setup_uvlo_interrupt() {
  6192. DDRE &= ~(1 << 4); //input pin
  6193. PORTE &= ~(1 << 4); //no internal pull-up
  6194. //sensing falling edge
  6195. EICRB |= (1 << 0);
  6196. EICRB &= ~(1 << 1);
  6197. //enable INT4 interrupt
  6198. EIMSK |= (1 << 4);
  6199. }
  6200. ISR(INT4_vect) {
  6201. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6202. SERIAL_ECHOLNPGM("INT4");
  6203. if (IS_SD_PRINTING) uvlo_();
  6204. }
  6205. void recover_print(uint8_t automatic) {
  6206. char cmd[30];
  6207. lcd_update_enable(true);
  6208. lcd_update(2);
  6209. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6210. recover_machine_state_after_power_panic();
  6211. // Set the target bed and nozzle temperatures.
  6212. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6213. enquecommand(cmd);
  6214. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6215. enquecommand(cmd);
  6216. // Lift the print head, so one may remove the excess priming material.
  6217. if (current_position[Z_AXIS] < 25)
  6218. enquecommand_P(PSTR("G1 Z25 F800"));
  6219. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6220. enquecommand_P(PSTR("G28 X Y"));
  6221. // Set the target bed and nozzle temperatures and wait.
  6222. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6223. enquecommand(cmd);
  6224. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6225. enquecommand(cmd);
  6226. enquecommand_P(PSTR("M83")); //E axis relative mode
  6227. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6228. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6229. if(automatic == 0){
  6230. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6231. }
  6232. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6233. // Mark the power panic status as inactive.
  6234. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6235. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6236. delay_keep_alive(1000);
  6237. }*/
  6238. SERIAL_ECHOPGM("After waiting for temp:");
  6239. SERIAL_ECHOPGM("Current position X_AXIS:");
  6240. MYSERIAL.println(current_position[X_AXIS]);
  6241. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6242. MYSERIAL.println(current_position[Y_AXIS]);
  6243. // Restart the print.
  6244. restore_print_from_eeprom();
  6245. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6246. MYSERIAL.print(current_position[Z_AXIS]);
  6247. }
  6248. void recover_machine_state_after_power_panic()
  6249. {
  6250. // 1) Recover the logical cordinates at the time of the power panic.
  6251. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6252. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6253. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6254. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6255. // The current position after power panic is moved to the next closest 0th full step.
  6256. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6257. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6258. memcpy(destination, current_position, sizeof(destination));
  6259. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6260. print_world_coordinates();
  6261. // 2) Initialize the logical to physical coordinate system transformation.
  6262. world2machine_initialize();
  6263. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6264. mbl.active = false;
  6265. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6266. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6267. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6268. // Scale the z value to 10u resolution.
  6269. int16_t v;
  6270. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6271. if (v != 0)
  6272. mbl.active = true;
  6273. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6274. }
  6275. if (mbl.active)
  6276. mbl.upsample_3x3();
  6277. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6278. print_mesh_bed_leveling_table();
  6279. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6280. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6281. babystep_load();
  6282. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6283. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6284. // 6) Power up the motors, mark their positions as known.
  6285. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6286. axis_known_position[X_AXIS] = true; enable_x();
  6287. axis_known_position[Y_AXIS] = true; enable_y();
  6288. axis_known_position[Z_AXIS] = true; enable_z();
  6289. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6290. print_physical_coordinates();
  6291. // 7) Recover the target temperatures.
  6292. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6293. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6294. }
  6295. void restore_print_from_eeprom() {
  6296. float x_rec, y_rec, z_pos;
  6297. int feedrate_rec;
  6298. uint8_t fan_speed_rec;
  6299. char cmd[30];
  6300. char* c;
  6301. char filename[13];
  6302. uint8_t depth = 0;
  6303. char dir_name[9];
  6304. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6305. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6306. SERIAL_ECHOPGM("Feedrate:");
  6307. MYSERIAL.println(feedrate_rec);
  6308. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6309. MYSERIAL.println(int(depth));
  6310. for (int i = 0; i < depth; i++) {
  6311. for (int j = 0; j < 8; j++) {
  6312. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6313. }
  6314. dir_name[8] = '\0';
  6315. MYSERIAL.println(dir_name);
  6316. card.chdir(dir_name);
  6317. }
  6318. for (int i = 0; i < 8; i++) {
  6319. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6320. }
  6321. filename[8] = '\0';
  6322. MYSERIAL.print(filename);
  6323. strcat_P(filename, PSTR(".gco"));
  6324. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6325. for (c = &cmd[4]; *c; c++)
  6326. *c = tolower(*c);
  6327. enquecommand(cmd);
  6328. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6329. SERIAL_ECHOPGM("Position read from eeprom:");
  6330. MYSERIAL.println(position);
  6331. // E axis relative mode.
  6332. enquecommand_P(PSTR("M83"));
  6333. // Move to the XY print position in logical coordinates, where the print has been killed.
  6334. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6335. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6336. strcat_P(cmd, PSTR(" F2000"));
  6337. enquecommand(cmd);
  6338. // Move the Z axis down to the print, in logical coordinates.
  6339. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6340. enquecommand(cmd);
  6341. // Unretract.
  6342. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6343. // Set the feedrate saved at the power panic.
  6344. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6345. enquecommand(cmd);
  6346. // Set the fan speed saved at the power panic.
  6347. strcpy_P(cmd, PSTR("M106 S"));
  6348. strcat(cmd, itostr3(int(fan_speed_rec)));
  6349. enquecommand(cmd);
  6350. // Set a position in the file.
  6351. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6352. enquecommand(cmd);
  6353. // Start SD print.
  6354. enquecommand_P(PSTR("M24"));
  6355. }
  6356. ////////////////////////////////////////////////////////////////////////////////
  6357. // new save/restore printing
  6358. //extern uint32_t sdpos_atomic;
  6359. bool saved_printing = false;
  6360. uint32_t saved_sdpos = 0;
  6361. float saved_pos[4] = {0, 0, 0, 0};
  6362. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6363. float saved_feedrate2 = 0;
  6364. uint8_t saved_active_extruder = 0;
  6365. bool saved_extruder_under_pressure = false;
  6366. void stop_and_save_print_to_ram(float z_move, float e_move)
  6367. {
  6368. if (saved_printing) return;
  6369. cli();
  6370. unsigned char nplanner_blocks = number_of_blocks();
  6371. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6372. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6373. saved_sdpos -= sdlen_planner;
  6374. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6375. saved_sdpos -= sdlen_cmdqueue;
  6376. #if 0
  6377. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6378. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6379. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6380. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6381. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6382. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6383. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6384. {
  6385. card.setIndex(saved_sdpos);
  6386. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6387. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6388. MYSERIAL.print(char(card.get()));
  6389. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6390. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6391. MYSERIAL.print(char(card.get()));
  6392. SERIAL_ECHOLNPGM("End of command buffer");
  6393. }
  6394. {
  6395. // Print the content of the planner buffer, line by line:
  6396. card.setIndex(saved_sdpos);
  6397. int8_t iline = 0;
  6398. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6399. SERIAL_ECHOPGM("Planner line (from file): ");
  6400. MYSERIAL.print(int(iline), DEC);
  6401. SERIAL_ECHOPGM(", length: ");
  6402. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6403. SERIAL_ECHOPGM(", steps: (");
  6404. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6405. SERIAL_ECHOPGM(",");
  6406. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6407. SERIAL_ECHOPGM(",");
  6408. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6409. SERIAL_ECHOPGM(",");
  6410. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6411. SERIAL_ECHOPGM("), events: ");
  6412. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6413. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6414. MYSERIAL.print(char(card.get()));
  6415. }
  6416. }
  6417. {
  6418. // Print the content of the command buffer, line by line:
  6419. int8_t iline = 0;
  6420. union {
  6421. struct {
  6422. char lo;
  6423. char hi;
  6424. } lohi;
  6425. uint16_t value;
  6426. } sdlen_single;
  6427. int _bufindr = bufindr;
  6428. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6429. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6430. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6431. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6432. }
  6433. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6434. MYSERIAL.print(int(iline), DEC);
  6435. SERIAL_ECHOPGM(", type: ");
  6436. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6437. SERIAL_ECHOPGM(", len: ");
  6438. MYSERIAL.println(sdlen_single.value, DEC);
  6439. // Print the content of the buffer line.
  6440. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6441. SERIAL_ECHOPGM("Buffer line (from file): ");
  6442. MYSERIAL.print(int(iline), DEC);
  6443. MYSERIAL.println(int(iline), DEC);
  6444. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6445. MYSERIAL.print(char(card.get()));
  6446. if (-- _buflen == 0)
  6447. break;
  6448. // First skip the current command ID and iterate up to the end of the string.
  6449. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6450. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6451. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6452. // If the end of the buffer was empty,
  6453. if (_bufindr == sizeof(cmdbuffer)) {
  6454. // skip to the start and find the nonzero command.
  6455. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6456. }
  6457. }
  6458. }
  6459. #endif
  6460. #if 0
  6461. saved_feedrate2 = feedrate; //save feedrate
  6462. #else
  6463. // Try to deduce the feedrate from the first block of the planner.
  6464. // Speed is in mm/min.
  6465. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6466. #endif
  6467. planner_abort_hard(); //abort printing
  6468. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6469. saved_active_extruder = active_extruder; //save active_extruder
  6470. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6471. cmdqueue_reset(); //empty cmdqueue
  6472. card.sdprinting = false;
  6473. // card.closefile();
  6474. saved_printing = true;
  6475. sei();
  6476. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6477. #if 1
  6478. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6479. char buf[48];
  6480. strcpy_P(buf, PSTR("G1 Z"));
  6481. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6482. strcat_P(buf, PSTR(" E"));
  6483. // Relative extrusion
  6484. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6485. strcat_P(buf, PSTR(" F"));
  6486. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6487. // At this point the command queue is empty.
  6488. enquecommand(buf, false);
  6489. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6490. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6491. repeatcommand_front();
  6492. #else
  6493. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6494. st_synchronize(); //wait moving
  6495. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6496. memcpy(destination, current_position, sizeof(destination));
  6497. #endif
  6498. }
  6499. }
  6500. void restore_print_from_ram_and_continue(float e_move)
  6501. {
  6502. if (!saved_printing) return;
  6503. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6504. // current_position[axis] = st_get_position_mm(axis);
  6505. active_extruder = saved_active_extruder; //restore active_extruder
  6506. feedrate = saved_feedrate2; //restore feedrate
  6507. float e = saved_pos[E_AXIS] - e_move;
  6508. plan_set_e_position(e);
  6509. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6510. st_synchronize();
  6511. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6512. memcpy(destination, current_position, sizeof(destination));
  6513. card.setIndex(saved_sdpos);
  6514. sdpos_atomic = saved_sdpos;
  6515. card.sdprinting = true;
  6516. saved_printing = false;
  6517. }
  6518. void print_world_coordinates()
  6519. {
  6520. SERIAL_ECHOPGM("world coordinates: (");
  6521. MYSERIAL.print(current_position[X_AXIS], 3);
  6522. SERIAL_ECHOPGM(", ");
  6523. MYSERIAL.print(current_position[Y_AXIS], 3);
  6524. SERIAL_ECHOPGM(", ");
  6525. MYSERIAL.print(current_position[Z_AXIS], 3);
  6526. SERIAL_ECHOLNPGM(")");
  6527. }
  6528. void print_physical_coordinates()
  6529. {
  6530. SERIAL_ECHOPGM("physical coordinates: (");
  6531. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6532. SERIAL_ECHOPGM(", ");
  6533. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6534. SERIAL_ECHOPGM(", ");
  6535. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6536. SERIAL_ECHOLNPGM(")");
  6537. }
  6538. void print_mesh_bed_leveling_table()
  6539. {
  6540. SERIAL_ECHOPGM("mesh bed leveling: ");
  6541. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6542. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6543. MYSERIAL.print(mbl.z_values[y][x], 3);
  6544. SERIAL_ECHOPGM(" ");
  6545. }
  6546. SERIAL_ECHOLNPGM("");
  6547. }