Marlin_main.cpp 294 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #ifdef NEW_SPI
  76. #include "spi.h"
  77. #endif //NEW_SPI
  78. #ifdef SWI2C
  79. #include "swi2c.h"
  80. #endif //SWI2C
  81. #ifdef PAT9125
  82. #include "pat9125.h"
  83. #include "fsensor.h"
  84. #endif //PAT9125
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef BLINKM
  89. #include "BlinkM.h"
  90. #include "Wire.h"
  91. #endif
  92. #ifdef ULTRALCD
  93. #include "ultralcd.h"
  94. #endif
  95. #if NUM_SERVOS > 0
  96. #include "Servo.h"
  97. #endif
  98. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  99. #include <SPI.h>
  100. #endif
  101. #define VERSION_STRING "1.0.2"
  102. #include "ultralcd.h"
  103. #include "cmdqueue.h"
  104. // Macros for bit masks
  105. #define BIT(b) (1<<(b))
  106. #define TEST(n,b) (((n)&BIT(b))!=0)
  107. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  108. //Macro for print fan speed
  109. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  110. #define PRINTING_TYPE_SD 0
  111. #define PRINTING_TYPE_USB 1
  112. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  113. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  114. //Implemented Codes
  115. //-------------------
  116. // PRUSA CODES
  117. // P F - Returns FW versions
  118. // P R - Returns revision of printer
  119. // G0 -> G1
  120. // G1 - Coordinated Movement X Y Z E
  121. // G2 - CW ARC
  122. // G3 - CCW ARC
  123. // G4 - Dwell S<seconds> or P<milliseconds>
  124. // G10 - retract filament according to settings of M207
  125. // G11 - retract recover filament according to settings of M208
  126. // G28 - Home all Axis
  127. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  128. // G30 - Single Z Probe, probes bed at current XY location.
  129. // G31 - Dock sled (Z_PROBE_SLED only)
  130. // G32 - Undock sled (Z_PROBE_SLED only)
  131. // G80 - Automatic mesh bed leveling
  132. // G81 - Print bed profile
  133. // G90 - Use Absolute Coordinates
  134. // G91 - Use Relative Coordinates
  135. // G92 - Set current position to coordinates given
  136. // M Codes
  137. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  138. // M1 - Same as M0
  139. // M17 - Enable/Power all stepper motors
  140. // M18 - Disable all stepper motors; same as M84
  141. // M20 - List SD card
  142. // M21 - Init SD card
  143. // M22 - Release SD card
  144. // M23 - Select SD file (M23 filename.g)
  145. // M24 - Start/resume SD print
  146. // M25 - Pause SD print
  147. // M26 - Set SD position in bytes (M26 S12345)
  148. // M27 - Report SD print status
  149. // M28 - Start SD write (M28 filename.g)
  150. // M29 - Stop SD write
  151. // M30 - Delete file from SD (M30 filename.g)
  152. // M31 - Output time since last M109 or SD card start to serial
  153. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  154. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  155. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  156. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  157. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  158. // M80 - Turn on Power Supply
  159. // M81 - Turn off Power Supply
  160. // M82 - Set E codes absolute (default)
  161. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  162. // M84 - Disable steppers until next move,
  163. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  164. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  165. // M92 - Set axis_steps_per_unit - same syntax as G92
  166. // M104 - Set extruder target temp
  167. // M105 - Read current temp
  168. // M106 - Fan on
  169. // M107 - Fan off
  170. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  171. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  172. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  173. // M112 - Emergency stop
  174. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  175. // M114 - Output current position to serial port
  176. // M115 - Capabilities string
  177. // M117 - display message
  178. // M119 - Output Endstop status to serial port
  179. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  180. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  181. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  182. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  183. // M140 - Set bed target temp
  184. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  185. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  186. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  187. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  188. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  189. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  190. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  191. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  192. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  193. // M206 - set additional homing offset
  194. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  195. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  196. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  197. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  198. // M220 S<factor in percent>- set speed factor override percentage
  199. // M221 S<factor in percent>- set extrude factor override percentage
  200. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  201. // M240 - Trigger a camera to take a photograph
  202. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  203. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  204. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  205. // M301 - Set PID parameters P I and D
  206. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  207. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  208. // M304 - Set bed PID parameters P I and D
  209. // M400 - Finish all moves
  210. // M401 - Lower z-probe if present
  211. // M402 - Raise z-probe if present
  212. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  213. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  214. // M406 - Turn off Filament Sensor extrusion control
  215. // M407 - Displays measured filament diameter
  216. // M500 - stores parameters in EEPROM
  217. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  218. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  219. // M503 - print the current settings (from memory not from EEPROM)
  220. // M509 - force language selection on next restart
  221. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  222. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  223. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  224. // M860 - Wait for PINDA thermistor to reach target temperature.
  225. // M861 - Set / Read PINDA temperature compensation offsets
  226. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  227. // M907 - Set digital trimpot motor current using axis codes.
  228. // M908 - Control digital trimpot directly.
  229. // M350 - Set microstepping mode.
  230. // M351 - Toggle MS1 MS2 pins directly.
  231. // M928 - Start SD logging (M928 filename.g) - ended by M29
  232. // M999 - Restart after being stopped by error
  233. //Stepper Movement Variables
  234. //===========================================================================
  235. //=============================imported variables============================
  236. //===========================================================================
  237. //===========================================================================
  238. //=============================public variables=============================
  239. //===========================================================================
  240. #ifdef SDSUPPORT
  241. CardReader card;
  242. #endif
  243. unsigned long PingTime = millis();
  244. unsigned long NcTime;
  245. union Data
  246. {
  247. byte b[2];
  248. int value;
  249. };
  250. float homing_feedrate[] = HOMING_FEEDRATE;
  251. // Currently only the extruder axis may be switched to a relative mode.
  252. // Other axes are always absolute or relative based on the common relative_mode flag.
  253. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  254. int feedmultiply=100; //100->1 200->2
  255. int saved_feedmultiply;
  256. int extrudemultiply=100; //100->1 200->2
  257. int extruder_multiply[EXTRUDERS] = {100
  258. #if EXTRUDERS > 1
  259. , 100
  260. #if EXTRUDERS > 2
  261. , 100
  262. #endif
  263. #endif
  264. };
  265. int bowden_length[4] = {385, 385, 385, 385};
  266. bool is_usb_printing = false;
  267. bool homing_flag = false;
  268. bool temp_cal_active = false;
  269. unsigned long kicktime = millis()+100000;
  270. unsigned int usb_printing_counter;
  271. int lcd_change_fil_state = 0;
  272. int feedmultiplyBckp = 100;
  273. float HotendTempBckp = 0;
  274. int fanSpeedBckp = 0;
  275. float pause_lastpos[4];
  276. unsigned long pause_time = 0;
  277. unsigned long start_pause_print = millis();
  278. unsigned long t_fan_rising_edge = millis();
  279. static LongTimer safetyTimer;
  280. //unsigned long load_filament_time;
  281. bool mesh_bed_leveling_flag = false;
  282. bool mesh_bed_run_from_menu = false;
  283. //unsigned char lang_selected = 0;
  284. int8_t FarmMode = 0;
  285. bool prusa_sd_card_upload = false;
  286. unsigned int status_number = 0;
  287. unsigned long total_filament_used;
  288. unsigned int heating_status;
  289. unsigned int heating_status_counter;
  290. bool custom_message;
  291. bool loading_flag = false;
  292. unsigned int custom_message_type;
  293. unsigned int custom_message_state;
  294. char snmm_filaments_used = 0;
  295. bool fan_state[2];
  296. int fan_edge_counter[2];
  297. int fan_speed[2];
  298. char dir_names[3][9];
  299. bool sortAlpha = false;
  300. bool volumetric_enabled = false;
  301. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  302. #if EXTRUDERS > 1
  303. , DEFAULT_NOMINAL_FILAMENT_DIA
  304. #if EXTRUDERS > 2
  305. , DEFAULT_NOMINAL_FILAMENT_DIA
  306. #endif
  307. #endif
  308. };
  309. float extruder_multiplier[EXTRUDERS] = {1.0
  310. #if EXTRUDERS > 1
  311. , 1.0
  312. #if EXTRUDERS > 2
  313. , 1.0
  314. #endif
  315. #endif
  316. };
  317. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  318. float add_homing[3]={0,0,0};
  319. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  320. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  321. bool axis_known_position[3] = {false, false, false};
  322. float zprobe_zoffset;
  323. // Extruder offset
  324. #if EXTRUDERS > 1
  325. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  326. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  327. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  328. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  329. #endif
  330. };
  331. #endif
  332. uint8_t active_extruder = 0;
  333. int fanSpeed=0;
  334. #ifdef FWRETRACT
  335. bool autoretract_enabled=false;
  336. bool retracted[EXTRUDERS]={false
  337. #if EXTRUDERS > 1
  338. , false
  339. #if EXTRUDERS > 2
  340. , false
  341. #endif
  342. #endif
  343. };
  344. bool retracted_swap[EXTRUDERS]={false
  345. #if EXTRUDERS > 1
  346. , false
  347. #if EXTRUDERS > 2
  348. , false
  349. #endif
  350. #endif
  351. };
  352. float retract_length = RETRACT_LENGTH;
  353. float retract_length_swap = RETRACT_LENGTH_SWAP;
  354. float retract_feedrate = RETRACT_FEEDRATE;
  355. float retract_zlift = RETRACT_ZLIFT;
  356. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  357. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  358. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  359. #endif
  360. #ifdef ULTIPANEL
  361. #ifdef PS_DEFAULT_OFF
  362. bool powersupply = false;
  363. #else
  364. bool powersupply = true;
  365. #endif
  366. #endif
  367. bool cancel_heatup = false ;
  368. #ifdef HOST_KEEPALIVE_FEATURE
  369. int busy_state = NOT_BUSY;
  370. static long prev_busy_signal_ms = -1;
  371. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  372. #else
  373. #define host_keepalive();
  374. #define KEEPALIVE_STATE(n);
  375. #endif
  376. const char errormagic[] PROGMEM = "Error:";
  377. const char echomagic[] PROGMEM = "echo:";
  378. bool no_response = false;
  379. uint8_t important_status;
  380. uint8_t saved_filament_type;
  381. // save/restore printing
  382. bool saved_printing = false;
  383. //===========================================================================
  384. //=============================Private Variables=============================
  385. //===========================================================================
  386. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  387. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  388. static float delta[3] = {0.0, 0.0, 0.0};
  389. // For tracing an arc
  390. static float offset[3] = {0.0, 0.0, 0.0};
  391. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  392. // Determines Absolute or Relative Coordinates.
  393. // Also there is bool axis_relative_modes[] per axis flag.
  394. static bool relative_mode = false;
  395. #ifndef _DISABLE_M42_M226
  396. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  397. #endif //_DISABLE_M42_M226
  398. //static float tt = 0;
  399. //static float bt = 0;
  400. //Inactivity shutdown variables
  401. static unsigned long previous_millis_cmd = 0;
  402. unsigned long max_inactive_time = 0;
  403. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  404. unsigned long starttime=0;
  405. unsigned long stoptime=0;
  406. unsigned long _usb_timer = 0;
  407. static uint8_t tmp_extruder;
  408. bool extruder_under_pressure = true;
  409. bool Stopped=false;
  410. #if NUM_SERVOS > 0
  411. Servo servos[NUM_SERVOS];
  412. #endif
  413. bool CooldownNoWait = true;
  414. bool target_direction;
  415. //Insert variables if CHDK is defined
  416. #ifdef CHDK
  417. unsigned long chdkHigh = 0;
  418. boolean chdkActive = false;
  419. #endif
  420. // save/restore printing
  421. static uint32_t saved_sdpos = 0;
  422. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  423. static float saved_pos[4] = { 0, 0, 0, 0 };
  424. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  425. static float saved_feedrate2 = 0;
  426. static uint8_t saved_active_extruder = 0;
  427. static bool saved_extruder_under_pressure = false;
  428. //===========================================================================
  429. //=============================Routines======================================
  430. //===========================================================================
  431. void get_arc_coordinates();
  432. bool setTargetedHotend(int code);
  433. void serial_echopair_P(const char *s_P, float v)
  434. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  435. void serial_echopair_P(const char *s_P, double v)
  436. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  437. void serial_echopair_P(const char *s_P, unsigned long v)
  438. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  439. #ifdef SDSUPPORT
  440. #include "SdFatUtil.h"
  441. int freeMemory() { return SdFatUtil::FreeRam(); }
  442. #else
  443. extern "C" {
  444. extern unsigned int __bss_end;
  445. extern unsigned int __heap_start;
  446. extern void *__brkval;
  447. int freeMemory() {
  448. int free_memory;
  449. if ((int)__brkval == 0)
  450. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  451. else
  452. free_memory = ((int)&free_memory) - ((int)__brkval);
  453. return free_memory;
  454. }
  455. }
  456. #endif //!SDSUPPORT
  457. void setup_killpin()
  458. {
  459. #if defined(KILL_PIN) && KILL_PIN > -1
  460. SET_INPUT(KILL_PIN);
  461. WRITE(KILL_PIN,HIGH);
  462. #endif
  463. }
  464. // Set home pin
  465. void setup_homepin(void)
  466. {
  467. #if defined(HOME_PIN) && HOME_PIN > -1
  468. SET_INPUT(HOME_PIN);
  469. WRITE(HOME_PIN,HIGH);
  470. #endif
  471. }
  472. void setup_photpin()
  473. {
  474. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  475. SET_OUTPUT(PHOTOGRAPH_PIN);
  476. WRITE(PHOTOGRAPH_PIN, LOW);
  477. #endif
  478. }
  479. void setup_powerhold()
  480. {
  481. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  482. SET_OUTPUT(SUICIDE_PIN);
  483. WRITE(SUICIDE_PIN, HIGH);
  484. #endif
  485. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  486. SET_OUTPUT(PS_ON_PIN);
  487. #if defined(PS_DEFAULT_OFF)
  488. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  489. #else
  490. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  491. #endif
  492. #endif
  493. }
  494. void suicide()
  495. {
  496. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  497. SET_OUTPUT(SUICIDE_PIN);
  498. WRITE(SUICIDE_PIN, LOW);
  499. #endif
  500. }
  501. void servo_init()
  502. {
  503. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  504. servos[0].attach(SERVO0_PIN);
  505. #endif
  506. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  507. servos[1].attach(SERVO1_PIN);
  508. #endif
  509. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  510. servos[2].attach(SERVO2_PIN);
  511. #endif
  512. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  513. servos[3].attach(SERVO3_PIN);
  514. #endif
  515. #if (NUM_SERVOS >= 5)
  516. #error "TODO: enter initalisation code for more servos"
  517. #endif
  518. }
  519. static void lcd_language_menu();
  520. void stop_and_save_print_to_ram(float z_move, float e_move);
  521. void restore_print_from_ram_and_continue(float e_move);
  522. bool fans_check_enabled = true;
  523. bool filament_autoload_enabled = true;
  524. #ifdef TMC2130
  525. extern int8_t CrashDetectMenu;
  526. void crashdet_enable()
  527. {
  528. // MYSERIAL.println("crashdet_enable");
  529. tmc2130_sg_stop_on_crash = true;
  530. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  531. CrashDetectMenu = 1;
  532. }
  533. void crashdet_disable()
  534. {
  535. // MYSERIAL.println("crashdet_disable");
  536. tmc2130_sg_stop_on_crash = false;
  537. tmc2130_sg_crash = 0;
  538. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  539. CrashDetectMenu = 0;
  540. }
  541. void crashdet_stop_and_save_print()
  542. {
  543. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  544. }
  545. void crashdet_restore_print_and_continue()
  546. {
  547. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  548. // babystep_apply();
  549. }
  550. void crashdet_stop_and_save_print2()
  551. {
  552. cli();
  553. planner_abort_hard(); //abort printing
  554. cmdqueue_reset(); //empty cmdqueue
  555. card.sdprinting = false;
  556. card.closefile();
  557. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  558. st_reset_timer();
  559. sei();
  560. }
  561. void crashdet_detected(uint8_t mask)
  562. {
  563. // printf("CRASH_DETECTED");
  564. /* while (!is_buffer_empty())
  565. {
  566. process_commands();
  567. cmdqueue_pop_front();
  568. }*/
  569. st_synchronize();
  570. lcd_update_enable(true);
  571. lcd_implementation_clear();
  572. lcd_update(2);
  573. if (mask & X_AXIS_MASK)
  574. {
  575. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  576. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  577. }
  578. if (mask & Y_AXIS_MASK)
  579. {
  580. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  581. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  582. }
  583. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  584. bool yesno = true;
  585. #else
  586. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_CRASH_DETECTED), false);
  587. #endif
  588. lcd_update_enable(true);
  589. lcd_update(2);
  590. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  591. if (yesno)
  592. {
  593. enquecommand_P(PSTR("G28 X Y"));
  594. enquecommand_P(PSTR("CRASH_RECOVER"));
  595. }
  596. else
  597. {
  598. enquecommand_P(PSTR("CRASH_CANCEL"));
  599. }
  600. }
  601. void crashdet_recover()
  602. {
  603. crashdet_restore_print_and_continue();
  604. tmc2130_sg_stop_on_crash = true;
  605. }
  606. void crashdet_cancel()
  607. {
  608. card.sdprinting = false;
  609. card.closefile();
  610. tmc2130_sg_stop_on_crash = true;
  611. }
  612. #endif //TMC2130
  613. void failstats_reset_print()
  614. {
  615. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  616. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  617. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  618. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  619. }
  620. #ifdef MESH_BED_LEVELING
  621. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  622. #endif
  623. // Factory reset function
  624. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  625. // Level input parameter sets depth of reset
  626. // Quiet parameter masks all waitings for user interact.
  627. int er_progress = 0;
  628. void factory_reset(char level, bool quiet)
  629. {
  630. lcd_implementation_clear();
  631. int cursor_pos = 0;
  632. switch (level) {
  633. // Level 0: Language reset
  634. case 0:
  635. WRITE(BEEPER, HIGH);
  636. _delay_ms(100);
  637. WRITE(BEEPER, LOW);
  638. lcd_force_language_selection();
  639. break;
  640. //Level 1: Reset statistics
  641. case 1:
  642. WRITE(BEEPER, HIGH);
  643. _delay_ms(100);
  644. WRITE(BEEPER, LOW);
  645. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  646. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  647. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  648. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  649. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  650. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  651. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  652. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  653. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  654. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  655. lcd_menu_statistics();
  656. break;
  657. // Level 2: Prepare for shipping
  658. case 2:
  659. //lcd_printPGM(PSTR("Factory RESET"));
  660. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  661. // Force language selection at the next boot up.
  662. lcd_force_language_selection();
  663. // Force the "Follow calibration flow" message at the next boot up.
  664. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  665. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  666. farm_no = 0;
  667. //*** MaR::180501_01
  668. farm_mode = false;
  669. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  670. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  671. WRITE(BEEPER, HIGH);
  672. _delay_ms(100);
  673. WRITE(BEEPER, LOW);
  674. //_delay_ms(2000);
  675. break;
  676. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  677. case 3:
  678. lcd_printPGM(PSTR("Factory RESET"));
  679. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  680. WRITE(BEEPER, HIGH);
  681. _delay_ms(100);
  682. WRITE(BEEPER, LOW);
  683. er_progress = 0;
  684. lcd_print_at_PGM(3, 3, PSTR(" "));
  685. lcd_implementation_print_at(3, 3, er_progress);
  686. // Erase EEPROM
  687. for (int i = 0; i < 4096; i++) {
  688. eeprom_write_byte((uint8_t*)i, 0xFF);
  689. if (i % 41 == 0) {
  690. er_progress++;
  691. lcd_print_at_PGM(3, 3, PSTR(" "));
  692. lcd_implementation_print_at(3, 3, er_progress);
  693. lcd_printPGM(PSTR("%"));
  694. }
  695. }
  696. break;
  697. case 4:
  698. bowden_menu();
  699. break;
  700. default:
  701. break;
  702. }
  703. }
  704. #include "LiquidCrystal_Prusa.h"
  705. extern LiquidCrystal_Prusa lcd;
  706. FILE _lcdout = {0};
  707. int lcd_putchar(char c, FILE *stream)
  708. {
  709. lcd.write(c);
  710. return 0;
  711. }
  712. FILE _uartout = {0};
  713. int uart_putchar(char c, FILE *stream)
  714. {
  715. MYSERIAL.write(c);
  716. return 0;
  717. }
  718. void lcd_splash()
  719. {
  720. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  721. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  722. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  723. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  724. }
  725. void factory_reset()
  726. {
  727. KEEPALIVE_STATE(PAUSED_FOR_USER);
  728. if (!READ(BTN_ENC))
  729. {
  730. _delay_ms(1000);
  731. if (!READ(BTN_ENC))
  732. {
  733. lcd_implementation_clear();
  734. lcd_printPGM(PSTR("Factory RESET"));
  735. SET_OUTPUT(BEEPER);
  736. WRITE(BEEPER, HIGH);
  737. while (!READ(BTN_ENC));
  738. WRITE(BEEPER, LOW);
  739. _delay_ms(2000);
  740. char level = reset_menu();
  741. factory_reset(level, false);
  742. switch (level) {
  743. case 0: _delay_ms(0); break;
  744. case 1: _delay_ms(0); break;
  745. case 2: _delay_ms(0); break;
  746. case 3: _delay_ms(0); break;
  747. }
  748. // _delay_ms(100);
  749. /*
  750. #ifdef MESH_BED_LEVELING
  751. _delay_ms(2000);
  752. if (!READ(BTN_ENC))
  753. {
  754. WRITE(BEEPER, HIGH);
  755. _delay_ms(100);
  756. WRITE(BEEPER, LOW);
  757. _delay_ms(200);
  758. WRITE(BEEPER, HIGH);
  759. _delay_ms(100);
  760. WRITE(BEEPER, LOW);
  761. int _z = 0;
  762. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  763. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  764. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  765. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  766. }
  767. else
  768. {
  769. WRITE(BEEPER, HIGH);
  770. _delay_ms(100);
  771. WRITE(BEEPER, LOW);
  772. }
  773. #endif // mesh */
  774. }
  775. }
  776. else
  777. {
  778. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  779. }
  780. KEEPALIVE_STATE(IN_HANDLER);
  781. }
  782. void show_fw_version_warnings() {
  783. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  784. switch (FW_DEV_VERSION) {
  785. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  786. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  787. case(FW_VERSION_DEVEL):
  788. case(FW_VERSION_DEBUG):
  789. lcd_update_enable(false);
  790. lcd_implementation_clear();
  791. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  792. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  793. #else
  794. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  795. #endif
  796. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  797. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  798. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  799. lcd_wait_for_click();
  800. break;
  801. default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  802. }
  803. lcd_update_enable(true);
  804. }
  805. uint8_t check_printer_version()
  806. {
  807. uint8_t version_changed = 0;
  808. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  809. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  810. if (printer_type != PRINTER_TYPE) {
  811. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  812. else version_changed |= 0b10;
  813. }
  814. if (motherboard != MOTHERBOARD) {
  815. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  816. else version_changed |= 0b01;
  817. }
  818. return version_changed;
  819. }
  820. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  821. {
  822. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  823. }
  824. #include "bootapp.h"
  825. void __test()
  826. {
  827. cli();
  828. boot_app_magic = 0x55aa55aa;
  829. boot_app_flags = BOOT_APP_FLG_USER0;
  830. boot_reserved = 0x00;
  831. wdt_enable(WDTO_15MS);
  832. while(1);
  833. }
  834. void upgrade_sec_lang_from_external_flash()
  835. {
  836. if ((boot_app_magic == 0x55aa55aa) && (boot_app_flags & BOOT_APP_FLG_USER0))
  837. {
  838. fprintf_P(lcdout, PSTR(ESC_2J ESC_H(1,1) "TEST %d"), boot_reserved);
  839. boot_reserved++;
  840. if (boot_reserved < 4)
  841. {
  842. _delay_ms(1000);
  843. cli();
  844. wdt_enable(WDTO_15MS);
  845. while(1);
  846. }
  847. }
  848. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  849. }
  850. // "Setup" function is called by the Arduino framework on startup.
  851. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  852. // are initialized by the main() routine provided by the Arduino framework.
  853. void setup()
  854. {
  855. lcd_init();
  856. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  857. // upgrade_sec_lang_from_external_flash();
  858. lcd_splash();
  859. setup_killpin();
  860. setup_powerhold();
  861. //*** MaR::180501_02b
  862. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  863. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  864. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  865. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  866. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  867. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  868. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  869. if (farm_mode)
  870. {
  871. no_response = true; //we need confirmation by recieving PRUSA thx
  872. important_status = 8;
  873. prusa_statistics(8);
  874. selectedSerialPort = 1;
  875. }
  876. MYSERIAL.begin(BAUDRATE);
  877. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  878. stdout = uartout;
  879. SERIAL_PROTOCOLLNPGM("start");
  880. SERIAL_ECHO_START;
  881. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  882. #if 0
  883. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  884. for (int i = 0; i < 4096; ++i) {
  885. int b = eeprom_read_byte((unsigned char*)i);
  886. if (b != 255) {
  887. SERIAL_ECHO(i);
  888. SERIAL_ECHO(":");
  889. SERIAL_ECHO(b);
  890. SERIAL_ECHOLN("");
  891. }
  892. }
  893. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  894. #endif
  895. // Check startup - does nothing if bootloader sets MCUSR to 0
  896. byte mcu = MCUSR;
  897. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  898. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  899. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  900. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  901. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  902. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  903. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  904. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  905. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  906. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  907. MCUSR = 0;
  908. //SERIAL_ECHORPGM(MSG_MARLIN);
  909. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  910. #ifdef STRING_VERSION_CONFIG_H
  911. #ifdef STRING_CONFIG_H_AUTHOR
  912. SERIAL_ECHO_START;
  913. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  914. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  915. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  916. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  917. SERIAL_ECHOPGM("Compiled: ");
  918. SERIAL_ECHOLNPGM(__DATE__);
  919. #endif
  920. #endif
  921. SERIAL_ECHO_START;
  922. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  923. SERIAL_ECHO(freeMemory());
  924. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  925. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  926. //lcd_update_enable(false); // why do we need this?? - andre
  927. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  928. bool previous_settings_retrieved = false;
  929. uint8_t hw_changed = check_printer_version();
  930. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  931. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  932. }
  933. else { //printer version was changed so use default settings
  934. Config_ResetDefault();
  935. }
  936. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  937. tp_init(); // Initialize temperature loop
  938. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  939. plan_init(); // Initialize planner;
  940. factory_reset();
  941. #ifdef TMC2130
  942. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  943. if (silentMode == 0xff) silentMode = 0;
  944. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  945. tmc2130_mode = TMC2130_MODE_NORMAL;
  946. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  947. if (crashdet && !farm_mode)
  948. {
  949. crashdet_enable();
  950. MYSERIAL.println("CrashDetect ENABLED!");
  951. }
  952. else
  953. {
  954. crashdet_disable();
  955. MYSERIAL.println("CrashDetect DISABLED");
  956. }
  957. #ifdef TMC2130_LINEARITY_CORRECTION
  958. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  959. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  960. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  961. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  962. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  963. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  964. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  965. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  966. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  967. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  968. #endif //TMC2130_LINEARITY_CORRECTION
  969. #ifdef TMC2130_VARIABLE_RESOLUTION
  970. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  971. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  972. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  973. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  974. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  975. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  976. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  977. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  978. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  979. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  980. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  981. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  982. #else //TMC2130_VARIABLE_RESOLUTION
  983. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  984. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  985. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  986. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  987. #endif //TMC2130_VARIABLE_RESOLUTION
  988. #endif //TMC2130
  989. #ifdef NEW_SPI
  990. spi_init();
  991. #endif //NEW_SPI
  992. st_init(); // Initialize stepper, this enables interrupts!
  993. #ifdef TMC2130
  994. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  995. tmc2130_init();
  996. #endif //TMC2130
  997. setup_photpin();
  998. servo_init();
  999. // Reset the machine correction matrix.
  1000. // It does not make sense to load the correction matrix until the machine is homed.
  1001. world2machine_reset();
  1002. #ifdef PAT9125
  1003. fsensor_init();
  1004. #endif //PAT9125
  1005. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1006. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1007. #endif
  1008. setup_homepin();
  1009. #ifdef TMC2130
  1010. if (1) {
  1011. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1012. // try to run to zero phase before powering the Z motor.
  1013. // Move in negative direction
  1014. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1015. // Round the current micro-micro steps to micro steps.
  1016. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1017. // Until the phase counter is reset to zero.
  1018. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1019. delay(2);
  1020. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1021. delay(2);
  1022. }
  1023. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1024. }
  1025. #endif //TMC2130
  1026. #if defined(Z_AXIS_ALWAYS_ON)
  1027. enable_z();
  1028. #endif
  1029. //*** MaR::180501_02
  1030. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1031. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1032. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1033. if (farm_no == 0xFFFF) farm_no = 0;
  1034. if (farm_mode)
  1035. {
  1036. prusa_statistics(8);
  1037. }
  1038. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1039. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1040. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1041. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1042. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1043. // where all the EEPROM entries are set to 0x0ff.
  1044. // Once a firmware boots up, it forces at least a language selection, which changes
  1045. // EEPROM_LANG to number lower than 0x0ff.
  1046. // 1) Set a high power mode.
  1047. #ifdef TMC2130
  1048. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1049. tmc2130_mode = TMC2130_MODE_NORMAL;
  1050. #endif //TMC2130
  1051. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1052. }
  1053. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1054. // but this times out if a blocking dialog is shown in setup().
  1055. card.initsd();
  1056. #ifdef DEBUG_SD_SPEED_TEST
  1057. if (card.cardOK)
  1058. {
  1059. uint8_t* buff = (uint8_t*)block_buffer;
  1060. uint32_t block = 0;
  1061. uint32_t sumr = 0;
  1062. uint32_t sumw = 0;
  1063. for (int i = 0; i < 1024; i++)
  1064. {
  1065. uint32_t u = micros();
  1066. bool res = card.card.readBlock(i, buff);
  1067. u = micros() - u;
  1068. if (res)
  1069. {
  1070. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1071. sumr += u;
  1072. u = micros();
  1073. res = card.card.writeBlock(i, buff);
  1074. u = micros() - u;
  1075. if (res)
  1076. {
  1077. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1078. sumw += u;
  1079. }
  1080. else
  1081. {
  1082. printf_P(PSTR("writeBlock %4d error\n"), i);
  1083. break;
  1084. }
  1085. }
  1086. else
  1087. {
  1088. printf_P(PSTR("readBlock %4d error\n"), i);
  1089. break;
  1090. }
  1091. }
  1092. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1093. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1094. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1095. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1096. }
  1097. else
  1098. printf_P(PSTR("Card NG!\n"));
  1099. #endif //DEBUG_SD_SPEED_TEST
  1100. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1101. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1102. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1103. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1104. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1105. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1106. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1107. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1108. #ifdef SNMM
  1109. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1110. int _z = BOWDEN_LENGTH;
  1111. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1112. }
  1113. #endif
  1114. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1115. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1116. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1117. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1118. if (lang_selected >= LANG_NUM)
  1119. {
  1120. lcd_mylang();
  1121. }
  1122. lang_select(lang_selected);
  1123. puts_P(_n("\nNew ML support"));
  1124. printf_P(_n(" lang_selected = %d\n"), lang_selected);
  1125. printf_P(_n(" &_SEC_LANG = 0x%04x\n"), &_SEC_LANG);
  1126. printf_P(_n(" sizeof(_SEC_LANG) = 0x%04x\n"), sizeof(_SEC_LANG));
  1127. uint16_t ptr_lang_table0 = ((uint16_t)(&_SEC_LANG) + 0xff) & 0xff00;
  1128. printf_P(_n(" &_lang_table0 = 0x%04x\n"), ptr_lang_table0);
  1129. uint32_t _lt_magic = pgm_read_dword(((uint32_t*)(ptr_lang_table0 + 0)));
  1130. uint16_t _lt_size = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 4)));
  1131. uint16_t _lt_count = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 6)));
  1132. uint16_t _lt_chsum = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 8)));
  1133. uint16_t _lt_resv0 = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 10)));
  1134. uint32_t _lt_resv1 = pgm_read_dword(((uint32_t*)(ptr_lang_table0 + 12)));
  1135. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), _lt_magic, (_lt_magic==0x4bb45aa5)?_n("OK"):_n("NA"));
  1136. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), _lt_size, _lt_size);
  1137. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), _lt_count, _lt_count);
  1138. printf_P(_n(" _lt_chsum = 0x%04x\n"), _lt_chsum);
  1139. printf_P(_n(" _lt_resv0 = 0x%04x\n"), _lt_resv0);
  1140. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), _lt_resv1);
  1141. puts_P(_n("\n"));
  1142. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1143. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1144. temp_cal_active = false;
  1145. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1146. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1147. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1148. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1149. int16_t z_shift = 0;
  1150. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1151. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1152. temp_cal_active = false;
  1153. }
  1154. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1155. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1156. }
  1157. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1158. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1159. }
  1160. check_babystep(); //checking if Z babystep is in allowed range
  1161. #ifdef UVLO_SUPPORT
  1162. setup_uvlo_interrupt();
  1163. #endif //UVLO_SUPPORT
  1164. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1165. setup_fan_interrupt();
  1166. #endif //DEBUG_DISABLE_FANCHECK
  1167. #ifdef PAT9125
  1168. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1169. fsensor_setup_interrupt();
  1170. #endif //DEBUG_DISABLE_FSENSORCHECK
  1171. #endif //PAT9125
  1172. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1173. #ifndef DEBUG_DISABLE_STARTMSGS
  1174. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1175. show_fw_version_warnings();
  1176. switch (hw_changed) {
  1177. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1178. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1179. case(0b01):
  1180. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1181. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1182. break;
  1183. case(0b10):
  1184. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1185. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1186. break;
  1187. case(0b11):
  1188. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1189. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1190. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1191. break;
  1192. default: break; //no change, show no message
  1193. }
  1194. if (!previous_settings_retrieved) {
  1195. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1196. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1197. }
  1198. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1199. lcd_wizard(0);
  1200. }
  1201. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1202. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1203. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1204. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1205. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1206. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1207. // Show the message.
  1208. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1209. }
  1210. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1211. // Show the message.
  1212. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1213. lcd_update_enable(true);
  1214. }
  1215. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1216. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1217. lcd_update_enable(true);
  1218. }
  1219. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1220. // Show the message.
  1221. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1222. }
  1223. }
  1224. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1225. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1226. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1227. update_current_firmware_version_to_eeprom();
  1228. lcd_selftest();
  1229. }
  1230. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1231. KEEPALIVE_STATE(IN_PROCESS);
  1232. #endif //DEBUG_DISABLE_STARTMSGS
  1233. lcd_update_enable(true);
  1234. lcd_implementation_clear();
  1235. lcd_update(2);
  1236. // Store the currently running firmware into an eeprom,
  1237. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1238. update_current_firmware_version_to_eeprom();
  1239. #ifdef TMC2130
  1240. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1241. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1242. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1243. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1244. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1245. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1246. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1247. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1248. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1249. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1250. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1251. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1252. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1253. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1254. #endif //TMC2130
  1255. #ifdef UVLO_SUPPORT
  1256. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1257. /*
  1258. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1259. else {
  1260. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1261. lcd_update_enable(true);
  1262. lcd_update(2);
  1263. lcd_setstatuspgm(_T(WELCOME_MSG));
  1264. }
  1265. */
  1266. manage_heater(); // Update temperatures
  1267. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1268. MYSERIAL.println("Power panic detected!");
  1269. MYSERIAL.print("Current bed temp:");
  1270. MYSERIAL.println(degBed());
  1271. MYSERIAL.print("Saved bed temp:");
  1272. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1273. #endif
  1274. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1275. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1276. MYSERIAL.println("Automatic recovery!");
  1277. #endif
  1278. recover_print(1);
  1279. }
  1280. else{
  1281. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1282. MYSERIAL.println("Normal recovery!");
  1283. #endif
  1284. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1285. else {
  1286. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1287. lcd_update_enable(true);
  1288. lcd_update(2);
  1289. lcd_setstatuspgm(_T(WELCOME_MSG));
  1290. }
  1291. }
  1292. }
  1293. #endif //UVLO_SUPPORT
  1294. KEEPALIVE_STATE(NOT_BUSY);
  1295. #ifdef WATCHDOG
  1296. wdt_enable(WDTO_4S);
  1297. #endif //WATCHDOG
  1298. }
  1299. #ifdef PAT9125
  1300. void fsensor_init() {
  1301. int pat9125 = pat9125_init();
  1302. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1303. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1304. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1305. if (!pat9125)
  1306. {
  1307. fsensor = 0; //disable sensor
  1308. fsensor_not_responding = true;
  1309. }
  1310. else {
  1311. fsensor_not_responding = false;
  1312. }
  1313. puts_P(PSTR("FSensor "));
  1314. if (fsensor)
  1315. {
  1316. puts_P(PSTR("ENABLED\n"));
  1317. fsensor_enable();
  1318. }
  1319. else
  1320. {
  1321. puts_P(PSTR("DISABLED\n"));
  1322. fsensor_disable();
  1323. }
  1324. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1325. filament_autoload_enabled = false;
  1326. fsensor_disable();
  1327. #endif //DEBUG_DISABLE_FSENSORCHECK
  1328. }
  1329. #endif //PAT9125
  1330. void trace();
  1331. #define CHUNK_SIZE 64 // bytes
  1332. #define SAFETY_MARGIN 1
  1333. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1334. int chunkHead = 0;
  1335. int serial_read_stream() {
  1336. setTargetHotend(0, 0);
  1337. setTargetBed(0);
  1338. lcd_implementation_clear();
  1339. lcd_printPGM(PSTR(" Upload in progress"));
  1340. // first wait for how many bytes we will receive
  1341. uint32_t bytesToReceive;
  1342. // receive the four bytes
  1343. char bytesToReceiveBuffer[4];
  1344. for (int i=0; i<4; i++) {
  1345. int data;
  1346. while ((data = MYSERIAL.read()) == -1) {};
  1347. bytesToReceiveBuffer[i] = data;
  1348. }
  1349. // make it a uint32
  1350. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1351. // we're ready, notify the sender
  1352. MYSERIAL.write('+');
  1353. // lock in the routine
  1354. uint32_t receivedBytes = 0;
  1355. while (prusa_sd_card_upload) {
  1356. int i;
  1357. for (i=0; i<CHUNK_SIZE; i++) {
  1358. int data;
  1359. // check if we're not done
  1360. if (receivedBytes == bytesToReceive) {
  1361. break;
  1362. }
  1363. // read the next byte
  1364. while ((data = MYSERIAL.read()) == -1) {};
  1365. receivedBytes++;
  1366. // save it to the chunk
  1367. chunk[i] = data;
  1368. }
  1369. // write the chunk to SD
  1370. card.write_command_no_newline(&chunk[0]);
  1371. // notify the sender we're ready for more data
  1372. MYSERIAL.write('+');
  1373. // for safety
  1374. manage_heater();
  1375. // check if we're done
  1376. if(receivedBytes == bytesToReceive) {
  1377. trace(); // beep
  1378. card.closefile();
  1379. prusa_sd_card_upload = false;
  1380. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1381. return 0;
  1382. }
  1383. }
  1384. }
  1385. #ifdef HOST_KEEPALIVE_FEATURE
  1386. /**
  1387. * Output a "busy" message at regular intervals
  1388. * while the machine is not accepting commands.
  1389. */
  1390. void host_keepalive() {
  1391. if (farm_mode) return;
  1392. long ms = millis();
  1393. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1394. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1395. switch (busy_state) {
  1396. case IN_HANDLER:
  1397. case IN_PROCESS:
  1398. SERIAL_ECHO_START;
  1399. SERIAL_ECHOLNPGM("busy: processing");
  1400. break;
  1401. case PAUSED_FOR_USER:
  1402. SERIAL_ECHO_START;
  1403. SERIAL_ECHOLNPGM("busy: paused for user");
  1404. break;
  1405. case PAUSED_FOR_INPUT:
  1406. SERIAL_ECHO_START;
  1407. SERIAL_ECHOLNPGM("busy: paused for input");
  1408. break;
  1409. default:
  1410. break;
  1411. }
  1412. }
  1413. prev_busy_signal_ms = ms;
  1414. }
  1415. #endif
  1416. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1417. // Before loop(), the setup() function is called by the main() routine.
  1418. void loop()
  1419. {
  1420. KEEPALIVE_STATE(NOT_BUSY);
  1421. bool stack_integrity = true;
  1422. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1423. {
  1424. is_usb_printing = true;
  1425. usb_printing_counter--;
  1426. _usb_timer = millis();
  1427. }
  1428. if (usb_printing_counter == 0)
  1429. {
  1430. is_usb_printing = false;
  1431. }
  1432. if (prusa_sd_card_upload)
  1433. {
  1434. //we read byte-by byte
  1435. serial_read_stream();
  1436. } else
  1437. {
  1438. get_command();
  1439. #ifdef SDSUPPORT
  1440. card.checkautostart(false);
  1441. #endif
  1442. if(buflen)
  1443. {
  1444. cmdbuffer_front_already_processed = false;
  1445. #ifdef SDSUPPORT
  1446. if(card.saving)
  1447. {
  1448. // Saving a G-code file onto an SD-card is in progress.
  1449. // Saving starts with M28, saving until M29 is seen.
  1450. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1451. card.write_command(CMDBUFFER_CURRENT_STRING);
  1452. if(card.logging)
  1453. process_commands();
  1454. else
  1455. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1456. } else {
  1457. card.closefile();
  1458. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1459. }
  1460. } else {
  1461. process_commands();
  1462. }
  1463. #else
  1464. process_commands();
  1465. #endif //SDSUPPORT
  1466. if (! cmdbuffer_front_already_processed && buflen)
  1467. {
  1468. // ptr points to the start of the block currently being processed.
  1469. // The first character in the block is the block type.
  1470. char *ptr = cmdbuffer + bufindr;
  1471. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1472. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1473. union {
  1474. struct {
  1475. char lo;
  1476. char hi;
  1477. } lohi;
  1478. uint16_t value;
  1479. } sdlen;
  1480. sdlen.value = 0;
  1481. {
  1482. // This block locks the interrupts globally for 3.25 us,
  1483. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1484. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1485. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1486. cli();
  1487. // Reset the command to something, which will be ignored by the power panic routine,
  1488. // so this buffer length will not be counted twice.
  1489. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1490. // Extract the current buffer length.
  1491. sdlen.lohi.lo = *ptr ++;
  1492. sdlen.lohi.hi = *ptr;
  1493. // and pass it to the planner queue.
  1494. planner_add_sd_length(sdlen.value);
  1495. sei();
  1496. }
  1497. }
  1498. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1499. cli();
  1500. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1501. // and one for each command to previous block in the planner queue.
  1502. planner_add_sd_length(1);
  1503. sei();
  1504. }
  1505. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1506. // this block's SD card length will not be counted twice as its command type has been replaced
  1507. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1508. cmdqueue_pop_front();
  1509. }
  1510. host_keepalive();
  1511. }
  1512. }
  1513. //check heater every n milliseconds
  1514. manage_heater();
  1515. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1516. checkHitEndstops();
  1517. lcd_update();
  1518. #ifdef PAT9125
  1519. fsensor_update();
  1520. #endif //PAT9125
  1521. #ifdef TMC2130
  1522. tmc2130_check_overtemp();
  1523. if (tmc2130_sg_crash)
  1524. {
  1525. uint8_t crash = tmc2130_sg_crash;
  1526. tmc2130_sg_crash = 0;
  1527. // crashdet_stop_and_save_print();
  1528. switch (crash)
  1529. {
  1530. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1531. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1532. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1533. }
  1534. }
  1535. #endif //TMC2130
  1536. }
  1537. #define DEFINE_PGM_READ_ANY(type, reader) \
  1538. static inline type pgm_read_any(const type *p) \
  1539. { return pgm_read_##reader##_near(p); }
  1540. DEFINE_PGM_READ_ANY(float, float);
  1541. DEFINE_PGM_READ_ANY(signed char, byte);
  1542. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1543. static const PROGMEM type array##_P[3] = \
  1544. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1545. static inline type array(int axis) \
  1546. { return pgm_read_any(&array##_P[axis]); } \
  1547. type array##_ext(int axis) \
  1548. { return pgm_read_any(&array##_P[axis]); }
  1549. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1550. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1551. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1552. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1553. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1554. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1555. static void axis_is_at_home(int axis) {
  1556. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1557. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1558. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1559. }
  1560. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1561. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1562. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1563. saved_feedrate = feedrate;
  1564. saved_feedmultiply = feedmultiply;
  1565. feedmultiply = 100;
  1566. previous_millis_cmd = millis();
  1567. enable_endstops(enable_endstops_now);
  1568. }
  1569. static void clean_up_after_endstop_move() {
  1570. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1571. enable_endstops(false);
  1572. #endif
  1573. feedrate = saved_feedrate;
  1574. feedmultiply = saved_feedmultiply;
  1575. previous_millis_cmd = millis();
  1576. }
  1577. #ifdef ENABLE_AUTO_BED_LEVELING
  1578. #ifdef AUTO_BED_LEVELING_GRID
  1579. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1580. {
  1581. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1582. planeNormal.debug("planeNormal");
  1583. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1584. //bedLevel.debug("bedLevel");
  1585. //plan_bed_level_matrix.debug("bed level before");
  1586. //vector_3 uncorrected_position = plan_get_position_mm();
  1587. //uncorrected_position.debug("position before");
  1588. vector_3 corrected_position = plan_get_position();
  1589. // corrected_position.debug("position after");
  1590. current_position[X_AXIS] = corrected_position.x;
  1591. current_position[Y_AXIS] = corrected_position.y;
  1592. current_position[Z_AXIS] = corrected_position.z;
  1593. // put the bed at 0 so we don't go below it.
  1594. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1595. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1596. }
  1597. #else // not AUTO_BED_LEVELING_GRID
  1598. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1599. plan_bed_level_matrix.set_to_identity();
  1600. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1601. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1602. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1603. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1604. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1605. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1606. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1607. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1608. vector_3 corrected_position = plan_get_position();
  1609. current_position[X_AXIS] = corrected_position.x;
  1610. current_position[Y_AXIS] = corrected_position.y;
  1611. current_position[Z_AXIS] = corrected_position.z;
  1612. // put the bed at 0 so we don't go below it.
  1613. current_position[Z_AXIS] = zprobe_zoffset;
  1614. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1615. }
  1616. #endif // AUTO_BED_LEVELING_GRID
  1617. static void run_z_probe() {
  1618. plan_bed_level_matrix.set_to_identity();
  1619. feedrate = homing_feedrate[Z_AXIS];
  1620. // move down until you find the bed
  1621. float zPosition = -10;
  1622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1623. st_synchronize();
  1624. // we have to let the planner know where we are right now as it is not where we said to go.
  1625. zPosition = st_get_position_mm(Z_AXIS);
  1626. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1627. // move up the retract distance
  1628. zPosition += home_retract_mm(Z_AXIS);
  1629. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1630. st_synchronize();
  1631. // move back down slowly to find bed
  1632. feedrate = homing_feedrate[Z_AXIS]/4;
  1633. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1635. st_synchronize();
  1636. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1637. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1638. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1639. }
  1640. static void do_blocking_move_to(float x, float y, float z) {
  1641. float oldFeedRate = feedrate;
  1642. feedrate = homing_feedrate[Z_AXIS];
  1643. current_position[Z_AXIS] = z;
  1644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1645. st_synchronize();
  1646. feedrate = XY_TRAVEL_SPEED;
  1647. current_position[X_AXIS] = x;
  1648. current_position[Y_AXIS] = y;
  1649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1650. st_synchronize();
  1651. feedrate = oldFeedRate;
  1652. }
  1653. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1654. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1655. }
  1656. /// Probe bed height at position (x,y), returns the measured z value
  1657. static float probe_pt(float x, float y, float z_before) {
  1658. // move to right place
  1659. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1660. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1661. run_z_probe();
  1662. float measured_z = current_position[Z_AXIS];
  1663. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1664. SERIAL_PROTOCOLPGM(" x: ");
  1665. SERIAL_PROTOCOL(x);
  1666. SERIAL_PROTOCOLPGM(" y: ");
  1667. SERIAL_PROTOCOL(y);
  1668. SERIAL_PROTOCOLPGM(" z: ");
  1669. SERIAL_PROTOCOL(measured_z);
  1670. SERIAL_PROTOCOLPGM("\n");
  1671. return measured_z;
  1672. }
  1673. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1674. #ifdef LIN_ADVANCE
  1675. /**
  1676. * M900: Set and/or Get advance K factor and WH/D ratio
  1677. *
  1678. * K<factor> Set advance K factor
  1679. * R<ratio> Set ratio directly (overrides WH/D)
  1680. * W<width> H<height> D<diam> Set ratio from WH/D
  1681. */
  1682. inline void gcode_M900() {
  1683. st_synchronize();
  1684. const float newK = code_seen('K') ? code_value_float() : -1;
  1685. if (newK >= 0) extruder_advance_k = newK;
  1686. float newR = code_seen('R') ? code_value_float() : -1;
  1687. if (newR < 0) {
  1688. const float newD = code_seen('D') ? code_value_float() : -1,
  1689. newW = code_seen('W') ? code_value_float() : -1,
  1690. newH = code_seen('H') ? code_value_float() : -1;
  1691. if (newD >= 0 && newW >= 0 && newH >= 0)
  1692. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1693. }
  1694. if (newR >= 0) advance_ed_ratio = newR;
  1695. SERIAL_ECHO_START;
  1696. SERIAL_ECHOPGM("Advance K=");
  1697. SERIAL_ECHOLN(extruder_advance_k);
  1698. SERIAL_ECHOPGM(" E/D=");
  1699. const float ratio = advance_ed_ratio;
  1700. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1701. }
  1702. #endif // LIN_ADVANCE
  1703. bool check_commands() {
  1704. bool end_command_found = false;
  1705. while (buflen)
  1706. {
  1707. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1708. if (!cmdbuffer_front_already_processed)
  1709. cmdqueue_pop_front();
  1710. cmdbuffer_front_already_processed = false;
  1711. }
  1712. return end_command_found;
  1713. }
  1714. #ifdef TMC2130
  1715. bool calibrate_z_auto()
  1716. {
  1717. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1718. lcd_implementation_clear();
  1719. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1720. bool endstops_enabled = enable_endstops(true);
  1721. int axis_up_dir = -home_dir(Z_AXIS);
  1722. tmc2130_home_enter(Z_AXIS_MASK);
  1723. current_position[Z_AXIS] = 0;
  1724. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1725. set_destination_to_current();
  1726. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1727. feedrate = homing_feedrate[Z_AXIS];
  1728. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1729. st_synchronize();
  1730. // current_position[axis] = 0;
  1731. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1732. tmc2130_home_exit();
  1733. enable_endstops(false);
  1734. current_position[Z_AXIS] = 0;
  1735. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1736. set_destination_to_current();
  1737. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1738. feedrate = homing_feedrate[Z_AXIS] / 2;
  1739. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1740. st_synchronize();
  1741. enable_endstops(endstops_enabled);
  1742. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1743. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1744. return true;
  1745. }
  1746. #endif //TMC2130
  1747. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1748. {
  1749. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1750. #define HOMEAXIS_DO(LETTER) \
  1751. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1752. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1753. {
  1754. int axis_home_dir = home_dir(axis);
  1755. feedrate = homing_feedrate[axis];
  1756. #ifdef TMC2130
  1757. tmc2130_home_enter(X_AXIS_MASK << axis);
  1758. #endif //TMC2130
  1759. // Move right a bit, so that the print head does not touch the left end position,
  1760. // and the following left movement has a chance to achieve the required velocity
  1761. // for the stall guard to work.
  1762. current_position[axis] = 0;
  1763. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1764. set_destination_to_current();
  1765. // destination[axis] = 11.f;
  1766. destination[axis] = 3.f;
  1767. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1768. st_synchronize();
  1769. // Move left away from the possible collision with the collision detection disabled.
  1770. endstops_hit_on_purpose();
  1771. enable_endstops(false);
  1772. current_position[axis] = 0;
  1773. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1774. destination[axis] = - 1.;
  1775. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1776. st_synchronize();
  1777. // Now continue to move up to the left end stop with the collision detection enabled.
  1778. enable_endstops(true);
  1779. destination[axis] = - 1.1 * max_length(axis);
  1780. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1781. st_synchronize();
  1782. for (uint8_t i = 0; i < cnt; i++)
  1783. {
  1784. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1785. endstops_hit_on_purpose();
  1786. enable_endstops(false);
  1787. current_position[axis] = 0;
  1788. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1789. destination[axis] = 10.f;
  1790. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1791. st_synchronize();
  1792. endstops_hit_on_purpose();
  1793. // Now move left up to the collision, this time with a repeatable velocity.
  1794. enable_endstops(true);
  1795. destination[axis] = - 11.f;
  1796. #ifdef TMC2130
  1797. feedrate = homing_feedrate[axis];
  1798. #else //TMC2130
  1799. feedrate = homing_feedrate[axis] / 2;
  1800. #endif //TMC2130
  1801. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1802. st_synchronize();
  1803. #ifdef TMC2130
  1804. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1805. if (pstep) pstep[i] = mscnt >> 4;
  1806. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1807. #endif //TMC2130
  1808. }
  1809. endstops_hit_on_purpose();
  1810. enable_endstops(false);
  1811. #ifdef TMC2130
  1812. uint8_t orig = tmc2130_home_origin[axis];
  1813. uint8_t back = tmc2130_home_bsteps[axis];
  1814. if (tmc2130_home_enabled && (orig <= 63))
  1815. {
  1816. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1817. if (back > 0)
  1818. tmc2130_do_steps(axis, back, 1, 1000);
  1819. }
  1820. else
  1821. tmc2130_do_steps(axis, 8, 2, 1000);
  1822. tmc2130_home_exit();
  1823. #endif //TMC2130
  1824. axis_is_at_home(axis);
  1825. axis_known_position[axis] = true;
  1826. // Move from minimum
  1827. #ifdef TMC2130
  1828. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1829. #else //TMC2130
  1830. float dist = 0.01f * 64;
  1831. #endif //TMC2130
  1832. current_position[axis] -= dist;
  1833. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1834. current_position[axis] += dist;
  1835. destination[axis] = current_position[axis];
  1836. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1837. st_synchronize();
  1838. feedrate = 0.0;
  1839. }
  1840. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1841. {
  1842. #ifdef TMC2130
  1843. FORCE_HIGH_POWER_START;
  1844. #endif
  1845. int axis_home_dir = home_dir(axis);
  1846. current_position[axis] = 0;
  1847. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1848. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1849. feedrate = homing_feedrate[axis];
  1850. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1851. st_synchronize();
  1852. #ifdef TMC2130
  1853. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1854. FORCE_HIGH_POWER_END;
  1855. kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
  1856. return;
  1857. }
  1858. #endif //TMC2130
  1859. current_position[axis] = 0;
  1860. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1861. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1862. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1863. st_synchronize();
  1864. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1865. feedrate = homing_feedrate[axis]/2 ;
  1866. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1867. st_synchronize();
  1868. #ifdef TMC2130
  1869. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1870. FORCE_HIGH_POWER_END;
  1871. kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
  1872. return;
  1873. }
  1874. #endif //TMC2130
  1875. axis_is_at_home(axis);
  1876. destination[axis] = current_position[axis];
  1877. feedrate = 0.0;
  1878. endstops_hit_on_purpose();
  1879. axis_known_position[axis] = true;
  1880. #ifdef TMC2130
  1881. FORCE_HIGH_POWER_END;
  1882. #endif
  1883. }
  1884. enable_endstops(endstops_enabled);
  1885. }
  1886. /**/
  1887. void home_xy()
  1888. {
  1889. set_destination_to_current();
  1890. homeaxis(X_AXIS);
  1891. homeaxis(Y_AXIS);
  1892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1893. endstops_hit_on_purpose();
  1894. }
  1895. void refresh_cmd_timeout(void)
  1896. {
  1897. previous_millis_cmd = millis();
  1898. }
  1899. #ifdef FWRETRACT
  1900. void retract(bool retracting, bool swapretract = false) {
  1901. if(retracting && !retracted[active_extruder]) {
  1902. destination[X_AXIS]=current_position[X_AXIS];
  1903. destination[Y_AXIS]=current_position[Y_AXIS];
  1904. destination[Z_AXIS]=current_position[Z_AXIS];
  1905. destination[E_AXIS]=current_position[E_AXIS];
  1906. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1907. plan_set_e_position(current_position[E_AXIS]);
  1908. float oldFeedrate = feedrate;
  1909. feedrate=retract_feedrate*60;
  1910. retracted[active_extruder]=true;
  1911. prepare_move();
  1912. current_position[Z_AXIS]-=retract_zlift;
  1913. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1914. prepare_move();
  1915. feedrate = oldFeedrate;
  1916. } else if(!retracting && retracted[active_extruder]) {
  1917. destination[X_AXIS]=current_position[X_AXIS];
  1918. destination[Y_AXIS]=current_position[Y_AXIS];
  1919. destination[Z_AXIS]=current_position[Z_AXIS];
  1920. destination[E_AXIS]=current_position[E_AXIS];
  1921. current_position[Z_AXIS]+=retract_zlift;
  1922. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1923. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1924. plan_set_e_position(current_position[E_AXIS]);
  1925. float oldFeedrate = feedrate;
  1926. feedrate=retract_recover_feedrate*60;
  1927. retracted[active_extruder]=false;
  1928. prepare_move();
  1929. feedrate = oldFeedrate;
  1930. }
  1931. } //retract
  1932. #endif //FWRETRACT
  1933. void trace() {
  1934. tone(BEEPER, 440);
  1935. delay(25);
  1936. noTone(BEEPER);
  1937. delay(20);
  1938. }
  1939. /*
  1940. void ramming() {
  1941. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1942. if (current_temperature[0] < 230) {
  1943. //PLA
  1944. max_feedrate[E_AXIS] = 50;
  1945. //current_position[E_AXIS] -= 8;
  1946. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1947. //current_position[E_AXIS] += 8;
  1948. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1949. current_position[E_AXIS] += 5.4;
  1950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1951. current_position[E_AXIS] += 3.2;
  1952. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1953. current_position[E_AXIS] += 3;
  1954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1955. st_synchronize();
  1956. max_feedrate[E_AXIS] = 80;
  1957. current_position[E_AXIS] -= 82;
  1958. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1959. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1960. current_position[E_AXIS] -= 20;
  1961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1962. current_position[E_AXIS] += 5;
  1963. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1964. current_position[E_AXIS] += 5;
  1965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1966. current_position[E_AXIS] -= 10;
  1967. st_synchronize();
  1968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1969. current_position[E_AXIS] += 10;
  1970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1971. current_position[E_AXIS] -= 10;
  1972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1973. current_position[E_AXIS] += 10;
  1974. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1975. current_position[E_AXIS] -= 10;
  1976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1977. st_synchronize();
  1978. }
  1979. else {
  1980. //ABS
  1981. max_feedrate[E_AXIS] = 50;
  1982. //current_position[E_AXIS] -= 8;
  1983. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1984. //current_position[E_AXIS] += 8;
  1985. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1986. current_position[E_AXIS] += 3.1;
  1987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1988. current_position[E_AXIS] += 3.1;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1990. current_position[E_AXIS] += 4;
  1991. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1992. st_synchronize();
  1993. //current_position[X_AXIS] += 23; //delay
  1994. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1995. //current_position[X_AXIS] -= 23; //delay
  1996. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1997. delay(4700);
  1998. max_feedrate[E_AXIS] = 80;
  1999. current_position[E_AXIS] -= 92;
  2000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2001. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2002. current_position[E_AXIS] -= 5;
  2003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2004. current_position[E_AXIS] += 5;
  2005. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2006. current_position[E_AXIS] -= 5;
  2007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2008. st_synchronize();
  2009. current_position[E_AXIS] += 5;
  2010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2011. current_position[E_AXIS] -= 5;
  2012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2013. current_position[E_AXIS] += 5;
  2014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2015. current_position[E_AXIS] -= 5;
  2016. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2017. st_synchronize();
  2018. }
  2019. }
  2020. */
  2021. #ifdef TMC2130
  2022. void force_high_power_mode(bool start_high_power_section) {
  2023. uint8_t silent;
  2024. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2025. if (silent == 1) {
  2026. //we are in silent mode, set to normal mode to enable crash detection
  2027. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2028. st_synchronize();
  2029. cli();
  2030. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2031. tmc2130_init();
  2032. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2033. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2034. st_reset_timer();
  2035. sei();
  2036. }
  2037. }
  2038. #endif //TMC2130
  2039. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib){
  2040. st_synchronize();
  2041. #if 0
  2042. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2043. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2044. #endif
  2045. // Flag for the display update routine and to disable the print cancelation during homing.
  2046. homing_flag = true;
  2047. // Either all X,Y,Z codes are present, or none of them.
  2048. bool home_all_axes = home_x == home_y && home_x == home_z;
  2049. if (home_all_axes)
  2050. // No X/Y/Z code provided means to home all axes.
  2051. home_x = home_y = home_z = true;
  2052. #ifdef ENABLE_AUTO_BED_LEVELING
  2053. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2054. #endif //ENABLE_AUTO_BED_LEVELING
  2055. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2056. // the planner will not perform any adjustments in the XY plane.
  2057. // Wait for the motors to stop and update the current position with the absolute values.
  2058. world2machine_revert_to_uncorrected();
  2059. // For mesh bed leveling deactivate the matrix temporarily.
  2060. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2061. // in a single axis only.
  2062. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2063. #ifdef MESH_BED_LEVELING
  2064. uint8_t mbl_was_active = mbl.active;
  2065. mbl.active = 0;
  2066. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2067. #endif
  2068. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2069. // consumed during the first movements following this statement.
  2070. if (home_z)
  2071. babystep_undo();
  2072. saved_feedrate = feedrate;
  2073. saved_feedmultiply = feedmultiply;
  2074. feedmultiply = 100;
  2075. previous_millis_cmd = millis();
  2076. enable_endstops(true);
  2077. memcpy(destination, current_position, sizeof(destination));
  2078. feedrate = 0.0;
  2079. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2080. if(home_z)
  2081. homeaxis(Z_AXIS);
  2082. #endif
  2083. #ifdef QUICK_HOME
  2084. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2085. if(home_x && home_y) //first diagonal move
  2086. {
  2087. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2088. int x_axis_home_dir = home_dir(X_AXIS);
  2089. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2090. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2091. feedrate = homing_feedrate[X_AXIS];
  2092. if(homing_feedrate[Y_AXIS]<feedrate)
  2093. feedrate = homing_feedrate[Y_AXIS];
  2094. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2095. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2096. } else {
  2097. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2098. }
  2099. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2100. st_synchronize();
  2101. axis_is_at_home(X_AXIS);
  2102. axis_is_at_home(Y_AXIS);
  2103. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2104. destination[X_AXIS] = current_position[X_AXIS];
  2105. destination[Y_AXIS] = current_position[Y_AXIS];
  2106. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2107. feedrate = 0.0;
  2108. st_synchronize();
  2109. endstops_hit_on_purpose();
  2110. current_position[X_AXIS] = destination[X_AXIS];
  2111. current_position[Y_AXIS] = destination[Y_AXIS];
  2112. current_position[Z_AXIS] = destination[Z_AXIS];
  2113. }
  2114. #endif /* QUICK_HOME */
  2115. #ifdef TMC2130
  2116. if(home_x)
  2117. {
  2118. if (!calib)
  2119. homeaxis(X_AXIS);
  2120. else
  2121. tmc2130_home_calibrate(X_AXIS);
  2122. }
  2123. if(home_y)
  2124. {
  2125. if (!calib)
  2126. homeaxis(Y_AXIS);
  2127. else
  2128. tmc2130_home_calibrate(Y_AXIS);
  2129. }
  2130. #endif //TMC2130
  2131. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2132. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2133. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2134. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2135. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2136. #ifndef Z_SAFE_HOMING
  2137. if(home_z) {
  2138. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2139. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2140. feedrate = max_feedrate[Z_AXIS];
  2141. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2142. st_synchronize();
  2143. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2144. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2145. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2146. {
  2147. homeaxis(X_AXIS);
  2148. homeaxis(Y_AXIS);
  2149. }
  2150. // 1st mesh bed leveling measurement point, corrected.
  2151. world2machine_initialize();
  2152. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2153. world2machine_reset();
  2154. if (destination[Y_AXIS] < Y_MIN_POS)
  2155. destination[Y_AXIS] = Y_MIN_POS;
  2156. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2157. feedrate = homing_feedrate[Z_AXIS]/10;
  2158. current_position[Z_AXIS] = 0;
  2159. enable_endstops(false);
  2160. #ifdef DEBUG_BUILD
  2161. SERIAL_ECHOLNPGM("plan_set_position()");
  2162. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2163. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2164. #endif
  2165. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2166. #ifdef DEBUG_BUILD
  2167. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2168. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2169. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2170. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2171. #endif
  2172. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2173. st_synchronize();
  2174. current_position[X_AXIS] = destination[X_AXIS];
  2175. current_position[Y_AXIS] = destination[Y_AXIS];
  2176. enable_endstops(true);
  2177. endstops_hit_on_purpose();
  2178. homeaxis(Z_AXIS);
  2179. #else // MESH_BED_LEVELING
  2180. homeaxis(Z_AXIS);
  2181. #endif // MESH_BED_LEVELING
  2182. }
  2183. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2184. if(home_all_axes) {
  2185. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2186. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2187. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2188. feedrate = XY_TRAVEL_SPEED/60;
  2189. current_position[Z_AXIS] = 0;
  2190. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2191. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2192. st_synchronize();
  2193. current_position[X_AXIS] = destination[X_AXIS];
  2194. current_position[Y_AXIS] = destination[Y_AXIS];
  2195. homeaxis(Z_AXIS);
  2196. }
  2197. // Let's see if X and Y are homed and probe is inside bed area.
  2198. if(home_z) {
  2199. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2200. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2201. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2202. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2203. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2204. current_position[Z_AXIS] = 0;
  2205. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2206. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2207. feedrate = max_feedrate[Z_AXIS];
  2208. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2209. st_synchronize();
  2210. homeaxis(Z_AXIS);
  2211. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2212. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2213. SERIAL_ECHO_START;
  2214. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2215. } else {
  2216. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2217. SERIAL_ECHO_START;
  2218. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2219. }
  2220. }
  2221. #endif // Z_SAFE_HOMING
  2222. #endif // Z_HOME_DIR < 0
  2223. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2224. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2225. #ifdef ENABLE_AUTO_BED_LEVELING
  2226. if(home_z)
  2227. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2228. #endif
  2229. // Set the planner and stepper routine positions.
  2230. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2231. // contains the machine coordinates.
  2232. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2233. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2234. enable_endstops(false);
  2235. #endif
  2236. feedrate = saved_feedrate;
  2237. feedmultiply = saved_feedmultiply;
  2238. previous_millis_cmd = millis();
  2239. endstops_hit_on_purpose();
  2240. #ifndef MESH_BED_LEVELING
  2241. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2242. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2243. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2244. lcd_adjust_z();
  2245. #endif
  2246. // Load the machine correction matrix
  2247. world2machine_initialize();
  2248. // and correct the current_position XY axes to match the transformed coordinate system.
  2249. world2machine_update_current();
  2250. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2251. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2252. {
  2253. if (! home_z && mbl_was_active) {
  2254. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2255. mbl.active = true;
  2256. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2257. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2258. }
  2259. }
  2260. else
  2261. {
  2262. st_synchronize();
  2263. homing_flag = false;
  2264. // Push the commands to the front of the message queue in the reverse order!
  2265. // There shall be always enough space reserved for these commands.
  2266. enquecommand_front_P((PSTR("G80")));
  2267. //goto case_G80;
  2268. }
  2269. #endif
  2270. if (farm_mode) { prusa_statistics(20); };
  2271. homing_flag = false;
  2272. #if 0
  2273. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2274. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2275. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2276. #endif
  2277. }
  2278. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2279. {
  2280. bool final_result = false;
  2281. #ifdef TMC2130
  2282. FORCE_HIGH_POWER_START;
  2283. #endif // TMC2130
  2284. // Only Z calibration?
  2285. if (!onlyZ)
  2286. {
  2287. setTargetBed(0);
  2288. setTargetHotend(0, 0);
  2289. setTargetHotend(0, 1);
  2290. setTargetHotend(0, 2);
  2291. adjust_bed_reset(); //reset bed level correction
  2292. }
  2293. // Disable the default update procedure of the display. We will do a modal dialog.
  2294. lcd_update_enable(false);
  2295. // Let the planner use the uncorrected coordinates.
  2296. mbl.reset();
  2297. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2298. // the planner will not perform any adjustments in the XY plane.
  2299. // Wait for the motors to stop and update the current position with the absolute values.
  2300. world2machine_revert_to_uncorrected();
  2301. // Reset the baby step value applied without moving the axes.
  2302. babystep_reset();
  2303. // Mark all axes as in a need for homing.
  2304. memset(axis_known_position, 0, sizeof(axis_known_position));
  2305. // Home in the XY plane.
  2306. //set_destination_to_current();
  2307. setup_for_endstop_move();
  2308. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2309. home_xy();
  2310. enable_endstops(false);
  2311. current_position[X_AXIS] += 5;
  2312. current_position[Y_AXIS] += 5;
  2313. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2314. st_synchronize();
  2315. // Let the user move the Z axes up to the end stoppers.
  2316. #ifdef TMC2130
  2317. if (calibrate_z_auto())
  2318. {
  2319. #else //TMC2130
  2320. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2321. {
  2322. #endif //TMC2130
  2323. refresh_cmd_timeout();
  2324. #ifndef STEEL_SHEET
  2325. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2326. {
  2327. lcd_wait_for_cool_down();
  2328. }
  2329. #endif //STEEL_SHEET
  2330. if(!onlyZ)
  2331. {
  2332. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2333. #ifdef STEEL_SHEET
  2334. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2335. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2336. #endif //STEEL_SHEET
  2337. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2338. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2339. KEEPALIVE_STATE(IN_HANDLER);
  2340. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2341. lcd_implementation_print_at(0, 2, 1);
  2342. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2343. }
  2344. // Move the print head close to the bed.
  2345. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2346. bool endstops_enabled = enable_endstops(true);
  2347. #ifdef TMC2130
  2348. tmc2130_home_enter(Z_AXIS_MASK);
  2349. #endif //TMC2130
  2350. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2351. st_synchronize();
  2352. #ifdef TMC2130
  2353. tmc2130_home_exit();
  2354. #endif //TMC2130
  2355. enable_endstops(endstops_enabled);
  2356. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2357. {
  2358. int8_t verbosity_level = 0;
  2359. if (code_seen('V'))
  2360. {
  2361. // Just 'V' without a number counts as V1.
  2362. char c = strchr_pointer[1];
  2363. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2364. }
  2365. if (onlyZ)
  2366. {
  2367. clean_up_after_endstop_move();
  2368. // Z only calibration.
  2369. // Load the machine correction matrix
  2370. world2machine_initialize();
  2371. // and correct the current_position to match the transformed coordinate system.
  2372. world2machine_update_current();
  2373. //FIXME
  2374. bool result = sample_mesh_and_store_reference();
  2375. if (result)
  2376. {
  2377. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2378. // Shipped, the nozzle height has been set already. The user can start printing now.
  2379. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2380. final_result = true;
  2381. // babystep_apply();
  2382. }
  2383. }
  2384. else
  2385. {
  2386. // Reset the baby step value and the baby step applied flag.
  2387. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2388. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2389. // Complete XYZ calibration.
  2390. uint8_t point_too_far_mask = 0;
  2391. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2392. clean_up_after_endstop_move();
  2393. // Print head up.
  2394. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2396. st_synchronize();
  2397. //#ifndef NEW_XYZCAL
  2398. if (result >= 0)
  2399. {
  2400. #ifdef HEATBED_V2
  2401. sample_z();
  2402. #else //HEATBED_V2
  2403. point_too_far_mask = 0;
  2404. // Second half: The fine adjustment.
  2405. // Let the planner use the uncorrected coordinates.
  2406. mbl.reset();
  2407. world2machine_reset();
  2408. // Home in the XY plane.
  2409. setup_for_endstop_move();
  2410. home_xy();
  2411. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2412. clean_up_after_endstop_move();
  2413. // Print head up.
  2414. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2415. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2416. st_synchronize();
  2417. // if (result >= 0) babystep_apply();
  2418. #endif //HEATBED_V2
  2419. }
  2420. //#endif //NEW_XYZCAL
  2421. lcd_update_enable(true);
  2422. lcd_update(2);
  2423. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2424. if (result >= 0)
  2425. {
  2426. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2427. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2428. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2429. final_result = true;
  2430. }
  2431. }
  2432. #ifdef TMC2130
  2433. tmc2130_home_exit();
  2434. #endif
  2435. }
  2436. else
  2437. {
  2438. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2439. final_result = false;
  2440. }
  2441. }
  2442. else
  2443. {
  2444. // Timeouted.
  2445. }
  2446. lcd_update_enable(true);
  2447. #ifdef TMC2130
  2448. FORCE_HIGH_POWER_END;
  2449. #endif // TMC2130
  2450. return final_result;
  2451. }
  2452. void gcode_M114()
  2453. {
  2454. SERIAL_PROTOCOLPGM("X:");
  2455. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2456. SERIAL_PROTOCOLPGM(" Y:");
  2457. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2458. SERIAL_PROTOCOLPGM(" Z:");
  2459. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2460. SERIAL_PROTOCOLPGM(" E:");
  2461. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2462. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2463. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2464. SERIAL_PROTOCOLPGM(" Y:");
  2465. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2466. SERIAL_PROTOCOLPGM(" Z:");
  2467. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2468. SERIAL_PROTOCOLPGM(" E:");
  2469. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2470. SERIAL_PROTOCOLLN("");
  2471. }
  2472. void gcode_M701()
  2473. {
  2474. #ifdef SNMM
  2475. extr_adj(snmm_extruder);//loads current extruder
  2476. #else
  2477. enable_z();
  2478. custom_message = true;
  2479. custom_message_type = 2;
  2480. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2481. current_position[E_AXIS] += 70;
  2482. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2483. current_position[E_AXIS] += 25;
  2484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2485. st_synchronize();
  2486. tone(BEEPER, 500);
  2487. delay_keep_alive(50);
  2488. noTone(BEEPER);
  2489. if (!farm_mode && loading_flag) {
  2490. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2491. while (!clean) {
  2492. lcd_update_enable(true);
  2493. lcd_update(2);
  2494. current_position[E_AXIS] += 25;
  2495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2496. st_synchronize();
  2497. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2498. }
  2499. }
  2500. lcd_update_enable(true);
  2501. lcd_update(2);
  2502. lcd_setstatuspgm(_T(WELCOME_MSG));
  2503. disable_z();
  2504. loading_flag = false;
  2505. custom_message = false;
  2506. custom_message_type = 0;
  2507. #endif
  2508. }
  2509. /**
  2510. * @brief Get serial number from 32U2 processor
  2511. *
  2512. * Typical format of S/N is:CZPX0917X003XC13518
  2513. *
  2514. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2515. *
  2516. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2517. * reply is transmitted to serial port 1 character by character.
  2518. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2519. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2520. * in any case.
  2521. */
  2522. static void gcode_PRUSA_SN()
  2523. {
  2524. if (farm_mode) {
  2525. selectedSerialPort = 0;
  2526. MSerial.write(";S");
  2527. int numbersRead = 0;
  2528. ShortTimer timeout;
  2529. timeout.start();
  2530. while (numbersRead < 19) {
  2531. while (MSerial.available() > 0) {
  2532. uint8_t serial_char = MSerial.read();
  2533. selectedSerialPort = 1;
  2534. MSerial.write(serial_char);
  2535. numbersRead++;
  2536. selectedSerialPort = 0;
  2537. }
  2538. if (timeout.expired(100u)) break;
  2539. }
  2540. selectedSerialPort = 1;
  2541. MSerial.write('\n');
  2542. #if 0
  2543. for (int b = 0; b < 3; b++) {
  2544. tone(BEEPER, 110);
  2545. delay(50);
  2546. noTone(BEEPER);
  2547. delay(50);
  2548. }
  2549. #endif
  2550. } else {
  2551. MYSERIAL.println("Not in farm mode.");
  2552. }
  2553. }
  2554. void process_commands()
  2555. {
  2556. if (!buflen) return; //empty command
  2557. #ifdef FILAMENT_RUNOUT_SUPPORT
  2558. SET_INPUT(FR_SENS);
  2559. #endif
  2560. #ifdef CMDBUFFER_DEBUG
  2561. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2562. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2563. SERIAL_ECHOLNPGM("");
  2564. SERIAL_ECHOPGM("In cmdqueue: ");
  2565. SERIAL_ECHO(buflen);
  2566. SERIAL_ECHOLNPGM("");
  2567. #endif /* CMDBUFFER_DEBUG */
  2568. unsigned long codenum; //throw away variable
  2569. char *starpos = NULL;
  2570. #ifdef ENABLE_AUTO_BED_LEVELING
  2571. float x_tmp, y_tmp, z_tmp, real_z;
  2572. #endif
  2573. // PRUSA GCODES
  2574. KEEPALIVE_STATE(IN_HANDLER);
  2575. #ifdef SNMM
  2576. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2577. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2578. int8_t SilentMode;
  2579. #endif
  2580. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2581. starpos = (strchr(strchr_pointer + 5, '*'));
  2582. if (starpos != NULL)
  2583. *(starpos) = '\0';
  2584. lcd_setstatus(strchr_pointer + 5);
  2585. }
  2586. #ifdef TMC2130
  2587. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2588. {
  2589. if(code_seen("CRASH_DETECTED"))
  2590. {
  2591. uint8_t mask = 0;
  2592. if (code_seen("X")) mask |= X_AXIS_MASK;
  2593. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2594. crashdet_detected(mask);
  2595. }
  2596. else if(code_seen("CRASH_RECOVER"))
  2597. crashdet_recover();
  2598. else if(code_seen("CRASH_CANCEL"))
  2599. crashdet_cancel();
  2600. }
  2601. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2602. {
  2603. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2604. {
  2605. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2606. tmc2130_set_wave(E_AXIS, 247, fac);
  2607. }
  2608. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2609. {
  2610. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2611. uint16_t res = tmc2130_get_res(E_AXIS);
  2612. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2613. }
  2614. }
  2615. #endif //TMC2130
  2616. else if(code_seen("PRUSA")){
  2617. if (code_seen("Ping")) { //PRUSA Ping
  2618. if (farm_mode) {
  2619. PingTime = millis();
  2620. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2621. }
  2622. }
  2623. else if (code_seen("PRN")) {
  2624. MYSERIAL.println(status_number);
  2625. }else if (code_seen("FAN")) {
  2626. MYSERIAL.print("E0:");
  2627. MYSERIAL.print(60*fan_speed[0]);
  2628. MYSERIAL.println(" RPM");
  2629. MYSERIAL.print("PRN0:");
  2630. MYSERIAL.print(60*fan_speed[1]);
  2631. MYSERIAL.println(" RPM");
  2632. }else if (code_seen("fn")) {
  2633. if (farm_mode) {
  2634. MYSERIAL.println(farm_no);
  2635. }
  2636. else {
  2637. MYSERIAL.println("Not in farm mode.");
  2638. }
  2639. }
  2640. else if (code_seen("thx")) {
  2641. no_response = false;
  2642. }else if (code_seen("fv")) {
  2643. // get file version
  2644. #ifdef SDSUPPORT
  2645. card.openFile(strchr_pointer + 3,true);
  2646. while (true) {
  2647. uint16_t readByte = card.get();
  2648. MYSERIAL.write(readByte);
  2649. if (readByte=='\n') {
  2650. break;
  2651. }
  2652. }
  2653. card.closefile();
  2654. #endif // SDSUPPORT
  2655. } else if (code_seen("M28")) {
  2656. trace();
  2657. prusa_sd_card_upload = true;
  2658. card.openFile(strchr_pointer+4,false);
  2659. } else if (code_seen("SN")) {
  2660. gcode_PRUSA_SN();
  2661. } else if(code_seen("Fir")){
  2662. SERIAL_PROTOCOLLN(FW_VERSION);
  2663. } else if(code_seen("Rev")){
  2664. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2665. } else if(code_seen("Lang")) {
  2666. lcd_force_language_selection();
  2667. } else if(code_seen("Lz")) {
  2668. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2669. } else if (code_seen("SERIAL LOW")) {
  2670. MYSERIAL.println("SERIAL LOW");
  2671. MYSERIAL.begin(BAUDRATE);
  2672. return;
  2673. } else if (code_seen("SERIAL HIGH")) {
  2674. MYSERIAL.println("SERIAL HIGH");
  2675. MYSERIAL.begin(1152000);
  2676. return;
  2677. } else if(code_seen("Beat")) {
  2678. // Kick farm link timer
  2679. kicktime = millis();
  2680. } else if(code_seen("FR")) {
  2681. // Factory full reset
  2682. factory_reset(0,true);
  2683. }
  2684. //else if (code_seen('Cal')) {
  2685. // lcd_calibration();
  2686. // }
  2687. }
  2688. else if (code_seen('^')) {
  2689. // nothing, this is a version line
  2690. } else if(code_seen('G'))
  2691. {
  2692. switch((int)code_value())
  2693. {
  2694. case 0: // G0 -> G1
  2695. case 1: // G1
  2696. if(Stopped == false) {
  2697. #ifdef FILAMENT_RUNOUT_SUPPORT
  2698. if(READ(FR_SENS)){
  2699. feedmultiplyBckp=feedmultiply;
  2700. float target[4];
  2701. float lastpos[4];
  2702. target[X_AXIS]=current_position[X_AXIS];
  2703. target[Y_AXIS]=current_position[Y_AXIS];
  2704. target[Z_AXIS]=current_position[Z_AXIS];
  2705. target[E_AXIS]=current_position[E_AXIS];
  2706. lastpos[X_AXIS]=current_position[X_AXIS];
  2707. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2708. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2709. lastpos[E_AXIS]=current_position[E_AXIS];
  2710. //retract by E
  2711. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2712. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2713. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2714. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2715. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2716. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2717. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2718. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2719. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2720. //finish moves
  2721. st_synchronize();
  2722. //disable extruder steppers so filament can be removed
  2723. disable_e0();
  2724. disable_e1();
  2725. disable_e2();
  2726. delay(100);
  2727. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2728. uint8_t cnt=0;
  2729. int counterBeep = 0;
  2730. lcd_wait_interact();
  2731. while(!lcd_clicked()){
  2732. cnt++;
  2733. manage_heater();
  2734. manage_inactivity(true);
  2735. //lcd_update();
  2736. if(cnt==0)
  2737. {
  2738. #if BEEPER > 0
  2739. if (counterBeep== 500){
  2740. counterBeep = 0;
  2741. }
  2742. SET_OUTPUT(BEEPER);
  2743. if (counterBeep== 0){
  2744. WRITE(BEEPER,HIGH);
  2745. }
  2746. if (counterBeep== 20){
  2747. WRITE(BEEPER,LOW);
  2748. }
  2749. counterBeep++;
  2750. #else
  2751. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2752. lcd_buzz(1000/6,100);
  2753. #else
  2754. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2755. #endif
  2756. #endif
  2757. }
  2758. }
  2759. WRITE(BEEPER,LOW);
  2760. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2761. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2762. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2763. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2764. lcd_change_fil_state = 0;
  2765. lcd_loading_filament();
  2766. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2767. lcd_change_fil_state = 0;
  2768. lcd_alright();
  2769. switch(lcd_change_fil_state){
  2770. case 2:
  2771. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2772. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2773. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2774. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2775. lcd_loading_filament();
  2776. break;
  2777. case 3:
  2778. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2779. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2780. lcd_loading_color();
  2781. break;
  2782. default:
  2783. lcd_change_success();
  2784. break;
  2785. }
  2786. }
  2787. target[E_AXIS]+= 5;
  2788. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2789. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2790. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2791. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2792. //plan_set_e_position(current_position[E_AXIS]);
  2793. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2794. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2795. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2796. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2797. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2798. plan_set_e_position(lastpos[E_AXIS]);
  2799. feedmultiply=feedmultiplyBckp;
  2800. char cmd[9];
  2801. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2802. enquecommand(cmd);
  2803. }
  2804. #endif
  2805. get_coordinates(); // For X Y Z E F
  2806. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2807. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2808. }
  2809. #ifdef FWRETRACT
  2810. if(autoretract_enabled)
  2811. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2812. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2813. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2814. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2815. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2816. retract(!retracted);
  2817. return;
  2818. }
  2819. }
  2820. #endif //FWRETRACT
  2821. prepare_move();
  2822. //ClearToSend();
  2823. }
  2824. break;
  2825. case 2: // G2 - CW ARC
  2826. if(Stopped == false) {
  2827. get_arc_coordinates();
  2828. prepare_arc_move(true);
  2829. }
  2830. break;
  2831. case 3: // G3 - CCW ARC
  2832. if(Stopped == false) {
  2833. get_arc_coordinates();
  2834. prepare_arc_move(false);
  2835. }
  2836. break;
  2837. case 4: // G4 dwell
  2838. codenum = 0;
  2839. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2840. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2841. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  2842. st_synchronize();
  2843. codenum += millis(); // keep track of when we started waiting
  2844. previous_millis_cmd = millis();
  2845. while(millis() < codenum) {
  2846. manage_heater();
  2847. manage_inactivity();
  2848. lcd_update();
  2849. }
  2850. break;
  2851. #ifdef FWRETRACT
  2852. case 10: // G10 retract
  2853. #if EXTRUDERS > 1
  2854. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2855. retract(true,retracted_swap[active_extruder]);
  2856. #else
  2857. retract(true);
  2858. #endif
  2859. break;
  2860. case 11: // G11 retract_recover
  2861. #if EXTRUDERS > 1
  2862. retract(false,retracted_swap[active_extruder]);
  2863. #else
  2864. retract(false);
  2865. #endif
  2866. break;
  2867. #endif //FWRETRACT
  2868. case 28: //G28 Home all Axis one at a time
  2869. {
  2870. // Which axes should be homed?
  2871. bool home_x = code_seen(axis_codes[X_AXIS]);
  2872. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2873. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2874. // calibrate?
  2875. bool calib = code_seen('C');
  2876. gcode_G28(home_x, home_y, home_z, calib);
  2877. break;
  2878. }
  2879. #ifdef ENABLE_AUTO_BED_LEVELING
  2880. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2881. {
  2882. #if Z_MIN_PIN == -1
  2883. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2884. #endif
  2885. // Prevent user from running a G29 without first homing in X and Y
  2886. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2887. {
  2888. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2889. SERIAL_ECHO_START;
  2890. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2891. break; // abort G29, since we don't know where we are
  2892. }
  2893. st_synchronize();
  2894. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2895. //vector_3 corrected_position = plan_get_position_mm();
  2896. //corrected_position.debug("position before G29");
  2897. plan_bed_level_matrix.set_to_identity();
  2898. vector_3 uncorrected_position = plan_get_position();
  2899. //uncorrected_position.debug("position durring G29");
  2900. current_position[X_AXIS] = uncorrected_position.x;
  2901. current_position[Y_AXIS] = uncorrected_position.y;
  2902. current_position[Z_AXIS] = uncorrected_position.z;
  2903. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2904. setup_for_endstop_move();
  2905. feedrate = homing_feedrate[Z_AXIS];
  2906. #ifdef AUTO_BED_LEVELING_GRID
  2907. // probe at the points of a lattice grid
  2908. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2909. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2910. // solve the plane equation ax + by + d = z
  2911. // A is the matrix with rows [x y 1] for all the probed points
  2912. // B is the vector of the Z positions
  2913. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2914. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2915. // "A" matrix of the linear system of equations
  2916. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2917. // "B" vector of Z points
  2918. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2919. int probePointCounter = 0;
  2920. bool zig = true;
  2921. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2922. {
  2923. int xProbe, xInc;
  2924. if (zig)
  2925. {
  2926. xProbe = LEFT_PROBE_BED_POSITION;
  2927. //xEnd = RIGHT_PROBE_BED_POSITION;
  2928. xInc = xGridSpacing;
  2929. zig = false;
  2930. } else // zag
  2931. {
  2932. xProbe = RIGHT_PROBE_BED_POSITION;
  2933. //xEnd = LEFT_PROBE_BED_POSITION;
  2934. xInc = -xGridSpacing;
  2935. zig = true;
  2936. }
  2937. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2938. {
  2939. float z_before;
  2940. if (probePointCounter == 0)
  2941. {
  2942. // raise before probing
  2943. z_before = Z_RAISE_BEFORE_PROBING;
  2944. } else
  2945. {
  2946. // raise extruder
  2947. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2948. }
  2949. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2950. eqnBVector[probePointCounter] = measured_z;
  2951. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2952. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2953. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2954. probePointCounter++;
  2955. xProbe += xInc;
  2956. }
  2957. }
  2958. clean_up_after_endstop_move();
  2959. // solve lsq problem
  2960. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2961. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2962. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2963. SERIAL_PROTOCOLPGM(" b: ");
  2964. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2965. SERIAL_PROTOCOLPGM(" d: ");
  2966. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2967. set_bed_level_equation_lsq(plane_equation_coefficients);
  2968. free(plane_equation_coefficients);
  2969. #else // AUTO_BED_LEVELING_GRID not defined
  2970. // Probe at 3 arbitrary points
  2971. // probe 1
  2972. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2973. // probe 2
  2974. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2975. // probe 3
  2976. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2977. clean_up_after_endstop_move();
  2978. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2979. #endif // AUTO_BED_LEVELING_GRID
  2980. st_synchronize();
  2981. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2982. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2983. // When the bed is uneven, this height must be corrected.
  2984. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2985. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2986. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2987. z_tmp = current_position[Z_AXIS];
  2988. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2989. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2990. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2991. }
  2992. break;
  2993. #ifndef Z_PROBE_SLED
  2994. case 30: // G30 Single Z Probe
  2995. {
  2996. st_synchronize();
  2997. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2998. setup_for_endstop_move();
  2999. feedrate = homing_feedrate[Z_AXIS];
  3000. run_z_probe();
  3001. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3002. SERIAL_PROTOCOLPGM(" X: ");
  3003. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3004. SERIAL_PROTOCOLPGM(" Y: ");
  3005. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3006. SERIAL_PROTOCOLPGM(" Z: ");
  3007. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3008. SERIAL_PROTOCOLPGM("\n");
  3009. clean_up_after_endstop_move();
  3010. }
  3011. break;
  3012. #else
  3013. case 31: // dock the sled
  3014. dock_sled(true);
  3015. break;
  3016. case 32: // undock the sled
  3017. dock_sled(false);
  3018. break;
  3019. #endif // Z_PROBE_SLED
  3020. #endif // ENABLE_AUTO_BED_LEVELING
  3021. #ifdef MESH_BED_LEVELING
  3022. case 30: // G30 Single Z Probe
  3023. {
  3024. st_synchronize();
  3025. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3026. setup_for_endstop_move();
  3027. feedrate = homing_feedrate[Z_AXIS];
  3028. find_bed_induction_sensor_point_z(-10.f, 3);
  3029. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  3030. SERIAL_PROTOCOLPGM(" X: ");
  3031. MYSERIAL.print(current_position[X_AXIS], 5);
  3032. SERIAL_PROTOCOLPGM(" Y: ");
  3033. MYSERIAL.print(current_position[Y_AXIS], 5);
  3034. SERIAL_PROTOCOLPGM(" Z: ");
  3035. MYSERIAL.print(current_position[Z_AXIS], 5);
  3036. SERIAL_PROTOCOLPGM("\n");
  3037. clean_up_after_endstop_move();
  3038. }
  3039. break;
  3040. case 75:
  3041. {
  3042. for (int i = 40; i <= 110; i++) {
  3043. MYSERIAL.print(i);
  3044. MYSERIAL.print(" ");
  3045. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  3046. }
  3047. }
  3048. break;
  3049. case 76: //PINDA probe temperature calibration
  3050. {
  3051. #ifdef PINDA_THERMISTOR
  3052. if (true)
  3053. {
  3054. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3055. //we need to know accurate position of first calibration point
  3056. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3057. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3058. break;
  3059. }
  3060. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3061. {
  3062. // We don't know where we are! HOME!
  3063. // Push the commands to the front of the message queue in the reverse order!
  3064. // There shall be always enough space reserved for these commands.
  3065. repeatcommand_front(); // repeat G76 with all its parameters
  3066. enquecommand_front_P((PSTR("G28 W0")));
  3067. break;
  3068. }
  3069. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3070. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3071. if (result)
  3072. {
  3073. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3074. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3075. current_position[Z_AXIS] = 50;
  3076. current_position[Y_AXIS] = 180;
  3077. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3078. st_synchronize();
  3079. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3080. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3081. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3082. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3083. st_synchronize();
  3084. gcode_G28(false, false, true, false);
  3085. }
  3086. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3087. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3088. current_position[Z_AXIS] = 100;
  3089. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3090. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3091. lcd_temp_cal_show_result(false);
  3092. break;
  3093. }
  3094. }
  3095. lcd_update_enable(true);
  3096. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3097. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3098. float zero_z;
  3099. int z_shift = 0; //unit: steps
  3100. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3101. if (start_temp < 35) start_temp = 35;
  3102. if (start_temp < current_temperature_pinda) start_temp += 5;
  3103. SERIAL_ECHOPGM("start temperature: ");
  3104. MYSERIAL.println(start_temp);
  3105. // setTargetHotend(200, 0);
  3106. setTargetBed(70 + (start_temp - 30));
  3107. custom_message = true;
  3108. custom_message_type = 4;
  3109. custom_message_state = 1;
  3110. custom_message = _T(MSG_TEMP_CALIBRATION);
  3111. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3112. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3113. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3114. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3116. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3118. st_synchronize();
  3119. while (current_temperature_pinda < start_temp)
  3120. {
  3121. delay_keep_alive(1000);
  3122. serialecho_temperatures();
  3123. }
  3124. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3125. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3127. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3128. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3130. st_synchronize();
  3131. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3132. if (find_z_result == false) {
  3133. lcd_temp_cal_show_result(find_z_result);
  3134. break;
  3135. }
  3136. zero_z = current_position[Z_AXIS];
  3137. //current_position[Z_AXIS]
  3138. SERIAL_ECHOLNPGM("");
  3139. SERIAL_ECHOPGM("ZERO: ");
  3140. MYSERIAL.print(current_position[Z_AXIS]);
  3141. SERIAL_ECHOLNPGM("");
  3142. int i = -1; for (; i < 5; i++)
  3143. {
  3144. float temp = (40 + i * 5);
  3145. SERIAL_ECHOPGM("Step: ");
  3146. MYSERIAL.print(i + 2);
  3147. SERIAL_ECHOLNPGM("/6 (skipped)");
  3148. SERIAL_ECHOPGM("PINDA temperature: ");
  3149. MYSERIAL.print((40 + i*5));
  3150. SERIAL_ECHOPGM(" Z shift (mm):");
  3151. MYSERIAL.print(0);
  3152. SERIAL_ECHOLNPGM("");
  3153. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3154. if (start_temp <= temp) break;
  3155. }
  3156. for (i++; i < 5; i++)
  3157. {
  3158. float temp = (40 + i * 5);
  3159. SERIAL_ECHOPGM("Step: ");
  3160. MYSERIAL.print(i + 2);
  3161. SERIAL_ECHOLNPGM("/6");
  3162. custom_message_state = i + 2;
  3163. setTargetBed(50 + 10 * (temp - 30) / 5);
  3164. // setTargetHotend(255, 0);
  3165. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3167. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3168. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3169. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3170. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3172. st_synchronize();
  3173. while (current_temperature_pinda < temp)
  3174. {
  3175. delay_keep_alive(1000);
  3176. serialecho_temperatures();
  3177. }
  3178. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3180. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3181. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3183. st_synchronize();
  3184. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3185. if (find_z_result == false) {
  3186. lcd_temp_cal_show_result(find_z_result);
  3187. break;
  3188. }
  3189. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3190. SERIAL_ECHOLNPGM("");
  3191. SERIAL_ECHOPGM("PINDA temperature: ");
  3192. MYSERIAL.print(current_temperature_pinda);
  3193. SERIAL_ECHOPGM(" Z shift (mm):");
  3194. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3195. SERIAL_ECHOLNPGM("");
  3196. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3197. }
  3198. lcd_temp_cal_show_result(true);
  3199. break;
  3200. }
  3201. #endif //PINDA_THERMISTOR
  3202. setTargetBed(PINDA_MIN_T);
  3203. float zero_z;
  3204. int z_shift = 0; //unit: steps
  3205. int t_c; // temperature
  3206. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3207. // We don't know where we are! HOME!
  3208. // Push the commands to the front of the message queue in the reverse order!
  3209. // There shall be always enough space reserved for these commands.
  3210. repeatcommand_front(); // repeat G76 with all its parameters
  3211. enquecommand_front_P((PSTR("G28 W0")));
  3212. break;
  3213. }
  3214. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3215. custom_message = true;
  3216. custom_message_type = 4;
  3217. custom_message_state = 1;
  3218. custom_message = _T(MSG_TEMP_CALIBRATION);
  3219. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3220. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3221. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3222. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3223. st_synchronize();
  3224. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3225. delay_keep_alive(1000);
  3226. serialecho_temperatures();
  3227. }
  3228. //enquecommand_P(PSTR("M190 S50"));
  3229. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3230. delay_keep_alive(1000);
  3231. serialecho_temperatures();
  3232. }
  3233. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3234. current_position[Z_AXIS] = 5;
  3235. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3236. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3237. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3238. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3239. st_synchronize();
  3240. find_bed_induction_sensor_point_z(-1.f);
  3241. zero_z = current_position[Z_AXIS];
  3242. //current_position[Z_AXIS]
  3243. SERIAL_ECHOLNPGM("");
  3244. SERIAL_ECHOPGM("ZERO: ");
  3245. MYSERIAL.print(current_position[Z_AXIS]);
  3246. SERIAL_ECHOLNPGM("");
  3247. for (int i = 0; i<5; i++) {
  3248. SERIAL_ECHOPGM("Step: ");
  3249. MYSERIAL.print(i+2);
  3250. SERIAL_ECHOLNPGM("/6");
  3251. custom_message_state = i + 2;
  3252. t_c = 60 + i * 10;
  3253. setTargetBed(t_c);
  3254. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3255. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3256. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3258. st_synchronize();
  3259. while (degBed() < t_c) {
  3260. delay_keep_alive(1000);
  3261. serialecho_temperatures();
  3262. }
  3263. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3264. delay_keep_alive(1000);
  3265. serialecho_temperatures();
  3266. }
  3267. current_position[Z_AXIS] = 5;
  3268. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3269. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3270. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3271. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3272. st_synchronize();
  3273. find_bed_induction_sensor_point_z(-1.f);
  3274. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3275. SERIAL_ECHOLNPGM("");
  3276. SERIAL_ECHOPGM("Temperature: ");
  3277. MYSERIAL.print(t_c);
  3278. SERIAL_ECHOPGM(" Z shift (mm):");
  3279. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3280. SERIAL_ECHOLNPGM("");
  3281. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3282. }
  3283. custom_message_type = 0;
  3284. custom_message = false;
  3285. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3286. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3287. disable_x();
  3288. disable_y();
  3289. disable_z();
  3290. disable_e0();
  3291. disable_e1();
  3292. disable_e2();
  3293. setTargetBed(0); //set bed target temperature back to 0
  3294. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3295. temp_cal_active = true;
  3296. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3297. lcd_update_enable(true);
  3298. lcd_update(2);
  3299. }
  3300. break;
  3301. #ifdef DIS
  3302. case 77:
  3303. {
  3304. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3305. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3306. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3307. float dimension_x = 40;
  3308. float dimension_y = 40;
  3309. int points_x = 40;
  3310. int points_y = 40;
  3311. float offset_x = 74;
  3312. float offset_y = 33;
  3313. if (code_seen('X')) dimension_x = code_value();
  3314. if (code_seen('Y')) dimension_y = code_value();
  3315. if (code_seen('XP')) points_x = code_value();
  3316. if (code_seen('YP')) points_y = code_value();
  3317. if (code_seen('XO')) offset_x = code_value();
  3318. if (code_seen('YO')) offset_y = code_value();
  3319. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3320. } break;
  3321. #endif
  3322. case 79: {
  3323. for (int i = 255; i > 0; i = i - 5) {
  3324. fanSpeed = i;
  3325. //delay_keep_alive(2000);
  3326. for (int j = 0; j < 100; j++) {
  3327. delay_keep_alive(100);
  3328. }
  3329. fan_speed[1];
  3330. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3331. }
  3332. }break;
  3333. /**
  3334. * G80: Mesh-based Z probe, probes a grid and produces a
  3335. * mesh to compensate for variable bed height
  3336. *
  3337. * The S0 report the points as below
  3338. *
  3339. * +----> X-axis
  3340. * |
  3341. * |
  3342. * v Y-axis
  3343. *
  3344. */
  3345. case 80:
  3346. #ifdef MK1BP
  3347. break;
  3348. #endif //MK1BP
  3349. case_G80:
  3350. {
  3351. mesh_bed_leveling_flag = true;
  3352. int8_t verbosity_level = 0;
  3353. static bool run = false;
  3354. if (code_seen('V')) {
  3355. // Just 'V' without a number counts as V1.
  3356. char c = strchr_pointer[1];
  3357. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3358. }
  3359. // Firstly check if we know where we are
  3360. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3361. // We don't know where we are! HOME!
  3362. // Push the commands to the front of the message queue in the reverse order!
  3363. // There shall be always enough space reserved for these commands.
  3364. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3365. repeatcommand_front(); // repeat G80 with all its parameters
  3366. enquecommand_front_P((PSTR("G28 W0")));
  3367. }
  3368. else {
  3369. mesh_bed_leveling_flag = false;
  3370. }
  3371. break;
  3372. }
  3373. bool temp_comp_start = true;
  3374. #ifdef PINDA_THERMISTOR
  3375. temp_comp_start = false;
  3376. #endif //PINDA_THERMISTOR
  3377. if (temp_comp_start)
  3378. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3379. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3380. temp_compensation_start();
  3381. run = true;
  3382. repeatcommand_front(); // repeat G80 with all its parameters
  3383. enquecommand_front_P((PSTR("G28 W0")));
  3384. }
  3385. else {
  3386. mesh_bed_leveling_flag = false;
  3387. }
  3388. break;
  3389. }
  3390. run = false;
  3391. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3392. mesh_bed_leveling_flag = false;
  3393. break;
  3394. }
  3395. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3396. bool custom_message_old = custom_message;
  3397. unsigned int custom_message_type_old = custom_message_type;
  3398. unsigned int custom_message_state_old = custom_message_state;
  3399. custom_message = true;
  3400. custom_message_type = 1;
  3401. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3402. lcd_update(1);
  3403. mbl.reset(); //reset mesh bed leveling
  3404. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3405. // consumed during the first movements following this statement.
  3406. babystep_undo();
  3407. // Cycle through all points and probe them
  3408. // First move up. During this first movement, the babystepping will be reverted.
  3409. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3410. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3411. // The move to the first calibration point.
  3412. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3413. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3414. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3415. #ifdef SUPPORT_VERBOSITY
  3416. if (verbosity_level >= 1) {
  3417. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3418. }
  3419. #endif //SUPPORT_VERBOSITY
  3420. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3421. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3422. // Wait until the move is finished.
  3423. st_synchronize();
  3424. int mesh_point = 0; //index number of calibration point
  3425. int ix = 0;
  3426. int iy = 0;
  3427. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3428. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3429. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3430. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3431. #ifdef SUPPORT_VERBOSITY
  3432. if (verbosity_level >= 1) {
  3433. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3434. }
  3435. #endif // SUPPORT_VERBOSITY
  3436. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3437. const char *kill_message = NULL;
  3438. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3439. // Get coords of a measuring point.
  3440. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3441. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3442. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3443. float z0 = 0.f;
  3444. if (has_z && mesh_point > 0) {
  3445. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3446. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3447. //#if 0
  3448. #ifdef SUPPORT_VERBOSITY
  3449. if (verbosity_level >= 1) {
  3450. SERIAL_ECHOLNPGM("");
  3451. SERIAL_ECHOPGM("Bed leveling, point: ");
  3452. MYSERIAL.print(mesh_point);
  3453. SERIAL_ECHOPGM(", calibration z: ");
  3454. MYSERIAL.print(z0, 5);
  3455. SERIAL_ECHOLNPGM("");
  3456. }
  3457. #endif // SUPPORT_VERBOSITY
  3458. //#endif
  3459. }
  3460. // Move Z up to MESH_HOME_Z_SEARCH.
  3461. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3463. st_synchronize();
  3464. // Move to XY position of the sensor point.
  3465. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3466. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3467. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3468. #ifdef SUPPORT_VERBOSITY
  3469. if (verbosity_level >= 1) {
  3470. SERIAL_PROTOCOL(mesh_point);
  3471. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3472. }
  3473. #endif // SUPPORT_VERBOSITY
  3474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3475. st_synchronize();
  3476. // Go down until endstop is hit
  3477. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3478. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3479. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3480. break;
  3481. }
  3482. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3483. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3484. break;
  3485. }
  3486. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3487. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3488. break;
  3489. }
  3490. #ifdef SUPPORT_VERBOSITY
  3491. if (verbosity_level >= 10) {
  3492. SERIAL_ECHOPGM("X: ");
  3493. MYSERIAL.print(current_position[X_AXIS], 5);
  3494. SERIAL_ECHOLNPGM("");
  3495. SERIAL_ECHOPGM("Y: ");
  3496. MYSERIAL.print(current_position[Y_AXIS], 5);
  3497. SERIAL_PROTOCOLPGM("\n");
  3498. }
  3499. #endif // SUPPORT_VERBOSITY
  3500. float offset_z = 0;
  3501. #ifdef PINDA_THERMISTOR
  3502. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3503. #endif //PINDA_THERMISTOR
  3504. // #ifdef SUPPORT_VERBOSITY
  3505. /* if (verbosity_level >= 1)
  3506. {
  3507. SERIAL_ECHOPGM("mesh bed leveling: ");
  3508. MYSERIAL.print(current_position[Z_AXIS], 5);
  3509. SERIAL_ECHOPGM(" offset: ");
  3510. MYSERIAL.print(offset_z, 5);
  3511. SERIAL_ECHOLNPGM("");
  3512. }*/
  3513. // #endif // SUPPORT_VERBOSITY
  3514. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3515. custom_message_state--;
  3516. mesh_point++;
  3517. lcd_update(1);
  3518. }
  3519. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3520. #ifdef SUPPORT_VERBOSITY
  3521. if (verbosity_level >= 20) {
  3522. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3523. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3524. MYSERIAL.print(current_position[Z_AXIS], 5);
  3525. }
  3526. #endif // SUPPORT_VERBOSITY
  3527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3528. st_synchronize();
  3529. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3530. kill(kill_message);
  3531. SERIAL_ECHOLNPGM("killed");
  3532. }
  3533. clean_up_after_endstop_move();
  3534. // SERIAL_ECHOLNPGM("clean up finished ");
  3535. bool apply_temp_comp = true;
  3536. #ifdef PINDA_THERMISTOR
  3537. apply_temp_comp = false;
  3538. #endif
  3539. if (apply_temp_comp)
  3540. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3541. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3542. // SERIAL_ECHOLNPGM("babystep applied");
  3543. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3544. #ifdef SUPPORT_VERBOSITY
  3545. if (verbosity_level >= 1) {
  3546. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3547. }
  3548. #endif // SUPPORT_VERBOSITY
  3549. for (uint8_t i = 0; i < 4; ++i) {
  3550. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3551. long correction = 0;
  3552. if (code_seen(codes[i]))
  3553. correction = code_value_long();
  3554. else if (eeprom_bed_correction_valid) {
  3555. unsigned char *addr = (i < 2) ?
  3556. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3557. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3558. correction = eeprom_read_int8(addr);
  3559. }
  3560. if (correction == 0)
  3561. continue;
  3562. float offset = float(correction) * 0.001f;
  3563. if (fabs(offset) > 0.101f) {
  3564. SERIAL_ERROR_START;
  3565. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3566. SERIAL_ECHO(offset);
  3567. SERIAL_ECHOLNPGM(" microns");
  3568. }
  3569. else {
  3570. switch (i) {
  3571. case 0:
  3572. for (uint8_t row = 0; row < 3; ++row) {
  3573. mbl.z_values[row][1] += 0.5f * offset;
  3574. mbl.z_values[row][0] += offset;
  3575. }
  3576. break;
  3577. case 1:
  3578. for (uint8_t row = 0; row < 3; ++row) {
  3579. mbl.z_values[row][1] += 0.5f * offset;
  3580. mbl.z_values[row][2] += offset;
  3581. }
  3582. break;
  3583. case 2:
  3584. for (uint8_t col = 0; col < 3; ++col) {
  3585. mbl.z_values[1][col] += 0.5f * offset;
  3586. mbl.z_values[0][col] += offset;
  3587. }
  3588. break;
  3589. case 3:
  3590. for (uint8_t col = 0; col < 3; ++col) {
  3591. mbl.z_values[1][col] += 0.5f * offset;
  3592. mbl.z_values[2][col] += offset;
  3593. }
  3594. break;
  3595. }
  3596. }
  3597. }
  3598. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3599. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3600. // SERIAL_ECHOLNPGM("Upsample finished");
  3601. mbl.active = 1; //activate mesh bed leveling
  3602. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3603. go_home_with_z_lift();
  3604. // SERIAL_ECHOLNPGM("Go home finished");
  3605. //unretract (after PINDA preheat retraction)
  3606. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3607. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3609. }
  3610. KEEPALIVE_STATE(NOT_BUSY);
  3611. // Restore custom message state
  3612. custom_message = custom_message_old;
  3613. custom_message_type = custom_message_type_old;
  3614. custom_message_state = custom_message_state_old;
  3615. mesh_bed_leveling_flag = false;
  3616. mesh_bed_run_from_menu = false;
  3617. lcd_update(2);
  3618. }
  3619. break;
  3620. /**
  3621. * G81: Print mesh bed leveling status and bed profile if activated
  3622. */
  3623. case 81:
  3624. if (mbl.active) {
  3625. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3626. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3627. SERIAL_PROTOCOLPGM(",");
  3628. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3629. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3630. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3631. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3632. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3633. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3634. SERIAL_PROTOCOLPGM(" ");
  3635. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3636. }
  3637. SERIAL_PROTOCOLPGM("\n");
  3638. }
  3639. }
  3640. else
  3641. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3642. break;
  3643. #if 0
  3644. /**
  3645. * G82: Single Z probe at current location
  3646. *
  3647. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3648. *
  3649. */
  3650. case 82:
  3651. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3652. setup_for_endstop_move();
  3653. find_bed_induction_sensor_point_z();
  3654. clean_up_after_endstop_move();
  3655. SERIAL_PROTOCOLPGM("Bed found at: ");
  3656. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3657. SERIAL_PROTOCOLPGM("\n");
  3658. break;
  3659. /**
  3660. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3661. */
  3662. case 83:
  3663. {
  3664. int babystepz = code_seen('S') ? code_value() : 0;
  3665. int BabyPosition = code_seen('P') ? code_value() : 0;
  3666. if (babystepz != 0) {
  3667. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3668. // Is the axis indexed starting with zero or one?
  3669. if (BabyPosition > 4) {
  3670. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3671. }else{
  3672. // Save it to the eeprom
  3673. babystepLoadZ = babystepz;
  3674. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3675. // adjust the Z
  3676. babystepsTodoZadd(babystepLoadZ);
  3677. }
  3678. }
  3679. }
  3680. break;
  3681. /**
  3682. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3683. */
  3684. case 84:
  3685. babystepsTodoZsubtract(babystepLoadZ);
  3686. // babystepLoadZ = 0;
  3687. break;
  3688. /**
  3689. * G85: Prusa3D specific: Pick best babystep
  3690. */
  3691. case 85:
  3692. lcd_pick_babystep();
  3693. break;
  3694. #endif
  3695. /**
  3696. * G86: Prusa3D specific: Disable babystep correction after home.
  3697. * This G-code will be performed at the start of a calibration script.
  3698. */
  3699. case 86:
  3700. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3701. break;
  3702. /**
  3703. * G87: Prusa3D specific: Enable babystep correction after home
  3704. * This G-code will be performed at the end of a calibration script.
  3705. */
  3706. case 87:
  3707. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3708. break;
  3709. /**
  3710. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3711. */
  3712. case 88:
  3713. break;
  3714. #endif // ENABLE_MESH_BED_LEVELING
  3715. case 90: // G90
  3716. relative_mode = false;
  3717. break;
  3718. case 91: // G91
  3719. relative_mode = true;
  3720. break;
  3721. case 92: // G92
  3722. if(!code_seen(axis_codes[E_AXIS]))
  3723. st_synchronize();
  3724. for(int8_t i=0; i < NUM_AXIS; i++) {
  3725. if(code_seen(axis_codes[i])) {
  3726. if(i == E_AXIS) {
  3727. current_position[i] = code_value();
  3728. plan_set_e_position(current_position[E_AXIS]);
  3729. }
  3730. else {
  3731. current_position[i] = code_value()+add_homing[i];
  3732. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3733. }
  3734. }
  3735. }
  3736. break;
  3737. case 98: // G98 (activate farm mode)
  3738. farm_mode = 1;
  3739. PingTime = millis();
  3740. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3741. SilentModeMenu = SILENT_MODE_OFF;
  3742. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3743. break;
  3744. case 99: // G99 (deactivate farm mode)
  3745. farm_mode = 0;
  3746. lcd_printer_connected();
  3747. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3748. lcd_update(2);
  3749. break;
  3750. default:
  3751. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3752. }
  3753. } // end if(code_seen('G'))
  3754. else if(code_seen('M'))
  3755. {
  3756. int index;
  3757. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3758. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3759. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3760. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3761. } else
  3762. switch((int)code_value())
  3763. {
  3764. #ifdef ULTIPANEL
  3765. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3766. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3767. {
  3768. char *src = strchr_pointer + 2;
  3769. codenum = 0;
  3770. bool hasP = false, hasS = false;
  3771. if (code_seen('P')) {
  3772. codenum = code_value(); // milliseconds to wait
  3773. hasP = codenum > 0;
  3774. }
  3775. if (code_seen('S')) {
  3776. codenum = code_value() * 1000; // seconds to wait
  3777. hasS = codenum > 0;
  3778. }
  3779. starpos = strchr(src, '*');
  3780. if (starpos != NULL) *(starpos) = '\0';
  3781. while (*src == ' ') ++src;
  3782. if (!hasP && !hasS && *src != '\0') {
  3783. lcd_setstatus(src);
  3784. } else {
  3785. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3786. }
  3787. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3788. st_synchronize();
  3789. previous_millis_cmd = millis();
  3790. if (codenum > 0){
  3791. codenum += millis(); // keep track of when we started waiting
  3792. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3793. while(millis() < codenum && !lcd_clicked()){
  3794. manage_heater();
  3795. manage_inactivity(true);
  3796. lcd_update();
  3797. }
  3798. KEEPALIVE_STATE(IN_HANDLER);
  3799. lcd_ignore_click(false);
  3800. }else{
  3801. if (!lcd_detected())
  3802. break;
  3803. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3804. while(!lcd_clicked()){
  3805. manage_heater();
  3806. manage_inactivity(true);
  3807. lcd_update();
  3808. }
  3809. KEEPALIVE_STATE(IN_HANDLER);
  3810. }
  3811. if (IS_SD_PRINTING)
  3812. LCD_MESSAGERPGM(_i("Resuming print"));////MSG_RESUMING c=0 r=0
  3813. else
  3814. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3815. }
  3816. break;
  3817. #endif
  3818. case 17:
  3819. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3820. enable_x();
  3821. enable_y();
  3822. enable_z();
  3823. enable_e0();
  3824. enable_e1();
  3825. enable_e2();
  3826. break;
  3827. #ifdef SDSUPPORT
  3828. case 20: // M20 - list SD card
  3829. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3830. card.ls();
  3831. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3832. break;
  3833. case 21: // M21 - init SD card
  3834. card.initsd();
  3835. break;
  3836. case 22: //M22 - release SD card
  3837. card.release();
  3838. break;
  3839. case 23: //M23 - Select file
  3840. starpos = (strchr(strchr_pointer + 4,'*'));
  3841. if(starpos!=NULL)
  3842. *(starpos)='\0';
  3843. card.openFile(strchr_pointer + 4,true);
  3844. break;
  3845. case 24: //M24 - Start SD print
  3846. if (!card.paused)
  3847. failstats_reset_print();
  3848. card.startFileprint();
  3849. starttime=millis();
  3850. break;
  3851. case 25: //M25 - Pause SD print
  3852. card.pauseSDPrint();
  3853. break;
  3854. case 26: //M26 - Set SD index
  3855. if(card.cardOK && code_seen('S')) {
  3856. card.setIndex(code_value_long());
  3857. }
  3858. break;
  3859. case 27: //M27 - Get SD status
  3860. card.getStatus();
  3861. break;
  3862. case 28: //M28 - Start SD write
  3863. starpos = (strchr(strchr_pointer + 4,'*'));
  3864. if(starpos != NULL){
  3865. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3866. strchr_pointer = strchr(npos,' ') + 1;
  3867. *(starpos) = '\0';
  3868. }
  3869. card.openFile(strchr_pointer+4,false);
  3870. break;
  3871. case 29: //M29 - Stop SD write
  3872. //processed in write to file routine above
  3873. //card,saving = false;
  3874. break;
  3875. case 30: //M30 <filename> Delete File
  3876. if (card.cardOK){
  3877. card.closefile();
  3878. starpos = (strchr(strchr_pointer + 4,'*'));
  3879. if(starpos != NULL){
  3880. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3881. strchr_pointer = strchr(npos,' ') + 1;
  3882. *(starpos) = '\0';
  3883. }
  3884. card.removeFile(strchr_pointer + 4);
  3885. }
  3886. break;
  3887. case 32: //M32 - Select file and start SD print
  3888. {
  3889. if(card.sdprinting) {
  3890. st_synchronize();
  3891. }
  3892. starpos = (strchr(strchr_pointer + 4,'*'));
  3893. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3894. if(namestartpos==NULL)
  3895. {
  3896. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3897. }
  3898. else
  3899. namestartpos++; //to skip the '!'
  3900. if(starpos!=NULL)
  3901. *(starpos)='\0';
  3902. bool call_procedure=(code_seen('P'));
  3903. if(strchr_pointer>namestartpos)
  3904. call_procedure=false; //false alert, 'P' found within filename
  3905. if( card.cardOK )
  3906. {
  3907. card.openFile(namestartpos,true,!call_procedure);
  3908. if(code_seen('S'))
  3909. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3910. card.setIndex(code_value_long());
  3911. card.startFileprint();
  3912. if(!call_procedure)
  3913. starttime=millis(); //procedure calls count as normal print time.
  3914. }
  3915. } break;
  3916. case 928: //M928 - Start SD write
  3917. starpos = (strchr(strchr_pointer + 5,'*'));
  3918. if(starpos != NULL){
  3919. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3920. strchr_pointer = strchr(npos,' ') + 1;
  3921. *(starpos) = '\0';
  3922. }
  3923. card.openLogFile(strchr_pointer+5);
  3924. break;
  3925. #endif //SDSUPPORT
  3926. case 31: //M31 take time since the start of the SD print or an M109 command
  3927. {
  3928. stoptime=millis();
  3929. char time[30];
  3930. unsigned long t=(stoptime-starttime)/1000;
  3931. int sec,min;
  3932. min=t/60;
  3933. sec=t%60;
  3934. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3935. SERIAL_ECHO_START;
  3936. SERIAL_ECHOLN(time);
  3937. lcd_setstatus(time);
  3938. autotempShutdown();
  3939. }
  3940. break;
  3941. #ifndef _DISABLE_M42_M226
  3942. case 42: //M42 -Change pin status via gcode
  3943. if (code_seen('S'))
  3944. {
  3945. int pin_status = code_value();
  3946. int pin_number = LED_PIN;
  3947. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3948. pin_number = code_value();
  3949. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3950. {
  3951. if (sensitive_pins[i] == pin_number)
  3952. {
  3953. pin_number = -1;
  3954. break;
  3955. }
  3956. }
  3957. #if defined(FAN_PIN) && FAN_PIN > -1
  3958. if (pin_number == FAN_PIN)
  3959. fanSpeed = pin_status;
  3960. #endif
  3961. if (pin_number > -1)
  3962. {
  3963. pinMode(pin_number, OUTPUT);
  3964. digitalWrite(pin_number, pin_status);
  3965. analogWrite(pin_number, pin_status);
  3966. }
  3967. }
  3968. break;
  3969. #endif //_DISABLE_M42_M226
  3970. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3971. // Reset the baby step value and the baby step applied flag.
  3972. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3973. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3974. // Reset the skew and offset in both RAM and EEPROM.
  3975. reset_bed_offset_and_skew();
  3976. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3977. // the planner will not perform any adjustments in the XY plane.
  3978. // Wait for the motors to stop and update the current position with the absolute values.
  3979. world2machine_revert_to_uncorrected();
  3980. break;
  3981. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3982. {
  3983. int8_t verbosity_level = 0;
  3984. bool only_Z = code_seen('Z');
  3985. #ifdef SUPPORT_VERBOSITY
  3986. if (code_seen('V'))
  3987. {
  3988. // Just 'V' without a number counts as V1.
  3989. char c = strchr_pointer[1];
  3990. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3991. }
  3992. #endif //SUPPORT_VERBOSITY
  3993. gcode_M45(only_Z, verbosity_level);
  3994. }
  3995. break;
  3996. /*
  3997. case 46:
  3998. {
  3999. // M46: Prusa3D: Show the assigned IP address.
  4000. uint8_t ip[4];
  4001. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4002. if (hasIP) {
  4003. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4004. SERIAL_ECHO(int(ip[0]));
  4005. SERIAL_ECHOPGM(".");
  4006. SERIAL_ECHO(int(ip[1]));
  4007. SERIAL_ECHOPGM(".");
  4008. SERIAL_ECHO(int(ip[2]));
  4009. SERIAL_ECHOPGM(".");
  4010. SERIAL_ECHO(int(ip[3]));
  4011. SERIAL_ECHOLNPGM("");
  4012. } else {
  4013. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4014. }
  4015. break;
  4016. }
  4017. */
  4018. case 47:
  4019. // M47: Prusa3D: Show end stops dialog on the display.
  4020. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4021. lcd_diag_show_end_stops();
  4022. KEEPALIVE_STATE(IN_HANDLER);
  4023. break;
  4024. #if 0
  4025. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4026. {
  4027. // Disable the default update procedure of the display. We will do a modal dialog.
  4028. lcd_update_enable(false);
  4029. // Let the planner use the uncorrected coordinates.
  4030. mbl.reset();
  4031. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4032. // the planner will not perform any adjustments in the XY plane.
  4033. // Wait for the motors to stop and update the current position with the absolute values.
  4034. world2machine_revert_to_uncorrected();
  4035. // Move the print head close to the bed.
  4036. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4037. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4038. st_synchronize();
  4039. // Home in the XY plane.
  4040. set_destination_to_current();
  4041. setup_for_endstop_move();
  4042. home_xy();
  4043. int8_t verbosity_level = 0;
  4044. if (code_seen('V')) {
  4045. // Just 'V' without a number counts as V1.
  4046. char c = strchr_pointer[1];
  4047. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4048. }
  4049. bool success = scan_bed_induction_points(verbosity_level);
  4050. clean_up_after_endstop_move();
  4051. // Print head up.
  4052. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4054. st_synchronize();
  4055. lcd_update_enable(true);
  4056. break;
  4057. }
  4058. #endif
  4059. // M48 Z-Probe repeatability measurement function.
  4060. //
  4061. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4062. //
  4063. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4064. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4065. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4066. // regenerated.
  4067. //
  4068. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4069. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4070. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4071. //
  4072. #ifdef ENABLE_AUTO_BED_LEVELING
  4073. #ifdef Z_PROBE_REPEATABILITY_TEST
  4074. case 48: // M48 Z-Probe repeatability
  4075. {
  4076. #if Z_MIN_PIN == -1
  4077. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4078. #endif
  4079. double sum=0.0;
  4080. double mean=0.0;
  4081. double sigma=0.0;
  4082. double sample_set[50];
  4083. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4084. double X_current, Y_current, Z_current;
  4085. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4086. if (code_seen('V') || code_seen('v')) {
  4087. verbose_level = code_value();
  4088. if (verbose_level<0 || verbose_level>4 ) {
  4089. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4090. goto Sigma_Exit;
  4091. }
  4092. }
  4093. if (verbose_level > 0) {
  4094. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4095. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4096. }
  4097. if (code_seen('n')) {
  4098. n_samples = code_value();
  4099. if (n_samples<4 || n_samples>50 ) {
  4100. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4101. goto Sigma_Exit;
  4102. }
  4103. }
  4104. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4105. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4106. Z_current = st_get_position_mm(Z_AXIS);
  4107. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4108. ext_position = st_get_position_mm(E_AXIS);
  4109. if (code_seen('X') || code_seen('x') ) {
  4110. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4111. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4112. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4113. goto Sigma_Exit;
  4114. }
  4115. }
  4116. if (code_seen('Y') || code_seen('y') ) {
  4117. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4118. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4119. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4120. goto Sigma_Exit;
  4121. }
  4122. }
  4123. if (code_seen('L') || code_seen('l') ) {
  4124. n_legs = code_value();
  4125. if ( n_legs==1 )
  4126. n_legs = 2;
  4127. if ( n_legs<0 || n_legs>15 ) {
  4128. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4129. goto Sigma_Exit;
  4130. }
  4131. }
  4132. //
  4133. // Do all the preliminary setup work. First raise the probe.
  4134. //
  4135. st_synchronize();
  4136. plan_bed_level_matrix.set_to_identity();
  4137. plan_buffer_line( X_current, Y_current, Z_start_location,
  4138. ext_position,
  4139. homing_feedrate[Z_AXIS]/60,
  4140. active_extruder);
  4141. st_synchronize();
  4142. //
  4143. // Now get everything to the specified probe point So we can safely do a probe to
  4144. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4145. // use that as a starting point for each probe.
  4146. //
  4147. if (verbose_level > 2)
  4148. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4149. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4150. ext_position,
  4151. homing_feedrate[X_AXIS]/60,
  4152. active_extruder);
  4153. st_synchronize();
  4154. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4155. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4156. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4157. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4158. //
  4159. // OK, do the inital probe to get us close to the bed.
  4160. // Then retrace the right amount and use that in subsequent probes
  4161. //
  4162. setup_for_endstop_move();
  4163. run_z_probe();
  4164. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4165. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4166. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4167. ext_position,
  4168. homing_feedrate[X_AXIS]/60,
  4169. active_extruder);
  4170. st_synchronize();
  4171. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4172. for( n=0; n<n_samples; n++) {
  4173. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4174. if ( n_legs) {
  4175. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4176. int rotational_direction, l;
  4177. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4178. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4179. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4180. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4181. //SERIAL_ECHOPAIR(" theta: ",theta);
  4182. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4183. //SERIAL_PROTOCOLLNPGM("");
  4184. for( l=0; l<n_legs-1; l++) {
  4185. if (rotational_direction==1)
  4186. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4187. else
  4188. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4189. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4190. if ( radius<0.0 )
  4191. radius = -radius;
  4192. X_current = X_probe_location + cos(theta) * radius;
  4193. Y_current = Y_probe_location + sin(theta) * radius;
  4194. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4195. X_current = X_MIN_POS;
  4196. if ( X_current>X_MAX_POS)
  4197. X_current = X_MAX_POS;
  4198. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4199. Y_current = Y_MIN_POS;
  4200. if ( Y_current>Y_MAX_POS)
  4201. Y_current = Y_MAX_POS;
  4202. if (verbose_level>3 ) {
  4203. SERIAL_ECHOPAIR("x: ", X_current);
  4204. SERIAL_ECHOPAIR("y: ", Y_current);
  4205. SERIAL_PROTOCOLLNPGM("");
  4206. }
  4207. do_blocking_move_to( X_current, Y_current, Z_current );
  4208. }
  4209. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4210. }
  4211. setup_for_endstop_move();
  4212. run_z_probe();
  4213. sample_set[n] = current_position[Z_AXIS];
  4214. //
  4215. // Get the current mean for the data points we have so far
  4216. //
  4217. sum=0.0;
  4218. for( j=0; j<=n; j++) {
  4219. sum = sum + sample_set[j];
  4220. }
  4221. mean = sum / (double (n+1));
  4222. //
  4223. // Now, use that mean to calculate the standard deviation for the
  4224. // data points we have so far
  4225. //
  4226. sum=0.0;
  4227. for( j=0; j<=n; j++) {
  4228. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4229. }
  4230. sigma = sqrt( sum / (double (n+1)) );
  4231. if (verbose_level > 1) {
  4232. SERIAL_PROTOCOL(n+1);
  4233. SERIAL_PROTOCOL(" of ");
  4234. SERIAL_PROTOCOL(n_samples);
  4235. SERIAL_PROTOCOLPGM(" z: ");
  4236. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4237. }
  4238. if (verbose_level > 2) {
  4239. SERIAL_PROTOCOL(" mean: ");
  4240. SERIAL_PROTOCOL_F(mean,6);
  4241. SERIAL_PROTOCOL(" sigma: ");
  4242. SERIAL_PROTOCOL_F(sigma,6);
  4243. }
  4244. if (verbose_level > 0)
  4245. SERIAL_PROTOCOLPGM("\n");
  4246. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4247. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4248. st_synchronize();
  4249. }
  4250. delay(1000);
  4251. clean_up_after_endstop_move();
  4252. // enable_endstops(true);
  4253. if (verbose_level > 0) {
  4254. SERIAL_PROTOCOLPGM("Mean: ");
  4255. SERIAL_PROTOCOL_F(mean, 6);
  4256. SERIAL_PROTOCOLPGM("\n");
  4257. }
  4258. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4259. SERIAL_PROTOCOL_F(sigma, 6);
  4260. SERIAL_PROTOCOLPGM("\n\n");
  4261. Sigma_Exit:
  4262. break;
  4263. }
  4264. #endif // Z_PROBE_REPEATABILITY_TEST
  4265. #endif // ENABLE_AUTO_BED_LEVELING
  4266. case 104: // M104
  4267. if(setTargetedHotend(104)){
  4268. break;
  4269. }
  4270. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4271. setWatch();
  4272. break;
  4273. case 112: // M112 -Emergency Stop
  4274. kill("", 3);
  4275. break;
  4276. case 140: // M140 set bed temp
  4277. if (code_seen('S')) setTargetBed(code_value());
  4278. break;
  4279. case 105 : // M105
  4280. if(setTargetedHotend(105)){
  4281. break;
  4282. }
  4283. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4284. SERIAL_PROTOCOLPGM("ok T:");
  4285. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4286. SERIAL_PROTOCOLPGM(" /");
  4287. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4288. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4289. SERIAL_PROTOCOLPGM(" B:");
  4290. SERIAL_PROTOCOL_F(degBed(),1);
  4291. SERIAL_PROTOCOLPGM(" /");
  4292. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4293. #endif //TEMP_BED_PIN
  4294. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4295. SERIAL_PROTOCOLPGM(" T");
  4296. SERIAL_PROTOCOL(cur_extruder);
  4297. SERIAL_PROTOCOLPGM(":");
  4298. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4299. SERIAL_PROTOCOLPGM(" /");
  4300. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4301. }
  4302. #else
  4303. SERIAL_ERROR_START;
  4304. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4305. #endif
  4306. SERIAL_PROTOCOLPGM(" @:");
  4307. #ifdef EXTRUDER_WATTS
  4308. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4309. SERIAL_PROTOCOLPGM("W");
  4310. #else
  4311. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4312. #endif
  4313. SERIAL_PROTOCOLPGM(" B@:");
  4314. #ifdef BED_WATTS
  4315. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4316. SERIAL_PROTOCOLPGM("W");
  4317. #else
  4318. SERIAL_PROTOCOL(getHeaterPower(-1));
  4319. #endif
  4320. #ifdef PINDA_THERMISTOR
  4321. SERIAL_PROTOCOLPGM(" P:");
  4322. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4323. #endif //PINDA_THERMISTOR
  4324. #ifdef AMBIENT_THERMISTOR
  4325. SERIAL_PROTOCOLPGM(" A:");
  4326. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4327. #endif //AMBIENT_THERMISTOR
  4328. #ifdef SHOW_TEMP_ADC_VALUES
  4329. {float raw = 0.0;
  4330. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4331. SERIAL_PROTOCOLPGM(" ADC B:");
  4332. SERIAL_PROTOCOL_F(degBed(),1);
  4333. SERIAL_PROTOCOLPGM("C->");
  4334. raw = rawBedTemp();
  4335. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4336. SERIAL_PROTOCOLPGM(" Rb->");
  4337. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4338. SERIAL_PROTOCOLPGM(" Rxb->");
  4339. SERIAL_PROTOCOL_F(raw, 5);
  4340. #endif
  4341. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4342. SERIAL_PROTOCOLPGM(" T");
  4343. SERIAL_PROTOCOL(cur_extruder);
  4344. SERIAL_PROTOCOLPGM(":");
  4345. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4346. SERIAL_PROTOCOLPGM("C->");
  4347. raw = rawHotendTemp(cur_extruder);
  4348. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4349. SERIAL_PROTOCOLPGM(" Rt");
  4350. SERIAL_PROTOCOL(cur_extruder);
  4351. SERIAL_PROTOCOLPGM("->");
  4352. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4353. SERIAL_PROTOCOLPGM(" Rx");
  4354. SERIAL_PROTOCOL(cur_extruder);
  4355. SERIAL_PROTOCOLPGM("->");
  4356. SERIAL_PROTOCOL_F(raw, 5);
  4357. }}
  4358. #endif
  4359. SERIAL_PROTOCOLLN("");
  4360. KEEPALIVE_STATE(NOT_BUSY);
  4361. return;
  4362. break;
  4363. case 109:
  4364. {// M109 - Wait for extruder heater to reach target.
  4365. if(setTargetedHotend(109)){
  4366. break;
  4367. }
  4368. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4369. heating_status = 1;
  4370. if (farm_mode) { prusa_statistics(1); };
  4371. #ifdef AUTOTEMP
  4372. autotemp_enabled=false;
  4373. #endif
  4374. if (code_seen('S')) {
  4375. setTargetHotend(code_value(), tmp_extruder);
  4376. CooldownNoWait = true;
  4377. } else if (code_seen('R')) {
  4378. setTargetHotend(code_value(), tmp_extruder);
  4379. CooldownNoWait = false;
  4380. }
  4381. #ifdef AUTOTEMP
  4382. if (code_seen('S')) autotemp_min=code_value();
  4383. if (code_seen('B')) autotemp_max=code_value();
  4384. if (code_seen('F'))
  4385. {
  4386. autotemp_factor=code_value();
  4387. autotemp_enabled=true;
  4388. }
  4389. #endif
  4390. setWatch();
  4391. codenum = millis();
  4392. /* See if we are heating up or cooling down */
  4393. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4394. KEEPALIVE_STATE(NOT_BUSY);
  4395. cancel_heatup = false;
  4396. wait_for_heater(codenum); //loops until target temperature is reached
  4397. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4398. KEEPALIVE_STATE(IN_HANDLER);
  4399. heating_status = 2;
  4400. if (farm_mode) { prusa_statistics(2); };
  4401. //starttime=millis();
  4402. previous_millis_cmd = millis();
  4403. }
  4404. break;
  4405. case 190: // M190 - Wait for bed heater to reach target.
  4406. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4407. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4408. heating_status = 3;
  4409. if (farm_mode) { prusa_statistics(1); };
  4410. if (code_seen('S'))
  4411. {
  4412. setTargetBed(code_value());
  4413. CooldownNoWait = true;
  4414. }
  4415. else if (code_seen('R'))
  4416. {
  4417. setTargetBed(code_value());
  4418. CooldownNoWait = false;
  4419. }
  4420. codenum = millis();
  4421. cancel_heatup = false;
  4422. target_direction = isHeatingBed(); // true if heating, false if cooling
  4423. KEEPALIVE_STATE(NOT_BUSY);
  4424. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4425. {
  4426. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4427. {
  4428. if (!farm_mode) {
  4429. float tt = degHotend(active_extruder);
  4430. SERIAL_PROTOCOLPGM("T:");
  4431. SERIAL_PROTOCOL(tt);
  4432. SERIAL_PROTOCOLPGM(" E:");
  4433. SERIAL_PROTOCOL((int)active_extruder);
  4434. SERIAL_PROTOCOLPGM(" B:");
  4435. SERIAL_PROTOCOL_F(degBed(), 1);
  4436. SERIAL_PROTOCOLLN("");
  4437. }
  4438. codenum = millis();
  4439. }
  4440. manage_heater();
  4441. manage_inactivity();
  4442. lcd_update();
  4443. }
  4444. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4445. KEEPALIVE_STATE(IN_HANDLER);
  4446. heating_status = 4;
  4447. previous_millis_cmd = millis();
  4448. #endif
  4449. break;
  4450. #if defined(FAN_PIN) && FAN_PIN > -1
  4451. case 106: //M106 Fan On
  4452. if (code_seen('S')){
  4453. fanSpeed=constrain(code_value(),0,255);
  4454. }
  4455. else {
  4456. fanSpeed=255;
  4457. }
  4458. break;
  4459. case 107: //M107 Fan Off
  4460. fanSpeed = 0;
  4461. break;
  4462. #endif //FAN_PIN
  4463. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4464. case 80: // M80 - Turn on Power Supply
  4465. SET_OUTPUT(PS_ON_PIN); //GND
  4466. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4467. // If you have a switch on suicide pin, this is useful
  4468. // if you want to start another print with suicide feature after
  4469. // a print without suicide...
  4470. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4471. SET_OUTPUT(SUICIDE_PIN);
  4472. WRITE(SUICIDE_PIN, HIGH);
  4473. #endif
  4474. #ifdef ULTIPANEL
  4475. powersupply = true;
  4476. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4477. lcd_update();
  4478. #endif
  4479. break;
  4480. #endif
  4481. case 81: // M81 - Turn off Power Supply
  4482. disable_heater();
  4483. st_synchronize();
  4484. disable_e0();
  4485. disable_e1();
  4486. disable_e2();
  4487. finishAndDisableSteppers();
  4488. fanSpeed = 0;
  4489. delay(1000); // Wait a little before to switch off
  4490. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4491. st_synchronize();
  4492. suicide();
  4493. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4494. SET_OUTPUT(PS_ON_PIN);
  4495. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4496. #endif
  4497. #ifdef ULTIPANEL
  4498. powersupply = false;
  4499. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4500. /*
  4501. MACHNAME = "Prusa i3"
  4502. MSGOFF = "Vypnuto"
  4503. "Prusai3"" ""vypnuto""."
  4504. "Prusa i3"" "_T(MSG_ALL)[lang_selected][50]"."
  4505. */
  4506. lcd_update();
  4507. #endif
  4508. break;
  4509. case 82:
  4510. axis_relative_modes[3] = false;
  4511. break;
  4512. case 83:
  4513. axis_relative_modes[3] = true;
  4514. break;
  4515. case 18: //compatibility
  4516. case 84: // M84
  4517. if(code_seen('S')){
  4518. stepper_inactive_time = code_value() * 1000;
  4519. }
  4520. else
  4521. {
  4522. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4523. if(all_axis)
  4524. {
  4525. st_synchronize();
  4526. disable_e0();
  4527. disable_e1();
  4528. disable_e2();
  4529. finishAndDisableSteppers();
  4530. }
  4531. else
  4532. {
  4533. st_synchronize();
  4534. if (code_seen('X')) disable_x();
  4535. if (code_seen('Y')) disable_y();
  4536. if (code_seen('Z')) disable_z();
  4537. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4538. if (code_seen('E')) {
  4539. disable_e0();
  4540. disable_e1();
  4541. disable_e2();
  4542. }
  4543. #endif
  4544. }
  4545. }
  4546. snmm_filaments_used = 0;
  4547. break;
  4548. case 85: // M85
  4549. if(code_seen('S')) {
  4550. max_inactive_time = code_value() * 1000;
  4551. }
  4552. break;
  4553. case 92: // M92
  4554. for(int8_t i=0; i < NUM_AXIS; i++)
  4555. {
  4556. if(code_seen(axis_codes[i]))
  4557. {
  4558. if(i == 3) { // E
  4559. float value = code_value();
  4560. if(value < 20.0) {
  4561. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4562. max_jerk[E_AXIS] *= factor;
  4563. max_feedrate[i] *= factor;
  4564. axis_steps_per_sqr_second[i] *= factor;
  4565. }
  4566. axis_steps_per_unit[i] = value;
  4567. }
  4568. else {
  4569. axis_steps_per_unit[i] = code_value();
  4570. }
  4571. }
  4572. }
  4573. break;
  4574. case 110: // M110 - reset line pos
  4575. if (code_seen('N'))
  4576. gcode_LastN = code_value_long();
  4577. break;
  4578. #ifdef HOST_KEEPALIVE_FEATURE
  4579. case 113: // M113 - Get or set Host Keepalive interval
  4580. if (code_seen('S')) {
  4581. host_keepalive_interval = (uint8_t)code_value_short();
  4582. // NOMORE(host_keepalive_interval, 60);
  4583. }
  4584. else {
  4585. SERIAL_ECHO_START;
  4586. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4587. SERIAL_PROTOCOLLN("");
  4588. }
  4589. break;
  4590. #endif
  4591. case 115: // M115
  4592. if (code_seen('V')) {
  4593. // Report the Prusa version number.
  4594. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4595. } else if (code_seen('U')) {
  4596. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4597. // pause the print and ask the user to upgrade the firmware.
  4598. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4599. } else {
  4600. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4601. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4602. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4603. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4604. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4605. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4606. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4607. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4608. SERIAL_ECHOPGM(" UUID:");
  4609. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4610. }
  4611. break;
  4612. /* case 117: // M117 display message
  4613. starpos = (strchr(strchr_pointer + 5,'*'));
  4614. if(starpos!=NULL)
  4615. *(starpos)='\0';
  4616. lcd_setstatus(strchr_pointer + 5);
  4617. break;*/
  4618. case 114: // M114
  4619. gcode_M114();
  4620. break;
  4621. case 120: // M120
  4622. enable_endstops(false) ;
  4623. break;
  4624. case 121: // M121
  4625. enable_endstops(true) ;
  4626. break;
  4627. case 119: // M119
  4628. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4629. SERIAL_PROTOCOLLN("");
  4630. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4631. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4632. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4633. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4634. }else{
  4635. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4636. }
  4637. SERIAL_PROTOCOLLN("");
  4638. #endif
  4639. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4640. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4641. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4642. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4643. }else{
  4644. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4645. }
  4646. SERIAL_PROTOCOLLN("");
  4647. #endif
  4648. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4649. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4650. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4651. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4652. }else{
  4653. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4654. }
  4655. SERIAL_PROTOCOLLN("");
  4656. #endif
  4657. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4658. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4659. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4660. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4661. }else{
  4662. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4663. }
  4664. SERIAL_PROTOCOLLN("");
  4665. #endif
  4666. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4667. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4668. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4669. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4670. }else{
  4671. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4672. }
  4673. SERIAL_PROTOCOLLN("");
  4674. #endif
  4675. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4676. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4677. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4678. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4679. }else{
  4680. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4681. }
  4682. SERIAL_PROTOCOLLN("");
  4683. #endif
  4684. break;
  4685. //TODO: update for all axis, use for loop
  4686. #ifdef BLINKM
  4687. case 150: // M150
  4688. {
  4689. byte red;
  4690. byte grn;
  4691. byte blu;
  4692. if(code_seen('R')) red = code_value();
  4693. if(code_seen('U')) grn = code_value();
  4694. if(code_seen('B')) blu = code_value();
  4695. SendColors(red,grn,blu);
  4696. }
  4697. break;
  4698. #endif //BLINKM
  4699. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4700. {
  4701. tmp_extruder = active_extruder;
  4702. if(code_seen('T')) {
  4703. tmp_extruder = code_value();
  4704. if(tmp_extruder >= EXTRUDERS) {
  4705. SERIAL_ECHO_START;
  4706. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4707. break;
  4708. }
  4709. }
  4710. float area = .0;
  4711. if(code_seen('D')) {
  4712. float diameter = (float)code_value();
  4713. if (diameter == 0.0) {
  4714. // setting any extruder filament size disables volumetric on the assumption that
  4715. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4716. // for all extruders
  4717. volumetric_enabled = false;
  4718. } else {
  4719. filament_size[tmp_extruder] = (float)code_value();
  4720. // make sure all extruders have some sane value for the filament size
  4721. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4722. #if EXTRUDERS > 1
  4723. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4724. #if EXTRUDERS > 2
  4725. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4726. #endif
  4727. #endif
  4728. volumetric_enabled = true;
  4729. }
  4730. } else {
  4731. //reserved for setting filament diameter via UFID or filament measuring device
  4732. break;
  4733. }
  4734. calculate_extruder_multipliers();
  4735. }
  4736. break;
  4737. case 201: // M201
  4738. for(int8_t i=0; i < NUM_AXIS; i++)
  4739. {
  4740. if(code_seen(axis_codes[i]))
  4741. {
  4742. max_acceleration_units_per_sq_second[i] = code_value();
  4743. }
  4744. }
  4745. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4746. reset_acceleration_rates();
  4747. break;
  4748. #if 0 // Not used for Sprinter/grbl gen6
  4749. case 202: // M202
  4750. for(int8_t i=0; i < NUM_AXIS; i++) {
  4751. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4752. }
  4753. break;
  4754. #endif
  4755. case 203: // M203 max feedrate mm/sec
  4756. for(int8_t i=0; i < NUM_AXIS; i++) {
  4757. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4758. }
  4759. break;
  4760. case 204: // M204 acclereration S normal moves T filmanent only moves
  4761. {
  4762. if(code_seen('S')) acceleration = code_value() ;
  4763. if(code_seen('T')) retract_acceleration = code_value() ;
  4764. }
  4765. break;
  4766. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4767. {
  4768. if(code_seen('S')) minimumfeedrate = code_value();
  4769. if(code_seen('T')) mintravelfeedrate = code_value();
  4770. if(code_seen('B')) minsegmenttime = code_value() ;
  4771. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4772. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4773. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4774. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4775. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4776. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4777. }
  4778. break;
  4779. case 206: // M206 additional homing offset
  4780. for(int8_t i=0; i < 3; i++)
  4781. {
  4782. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4783. }
  4784. break;
  4785. #ifdef FWRETRACT
  4786. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4787. {
  4788. if(code_seen('S'))
  4789. {
  4790. retract_length = code_value() ;
  4791. }
  4792. if(code_seen('F'))
  4793. {
  4794. retract_feedrate = code_value()/60 ;
  4795. }
  4796. if(code_seen('Z'))
  4797. {
  4798. retract_zlift = code_value() ;
  4799. }
  4800. }break;
  4801. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4802. {
  4803. if(code_seen('S'))
  4804. {
  4805. retract_recover_length = code_value() ;
  4806. }
  4807. if(code_seen('F'))
  4808. {
  4809. retract_recover_feedrate = code_value()/60 ;
  4810. }
  4811. }break;
  4812. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4813. {
  4814. if(code_seen('S'))
  4815. {
  4816. int t= code_value() ;
  4817. switch(t)
  4818. {
  4819. case 0:
  4820. {
  4821. autoretract_enabled=false;
  4822. retracted[0]=false;
  4823. #if EXTRUDERS > 1
  4824. retracted[1]=false;
  4825. #endif
  4826. #if EXTRUDERS > 2
  4827. retracted[2]=false;
  4828. #endif
  4829. }break;
  4830. case 1:
  4831. {
  4832. autoretract_enabled=true;
  4833. retracted[0]=false;
  4834. #if EXTRUDERS > 1
  4835. retracted[1]=false;
  4836. #endif
  4837. #if EXTRUDERS > 2
  4838. retracted[2]=false;
  4839. #endif
  4840. }break;
  4841. default:
  4842. SERIAL_ECHO_START;
  4843. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4844. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4845. SERIAL_ECHOLNPGM("\"(1)");
  4846. }
  4847. }
  4848. }break;
  4849. #endif // FWRETRACT
  4850. #if EXTRUDERS > 1
  4851. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4852. {
  4853. if(setTargetedHotend(218)){
  4854. break;
  4855. }
  4856. if(code_seen('X'))
  4857. {
  4858. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4859. }
  4860. if(code_seen('Y'))
  4861. {
  4862. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4863. }
  4864. SERIAL_ECHO_START;
  4865. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4866. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4867. {
  4868. SERIAL_ECHO(" ");
  4869. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4870. SERIAL_ECHO(",");
  4871. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4872. }
  4873. SERIAL_ECHOLN("");
  4874. }break;
  4875. #endif
  4876. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4877. {
  4878. if(code_seen('S'))
  4879. {
  4880. feedmultiply = code_value() ;
  4881. }
  4882. }
  4883. break;
  4884. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4885. {
  4886. if(code_seen('S'))
  4887. {
  4888. int tmp_code = code_value();
  4889. if (code_seen('T'))
  4890. {
  4891. if(setTargetedHotend(221)){
  4892. break;
  4893. }
  4894. extruder_multiply[tmp_extruder] = tmp_code;
  4895. }
  4896. else
  4897. {
  4898. extrudemultiply = tmp_code ;
  4899. }
  4900. }
  4901. calculate_extruder_multipliers();
  4902. }
  4903. break;
  4904. #ifndef _DISABLE_M42_M226
  4905. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4906. {
  4907. if(code_seen('P')){
  4908. int pin_number = code_value(); // pin number
  4909. int pin_state = -1; // required pin state - default is inverted
  4910. if(code_seen('S')) pin_state = code_value(); // required pin state
  4911. if(pin_state >= -1 && pin_state <= 1){
  4912. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4913. {
  4914. if (sensitive_pins[i] == pin_number)
  4915. {
  4916. pin_number = -1;
  4917. break;
  4918. }
  4919. }
  4920. if (pin_number > -1)
  4921. {
  4922. int target = LOW;
  4923. st_synchronize();
  4924. pinMode(pin_number, INPUT);
  4925. switch(pin_state){
  4926. case 1:
  4927. target = HIGH;
  4928. break;
  4929. case 0:
  4930. target = LOW;
  4931. break;
  4932. case -1:
  4933. target = !digitalRead(pin_number);
  4934. break;
  4935. }
  4936. while(digitalRead(pin_number) != target){
  4937. manage_heater();
  4938. manage_inactivity();
  4939. lcd_update();
  4940. }
  4941. }
  4942. }
  4943. }
  4944. }
  4945. break;
  4946. #endif //_DISABLE_M42_M226
  4947. #if NUM_SERVOS > 0
  4948. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4949. {
  4950. int servo_index = -1;
  4951. int servo_position = 0;
  4952. if (code_seen('P'))
  4953. servo_index = code_value();
  4954. if (code_seen('S')) {
  4955. servo_position = code_value();
  4956. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4957. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4958. servos[servo_index].attach(0);
  4959. #endif
  4960. servos[servo_index].write(servo_position);
  4961. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4962. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4963. servos[servo_index].detach();
  4964. #endif
  4965. }
  4966. else {
  4967. SERIAL_ECHO_START;
  4968. SERIAL_ECHO("Servo ");
  4969. SERIAL_ECHO(servo_index);
  4970. SERIAL_ECHOLN(" out of range");
  4971. }
  4972. }
  4973. else if (servo_index >= 0) {
  4974. SERIAL_PROTOCOL(_T(MSG_OK));
  4975. SERIAL_PROTOCOL(" Servo ");
  4976. SERIAL_PROTOCOL(servo_index);
  4977. SERIAL_PROTOCOL(": ");
  4978. SERIAL_PROTOCOL(servos[servo_index].read());
  4979. SERIAL_PROTOCOLLN("");
  4980. }
  4981. }
  4982. break;
  4983. #endif // NUM_SERVOS > 0
  4984. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4985. case 300: // M300
  4986. {
  4987. int beepS = code_seen('S') ? code_value() : 110;
  4988. int beepP = code_seen('P') ? code_value() : 1000;
  4989. if (beepS > 0)
  4990. {
  4991. #if BEEPER > 0
  4992. tone(BEEPER, beepS);
  4993. delay(beepP);
  4994. noTone(BEEPER);
  4995. #elif defined(ULTRALCD)
  4996. lcd_buzz(beepS, beepP);
  4997. #elif defined(LCD_USE_I2C_BUZZER)
  4998. lcd_buzz(beepP, beepS);
  4999. #endif
  5000. }
  5001. else
  5002. {
  5003. delay(beepP);
  5004. }
  5005. }
  5006. break;
  5007. #endif // M300
  5008. #ifdef PIDTEMP
  5009. case 301: // M301
  5010. {
  5011. if(code_seen('P')) Kp = code_value();
  5012. if(code_seen('I')) Ki = scalePID_i(code_value());
  5013. if(code_seen('D')) Kd = scalePID_d(code_value());
  5014. #ifdef PID_ADD_EXTRUSION_RATE
  5015. if(code_seen('C')) Kc = code_value();
  5016. #endif
  5017. updatePID();
  5018. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5019. SERIAL_PROTOCOL(" p:");
  5020. SERIAL_PROTOCOL(Kp);
  5021. SERIAL_PROTOCOL(" i:");
  5022. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5023. SERIAL_PROTOCOL(" d:");
  5024. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5025. #ifdef PID_ADD_EXTRUSION_RATE
  5026. SERIAL_PROTOCOL(" c:");
  5027. //Kc does not have scaling applied above, or in resetting defaults
  5028. SERIAL_PROTOCOL(Kc);
  5029. #endif
  5030. SERIAL_PROTOCOLLN("");
  5031. }
  5032. break;
  5033. #endif //PIDTEMP
  5034. #ifdef PIDTEMPBED
  5035. case 304: // M304
  5036. {
  5037. if(code_seen('P')) bedKp = code_value();
  5038. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5039. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5040. updatePID();
  5041. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5042. SERIAL_PROTOCOL(" p:");
  5043. SERIAL_PROTOCOL(bedKp);
  5044. SERIAL_PROTOCOL(" i:");
  5045. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5046. SERIAL_PROTOCOL(" d:");
  5047. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5048. SERIAL_PROTOCOLLN("");
  5049. }
  5050. break;
  5051. #endif //PIDTEMP
  5052. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5053. {
  5054. #ifdef CHDK
  5055. SET_OUTPUT(CHDK);
  5056. WRITE(CHDK, HIGH);
  5057. chdkHigh = millis();
  5058. chdkActive = true;
  5059. #else
  5060. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5061. const uint8_t NUM_PULSES=16;
  5062. const float PULSE_LENGTH=0.01524;
  5063. for(int i=0; i < NUM_PULSES; i++) {
  5064. WRITE(PHOTOGRAPH_PIN, HIGH);
  5065. _delay_ms(PULSE_LENGTH);
  5066. WRITE(PHOTOGRAPH_PIN, LOW);
  5067. _delay_ms(PULSE_LENGTH);
  5068. }
  5069. delay(7.33);
  5070. for(int i=0; i < NUM_PULSES; i++) {
  5071. WRITE(PHOTOGRAPH_PIN, HIGH);
  5072. _delay_ms(PULSE_LENGTH);
  5073. WRITE(PHOTOGRAPH_PIN, LOW);
  5074. _delay_ms(PULSE_LENGTH);
  5075. }
  5076. #endif
  5077. #endif //chdk end if
  5078. }
  5079. break;
  5080. #ifdef DOGLCD
  5081. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5082. {
  5083. if (code_seen('C')) {
  5084. lcd_setcontrast( ((int)code_value())&63 );
  5085. }
  5086. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5087. SERIAL_PROTOCOL(lcd_contrast);
  5088. SERIAL_PROTOCOLLN("");
  5089. }
  5090. break;
  5091. #endif
  5092. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5093. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5094. {
  5095. float temp = .0;
  5096. if (code_seen('S')) temp=code_value();
  5097. set_extrude_min_temp(temp);
  5098. }
  5099. break;
  5100. #endif
  5101. case 303: // M303 PID autotune
  5102. {
  5103. float temp = 150.0;
  5104. int e=0;
  5105. int c=5;
  5106. if (code_seen('E')) e=code_value();
  5107. if (e<0)
  5108. temp=70;
  5109. if (code_seen('S')) temp=code_value();
  5110. if (code_seen('C')) c=code_value();
  5111. PID_autotune(temp, e, c);
  5112. }
  5113. break;
  5114. case 400: // M400 finish all moves
  5115. {
  5116. st_synchronize();
  5117. }
  5118. break;
  5119. case 500: // M500 Store settings in EEPROM
  5120. {
  5121. Config_StoreSettings(EEPROM_OFFSET);
  5122. }
  5123. break;
  5124. case 501: // M501 Read settings from EEPROM
  5125. {
  5126. Config_RetrieveSettings(EEPROM_OFFSET);
  5127. }
  5128. break;
  5129. case 502: // M502 Revert to default settings
  5130. {
  5131. Config_ResetDefault();
  5132. }
  5133. break;
  5134. case 503: // M503 print settings currently in memory
  5135. {
  5136. Config_PrintSettings();
  5137. }
  5138. break;
  5139. case 509: //M509 Force language selection
  5140. {
  5141. lcd_force_language_selection();
  5142. SERIAL_ECHO_START;
  5143. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5144. }
  5145. break;
  5146. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5147. case 540:
  5148. {
  5149. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5150. }
  5151. break;
  5152. #endif
  5153. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5154. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5155. {
  5156. float value;
  5157. if (code_seen('Z'))
  5158. {
  5159. value = code_value();
  5160. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5161. {
  5162. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5163. SERIAL_ECHO_START;
  5164. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5165. SERIAL_PROTOCOLLN("");
  5166. }
  5167. else
  5168. {
  5169. SERIAL_ECHO_START;
  5170. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5171. SERIAL_ECHORPGM(MSG_Z_MIN);
  5172. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5173. SERIAL_ECHORPGM(MSG_Z_MAX);
  5174. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5175. SERIAL_PROTOCOLLN("");
  5176. }
  5177. }
  5178. else
  5179. {
  5180. SERIAL_ECHO_START;
  5181. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5182. SERIAL_ECHO(-zprobe_zoffset);
  5183. SERIAL_PROTOCOLLN("");
  5184. }
  5185. break;
  5186. }
  5187. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5188. #ifdef FILAMENTCHANGEENABLE
  5189. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5190. {
  5191. #ifdef PAT9125
  5192. bool old_fsensor_enabled = fsensor_enabled;
  5193. fsensor_enabled = false; //temporary solution for unexpected restarting
  5194. #endif //PAT9125
  5195. st_synchronize();
  5196. float target[4];
  5197. float lastpos[4];
  5198. if (farm_mode)
  5199. {
  5200. prusa_statistics(22);
  5201. }
  5202. feedmultiplyBckp=feedmultiply;
  5203. int8_t TooLowZ = 0;
  5204. float HotendTempBckp = degTargetHotend(active_extruder);
  5205. int fanSpeedBckp = fanSpeed;
  5206. target[X_AXIS]=current_position[X_AXIS];
  5207. target[Y_AXIS]=current_position[Y_AXIS];
  5208. target[Z_AXIS]=current_position[Z_AXIS];
  5209. target[E_AXIS]=current_position[E_AXIS];
  5210. lastpos[X_AXIS]=current_position[X_AXIS];
  5211. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5212. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5213. lastpos[E_AXIS]=current_position[E_AXIS];
  5214. //Restract extruder
  5215. if(code_seen('E'))
  5216. {
  5217. target[E_AXIS]+= code_value();
  5218. }
  5219. else
  5220. {
  5221. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5222. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5223. #endif
  5224. }
  5225. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5226. //Lift Z
  5227. if(code_seen('Z'))
  5228. {
  5229. target[Z_AXIS]+= code_value();
  5230. }
  5231. else
  5232. {
  5233. #ifdef FILAMENTCHANGE_ZADD
  5234. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5235. if(target[Z_AXIS] < 10){
  5236. target[Z_AXIS]+= 10 ;
  5237. TooLowZ = 1;
  5238. }else{
  5239. TooLowZ = 0;
  5240. }
  5241. #endif
  5242. }
  5243. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5244. //Move XY to side
  5245. if(code_seen('X'))
  5246. {
  5247. target[X_AXIS]+= code_value();
  5248. }
  5249. else
  5250. {
  5251. #ifdef FILAMENTCHANGE_XPOS
  5252. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5253. #endif
  5254. }
  5255. if(code_seen('Y'))
  5256. {
  5257. target[Y_AXIS]= code_value();
  5258. }
  5259. else
  5260. {
  5261. #ifdef FILAMENTCHANGE_YPOS
  5262. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5263. #endif
  5264. }
  5265. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5266. st_synchronize();
  5267. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5268. uint8_t cnt = 0;
  5269. int counterBeep = 0;
  5270. fanSpeed = 0;
  5271. unsigned long waiting_start_time = millis();
  5272. uint8_t wait_for_user_state = 0;
  5273. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5274. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5275. //cnt++;
  5276. manage_heater();
  5277. manage_inactivity(true);
  5278. /*#ifdef SNMM
  5279. target[E_AXIS] += 0.002;
  5280. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5281. #endif // SNMM*/
  5282. //if (cnt == 0)
  5283. {
  5284. #if BEEPER > 0
  5285. if (counterBeep == 500) {
  5286. counterBeep = 0;
  5287. }
  5288. SET_OUTPUT(BEEPER);
  5289. if (counterBeep == 0) {
  5290. WRITE(BEEPER, HIGH);
  5291. }
  5292. if (counterBeep == 20) {
  5293. WRITE(BEEPER, LOW);
  5294. }
  5295. counterBeep++;
  5296. #else
  5297. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5298. lcd_buzz(1000 / 6, 100);
  5299. #else
  5300. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5301. #endif
  5302. #endif
  5303. }
  5304. switch (wait_for_user_state) {
  5305. case 0:
  5306. delay_keep_alive(4);
  5307. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5308. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5309. wait_for_user_state = 1;
  5310. setTargetHotend(0, 0);
  5311. setTargetHotend(0, 1);
  5312. setTargetHotend(0, 2);
  5313. st_synchronize();
  5314. disable_e0();
  5315. disable_e1();
  5316. disable_e2();
  5317. }
  5318. break;
  5319. case 1:
  5320. delay_keep_alive(4);
  5321. if (lcd_clicked()) {
  5322. setTargetHotend(HotendTempBckp, active_extruder);
  5323. lcd_wait_for_heater();
  5324. wait_for_user_state = 2;
  5325. }
  5326. break;
  5327. case 2:
  5328. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5329. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5330. waiting_start_time = millis();
  5331. wait_for_user_state = 0;
  5332. }
  5333. else {
  5334. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5335. lcd.setCursor(1, 4);
  5336. lcd.print(ftostr3(degHotend(active_extruder)));
  5337. }
  5338. break;
  5339. }
  5340. }
  5341. WRITE(BEEPER, LOW);
  5342. lcd_change_fil_state = 0;
  5343. // Unload filament
  5344. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5345. KEEPALIVE_STATE(IN_HANDLER);
  5346. custom_message = true;
  5347. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5348. if (code_seen('L'))
  5349. {
  5350. target[E_AXIS] += code_value();
  5351. }
  5352. else
  5353. {
  5354. #ifdef SNMM
  5355. #else
  5356. #ifdef FILAMENTCHANGE_FINALRETRACT
  5357. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5358. #endif
  5359. #endif // SNMM
  5360. }
  5361. #ifdef SNMM
  5362. target[E_AXIS] += 12;
  5363. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5364. target[E_AXIS] += 6;
  5365. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5366. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5367. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5368. st_synchronize();
  5369. target[E_AXIS] += (FIL_COOLING);
  5370. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5371. target[E_AXIS] += (FIL_COOLING*-1);
  5372. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5373. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5374. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5375. st_synchronize();
  5376. #else
  5377. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5378. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5379. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5380. st_synchronize();
  5381. #ifdef TMC2130
  5382. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5383. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5384. #else
  5385. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5386. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5387. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5388. #endif //TMC2130
  5389. target[E_AXIS] -= 45;
  5390. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5391. st_synchronize();
  5392. target[E_AXIS] -= 15;
  5393. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5394. st_synchronize();
  5395. target[E_AXIS] -= 20;
  5396. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5397. st_synchronize();
  5398. #ifdef TMC2130
  5399. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5400. #else
  5401. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5402. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5403. else st_current_set(2, tmp_motor_loud[2]);
  5404. #endif //TMC2130
  5405. #endif // SNMM
  5406. //finish moves
  5407. st_synchronize();
  5408. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5409. //disable extruder steppers so filament can be removed
  5410. disable_e0();
  5411. disable_e1();
  5412. disable_e2();
  5413. delay(100);
  5414. WRITE(BEEPER, HIGH);
  5415. counterBeep = 0;
  5416. while(!lcd_clicked() && (counterBeep < 50)) {
  5417. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5418. delay_keep_alive(100);
  5419. counterBeep++;
  5420. }
  5421. WRITE(BEEPER, LOW);
  5422. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5423. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5424. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5425. //lcd_return_to_status();
  5426. lcd_update_enable(true);
  5427. //Wait for user to insert filament
  5428. lcd_wait_interact();
  5429. //load_filament_time = millis();
  5430. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5431. #ifdef PAT9125
  5432. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5433. #endif //PAT9125
  5434. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5435. while(!lcd_clicked())
  5436. {
  5437. manage_heater();
  5438. manage_inactivity(true);
  5439. #ifdef PAT9125
  5440. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5441. {
  5442. tone(BEEPER, 1000);
  5443. delay_keep_alive(50);
  5444. noTone(BEEPER);
  5445. break;
  5446. }
  5447. #endif //PAT9125
  5448. /*#ifdef SNMM
  5449. target[E_AXIS] += 0.002;
  5450. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5451. #endif // SNMM*/
  5452. }
  5453. #ifdef PAT9125
  5454. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5455. #endif //PAT9125
  5456. //WRITE(BEEPER, LOW);
  5457. KEEPALIVE_STATE(IN_HANDLER);
  5458. #ifdef SNMM
  5459. display_loading();
  5460. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5461. do {
  5462. target[E_AXIS] += 0.002;
  5463. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5464. delay_keep_alive(2);
  5465. } while (!lcd_clicked());
  5466. KEEPALIVE_STATE(IN_HANDLER);
  5467. /*if (millis() - load_filament_time > 2) {
  5468. load_filament_time = millis();
  5469. target[E_AXIS] += 0.001;
  5470. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5471. }*/
  5472. //Filament inserted
  5473. //Feed the filament to the end of nozzle quickly
  5474. st_synchronize();
  5475. target[E_AXIS] += bowden_length[snmm_extruder];
  5476. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5477. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5478. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5479. target[E_AXIS] += 40;
  5480. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5481. target[E_AXIS] += 10;
  5482. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5483. #else
  5484. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5485. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5486. #endif // SNMM
  5487. //Extrude some filament
  5488. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5490. //Wait for user to check the state
  5491. lcd_change_fil_state = 0;
  5492. lcd_loading_filament();
  5493. tone(BEEPER, 500);
  5494. delay_keep_alive(50);
  5495. noTone(BEEPER);
  5496. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5497. lcd_change_fil_state = 0;
  5498. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5499. lcd_alright();
  5500. KEEPALIVE_STATE(IN_HANDLER);
  5501. switch(lcd_change_fil_state){
  5502. // Filament failed to load so load it again
  5503. case 2:
  5504. #ifdef SNMM
  5505. display_loading();
  5506. do {
  5507. target[E_AXIS] += 0.002;
  5508. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5509. delay_keep_alive(2);
  5510. } while (!lcd_clicked());
  5511. st_synchronize();
  5512. target[E_AXIS] += bowden_length[snmm_extruder];
  5513. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5514. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5515. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5516. target[E_AXIS] += 40;
  5517. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5518. target[E_AXIS] += 10;
  5519. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5520. #else
  5521. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5522. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5523. #endif
  5524. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5525. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5526. lcd_loading_filament();
  5527. break;
  5528. // Filament loaded properly but color is not clear
  5529. case 3:
  5530. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5531. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5532. lcd_loading_color();
  5533. break;
  5534. // Everything good
  5535. default:
  5536. lcd_change_success();
  5537. lcd_update_enable(true);
  5538. break;
  5539. }
  5540. }
  5541. //Not let's go back to print
  5542. fanSpeed = fanSpeedBckp;
  5543. //Feed a little of filament to stabilize pressure
  5544. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5545. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5546. //Retract
  5547. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5549. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5550. //Move XY back
  5551. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5552. //Move Z back
  5553. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5554. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5555. //Unretract
  5556. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5557. //Set E position to original
  5558. plan_set_e_position(lastpos[E_AXIS]);
  5559. //Recover feed rate
  5560. feedmultiply=feedmultiplyBckp;
  5561. char cmd[9];
  5562. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5563. enquecommand(cmd);
  5564. lcd_setstatuspgm(_T(WELCOME_MSG));
  5565. custom_message = false;
  5566. custom_message_type = 0;
  5567. #ifdef PAT9125
  5568. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5569. if (fsensor_M600)
  5570. {
  5571. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5572. st_synchronize();
  5573. while (!is_buffer_empty())
  5574. {
  5575. process_commands();
  5576. cmdqueue_pop_front();
  5577. }
  5578. fsensor_enable();
  5579. fsensor_restore_print_and_continue();
  5580. }
  5581. #endif //PAT9125
  5582. }
  5583. break;
  5584. #endif //FILAMENTCHANGEENABLE
  5585. case 601: {
  5586. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5587. }
  5588. break;
  5589. case 602: {
  5590. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5591. }
  5592. break;
  5593. #ifdef PINDA_THERMISTOR
  5594. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5595. {
  5596. int set_target_pinda = 0;
  5597. if (code_seen('S')) {
  5598. set_target_pinda = code_value();
  5599. }
  5600. else {
  5601. break;
  5602. }
  5603. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5604. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5605. SERIAL_PROTOCOL(set_target_pinda);
  5606. SERIAL_PROTOCOLLN("");
  5607. codenum = millis();
  5608. cancel_heatup = false;
  5609. bool is_pinda_cooling = false;
  5610. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5611. is_pinda_cooling = true;
  5612. }
  5613. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5614. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5615. {
  5616. SERIAL_PROTOCOLPGM("P:");
  5617. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5618. SERIAL_PROTOCOLPGM("/");
  5619. SERIAL_PROTOCOL(set_target_pinda);
  5620. SERIAL_PROTOCOLLN("");
  5621. codenum = millis();
  5622. }
  5623. manage_heater();
  5624. manage_inactivity();
  5625. lcd_update();
  5626. }
  5627. LCD_MESSAGERPGM(_T(MSG_OK));
  5628. break;
  5629. }
  5630. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5631. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5632. uint8_t cal_status = calibration_status_pinda();
  5633. int16_t usteps = 0;
  5634. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5635. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5636. for (uint8_t i = 0; i < 6; i++)
  5637. {
  5638. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5639. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5640. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5641. SERIAL_PROTOCOLPGM(", ");
  5642. SERIAL_PROTOCOL(35 + (i * 5));
  5643. SERIAL_PROTOCOLPGM(", ");
  5644. SERIAL_PROTOCOL(usteps);
  5645. SERIAL_PROTOCOLPGM(", ");
  5646. SERIAL_PROTOCOL(mm * 1000);
  5647. SERIAL_PROTOCOLLN("");
  5648. }
  5649. }
  5650. else if (code_seen('!')) { // ! - Set factory default values
  5651. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5652. int16_t z_shift = 8; //40C - 20um - 8usteps
  5653. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5654. z_shift = 24; //45C - 60um - 24usteps
  5655. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5656. z_shift = 48; //50C - 120um - 48usteps
  5657. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5658. z_shift = 80; //55C - 200um - 80usteps
  5659. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5660. z_shift = 120; //60C - 300um - 120usteps
  5661. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5662. SERIAL_PROTOCOLLN("factory restored");
  5663. }
  5664. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5665. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5666. int16_t z_shift = 0;
  5667. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5668. SERIAL_PROTOCOLLN("zerorized");
  5669. }
  5670. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5671. int16_t usteps = code_value();
  5672. if (code_seen('I')) {
  5673. byte index = code_value();
  5674. if ((index >= 0) && (index < 5)) {
  5675. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5676. SERIAL_PROTOCOLLN("OK");
  5677. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5678. for (uint8_t i = 0; i < 6; i++)
  5679. {
  5680. usteps = 0;
  5681. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5682. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5683. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5684. SERIAL_PROTOCOLPGM(", ");
  5685. SERIAL_PROTOCOL(35 + (i * 5));
  5686. SERIAL_PROTOCOLPGM(", ");
  5687. SERIAL_PROTOCOL(usteps);
  5688. SERIAL_PROTOCOLPGM(", ");
  5689. SERIAL_PROTOCOL(mm * 1000);
  5690. SERIAL_PROTOCOLLN("");
  5691. }
  5692. }
  5693. }
  5694. }
  5695. else {
  5696. SERIAL_PROTOCOLPGM("no valid command");
  5697. }
  5698. break;
  5699. #endif //PINDA_THERMISTOR
  5700. #ifdef LIN_ADVANCE
  5701. case 900: // M900: Set LIN_ADVANCE options.
  5702. gcode_M900();
  5703. break;
  5704. #endif
  5705. case 907: // M907 Set digital trimpot motor current using axis codes.
  5706. {
  5707. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5708. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5709. if(code_seen('B')) st_current_set(4,code_value());
  5710. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5711. #endif
  5712. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5713. if(code_seen('X')) st_current_set(0, code_value());
  5714. #endif
  5715. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5716. if(code_seen('Z')) st_current_set(1, code_value());
  5717. #endif
  5718. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5719. if(code_seen('E')) st_current_set(2, code_value());
  5720. #endif
  5721. }
  5722. break;
  5723. case 908: // M908 Control digital trimpot directly.
  5724. {
  5725. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5726. uint8_t channel,current;
  5727. if(code_seen('P')) channel=code_value();
  5728. if(code_seen('S')) current=code_value();
  5729. digitalPotWrite(channel, current);
  5730. #endif
  5731. }
  5732. break;
  5733. #ifdef TMC2130
  5734. case 910: // M910 TMC2130 init
  5735. {
  5736. tmc2130_init();
  5737. }
  5738. break;
  5739. case 911: // M911 Set TMC2130 holding currents
  5740. {
  5741. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5742. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5743. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5744. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5745. }
  5746. break;
  5747. case 912: // M912 Set TMC2130 running currents
  5748. {
  5749. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5750. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5751. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5752. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5753. }
  5754. break;
  5755. case 913: // M913 Print TMC2130 currents
  5756. {
  5757. tmc2130_print_currents();
  5758. }
  5759. break;
  5760. case 914: // M914 Set normal mode
  5761. {
  5762. tmc2130_mode = TMC2130_MODE_NORMAL;
  5763. tmc2130_init();
  5764. }
  5765. break;
  5766. case 915: // M915 Set silent mode
  5767. {
  5768. tmc2130_mode = TMC2130_MODE_SILENT;
  5769. tmc2130_init();
  5770. }
  5771. break;
  5772. case 916: // M916 Set sg_thrs
  5773. {
  5774. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5775. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5776. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5777. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5778. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5779. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5780. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5781. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5782. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5783. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5784. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5785. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5786. }
  5787. break;
  5788. case 917: // M917 Set TMC2130 pwm_ampl
  5789. {
  5790. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5791. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5792. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5793. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5794. }
  5795. break;
  5796. case 918: // M918 Set TMC2130 pwm_grad
  5797. {
  5798. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5799. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5800. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5801. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5802. }
  5803. break;
  5804. #endif //TMC2130
  5805. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5806. {
  5807. #ifdef TMC2130
  5808. if(code_seen('E'))
  5809. {
  5810. uint16_t res_new = code_value();
  5811. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5812. {
  5813. st_synchronize();
  5814. uint8_t axis = E_AXIS;
  5815. uint16_t res = tmc2130_get_res(axis);
  5816. tmc2130_set_res(axis, res_new);
  5817. if (res_new > res)
  5818. {
  5819. uint16_t fac = (res_new / res);
  5820. axis_steps_per_unit[axis] *= fac;
  5821. position[E_AXIS] *= fac;
  5822. }
  5823. else
  5824. {
  5825. uint16_t fac = (res / res_new);
  5826. axis_steps_per_unit[axis] /= fac;
  5827. position[E_AXIS] /= fac;
  5828. }
  5829. }
  5830. }
  5831. #else //TMC2130
  5832. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5833. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5834. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5835. if(code_seen('B')) microstep_mode(4,code_value());
  5836. microstep_readings();
  5837. #endif
  5838. #endif //TMC2130
  5839. }
  5840. break;
  5841. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5842. {
  5843. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5844. if(code_seen('S')) switch((int)code_value())
  5845. {
  5846. case 1:
  5847. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5848. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5849. break;
  5850. case 2:
  5851. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5852. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5853. break;
  5854. }
  5855. microstep_readings();
  5856. #endif
  5857. }
  5858. break;
  5859. case 701: //M701: load filament
  5860. {
  5861. gcode_M701();
  5862. }
  5863. break;
  5864. case 702:
  5865. {
  5866. #ifdef SNMM
  5867. if (code_seen('U')) {
  5868. extr_unload_used(); //unload all filaments which were used in current print
  5869. }
  5870. else if (code_seen('C')) {
  5871. extr_unload(); //unload just current filament
  5872. }
  5873. else {
  5874. extr_unload_all(); //unload all filaments
  5875. }
  5876. #else
  5877. #ifdef PAT9125
  5878. bool old_fsensor_enabled = fsensor_enabled;
  5879. fsensor_enabled = false;
  5880. #endif //PAT9125
  5881. custom_message = true;
  5882. custom_message_type = 2;
  5883. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5884. // extr_unload2();
  5885. current_position[E_AXIS] -= 45;
  5886. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5887. st_synchronize();
  5888. current_position[E_AXIS] -= 15;
  5889. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5890. st_synchronize();
  5891. current_position[E_AXIS] -= 20;
  5892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5893. st_synchronize();
  5894. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5895. //disable extruder steppers so filament can be removed
  5896. disable_e0();
  5897. disable_e1();
  5898. disable_e2();
  5899. delay(100);
  5900. WRITE(BEEPER, HIGH);
  5901. uint8_t counterBeep = 0;
  5902. while (!lcd_clicked() && (counterBeep < 50)) {
  5903. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5904. delay_keep_alive(100);
  5905. counterBeep++;
  5906. }
  5907. WRITE(BEEPER, LOW);
  5908. st_synchronize();
  5909. while (lcd_clicked()) delay_keep_alive(100);
  5910. lcd_update_enable(true);
  5911. lcd_setstatuspgm(_T(WELCOME_MSG));
  5912. custom_message = false;
  5913. custom_message_type = 0;
  5914. #ifdef PAT9125
  5915. fsensor_enabled = old_fsensor_enabled;
  5916. #endif //PAT9125
  5917. #endif
  5918. }
  5919. break;
  5920. case 999: // M999: Restart after being stopped
  5921. Stopped = false;
  5922. lcd_reset_alert_level();
  5923. gcode_LastN = Stopped_gcode_LastN;
  5924. FlushSerialRequestResend();
  5925. break;
  5926. default:
  5927. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5928. }
  5929. } // end if(code_seen('M')) (end of M codes)
  5930. else if(code_seen('T'))
  5931. {
  5932. int index;
  5933. st_synchronize();
  5934. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5935. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5936. SERIAL_ECHOLNPGM("Invalid T code.");
  5937. }
  5938. else {
  5939. if (*(strchr_pointer + index) == '?') {
  5940. tmp_extruder = choose_extruder_menu();
  5941. }
  5942. else {
  5943. tmp_extruder = code_value();
  5944. }
  5945. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5946. #ifdef SNMM
  5947. #ifdef LIN_ADVANCE
  5948. if (snmm_extruder != tmp_extruder)
  5949. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5950. #endif
  5951. snmm_extruder = tmp_extruder;
  5952. delay(100);
  5953. disable_e0();
  5954. disable_e1();
  5955. disable_e2();
  5956. pinMode(E_MUX0_PIN, OUTPUT);
  5957. pinMode(E_MUX1_PIN, OUTPUT);
  5958. delay(100);
  5959. SERIAL_ECHO_START;
  5960. SERIAL_ECHO("T:");
  5961. SERIAL_ECHOLN((int)tmp_extruder);
  5962. switch (tmp_extruder) {
  5963. case 1:
  5964. WRITE(E_MUX0_PIN, HIGH);
  5965. WRITE(E_MUX1_PIN, LOW);
  5966. break;
  5967. case 2:
  5968. WRITE(E_MUX0_PIN, LOW);
  5969. WRITE(E_MUX1_PIN, HIGH);
  5970. break;
  5971. case 3:
  5972. WRITE(E_MUX0_PIN, HIGH);
  5973. WRITE(E_MUX1_PIN, HIGH);
  5974. break;
  5975. default:
  5976. WRITE(E_MUX0_PIN, LOW);
  5977. WRITE(E_MUX1_PIN, LOW);
  5978. break;
  5979. }
  5980. delay(100);
  5981. #else
  5982. if (tmp_extruder >= EXTRUDERS) {
  5983. SERIAL_ECHO_START;
  5984. SERIAL_ECHOPGM("T");
  5985. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5986. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  5987. }
  5988. else {
  5989. boolean make_move = false;
  5990. if (code_seen('F')) {
  5991. make_move = true;
  5992. next_feedrate = code_value();
  5993. if (next_feedrate > 0.0) {
  5994. feedrate = next_feedrate;
  5995. }
  5996. }
  5997. #if EXTRUDERS > 1
  5998. if (tmp_extruder != active_extruder) {
  5999. // Save current position to return to after applying extruder offset
  6000. memcpy(destination, current_position, sizeof(destination));
  6001. // Offset extruder (only by XY)
  6002. int i;
  6003. for (i = 0; i < 2; i++) {
  6004. current_position[i] = current_position[i] -
  6005. extruder_offset[i][active_extruder] +
  6006. extruder_offset[i][tmp_extruder];
  6007. }
  6008. // Set the new active extruder and position
  6009. active_extruder = tmp_extruder;
  6010. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6011. // Move to the old position if 'F' was in the parameters
  6012. if (make_move && Stopped == false) {
  6013. prepare_move();
  6014. }
  6015. }
  6016. #endif
  6017. SERIAL_ECHO_START;
  6018. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6019. SERIAL_PROTOCOLLN((int)active_extruder);
  6020. }
  6021. #endif
  6022. }
  6023. } // end if(code_seen('T')) (end of T codes)
  6024. #ifdef DEBUG_DCODES
  6025. else if (code_seen('D')) // D codes (debug)
  6026. {
  6027. switch((int)code_value())
  6028. {
  6029. case -1: // D-1 - Endless loop
  6030. dcode__1(); break;
  6031. case 0: // D0 - Reset
  6032. dcode_0(); break;
  6033. case 1: // D1 - Clear EEPROM
  6034. dcode_1(); break;
  6035. case 2: // D2 - Read/Write RAM
  6036. dcode_2(); break;
  6037. case 3: // D3 - Read/Write EEPROM
  6038. dcode_3(); break;
  6039. case 4: // D4 - Read/Write PIN
  6040. dcode_4(); break;
  6041. case 5: // D5 - Read/Write FLASH
  6042. // dcode_5(); break;
  6043. break;
  6044. case 6: // D6 - Read/Write external FLASH
  6045. dcode_6(); break;
  6046. case 7: // D7 - Read/Write Bootloader
  6047. dcode_7(); break;
  6048. case 8: // D8 - Read/Write PINDA
  6049. dcode_8(); break;
  6050. case 9: // D9 - Read/Write ADC
  6051. dcode_9(); break;
  6052. case 10: // D10 - XYZ calibration = OK
  6053. dcode_10(); break;
  6054. #ifdef TMC2130
  6055. case 2130: // D9125 - TMC2130
  6056. dcode_2130(); break;
  6057. #endif //TMC2130
  6058. #ifdef PAT9125
  6059. case 9125: // D9125 - PAT9125
  6060. dcode_9125(); break;
  6061. #endif //PAT9125
  6062. }
  6063. }
  6064. #endif //DEBUG_DCODES
  6065. else
  6066. {
  6067. SERIAL_ECHO_START;
  6068. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6069. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6070. SERIAL_ECHOLNPGM("\"(2)");
  6071. }
  6072. KEEPALIVE_STATE(NOT_BUSY);
  6073. ClearToSend();
  6074. }
  6075. void FlushSerialRequestResend()
  6076. {
  6077. //char cmdbuffer[bufindr][100]="Resend:";
  6078. MYSERIAL.flush();
  6079. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6080. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6081. previous_millis_cmd = millis();
  6082. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6083. }
  6084. // Confirm the execution of a command, if sent from a serial line.
  6085. // Execution of a command from a SD card will not be confirmed.
  6086. void ClearToSend()
  6087. {
  6088. previous_millis_cmd = millis();
  6089. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6090. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6091. }
  6092. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6093. void update_currents() {
  6094. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6095. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6096. float tmp_motor[3];
  6097. //SERIAL_ECHOLNPGM("Currents updated: ");
  6098. if (destination[Z_AXIS] < Z_SILENT) {
  6099. //SERIAL_ECHOLNPGM("LOW");
  6100. for (uint8_t i = 0; i < 3; i++) {
  6101. st_current_set(i, current_low[i]);
  6102. /*MYSERIAL.print(int(i));
  6103. SERIAL_ECHOPGM(": ");
  6104. MYSERIAL.println(current_low[i]);*/
  6105. }
  6106. }
  6107. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6108. //SERIAL_ECHOLNPGM("HIGH");
  6109. for (uint8_t i = 0; i < 3; i++) {
  6110. st_current_set(i, current_high[i]);
  6111. /*MYSERIAL.print(int(i));
  6112. SERIAL_ECHOPGM(": ");
  6113. MYSERIAL.println(current_high[i]);*/
  6114. }
  6115. }
  6116. else {
  6117. for (uint8_t i = 0; i < 3; i++) {
  6118. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6119. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6120. st_current_set(i, tmp_motor[i]);
  6121. /*MYSERIAL.print(int(i));
  6122. SERIAL_ECHOPGM(": ");
  6123. MYSERIAL.println(tmp_motor[i]);*/
  6124. }
  6125. }
  6126. }
  6127. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6128. void get_coordinates()
  6129. {
  6130. bool seen[4]={false,false,false,false};
  6131. for(int8_t i=0; i < NUM_AXIS; i++) {
  6132. if(code_seen(axis_codes[i]))
  6133. {
  6134. bool relative = axis_relative_modes[i] || relative_mode;
  6135. destination[i] = (float)code_value();
  6136. if (i == E_AXIS) {
  6137. float emult = extruder_multiplier[active_extruder];
  6138. if (emult != 1.) {
  6139. if (! relative) {
  6140. destination[i] -= current_position[i];
  6141. relative = true;
  6142. }
  6143. destination[i] *= emult;
  6144. }
  6145. }
  6146. if (relative)
  6147. destination[i] += current_position[i];
  6148. seen[i]=true;
  6149. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6150. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6151. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6152. }
  6153. else destination[i] = current_position[i]; //Are these else lines really needed?
  6154. }
  6155. if(code_seen('F')) {
  6156. next_feedrate = code_value();
  6157. #ifdef MAX_SILENT_FEEDRATE
  6158. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6159. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6160. #endif //MAX_SILENT_FEEDRATE
  6161. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6162. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6163. {
  6164. // float e_max_speed =
  6165. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6166. }
  6167. }
  6168. }
  6169. void get_arc_coordinates()
  6170. {
  6171. #ifdef SF_ARC_FIX
  6172. bool relative_mode_backup = relative_mode;
  6173. relative_mode = true;
  6174. #endif
  6175. get_coordinates();
  6176. #ifdef SF_ARC_FIX
  6177. relative_mode=relative_mode_backup;
  6178. #endif
  6179. if(code_seen('I')) {
  6180. offset[0] = code_value();
  6181. }
  6182. else {
  6183. offset[0] = 0.0;
  6184. }
  6185. if(code_seen('J')) {
  6186. offset[1] = code_value();
  6187. }
  6188. else {
  6189. offset[1] = 0.0;
  6190. }
  6191. }
  6192. void clamp_to_software_endstops(float target[3])
  6193. {
  6194. #ifdef DEBUG_DISABLE_SWLIMITS
  6195. return;
  6196. #endif //DEBUG_DISABLE_SWLIMITS
  6197. world2machine_clamp(target[0], target[1]);
  6198. // Clamp the Z coordinate.
  6199. if (min_software_endstops) {
  6200. float negative_z_offset = 0;
  6201. #ifdef ENABLE_AUTO_BED_LEVELING
  6202. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6203. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6204. #endif
  6205. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6206. }
  6207. if (max_software_endstops) {
  6208. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6209. }
  6210. }
  6211. #ifdef MESH_BED_LEVELING
  6212. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6213. float dx = x - current_position[X_AXIS];
  6214. float dy = y - current_position[Y_AXIS];
  6215. float dz = z - current_position[Z_AXIS];
  6216. int n_segments = 0;
  6217. if (mbl.active) {
  6218. float len = abs(dx) + abs(dy);
  6219. if (len > 0)
  6220. // Split to 3cm segments or shorter.
  6221. n_segments = int(ceil(len / 30.f));
  6222. }
  6223. if (n_segments > 1) {
  6224. float de = e - current_position[E_AXIS];
  6225. for (int i = 1; i < n_segments; ++ i) {
  6226. float t = float(i) / float(n_segments);
  6227. plan_buffer_line(
  6228. current_position[X_AXIS] + t * dx,
  6229. current_position[Y_AXIS] + t * dy,
  6230. current_position[Z_AXIS] + t * dz,
  6231. current_position[E_AXIS] + t * de,
  6232. feed_rate, extruder);
  6233. }
  6234. }
  6235. // The rest of the path.
  6236. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6237. current_position[X_AXIS] = x;
  6238. current_position[Y_AXIS] = y;
  6239. current_position[Z_AXIS] = z;
  6240. current_position[E_AXIS] = e;
  6241. }
  6242. #endif // MESH_BED_LEVELING
  6243. void prepare_move()
  6244. {
  6245. clamp_to_software_endstops(destination);
  6246. previous_millis_cmd = millis();
  6247. // Do not use feedmultiply for E or Z only moves
  6248. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6249. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6250. }
  6251. else {
  6252. #ifdef MESH_BED_LEVELING
  6253. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6254. #else
  6255. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6256. #endif
  6257. }
  6258. for(int8_t i=0; i < NUM_AXIS; i++) {
  6259. current_position[i] = destination[i];
  6260. }
  6261. }
  6262. void prepare_arc_move(char isclockwise) {
  6263. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6264. // Trace the arc
  6265. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6266. // As far as the parser is concerned, the position is now == target. In reality the
  6267. // motion control system might still be processing the action and the real tool position
  6268. // in any intermediate location.
  6269. for(int8_t i=0; i < NUM_AXIS; i++) {
  6270. current_position[i] = destination[i];
  6271. }
  6272. previous_millis_cmd = millis();
  6273. }
  6274. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6275. #if defined(FAN_PIN)
  6276. #if CONTROLLERFAN_PIN == FAN_PIN
  6277. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6278. #endif
  6279. #endif
  6280. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6281. unsigned long lastMotorCheck = 0;
  6282. void controllerFan()
  6283. {
  6284. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6285. {
  6286. lastMotorCheck = millis();
  6287. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6288. #if EXTRUDERS > 2
  6289. || !READ(E2_ENABLE_PIN)
  6290. #endif
  6291. #if EXTRUDER > 1
  6292. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6293. || !READ(X2_ENABLE_PIN)
  6294. #endif
  6295. || !READ(E1_ENABLE_PIN)
  6296. #endif
  6297. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6298. {
  6299. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6300. }
  6301. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6302. {
  6303. digitalWrite(CONTROLLERFAN_PIN, 0);
  6304. analogWrite(CONTROLLERFAN_PIN, 0);
  6305. }
  6306. else
  6307. {
  6308. // allows digital or PWM fan output to be used (see M42 handling)
  6309. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6310. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6311. }
  6312. }
  6313. }
  6314. #endif
  6315. #ifdef TEMP_STAT_LEDS
  6316. static bool blue_led = false;
  6317. static bool red_led = false;
  6318. static uint32_t stat_update = 0;
  6319. void handle_status_leds(void) {
  6320. float max_temp = 0.0;
  6321. if(millis() > stat_update) {
  6322. stat_update += 500; // Update every 0.5s
  6323. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6324. max_temp = max(max_temp, degHotend(cur_extruder));
  6325. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6326. }
  6327. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6328. max_temp = max(max_temp, degTargetBed());
  6329. max_temp = max(max_temp, degBed());
  6330. #endif
  6331. if((max_temp > 55.0) && (red_led == false)) {
  6332. digitalWrite(STAT_LED_RED, 1);
  6333. digitalWrite(STAT_LED_BLUE, 0);
  6334. red_led = true;
  6335. blue_led = false;
  6336. }
  6337. if((max_temp < 54.0) && (blue_led == false)) {
  6338. digitalWrite(STAT_LED_RED, 0);
  6339. digitalWrite(STAT_LED_BLUE, 1);
  6340. red_led = false;
  6341. blue_led = true;
  6342. }
  6343. }
  6344. }
  6345. #endif
  6346. #ifdef SAFETYTIMER
  6347. /**
  6348. * @brief Turn off heating after 30 minutes of inactivity
  6349. *
  6350. * Full screen blocking notification message is shown after heater turning off.
  6351. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6352. * damage print.
  6353. */
  6354. static void handleSafetyTimer()
  6355. {
  6356. #if (EXTRUDERS > 1)
  6357. #error Implemented only for one extruder.
  6358. #endif //(EXTRUDERS > 1)
  6359. if (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4) || saved_printing
  6360. || (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0)))
  6361. {
  6362. safetyTimer.stop();
  6363. }
  6364. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6365. {
  6366. safetyTimer.start();
  6367. }
  6368. else if (safetyTimer.expired(1800000ul)) //30 min
  6369. {
  6370. setTargetBed(0);
  6371. setTargetHotend(0, 0);
  6372. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6373. }
  6374. }
  6375. #endif //SAFETYTIMER
  6376. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6377. {
  6378. #ifdef PAT9125
  6379. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6380. {
  6381. if (fsensor_autoload_enabled)
  6382. {
  6383. if (fsensor_check_autoload())
  6384. {
  6385. if (degHotend0() > EXTRUDE_MINTEMP)
  6386. {
  6387. fsensor_autoload_check_stop();
  6388. tone(BEEPER, 1000);
  6389. delay_keep_alive(50);
  6390. noTone(BEEPER);
  6391. loading_flag = true;
  6392. enquecommand_front_P((PSTR("M701")));
  6393. }
  6394. else
  6395. {
  6396. lcd_update_enable(false);
  6397. lcd_implementation_clear();
  6398. lcd.setCursor(0, 0);
  6399. lcd_printPGM(_T(MSG_ERROR));
  6400. lcd.setCursor(0, 2);
  6401. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6402. delay(2000);
  6403. lcd_implementation_clear();
  6404. lcd_update_enable(true);
  6405. }
  6406. }
  6407. }
  6408. else
  6409. fsensor_autoload_check_start();
  6410. }
  6411. else
  6412. if (fsensor_autoload_enabled)
  6413. fsensor_autoload_check_stop();
  6414. #endif //PAT9125
  6415. #ifdef SAFETYTIMER
  6416. handleSafetyTimer();
  6417. #endif //SAFETYTIMER
  6418. #if defined(KILL_PIN) && KILL_PIN > -1
  6419. static int killCount = 0; // make the inactivity button a bit less responsive
  6420. const int KILL_DELAY = 10000;
  6421. #endif
  6422. if(buflen < (BUFSIZE-1)){
  6423. get_command();
  6424. }
  6425. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6426. if(max_inactive_time)
  6427. kill("", 4);
  6428. if(stepper_inactive_time) {
  6429. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6430. {
  6431. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6432. disable_x();
  6433. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6434. disable_y();
  6435. disable_z();
  6436. disable_e0();
  6437. disable_e1();
  6438. disable_e2();
  6439. }
  6440. }
  6441. }
  6442. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6443. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6444. {
  6445. chdkActive = false;
  6446. WRITE(CHDK, LOW);
  6447. }
  6448. #endif
  6449. #if defined(KILL_PIN) && KILL_PIN > -1
  6450. // Check if the kill button was pressed and wait just in case it was an accidental
  6451. // key kill key press
  6452. // -------------------------------------------------------------------------------
  6453. if( 0 == READ(KILL_PIN) )
  6454. {
  6455. killCount++;
  6456. }
  6457. else if (killCount > 0)
  6458. {
  6459. killCount--;
  6460. }
  6461. // Exceeded threshold and we can confirm that it was not accidental
  6462. // KILL the machine
  6463. // ----------------------------------------------------------------
  6464. if ( killCount >= KILL_DELAY)
  6465. {
  6466. kill("", 5);
  6467. }
  6468. #endif
  6469. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6470. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6471. #endif
  6472. #ifdef EXTRUDER_RUNOUT_PREVENT
  6473. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6474. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6475. {
  6476. bool oldstatus=READ(E0_ENABLE_PIN);
  6477. enable_e0();
  6478. float oldepos=current_position[E_AXIS];
  6479. float oldedes=destination[E_AXIS];
  6480. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6481. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6482. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6483. current_position[E_AXIS]=oldepos;
  6484. destination[E_AXIS]=oldedes;
  6485. plan_set_e_position(oldepos);
  6486. previous_millis_cmd=millis();
  6487. st_synchronize();
  6488. WRITE(E0_ENABLE_PIN,oldstatus);
  6489. }
  6490. #endif
  6491. #ifdef TEMP_STAT_LEDS
  6492. handle_status_leds();
  6493. #endif
  6494. check_axes_activity();
  6495. }
  6496. void kill(const char *full_screen_message, unsigned char id)
  6497. {
  6498. SERIAL_ECHOPGM("KILL: ");
  6499. MYSERIAL.println(int(id));
  6500. //return;
  6501. cli(); // Stop interrupts
  6502. disable_heater();
  6503. disable_x();
  6504. // SERIAL_ECHOLNPGM("kill - disable Y");
  6505. disable_y();
  6506. disable_z();
  6507. disable_e0();
  6508. disable_e1();
  6509. disable_e2();
  6510. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6511. pinMode(PS_ON_PIN,INPUT);
  6512. #endif
  6513. SERIAL_ERROR_START;
  6514. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6515. if (full_screen_message != NULL) {
  6516. SERIAL_ERRORLNRPGM(full_screen_message);
  6517. lcd_display_message_fullscreen_P(full_screen_message);
  6518. } else {
  6519. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6520. }
  6521. // FMC small patch to update the LCD before ending
  6522. sei(); // enable interrupts
  6523. for ( int i=5; i--; lcd_update())
  6524. {
  6525. delay(200);
  6526. }
  6527. cli(); // disable interrupts
  6528. suicide();
  6529. while(1)
  6530. {
  6531. #ifdef WATCHDOG
  6532. wdt_reset();
  6533. #endif //WATCHDOG
  6534. /* Intentionally left empty */
  6535. } // Wait for reset
  6536. }
  6537. void Stop()
  6538. {
  6539. disable_heater();
  6540. if(Stopped == false) {
  6541. Stopped = true;
  6542. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6543. SERIAL_ERROR_START;
  6544. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6545. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6546. }
  6547. }
  6548. bool IsStopped() { return Stopped; };
  6549. #ifdef FAST_PWM_FAN
  6550. void setPwmFrequency(uint8_t pin, int val)
  6551. {
  6552. val &= 0x07;
  6553. switch(digitalPinToTimer(pin))
  6554. {
  6555. #if defined(TCCR0A)
  6556. case TIMER0A:
  6557. case TIMER0B:
  6558. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6559. // TCCR0B |= val;
  6560. break;
  6561. #endif
  6562. #if defined(TCCR1A)
  6563. case TIMER1A:
  6564. case TIMER1B:
  6565. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6566. // TCCR1B |= val;
  6567. break;
  6568. #endif
  6569. #if defined(TCCR2)
  6570. case TIMER2:
  6571. case TIMER2:
  6572. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6573. TCCR2 |= val;
  6574. break;
  6575. #endif
  6576. #if defined(TCCR2A)
  6577. case TIMER2A:
  6578. case TIMER2B:
  6579. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6580. TCCR2B |= val;
  6581. break;
  6582. #endif
  6583. #if defined(TCCR3A)
  6584. case TIMER3A:
  6585. case TIMER3B:
  6586. case TIMER3C:
  6587. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6588. TCCR3B |= val;
  6589. break;
  6590. #endif
  6591. #if defined(TCCR4A)
  6592. case TIMER4A:
  6593. case TIMER4B:
  6594. case TIMER4C:
  6595. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6596. TCCR4B |= val;
  6597. break;
  6598. #endif
  6599. #if defined(TCCR5A)
  6600. case TIMER5A:
  6601. case TIMER5B:
  6602. case TIMER5C:
  6603. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6604. TCCR5B |= val;
  6605. break;
  6606. #endif
  6607. }
  6608. }
  6609. #endif //FAST_PWM_FAN
  6610. bool setTargetedHotend(int code){
  6611. tmp_extruder = active_extruder;
  6612. if(code_seen('T')) {
  6613. tmp_extruder = code_value();
  6614. if(tmp_extruder >= EXTRUDERS) {
  6615. SERIAL_ECHO_START;
  6616. switch(code){
  6617. case 104:
  6618. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6619. break;
  6620. case 105:
  6621. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6622. break;
  6623. case 109:
  6624. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6625. break;
  6626. case 218:
  6627. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6628. break;
  6629. case 221:
  6630. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6631. break;
  6632. }
  6633. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6634. return true;
  6635. }
  6636. }
  6637. return false;
  6638. }
  6639. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6640. {
  6641. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6642. {
  6643. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6644. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6645. }
  6646. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6647. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6648. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6649. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6650. total_filament_used = 0;
  6651. }
  6652. float calculate_extruder_multiplier(float diameter) {
  6653. float out = 1.f;
  6654. if (volumetric_enabled && diameter > 0.f) {
  6655. float area = M_PI * diameter * diameter * 0.25;
  6656. out = 1.f / area;
  6657. }
  6658. if (extrudemultiply != 100)
  6659. out *= float(extrudemultiply) * 0.01f;
  6660. return out;
  6661. }
  6662. void calculate_extruder_multipliers() {
  6663. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6664. #if EXTRUDERS > 1
  6665. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6666. #if EXTRUDERS > 2
  6667. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6668. #endif
  6669. #endif
  6670. }
  6671. void delay_keep_alive(unsigned int ms)
  6672. {
  6673. for (;;) {
  6674. manage_heater();
  6675. // Manage inactivity, but don't disable steppers on timeout.
  6676. manage_inactivity(true);
  6677. lcd_update();
  6678. if (ms == 0)
  6679. break;
  6680. else if (ms >= 50) {
  6681. delay(50);
  6682. ms -= 50;
  6683. } else {
  6684. delay(ms);
  6685. ms = 0;
  6686. }
  6687. }
  6688. }
  6689. void wait_for_heater(long codenum) {
  6690. #ifdef TEMP_RESIDENCY_TIME
  6691. long residencyStart;
  6692. residencyStart = -1;
  6693. /* continue to loop until we have reached the target temp
  6694. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6695. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6696. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6697. #else
  6698. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6699. #endif //TEMP_RESIDENCY_TIME
  6700. if ((millis() - codenum) > 1000UL)
  6701. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6702. if (!farm_mode) {
  6703. SERIAL_PROTOCOLPGM("T:");
  6704. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6705. SERIAL_PROTOCOLPGM(" E:");
  6706. SERIAL_PROTOCOL((int)tmp_extruder);
  6707. #ifdef TEMP_RESIDENCY_TIME
  6708. SERIAL_PROTOCOLPGM(" W:");
  6709. if (residencyStart > -1)
  6710. {
  6711. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6712. SERIAL_PROTOCOLLN(codenum);
  6713. }
  6714. else
  6715. {
  6716. SERIAL_PROTOCOLLN("?");
  6717. }
  6718. }
  6719. #else
  6720. SERIAL_PROTOCOLLN("");
  6721. #endif
  6722. codenum = millis();
  6723. }
  6724. manage_heater();
  6725. manage_inactivity();
  6726. lcd_update();
  6727. #ifdef TEMP_RESIDENCY_TIME
  6728. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6729. or when current temp falls outside the hysteresis after target temp was reached */
  6730. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6731. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6732. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6733. {
  6734. residencyStart = millis();
  6735. }
  6736. #endif //TEMP_RESIDENCY_TIME
  6737. }
  6738. }
  6739. void check_babystep() {
  6740. int babystep_z;
  6741. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6742. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6743. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6744. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6745. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6746. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6747. lcd_update_enable(true);
  6748. }
  6749. }
  6750. #ifdef DIS
  6751. void d_setup()
  6752. {
  6753. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6754. pinMode(D_DATA, INPUT_PULLUP);
  6755. pinMode(D_REQUIRE, OUTPUT);
  6756. digitalWrite(D_REQUIRE, HIGH);
  6757. }
  6758. float d_ReadData()
  6759. {
  6760. int digit[13];
  6761. String mergeOutput;
  6762. float output;
  6763. digitalWrite(D_REQUIRE, HIGH);
  6764. for (int i = 0; i<13; i++)
  6765. {
  6766. for (int j = 0; j < 4; j++)
  6767. {
  6768. while (digitalRead(D_DATACLOCK) == LOW) {}
  6769. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6770. bitWrite(digit[i], j, digitalRead(D_DATA));
  6771. }
  6772. }
  6773. digitalWrite(D_REQUIRE, LOW);
  6774. mergeOutput = "";
  6775. output = 0;
  6776. for (int r = 5; r <= 10; r++) //Merge digits
  6777. {
  6778. mergeOutput += digit[r];
  6779. }
  6780. output = mergeOutput.toFloat();
  6781. if (digit[4] == 8) //Handle sign
  6782. {
  6783. output *= -1;
  6784. }
  6785. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6786. {
  6787. output /= 10;
  6788. }
  6789. return output;
  6790. }
  6791. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6792. int t1 = 0;
  6793. int t_delay = 0;
  6794. int digit[13];
  6795. int m;
  6796. char str[3];
  6797. //String mergeOutput;
  6798. char mergeOutput[15];
  6799. float output;
  6800. int mesh_point = 0; //index number of calibration point
  6801. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6802. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6803. float mesh_home_z_search = 4;
  6804. float row[x_points_num];
  6805. int ix = 0;
  6806. int iy = 0;
  6807. char* filename_wldsd = "wldsd.txt";
  6808. char data_wldsd[70];
  6809. char numb_wldsd[10];
  6810. d_setup();
  6811. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6812. // We don't know where we are! HOME!
  6813. // Push the commands to the front of the message queue in the reverse order!
  6814. // There shall be always enough space reserved for these commands.
  6815. repeatcommand_front(); // repeat G80 with all its parameters
  6816. enquecommand_front_P((PSTR("G28 W0")));
  6817. enquecommand_front_P((PSTR("G1 Z5")));
  6818. return;
  6819. }
  6820. bool custom_message_old = custom_message;
  6821. unsigned int custom_message_type_old = custom_message_type;
  6822. unsigned int custom_message_state_old = custom_message_state;
  6823. custom_message = true;
  6824. custom_message_type = 1;
  6825. custom_message_state = (x_points_num * y_points_num) + 10;
  6826. lcd_update(1);
  6827. mbl.reset();
  6828. babystep_undo();
  6829. card.openFile(filename_wldsd, false);
  6830. current_position[Z_AXIS] = mesh_home_z_search;
  6831. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6832. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6833. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6834. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6835. setup_for_endstop_move(false);
  6836. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6837. SERIAL_PROTOCOL(x_points_num);
  6838. SERIAL_PROTOCOLPGM(",");
  6839. SERIAL_PROTOCOL(y_points_num);
  6840. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6841. SERIAL_PROTOCOL(mesh_home_z_search);
  6842. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6843. SERIAL_PROTOCOL(x_dimension);
  6844. SERIAL_PROTOCOLPGM(",");
  6845. SERIAL_PROTOCOL(y_dimension);
  6846. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6847. while (mesh_point != x_points_num * y_points_num) {
  6848. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6849. iy = mesh_point / x_points_num;
  6850. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6851. float z0 = 0.f;
  6852. current_position[Z_AXIS] = mesh_home_z_search;
  6853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6854. st_synchronize();
  6855. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6856. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6857. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6858. st_synchronize();
  6859. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6860. break;
  6861. card.closefile();
  6862. }
  6863. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6864. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6865. //strcat(data_wldsd, numb_wldsd);
  6866. //MYSERIAL.println(data_wldsd);
  6867. //delay(1000);
  6868. //delay(3000);
  6869. //t1 = millis();
  6870. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6871. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6872. memset(digit, 0, sizeof(digit));
  6873. //cli();
  6874. digitalWrite(D_REQUIRE, LOW);
  6875. for (int i = 0; i<13; i++)
  6876. {
  6877. //t1 = millis();
  6878. for (int j = 0; j < 4; j++)
  6879. {
  6880. while (digitalRead(D_DATACLOCK) == LOW) {}
  6881. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6882. bitWrite(digit[i], j, digitalRead(D_DATA));
  6883. }
  6884. //t_delay = (millis() - t1);
  6885. //SERIAL_PROTOCOLPGM(" ");
  6886. //SERIAL_PROTOCOL_F(t_delay, 5);
  6887. //SERIAL_PROTOCOLPGM(" ");
  6888. }
  6889. //sei();
  6890. digitalWrite(D_REQUIRE, HIGH);
  6891. mergeOutput[0] = '\0';
  6892. output = 0;
  6893. for (int r = 5; r <= 10; r++) //Merge digits
  6894. {
  6895. sprintf(str, "%d", digit[r]);
  6896. strcat(mergeOutput, str);
  6897. }
  6898. output = atof(mergeOutput);
  6899. if (digit[4] == 8) //Handle sign
  6900. {
  6901. output *= -1;
  6902. }
  6903. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6904. {
  6905. output *= 0.1;
  6906. }
  6907. //output = d_ReadData();
  6908. //row[ix] = current_position[Z_AXIS];
  6909. memset(data_wldsd, 0, sizeof(data_wldsd));
  6910. for (int i = 0; i <3; i++) {
  6911. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6912. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6913. strcat(data_wldsd, numb_wldsd);
  6914. strcat(data_wldsd, ";");
  6915. }
  6916. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6917. dtostrf(output, 8, 5, numb_wldsd);
  6918. strcat(data_wldsd, numb_wldsd);
  6919. //strcat(data_wldsd, ";");
  6920. card.write_command(data_wldsd);
  6921. //row[ix] = d_ReadData();
  6922. row[ix] = output; // current_position[Z_AXIS];
  6923. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6924. for (int i = 0; i < x_points_num; i++) {
  6925. SERIAL_PROTOCOLPGM(" ");
  6926. SERIAL_PROTOCOL_F(row[i], 5);
  6927. }
  6928. SERIAL_PROTOCOLPGM("\n");
  6929. }
  6930. custom_message_state--;
  6931. mesh_point++;
  6932. lcd_update(1);
  6933. }
  6934. card.closefile();
  6935. }
  6936. #endif
  6937. void temp_compensation_start() {
  6938. custom_message = true;
  6939. custom_message_type = 5;
  6940. custom_message_state = PINDA_HEAT_T + 1;
  6941. lcd_update(2);
  6942. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6943. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6944. }
  6945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6946. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6947. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6948. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6949. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6950. st_synchronize();
  6951. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6952. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6953. delay_keep_alive(1000);
  6954. custom_message_state = PINDA_HEAT_T - i;
  6955. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6956. else lcd_update(1);
  6957. }
  6958. custom_message_type = 0;
  6959. custom_message_state = 0;
  6960. custom_message = false;
  6961. }
  6962. void temp_compensation_apply() {
  6963. int i_add;
  6964. int compensation_value;
  6965. int z_shift = 0;
  6966. float z_shift_mm;
  6967. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6968. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6969. i_add = (target_temperature_bed - 60) / 10;
  6970. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6971. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6972. }else {
  6973. //interpolation
  6974. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6975. }
  6976. SERIAL_PROTOCOLPGM("\n");
  6977. SERIAL_PROTOCOLPGM("Z shift applied:");
  6978. MYSERIAL.print(z_shift_mm);
  6979. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6980. st_synchronize();
  6981. plan_set_z_position(current_position[Z_AXIS]);
  6982. }
  6983. else {
  6984. //we have no temp compensation data
  6985. }
  6986. }
  6987. float temp_comp_interpolation(float inp_temperature) {
  6988. //cubic spline interpolation
  6989. int n, i, j, k;
  6990. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6991. int shift[10];
  6992. int temp_C[10];
  6993. n = 6; //number of measured points
  6994. shift[0] = 0;
  6995. for (i = 0; i < n; i++) {
  6996. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6997. temp_C[i] = 50 + i * 10; //temperature in C
  6998. #ifdef PINDA_THERMISTOR
  6999. temp_C[i] = 35 + i * 5; //temperature in C
  7000. #else
  7001. temp_C[i] = 50 + i * 10; //temperature in C
  7002. #endif
  7003. x[i] = (float)temp_C[i];
  7004. f[i] = (float)shift[i];
  7005. }
  7006. if (inp_temperature < x[0]) return 0;
  7007. for (i = n - 1; i>0; i--) {
  7008. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7009. h[i - 1] = x[i] - x[i - 1];
  7010. }
  7011. //*********** formation of h, s , f matrix **************
  7012. for (i = 1; i<n - 1; i++) {
  7013. m[i][i] = 2 * (h[i - 1] + h[i]);
  7014. if (i != 1) {
  7015. m[i][i - 1] = h[i - 1];
  7016. m[i - 1][i] = h[i - 1];
  7017. }
  7018. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7019. }
  7020. //*********** forward elimination **************
  7021. for (i = 1; i<n - 2; i++) {
  7022. temp = (m[i + 1][i] / m[i][i]);
  7023. for (j = 1; j <= n - 1; j++)
  7024. m[i + 1][j] -= temp*m[i][j];
  7025. }
  7026. //*********** backward substitution *********
  7027. for (i = n - 2; i>0; i--) {
  7028. sum = 0;
  7029. for (j = i; j <= n - 2; j++)
  7030. sum += m[i][j] * s[j];
  7031. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7032. }
  7033. for (i = 0; i<n - 1; i++)
  7034. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7035. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7036. b = s[i] / 2;
  7037. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7038. d = f[i];
  7039. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7040. }
  7041. return sum;
  7042. }
  7043. #ifdef PINDA_THERMISTOR
  7044. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7045. {
  7046. if (!temp_cal_active) return 0;
  7047. if (!calibration_status_pinda()) return 0;
  7048. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7049. }
  7050. #endif //PINDA_THERMISTOR
  7051. void long_pause() //long pause print
  7052. {
  7053. st_synchronize();
  7054. //save currently set parameters to global variables
  7055. saved_feedmultiply = feedmultiply;
  7056. HotendTempBckp = degTargetHotend(active_extruder);
  7057. fanSpeedBckp = fanSpeed;
  7058. start_pause_print = millis();
  7059. //save position
  7060. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7061. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7062. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7063. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7064. //retract
  7065. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7067. //lift z
  7068. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7069. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7070. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7071. //set nozzle target temperature to 0
  7072. setTargetHotend(0, 0);
  7073. setTargetHotend(0, 1);
  7074. setTargetHotend(0, 2);
  7075. //Move XY to side
  7076. current_position[X_AXIS] = X_PAUSE_POS;
  7077. current_position[Y_AXIS] = Y_PAUSE_POS;
  7078. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7079. // Turn off the print fan
  7080. fanSpeed = 0;
  7081. st_synchronize();
  7082. }
  7083. void serialecho_temperatures() {
  7084. float tt = degHotend(active_extruder);
  7085. SERIAL_PROTOCOLPGM("T:");
  7086. SERIAL_PROTOCOL(tt);
  7087. SERIAL_PROTOCOLPGM(" E:");
  7088. SERIAL_PROTOCOL((int)active_extruder);
  7089. SERIAL_PROTOCOLPGM(" B:");
  7090. SERIAL_PROTOCOL_F(degBed(), 1);
  7091. SERIAL_PROTOCOLLN("");
  7092. }
  7093. extern uint32_t sdpos_atomic;
  7094. #ifdef UVLO_SUPPORT
  7095. void uvlo_()
  7096. {
  7097. unsigned long time_start = millis();
  7098. bool sd_print = card.sdprinting;
  7099. // Conserve power as soon as possible.
  7100. disable_x();
  7101. disable_y();
  7102. #ifdef TMC2130
  7103. tmc2130_set_current_h(Z_AXIS, 20);
  7104. tmc2130_set_current_r(Z_AXIS, 20);
  7105. tmc2130_set_current_h(E_AXIS, 20);
  7106. tmc2130_set_current_r(E_AXIS, 20);
  7107. #endif //TMC2130
  7108. // Indicate that the interrupt has been triggered.
  7109. // SERIAL_ECHOLNPGM("UVLO");
  7110. // Read out the current Z motor microstep counter. This will be later used
  7111. // for reaching the zero full step before powering off.
  7112. uint16_t z_microsteps = 0;
  7113. #ifdef TMC2130
  7114. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7115. #endif //TMC2130
  7116. // Calculate the file position, from which to resume this print.
  7117. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7118. {
  7119. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7120. sd_position -= sdlen_planner;
  7121. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7122. sd_position -= sdlen_cmdqueue;
  7123. if (sd_position < 0) sd_position = 0;
  7124. }
  7125. // Backup the feedrate in mm/min.
  7126. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7127. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7128. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7129. // are in action.
  7130. planner_abort_hard();
  7131. // Store the current extruder position.
  7132. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7133. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7134. // Clean the input command queue.
  7135. cmdqueue_reset();
  7136. card.sdprinting = false;
  7137. // card.closefile();
  7138. // Enable stepper driver interrupt to move Z axis.
  7139. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7140. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7141. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7142. sei();
  7143. plan_buffer_line(
  7144. current_position[X_AXIS],
  7145. current_position[Y_AXIS],
  7146. current_position[Z_AXIS],
  7147. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7148. 95, active_extruder);
  7149. st_synchronize();
  7150. disable_e0();
  7151. plan_buffer_line(
  7152. current_position[X_AXIS],
  7153. current_position[Y_AXIS],
  7154. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7155. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7156. 40, active_extruder);
  7157. st_synchronize();
  7158. disable_e0();
  7159. plan_buffer_line(
  7160. current_position[X_AXIS],
  7161. current_position[Y_AXIS],
  7162. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7163. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7164. 40, active_extruder);
  7165. st_synchronize();
  7166. disable_e0();
  7167. disable_z();
  7168. // Move Z up to the next 0th full step.
  7169. // Write the file position.
  7170. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7171. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7172. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7173. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7174. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7175. // Scale the z value to 1u resolution.
  7176. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7177. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7178. }
  7179. // Read out the current Z motor microstep counter. This will be later used
  7180. // for reaching the zero full step before powering off.
  7181. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7182. // Store the current position.
  7183. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7184. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7185. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7186. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7187. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7188. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7189. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7190. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7191. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7192. #if EXTRUDERS > 1
  7193. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7194. #if EXTRUDERS > 2
  7195. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7196. #endif
  7197. #endif
  7198. // Finaly store the "power outage" flag.
  7199. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7200. st_synchronize();
  7201. SERIAL_ECHOPGM("stps");
  7202. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7203. disable_z();
  7204. // Increment power failure counter
  7205. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7206. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7207. SERIAL_ECHOLNPGM("UVLO - end");
  7208. MYSERIAL.println(millis() - time_start);
  7209. #if 0
  7210. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7211. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7212. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7213. st_synchronize();
  7214. #endif
  7215. cli();
  7216. volatile unsigned int ppcount = 0;
  7217. SET_OUTPUT(BEEPER);
  7218. WRITE(BEEPER, HIGH);
  7219. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7220. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7221. }
  7222. WRITE(BEEPER, LOW);
  7223. while(1){
  7224. #if 1
  7225. WRITE(BEEPER, LOW);
  7226. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7227. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7228. }
  7229. #endif
  7230. };
  7231. }
  7232. #endif //UVLO_SUPPORT
  7233. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7234. void setup_fan_interrupt() {
  7235. //INT7
  7236. DDRE &= ~(1 << 7); //input pin
  7237. PORTE &= ~(1 << 7); //no internal pull-up
  7238. //start with sensing rising edge
  7239. EICRB &= ~(1 << 6);
  7240. EICRB |= (1 << 7);
  7241. //enable INT7 interrupt
  7242. EIMSK |= (1 << 7);
  7243. }
  7244. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7245. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7246. ISR(INT7_vect) {
  7247. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7248. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7249. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7250. t_fan_rising_edge = millis_nc();
  7251. }
  7252. else { //interrupt was triggered by falling edge
  7253. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7254. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7255. }
  7256. }
  7257. EICRB ^= (1 << 6); //change edge
  7258. }
  7259. #endif
  7260. #ifdef UVLO_SUPPORT
  7261. void setup_uvlo_interrupt() {
  7262. DDRE &= ~(1 << 4); //input pin
  7263. PORTE &= ~(1 << 4); //no internal pull-up
  7264. //sensing falling edge
  7265. EICRB |= (1 << 0);
  7266. EICRB &= ~(1 << 1);
  7267. //enable INT4 interrupt
  7268. EIMSK |= (1 << 4);
  7269. }
  7270. ISR(INT4_vect) {
  7271. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7272. SERIAL_ECHOLNPGM("INT4");
  7273. if (IS_SD_PRINTING) uvlo_();
  7274. }
  7275. void recover_print(uint8_t automatic) {
  7276. char cmd[30];
  7277. lcd_update_enable(true);
  7278. lcd_update(2);
  7279. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7280. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7281. // Lift the print head, so one may remove the excess priming material.
  7282. if (current_position[Z_AXIS] < 25)
  7283. enquecommand_P(PSTR("G1 Z25 F800"));
  7284. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7285. enquecommand_P(PSTR("G28 X Y"));
  7286. // Set the target bed and nozzle temperatures and wait.
  7287. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7288. enquecommand(cmd);
  7289. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7290. enquecommand(cmd);
  7291. enquecommand_P(PSTR("M83")); //E axis relative mode
  7292. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7293. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7294. if(automatic == 0){
  7295. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7296. }
  7297. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7298. // Mark the power panic status as inactive.
  7299. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7300. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7301. delay_keep_alive(1000);
  7302. }*/
  7303. SERIAL_ECHOPGM("After waiting for temp:");
  7304. SERIAL_ECHOPGM("Current position X_AXIS:");
  7305. MYSERIAL.println(current_position[X_AXIS]);
  7306. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7307. MYSERIAL.println(current_position[Y_AXIS]);
  7308. // Restart the print.
  7309. restore_print_from_eeprom();
  7310. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7311. MYSERIAL.print(current_position[Z_AXIS]);
  7312. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7313. MYSERIAL.print(current_position[E_AXIS]);
  7314. }
  7315. void recover_machine_state_after_power_panic()
  7316. {
  7317. char cmd[30];
  7318. // 1) Recover the logical cordinates at the time of the power panic.
  7319. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7320. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7321. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7322. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7323. // The current position after power panic is moved to the next closest 0th full step.
  7324. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7325. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7326. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7327. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7328. sprintf_P(cmd, PSTR("G92 E"));
  7329. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7330. enquecommand(cmd);
  7331. }
  7332. memcpy(destination, current_position, sizeof(destination));
  7333. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7334. print_world_coordinates();
  7335. // 2) Initialize the logical to physical coordinate system transformation.
  7336. world2machine_initialize();
  7337. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7338. mbl.active = false;
  7339. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7340. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7341. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7342. // Scale the z value to 10u resolution.
  7343. int16_t v;
  7344. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7345. if (v != 0)
  7346. mbl.active = true;
  7347. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7348. }
  7349. if (mbl.active)
  7350. mbl.upsample_3x3();
  7351. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7352. // print_mesh_bed_leveling_table();
  7353. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7354. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7355. babystep_load();
  7356. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7357. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7358. // 6) Power up the motors, mark their positions as known.
  7359. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7360. axis_known_position[X_AXIS] = true; enable_x();
  7361. axis_known_position[Y_AXIS] = true; enable_y();
  7362. axis_known_position[Z_AXIS] = true; enable_z();
  7363. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7364. print_physical_coordinates();
  7365. // 7) Recover the target temperatures.
  7366. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7367. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7368. // 8) Recover extruder multipilers
  7369. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7370. #if EXTRUDERS > 1
  7371. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7372. #if EXTRUDERS > 2
  7373. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7374. #endif
  7375. #endif
  7376. }
  7377. void restore_print_from_eeprom() {
  7378. float x_rec, y_rec, z_pos;
  7379. int feedrate_rec;
  7380. uint8_t fan_speed_rec;
  7381. char cmd[30];
  7382. char* c;
  7383. char filename[13];
  7384. uint8_t depth = 0;
  7385. char dir_name[9];
  7386. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7387. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7388. SERIAL_ECHOPGM("Feedrate:");
  7389. MYSERIAL.println(feedrate_rec);
  7390. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7391. MYSERIAL.println(int(depth));
  7392. for (int i = 0; i < depth; i++) {
  7393. for (int j = 0; j < 8; j++) {
  7394. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7395. }
  7396. dir_name[8] = '\0';
  7397. MYSERIAL.println(dir_name);
  7398. card.chdir(dir_name);
  7399. }
  7400. for (int i = 0; i < 8; i++) {
  7401. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7402. }
  7403. filename[8] = '\0';
  7404. MYSERIAL.print(filename);
  7405. strcat_P(filename, PSTR(".gco"));
  7406. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7407. for (c = &cmd[4]; *c; c++)
  7408. *c = tolower(*c);
  7409. enquecommand(cmd);
  7410. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7411. SERIAL_ECHOPGM("Position read from eeprom:");
  7412. MYSERIAL.println(position);
  7413. // E axis relative mode.
  7414. enquecommand_P(PSTR("M83"));
  7415. // Move to the XY print position in logical coordinates, where the print has been killed.
  7416. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7417. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7418. strcat_P(cmd, PSTR(" F2000"));
  7419. enquecommand(cmd);
  7420. // Move the Z axis down to the print, in logical coordinates.
  7421. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7422. enquecommand(cmd);
  7423. // Unretract.
  7424. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7425. // Set the feedrate saved at the power panic.
  7426. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7427. enquecommand(cmd);
  7428. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7429. {
  7430. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7431. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7432. }
  7433. // Set the fan speed saved at the power panic.
  7434. strcpy_P(cmd, PSTR("M106 S"));
  7435. strcat(cmd, itostr3(int(fan_speed_rec)));
  7436. enquecommand(cmd);
  7437. // Set a position in the file.
  7438. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7439. enquecommand(cmd);
  7440. // Start SD print.
  7441. enquecommand_P(PSTR("M24"));
  7442. }
  7443. #endif //UVLO_SUPPORT
  7444. ////////////////////////////////////////////////////////////////////////////////
  7445. // save/restore printing
  7446. void stop_and_save_print_to_ram(float z_move, float e_move)
  7447. {
  7448. if (saved_printing) return;
  7449. unsigned char nplanner_blocks;
  7450. unsigned char nlines;
  7451. uint16_t sdlen_planner;
  7452. uint16_t sdlen_cmdqueue;
  7453. cli();
  7454. if (card.sdprinting) {
  7455. nplanner_blocks = number_of_blocks();
  7456. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7457. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7458. saved_sdpos -= sdlen_planner;
  7459. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7460. saved_sdpos -= sdlen_cmdqueue;
  7461. saved_printing_type = PRINTING_TYPE_SD;
  7462. }
  7463. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7464. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7465. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7466. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7467. saved_sdpos -= nlines;
  7468. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7469. saved_printing_type = PRINTING_TYPE_USB;
  7470. }
  7471. else {
  7472. //not sd printing nor usb printing
  7473. }
  7474. #if 0
  7475. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7476. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7477. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7478. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7479. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7480. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7481. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7482. {
  7483. card.setIndex(saved_sdpos);
  7484. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7485. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7486. MYSERIAL.print(char(card.get()));
  7487. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7488. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7489. MYSERIAL.print(char(card.get()));
  7490. SERIAL_ECHOLNPGM("End of command buffer");
  7491. }
  7492. {
  7493. // Print the content of the planner buffer, line by line:
  7494. card.setIndex(saved_sdpos);
  7495. int8_t iline = 0;
  7496. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7497. SERIAL_ECHOPGM("Planner line (from file): ");
  7498. MYSERIAL.print(int(iline), DEC);
  7499. SERIAL_ECHOPGM(", length: ");
  7500. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7501. SERIAL_ECHOPGM(", steps: (");
  7502. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7503. SERIAL_ECHOPGM(",");
  7504. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7505. SERIAL_ECHOPGM(",");
  7506. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7507. SERIAL_ECHOPGM(",");
  7508. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7509. SERIAL_ECHOPGM("), events: ");
  7510. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7511. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7512. MYSERIAL.print(char(card.get()));
  7513. }
  7514. }
  7515. {
  7516. // Print the content of the command buffer, line by line:
  7517. int8_t iline = 0;
  7518. union {
  7519. struct {
  7520. char lo;
  7521. char hi;
  7522. } lohi;
  7523. uint16_t value;
  7524. } sdlen_single;
  7525. int _bufindr = bufindr;
  7526. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7527. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7528. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7529. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7530. }
  7531. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7532. MYSERIAL.print(int(iline), DEC);
  7533. SERIAL_ECHOPGM(", type: ");
  7534. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7535. SERIAL_ECHOPGM(", len: ");
  7536. MYSERIAL.println(sdlen_single.value, DEC);
  7537. // Print the content of the buffer line.
  7538. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7539. SERIAL_ECHOPGM("Buffer line (from file): ");
  7540. MYSERIAL.print(int(iline), DEC);
  7541. MYSERIAL.println(int(iline), DEC);
  7542. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7543. MYSERIAL.print(char(card.get()));
  7544. if (-- _buflen == 0)
  7545. break;
  7546. // First skip the current command ID and iterate up to the end of the string.
  7547. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7548. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7549. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7550. // If the end of the buffer was empty,
  7551. if (_bufindr == sizeof(cmdbuffer)) {
  7552. // skip to the start and find the nonzero command.
  7553. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7554. }
  7555. }
  7556. }
  7557. #endif
  7558. #if 0
  7559. saved_feedrate2 = feedrate; //save feedrate
  7560. #else
  7561. // Try to deduce the feedrate from the first block of the planner.
  7562. // Speed is in mm/min.
  7563. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7564. #endif
  7565. planner_abort_hard(); //abort printing
  7566. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7567. saved_active_extruder = active_extruder; //save active_extruder
  7568. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7569. cmdqueue_reset(); //empty cmdqueue
  7570. card.sdprinting = false;
  7571. // card.closefile();
  7572. saved_printing = true;
  7573. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7574. st_reset_timer();
  7575. sei();
  7576. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7577. #if 1
  7578. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7579. char buf[48];
  7580. // First unretract (relative extrusion)
  7581. strcpy_P(buf, PSTR("G1 E"));
  7582. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7583. strcat_P(buf, PSTR(" F"));
  7584. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7585. enquecommand(buf, false);
  7586. // Then lift Z axis
  7587. strcpy_P(buf, PSTR("G1 Z"));
  7588. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7589. strcat_P(buf, PSTR(" F"));
  7590. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7591. // At this point the command queue is empty.
  7592. enquecommand(buf, false);
  7593. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7594. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7595. repeatcommand_front();
  7596. #else
  7597. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7598. st_synchronize(); //wait moving
  7599. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7600. memcpy(destination, current_position, sizeof(destination));
  7601. #endif
  7602. }
  7603. }
  7604. void restore_print_from_ram_and_continue(float e_move)
  7605. {
  7606. if (!saved_printing) return;
  7607. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7608. // current_position[axis] = st_get_position_mm(axis);
  7609. active_extruder = saved_active_extruder; //restore active_extruder
  7610. feedrate = saved_feedrate2; //restore feedrate
  7611. float e = saved_pos[E_AXIS] - e_move;
  7612. plan_set_e_position(e);
  7613. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7614. st_synchronize();
  7615. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7616. memcpy(destination, current_position, sizeof(destination));
  7617. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7618. card.setIndex(saved_sdpos);
  7619. sdpos_atomic = saved_sdpos;
  7620. card.sdprinting = true;
  7621. }
  7622. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7623. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7624. FlushSerialRequestResend();
  7625. }
  7626. else {
  7627. //not sd printing nor usb printing
  7628. }
  7629. saved_printing = false;
  7630. }
  7631. void print_world_coordinates()
  7632. {
  7633. SERIAL_ECHOPGM("world coordinates: (");
  7634. MYSERIAL.print(current_position[X_AXIS], 3);
  7635. SERIAL_ECHOPGM(", ");
  7636. MYSERIAL.print(current_position[Y_AXIS], 3);
  7637. SERIAL_ECHOPGM(", ");
  7638. MYSERIAL.print(current_position[Z_AXIS], 3);
  7639. SERIAL_ECHOLNPGM(")");
  7640. }
  7641. void print_physical_coordinates()
  7642. {
  7643. SERIAL_ECHOPGM("physical coordinates: (");
  7644. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7645. SERIAL_ECHOPGM(", ");
  7646. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7647. SERIAL_ECHOPGM(", ");
  7648. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7649. SERIAL_ECHOLNPGM(")");
  7650. }
  7651. void print_mesh_bed_leveling_table()
  7652. {
  7653. SERIAL_ECHOPGM("mesh bed leveling: ");
  7654. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7655. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7656. MYSERIAL.print(mbl.z_values[y][x], 3);
  7657. SERIAL_ECHOPGM(" ");
  7658. }
  7659. SERIAL_ECHOLNPGM("");
  7660. }
  7661. #define FIL_LOAD_LENGTH 60