stepper.cpp 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. #ifdef HAVE_TMC2130_DRIVERS
  30. #include "tmc2130.h"
  31. #endif //HAVE_TMC2130_DRIVERS
  32. //===========================================================================
  33. //=============================public variables ============================
  34. //===========================================================================
  35. block_t *current_block; // A pointer to the block currently being traced
  36. //===========================================================================
  37. //=============================private variables ============================
  38. //===========================================================================
  39. //static makes it inpossible to be called from outside of this file by extern.!
  40. // Variables used by The Stepper Driver Interrupt
  41. static unsigned char out_bits; // The next stepping-bits to be output
  42. static int32_t counter_x, // Counter variables for the bresenham line tracer
  43. counter_y,
  44. counter_z,
  45. counter_e;
  46. volatile static uint32_t step_events_completed; // The number of step events executed in the current block
  47. static int32_t acceleration_time, deceleration_time;
  48. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  49. static uint16_t acc_step_rate; // needed for deccelaration start point
  50. static uint8_t step_loops;
  51. static uint16_t OCR1A_nominal;
  52. static uint8_t step_loops_nominal;
  53. volatile long endstops_trigsteps[3]={0,0,0};
  54. volatile long endstops_stepsTotal,endstops_stepsDone;
  55. static volatile bool endstop_x_hit=false;
  56. static volatile bool endstop_y_hit=false;
  57. static volatile bool endstop_z_hit=false;
  58. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  59. bool abort_on_endstop_hit = false;
  60. #endif
  61. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  62. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  63. int motor_current_setting_silent[3] = DEFAULT_PWM_MOTOR_CURRENT;
  64. int motor_current_setting_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  65. #endif
  66. static bool old_x_min_endstop=false;
  67. static bool old_x_max_endstop=false;
  68. static bool old_y_min_endstop=false;
  69. static bool old_y_max_endstop=false;
  70. static bool old_z_min_endstop=false;
  71. static bool old_z_max_endstop=false;
  72. #ifdef SG_HOMING
  73. static bool check_endstops = false;
  74. #else
  75. static bool check_endstops = true;
  76. #endif
  77. static bool check_z_endstop = false;
  78. int8_t SilentMode;
  79. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  80. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  81. //===========================================================================
  82. //=============================functions ============================
  83. //===========================================================================
  84. #define CHECK_ENDSTOPS if(check_endstops)
  85. // intRes = intIn1 * intIn2 >> 16
  86. // uses:
  87. // r26 to store 0
  88. // r27 to store the byte 1 of the 24 bit result
  89. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  90. asm volatile ( \
  91. "clr r26 \n\t" \
  92. "mul %A1, %B2 \n\t" \
  93. "movw %A0, r0 \n\t" \
  94. "mul %A1, %A2 \n\t" \
  95. "add %A0, r1 \n\t" \
  96. "adc %B0, r26 \n\t" \
  97. "lsr r0 \n\t" \
  98. "adc %A0, r26 \n\t" \
  99. "adc %B0, r26 \n\t" \
  100. "clr r1 \n\t" \
  101. : \
  102. "=&r" (intRes) \
  103. : \
  104. "d" (charIn1), \
  105. "d" (intIn2) \
  106. : \
  107. "r26" \
  108. )
  109. // intRes = longIn1 * longIn2 >> 24
  110. // uses:
  111. // r26 to store 0
  112. // r27 to store the byte 1 of the 48bit result
  113. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  114. asm volatile ( \
  115. "clr r26 \n\t" \
  116. "mul %A1, %B2 \n\t" \
  117. "mov r27, r1 \n\t" \
  118. "mul %B1, %C2 \n\t" \
  119. "movw %A0, r0 \n\t" \
  120. "mul %C1, %C2 \n\t" \
  121. "add %B0, r0 \n\t" \
  122. "mul %C1, %B2 \n\t" \
  123. "add %A0, r0 \n\t" \
  124. "adc %B0, r1 \n\t" \
  125. "mul %A1, %C2 \n\t" \
  126. "add r27, r0 \n\t" \
  127. "adc %A0, r1 \n\t" \
  128. "adc %B0, r26 \n\t" \
  129. "mul %B1, %B2 \n\t" \
  130. "add r27, r0 \n\t" \
  131. "adc %A0, r1 \n\t" \
  132. "adc %B0, r26 \n\t" \
  133. "mul %C1, %A2 \n\t" \
  134. "add r27, r0 \n\t" \
  135. "adc %A0, r1 \n\t" \
  136. "adc %B0, r26 \n\t" \
  137. "mul %B1, %A2 \n\t" \
  138. "add r27, r1 \n\t" \
  139. "adc %A0, r26 \n\t" \
  140. "adc %B0, r26 \n\t" \
  141. "lsr r27 \n\t" \
  142. "adc %A0, r26 \n\t" \
  143. "adc %B0, r26 \n\t" \
  144. "clr r1 \n\t" \
  145. : \
  146. "=&r" (intRes) \
  147. : \
  148. "d" (longIn1), \
  149. "d" (longIn2) \
  150. : \
  151. "r26" , "r27" \
  152. )
  153. // Some useful constants
  154. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  155. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  156. void checkHitEndstops()
  157. {
  158. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  159. SERIAL_ECHO_START;
  160. SERIAL_ECHORPGM(MSG_ENDSTOPS_HIT);
  161. if(endstop_x_hit) {
  162. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  163. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("X")));
  164. }
  165. if(endstop_y_hit) {
  166. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  167. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT, PSTR("Y")));
  168. }
  169. if(endstop_z_hit) {
  170. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  171. LCD_MESSAGERPGM(CAT2(MSG_ENDSTOPS_HIT,PSTR("Z")));
  172. }
  173. SERIAL_ECHOLN("");
  174. endstop_x_hit=false;
  175. endstop_y_hit=false;
  176. endstop_z_hit=false;
  177. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  178. if (abort_on_endstop_hit)
  179. {
  180. card.sdprinting = false;
  181. card.closefile();
  182. quickStop();
  183. setTargetHotend0(0);
  184. setTargetHotend1(0);
  185. setTargetHotend2(0);
  186. }
  187. #endif
  188. }
  189. }
  190. bool endstops_hit_on_purpose()
  191. {
  192. bool hit = endstop_x_hit || endstop_y_hit || endstop_z_hit;
  193. endstop_x_hit=false;
  194. endstop_y_hit=false;
  195. endstop_z_hit=false;
  196. return hit;
  197. }
  198. bool endstop_z_hit_on_purpose()
  199. {
  200. bool hit = endstop_z_hit;
  201. endstop_z_hit=false;
  202. return hit;
  203. }
  204. bool enable_endstops(bool check)
  205. {
  206. bool old = check_endstops;
  207. check_endstops = check;
  208. return old;
  209. }
  210. bool enable_z_endstop(bool check)
  211. {
  212. bool old = check_z_endstop;
  213. check_z_endstop = check;
  214. endstop_z_hit=false;
  215. return old;
  216. }
  217. // __________________________
  218. // /| |\ _________________ ^
  219. // / | | \ /| |\ |
  220. // / | | \ / | | \ s
  221. // / | | | | | \ p
  222. // / | | | | | \ e
  223. // +-----+------------------------+---+--+---------------+----+ e
  224. // | BLOCK 1 | BLOCK 2 | d
  225. //
  226. // time ----->
  227. //
  228. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  229. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  230. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  231. // The slope of acceleration is calculated with the leib ramp alghorithm.
  232. void st_wake_up() {
  233. // TCNT1 = 0;
  234. ENABLE_STEPPER_DRIVER_INTERRUPT();
  235. }
  236. void step_wait(){
  237. for(int8_t i=0; i < 6; i++){
  238. }
  239. }
  240. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  241. unsigned short timer;
  242. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  243. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  244. step_rate = (step_rate >> 2)&0x3fff;
  245. step_loops = 4;
  246. }
  247. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  248. step_rate = (step_rate >> 1)&0x7fff;
  249. step_loops = 2;
  250. }
  251. else {
  252. step_loops = 1;
  253. }
  254. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  255. step_rate -= (F_CPU/500000); // Correct for minimal speed
  256. if(step_rate >= (8*256)){ // higher step rate
  257. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  258. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  259. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  260. MultiU16X8toH16(timer, tmp_step_rate, gain);
  261. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  262. }
  263. else { // lower step rates
  264. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  265. table_address += ((step_rate)>>1) & 0xfffc;
  266. timer = (unsigned short)pgm_read_word_near(table_address);
  267. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  268. }
  269. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  270. return timer;
  271. }
  272. // Initializes the trapezoid generator from the current block. Called whenever a new
  273. // block begins.
  274. FORCE_INLINE void trapezoid_generator_reset() {
  275. deceleration_time = 0;
  276. // step_rate to timer interval
  277. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  278. // make a note of the number of step loops required at nominal speed
  279. step_loops_nominal = step_loops;
  280. acc_step_rate = current_block->initial_rate;
  281. acceleration_time = calc_timer(acc_step_rate);
  282. OCR1A = acceleration_time;
  283. // SERIAL_ECHO_START;
  284. // SERIAL_ECHOPGM("advance :");
  285. // SERIAL_ECHO(current_block->advance/256.0);
  286. // SERIAL_ECHOPGM("advance rate :");
  287. // SERIAL_ECHO(current_block->advance_rate/256.0);
  288. // SERIAL_ECHOPGM("initial advance :");
  289. // SERIAL_ECHO(current_block->initial_advance/256.0);
  290. // SERIAL_ECHOPGM("final advance :");
  291. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  292. }
  293. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  294. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  295. ISR(TIMER1_COMPA_vect)
  296. {
  297. // If there is no current block, attempt to pop one from the buffer
  298. if (current_block == NULL) {
  299. // Anything in the buffer?
  300. current_block = plan_get_current_block();
  301. if (current_block != NULL) {
  302. // The busy flag is set by the plan_get_current_block() call.
  303. // current_block->busy = true;
  304. trapezoid_generator_reset();
  305. counter_x = -(current_block->step_event_count >> 1);
  306. counter_y = counter_x;
  307. counter_z = counter_x;
  308. counter_e = counter_x;
  309. step_events_completed = 0;
  310. #ifdef Z_LATE_ENABLE
  311. if(current_block->steps_z > 0) {
  312. enable_z();
  313. OCR1A = 2000; //1ms wait
  314. return;
  315. }
  316. #endif
  317. }
  318. else {
  319. OCR1A=2000; // 1kHz.
  320. }
  321. }
  322. if (current_block != NULL) {
  323. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  324. out_bits = current_block->direction_bits;
  325. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  326. if((out_bits & (1<<X_AXIS))!=0){
  327. WRITE(X_DIR_PIN, INVERT_X_DIR);
  328. count_direction[X_AXIS]=-1;
  329. }
  330. else{
  331. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  332. count_direction[X_AXIS]=1;
  333. }
  334. if((out_bits & (1<<Y_AXIS))!=0){
  335. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  336. #ifdef Y_DUAL_STEPPER_DRIVERS
  337. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  338. #endif
  339. count_direction[Y_AXIS]=-1;
  340. }
  341. else{
  342. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  343. #ifdef Y_DUAL_STEPPER_DRIVERS
  344. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  345. #endif
  346. count_direction[Y_AXIS]=1;
  347. }
  348. // Set direction en check limit switches
  349. #ifndef COREXY
  350. if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
  351. #else
  352. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
  353. #endif
  354. CHECK_ENDSTOPS
  355. {
  356. {
  357. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  358. bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  359. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  360. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  361. endstop_x_hit=true;
  362. step_events_completed = current_block->step_event_count;
  363. }
  364. old_x_min_endstop = x_min_endstop;
  365. #endif
  366. }
  367. }
  368. }
  369. else { // +direction
  370. CHECK_ENDSTOPS
  371. {
  372. {
  373. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  374. bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  375. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  376. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  377. endstop_x_hit=true;
  378. step_events_completed = current_block->step_event_count;
  379. }
  380. old_x_max_endstop = x_max_endstop;
  381. #endif
  382. }
  383. }
  384. }
  385. #ifndef COREXY
  386. if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
  387. #else
  388. if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
  389. #endif
  390. CHECK_ENDSTOPS
  391. {
  392. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  393. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  394. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  395. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  396. endstop_y_hit=true;
  397. step_events_completed = current_block->step_event_count;
  398. }
  399. old_y_min_endstop = y_min_endstop;
  400. #endif
  401. }
  402. }
  403. else { // +direction
  404. CHECK_ENDSTOPS
  405. {
  406. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  407. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  408. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  409. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  410. endstop_y_hit=true;
  411. step_events_completed = current_block->step_event_count;
  412. }
  413. old_y_max_endstop = y_max_endstop;
  414. #endif
  415. }
  416. }
  417. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  418. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  419. #ifdef Z_DUAL_STEPPER_DRIVERS
  420. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  421. #endif
  422. count_direction[Z_AXIS]=-1;
  423. if(check_endstops && ! check_z_endstop)
  424. {
  425. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  426. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  427. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  428. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  429. endstop_z_hit=true;
  430. step_events_completed = current_block->step_event_count;
  431. }
  432. old_z_min_endstop = z_min_endstop;
  433. #endif
  434. }
  435. }
  436. else { // +direction
  437. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  438. #ifdef Z_DUAL_STEPPER_DRIVERS
  439. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  440. #endif
  441. count_direction[Z_AXIS]=1;
  442. CHECK_ENDSTOPS
  443. {
  444. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  445. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  446. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  447. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  448. endstop_z_hit=true;
  449. step_events_completed = current_block->step_event_count;
  450. }
  451. old_z_max_endstop = z_max_endstop;
  452. #endif
  453. }
  454. }
  455. // Supporting stopping on a trigger of the Z-stop induction sensor, not only for the Z-minus movements.
  456. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  457. if(check_z_endstop) {
  458. // Check the Z min end-stop no matter what.
  459. // Good for searching for the center of an induction target.
  460. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  461. if(z_min_endstop && old_z_min_endstop) {
  462. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  463. endstop_z_hit=true;
  464. step_events_completed = current_block->step_event_count;
  465. }
  466. old_z_min_endstop = z_min_endstop;
  467. }
  468. #endif
  469. if ((out_bits & (1 << E_AXIS)) != 0)
  470. { // -direction
  471. //AKU
  472. #ifdef SNMM
  473. if (snmm_extruder == 0 || snmm_extruder == 2)
  474. {
  475. NORM_E_DIR();
  476. }
  477. else
  478. {
  479. REV_E_DIR();
  480. }
  481. #else
  482. REV_E_DIR();
  483. #endif // SNMM
  484. count_direction[E_AXIS] = -1;
  485. }
  486. else
  487. { // +direction
  488. #ifdef SNMM
  489. if (snmm_extruder == 0 || snmm_extruder == 2)
  490. {
  491. REV_E_DIR();
  492. }
  493. else
  494. {
  495. NORM_E_DIR();
  496. }
  497. #else
  498. NORM_E_DIR();
  499. #endif // SNMM
  500. count_direction[E_AXIS] = 1;
  501. }
  502. for(uint8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  503. #ifndef AT90USB
  504. MSerial.checkRx(); // Check for serial chars.
  505. #endif
  506. counter_x += current_block->steps_x;
  507. if (counter_x > 0) {
  508. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  509. counter_x -= current_block->step_event_count;
  510. count_position[X_AXIS]+=count_direction[X_AXIS];
  511. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  512. }
  513. counter_y += current_block->steps_y;
  514. if (counter_y > 0) {
  515. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  516. #ifdef Y_DUAL_STEPPER_DRIVERS
  517. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  518. #endif
  519. counter_y -= current_block->step_event_count;
  520. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  521. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  522. #ifdef Y_DUAL_STEPPER_DRIVERS
  523. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  524. #endif
  525. }
  526. counter_z += current_block->steps_z;
  527. if (counter_z > 0) {
  528. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  529. #ifdef Z_DUAL_STEPPER_DRIVERS
  530. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  531. #endif
  532. counter_z -= current_block->step_event_count;
  533. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  534. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  535. #ifdef Z_DUAL_STEPPER_DRIVERS
  536. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  537. #endif
  538. }
  539. counter_e += current_block->steps_e;
  540. if (counter_e > 0) {
  541. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  542. counter_e -= current_block->step_event_count;
  543. count_position[E_AXIS]+=count_direction[E_AXIS];
  544. WRITE_E_STEP(INVERT_E_STEP_PIN);
  545. }
  546. step_events_completed += 1;
  547. if(step_events_completed >= current_block->step_event_count) break;
  548. }
  549. // Calculare new timer value
  550. unsigned short timer;
  551. unsigned short step_rate;
  552. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  553. // v = t * a -> acc_step_rate = acceleration_time * current_block->acceleration_rate
  554. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  555. acc_step_rate += current_block->initial_rate;
  556. // upper limit
  557. if(acc_step_rate > current_block->nominal_rate)
  558. acc_step_rate = current_block->nominal_rate;
  559. // step_rate to timer interval
  560. timer = calc_timer(acc_step_rate);
  561. OCR1A = timer;
  562. acceleration_time += timer;
  563. }
  564. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  565. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  566. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  567. step_rate = current_block->final_rate;
  568. }
  569. else {
  570. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  571. }
  572. // lower limit
  573. if(step_rate < current_block->final_rate)
  574. step_rate = current_block->final_rate;
  575. // step_rate to timer interval
  576. timer = calc_timer(step_rate);
  577. OCR1A = timer;
  578. deceleration_time += timer;
  579. }
  580. else {
  581. OCR1A = OCR1A_nominal;
  582. // ensure we're running at the correct step rate, even if we just came off an acceleration
  583. step_loops = step_loops_nominal;
  584. }
  585. // If current block is finished, reset pointer
  586. if (step_events_completed >= current_block->step_event_count) {
  587. current_block = NULL;
  588. plan_discard_current_block();
  589. }
  590. }
  591. check_fans();
  592. }
  593. void st_init()
  594. {
  595. #ifdef HAVE_TMC2130_DRIVERS
  596. tmc2130_init();
  597. #endif //HAVE_TMC2130_DRIVERS
  598. digipot_init(); //Initialize Digipot Motor Current
  599. microstep_init(); //Initialize Microstepping Pins
  600. //Initialize Dir Pins
  601. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  602. SET_OUTPUT(X_DIR_PIN);
  603. #endif
  604. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  605. SET_OUTPUT(X2_DIR_PIN);
  606. #endif
  607. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  608. SET_OUTPUT(Y_DIR_PIN);
  609. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  610. SET_OUTPUT(Y2_DIR_PIN);
  611. #endif
  612. #endif
  613. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  614. SET_OUTPUT(Z_DIR_PIN);
  615. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  616. SET_OUTPUT(Z2_DIR_PIN);
  617. #endif
  618. #endif
  619. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  620. SET_OUTPUT(E0_DIR_PIN);
  621. #endif
  622. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  623. SET_OUTPUT(E1_DIR_PIN);
  624. #endif
  625. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  626. SET_OUTPUT(E2_DIR_PIN);
  627. #endif
  628. //Initialize Enable Pins - steppers default to disabled.
  629. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  630. SET_OUTPUT(X_ENABLE_PIN);
  631. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  632. #endif
  633. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  634. SET_OUTPUT(X2_ENABLE_PIN);
  635. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  636. #endif
  637. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  638. SET_OUTPUT(Y_ENABLE_PIN);
  639. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  640. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  641. SET_OUTPUT(Y2_ENABLE_PIN);
  642. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  643. #endif
  644. #endif
  645. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  646. SET_OUTPUT(Z_ENABLE_PIN);
  647. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  648. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  649. SET_OUTPUT(Z2_ENABLE_PIN);
  650. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  651. #endif
  652. #endif
  653. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  654. SET_OUTPUT(E0_ENABLE_PIN);
  655. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  656. #endif
  657. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  658. SET_OUTPUT(E1_ENABLE_PIN);
  659. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  660. #endif
  661. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  662. SET_OUTPUT(E2_ENABLE_PIN);
  663. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  664. #endif
  665. //endstops and pullups
  666. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  667. SET_INPUT(X_MIN_PIN);
  668. #ifdef ENDSTOPPULLUP_XMIN
  669. WRITE(X_MIN_PIN,HIGH);
  670. #endif
  671. #endif
  672. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  673. SET_INPUT(Y_MIN_PIN);
  674. #ifdef ENDSTOPPULLUP_YMIN
  675. WRITE(Y_MIN_PIN,HIGH);
  676. #endif
  677. #endif
  678. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  679. SET_INPUT(Z_MIN_PIN);
  680. #ifdef ENDSTOPPULLUP_ZMIN
  681. WRITE(Z_MIN_PIN,HIGH);
  682. #endif
  683. #endif
  684. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  685. SET_INPUT(X_MAX_PIN);
  686. #ifdef ENDSTOPPULLUP_XMAX
  687. WRITE(X_MAX_PIN,HIGH);
  688. #endif
  689. #endif
  690. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  691. SET_INPUT(Y_MAX_PIN);
  692. #ifdef ENDSTOPPULLUP_YMAX
  693. WRITE(Y_MAX_PIN,HIGH);
  694. #endif
  695. #endif
  696. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  697. SET_INPUT(Z_MAX_PIN);
  698. #ifdef ENDSTOPPULLUP_ZMAX
  699. WRITE(Z_MAX_PIN,HIGH);
  700. #endif
  701. #endif
  702. //Initialize Step Pins
  703. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  704. SET_OUTPUT(X_STEP_PIN);
  705. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  706. disable_x();
  707. #endif
  708. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  709. SET_OUTPUT(X2_STEP_PIN);
  710. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  711. disable_x();
  712. #endif
  713. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  714. SET_OUTPUT(Y_STEP_PIN);
  715. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  716. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  717. SET_OUTPUT(Y2_STEP_PIN);
  718. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  719. #endif
  720. disable_y();
  721. #endif
  722. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  723. SET_OUTPUT(Z_STEP_PIN);
  724. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  725. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  726. SET_OUTPUT(Z2_STEP_PIN);
  727. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  728. #endif
  729. disable_z();
  730. #endif
  731. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  732. SET_OUTPUT(E0_STEP_PIN);
  733. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  734. disable_e0();
  735. #endif
  736. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  737. SET_OUTPUT(E1_STEP_PIN);
  738. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  739. disable_e1();
  740. #endif
  741. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  742. SET_OUTPUT(E2_STEP_PIN);
  743. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  744. disable_e2();
  745. #endif
  746. // waveform generation = 0100 = CTC
  747. TCCR1B &= ~(1<<WGM13);
  748. TCCR1B |= (1<<WGM12);
  749. TCCR1A &= ~(1<<WGM11);
  750. TCCR1A &= ~(1<<WGM10);
  751. // output mode = 00 (disconnected)
  752. TCCR1A &= ~(3<<COM1A0);
  753. TCCR1A &= ~(3<<COM1B0);
  754. // Set the timer pre-scaler
  755. // Generally we use a divider of 8, resulting in a 2MHz timer
  756. // frequency on a 16MHz MCU. If you are going to change this, be
  757. // sure to regenerate speed_lookuptable.h with
  758. // create_speed_lookuptable.py
  759. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  760. OCR1A = 0x4000;
  761. TCNT1 = 0;
  762. ENABLE_STEPPER_DRIVER_INTERRUPT();
  763. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  764. sei();
  765. }
  766. // Block until all buffered steps are executed
  767. void st_synchronize()
  768. {
  769. while( blocks_queued()) {
  770. manage_heater();
  771. // Vojtech: Don't disable motors inside the planner!
  772. manage_inactivity(true);
  773. lcd_update();
  774. #ifdef HAVE_TMC2130_DRIVERS
  775. tmc2130_st_synchronize();
  776. #endif //HAVE_TMC2130_DRIVERS
  777. }
  778. }
  779. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  780. {
  781. CRITICAL_SECTION_START;
  782. count_position[X_AXIS] = x;
  783. count_position[Y_AXIS] = y;
  784. count_position[Z_AXIS] = z;
  785. count_position[E_AXIS] = e;
  786. CRITICAL_SECTION_END;
  787. }
  788. void st_set_e_position(const long &e)
  789. {
  790. CRITICAL_SECTION_START;
  791. count_position[E_AXIS] = e;
  792. CRITICAL_SECTION_END;
  793. }
  794. long st_get_position(uint8_t axis)
  795. {
  796. long count_pos;
  797. CRITICAL_SECTION_START;
  798. count_pos = count_position[axis];
  799. CRITICAL_SECTION_END;
  800. return count_pos;
  801. }
  802. float st_get_position_mm(uint8_t axis)
  803. {
  804. float steper_position_in_steps = st_get_position(axis);
  805. return steper_position_in_steps / axis_steps_per_unit[axis];
  806. }
  807. void finishAndDisableSteppers()
  808. {
  809. st_synchronize();
  810. disable_x();
  811. disable_y();
  812. disable_z();
  813. disable_e0();
  814. disable_e1();
  815. disable_e2();
  816. }
  817. void quickStop()
  818. {
  819. DISABLE_STEPPER_DRIVER_INTERRUPT();
  820. while (blocks_queued()) plan_discard_current_block();
  821. current_block = NULL;
  822. ENABLE_STEPPER_DRIVER_INTERRUPT();
  823. }
  824. #ifdef BABYSTEPPING
  825. void babystep(const uint8_t axis,const bool direction)
  826. {
  827. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  828. //store initial pin states
  829. switch(axis)
  830. {
  831. case X_AXIS:
  832. {
  833. enable_x();
  834. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  835. //setup new step
  836. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  837. //perform step
  838. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  839. {
  840. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  841. }
  842. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  843. //get old pin state back.
  844. WRITE(X_DIR_PIN,old_x_dir_pin);
  845. }
  846. break;
  847. case Y_AXIS:
  848. {
  849. enable_y();
  850. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  851. //setup new step
  852. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  853. //perform step
  854. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  855. {
  856. volatile float x=1./float(axis+1)/float(axis+2); //wait a tiny bit
  857. }
  858. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  859. //get old pin state back.
  860. WRITE(Y_DIR_PIN,old_y_dir_pin);
  861. }
  862. break;
  863. case Z_AXIS:
  864. {
  865. enable_z();
  866. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  867. //setup new step
  868. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  869. #ifdef Z_DUAL_STEPPER_DRIVERS
  870. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  871. #endif
  872. //perform step
  873. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  874. #ifdef Z_DUAL_STEPPER_DRIVERS
  875. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  876. #endif
  877. //wait a tiny bit
  878. {
  879. volatile float x=1./float(axis+1); //absolutely useless
  880. }
  881. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  882. #ifdef Z_DUAL_STEPPER_DRIVERS
  883. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  884. #endif
  885. //get old pin state back.
  886. WRITE(Z_DIR_PIN,old_z_dir_pin);
  887. #ifdef Z_DUAL_STEPPER_DRIVERS
  888. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  889. #endif
  890. }
  891. break;
  892. default: break;
  893. }
  894. }
  895. #endif //BABYSTEPPING
  896. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  897. {
  898. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  899. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  900. SPI.transfer(address); // send in the address and value via SPI:
  901. SPI.transfer(value);
  902. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  903. //delay(10);
  904. #endif
  905. }
  906. void EEPROM_read_st(int pos, uint8_t* value, uint8_t size)
  907. {
  908. do
  909. {
  910. *value = eeprom_read_byte((unsigned char*)pos);
  911. pos++;
  912. value++;
  913. }while(--size);
  914. }
  915. void digipot_init() //Initialize Digipot Motor Current
  916. {
  917. EEPROM_read_st(EEPROM_SILENT,(uint8_t*)&SilentMode,sizeof(SilentMode));
  918. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  919. if(SilentMode == 0){
  920. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT_LOUD;
  921. }else{
  922. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  923. }
  924. SPI.begin();
  925. pinMode(DIGIPOTSS_PIN, OUTPUT);
  926. for(int i=0;i<=4;i++)
  927. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  928. digipot_current(i,digipot_motor_current[i]);
  929. #endif
  930. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  931. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  932. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  933. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  934. if((SilentMode == 0) || (farm_mode) ){
  935. motor_current_setting[0] = motor_current_setting_loud[0];
  936. motor_current_setting[1] = motor_current_setting_loud[1];
  937. motor_current_setting[2] = motor_current_setting_loud[2];
  938. }else{
  939. motor_current_setting[0] = motor_current_setting_silent[0];
  940. motor_current_setting[1] = motor_current_setting_silent[1];
  941. motor_current_setting[2] = motor_current_setting_silent[2];
  942. }
  943. digipot_current(0, motor_current_setting[0]);
  944. digipot_current(1, motor_current_setting[1]);
  945. digipot_current(2, motor_current_setting[2]);
  946. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  947. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  948. #endif
  949. }
  950. void digipot_current(uint8_t driver, int current)
  951. {
  952. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  953. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  954. digitalPotWrite(digipot_ch[driver], current);
  955. #endif
  956. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  957. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  958. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  959. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  960. #endif
  961. }
  962. void microstep_init()
  963. {
  964. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  965. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  966. pinMode(E1_MS1_PIN,OUTPUT);
  967. pinMode(E1_MS2_PIN,OUTPUT);
  968. #endif
  969. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  970. pinMode(X_MS1_PIN,OUTPUT);
  971. pinMode(X_MS2_PIN,OUTPUT);
  972. pinMode(Y_MS1_PIN,OUTPUT);
  973. pinMode(Y_MS2_PIN,OUTPUT);
  974. pinMode(Z_MS1_PIN,OUTPUT);
  975. pinMode(Z_MS2_PIN,OUTPUT);
  976. pinMode(E0_MS1_PIN,OUTPUT);
  977. pinMode(E0_MS2_PIN,OUTPUT);
  978. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  979. #endif
  980. }
  981. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  982. {
  983. if(ms1 > -1) switch(driver)
  984. {
  985. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  986. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  987. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  988. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  989. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  990. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  991. #endif
  992. }
  993. if(ms2 > -1) switch(driver)
  994. {
  995. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  996. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  997. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  998. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  999. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1000. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1001. #endif
  1002. }
  1003. }
  1004. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1005. {
  1006. switch(stepping_mode)
  1007. {
  1008. case 1: microstep_ms(driver,MICROSTEP1); break;
  1009. case 2: microstep_ms(driver,MICROSTEP2); break;
  1010. case 4: microstep_ms(driver,MICROSTEP4); break;
  1011. case 8: microstep_ms(driver,MICROSTEP8); break;
  1012. case 16: microstep_ms(driver,MICROSTEP16); break;
  1013. }
  1014. }
  1015. void microstep_readings()
  1016. {
  1017. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1018. SERIAL_PROTOCOLPGM("X: ");
  1019. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1020. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1021. SERIAL_PROTOCOLPGM("Y: ");
  1022. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1023. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1024. SERIAL_PROTOCOLPGM("Z: ");
  1025. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1026. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1027. SERIAL_PROTOCOLPGM("E0: ");
  1028. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1029. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1030. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1031. SERIAL_PROTOCOLPGM("E1: ");
  1032. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1033. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1034. #endif
  1035. }
  1036. static void check_fans() {
  1037. if (READ(TACH_0) != fan_state[0]) {
  1038. fan_edge_counter[0] ++;
  1039. fan_state[0] = READ(TACH_0);
  1040. }
  1041. if (READ(TACH_1) != fan_state[1]) {
  1042. fan_edge_counter[1] ++;
  1043. fan_state[1] = READ(TACH_1);
  1044. }
  1045. }