fsensor.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "cmdqueue.h"
  8. #include "ultralcd.h"
  9. #include "mmu.h"
  10. #include "cardreader.h"
  11. #include "adc.h"
  12. #include "temperature.h"
  13. #include "config.h"
  14. //! @name Basic parameters
  15. //! @{
  16. #define FSENSOR_CHUNK_LEN 1.25 //!< filament sensor chunk length (mm)
  17. #define FSENSOR_ERR_MAX 4 //!< filament sensor maximum error/chunk count for runout detection
  18. #define FSENSOR_SOFTERR_CMAX 3 //!< number of contiguous soft failures before a triggering a runout
  19. #define FSENSOR_SOFTERR_DELTA 30000 //!< maximum interval (ms) to consider soft failures contiguous
  20. //! @}
  21. //! @name Optical quality measurement parameters
  22. //! @{
  23. #define FSENSOR_OQ_MAX_ES 2 //!< maximum sum of error blocks during filament recheck
  24. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd sum during filament check (counts per inch)
  25. #define FSENSOR_OQ_MIN_BR 80 //!< minimum brightness value
  26. #define FSENSOR_OQ_MAX_SH 10 //!< maximum shutter value
  27. //! @}
  28. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  29. // PJ7 can not be used (does not have PinChangeInterrupt possibility)
  30. #define FSENSOR_INT_PIN 75 //!< filament sensor interrupt pin PJ4
  31. #define FSENSOR_INT_PIN_MASK 0x10 //!< filament sensor interrupt pin mask (bit4)
  32. #define FSENSOR_INT_PIN_PIN_REG PINJ // PIN register @ PJ4
  33. #define FSENSOR_INT_PIN_VECT PCINT1_vect // PinChange ISR @ PJ4
  34. #define FSENSOR_INT_PIN_PCMSK_REG PCMSK1 // PinChangeMaskRegister @ PJ4
  35. #define FSENSOR_INT_PIN_PCMSK_BIT PCINT13 // PinChange Interrupt / PinChange Enable Mask @ PJ4
  36. #define FSENSOR_INT_PIN_PCICR_BIT PCIE1 // PinChange Interrupt Enable / Flag @ PJ4
  37. //! enabled = initialized and sampled every chunk event
  38. bool fsensor_enabled = true;
  39. //! runout watching is done in fsensor_update (called from main loop)
  40. bool fsensor_watch_runout = true;
  41. //! not responding - is set if any communication error occurred during initialization or readout
  42. bool fsensor_not_responding = false;
  43. #ifdef PAT9125
  44. uint8_t fsensor_int_pin_old = 0;
  45. //! optical checking "chunk lenght" (already in steps)
  46. int16_t fsensor_chunk_len = 0;
  47. //! number of errors, updated in ISR
  48. uint8_t fsensor_err_cnt = 0;
  49. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  50. int16_t fsensor_st_cnt = 0;
  51. //! count of total sensor "soft" failures (filament status checks)
  52. uint8_t fsensor_softfail = 0;
  53. //! timestamp of last soft failure
  54. unsigned long fsensor_softfail_last = 0;
  55. //! count of soft failures within the configured time
  56. uint8_t fsensor_softfail_ccnt = 0;
  57. #endif
  58. #ifdef DEBUG_FSENSOR_LOG
  59. //! log flag: 0=log disabled, 1=log enabled
  60. uint8_t fsensor_log = 1;
  61. #endif //DEBUG_FSENSOR_LOG
  62. //! @name filament autoload variables
  63. //! @{
  64. //! autoload feature enabled
  65. bool fsensor_autoload_enabled = true;
  66. //! autoload watching enable/disable flag
  67. bool fsensor_watch_autoload = false;
  68. #ifdef PAT9125
  69. //
  70. uint16_t fsensor_autoload_y;
  71. //
  72. uint8_t fsensor_autoload_c;
  73. //
  74. uint32_t fsensor_autoload_last_millis;
  75. //
  76. uint8_t fsensor_autoload_sum;
  77. //! @}
  78. #endif
  79. //! @name filament optical quality measurement variables
  80. //! @{
  81. //! Measurement enable/disable flag
  82. bool fsensor_oq_meassure = false;
  83. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  84. uint8_t fsensor_oq_skipchunk;
  85. //! number of samples from start of measurement
  86. uint8_t fsensor_oq_samples;
  87. //! sum of steps in positive direction movements
  88. uint16_t fsensor_oq_st_sum;
  89. //! sum of deltas in positive direction movements
  90. uint16_t fsensor_oq_yd_sum;
  91. //! sum of errors during measurement
  92. uint16_t fsensor_oq_er_sum;
  93. //! max error counter value during measurement
  94. uint8_t fsensor_oq_er_max;
  95. //! minimum delta value
  96. int16_t fsensor_oq_yd_min;
  97. //! maximum delta value
  98. int16_t fsensor_oq_yd_max;
  99. //! sum of shutter value
  100. uint16_t fsensor_oq_sh_sum;
  101. //! @}
  102. #ifdef IR_SENSOR_ANALOG
  103. ClFsensorPCB oFsensorPCB;
  104. ClFsensorActionNA oFsensorActionNA;
  105. bool bIRsensorStateFlag=false;
  106. ShortTimer tIRsensorCheckTimer;
  107. #endif //IR_SENSOR_ANALOG
  108. void fsensor_stop_and_save_print(void)
  109. {
  110. puts_P(PSTR("fsensor_stop_and_save_print"));
  111. stop_and_save_print_to_ram(0, 0);
  112. fsensor_watch_runout = false;
  113. }
  114. #ifdef PAT9125
  115. // Reset all internal counters to zero, including stepper callbacks
  116. void fsensor_reset_err_cnt()
  117. {
  118. fsensor_err_cnt = 0;
  119. pat9125_y = 0;
  120. st_reset_fsensor();
  121. }
  122. void fsensor_set_axis_steps_per_unit(float u)
  123. {
  124. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * u);
  125. }
  126. #endif
  127. void fsensor_restore_print_and_continue(void)
  128. {
  129. puts_P(PSTR("fsensor_restore_print_and_continue"));
  130. fsensor_watch_runout = true;
  131. #ifdef PAT9125
  132. fsensor_reset_err_cnt();
  133. #endif
  134. restore_print_from_ram_and_continue(0);
  135. }
  136. // fsensor_checkpoint_print cuts the current print job at the current position,
  137. // allowing new instructions to be inserted in the middle
  138. void fsensor_checkpoint_print(void)
  139. {
  140. puts_P(PSTR("fsensor_checkpoint_print"));
  141. stop_and_save_print_to_ram(0, 0);
  142. restore_print_from_ram_and_continue(0);
  143. }
  144. #ifdef IR_SENSOR_ANALOG
  145. const char* FsensorIRVersionText()
  146. {
  147. switch(oFsensorPCB)
  148. {
  149. case ClFsensorPCB::_Old:
  150. return _T(MSG_IR_03_OR_OLDER);
  151. case ClFsensorPCB::_Rev04:
  152. return _T(MSG_IR_04_OR_NEWER);
  153. default:
  154. return _T(MSG_IR_UNKNOWN);
  155. }
  156. }
  157. #endif //IR_SENSOR_ANALOG
  158. void fsensor_init(void)
  159. {
  160. #ifdef PAT9125
  161. uint8_t pat9125 = pat9125_init();
  162. printf_P(PSTR("PAT9125_init:%u\n"), pat9125);
  163. #endif //PAT9125
  164. uint8_t fsensor_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  165. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  166. fsensor_not_responding = false;
  167. #ifdef PAT9125
  168. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  169. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  170. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[E_AXIS]);
  171. if (!pat9125){
  172. fsensor_enabled = 0; //disable sensor
  173. fsensor_not_responding = true;
  174. }
  175. #endif //PAT9125
  176. #ifdef IR_SENSOR_ANALOG
  177. bIRsensorStateFlag=false;
  178. oFsensorPCB = (ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
  179. oFsensorActionNA = (ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
  180. // If the fsensor is not responding even at the start of the printer,
  181. // set this flag accordingly to show N/A in Settings->Filament sensor.
  182. // This is even valid for both fsensor board revisions (0.3 or older and 0.4).
  183. // Must be done after reading what type of fsensor board we have
  184. fsensor_not_responding = ! fsensor_IR_check();
  185. #endif //IR_SENSOR_ANALOG
  186. if (fsensor_enabled){
  187. fsensor_enable(false); // (in this case) EEPROM update is not necessary
  188. } else {
  189. fsensor_disable(false); // (in this case) EEPROM update is not necessary
  190. }
  191. printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));
  192. #ifdef IR_SENSOR_ANALOG
  193. printf_P(PSTR(" (sensor board revision:%S)\n"), FsensorIRVersionText());
  194. #else //IR_SENSOR_ANALOG
  195. MYSERIAL.println();
  196. #endif //IR_SENSOR_ANALOG
  197. if (check_for_ir_sensor()){
  198. ir_sensor_detected = true;
  199. }
  200. }
  201. bool fsensor_enable(bool bUpdateEEPROM)
  202. {
  203. #ifdef PAT9125
  204. (void)bUpdateEEPROM; // silence unused warning in this variant
  205. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  206. uint8_t pat9125 = pat9125_init();
  207. printf_P(PSTR("PAT9125_init:%u\n"), pat9125);
  208. if (pat9125)
  209. fsensor_not_responding = false;
  210. else
  211. fsensor_not_responding = true;
  212. fsensor_enabled = pat9125 ? true : false;
  213. fsensor_watch_runout = true;
  214. fsensor_oq_meassure = false;
  215. fsensor_reset_err_cnt();
  216. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  217. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  218. }
  219. else //filament sensor is FINDA, always enable
  220. {
  221. fsensor_enabled = true;
  222. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  223. FSensorStateMenu = 1;
  224. }
  225. #else // PAT9125
  226. #ifdef IR_SENSOR_ANALOG
  227. if(!fsensor_IR_check())
  228. {
  229. bUpdateEEPROM=true;
  230. fsensor_enabled=false;
  231. fsensor_not_responding=true;
  232. FSensorStateMenu=0;
  233. }
  234. else {
  235. #endif //IR_SENSOR_ANALOG
  236. fsensor_enabled=true;
  237. fsensor_not_responding=false;
  238. FSensorStateMenu=1;
  239. #ifdef IR_SENSOR_ANALOG
  240. }
  241. #endif //IR_SENSOR_ANALOG
  242. if(bUpdateEEPROM)
  243. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, FSensorStateMenu);
  244. #endif //PAT9125
  245. return fsensor_enabled;
  246. }
  247. void fsensor_disable(bool bUpdateEEPROM)
  248. {
  249. fsensor_enabled = false;
  250. FSensorStateMenu = 0;
  251. if(bUpdateEEPROM)
  252. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  253. }
  254. void fsensor_autoload_set(bool State)
  255. {
  256. #ifdef PAT9125
  257. if (!State) fsensor_autoload_check_stop();
  258. #endif //PAT9125
  259. fsensor_autoload_enabled = State;
  260. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  261. }
  262. void pciSetup(byte pin)
  263. {
  264. // !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins
  265. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  266. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  267. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  268. }
  269. #ifdef PAT9125
  270. void fsensor_autoload_check_start(void)
  271. {
  272. // puts_P(_N("fsensor_autoload_check_start\n"));
  273. if (!fsensor_enabled) return;
  274. if (!fsensor_autoload_enabled) return;
  275. if (fsensor_watch_autoload) return;
  276. if (!pat9125_update()) //update sensor
  277. {
  278. fsensor_disable();
  279. fsensor_not_responding = true;
  280. fsensor_watch_autoload = false;
  281. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  282. return;
  283. }
  284. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED"));
  285. fsensor_autoload_y = pat9125_y; //save current y value
  286. fsensor_autoload_c = 0; //reset number of changes counter
  287. fsensor_autoload_sum = 0;
  288. fsensor_autoload_last_millis = _millis();
  289. fsensor_watch_runout = false;
  290. fsensor_watch_autoload = true;
  291. }
  292. void fsensor_autoload_check_stop(void)
  293. {
  294. // puts_P(_N("fsensor_autoload_check_stop\n"));
  295. if (!fsensor_enabled) return;
  296. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  297. if (!fsensor_autoload_enabled) return;
  298. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  299. if (!fsensor_watch_autoload) return;
  300. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED"));
  301. fsensor_autoload_sum = 0;
  302. fsensor_watch_autoload = false;
  303. fsensor_watch_runout = true;
  304. fsensor_reset_err_cnt();
  305. }
  306. #endif //PAT9125
  307. bool fsensor_check_autoload(void)
  308. {
  309. if (!fsensor_enabled) return false;
  310. if (!fsensor_autoload_enabled) return false;
  311. if (ir_sensor_detected) {
  312. if (READ(IR_SENSOR_PIN)) {
  313. fsensor_watch_autoload = true;
  314. }
  315. else if (fsensor_watch_autoload == true) {
  316. fsensor_watch_autoload = false;
  317. return true;
  318. }
  319. }
  320. #ifdef PAT9125
  321. if (!fsensor_watch_autoload)
  322. {
  323. fsensor_autoload_check_start();
  324. return false;
  325. }
  326. #if 0
  327. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  328. #endif
  329. if ((_millis() - fsensor_autoload_last_millis) < 25) return false;
  330. fsensor_autoload_last_millis = _millis();
  331. if (!pat9125_update_y()) //update sensor
  332. {
  333. fsensor_disable();
  334. fsensor_not_responding = true;
  335. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  336. return false;
  337. }
  338. int16_t dy = pat9125_y - fsensor_autoload_y;
  339. if (dy) //? dy value is nonzero
  340. {
  341. if (dy > 0) //? delta-y value is positive (inserting)
  342. {
  343. fsensor_autoload_sum += dy;
  344. fsensor_autoload_c += 3; //increment change counter by 3
  345. }
  346. else if (fsensor_autoload_c > 1)
  347. fsensor_autoload_c -= 2; //decrement change counter by 2
  348. fsensor_autoload_y = pat9125_y; //save current value
  349. }
  350. else if (fsensor_autoload_c > 0)
  351. fsensor_autoload_c--;
  352. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  353. #if 0
  354. puts_P(_N("fsensor_check_autoload\n"));
  355. if (fsensor_autoload_c != fsensor_autoload_c_old)
  356. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  357. #endif
  358. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  359. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  360. {
  361. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  362. return true;
  363. }
  364. #endif //PAT9125
  365. return false;
  366. }
  367. #ifdef PAT9125
  368. void fsensor_oq_meassure_set(bool State)
  369. {
  370. fsensor_oq_meassure_enabled = State;
  371. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  372. }
  373. void fsensor_oq_meassure_start(uint8_t skip)
  374. {
  375. if (!fsensor_enabled) return;
  376. if (!fsensor_oq_meassure_enabled) return;
  377. puts_P(PSTR("fsensor_oq_meassure_start"));
  378. fsensor_oq_skipchunk = skip;
  379. fsensor_oq_samples = 0;
  380. fsensor_oq_st_sum = 0;
  381. fsensor_oq_yd_sum = 0;
  382. fsensor_oq_er_sum = 0;
  383. fsensor_oq_er_max = 0;
  384. fsensor_oq_yd_min = INT16_MAX;
  385. fsensor_oq_yd_max = 0;
  386. fsensor_oq_sh_sum = 0;
  387. pat9125_update();
  388. pat9125_y = 0;
  389. fsensor_oq_meassure = true;
  390. }
  391. void fsensor_oq_meassure_stop(void)
  392. {
  393. if (!fsensor_enabled) return;
  394. if (!fsensor_oq_meassure_enabled) return;
  395. printf_P(PSTR("fsensor_oq_meassure_stop, %u samples\n"), fsensor_oq_samples);
  396. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  397. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  398. fsensor_oq_meassure = false;
  399. }
  400. #ifdef FSENSOR_QUALITY
  401. const char _OK[] PROGMEM = "OK";
  402. const char _NG[] PROGMEM = "NG!";
  403. bool fsensor_oq_result(void)
  404. {
  405. if (!fsensor_enabled) return true;
  406. if (!fsensor_oq_meassure_enabled) return true;
  407. puts_P(_N("fsensor_oq_result"));
  408. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  409. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  410. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  411. printf_P(_N(" er_max = %u %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  412. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  413. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  414. printf_P(_N(" yd_avg = %u %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  415. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  416. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  417. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  418. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  419. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  420. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  421. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  422. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  423. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  424. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  425. if (yd_qua >= 8) res_sh_avg = true;
  426. printf_P(_N(" sh_avg = %u %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  427. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  428. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  429. return res;
  430. }
  431. #endif //FSENSOR_QUALITY
  432. FORCE_INLINE static void fsensor_isr(int st_cnt)
  433. {
  434. uint8_t old_err_cnt = fsensor_err_cnt;
  435. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  436. if (!pat9125_res)
  437. {
  438. fsensor_disable();
  439. fsensor_not_responding = true;
  440. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  441. }
  442. if (st_cnt != 0)
  443. {
  444. // movement was planned, check for sensor movement
  445. int8_t st_dir = st_cnt >= 0;
  446. int8_t pat9125_dir = pat9125_y >= 0;
  447. if (pat9125_y == 0)
  448. {
  449. if (st_dir)
  450. {
  451. // no movement detected: we might be within a blind sensor range,
  452. // update the frame and shutter parameters we didn't earlier
  453. if (!fsensor_oq_meassure)
  454. pat9125_update_bs();
  455. // increment the error count only if underexposed: filament likely missing
  456. if ((pat9125_b < FSENSOR_OQ_MIN_BR) && (pat9125_s > FSENSOR_OQ_MAX_SH))
  457. {
  458. // check for a dark frame (<30% avg brightness) with long exposure
  459. ++fsensor_err_cnt;
  460. }
  461. else
  462. {
  463. // good frame, filament likely present
  464. if(fsensor_err_cnt) --fsensor_err_cnt;
  465. }
  466. }
  467. }
  468. else if (pat9125_dir != st_dir)
  469. {
  470. // detected direction opposite of motor movement
  471. if (st_dir) ++fsensor_err_cnt;
  472. }
  473. else if (pat9125_dir == st_dir)
  474. {
  475. // direction agreeing with planned movement
  476. if (fsensor_err_cnt) --fsensor_err_cnt;
  477. }
  478. if (st_dir && fsensor_oq_meassure)
  479. {
  480. // extruding with quality assessment
  481. if (fsensor_oq_skipchunk)
  482. {
  483. fsensor_oq_skipchunk--;
  484. fsensor_err_cnt = 0;
  485. }
  486. else
  487. {
  488. if (st_cnt == fsensor_chunk_len)
  489. {
  490. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  491. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  492. }
  493. fsensor_oq_samples++;
  494. fsensor_oq_st_sum += st_cnt;
  495. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  496. if (fsensor_err_cnt > old_err_cnt)
  497. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  498. if (fsensor_oq_er_max < fsensor_err_cnt)
  499. fsensor_oq_er_max = fsensor_err_cnt;
  500. fsensor_oq_sh_sum += pat9125_s;
  501. }
  502. }
  503. }
  504. #ifdef DEBUG_FSENSOR_LOG
  505. if (fsensor_log)
  506. {
  507. printf_P(_N("FSENSOR cnt=%d dy=%d err=%u %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  508. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%u yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  509. }
  510. #endif //DEBUG_FSENSOR_LOG
  511. pat9125_y = 0;
  512. }
  513. ISR(FSENSOR_INT_PIN_VECT)
  514. {
  515. if (mmu_enabled || ir_sensor_detected) return;
  516. if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
  517. fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
  518. // prevent isr re-entry
  519. static bool _lock = false;
  520. if (!_lock)
  521. {
  522. // fetch fsensor_st_cnt atomically
  523. int st_cnt = fsensor_st_cnt;
  524. fsensor_st_cnt = 0;
  525. _lock = true;
  526. sei();
  527. fsensor_isr(st_cnt);
  528. cli();
  529. _lock = false;
  530. }
  531. }
  532. void fsensor_setup_interrupt(void)
  533. {
  534. WRITE(FSENSOR_INT_PIN, 0);
  535. SET_OUTPUT(FSENSOR_INT_PIN);
  536. fsensor_int_pin_old = 0;
  537. //pciSetup(FSENSOR_INT_PIN);
  538. // !!! "pciSetup()" does not provide the correct results for some MCU pins
  539. // so interrupt registers settings:
  540. FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)
  541. PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins)
  542. PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins)
  543. }
  544. void fsensor_st_block_chunk(int cnt)
  545. {
  546. if (!fsensor_enabled) return;
  547. fsensor_st_cnt += cnt;
  548. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  549. WRITE(FSENSOR_INT_PIN, !READ(FSENSOR_INT_PIN));
  550. }
  551. #endif //PAT9125
  552. //! Common code for enqueing M600 and supplemental codes into the command queue.
  553. //! Used both for the IR sensor and the PAT9125
  554. void fsensor_enque_M600(){
  555. puts_P(PSTR("fsensor_update - M600"));
  556. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  557. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  558. enquecommand_front_P((PSTR("M600")));
  559. }
  560. //! @brief filament sensor update (perform M600 on filament runout)
  561. //!
  562. //! Works only if filament sensor is enabled.
  563. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  564. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  565. void fsensor_update(void)
  566. {
  567. #ifdef PAT9125
  568. if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  569. {
  570. fsensor_stop_and_save_print();
  571. KEEPALIVE_STATE(IN_HANDLER);
  572. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  573. fsensor_autoload_enabled = false;
  574. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  575. fsensor_oq_meassure_enabled = true;
  576. // move the nozzle away while checking the filament
  577. current_position[Z_AXIS] += 0.8;
  578. if(current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  579. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  580. st_synchronize();
  581. // check the filament in isolation
  582. fsensor_reset_err_cnt();
  583. fsensor_oq_meassure_start(0);
  584. float e_tmp = current_position[E_AXIS];
  585. current_position[E_AXIS] -= 3;
  586. plan_buffer_line_curposXYZE(250/60);
  587. current_position[E_AXIS] = e_tmp;
  588. plan_buffer_line_curposXYZE(200/60);
  589. st_synchronize();
  590. fsensor_oq_meassure_stop();
  591. bool err = false;
  592. err |= (fsensor_err_cnt > 0); // final error count is non-zero
  593. err |= (fsensor_oq_er_sum > FSENSOR_OQ_MAX_ES); // total error count is above limit
  594. err |= (fsensor_oq_yd_sum < FSENSOR_OQ_MIN_YD); // total measured distance is below limit
  595. fsensor_restore_print_and_continue();
  596. fsensor_autoload_enabled = autoload_enabled_tmp;
  597. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  598. unsigned long now = _millis();
  599. if (!err && (now - fsensor_softfail_last) > FSENSOR_SOFTERR_DELTA)
  600. fsensor_softfail_ccnt = 0;
  601. if (!err && fsensor_softfail_ccnt <= FSENSOR_SOFTERR_CMAX)
  602. {
  603. puts_P(PSTR("fsensor_err_cnt = 0"));
  604. ++fsensor_softfail;
  605. ++fsensor_softfail_ccnt;
  606. fsensor_softfail_last = now;
  607. }
  608. else
  609. {
  610. fsensor_softfail_ccnt = 0;
  611. fsensor_softfail_last = 0;
  612. fsensor_enque_M600();
  613. }
  614. }
  615. #else //PAT9125
  616. if (CHECK_FSENSOR && ir_sensor_detected)
  617. {
  618. if (READ(IR_SENSOR_PIN))
  619. { // IR_SENSOR_PIN ~ H
  620. fsensor_checkpoint_print();
  621. fsensor_enque_M600();
  622. }
  623. }
  624. #endif //PAT9125
  625. }
  626. #ifdef IR_SENSOR_ANALOG
  627. /// This is called only upon start of the printer or when switching the fsensor ON in the menu
  628. /// We cannot do temporal window checks here (aka the voltage has been in some range for a period of time)
  629. bool fsensor_IR_check(uint16_t raw){
  630. if( IRsensor_Lmax_TRESHOLD <= raw && raw <= IRsensor_Hmin_TRESHOLD ){
  631. /// If the voltage is in forbidden range, the fsensor is ok, but the lever is mounted improperly.
  632. /// Or the user is so creative so that he can hold a piece of fillament in the hole in such a genius way,
  633. /// that the IR fsensor reading is within 1.5 and 3V ... this would have been highly unusual
  634. /// and would have been considered more like a sabotage than normal printer operation
  635. puts_P(PSTR("fsensor in forbidden range 1.5-3V - check sensor"));
  636. return false;
  637. }
  638. if( oFsensorPCB == ClFsensorPCB::_Rev04 ){
  639. /// newer IR sensor cannot normally produce 4.6-5V, this is considered a failure/bad mount
  640. if( IRsensor_Hopen_TRESHOLD <= raw && raw <= IRsensor_VMax_TRESHOLD ){
  641. puts_P(PSTR("fsensor v0.4 in fault range 4.6-5V - unconnected"));
  642. return false;
  643. }
  644. /// newer IR sensor cannot normally produce 0-0.3V, this is considered a failure
  645. #if 0 //Disabled as it has to be decided if we gonna use this or not.
  646. if( IRsensor_Hopen_TRESHOLD <= raw && raw <= IRsensor_VMax_TRESHOLD ){
  647. puts_P(PSTR("fsensor v0.4 in fault range 0.0-0.3V - wrong IR sensor"));
  648. return false;
  649. }
  650. #endif
  651. }
  652. /// If IR sensor is "uknown state" and filament is not loaded > 1.5V return false
  653. #if 0
  654. if( (oFsensorPCB == ClFsensorPCB::_Undef) && ( raw > IRsensor_Lmax_TRESHOLD ) ){
  655. puts_P(PSTR("Unknown IR sensor version and no filament loaded detected."));
  656. return false;
  657. }
  658. #endif
  659. // otherwise the IR fsensor is considered working correctly
  660. return true;
  661. }
  662. #endif //IR_SENSOR_ANALOG