Marlin_main.cpp 235 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef HAVE_TMC2130_DRIVERS
  48. #include "tmc2130.h"
  49. #endif //HAVE_TMC2130_DRIVERS
  50. #ifdef BLINKM
  51. #include "BlinkM.h"
  52. #include "Wire.h"
  53. #endif
  54. #ifdef ULTRALCD
  55. #include "ultralcd.h"
  56. #endif
  57. #if NUM_SERVOS > 0
  58. #include "Servo.h"
  59. #endif
  60. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  61. #include <SPI.h>
  62. #endif
  63. #define VERSION_STRING "1.0.2"
  64. #include "ultralcd.h"
  65. // Macros for bit masks
  66. #define BIT(b) (1<<(b))
  67. #define TEST(n,b) (((n)&BIT(b))!=0)
  68. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  69. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  70. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  71. //Implemented Codes
  72. //-------------------
  73. // PRUSA CODES
  74. // P F - Returns FW versions
  75. // P R - Returns revision of printer
  76. // G0 -> G1
  77. // G1 - Coordinated Movement X Y Z E
  78. // G2 - CW ARC
  79. // G3 - CCW ARC
  80. // G4 - Dwell S<seconds> or P<milliseconds>
  81. // G10 - retract filament according to settings of M207
  82. // G11 - retract recover filament according to settings of M208
  83. // G28 - Home all Axis
  84. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  85. // G30 - Single Z Probe, probes bed at current XY location.
  86. // G31 - Dock sled (Z_PROBE_SLED only)
  87. // G32 - Undock sled (Z_PROBE_SLED only)
  88. // G80 - Automatic mesh bed leveling
  89. // G81 - Print bed profile
  90. // G90 - Use Absolute Coordinates
  91. // G91 - Use Relative Coordinates
  92. // G92 - Set current position to coordinates given
  93. // M Codes
  94. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  95. // M1 - Same as M0
  96. // M17 - Enable/Power all stepper motors
  97. // M18 - Disable all stepper motors; same as M84
  98. // M20 - List SD card
  99. // M21 - Init SD card
  100. // M22 - Release SD card
  101. // M23 - Select SD file (M23 filename.g)
  102. // M24 - Start/resume SD print
  103. // M25 - Pause SD print
  104. // M26 - Set SD position in bytes (M26 S12345)
  105. // M27 - Report SD print status
  106. // M28 - Start SD write (M28 filename.g)
  107. // M29 - Stop SD write
  108. // M30 - Delete file from SD (M30 filename.g)
  109. // M31 - Output time since last M109 or SD card start to serial
  110. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  111. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  112. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  113. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  114. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  115. // M80 - Turn on Power Supply
  116. // M81 - Turn off Power Supply
  117. // M82 - Set E codes absolute (default)
  118. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  119. // M84 - Disable steppers until next move,
  120. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  121. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  122. // M92 - Set axis_steps_per_unit - same syntax as G92
  123. // M104 - Set extruder target temp
  124. // M105 - Read current temp
  125. // M106 - Fan on
  126. // M107 - Fan off
  127. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  128. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  129. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  130. // M112 - Emergency stop
  131. // M114 - Output current position to serial port
  132. // M115 - Capabilities string
  133. // M117 - display message
  134. // M119 - Output Endstop status to serial port
  135. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  136. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  137. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  138. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  139. // M140 - Set bed target temp
  140. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  141. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  142. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  143. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  144. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  145. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  146. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  147. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  148. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  149. // M206 - set additional homing offset
  150. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  151. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  152. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  153. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  154. // M220 S<factor in percent>- set speed factor override percentage
  155. // M221 S<factor in percent>- set extrude factor override percentage
  156. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  157. // M240 - Trigger a camera to take a photograph
  158. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  159. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  160. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  161. // M301 - Set PID parameters P I and D
  162. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  163. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  164. // M304 - Set bed PID parameters P I and D
  165. // M400 - Finish all moves
  166. // M401 - Lower z-probe if present
  167. // M402 - Raise z-probe if present
  168. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  169. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  170. // M406 - Turn off Filament Sensor extrusion control
  171. // M407 - Displays measured filament diameter
  172. // M500 - stores parameters in EEPROM
  173. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  174. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  175. // M503 - print the current settings (from memory not from EEPROM)
  176. // M509 - force language selection on next restart
  177. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  178. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  179. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  180. // M907 - Set digital trimpot motor current using axis codes.
  181. // M908 - Control digital trimpot directly.
  182. // M350 - Set microstepping mode.
  183. // M351 - Toggle MS1 MS2 pins directly.
  184. // M928 - Start SD logging (M928 filename.g) - ended by M29
  185. // M999 - Restart after being stopped by error
  186. //Stepper Movement Variables
  187. //===========================================================================
  188. //=============================imported variables============================
  189. //===========================================================================
  190. //===========================================================================
  191. //=============================public variables=============================
  192. //===========================================================================
  193. #ifdef SDSUPPORT
  194. CardReader card;
  195. #endif
  196. unsigned long TimeSent = millis();
  197. unsigned long TimeNow = millis();
  198. unsigned long PingTime = millis();
  199. union Data
  200. {
  201. byte b[2];
  202. int value;
  203. };
  204. float homing_feedrate[] = HOMING_FEEDRATE;
  205. // Currently only the extruder axis may be switched to a relative mode.
  206. // Other axes are always absolute or relative based on the common relative_mode flag.
  207. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  208. int feedmultiply=100; //100->1 200->2
  209. int saved_feedmultiply;
  210. int extrudemultiply=100; //100->1 200->2
  211. int extruder_multiply[EXTRUDERS] = {100
  212. #if EXTRUDERS > 1
  213. , 100
  214. #if EXTRUDERS > 2
  215. , 100
  216. #endif
  217. #endif
  218. };
  219. int bowden_length[4];
  220. bool is_usb_printing = false;
  221. bool homing_flag = false;
  222. bool temp_cal_active = false;
  223. unsigned long kicktime = millis()+100000;
  224. unsigned int usb_printing_counter;
  225. int lcd_change_fil_state = 0;
  226. int feedmultiplyBckp = 100;
  227. float HotendTempBckp = 0;
  228. int fanSpeedBckp = 0;
  229. float pause_lastpos[4];
  230. unsigned long pause_time = 0;
  231. unsigned long start_pause_print = millis();
  232. unsigned long load_filament_time;
  233. bool mesh_bed_leveling_flag = false;
  234. bool mesh_bed_run_from_menu = false;
  235. unsigned char lang_selected = 0;
  236. int8_t FarmMode = 0;
  237. bool prusa_sd_card_upload = false;
  238. unsigned int status_number = 0;
  239. unsigned long total_filament_used;
  240. unsigned int heating_status;
  241. unsigned int heating_status_counter;
  242. bool custom_message;
  243. bool loading_flag = false;
  244. unsigned int custom_message_type;
  245. unsigned int custom_message_state;
  246. char snmm_filaments_used = 0;
  247. float distance_from_min[3];
  248. float angleDiff;
  249. bool fan_state[2];
  250. int fan_edge_counter[2];
  251. int fan_speed[2];
  252. bool volumetric_enabled = false;
  253. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  254. #if EXTRUDERS > 1
  255. , DEFAULT_NOMINAL_FILAMENT_DIA
  256. #if EXTRUDERS > 2
  257. , DEFAULT_NOMINAL_FILAMENT_DIA
  258. #endif
  259. #endif
  260. };
  261. float volumetric_multiplier[EXTRUDERS] = {1.0
  262. #if EXTRUDERS > 1
  263. , 1.0
  264. #if EXTRUDERS > 2
  265. , 1.0
  266. #endif
  267. #endif
  268. };
  269. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  270. float add_homing[3]={0,0,0};
  271. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  272. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  273. bool axis_known_position[3] = {false, false, false};
  274. float zprobe_zoffset;
  275. // Extruder offset
  276. #if EXTRUDERS > 1
  277. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  278. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  279. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  280. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  281. #endif
  282. };
  283. #endif
  284. uint8_t active_extruder = 0;
  285. int fanSpeed=0;
  286. #ifdef FWRETRACT
  287. bool autoretract_enabled=false;
  288. bool retracted[EXTRUDERS]={false
  289. #if EXTRUDERS > 1
  290. , false
  291. #if EXTRUDERS > 2
  292. , false
  293. #endif
  294. #endif
  295. };
  296. bool retracted_swap[EXTRUDERS]={false
  297. #if EXTRUDERS > 1
  298. , false
  299. #if EXTRUDERS > 2
  300. , false
  301. #endif
  302. #endif
  303. };
  304. float retract_length = RETRACT_LENGTH;
  305. float retract_length_swap = RETRACT_LENGTH_SWAP;
  306. float retract_feedrate = RETRACT_FEEDRATE;
  307. float retract_zlift = RETRACT_ZLIFT;
  308. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  309. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  310. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  311. #endif
  312. #ifdef ULTIPANEL
  313. #ifdef PS_DEFAULT_OFF
  314. bool powersupply = false;
  315. #else
  316. bool powersupply = true;
  317. #endif
  318. #endif
  319. bool cancel_heatup = false ;
  320. #ifdef FILAMENT_SENSOR
  321. //Variables for Filament Sensor input
  322. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  323. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  324. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  325. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  326. int delay_index1=0; //index into ring buffer
  327. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  328. float delay_dist=0; //delay distance counter
  329. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  330. #endif
  331. const char errormagic[] PROGMEM = "Error:";
  332. const char echomagic[] PROGMEM = "echo:";
  333. //===========================================================================
  334. //=============================Private Variables=============================
  335. //===========================================================================
  336. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  337. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  338. static float delta[3] = {0.0, 0.0, 0.0};
  339. // For tracing an arc
  340. static float offset[3] = {0.0, 0.0, 0.0};
  341. static bool home_all_axis = true;
  342. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  343. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  344. // Determines Absolute or Relative Coordinates.
  345. // Also there is bool axis_relative_modes[] per axis flag.
  346. static bool relative_mode = false;
  347. // String circular buffer. Commands may be pushed to the buffer from both sides:
  348. // Chained commands will be pushed to the front, interactive (from LCD menu)
  349. // and printing commands (from serial line or from SD card) are pushed to the tail.
  350. // First character of each entry indicates the type of the entry:
  351. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  352. // Command in cmdbuffer was sent over USB.
  353. #define CMDBUFFER_CURRENT_TYPE_USB 1
  354. // Command in cmdbuffer was read from SDCARD.
  355. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  356. // Command in cmdbuffer was generated by the UI.
  357. #define CMDBUFFER_CURRENT_TYPE_UI 3
  358. // Command in cmdbuffer was generated by another G-code.
  359. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  360. // How much space to reserve for the chained commands
  361. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  362. // which are pushed to the front of the queue?
  363. // Maximum 5 commands of max length 20 + null terminator.
  364. #define CMDBUFFER_RESERVE_FRONT (5*21)
  365. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  366. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  367. // Head of the circular buffer, where to read.
  368. static int bufindr = 0;
  369. // Tail of the buffer, where to write.
  370. static int bufindw = 0;
  371. // Number of lines in cmdbuffer.
  372. static int buflen = 0;
  373. // Flag for processing the current command inside the main Arduino loop().
  374. // If a new command was pushed to the front of a command buffer while
  375. // processing another command, this replaces the command on the top.
  376. // Therefore don't remove the command from the queue in the loop() function.
  377. static bool cmdbuffer_front_already_processed = false;
  378. // Type of a command, which is to be executed right now.
  379. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  380. // String of a command, which is to be executed right now.
  381. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  382. // Enable debugging of the command buffer.
  383. // Debugging information will be sent to serial line.
  384. // #define CMDBUFFER_DEBUG
  385. static int serial_count = 0; //index of character read from serial line
  386. static boolean comment_mode = false;
  387. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  388. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  389. //static float tt = 0;
  390. //static float bt = 0;
  391. //Inactivity shutdown variables
  392. static unsigned long previous_millis_cmd = 0;
  393. unsigned long max_inactive_time = 0;
  394. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  395. unsigned long starttime=0;
  396. unsigned long stoptime=0;
  397. unsigned long _usb_timer = 0;
  398. static uint8_t tmp_extruder;
  399. bool Stopped=false;
  400. #if NUM_SERVOS > 0
  401. Servo servos[NUM_SERVOS];
  402. #endif
  403. bool CooldownNoWait = true;
  404. bool target_direction;
  405. //Insert variables if CHDK is defined
  406. #ifdef CHDK
  407. unsigned long chdkHigh = 0;
  408. boolean chdkActive = false;
  409. #endif
  410. //===========================================================================
  411. //=============================Routines======================================
  412. //===========================================================================
  413. void get_arc_coordinates();
  414. bool setTargetedHotend(int code);
  415. void serial_echopair_P(const char *s_P, float v)
  416. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  417. void serial_echopair_P(const char *s_P, double v)
  418. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  419. void serial_echopair_P(const char *s_P, unsigned long v)
  420. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  421. #ifdef SDSUPPORT
  422. #include "SdFatUtil.h"
  423. int freeMemory() { return SdFatUtil::FreeRam(); }
  424. #else
  425. extern "C" {
  426. extern unsigned int __bss_end;
  427. extern unsigned int __heap_start;
  428. extern void *__brkval;
  429. int freeMemory() {
  430. int free_memory;
  431. if ((int)__brkval == 0)
  432. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  433. else
  434. free_memory = ((int)&free_memory) - ((int)__brkval);
  435. return free_memory;
  436. }
  437. }
  438. #endif //!SDSUPPORT
  439. // Pop the currently processed command from the queue.
  440. // It is expected, that there is at least one command in the queue.
  441. bool cmdqueue_pop_front()
  442. {
  443. if (buflen > 0) {
  444. #ifdef CMDBUFFER_DEBUG
  445. SERIAL_ECHOPGM("Dequeing ");
  446. SERIAL_ECHO(cmdbuffer+bufindr+1);
  447. SERIAL_ECHOLNPGM("");
  448. SERIAL_ECHOPGM("Old indices: buflen ");
  449. SERIAL_ECHO(buflen);
  450. SERIAL_ECHOPGM(", bufindr ");
  451. SERIAL_ECHO(bufindr);
  452. SERIAL_ECHOPGM(", bufindw ");
  453. SERIAL_ECHO(bufindw);
  454. SERIAL_ECHOPGM(", serial_count ");
  455. SERIAL_ECHO(serial_count);
  456. SERIAL_ECHOPGM(", bufsize ");
  457. SERIAL_ECHO(sizeof(cmdbuffer));
  458. SERIAL_ECHOLNPGM("");
  459. #endif /* CMDBUFFER_DEBUG */
  460. if (-- buflen == 0) {
  461. // Empty buffer.
  462. if (serial_count == 0)
  463. // No serial communication is pending. Reset both pointers to zero.
  464. bufindw = 0;
  465. bufindr = bufindw;
  466. } else {
  467. // There is at least one ready line in the buffer.
  468. // First skip the current command ID and iterate up to the end of the string.
  469. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  470. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  471. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  472. // If the end of the buffer was empty,
  473. if (bufindr == sizeof(cmdbuffer)) {
  474. // skip to the start and find the nonzero command.
  475. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  476. }
  477. #ifdef CMDBUFFER_DEBUG
  478. SERIAL_ECHOPGM("New indices: buflen ");
  479. SERIAL_ECHO(buflen);
  480. SERIAL_ECHOPGM(", bufindr ");
  481. SERIAL_ECHO(bufindr);
  482. SERIAL_ECHOPGM(", bufindw ");
  483. SERIAL_ECHO(bufindw);
  484. SERIAL_ECHOPGM(", serial_count ");
  485. SERIAL_ECHO(serial_count);
  486. SERIAL_ECHOPGM(" new command on the top: ");
  487. SERIAL_ECHO(cmdbuffer+bufindr+1);
  488. SERIAL_ECHOLNPGM("");
  489. #endif /* CMDBUFFER_DEBUG */
  490. }
  491. return true;
  492. }
  493. return false;
  494. }
  495. void cmdqueue_reset()
  496. {
  497. while (cmdqueue_pop_front()) ;
  498. }
  499. // How long a string could be pushed to the front of the command queue?
  500. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  501. // len_asked does not contain the zero terminator size.
  502. bool cmdqueue_could_enqueue_front(int len_asked)
  503. {
  504. // MAX_CMD_SIZE has to accommodate the zero terminator.
  505. if (len_asked >= MAX_CMD_SIZE)
  506. return false;
  507. // Remove the currently processed command from the queue.
  508. if (! cmdbuffer_front_already_processed) {
  509. cmdqueue_pop_front();
  510. cmdbuffer_front_already_processed = true;
  511. }
  512. if (bufindr == bufindw && buflen > 0)
  513. // Full buffer.
  514. return false;
  515. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  516. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  517. if (bufindw < bufindr) {
  518. int bufindr_new = bufindr - len_asked - 2;
  519. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  520. if (endw <= bufindr_new) {
  521. bufindr = bufindr_new;
  522. return true;
  523. }
  524. } else {
  525. // Otherwise the free space is split between the start and end.
  526. if (len_asked + 2 <= bufindr) {
  527. // Could fit at the start.
  528. bufindr -= len_asked + 2;
  529. return true;
  530. }
  531. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  532. if (endw <= bufindr_new) {
  533. memset(cmdbuffer, 0, bufindr);
  534. bufindr = bufindr_new;
  535. return true;
  536. }
  537. }
  538. return false;
  539. }
  540. // Could one enqueue a command of lenthg len_asked into the buffer,
  541. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  542. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  543. // len_asked does not contain the zero terminator size.
  544. bool cmdqueue_could_enqueue_back(int len_asked)
  545. {
  546. // MAX_CMD_SIZE has to accommodate the zero terminator.
  547. if (len_asked >= MAX_CMD_SIZE)
  548. return false;
  549. if (bufindr == bufindw && buflen > 0)
  550. // Full buffer.
  551. return false;
  552. if (serial_count > 0) {
  553. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  554. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  555. // serial data.
  556. // How much memory to reserve for the commands pushed to the front?
  557. // End of the queue, when pushing to the end.
  558. int endw = bufindw + len_asked + 2;
  559. if (bufindw < bufindr)
  560. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  561. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  562. // Otherwise the free space is split between the start and end.
  563. if (// Could one fit to the end, including the reserve?
  564. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  565. // Could one fit to the end, and the reserve to the start?
  566. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  567. return true;
  568. // Could one fit both to the start?
  569. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  570. // Mark the rest of the buffer as used.
  571. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  572. // and point to the start.
  573. bufindw = 0;
  574. return true;
  575. }
  576. } else {
  577. // How much memory to reserve for the commands pushed to the front?
  578. // End of the queue, when pushing to the end.
  579. int endw = bufindw + len_asked + 2;
  580. if (bufindw < bufindr)
  581. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  582. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  583. // Otherwise the free space is split between the start and end.
  584. if (// Could one fit to the end, including the reserve?
  585. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  586. // Could one fit to the end, and the reserve to the start?
  587. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  588. return true;
  589. // Could one fit both to the start?
  590. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  591. // Mark the rest of the buffer as used.
  592. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  593. // and point to the start.
  594. bufindw = 0;
  595. return true;
  596. }
  597. }
  598. return false;
  599. }
  600. #ifdef CMDBUFFER_DEBUG
  601. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  602. {
  603. SERIAL_ECHOPGM("Entry nr: ");
  604. SERIAL_ECHO(nr);
  605. SERIAL_ECHOPGM(", type: ");
  606. SERIAL_ECHO(int(*p));
  607. SERIAL_ECHOPGM(", cmd: ");
  608. SERIAL_ECHO(p+1);
  609. SERIAL_ECHOLNPGM("");
  610. }
  611. static void cmdqueue_dump_to_serial()
  612. {
  613. if (buflen == 0) {
  614. SERIAL_ECHOLNPGM("The command buffer is empty.");
  615. } else {
  616. SERIAL_ECHOPGM("Content of the buffer: entries ");
  617. SERIAL_ECHO(buflen);
  618. SERIAL_ECHOPGM(", indr ");
  619. SERIAL_ECHO(bufindr);
  620. SERIAL_ECHOPGM(", indw ");
  621. SERIAL_ECHO(bufindw);
  622. SERIAL_ECHOLNPGM("");
  623. int nr = 0;
  624. if (bufindr < bufindw) {
  625. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  626. cmdqueue_dump_to_serial_single_line(nr, p);
  627. // Skip the command.
  628. for (++p; *p != 0; ++ p);
  629. // Skip the gaps.
  630. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  631. }
  632. } else {
  633. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  634. cmdqueue_dump_to_serial_single_line(nr, p);
  635. // Skip the command.
  636. for (++p; *p != 0; ++ p);
  637. // Skip the gaps.
  638. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  639. }
  640. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  641. cmdqueue_dump_to_serial_single_line(nr, p);
  642. // Skip the command.
  643. for (++p; *p != 0; ++ p);
  644. // Skip the gaps.
  645. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  646. }
  647. }
  648. SERIAL_ECHOLNPGM("End of the buffer.");
  649. }
  650. }
  651. #endif /* CMDBUFFER_DEBUG */
  652. //adds an command to the main command buffer
  653. //thats really done in a non-safe way.
  654. //needs overworking someday
  655. // Currently the maximum length of a command piped through this function is around 20 characters
  656. void enquecommand(const char *cmd, bool from_progmem)
  657. {
  658. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  659. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  660. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  661. if (cmdqueue_could_enqueue_back(len)) {
  662. // This is dangerous if a mixing of serial and this happens
  663. // This may easily be tested: If serial_count > 0, we have a problem.
  664. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  665. if (from_progmem)
  666. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  667. else
  668. strcpy(cmdbuffer + bufindw + 1, cmd);
  669. SERIAL_ECHO_START;
  670. SERIAL_ECHORPGM(MSG_Enqueing);
  671. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  672. SERIAL_ECHOLNPGM("\"");
  673. bufindw += len + 2;
  674. if (bufindw == sizeof(cmdbuffer))
  675. bufindw = 0;
  676. ++ buflen;
  677. #ifdef CMDBUFFER_DEBUG
  678. cmdqueue_dump_to_serial();
  679. #endif /* CMDBUFFER_DEBUG */
  680. } else {
  681. SERIAL_ERROR_START;
  682. SERIAL_ECHORPGM(MSG_Enqueing);
  683. if (from_progmem)
  684. SERIAL_PROTOCOLRPGM(cmd);
  685. else
  686. SERIAL_ECHO(cmd);
  687. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  688. #ifdef CMDBUFFER_DEBUG
  689. cmdqueue_dump_to_serial();
  690. #endif /* CMDBUFFER_DEBUG */
  691. }
  692. }
  693. void enquecommand_front(const char *cmd, bool from_progmem)
  694. {
  695. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  696. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  697. if (cmdqueue_could_enqueue_front(len)) {
  698. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  699. if (from_progmem)
  700. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  701. else
  702. strcpy(cmdbuffer + bufindr + 1, cmd);
  703. ++ buflen;
  704. SERIAL_ECHO_START;
  705. SERIAL_ECHOPGM("Enqueing to the front: \"");
  706. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  707. SERIAL_ECHOLNPGM("\"");
  708. #ifdef CMDBUFFER_DEBUG
  709. cmdqueue_dump_to_serial();
  710. #endif /* CMDBUFFER_DEBUG */
  711. } else {
  712. SERIAL_ERROR_START;
  713. SERIAL_ECHOPGM("Enqueing to the front: \"");
  714. if (from_progmem)
  715. SERIAL_PROTOCOLRPGM(cmd);
  716. else
  717. SERIAL_ECHO(cmd);
  718. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  719. #ifdef CMDBUFFER_DEBUG
  720. cmdqueue_dump_to_serial();
  721. #endif /* CMDBUFFER_DEBUG */
  722. }
  723. }
  724. // Mark the command at the top of the command queue as new.
  725. // Therefore it will not be removed from the queue.
  726. void repeatcommand_front()
  727. {
  728. cmdbuffer_front_already_processed = true;
  729. }
  730. bool is_buffer_empty()
  731. {
  732. if (buflen == 0) return true;
  733. else return false;
  734. }
  735. void setup_killpin()
  736. {
  737. #if defined(KILL_PIN) && KILL_PIN > -1
  738. SET_INPUT(KILL_PIN);
  739. WRITE(KILL_PIN,HIGH);
  740. #endif
  741. }
  742. // Set home pin
  743. void setup_homepin(void)
  744. {
  745. #if defined(HOME_PIN) && HOME_PIN > -1
  746. SET_INPUT(HOME_PIN);
  747. WRITE(HOME_PIN,HIGH);
  748. #endif
  749. }
  750. void setup_photpin()
  751. {
  752. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  753. SET_OUTPUT(PHOTOGRAPH_PIN);
  754. WRITE(PHOTOGRAPH_PIN, LOW);
  755. #endif
  756. }
  757. void setup_powerhold()
  758. {
  759. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  760. SET_OUTPUT(SUICIDE_PIN);
  761. WRITE(SUICIDE_PIN, HIGH);
  762. #endif
  763. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  764. SET_OUTPUT(PS_ON_PIN);
  765. #if defined(PS_DEFAULT_OFF)
  766. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  767. #else
  768. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  769. #endif
  770. #endif
  771. }
  772. void suicide()
  773. {
  774. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  775. SET_OUTPUT(SUICIDE_PIN);
  776. WRITE(SUICIDE_PIN, LOW);
  777. #endif
  778. }
  779. void servo_init()
  780. {
  781. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  782. servos[0].attach(SERVO0_PIN);
  783. #endif
  784. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  785. servos[1].attach(SERVO1_PIN);
  786. #endif
  787. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  788. servos[2].attach(SERVO2_PIN);
  789. #endif
  790. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  791. servos[3].attach(SERVO3_PIN);
  792. #endif
  793. #if (NUM_SERVOS >= 5)
  794. #error "TODO: enter initalisation code for more servos"
  795. #endif
  796. }
  797. static void lcd_language_menu();
  798. #ifdef MESH_BED_LEVELING
  799. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  800. #endif
  801. // Factory reset function
  802. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  803. // Level input parameter sets depth of reset
  804. // Quiet parameter masks all waitings for user interact.
  805. int er_progress = 0;
  806. void factory_reset(char level, bool quiet)
  807. {
  808. lcd_implementation_clear();
  809. int cursor_pos = 0;
  810. switch (level) {
  811. // Level 0: Language reset
  812. case 0:
  813. WRITE(BEEPER, HIGH);
  814. _delay_ms(100);
  815. WRITE(BEEPER, LOW);
  816. lcd_force_language_selection();
  817. break;
  818. //Level 1: Reset statistics
  819. case 1:
  820. WRITE(BEEPER, HIGH);
  821. _delay_ms(100);
  822. WRITE(BEEPER, LOW);
  823. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  824. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  825. lcd_menu_statistics();
  826. break;
  827. // Level 2: Prepare for shipping
  828. case 2:
  829. //lcd_printPGM(PSTR("Factory RESET"));
  830. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  831. // Force language selection at the next boot up.
  832. lcd_force_language_selection();
  833. // Force the "Follow calibration flow" message at the next boot up.
  834. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  835. farm_no = 0;
  836. farm_mode == false;
  837. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  838. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  839. WRITE(BEEPER, HIGH);
  840. _delay_ms(100);
  841. WRITE(BEEPER, LOW);
  842. //_delay_ms(2000);
  843. break;
  844. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  845. case 3:
  846. lcd_printPGM(PSTR("Factory RESET"));
  847. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  848. WRITE(BEEPER, HIGH);
  849. _delay_ms(100);
  850. WRITE(BEEPER, LOW);
  851. er_progress = 0;
  852. lcd_print_at_PGM(3, 3, PSTR(" "));
  853. lcd_implementation_print_at(3, 3, er_progress);
  854. // Erase EEPROM
  855. for (int i = 0; i < 4096; i++) {
  856. eeprom_write_byte((uint8_t*)i, 0xFF);
  857. if (i % 41 == 0) {
  858. er_progress++;
  859. lcd_print_at_PGM(3, 3, PSTR(" "));
  860. lcd_implementation_print_at(3, 3, er_progress);
  861. lcd_printPGM(PSTR("%"));
  862. }
  863. }
  864. break;
  865. case 4:
  866. bowden_menu();
  867. break;
  868. default:
  869. break;
  870. }
  871. }
  872. // "Setup" function is called by the Arduino framework on startup.
  873. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  874. // are initialized by the main() routine provided by the Arduino framework.
  875. void setup()
  876. {
  877. lcd_init();
  878. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  879. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  880. setup_killpin();
  881. setup_powerhold();
  882. MYSERIAL.begin(BAUDRATE);
  883. SERIAL_PROTOCOLLNPGM("start");
  884. SERIAL_ECHO_START;
  885. #if 0
  886. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  887. for (int i = 0; i < 4096; ++i) {
  888. int b = eeprom_read_byte((unsigned char*)i);
  889. if (b != 255) {
  890. SERIAL_ECHO(i);
  891. SERIAL_ECHO(":");
  892. SERIAL_ECHO(b);
  893. SERIAL_ECHOLN("");
  894. }
  895. }
  896. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  897. #endif
  898. // Check startup - does nothing if bootloader sets MCUSR to 0
  899. byte mcu = MCUSR;
  900. if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  901. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  902. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  903. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  904. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  905. MCUSR = 0;
  906. //SERIAL_ECHORPGM(MSG_MARLIN);
  907. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  908. #ifdef STRING_VERSION_CONFIG_H
  909. #ifdef STRING_CONFIG_H_AUTHOR
  910. SERIAL_ECHO_START;
  911. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  912. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  913. SERIAL_ECHORPGM(MSG_AUTHOR);
  914. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  915. SERIAL_ECHOPGM("Compiled: ");
  916. SERIAL_ECHOLNPGM(__DATE__);
  917. #endif
  918. #endif
  919. SERIAL_ECHO_START;
  920. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  921. SERIAL_ECHO(freeMemory());
  922. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  923. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  924. //lcd_update_enable(false); // why do we need this?? - andre
  925. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  926. Config_RetrieveSettings();
  927. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  928. tp_init(); // Initialize temperature loop
  929. plan_init(); // Initialize planner;
  930. watchdog_init();
  931. #ifdef HAVE_TMC2130_DRIVERS
  932. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  933. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  934. #endif //HAVE_TMC2130_DRIVERS
  935. st_init(); // Initialize stepper, this enables interrupts!
  936. setup_photpin();
  937. lcd_print_at_PGM(0, 1, PSTR(" Original Prusa ")); // we need to do this again for some reason, no time to research
  938. lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  939. servo_init();
  940. // Reset the machine correction matrix.
  941. // It does not make sense to load the correction matrix until the machine is homed.
  942. world2machine_reset();
  943. if (!READ(BTN_ENC))
  944. {
  945. _delay_ms(1000);
  946. if (!READ(BTN_ENC))
  947. {
  948. lcd_implementation_clear();
  949. lcd_printPGM(PSTR("Factory RESET"));
  950. SET_OUTPUT(BEEPER);
  951. WRITE(BEEPER, HIGH);
  952. while (!READ(BTN_ENC));
  953. WRITE(BEEPER, LOW);
  954. _delay_ms(2000);
  955. char level = reset_menu();
  956. factory_reset(level, false);
  957. switch (level) {
  958. case 0: _delay_ms(0); break;
  959. case 1: _delay_ms(0); break;
  960. case 2: _delay_ms(0); break;
  961. case 3: _delay_ms(0); break;
  962. }
  963. // _delay_ms(100);
  964. /*
  965. #ifdef MESH_BED_LEVELING
  966. _delay_ms(2000);
  967. if (!READ(BTN_ENC))
  968. {
  969. WRITE(BEEPER, HIGH);
  970. _delay_ms(100);
  971. WRITE(BEEPER, LOW);
  972. _delay_ms(200);
  973. WRITE(BEEPER, HIGH);
  974. _delay_ms(100);
  975. WRITE(BEEPER, LOW);
  976. int _z = 0;
  977. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  978. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  979. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  980. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  981. }
  982. else
  983. {
  984. WRITE(BEEPER, HIGH);
  985. _delay_ms(100);
  986. WRITE(BEEPER, LOW);
  987. }
  988. #endif // mesh */
  989. }
  990. }
  991. else
  992. {
  993. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  994. }
  995. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  996. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  997. #endif
  998. #ifdef DIGIPOT_I2C
  999. digipot_i2c_init();
  1000. #endif
  1001. setup_homepin();
  1002. #if defined(Z_AXIS_ALWAYS_ON)
  1003. enable_z();
  1004. #endif
  1005. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1006. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1007. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1008. if (farm_no == 0xFFFF) farm_no = 0;
  1009. if (farm_mode)
  1010. {
  1011. prusa_statistics(8);
  1012. }
  1013. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1014. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1015. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1016. // but this times out if a blocking dialog is shown in setup().
  1017. card.initsd();
  1018. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1019. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff &&
  1020. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 12)) == 0x0ffffffff) {
  1021. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1022. // where all the EEPROM entries are set to 0x0ff.
  1023. // Once a firmware boots up, it forces at least a language selection, which changes
  1024. // EEPROM_LANG to number lower than 0x0ff.
  1025. // 1) Set a high power mode.
  1026. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1027. }
  1028. #ifdef SNMM
  1029. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1030. int _z = BOWDEN_LENGTH;
  1031. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1032. }
  1033. #endif
  1034. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1035. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1036. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1037. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1038. if (lang_selected >= LANG_NUM){
  1039. lcd_mylang();
  1040. }
  1041. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1042. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1043. temp_cal_active = false;
  1044. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1045. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1046. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1047. }
  1048. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1049. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1050. }
  1051. #ifndef DEBUG_SKIP_STARTMSGS
  1052. check_babystep(); //checking if Z babystep is in allowed range
  1053. setup_uvlo_interrupt();
  1054. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1055. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  1056. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1057. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1058. // Show the message.
  1059. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1060. } else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1061. // Show the message.
  1062. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1063. lcd_update_enable(true);
  1064. } else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1065. lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  1066. lcd_update_enable(true);
  1067. } else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1068. // Show the message.
  1069. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1070. }
  1071. #endif //DEBUG_SKIP_STARTMSGS
  1072. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1073. lcd_update_enable(true);
  1074. // Store the currently running firmware into an eeprom,
  1075. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1076. update_current_firmware_version_to_eeprom();
  1077. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1078. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1079. else {
  1080. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1081. lcd_update_enable(true);
  1082. lcd_update(2);
  1083. lcd_setstatuspgm(WELCOME_MSG);
  1084. }
  1085. }
  1086. }
  1087. void trace();
  1088. #define CHUNK_SIZE 64 // bytes
  1089. #define SAFETY_MARGIN 1
  1090. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1091. int chunkHead = 0;
  1092. int serial_read_stream() {
  1093. setTargetHotend(0, 0);
  1094. setTargetBed(0);
  1095. lcd_implementation_clear();
  1096. lcd_printPGM(PSTR(" Upload in progress"));
  1097. // first wait for how many bytes we will receive
  1098. uint32_t bytesToReceive;
  1099. // receive the four bytes
  1100. char bytesToReceiveBuffer[4];
  1101. for (int i=0; i<4; i++) {
  1102. int data;
  1103. while ((data = MYSERIAL.read()) == -1) {};
  1104. bytesToReceiveBuffer[i] = data;
  1105. }
  1106. // make it a uint32
  1107. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1108. // we're ready, notify the sender
  1109. MYSERIAL.write('+');
  1110. // lock in the routine
  1111. uint32_t receivedBytes = 0;
  1112. while (prusa_sd_card_upload) {
  1113. int i;
  1114. for (i=0; i<CHUNK_SIZE; i++) {
  1115. int data;
  1116. // check if we're not done
  1117. if (receivedBytes == bytesToReceive) {
  1118. break;
  1119. }
  1120. // read the next byte
  1121. while ((data = MYSERIAL.read()) == -1) {};
  1122. receivedBytes++;
  1123. // save it to the chunk
  1124. chunk[i] = data;
  1125. }
  1126. // write the chunk to SD
  1127. card.write_command_no_newline(&chunk[0]);
  1128. // notify the sender we're ready for more data
  1129. MYSERIAL.write('+');
  1130. // for safety
  1131. manage_heater();
  1132. // check if we're done
  1133. if(receivedBytes == bytesToReceive) {
  1134. trace(); // beep
  1135. card.closefile();
  1136. prusa_sd_card_upload = false;
  1137. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1138. return 0;
  1139. }
  1140. }
  1141. }
  1142. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1143. // Before loop(), the setup() function is called by the main() routine.
  1144. void loop()
  1145. {
  1146. bool stack_integrity = true;
  1147. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  1148. {
  1149. is_usb_printing = true;
  1150. usb_printing_counter--;
  1151. _usb_timer = millis();
  1152. }
  1153. if (usb_printing_counter == 0)
  1154. {
  1155. is_usb_printing = false;
  1156. }
  1157. if (prusa_sd_card_upload)
  1158. {
  1159. //we read byte-by byte
  1160. serial_read_stream();
  1161. } else
  1162. {
  1163. get_command();
  1164. #ifdef SDSUPPORT
  1165. card.checkautostart(false);
  1166. #endif
  1167. if(buflen)
  1168. {
  1169. #ifdef SDSUPPORT
  1170. if(card.saving)
  1171. {
  1172. // Saving a G-code file onto an SD-card is in progress.
  1173. // Saving starts with M28, saving until M29 is seen.
  1174. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1175. card.write_command(CMDBUFFER_CURRENT_STRING);
  1176. if(card.logging)
  1177. process_commands();
  1178. else
  1179. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1180. } else {
  1181. card.closefile();
  1182. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1183. }
  1184. } else {
  1185. process_commands();
  1186. }
  1187. #else
  1188. process_commands();
  1189. #endif //SDSUPPORT
  1190. if (! cmdbuffer_front_already_processed)
  1191. cmdqueue_pop_front();
  1192. cmdbuffer_front_already_processed = false;
  1193. }
  1194. }
  1195. //check heater every n milliseconds
  1196. manage_heater();
  1197. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1198. checkHitEndstops();
  1199. lcd_update();
  1200. #ifdef HAVE_TMC2130_DRIVERS
  1201. tmc2130_check_overtemp();
  1202. #endif //HAVE_TMC2130_DRIVERS
  1203. }
  1204. void get_command()
  1205. {
  1206. // Test and reserve space for the new command string.
  1207. if (!cmdqueue_could_enqueue_back(MAX_CMD_SIZE - 1))
  1208. return;
  1209. bool rx_buffer_full = false; //flag that serial rx buffer is full
  1210. while (MYSERIAL.available() > 0) {
  1211. if (MYSERIAL.available() == RX_BUFFER_SIZE - 1) { //compare number of chars buffered in rx buffer with rx buffer size
  1212. SERIAL_ECHOLNPGM("Full RX Buffer"); //if buffer was full, there is danger that reading of last gcode will not be completed
  1213. rx_buffer_full = true; //sets flag that buffer was full
  1214. }
  1215. char serial_char = MYSERIAL.read();
  1216. TimeSent = millis();
  1217. TimeNow = millis();
  1218. if (serial_char < 0)
  1219. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  1220. // and Marlin does not support such file names anyway.
  1221. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  1222. // to a hang-up of the print process from an SD card.
  1223. continue;
  1224. if(serial_char == '\n' ||
  1225. serial_char == '\r' ||
  1226. (serial_char == ':' && comment_mode == false) ||
  1227. serial_count >= (MAX_CMD_SIZE - 1) )
  1228. {
  1229. if(!serial_count) { //if empty line
  1230. comment_mode = false; //for new command
  1231. return;
  1232. }
  1233. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1234. if(!comment_mode){
  1235. comment_mode = false; //for new command
  1236. if ((strchr_pointer = strstr(cmdbuffer+bufindw+1, "PRUSA")) == NULL && (strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL) {
  1237. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  1238. {
  1239. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  1240. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  1241. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  1242. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  1243. // M110 - set current line number.
  1244. // Line numbers not sent in succession.
  1245. SERIAL_ERROR_START;
  1246. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  1247. SERIAL_ERRORLN(gcode_LastN);
  1248. //Serial.println(gcode_N);
  1249. FlushSerialRequestResend();
  1250. serial_count = 0;
  1251. return;
  1252. }
  1253. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  1254. {
  1255. byte checksum = 0;
  1256. char *p = cmdbuffer+bufindw+1;
  1257. while (p != strchr_pointer)
  1258. checksum = checksum^(*p++);
  1259. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  1260. SERIAL_ERROR_START;
  1261. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  1262. SERIAL_ERRORLN(gcode_LastN);
  1263. FlushSerialRequestResend();
  1264. serial_count = 0;
  1265. return;
  1266. }
  1267. // If no errors, remove the checksum and continue parsing.
  1268. *strchr_pointer = 0;
  1269. }
  1270. else
  1271. {
  1272. SERIAL_ERROR_START;
  1273. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  1274. SERIAL_ERRORLN(gcode_LastN);
  1275. FlushSerialRequestResend();
  1276. serial_count = 0;
  1277. return;
  1278. }
  1279. gcode_LastN = gcode_N;
  1280. //if no errors, continue parsing
  1281. } // end of 'N' command
  1282. }
  1283. else // if we don't receive 'N' but still see '*'
  1284. {
  1285. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  1286. {
  1287. SERIAL_ERROR_START;
  1288. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  1289. SERIAL_ERRORLN(gcode_LastN);
  1290. serial_count = 0;
  1291. return;
  1292. }
  1293. } // end of '*' command
  1294. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1295. if (! IS_SD_PRINTING) {
  1296. usb_printing_counter = 10;
  1297. is_usb_printing = true;
  1298. }
  1299. if (Stopped == true) {
  1300. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1301. if (gcode >= 0 && gcode <= 3) {
  1302. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1303. LCD_MESSAGERPGM(MSG_STOPPED);
  1304. }
  1305. }
  1306. } // end of 'G' command
  1307. //If command was e-stop process now
  1308. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1309. kill("", 2);
  1310. // Store the current line into buffer, move to the next line.
  1311. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1312. #ifdef CMDBUFFER_DEBUG
  1313. SERIAL_ECHO_START;
  1314. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1315. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1316. SERIAL_ECHOLNPGM("");
  1317. #endif /* CMDBUFFER_DEBUG */
  1318. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1319. if (bufindw == sizeof(cmdbuffer))
  1320. bufindw = 0;
  1321. ++ buflen;
  1322. #ifdef CMDBUFFER_DEBUG
  1323. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1324. SERIAL_ECHO(buflen);
  1325. SERIAL_ECHOLNPGM("");
  1326. #endif /* CMDBUFFER_DEBUG */
  1327. } // end of 'not comment mode'
  1328. serial_count = 0; //clear buffer
  1329. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1330. // in the queue, as this function will reserve the memory.
  1331. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1332. return;
  1333. } // end of "end of line" processing
  1334. else {
  1335. // Not an "end of line" symbol. Store the new character into a buffer.
  1336. if(serial_char == ';') comment_mode = true;
  1337. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1338. }
  1339. } // end of serial line processing loop
  1340. if(farm_mode){
  1341. TimeNow = millis();
  1342. if ( ((TimeNow - TimeSent) > 800) && (serial_count > 0) ) {
  1343. cmdbuffer[bufindw+serial_count+1] = 0;
  1344. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1345. if (bufindw == sizeof(cmdbuffer))
  1346. bufindw = 0;
  1347. ++ buflen;
  1348. serial_count = 0;
  1349. SERIAL_ECHOPGM("TIMEOUT:");
  1350. //memset(cmdbuffer, 0 , sizeof(cmdbuffer));
  1351. return;
  1352. }
  1353. }
  1354. //add comment
  1355. if (rx_buffer_full == true && serial_count > 0) { //if rx buffer was full and string was not properly terminated
  1356. rx_buffer_full = false;
  1357. bufindw = bufindw - serial_count; //adjust tail of the buffer to prepare buffer for writing new command
  1358. serial_count = 0;
  1359. }
  1360. #ifdef SDSUPPORT
  1361. if(!card.sdprinting || serial_count!=0){
  1362. // If there is a half filled buffer from serial line, wait until return before
  1363. // continuing with the serial line.
  1364. return;
  1365. }
  1366. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1367. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1368. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1369. static bool stop_buffering=false;
  1370. if(buflen==0) stop_buffering=false;
  1371. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1372. while( !card.eof() && !stop_buffering) {
  1373. int16_t n=card.get();
  1374. char serial_char = (char)n;
  1375. if(serial_char == '\n' ||
  1376. serial_char == '\r' ||
  1377. (serial_char == '#' && comment_mode == false) ||
  1378. (serial_char == ':' && comment_mode == false) ||
  1379. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1380. {
  1381. if(card.eof()){
  1382. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1383. stoptime=millis();
  1384. char time[30];
  1385. unsigned long t=(stoptime-starttime-pause_time)/1000;
  1386. pause_time = 0;
  1387. int hours, minutes;
  1388. minutes=(t/60)%60;
  1389. hours=t/60/60;
  1390. save_statistics(total_filament_used, t);
  1391. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1392. SERIAL_ECHO_START;
  1393. SERIAL_ECHOLN(time);
  1394. lcd_setstatus(time);
  1395. card.printingHasFinished();
  1396. card.checkautostart(true);
  1397. if (farm_mode)
  1398. {
  1399. prusa_statistics(6);
  1400. lcd_commands_type = LCD_COMMAND_FARM_MODE_CONFIRM;
  1401. }
  1402. }
  1403. if(serial_char=='#')
  1404. stop_buffering=true;
  1405. if(!serial_count)
  1406. {
  1407. comment_mode = false; //for new command
  1408. return; //if empty line
  1409. }
  1410. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1411. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1412. SERIAL_ECHOPGM("cmdbuffer:");
  1413. MYSERIAL.print(cmdbuffer);
  1414. ++ buflen;
  1415. SERIAL_ECHOPGM("buflen:");
  1416. MYSERIAL.print(buflen);
  1417. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1418. if (bufindw == sizeof(cmdbuffer))
  1419. bufindw = 0;
  1420. comment_mode = false; //for new command
  1421. serial_count = 0; //clear buffer
  1422. // The following line will reserve buffer space if available.
  1423. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1424. return;
  1425. }
  1426. else
  1427. {
  1428. if(serial_char == ';') comment_mode = true;
  1429. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1430. }
  1431. }
  1432. #endif //SDSUPPORT
  1433. }
  1434. // Return True if a character was found
  1435. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1436. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1437. static inline float code_value() { return strtod(strchr_pointer+1, NULL);}
  1438. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1439. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1440. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1441. #define DEFINE_PGM_READ_ANY(type, reader) \
  1442. static inline type pgm_read_any(const type *p) \
  1443. { return pgm_read_##reader##_near(p); }
  1444. DEFINE_PGM_READ_ANY(float, float);
  1445. DEFINE_PGM_READ_ANY(signed char, byte);
  1446. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1447. static const PROGMEM type array##_P[3] = \
  1448. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1449. static inline type array(int axis) \
  1450. { return pgm_read_any(&array##_P[axis]); } \
  1451. type array##_ext(int axis) \
  1452. { return pgm_read_any(&array##_P[axis]); }
  1453. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1454. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1455. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1456. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1457. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1458. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1459. static void axis_is_at_home(int axis) {
  1460. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1461. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1462. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1463. }
  1464. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1465. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1466. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1467. saved_feedrate = feedrate;
  1468. saved_feedmultiply = feedmultiply;
  1469. feedmultiply = 100;
  1470. previous_millis_cmd = millis();
  1471. enable_endstops(enable_endstops_now);
  1472. }
  1473. static void clean_up_after_endstop_move() {
  1474. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1475. enable_endstops(false);
  1476. #endif
  1477. feedrate = saved_feedrate;
  1478. feedmultiply = saved_feedmultiply;
  1479. previous_millis_cmd = millis();
  1480. }
  1481. #ifdef ENABLE_AUTO_BED_LEVELING
  1482. #ifdef AUTO_BED_LEVELING_GRID
  1483. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1484. {
  1485. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1486. planeNormal.debug("planeNormal");
  1487. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1488. //bedLevel.debug("bedLevel");
  1489. //plan_bed_level_matrix.debug("bed level before");
  1490. //vector_3 uncorrected_position = plan_get_position_mm();
  1491. //uncorrected_position.debug("position before");
  1492. vector_3 corrected_position = plan_get_position();
  1493. // corrected_position.debug("position after");
  1494. current_position[X_AXIS] = corrected_position.x;
  1495. current_position[Y_AXIS] = corrected_position.y;
  1496. current_position[Z_AXIS] = corrected_position.z;
  1497. // put the bed at 0 so we don't go below it.
  1498. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1499. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1500. }
  1501. #else // not AUTO_BED_LEVELING_GRID
  1502. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1503. plan_bed_level_matrix.set_to_identity();
  1504. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1505. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1506. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1507. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1508. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1509. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1510. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1511. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1512. vector_3 corrected_position = plan_get_position();
  1513. current_position[X_AXIS] = corrected_position.x;
  1514. current_position[Y_AXIS] = corrected_position.y;
  1515. current_position[Z_AXIS] = corrected_position.z;
  1516. // put the bed at 0 so we don't go below it.
  1517. current_position[Z_AXIS] = zprobe_zoffset;
  1518. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1519. }
  1520. #endif // AUTO_BED_LEVELING_GRID
  1521. static void run_z_probe() {
  1522. plan_bed_level_matrix.set_to_identity();
  1523. feedrate = homing_feedrate[Z_AXIS];
  1524. // move down until you find the bed
  1525. float zPosition = -10;
  1526. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1527. st_synchronize();
  1528. // we have to let the planner know where we are right now as it is not where we said to go.
  1529. zPosition = st_get_position_mm(Z_AXIS);
  1530. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1531. // move up the retract distance
  1532. zPosition += home_retract_mm(Z_AXIS);
  1533. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1534. st_synchronize();
  1535. // move back down slowly to find bed
  1536. feedrate = homing_feedrate[Z_AXIS]/4;
  1537. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1538. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1539. st_synchronize();
  1540. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1541. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1542. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1543. }
  1544. static void do_blocking_move_to(float x, float y, float z) {
  1545. float oldFeedRate = feedrate;
  1546. feedrate = homing_feedrate[Z_AXIS];
  1547. current_position[Z_AXIS] = z;
  1548. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1549. st_synchronize();
  1550. feedrate = XY_TRAVEL_SPEED;
  1551. current_position[X_AXIS] = x;
  1552. current_position[Y_AXIS] = y;
  1553. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1554. st_synchronize();
  1555. feedrate = oldFeedRate;
  1556. }
  1557. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1558. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1559. }
  1560. /// Probe bed height at position (x,y), returns the measured z value
  1561. static float probe_pt(float x, float y, float z_before) {
  1562. // move to right place
  1563. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1564. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1565. run_z_probe();
  1566. float measured_z = current_position[Z_AXIS];
  1567. SERIAL_PROTOCOLRPGM(MSG_BED);
  1568. SERIAL_PROTOCOLPGM(" x: ");
  1569. SERIAL_PROTOCOL(x);
  1570. SERIAL_PROTOCOLPGM(" y: ");
  1571. SERIAL_PROTOCOL(y);
  1572. SERIAL_PROTOCOLPGM(" z: ");
  1573. SERIAL_PROTOCOL(measured_z);
  1574. SERIAL_PROTOCOLPGM("\n");
  1575. return measured_z;
  1576. }
  1577. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1578. /*
  1579. void homeaxis(int axis) {
  1580. #define HOMEAXIS_DO(LETTER) \
  1581. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1582. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1583. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1584. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1585. 0) {
  1586. int axis_home_dir = home_dir(axis);
  1587. #ifdef HAVE_TMC2130_DRIVERS
  1588. if ((axis == X_AXIS) || (axis == Y_AXIS))
  1589. tmc2130_home_enter(axis);
  1590. #endif //HAVE_TMC2130_DRIVERS
  1591. current_position[axis] = 0;
  1592. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1593. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1594. feedrate = homing_feedrate[axis];
  1595. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1596. st_synchronize();
  1597. current_position[axis] = 0;
  1598. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1599. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1600. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1601. st_synchronize();
  1602. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1603. // feedrate = homing_feedrate[axis]/2 ;
  1604. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1605. st_synchronize();
  1606. axis_is_at_home(axis);
  1607. destination[axis] = current_position[axis];
  1608. feedrate = 0.0;
  1609. endstops_hit_on_purpose();
  1610. axis_known_position[axis] = true;
  1611. #ifdef HAVE_TMC2130_DRIVERS
  1612. if ((axis == X_AXIS) || (axis == Y_AXIS))
  1613. tmc2130_home_exit();
  1614. #endif //HAVE_TMC2130_DRIVERS
  1615. }
  1616. }
  1617. /**/
  1618. void homeaxis(int axis) {
  1619. #define HOMEAXIS_DO(LETTER) \
  1620. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1621. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1622. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1623. 0) {
  1624. int axis_home_dir = home_dir(axis);
  1625. #ifdef HAVE_TMC2130_DRIVERS
  1626. tmc2130_home_enter(axis);
  1627. #endif
  1628. current_position[axis] = 0;
  1629. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1630. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1631. feedrate = homing_feedrate[axis];
  1632. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1633. // sg_homing_delay = 0;
  1634. st_synchronize();
  1635. current_position[axis] = 0;
  1636. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1637. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1638. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1639. // sg_homing_delay = 0;
  1640. st_synchronize();
  1641. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1642. #ifdef HAVE_TMC2130_DRIVERS
  1643. if (tmc2130_didLastHomingStall())
  1644. feedrate = homing_feedrate[axis];
  1645. else
  1646. #endif
  1647. feedrate = homing_feedrate[axis] / 2;
  1648. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1649. // sg_homing_delay = 0;
  1650. st_synchronize();
  1651. axis_is_at_home(axis);
  1652. destination[axis] = current_position[axis];
  1653. feedrate = 0.0;
  1654. endstops_hit_on_purpose();
  1655. axis_known_position[axis] = true;
  1656. #ifdef HAVE_TMC2130_DRIVERS
  1657. tmc2130_home_exit();
  1658. #endif
  1659. }
  1660. else if (axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1661. 0) {
  1662. int axis_home_dir = home_dir(axis);
  1663. current_position[axis] = 0;
  1664. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1665. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1666. feedrate = homing_feedrate[axis];
  1667. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1668. st_synchronize();
  1669. current_position[axis] = 0;
  1670. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1671. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1672. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1673. st_synchronize();
  1674. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1675. feedrate = homing_feedrate[axis]/2 ;
  1676. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1677. st_synchronize();
  1678. axis_is_at_home(axis);
  1679. destination[axis] = current_position[axis];
  1680. feedrate = 0.0;
  1681. endstops_hit_on_purpose();
  1682. axis_known_position[axis] = true;
  1683. }
  1684. }
  1685. /**/
  1686. void home_xy()
  1687. {
  1688. set_destination_to_current();
  1689. homeaxis(X_AXIS);
  1690. homeaxis(Y_AXIS);
  1691. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1692. endstops_hit_on_purpose();
  1693. }
  1694. void refresh_cmd_timeout(void)
  1695. {
  1696. previous_millis_cmd = millis();
  1697. }
  1698. #ifdef FWRETRACT
  1699. void retract(bool retracting, bool swapretract = false) {
  1700. if(retracting && !retracted[active_extruder]) {
  1701. destination[X_AXIS]=current_position[X_AXIS];
  1702. destination[Y_AXIS]=current_position[Y_AXIS];
  1703. destination[Z_AXIS]=current_position[Z_AXIS];
  1704. destination[E_AXIS]=current_position[E_AXIS];
  1705. if (swapretract) {
  1706. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1707. } else {
  1708. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1709. }
  1710. plan_set_e_position(current_position[E_AXIS]);
  1711. float oldFeedrate = feedrate;
  1712. feedrate=retract_feedrate*60;
  1713. retracted[active_extruder]=true;
  1714. prepare_move();
  1715. current_position[Z_AXIS]-=retract_zlift;
  1716. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1717. prepare_move();
  1718. feedrate = oldFeedrate;
  1719. } else if(!retracting && retracted[active_extruder]) {
  1720. destination[X_AXIS]=current_position[X_AXIS];
  1721. destination[Y_AXIS]=current_position[Y_AXIS];
  1722. destination[Z_AXIS]=current_position[Z_AXIS];
  1723. destination[E_AXIS]=current_position[E_AXIS];
  1724. current_position[Z_AXIS]+=retract_zlift;
  1725. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1726. //prepare_move();
  1727. if (swapretract) {
  1728. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1729. } else {
  1730. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1731. }
  1732. plan_set_e_position(current_position[E_AXIS]);
  1733. float oldFeedrate = feedrate;
  1734. feedrate=retract_recover_feedrate*60;
  1735. retracted[active_extruder]=false;
  1736. prepare_move();
  1737. feedrate = oldFeedrate;
  1738. }
  1739. } //retract
  1740. #endif //FWRETRACT
  1741. void trace() {
  1742. tone(BEEPER, 440);
  1743. delay(25);
  1744. noTone(BEEPER);
  1745. delay(20);
  1746. }
  1747. /*
  1748. void ramming() {
  1749. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1750. if (current_temperature[0] < 230) {
  1751. //PLA
  1752. max_feedrate[E_AXIS] = 50;
  1753. //current_position[E_AXIS] -= 8;
  1754. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1755. //current_position[E_AXIS] += 8;
  1756. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1757. current_position[E_AXIS] += 5.4;
  1758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1759. current_position[E_AXIS] += 3.2;
  1760. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1761. current_position[E_AXIS] += 3;
  1762. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1763. st_synchronize();
  1764. max_feedrate[E_AXIS] = 80;
  1765. current_position[E_AXIS] -= 82;
  1766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1767. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1768. current_position[E_AXIS] -= 20;
  1769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1770. current_position[E_AXIS] += 5;
  1771. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1772. current_position[E_AXIS] += 5;
  1773. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1774. current_position[E_AXIS] -= 10;
  1775. st_synchronize();
  1776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1777. current_position[E_AXIS] += 10;
  1778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1779. current_position[E_AXIS] -= 10;
  1780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1781. current_position[E_AXIS] += 10;
  1782. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1783. current_position[E_AXIS] -= 10;
  1784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1785. st_synchronize();
  1786. }
  1787. else {
  1788. //ABS
  1789. max_feedrate[E_AXIS] = 50;
  1790. //current_position[E_AXIS] -= 8;
  1791. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1792. //current_position[E_AXIS] += 8;
  1793. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1794. current_position[E_AXIS] += 3.1;
  1795. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1796. current_position[E_AXIS] += 3.1;
  1797. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1798. current_position[E_AXIS] += 4;
  1799. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1800. st_synchronize();
  1801. //current_position[X_AXIS] += 23; //delay
  1802. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1803. //current_position[X_AXIS] -= 23; //delay
  1804. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1805. delay(4700);
  1806. max_feedrate[E_AXIS] = 80;
  1807. current_position[E_AXIS] -= 92;
  1808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1809. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1810. current_position[E_AXIS] -= 5;
  1811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1812. current_position[E_AXIS] += 5;
  1813. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1814. current_position[E_AXIS] -= 5;
  1815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1816. st_synchronize();
  1817. current_position[E_AXIS] += 5;
  1818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1819. current_position[E_AXIS] -= 5;
  1820. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1821. current_position[E_AXIS] += 5;
  1822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1823. current_position[E_AXIS] -= 5;
  1824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1825. st_synchronize();
  1826. }
  1827. }
  1828. */
  1829. void process_commands()
  1830. {
  1831. #ifdef FILAMENT_RUNOUT_SUPPORT
  1832. SET_INPUT(FR_SENS);
  1833. #endif
  1834. #ifdef CMDBUFFER_DEBUG
  1835. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1836. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1837. SERIAL_ECHOLNPGM("");
  1838. SERIAL_ECHOPGM("In cmdqueue: ");
  1839. SERIAL_ECHO(buflen);
  1840. SERIAL_ECHOLNPGM("");
  1841. #endif /* CMDBUFFER_DEBUG */
  1842. unsigned long codenum; //throw away variable
  1843. char *starpos = NULL;
  1844. #ifdef ENABLE_AUTO_BED_LEVELING
  1845. float x_tmp, y_tmp, z_tmp, real_z;
  1846. #endif
  1847. // PRUSA GCODES
  1848. #ifdef SNMM
  1849. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1850. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1851. int8_t SilentMode;
  1852. #endif
  1853. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1854. starpos = (strchr(strchr_pointer + 5, '*'));
  1855. if (starpos != NULL)
  1856. *(starpos) = '\0';
  1857. lcd_setstatus(strchr_pointer + 5);
  1858. }
  1859. else if(code_seen("PRUSA")){
  1860. if (code_seen("Ping")) { //PRUSA Ping
  1861. if (farm_mode) {
  1862. PingTime = millis();
  1863. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1864. }
  1865. }
  1866. else if (code_seen("PRN")) {
  1867. MYSERIAL.println(status_number);
  1868. }else if (code_seen("fn")) {
  1869. if (farm_mode) {
  1870. MYSERIAL.println(farm_no);
  1871. }
  1872. else {
  1873. MYSERIAL.println("Not in farm mode.");
  1874. }
  1875. }else if (code_seen("fv")) {
  1876. // get file version
  1877. #ifdef SDSUPPORT
  1878. card.openFile(strchr_pointer + 3,true);
  1879. while (true) {
  1880. uint16_t readByte = card.get();
  1881. MYSERIAL.write(readByte);
  1882. if (readByte=='\n') {
  1883. break;
  1884. }
  1885. }
  1886. card.closefile();
  1887. #endif // SDSUPPORT
  1888. } else if (code_seen("M28")) {
  1889. trace();
  1890. prusa_sd_card_upload = true;
  1891. card.openFile(strchr_pointer+4,false);
  1892. } else if(code_seen("Fir")){
  1893. SERIAL_PROTOCOLLN(FW_version);
  1894. } else if(code_seen("Rev")){
  1895. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1896. } else if(code_seen("Lang")) {
  1897. lcd_force_language_selection();
  1898. } else if(code_seen("Lz")) {
  1899. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1900. } else if (code_seen("SERIAL LOW")) {
  1901. MYSERIAL.println("SERIAL LOW");
  1902. MYSERIAL.begin(BAUDRATE);
  1903. return;
  1904. } else if (code_seen("SERIAL HIGH")) {
  1905. MYSERIAL.println("SERIAL HIGH");
  1906. MYSERIAL.begin(1152000);
  1907. return;
  1908. } else if(code_seen("Beat")) {
  1909. // Kick farm link timer
  1910. kicktime = millis();
  1911. } else if(code_seen("FR")) {
  1912. // Factory full reset
  1913. factory_reset(0,true);
  1914. }
  1915. //else if (code_seen('Cal')) {
  1916. // lcd_calibration();
  1917. // }
  1918. }
  1919. else if (code_seen('^')) {
  1920. // nothing, this is a version line
  1921. } else if(code_seen('G'))
  1922. {
  1923. switch((int)code_value())
  1924. {
  1925. case 0: // G0 -> G1
  1926. case 1: // G1
  1927. if(Stopped == false) {
  1928. #ifdef FILAMENT_RUNOUT_SUPPORT
  1929. if(READ(FR_SENS)){
  1930. feedmultiplyBckp=feedmultiply;
  1931. float target[4];
  1932. float lastpos[4];
  1933. target[X_AXIS]=current_position[X_AXIS];
  1934. target[Y_AXIS]=current_position[Y_AXIS];
  1935. target[Z_AXIS]=current_position[Z_AXIS];
  1936. target[E_AXIS]=current_position[E_AXIS];
  1937. lastpos[X_AXIS]=current_position[X_AXIS];
  1938. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1939. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1940. lastpos[E_AXIS]=current_position[E_AXIS];
  1941. //retract by E
  1942. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1943. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1944. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1945. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1946. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1947. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1948. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1949. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1950. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1951. //finish moves
  1952. st_synchronize();
  1953. //disable extruder steppers so filament can be removed
  1954. disable_e0();
  1955. disable_e1();
  1956. disable_e2();
  1957. delay(100);
  1958. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1959. uint8_t cnt=0;
  1960. int counterBeep = 0;
  1961. lcd_wait_interact();
  1962. while(!lcd_clicked()){
  1963. cnt++;
  1964. manage_heater();
  1965. manage_inactivity(true);
  1966. //lcd_update();
  1967. if(cnt==0)
  1968. {
  1969. #if BEEPER > 0
  1970. if (counterBeep== 500){
  1971. counterBeep = 0;
  1972. }
  1973. SET_OUTPUT(BEEPER);
  1974. if (counterBeep== 0){
  1975. WRITE(BEEPER,HIGH);
  1976. }
  1977. if (counterBeep== 20){
  1978. WRITE(BEEPER,LOW);
  1979. }
  1980. counterBeep++;
  1981. #else
  1982. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1983. lcd_buzz(1000/6,100);
  1984. #else
  1985. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1986. #endif
  1987. #endif
  1988. }
  1989. }
  1990. WRITE(BEEPER,LOW);
  1991. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1992. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1993. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1994. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1995. lcd_change_fil_state = 0;
  1996. lcd_loading_filament();
  1997. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1998. lcd_change_fil_state = 0;
  1999. lcd_alright();
  2000. switch(lcd_change_fil_state){
  2001. case 2:
  2002. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2003. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2004. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2005. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2006. lcd_loading_filament();
  2007. break;
  2008. case 3:
  2009. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2010. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2011. lcd_loading_color();
  2012. break;
  2013. default:
  2014. lcd_change_success();
  2015. break;
  2016. }
  2017. }
  2018. target[E_AXIS]+= 5;
  2019. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2020. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2021. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2022. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2023. //plan_set_e_position(current_position[E_AXIS]);
  2024. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2025. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2026. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2027. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2028. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2029. plan_set_e_position(lastpos[E_AXIS]);
  2030. feedmultiply=feedmultiplyBckp;
  2031. char cmd[9];
  2032. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2033. enquecommand(cmd);
  2034. }
  2035. #endif
  2036. get_coordinates(); // For X Y Z E F
  2037. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2038. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2039. }
  2040. #ifdef FWRETRACT
  2041. if(autoretract_enabled)
  2042. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2043. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2044. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2045. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2046. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2047. retract(!retracted);
  2048. return;
  2049. }
  2050. }
  2051. #endif //FWRETRACT
  2052. prepare_move();
  2053. //ClearToSend();
  2054. }
  2055. break;
  2056. case 2: // G2 - CW ARC
  2057. if(Stopped == false) {
  2058. get_arc_coordinates();
  2059. prepare_arc_move(true);
  2060. }
  2061. break;
  2062. case 3: // G3 - CCW ARC
  2063. if(Stopped == false) {
  2064. get_arc_coordinates();
  2065. prepare_arc_move(false);
  2066. }
  2067. break;
  2068. case 4: // G4 dwell
  2069. codenum = 0;
  2070. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2071. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2072. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2073. st_synchronize();
  2074. codenum += millis(); // keep track of when we started waiting
  2075. previous_millis_cmd = millis();
  2076. while(millis() < codenum) {
  2077. manage_heater();
  2078. manage_inactivity();
  2079. lcd_update();
  2080. }
  2081. break;
  2082. #ifdef FWRETRACT
  2083. case 10: // G10 retract
  2084. #if EXTRUDERS > 1
  2085. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2086. retract(true,retracted_swap[active_extruder]);
  2087. #else
  2088. retract(true);
  2089. #endif
  2090. break;
  2091. case 11: // G11 retract_recover
  2092. #if EXTRUDERS > 1
  2093. retract(false,retracted_swap[active_extruder]);
  2094. #else
  2095. retract(false);
  2096. #endif
  2097. break;
  2098. #endif //FWRETRACT
  2099. case 28: //G28 Home all Axis one at a time
  2100. homing_flag = true;
  2101. #ifdef ENABLE_AUTO_BED_LEVELING
  2102. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2103. #endif //ENABLE_AUTO_BED_LEVELING
  2104. // For mesh bed leveling deactivate the matrix temporarily
  2105. #ifdef MESH_BED_LEVELING
  2106. mbl.active = 0;
  2107. #endif
  2108. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2109. // the planner will not perform any adjustments in the XY plane.
  2110. // Wait for the motors to stop and update the current position with the absolute values.
  2111. world2machine_revert_to_uncorrected();
  2112. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2113. // consumed during the first movements following this statement.
  2114. babystep_undo();
  2115. saved_feedrate = feedrate;
  2116. saved_feedmultiply = feedmultiply;
  2117. feedmultiply = 100;
  2118. previous_millis_cmd = millis();
  2119. enable_endstops(true);
  2120. for(int8_t i=0; i < NUM_AXIS; i++)
  2121. destination[i] = current_position[i];
  2122. feedrate = 0.0;
  2123. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  2124. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2125. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2126. homeaxis(Z_AXIS);
  2127. }
  2128. #endif
  2129. #ifdef QUICK_HOME
  2130. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2131. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  2132. {
  2133. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2134. int x_axis_home_dir = home_dir(X_AXIS);
  2135. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2136. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2137. feedrate = homing_feedrate[X_AXIS];
  2138. if(homing_feedrate[Y_AXIS]<feedrate)
  2139. feedrate = homing_feedrate[Y_AXIS];
  2140. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2141. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2142. } else {
  2143. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2144. }
  2145. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2146. st_synchronize();
  2147. axis_is_at_home(X_AXIS);
  2148. axis_is_at_home(Y_AXIS);
  2149. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2150. destination[X_AXIS] = current_position[X_AXIS];
  2151. destination[Y_AXIS] = current_position[Y_AXIS];
  2152. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2153. feedrate = 0.0;
  2154. st_synchronize();
  2155. endstops_hit_on_purpose();
  2156. current_position[X_AXIS] = destination[X_AXIS];
  2157. current_position[Y_AXIS] = destination[Y_AXIS];
  2158. current_position[Z_AXIS] = destination[Z_AXIS];
  2159. }
  2160. #endif /* QUICK_HOME */
  2161. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  2162. homeaxis(X_AXIS);
  2163. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  2164. homeaxis(Y_AXIS);
  2165. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2166. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2167. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2168. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2169. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2170. #ifndef Z_SAFE_HOMING
  2171. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2172. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2173. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2174. feedrate = max_feedrate[Z_AXIS];
  2175. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2176. st_synchronize();
  2177. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2178. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2179. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2180. {
  2181. homeaxis(X_AXIS);
  2182. homeaxis(Y_AXIS);
  2183. }
  2184. // 1st mesh bed leveling measurement point, corrected.
  2185. world2machine_initialize();
  2186. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2187. world2machine_reset();
  2188. if (destination[Y_AXIS] < Y_MIN_POS)
  2189. destination[Y_AXIS] = Y_MIN_POS;
  2190. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2191. feedrate = homing_feedrate[Z_AXIS]/10;
  2192. current_position[Z_AXIS] = 0;
  2193. enable_endstops(false);
  2194. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2195. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2196. st_synchronize();
  2197. current_position[X_AXIS] = destination[X_AXIS];
  2198. current_position[Y_AXIS] = destination[Y_AXIS];
  2199. enable_endstops(true);
  2200. endstops_hit_on_purpose();
  2201. homeaxis(Z_AXIS);
  2202. #else // MESH_BED_LEVELING
  2203. homeaxis(Z_AXIS);
  2204. #endif // MESH_BED_LEVELING
  2205. }
  2206. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2207. if(home_all_axis) {
  2208. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2209. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2210. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2211. feedrate = XY_TRAVEL_SPEED/60;
  2212. current_position[Z_AXIS] = 0;
  2213. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2214. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2215. st_synchronize();
  2216. current_position[X_AXIS] = destination[X_AXIS];
  2217. current_position[Y_AXIS] = destination[Y_AXIS];
  2218. homeaxis(Z_AXIS);
  2219. }
  2220. // Let's see if X and Y are homed and probe is inside bed area.
  2221. if(code_seen(axis_codes[Z_AXIS])) {
  2222. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2223. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2224. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2225. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2226. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2227. current_position[Z_AXIS] = 0;
  2228. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2229. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2230. feedrate = max_feedrate[Z_AXIS];
  2231. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2232. st_synchronize();
  2233. homeaxis(Z_AXIS);
  2234. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2235. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2236. SERIAL_ECHO_START;
  2237. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2238. } else {
  2239. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2240. SERIAL_ECHO_START;
  2241. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2242. }
  2243. }
  2244. #endif // Z_SAFE_HOMING
  2245. #endif // Z_HOME_DIR < 0
  2246. if(code_seen(axis_codes[Z_AXIS])) {
  2247. if(code_value_long() != 0) {
  2248. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2249. }
  2250. }
  2251. #ifdef ENABLE_AUTO_BED_LEVELING
  2252. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  2253. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2254. }
  2255. #endif
  2256. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2257. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2258. enable_endstops(false);
  2259. #endif
  2260. feedrate = saved_feedrate;
  2261. feedmultiply = saved_feedmultiply;
  2262. previous_millis_cmd = millis();
  2263. endstops_hit_on_purpose();
  2264. #ifndef MESH_BED_LEVELING
  2265. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2266. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2267. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2268. lcd_adjust_z();
  2269. #endif
  2270. // Load the machine correction matrix
  2271. world2machine_initialize();
  2272. // and correct the current_position to match the transformed coordinate system.
  2273. world2machine_update_current();
  2274. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2275. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2276. {
  2277. }
  2278. else
  2279. {
  2280. st_synchronize();
  2281. homing_flag = false;
  2282. // Push the commands to the front of the message queue in the reverse order!
  2283. // There shall be always enough space reserved for these commands.
  2284. // enquecommand_front_P((PSTR("G80")));
  2285. goto case_G80;
  2286. }
  2287. #endif
  2288. if (farm_mode) { prusa_statistics(20); };
  2289. homing_flag = false;
  2290. SERIAL_ECHOLNPGM("Homing happened");
  2291. SERIAL_ECHOPGM("Current position X AXIS:");
  2292. MYSERIAL.println(current_position[X_AXIS]);
  2293. SERIAL_ECHOPGM("Current position Y_AXIS:");
  2294. MYSERIAL.println(current_position[Y_AXIS]);
  2295. break;
  2296. #ifdef ENABLE_AUTO_BED_LEVELING
  2297. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2298. {
  2299. #if Z_MIN_PIN == -1
  2300. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2301. #endif
  2302. // Prevent user from running a G29 without first homing in X and Y
  2303. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2304. {
  2305. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2306. SERIAL_ECHO_START;
  2307. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2308. break; // abort G29, since we don't know where we are
  2309. }
  2310. st_synchronize();
  2311. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2312. //vector_3 corrected_position = plan_get_position_mm();
  2313. //corrected_position.debug("position before G29");
  2314. plan_bed_level_matrix.set_to_identity();
  2315. vector_3 uncorrected_position = plan_get_position();
  2316. //uncorrected_position.debug("position durring G29");
  2317. current_position[X_AXIS] = uncorrected_position.x;
  2318. current_position[Y_AXIS] = uncorrected_position.y;
  2319. current_position[Z_AXIS] = uncorrected_position.z;
  2320. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2321. setup_for_endstop_move();
  2322. feedrate = homing_feedrate[Z_AXIS];
  2323. #ifdef AUTO_BED_LEVELING_GRID
  2324. // probe at the points of a lattice grid
  2325. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2326. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2327. // solve the plane equation ax + by + d = z
  2328. // A is the matrix with rows [x y 1] for all the probed points
  2329. // B is the vector of the Z positions
  2330. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2331. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2332. // "A" matrix of the linear system of equations
  2333. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2334. // "B" vector of Z points
  2335. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2336. int probePointCounter = 0;
  2337. bool zig = true;
  2338. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2339. {
  2340. int xProbe, xInc;
  2341. if (zig)
  2342. {
  2343. xProbe = LEFT_PROBE_BED_POSITION;
  2344. //xEnd = RIGHT_PROBE_BED_POSITION;
  2345. xInc = xGridSpacing;
  2346. zig = false;
  2347. } else // zag
  2348. {
  2349. xProbe = RIGHT_PROBE_BED_POSITION;
  2350. //xEnd = LEFT_PROBE_BED_POSITION;
  2351. xInc = -xGridSpacing;
  2352. zig = true;
  2353. }
  2354. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2355. {
  2356. float z_before;
  2357. if (probePointCounter == 0)
  2358. {
  2359. // raise before probing
  2360. z_before = Z_RAISE_BEFORE_PROBING;
  2361. } else
  2362. {
  2363. // raise extruder
  2364. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2365. }
  2366. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2367. eqnBVector[probePointCounter] = measured_z;
  2368. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2369. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2370. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2371. probePointCounter++;
  2372. xProbe += xInc;
  2373. }
  2374. }
  2375. clean_up_after_endstop_move();
  2376. // solve lsq problem
  2377. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2378. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2379. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2380. SERIAL_PROTOCOLPGM(" b: ");
  2381. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2382. SERIAL_PROTOCOLPGM(" d: ");
  2383. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2384. set_bed_level_equation_lsq(plane_equation_coefficients);
  2385. free(plane_equation_coefficients);
  2386. #else // AUTO_BED_LEVELING_GRID not defined
  2387. // Probe at 3 arbitrary points
  2388. // probe 1
  2389. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2390. // probe 2
  2391. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2392. // probe 3
  2393. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2394. clean_up_after_endstop_move();
  2395. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2396. #endif // AUTO_BED_LEVELING_GRID
  2397. st_synchronize();
  2398. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2399. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2400. // When the bed is uneven, this height must be corrected.
  2401. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2402. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2403. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2404. z_tmp = current_position[Z_AXIS];
  2405. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2406. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2407. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2408. }
  2409. break;
  2410. #ifndef Z_PROBE_SLED
  2411. case 30: // G30 Single Z Probe
  2412. {
  2413. st_synchronize();
  2414. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2415. setup_for_endstop_move();
  2416. feedrate = homing_feedrate[Z_AXIS];
  2417. run_z_probe();
  2418. SERIAL_PROTOCOLPGM(MSG_BED);
  2419. SERIAL_PROTOCOLPGM(" X: ");
  2420. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2421. SERIAL_PROTOCOLPGM(" Y: ");
  2422. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2423. SERIAL_PROTOCOLPGM(" Z: ");
  2424. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2425. SERIAL_PROTOCOLPGM("\n");
  2426. clean_up_after_endstop_move();
  2427. }
  2428. break;
  2429. #else
  2430. case 31: // dock the sled
  2431. dock_sled(true);
  2432. break;
  2433. case 32: // undock the sled
  2434. dock_sled(false);
  2435. break;
  2436. #endif // Z_PROBE_SLED
  2437. #endif // ENABLE_AUTO_BED_LEVELING
  2438. #ifdef MESH_BED_LEVELING
  2439. case 30: // G30 Single Z Probe
  2440. {
  2441. st_synchronize();
  2442. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2443. setup_for_endstop_move();
  2444. feedrate = homing_feedrate[Z_AXIS];
  2445. find_bed_induction_sensor_point_z(-10.f, 3);
  2446. SERIAL_PROTOCOLRPGM(MSG_BED);
  2447. SERIAL_PROTOCOLPGM(" X: ");
  2448. MYSERIAL.print(current_position[X_AXIS], 5);
  2449. SERIAL_PROTOCOLPGM(" Y: ");
  2450. MYSERIAL.print(current_position[Y_AXIS], 5);
  2451. SERIAL_PROTOCOLPGM(" Z: ");
  2452. MYSERIAL.print(current_position[Z_AXIS], 5);
  2453. SERIAL_PROTOCOLPGM("\n");
  2454. clean_up_after_endstop_move();
  2455. }
  2456. break;
  2457. case 75:
  2458. {
  2459. for (int i = 40; i <= 110; i++) {
  2460. MYSERIAL.print(i);
  2461. MYSERIAL.print(" ");
  2462. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2463. }
  2464. }
  2465. break;
  2466. case 76: //PINDA probe temperature calibration
  2467. {
  2468. setTargetBed(PINDA_MIN_T);
  2469. float zero_z;
  2470. int z_shift = 0; //unit: steps
  2471. int t_c; // temperature
  2472. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2473. // We don't know where we are! HOME!
  2474. // Push the commands to the front of the message queue in the reverse order!
  2475. // There shall be always enough space reserved for these commands.
  2476. repeatcommand_front(); // repeat G76 with all its parameters
  2477. enquecommand_front_P((PSTR("G28 W0")));
  2478. break;
  2479. }
  2480. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2481. custom_message = true;
  2482. custom_message_type = 4;
  2483. custom_message_state = 1;
  2484. custom_message = MSG_TEMP_CALIBRATION;
  2485. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2486. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2487. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2488. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2489. st_synchronize();
  2490. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2491. delay_keep_alive(1000);
  2492. serialecho_temperatures();
  2493. }
  2494. //enquecommand_P(PSTR("M190 S50"));
  2495. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2496. delay_keep_alive(1000);
  2497. serialecho_temperatures();
  2498. }
  2499. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2500. current_position[Z_AXIS] = 5;
  2501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2502. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2503. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2504. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2505. st_synchronize();
  2506. find_bed_induction_sensor_point_z(-1.f);
  2507. zero_z = current_position[Z_AXIS];
  2508. //current_position[Z_AXIS]
  2509. SERIAL_ECHOLNPGM("");
  2510. SERIAL_ECHOPGM("ZERO: ");
  2511. MYSERIAL.print(current_position[Z_AXIS]);
  2512. SERIAL_ECHOLNPGM("");
  2513. for (int i = 0; i<5; i++) {
  2514. SERIAL_ECHOPGM("Step: ");
  2515. MYSERIAL.print(i+2);
  2516. SERIAL_ECHOLNPGM("/6");
  2517. custom_message_state = i + 2;
  2518. t_c = 60 + i * 10;
  2519. setTargetBed(t_c);
  2520. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2521. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2522. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2524. st_synchronize();
  2525. while (degBed() < t_c) {
  2526. delay_keep_alive(1000);
  2527. serialecho_temperatures();
  2528. }
  2529. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2530. delay_keep_alive(1000);
  2531. serialecho_temperatures();
  2532. }
  2533. current_position[Z_AXIS] = 5;
  2534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2535. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2536. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2538. st_synchronize();
  2539. find_bed_induction_sensor_point_z(-1.f);
  2540. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2541. SERIAL_ECHOLNPGM("");
  2542. SERIAL_ECHOPGM("Temperature: ");
  2543. MYSERIAL.print(t_c);
  2544. SERIAL_ECHOPGM(" Z shift (mm):");
  2545. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2546. SERIAL_ECHOLNPGM("");
  2547. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2548. }
  2549. custom_message_type = 0;
  2550. custom_message = false;
  2551. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2552. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2553. disable_x();
  2554. disable_y();
  2555. disable_z();
  2556. disable_e0();
  2557. disable_e1();
  2558. disable_e2();
  2559. setTargetBed(0); //set bed target temperature back to 0
  2560. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2561. lcd_update_enable(true);
  2562. lcd_update(2);
  2563. }
  2564. break;
  2565. #ifdef DIS
  2566. case 77:
  2567. {
  2568. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2569. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2570. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2571. float dimension_x = 40;
  2572. float dimension_y = 40;
  2573. int points_x = 40;
  2574. int points_y = 40;
  2575. float offset_x = 74;
  2576. float offset_y = 33;
  2577. if (code_seen('X')) dimension_x = code_value();
  2578. if (code_seen('Y')) dimension_y = code_value();
  2579. if (code_seen('XP')) points_x = code_value();
  2580. if (code_seen('YP')) points_y = code_value();
  2581. if (code_seen('XO')) offset_x = code_value();
  2582. if (code_seen('YO')) offset_y = code_value();
  2583. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2584. } break;
  2585. #endif
  2586. /**
  2587. * G80: Mesh-based Z probe, probes a grid and produces a
  2588. * mesh to compensate for variable bed height
  2589. *
  2590. * The S0 report the points as below
  2591. *
  2592. * +----> X-axis
  2593. * |
  2594. * |
  2595. * v Y-axis
  2596. *
  2597. */
  2598. case 80:
  2599. #ifdef MK1BP
  2600. break;
  2601. #endif //MK1BP
  2602. case_G80:
  2603. {
  2604. mesh_bed_leveling_flag = true;
  2605. int8_t verbosity_level = 0;
  2606. static bool run = false;
  2607. if (code_seen('V')) {
  2608. // Just 'V' without a number counts as V1.
  2609. char c = strchr_pointer[1];
  2610. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2611. }
  2612. // Firstly check if we know where we are
  2613. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2614. // We don't know where we are! HOME!
  2615. // Push the commands to the front of the message queue in the reverse order!
  2616. // There shall be always enough space reserved for these commands.
  2617. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2618. repeatcommand_front(); // repeat G80 with all its parameters
  2619. enquecommand_front_P((PSTR("G28 W0")));
  2620. }
  2621. else {
  2622. mesh_bed_leveling_flag = false;
  2623. }
  2624. break;
  2625. }
  2626. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2627. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2628. temp_compensation_start();
  2629. run = true;
  2630. repeatcommand_front(); // repeat G80 with all its parameters
  2631. enquecommand_front_P((PSTR("G28 W0")));
  2632. }
  2633. else {
  2634. mesh_bed_leveling_flag = false;
  2635. }
  2636. break;
  2637. }
  2638. run = false;
  2639. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2640. mesh_bed_leveling_flag = false;
  2641. break;
  2642. }
  2643. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2644. bool custom_message_old = custom_message;
  2645. unsigned int custom_message_type_old = custom_message_type;
  2646. unsigned int custom_message_state_old = custom_message_state;
  2647. custom_message = true;
  2648. custom_message_type = 1;
  2649. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2650. lcd_update(1);
  2651. mbl.reset(); //reset mesh bed leveling
  2652. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2653. // consumed during the first movements following this statement.
  2654. babystep_undo();
  2655. // Cycle through all points and probe them
  2656. // First move up. During this first movement, the babystepping will be reverted.
  2657. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2659. // The move to the first calibration point.
  2660. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2661. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2662. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2663. if (verbosity_level >= 1) {
  2664. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2665. }
  2666. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2668. // Wait until the move is finished.
  2669. st_synchronize();
  2670. int mesh_point = 0; //index number of calibration point
  2671. int ix = 0;
  2672. int iy = 0;
  2673. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  2674. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  2675. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  2676. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  2677. if (verbosity_level >= 1) {
  2678. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  2679. }
  2680. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  2681. const char *kill_message = NULL;
  2682. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2683. if (verbosity_level >= 1) SERIAL_ECHOLNPGM("");
  2684. // Get coords of a measuring point.
  2685. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  2686. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2687. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2688. float z0 = 0.f;
  2689. if (has_z && mesh_point > 0) {
  2690. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2691. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2692. //#if 0
  2693. if (verbosity_level >= 1) {
  2694. SERIAL_ECHOPGM("Bed leveling, point: ");
  2695. MYSERIAL.print(mesh_point);
  2696. SERIAL_ECHOPGM(", calibration z: ");
  2697. MYSERIAL.print(z0, 5);
  2698. SERIAL_ECHOLNPGM("");
  2699. }
  2700. //#endif
  2701. }
  2702. // Move Z up to MESH_HOME_Z_SEARCH.
  2703. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2705. st_synchronize();
  2706. // Move to XY position of the sensor point.
  2707. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  2708. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  2709. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2710. if (verbosity_level >= 1) {
  2711. SERIAL_PROTOCOL(mesh_point);
  2712. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  2713. }
  2714. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2715. st_synchronize();
  2716. // Go down until endstop is hit
  2717. const float Z_CALIBRATION_THRESHOLD = 1.f;
  2718. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  2719. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2720. break;
  2721. }
  2722. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  2723. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  2724. break;
  2725. }
  2726. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  2727. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2728. break;
  2729. }
  2730. if (verbosity_level >= 10) {
  2731. SERIAL_ECHOPGM("X: ");
  2732. MYSERIAL.print(current_position[X_AXIS], 5);
  2733. SERIAL_ECHOLNPGM("");
  2734. SERIAL_ECHOPGM("Y: ");
  2735. MYSERIAL.print(current_position[Y_AXIS], 5);
  2736. SERIAL_PROTOCOLPGM("\n");
  2737. }
  2738. if (verbosity_level >= 1) {
  2739. SERIAL_ECHOPGM("mesh bed leveling: ");
  2740. MYSERIAL.print(current_position[Z_AXIS], 5);
  2741. SERIAL_ECHOLNPGM("");
  2742. }
  2743. mbl.set_z(ix, iy, current_position[Z_AXIS]); //store measured z values z_values[iy][ix] = z;
  2744. custom_message_state--;
  2745. mesh_point++;
  2746. lcd_update(1);
  2747. }
  2748. if (verbosity_level >= 20) SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  2749. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2750. if (verbosity_level >= 20) {
  2751. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  2752. MYSERIAL.print(current_position[Z_AXIS], 5);
  2753. }
  2754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2755. st_synchronize();
  2756. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2757. kill(kill_message);
  2758. SERIAL_ECHOLNPGM("killed");
  2759. }
  2760. clean_up_after_endstop_move();
  2761. SERIAL_ECHOLNPGM("clean up finished ");
  2762. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  2763. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  2764. SERIAL_ECHOLNPGM("babystep applied");
  2765. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  2766. if (verbosity_level >= 1) {
  2767. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  2768. }
  2769. for (uint8_t i = 0; i < 4; ++i) {
  2770. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  2771. long correction = 0;
  2772. if (code_seen(codes[i]))
  2773. correction = code_value_long();
  2774. else if (eeprom_bed_correction_valid) {
  2775. unsigned char *addr = (i < 2) ?
  2776. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  2777. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  2778. correction = eeprom_read_int8(addr);
  2779. }
  2780. if (correction == 0)
  2781. continue;
  2782. float offset = float(correction) * 0.001f;
  2783. if (fabs(offset) > 0.101f) {
  2784. SERIAL_ERROR_START;
  2785. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  2786. SERIAL_ECHO(offset);
  2787. SERIAL_ECHOLNPGM(" microns");
  2788. }
  2789. else {
  2790. switch (i) {
  2791. case 0:
  2792. for (uint8_t row = 0; row < 3; ++row) {
  2793. mbl.z_values[row][1] += 0.5f * offset;
  2794. mbl.z_values[row][0] += offset;
  2795. }
  2796. break;
  2797. case 1:
  2798. for (uint8_t row = 0; row < 3; ++row) {
  2799. mbl.z_values[row][1] += 0.5f * offset;
  2800. mbl.z_values[row][2] += offset;
  2801. }
  2802. break;
  2803. case 2:
  2804. for (uint8_t col = 0; col < 3; ++col) {
  2805. mbl.z_values[1][col] += 0.5f * offset;
  2806. mbl.z_values[0][col] += offset;
  2807. }
  2808. break;
  2809. case 3:
  2810. for (uint8_t col = 0; col < 3; ++col) {
  2811. mbl.z_values[1][col] += 0.5f * offset;
  2812. mbl.z_values[2][col] += offset;
  2813. }
  2814. break;
  2815. }
  2816. }
  2817. }
  2818. SERIAL_ECHOLNPGM("Bed leveling correction finished");
  2819. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  2820. SERIAL_ECHOLNPGM("Upsample finished");
  2821. mbl.active = 1; //activate mesh bed leveling
  2822. SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  2823. go_home_with_z_lift();
  2824. SERIAL_ECHOLNPGM("Go home finished");
  2825. //unretract (after PINDA preheat retraction)
  2826. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2827. current_position[E_AXIS] += DEFAULT_RETRACTION;
  2828. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  2829. }
  2830. // Restore custom message state
  2831. custom_message = custom_message_old;
  2832. custom_message_type = custom_message_type_old;
  2833. custom_message_state = custom_message_state_old;
  2834. mesh_bed_leveling_flag = false;
  2835. mesh_bed_run_from_menu = false;
  2836. lcd_update(2);
  2837. }
  2838. break;
  2839. /**
  2840. * G81: Print mesh bed leveling status and bed profile if activated
  2841. */
  2842. case 81:
  2843. if (mbl.active) {
  2844. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2845. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2846. SERIAL_PROTOCOLPGM(",");
  2847. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2848. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2849. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2850. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2851. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2852. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2853. SERIAL_PROTOCOLPGM(" ");
  2854. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2855. }
  2856. SERIAL_PROTOCOLPGM("\n");
  2857. }
  2858. }
  2859. else
  2860. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2861. break;
  2862. #if 0
  2863. /**
  2864. * G82: Single Z probe at current location
  2865. *
  2866. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2867. *
  2868. */
  2869. case 82:
  2870. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2871. setup_for_endstop_move();
  2872. find_bed_induction_sensor_point_z();
  2873. clean_up_after_endstop_move();
  2874. SERIAL_PROTOCOLPGM("Bed found at: ");
  2875. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2876. SERIAL_PROTOCOLPGM("\n");
  2877. break;
  2878. /**
  2879. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2880. */
  2881. case 83:
  2882. {
  2883. int babystepz = code_seen('S') ? code_value() : 0;
  2884. int BabyPosition = code_seen('P') ? code_value() : 0;
  2885. if (babystepz != 0) {
  2886. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2887. // Is the axis indexed starting with zero or one?
  2888. if (BabyPosition > 4) {
  2889. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2890. }else{
  2891. // Save it to the eeprom
  2892. babystepLoadZ = babystepz;
  2893. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2894. // adjust the Z
  2895. babystepsTodoZadd(babystepLoadZ);
  2896. }
  2897. }
  2898. }
  2899. break;
  2900. /**
  2901. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2902. */
  2903. case 84:
  2904. babystepsTodoZsubtract(babystepLoadZ);
  2905. // babystepLoadZ = 0;
  2906. break;
  2907. /**
  2908. * G85: Prusa3D specific: Pick best babystep
  2909. */
  2910. case 85:
  2911. lcd_pick_babystep();
  2912. break;
  2913. #endif
  2914. /**
  2915. * G86: Prusa3D specific: Disable babystep correction after home.
  2916. * This G-code will be performed at the start of a calibration script.
  2917. */
  2918. case 86:
  2919. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2920. break;
  2921. /**
  2922. * G87: Prusa3D specific: Enable babystep correction after home
  2923. * This G-code will be performed at the end of a calibration script.
  2924. */
  2925. case 87:
  2926. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2927. break;
  2928. /**
  2929. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  2930. */
  2931. case 88:
  2932. break;
  2933. #endif // ENABLE_MESH_BED_LEVELING
  2934. case 90: // G90
  2935. relative_mode = false;
  2936. break;
  2937. case 91: // G91
  2938. relative_mode = true;
  2939. break;
  2940. case 92: // G92
  2941. if(!code_seen(axis_codes[E_AXIS]))
  2942. st_synchronize();
  2943. for(int8_t i=0; i < NUM_AXIS; i++) {
  2944. if(code_seen(axis_codes[i])) {
  2945. if(i == E_AXIS) {
  2946. current_position[i] = code_value();
  2947. plan_set_e_position(current_position[E_AXIS]);
  2948. }
  2949. else {
  2950. current_position[i] = code_value()+add_homing[i];
  2951. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2952. }
  2953. }
  2954. }
  2955. break;
  2956. case 98: //activate farm mode
  2957. farm_mode = 1;
  2958. PingTime = millis();
  2959. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2960. break;
  2961. case 99: //deactivate farm mode
  2962. farm_mode = 0;
  2963. lcd_printer_connected();
  2964. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  2965. lcd_update(2);
  2966. break;
  2967. }
  2968. } // end if(code_seen('G'))
  2969. else if(code_seen('M'))
  2970. {
  2971. int index;
  2972. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  2973. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  2974. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  2975. SERIAL_ECHOLNPGM("Invalid M code");
  2976. } else
  2977. switch((int)code_value())
  2978. {
  2979. #ifdef ULTIPANEL
  2980. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2981. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2982. {
  2983. char *src = strchr_pointer + 2;
  2984. codenum = 0;
  2985. bool hasP = false, hasS = false;
  2986. if (code_seen('P')) {
  2987. codenum = code_value(); // milliseconds to wait
  2988. hasP = codenum > 0;
  2989. }
  2990. if (code_seen('S')) {
  2991. codenum = code_value() * 1000; // seconds to wait
  2992. hasS = codenum > 0;
  2993. }
  2994. starpos = strchr(src, '*');
  2995. if (starpos != NULL) *(starpos) = '\0';
  2996. while (*src == ' ') ++src;
  2997. if (!hasP && !hasS && *src != '\0') {
  2998. lcd_setstatus(src);
  2999. } else {
  3000. LCD_MESSAGERPGM(MSG_USERWAIT);
  3001. }
  3002. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3003. st_synchronize();
  3004. previous_millis_cmd = millis();
  3005. if (codenum > 0){
  3006. codenum += millis(); // keep track of when we started waiting
  3007. while(millis() < codenum && !lcd_clicked()){
  3008. manage_heater();
  3009. manage_inactivity(true);
  3010. lcd_update();
  3011. }
  3012. lcd_ignore_click(false);
  3013. }else{
  3014. if (!lcd_detected())
  3015. break;
  3016. while(!lcd_clicked()){
  3017. manage_heater();
  3018. manage_inactivity(true);
  3019. lcd_update();
  3020. }
  3021. }
  3022. if (IS_SD_PRINTING)
  3023. LCD_MESSAGERPGM(MSG_RESUMING);
  3024. else
  3025. LCD_MESSAGERPGM(WELCOME_MSG);
  3026. }
  3027. break;
  3028. #endif
  3029. case 17:
  3030. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3031. enable_x();
  3032. enable_y();
  3033. enable_z();
  3034. enable_e0();
  3035. enable_e1();
  3036. enable_e2();
  3037. break;
  3038. #ifdef SDSUPPORT
  3039. case 20: // M20 - list SD card
  3040. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3041. card.ls();
  3042. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3043. break;
  3044. case 21: // M21 - init SD card
  3045. card.initsd();
  3046. break;
  3047. case 22: //M22 - release SD card
  3048. card.release();
  3049. break;
  3050. case 23: //M23 - Select file
  3051. starpos = (strchr(strchr_pointer + 4,'*'));
  3052. if(starpos!=NULL)
  3053. *(starpos)='\0';
  3054. card.openFile(strchr_pointer + 4,true);
  3055. break;
  3056. case 24: //M24 - Start SD print
  3057. card.startFileprint();
  3058. starttime=millis();
  3059. break;
  3060. case 25: //M25 - Pause SD print
  3061. card.pauseSDPrint();
  3062. break;
  3063. case 26: //M26 - Set SD index
  3064. if(card.cardOK && code_seen('S')) {
  3065. card.setIndex(code_value_long());
  3066. }
  3067. break;
  3068. case 27: //M27 - Get SD status
  3069. card.getStatus();
  3070. break;
  3071. case 28: //M28 - Start SD write
  3072. starpos = (strchr(strchr_pointer + 4,'*'));
  3073. if(starpos != NULL){
  3074. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3075. strchr_pointer = strchr(npos,' ') + 1;
  3076. *(starpos) = '\0';
  3077. }
  3078. card.openFile(strchr_pointer+4,false);
  3079. break;
  3080. case 29: //M29 - Stop SD write
  3081. //processed in write to file routine above
  3082. //card,saving = false;
  3083. break;
  3084. case 30: //M30 <filename> Delete File
  3085. if (card.cardOK){
  3086. card.closefile();
  3087. starpos = (strchr(strchr_pointer + 4,'*'));
  3088. if(starpos != NULL){
  3089. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3090. strchr_pointer = strchr(npos,' ') + 1;
  3091. *(starpos) = '\0';
  3092. }
  3093. card.removeFile(strchr_pointer + 4);
  3094. }
  3095. break;
  3096. case 32: //M32 - Select file and start SD print
  3097. {
  3098. if(card.sdprinting) {
  3099. st_synchronize();
  3100. }
  3101. starpos = (strchr(strchr_pointer + 4,'*'));
  3102. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3103. if(namestartpos==NULL)
  3104. {
  3105. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3106. }
  3107. else
  3108. namestartpos++; //to skip the '!'
  3109. if(starpos!=NULL)
  3110. *(starpos)='\0';
  3111. bool call_procedure=(code_seen('P'));
  3112. if(strchr_pointer>namestartpos)
  3113. call_procedure=false; //false alert, 'P' found within filename
  3114. if( card.cardOK )
  3115. {
  3116. card.openFile(namestartpos,true,!call_procedure);
  3117. if(code_seen('S'))
  3118. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3119. card.setIndex(code_value_long());
  3120. card.startFileprint();
  3121. if(!call_procedure)
  3122. starttime=millis(); //procedure calls count as normal print time.
  3123. }
  3124. } break;
  3125. case 928: //M928 - Start SD write
  3126. starpos = (strchr(strchr_pointer + 5,'*'));
  3127. if(starpos != NULL){
  3128. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3129. strchr_pointer = strchr(npos,' ') + 1;
  3130. *(starpos) = '\0';
  3131. }
  3132. card.openLogFile(strchr_pointer+5);
  3133. break;
  3134. #endif //SDSUPPORT
  3135. case 31: //M31 take time since the start of the SD print or an M109 command
  3136. {
  3137. stoptime=millis();
  3138. char time[30];
  3139. unsigned long t=(stoptime-starttime)/1000;
  3140. int sec,min;
  3141. min=t/60;
  3142. sec=t%60;
  3143. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3144. SERIAL_ECHO_START;
  3145. SERIAL_ECHOLN(time);
  3146. lcd_setstatus(time);
  3147. autotempShutdown();
  3148. }
  3149. break;
  3150. case 42: //M42 -Change pin status via gcode
  3151. if (code_seen('S'))
  3152. {
  3153. int pin_status = code_value();
  3154. int pin_number = LED_PIN;
  3155. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3156. pin_number = code_value();
  3157. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3158. {
  3159. if (sensitive_pins[i] == pin_number)
  3160. {
  3161. pin_number = -1;
  3162. break;
  3163. }
  3164. }
  3165. #if defined(FAN_PIN) && FAN_PIN > -1
  3166. if (pin_number == FAN_PIN)
  3167. fanSpeed = pin_status;
  3168. #endif
  3169. if (pin_number > -1)
  3170. {
  3171. pinMode(pin_number, OUTPUT);
  3172. digitalWrite(pin_number, pin_status);
  3173. analogWrite(pin_number, pin_status);
  3174. }
  3175. }
  3176. break;
  3177. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3178. // Reset the baby step value and the baby step applied flag.
  3179. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3180. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3181. // Reset the skew and offset in both RAM and EEPROM.
  3182. reset_bed_offset_and_skew();
  3183. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3184. // the planner will not perform any adjustments in the XY plane.
  3185. // Wait for the motors to stop and update the current position with the absolute values.
  3186. world2machine_revert_to_uncorrected();
  3187. break;
  3188. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3189. {
  3190. // Only Z calibration?
  3191. bool onlyZ = code_seen('Z');
  3192. if (!onlyZ) {
  3193. setTargetBed(0);
  3194. setTargetHotend(0, 0);
  3195. setTargetHotend(0, 1);
  3196. setTargetHotend(0, 2);
  3197. adjust_bed_reset(); //reset bed level correction
  3198. }
  3199. // Disable the default update procedure of the display. We will do a modal dialog.
  3200. lcd_update_enable(false);
  3201. // Let the planner use the uncorrected coordinates.
  3202. mbl.reset();
  3203. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3204. // the planner will not perform any adjustments in the XY plane.
  3205. // Wait for the motors to stop and update the current position with the absolute values.
  3206. world2machine_revert_to_uncorrected();
  3207. // Reset the baby step value applied without moving the axes.
  3208. babystep_reset();
  3209. // Mark all axes as in a need for homing.
  3210. memset(axis_known_position, 0, sizeof(axis_known_position));
  3211. // Let the user move the Z axes up to the end stoppers.
  3212. if (lcd_calibrate_z_end_stop_manual( onlyZ )) {
  3213. refresh_cmd_timeout();
  3214. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ)) {
  3215. lcd_wait_for_cool_down();
  3216. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  3217. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  3218. lcd_implementation_print_at(0, 2, 1);
  3219. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  3220. }
  3221. // Move the print head close to the bed.
  3222. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3223. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3224. st_synchronize();
  3225. // Home in the XY plane.
  3226. set_destination_to_current();
  3227. setup_for_endstop_move();
  3228. home_xy();
  3229. int8_t verbosity_level = 0;
  3230. if (code_seen('V')) {
  3231. // Just 'V' without a number counts as V1.
  3232. char c = strchr_pointer[1];
  3233. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3234. }
  3235. if (onlyZ) {
  3236. clean_up_after_endstop_move();
  3237. // Z only calibration.
  3238. // Load the machine correction matrix
  3239. world2machine_initialize();
  3240. // and correct the current_position to match the transformed coordinate system.
  3241. world2machine_update_current();
  3242. //FIXME
  3243. bool result = sample_mesh_and_store_reference();
  3244. if (result) {
  3245. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  3246. // Shipped, the nozzle height has been set already. The user can start printing now.
  3247. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3248. // babystep_apply();
  3249. }
  3250. } else {
  3251. // Reset the baby step value and the baby step applied flag.
  3252. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3253. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3254. // Complete XYZ calibration.
  3255. uint8_t point_too_far_mask = 0;
  3256. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  3257. clean_up_after_endstop_move();
  3258. // Print head up.
  3259. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3260. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3261. st_synchronize();
  3262. if (result >= 0) {
  3263. point_too_far_mask = 0;
  3264. // Second half: The fine adjustment.
  3265. // Let the planner use the uncorrected coordinates.
  3266. mbl.reset();
  3267. world2machine_reset();
  3268. // Home in the XY plane.
  3269. setup_for_endstop_move();
  3270. home_xy();
  3271. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  3272. clean_up_after_endstop_move();
  3273. // Print head up.
  3274. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3275. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3276. st_synchronize();
  3277. // if (result >= 0) babystep_apply();
  3278. }
  3279. lcd_bed_calibration_show_result(result, point_too_far_mask);
  3280. if (result >= 0) {
  3281. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  3282. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3283. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  3284. }
  3285. }
  3286. } else {
  3287. // Timeouted.
  3288. }
  3289. lcd_update_enable(true);
  3290. break;
  3291. }
  3292. /*
  3293. case 46:
  3294. {
  3295. // M46: Prusa3D: Show the assigned IP address.
  3296. uint8_t ip[4];
  3297. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3298. if (hasIP) {
  3299. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3300. SERIAL_ECHO(int(ip[0]));
  3301. SERIAL_ECHOPGM(".");
  3302. SERIAL_ECHO(int(ip[1]));
  3303. SERIAL_ECHOPGM(".");
  3304. SERIAL_ECHO(int(ip[2]));
  3305. SERIAL_ECHOPGM(".");
  3306. SERIAL_ECHO(int(ip[3]));
  3307. SERIAL_ECHOLNPGM("");
  3308. } else {
  3309. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3310. }
  3311. break;
  3312. }
  3313. */
  3314. case 47:
  3315. // M47: Prusa3D: Show end stops dialog on the display.
  3316. lcd_diag_show_end_stops();
  3317. break;
  3318. #if 0
  3319. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3320. {
  3321. // Disable the default update procedure of the display. We will do a modal dialog.
  3322. lcd_update_enable(false);
  3323. // Let the planner use the uncorrected coordinates.
  3324. mbl.reset();
  3325. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3326. // the planner will not perform any adjustments in the XY plane.
  3327. // Wait for the motors to stop and update the current position with the absolute values.
  3328. world2machine_revert_to_uncorrected();
  3329. // Move the print head close to the bed.
  3330. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3331. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3332. st_synchronize();
  3333. // Home in the XY plane.
  3334. set_destination_to_current();
  3335. setup_for_endstop_move();
  3336. home_xy();
  3337. int8_t verbosity_level = 0;
  3338. if (code_seen('V')) {
  3339. // Just 'V' without a number counts as V1.
  3340. char c = strchr_pointer[1];
  3341. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3342. }
  3343. bool success = scan_bed_induction_points(verbosity_level);
  3344. clean_up_after_endstop_move();
  3345. // Print head up.
  3346. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3347. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3348. st_synchronize();
  3349. lcd_update_enable(true);
  3350. break;
  3351. }
  3352. #endif
  3353. // M48 Z-Probe repeatability measurement function.
  3354. //
  3355. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3356. //
  3357. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3358. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3359. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3360. // regenerated.
  3361. //
  3362. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3363. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3364. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3365. //
  3366. #ifdef ENABLE_AUTO_BED_LEVELING
  3367. #ifdef Z_PROBE_REPEATABILITY_TEST
  3368. case 48: // M48 Z-Probe repeatability
  3369. {
  3370. #if Z_MIN_PIN == -1
  3371. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3372. #endif
  3373. double sum=0.0;
  3374. double mean=0.0;
  3375. double sigma=0.0;
  3376. double sample_set[50];
  3377. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3378. double X_current, Y_current, Z_current;
  3379. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3380. if (code_seen('V') || code_seen('v')) {
  3381. verbose_level = code_value();
  3382. if (verbose_level<0 || verbose_level>4 ) {
  3383. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3384. goto Sigma_Exit;
  3385. }
  3386. }
  3387. if (verbose_level > 0) {
  3388. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3389. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3390. }
  3391. if (code_seen('n')) {
  3392. n_samples = code_value();
  3393. if (n_samples<4 || n_samples>50 ) {
  3394. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3395. goto Sigma_Exit;
  3396. }
  3397. }
  3398. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3399. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3400. Z_current = st_get_position_mm(Z_AXIS);
  3401. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3402. ext_position = st_get_position_mm(E_AXIS);
  3403. if (code_seen('X') || code_seen('x') ) {
  3404. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3405. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3406. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3407. goto Sigma_Exit;
  3408. }
  3409. }
  3410. if (code_seen('Y') || code_seen('y') ) {
  3411. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3412. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3413. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3414. goto Sigma_Exit;
  3415. }
  3416. }
  3417. if (code_seen('L') || code_seen('l') ) {
  3418. n_legs = code_value();
  3419. if ( n_legs==1 )
  3420. n_legs = 2;
  3421. if ( n_legs<0 || n_legs>15 ) {
  3422. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3423. goto Sigma_Exit;
  3424. }
  3425. }
  3426. //
  3427. // Do all the preliminary setup work. First raise the probe.
  3428. //
  3429. st_synchronize();
  3430. plan_bed_level_matrix.set_to_identity();
  3431. plan_buffer_line( X_current, Y_current, Z_start_location,
  3432. ext_position,
  3433. homing_feedrate[Z_AXIS]/60,
  3434. active_extruder);
  3435. st_synchronize();
  3436. //
  3437. // Now get everything to the specified probe point So we can safely do a probe to
  3438. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3439. // use that as a starting point for each probe.
  3440. //
  3441. if (verbose_level > 2)
  3442. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3443. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3444. ext_position,
  3445. homing_feedrate[X_AXIS]/60,
  3446. active_extruder);
  3447. st_synchronize();
  3448. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3449. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3450. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3451. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3452. //
  3453. // OK, do the inital probe to get us close to the bed.
  3454. // Then retrace the right amount and use that in subsequent probes
  3455. //
  3456. setup_for_endstop_move();
  3457. run_z_probe();
  3458. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3459. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3460. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3461. ext_position,
  3462. homing_feedrate[X_AXIS]/60,
  3463. active_extruder);
  3464. st_synchronize();
  3465. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3466. for( n=0; n<n_samples; n++) {
  3467. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3468. if ( n_legs) {
  3469. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3470. int rotational_direction, l;
  3471. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3472. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3473. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3474. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3475. //SERIAL_ECHOPAIR(" theta: ",theta);
  3476. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3477. //SERIAL_PROTOCOLLNPGM("");
  3478. for( l=0; l<n_legs-1; l++) {
  3479. if (rotational_direction==1)
  3480. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3481. else
  3482. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3483. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3484. if ( radius<0.0 )
  3485. radius = -radius;
  3486. X_current = X_probe_location + cos(theta) * radius;
  3487. Y_current = Y_probe_location + sin(theta) * radius;
  3488. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3489. X_current = X_MIN_POS;
  3490. if ( X_current>X_MAX_POS)
  3491. X_current = X_MAX_POS;
  3492. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3493. Y_current = Y_MIN_POS;
  3494. if ( Y_current>Y_MAX_POS)
  3495. Y_current = Y_MAX_POS;
  3496. if (verbose_level>3 ) {
  3497. SERIAL_ECHOPAIR("x: ", X_current);
  3498. SERIAL_ECHOPAIR("y: ", Y_current);
  3499. SERIAL_PROTOCOLLNPGM("");
  3500. }
  3501. do_blocking_move_to( X_current, Y_current, Z_current );
  3502. }
  3503. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3504. }
  3505. setup_for_endstop_move();
  3506. run_z_probe();
  3507. sample_set[n] = current_position[Z_AXIS];
  3508. //
  3509. // Get the current mean for the data points we have so far
  3510. //
  3511. sum=0.0;
  3512. for( j=0; j<=n; j++) {
  3513. sum = sum + sample_set[j];
  3514. }
  3515. mean = sum / (double (n+1));
  3516. //
  3517. // Now, use that mean to calculate the standard deviation for the
  3518. // data points we have so far
  3519. //
  3520. sum=0.0;
  3521. for( j=0; j<=n; j++) {
  3522. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3523. }
  3524. sigma = sqrt( sum / (double (n+1)) );
  3525. if (verbose_level > 1) {
  3526. SERIAL_PROTOCOL(n+1);
  3527. SERIAL_PROTOCOL(" of ");
  3528. SERIAL_PROTOCOL(n_samples);
  3529. SERIAL_PROTOCOLPGM(" z: ");
  3530. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3531. }
  3532. if (verbose_level > 2) {
  3533. SERIAL_PROTOCOL(" mean: ");
  3534. SERIAL_PROTOCOL_F(mean,6);
  3535. SERIAL_PROTOCOL(" sigma: ");
  3536. SERIAL_PROTOCOL_F(sigma,6);
  3537. }
  3538. if (verbose_level > 0)
  3539. SERIAL_PROTOCOLPGM("\n");
  3540. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3541. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3542. st_synchronize();
  3543. }
  3544. delay(1000);
  3545. clean_up_after_endstop_move();
  3546. // enable_endstops(true);
  3547. if (verbose_level > 0) {
  3548. SERIAL_PROTOCOLPGM("Mean: ");
  3549. SERIAL_PROTOCOL_F(mean, 6);
  3550. SERIAL_PROTOCOLPGM("\n");
  3551. }
  3552. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3553. SERIAL_PROTOCOL_F(sigma, 6);
  3554. SERIAL_PROTOCOLPGM("\n\n");
  3555. Sigma_Exit:
  3556. break;
  3557. }
  3558. #endif // Z_PROBE_REPEATABILITY_TEST
  3559. #endif // ENABLE_AUTO_BED_LEVELING
  3560. case 104: // M104
  3561. if(setTargetedHotend(104)){
  3562. break;
  3563. }
  3564. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3565. setWatch();
  3566. break;
  3567. case 112: // M112 -Emergency Stop
  3568. kill("", 3);
  3569. break;
  3570. case 140: // M140 set bed temp
  3571. if (code_seen('S')) setTargetBed(code_value());
  3572. break;
  3573. case 105 : // M105
  3574. if(setTargetedHotend(105)){
  3575. break;
  3576. }
  3577. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3578. SERIAL_PROTOCOLPGM("ok T:");
  3579. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3580. SERIAL_PROTOCOLPGM(" /");
  3581. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3582. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3583. SERIAL_PROTOCOLPGM(" B:");
  3584. SERIAL_PROTOCOL_F(degBed(),1);
  3585. SERIAL_PROTOCOLPGM(" /");
  3586. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3587. #endif //TEMP_BED_PIN
  3588. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3589. SERIAL_PROTOCOLPGM(" T");
  3590. SERIAL_PROTOCOL(cur_extruder);
  3591. SERIAL_PROTOCOLPGM(":");
  3592. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3593. SERIAL_PROTOCOLPGM(" /");
  3594. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3595. }
  3596. #else
  3597. SERIAL_ERROR_START;
  3598. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3599. #endif
  3600. SERIAL_PROTOCOLPGM(" @:");
  3601. #ifdef EXTRUDER_WATTS
  3602. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3603. SERIAL_PROTOCOLPGM("W");
  3604. #else
  3605. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3606. #endif
  3607. SERIAL_PROTOCOLPGM(" B@:");
  3608. #ifdef BED_WATTS
  3609. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3610. SERIAL_PROTOCOLPGM("W");
  3611. #else
  3612. SERIAL_PROTOCOL(getHeaterPower(-1));
  3613. #endif
  3614. #ifdef SHOW_TEMP_ADC_VALUES
  3615. {float raw = 0.0;
  3616. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3617. SERIAL_PROTOCOLPGM(" ADC B:");
  3618. SERIAL_PROTOCOL_F(degBed(),1);
  3619. SERIAL_PROTOCOLPGM("C->");
  3620. raw = rawBedTemp();
  3621. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3622. SERIAL_PROTOCOLPGM(" Rb->");
  3623. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3624. SERIAL_PROTOCOLPGM(" Rxb->");
  3625. SERIAL_PROTOCOL_F(raw, 5);
  3626. #endif
  3627. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3628. SERIAL_PROTOCOLPGM(" T");
  3629. SERIAL_PROTOCOL(cur_extruder);
  3630. SERIAL_PROTOCOLPGM(":");
  3631. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3632. SERIAL_PROTOCOLPGM("C->");
  3633. raw = rawHotendTemp(cur_extruder);
  3634. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3635. SERIAL_PROTOCOLPGM(" Rt");
  3636. SERIAL_PROTOCOL(cur_extruder);
  3637. SERIAL_PROTOCOLPGM("->");
  3638. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3639. SERIAL_PROTOCOLPGM(" Rx");
  3640. SERIAL_PROTOCOL(cur_extruder);
  3641. SERIAL_PROTOCOLPGM("->");
  3642. SERIAL_PROTOCOL_F(raw, 5);
  3643. }}
  3644. #endif
  3645. SERIAL_PROTOCOLLN("");
  3646. return;
  3647. break;
  3648. case 109:
  3649. {// M109 - Wait for extruder heater to reach target.
  3650. if(setTargetedHotend(109)){
  3651. break;
  3652. }
  3653. LCD_MESSAGERPGM(MSG_HEATING);
  3654. heating_status = 1;
  3655. if (farm_mode) { prusa_statistics(1); };
  3656. #ifdef AUTOTEMP
  3657. autotemp_enabled=false;
  3658. #endif
  3659. if (code_seen('S')) {
  3660. setTargetHotend(code_value(), tmp_extruder);
  3661. CooldownNoWait = true;
  3662. } else if (code_seen('R')) {
  3663. setTargetHotend(code_value(), tmp_extruder);
  3664. CooldownNoWait = false;
  3665. }
  3666. #ifdef AUTOTEMP
  3667. if (code_seen('S')) autotemp_min=code_value();
  3668. if (code_seen('B')) autotemp_max=code_value();
  3669. if (code_seen('F'))
  3670. {
  3671. autotemp_factor=code_value();
  3672. autotemp_enabled=true;
  3673. }
  3674. #endif
  3675. setWatch();
  3676. codenum = millis();
  3677. /* See if we are heating up or cooling down */
  3678. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3679. cancel_heatup = false;
  3680. wait_for_heater(codenum); //loops until target temperature is reached
  3681. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3682. heating_status = 2;
  3683. if (farm_mode) { prusa_statistics(2); };
  3684. //starttime=millis();
  3685. previous_millis_cmd = millis();
  3686. }
  3687. break;
  3688. case 190: // M190 - Wait for bed heater to reach target.
  3689. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3690. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3691. heating_status = 3;
  3692. if (farm_mode) { prusa_statistics(1); };
  3693. if (code_seen('S'))
  3694. {
  3695. setTargetBed(code_value());
  3696. CooldownNoWait = true;
  3697. }
  3698. else if (code_seen('R'))
  3699. {
  3700. setTargetBed(code_value());
  3701. CooldownNoWait = false;
  3702. }
  3703. codenum = millis();
  3704. cancel_heatup = false;
  3705. target_direction = isHeatingBed(); // true if heating, false if cooling
  3706. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3707. {
  3708. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3709. {
  3710. if (!farm_mode) {
  3711. float tt = degHotend(active_extruder);
  3712. SERIAL_PROTOCOLPGM("T:");
  3713. SERIAL_PROTOCOL(tt);
  3714. SERIAL_PROTOCOLPGM(" E:");
  3715. SERIAL_PROTOCOL((int)active_extruder);
  3716. SERIAL_PROTOCOLPGM(" B:");
  3717. SERIAL_PROTOCOL_F(degBed(), 1);
  3718. SERIAL_PROTOCOLLN("");
  3719. }
  3720. codenum = millis();
  3721. }
  3722. manage_heater();
  3723. manage_inactivity();
  3724. lcd_update();
  3725. }
  3726. LCD_MESSAGERPGM(MSG_BED_DONE);
  3727. heating_status = 4;
  3728. previous_millis_cmd = millis();
  3729. #endif
  3730. break;
  3731. #if defined(FAN_PIN) && FAN_PIN > -1
  3732. case 106: //M106 Fan On
  3733. if (code_seen('S')){
  3734. fanSpeed=constrain(code_value(),0,255);
  3735. }
  3736. else {
  3737. fanSpeed=255;
  3738. }
  3739. break;
  3740. case 107: //M107 Fan Off
  3741. fanSpeed = 0;
  3742. break;
  3743. #endif //FAN_PIN
  3744. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3745. case 80: // M80 - Turn on Power Supply
  3746. SET_OUTPUT(PS_ON_PIN); //GND
  3747. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  3748. // If you have a switch on suicide pin, this is useful
  3749. // if you want to start another print with suicide feature after
  3750. // a print without suicide...
  3751. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  3752. SET_OUTPUT(SUICIDE_PIN);
  3753. WRITE(SUICIDE_PIN, HIGH);
  3754. #endif
  3755. #ifdef ULTIPANEL
  3756. powersupply = true;
  3757. LCD_MESSAGERPGM(WELCOME_MSG);
  3758. lcd_update();
  3759. #endif
  3760. break;
  3761. #endif
  3762. case 81: // M81 - Turn off Power Supply
  3763. disable_heater();
  3764. st_synchronize();
  3765. disable_e0();
  3766. disable_e1();
  3767. disable_e2();
  3768. finishAndDisableSteppers();
  3769. fanSpeed = 0;
  3770. delay(1000); // Wait a little before to switch off
  3771. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  3772. st_synchronize();
  3773. suicide();
  3774. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  3775. SET_OUTPUT(PS_ON_PIN);
  3776. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3777. #endif
  3778. #ifdef ULTIPANEL
  3779. powersupply = false;
  3780. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  3781. /*
  3782. MACHNAME = "Prusa i3"
  3783. MSGOFF = "Vypnuto"
  3784. "Prusai3"" ""vypnuto""."
  3785. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  3786. */
  3787. lcd_update();
  3788. #endif
  3789. break;
  3790. case 82:
  3791. axis_relative_modes[3] = false;
  3792. break;
  3793. case 83:
  3794. axis_relative_modes[3] = true;
  3795. break;
  3796. case 18: //compatibility
  3797. case 84: // M84
  3798. if(code_seen('S')){
  3799. stepper_inactive_time = code_value() * 1000;
  3800. }
  3801. else
  3802. {
  3803. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3804. if(all_axis)
  3805. {
  3806. st_synchronize();
  3807. disable_e0();
  3808. disable_e1();
  3809. disable_e2();
  3810. finishAndDisableSteppers();
  3811. }
  3812. else
  3813. {
  3814. st_synchronize();
  3815. if (code_seen('X')) disable_x();
  3816. if (code_seen('Y')) disable_y();
  3817. if (code_seen('Z')) disable_z();
  3818. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3819. if (code_seen('E')) {
  3820. disable_e0();
  3821. disable_e1();
  3822. disable_e2();
  3823. }
  3824. #endif
  3825. }
  3826. }
  3827. snmm_filaments_used = 0;
  3828. break;
  3829. case 85: // M85
  3830. if(code_seen('S')) {
  3831. max_inactive_time = code_value() * 1000;
  3832. }
  3833. break;
  3834. case 92: // M92
  3835. for(int8_t i=0; i < NUM_AXIS; i++)
  3836. {
  3837. if(code_seen(axis_codes[i]))
  3838. {
  3839. if(i == 3) { // E
  3840. float value = code_value();
  3841. if(value < 20.0) {
  3842. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3843. max_jerk[E_AXIS] *= factor;
  3844. max_feedrate[i] *= factor;
  3845. axis_steps_per_sqr_second[i] *= factor;
  3846. }
  3847. axis_steps_per_unit[i] = value;
  3848. }
  3849. else {
  3850. axis_steps_per_unit[i] = code_value();
  3851. }
  3852. }
  3853. }
  3854. break;
  3855. case 115: // M115
  3856. if (code_seen('V')) {
  3857. // Report the Prusa version number.
  3858. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3859. } else if (code_seen('U')) {
  3860. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3861. // pause the print and ask the user to upgrade the firmware.
  3862. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3863. } else {
  3864. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3865. }
  3866. break;
  3867. /* case 117: // M117 display message
  3868. starpos = (strchr(strchr_pointer + 5,'*'));
  3869. if(starpos!=NULL)
  3870. *(starpos)='\0';
  3871. lcd_setstatus(strchr_pointer + 5);
  3872. break;*/
  3873. case 114: // M114
  3874. SERIAL_PROTOCOLPGM("X:");
  3875. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3876. SERIAL_PROTOCOLPGM(" Y:");
  3877. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3878. SERIAL_PROTOCOLPGM(" Z:");
  3879. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3880. SERIAL_PROTOCOLPGM(" E:");
  3881. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3882. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3883. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3884. SERIAL_PROTOCOLPGM(" Y:");
  3885. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3886. SERIAL_PROTOCOLPGM(" Z:");
  3887. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3888. SERIAL_PROTOCOLLN("");
  3889. break;
  3890. case 120: // M120
  3891. enable_endstops(false) ;
  3892. break;
  3893. case 121: // M121
  3894. enable_endstops(true) ;
  3895. break;
  3896. case 119: // M119
  3897. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3898. SERIAL_PROTOCOLLN("");
  3899. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3900. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3901. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3902. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3903. }else{
  3904. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3905. }
  3906. SERIAL_PROTOCOLLN("");
  3907. #endif
  3908. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3909. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3910. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3911. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3912. }else{
  3913. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3914. }
  3915. SERIAL_PROTOCOLLN("");
  3916. #endif
  3917. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3918. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3919. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3920. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3921. }else{
  3922. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3923. }
  3924. SERIAL_PROTOCOLLN("");
  3925. #endif
  3926. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3927. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3928. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3929. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3930. }else{
  3931. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3932. }
  3933. SERIAL_PROTOCOLLN("");
  3934. #endif
  3935. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3936. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3937. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3938. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3939. }else{
  3940. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3941. }
  3942. SERIAL_PROTOCOLLN("");
  3943. #endif
  3944. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3945. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3946. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3947. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3948. }else{
  3949. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3950. }
  3951. SERIAL_PROTOCOLLN("");
  3952. #endif
  3953. break;
  3954. //TODO: update for all axis, use for loop
  3955. #ifdef BLINKM
  3956. case 150: // M150
  3957. {
  3958. byte red;
  3959. byte grn;
  3960. byte blu;
  3961. if(code_seen('R')) red = code_value();
  3962. if(code_seen('U')) grn = code_value();
  3963. if(code_seen('B')) blu = code_value();
  3964. SendColors(red,grn,blu);
  3965. }
  3966. break;
  3967. #endif //BLINKM
  3968. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3969. {
  3970. tmp_extruder = active_extruder;
  3971. if(code_seen('T')) {
  3972. tmp_extruder = code_value();
  3973. if(tmp_extruder >= EXTRUDERS) {
  3974. SERIAL_ECHO_START;
  3975. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3976. break;
  3977. }
  3978. }
  3979. float area = .0;
  3980. if(code_seen('D')) {
  3981. float diameter = (float)code_value();
  3982. if (diameter == 0.0) {
  3983. // setting any extruder filament size disables volumetric on the assumption that
  3984. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3985. // for all extruders
  3986. volumetric_enabled = false;
  3987. } else {
  3988. filament_size[tmp_extruder] = (float)code_value();
  3989. // make sure all extruders have some sane value for the filament size
  3990. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3991. #if EXTRUDERS > 1
  3992. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3993. #if EXTRUDERS > 2
  3994. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3995. #endif
  3996. #endif
  3997. volumetric_enabled = true;
  3998. }
  3999. } else {
  4000. //reserved for setting filament diameter via UFID or filament measuring device
  4001. break;
  4002. }
  4003. calculate_volumetric_multipliers();
  4004. }
  4005. break;
  4006. case 201: // M201
  4007. for(int8_t i=0; i < NUM_AXIS; i++)
  4008. {
  4009. if(code_seen(axis_codes[i]))
  4010. {
  4011. max_acceleration_units_per_sq_second[i] = code_value();
  4012. }
  4013. }
  4014. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4015. reset_acceleration_rates();
  4016. break;
  4017. #if 0 // Not used for Sprinter/grbl gen6
  4018. case 202: // M202
  4019. for(int8_t i=0; i < NUM_AXIS; i++) {
  4020. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4021. }
  4022. break;
  4023. #endif
  4024. case 203: // M203 max feedrate mm/sec
  4025. for(int8_t i=0; i < NUM_AXIS; i++) {
  4026. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4027. }
  4028. break;
  4029. case 204: // M204 acclereration S normal moves T filmanent only moves
  4030. {
  4031. if(code_seen('S')) acceleration = code_value() ;
  4032. if(code_seen('T')) retract_acceleration = code_value() ;
  4033. }
  4034. break;
  4035. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4036. {
  4037. if(code_seen('S')) minimumfeedrate = code_value();
  4038. if(code_seen('T')) mintravelfeedrate = code_value();
  4039. if(code_seen('B')) minsegmenttime = code_value() ;
  4040. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4041. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4042. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4043. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4044. }
  4045. break;
  4046. case 206: // M206 additional homing offset
  4047. for(int8_t i=0; i < 3; i++)
  4048. {
  4049. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4050. }
  4051. break;
  4052. #ifdef FWRETRACT
  4053. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4054. {
  4055. if(code_seen('S'))
  4056. {
  4057. retract_length = code_value() ;
  4058. }
  4059. if(code_seen('F'))
  4060. {
  4061. retract_feedrate = code_value()/60 ;
  4062. }
  4063. if(code_seen('Z'))
  4064. {
  4065. retract_zlift = code_value() ;
  4066. }
  4067. }break;
  4068. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4069. {
  4070. if(code_seen('S'))
  4071. {
  4072. retract_recover_length = code_value() ;
  4073. }
  4074. if(code_seen('F'))
  4075. {
  4076. retract_recover_feedrate = code_value()/60 ;
  4077. }
  4078. }break;
  4079. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4080. {
  4081. if(code_seen('S'))
  4082. {
  4083. int t= code_value() ;
  4084. switch(t)
  4085. {
  4086. case 0:
  4087. {
  4088. autoretract_enabled=false;
  4089. retracted[0]=false;
  4090. #if EXTRUDERS > 1
  4091. retracted[1]=false;
  4092. #endif
  4093. #if EXTRUDERS > 2
  4094. retracted[2]=false;
  4095. #endif
  4096. }break;
  4097. case 1:
  4098. {
  4099. autoretract_enabled=true;
  4100. retracted[0]=false;
  4101. #if EXTRUDERS > 1
  4102. retracted[1]=false;
  4103. #endif
  4104. #if EXTRUDERS > 2
  4105. retracted[2]=false;
  4106. #endif
  4107. }break;
  4108. default:
  4109. SERIAL_ECHO_START;
  4110. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4111. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4112. SERIAL_ECHOLNPGM("\"");
  4113. }
  4114. }
  4115. }break;
  4116. #endif // FWRETRACT
  4117. #if EXTRUDERS > 1
  4118. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4119. {
  4120. if(setTargetedHotend(218)){
  4121. break;
  4122. }
  4123. if(code_seen('X'))
  4124. {
  4125. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4126. }
  4127. if(code_seen('Y'))
  4128. {
  4129. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4130. }
  4131. SERIAL_ECHO_START;
  4132. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4133. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4134. {
  4135. SERIAL_ECHO(" ");
  4136. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4137. SERIAL_ECHO(",");
  4138. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4139. }
  4140. SERIAL_ECHOLN("");
  4141. }break;
  4142. #endif
  4143. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4144. {
  4145. if(code_seen('S'))
  4146. {
  4147. feedmultiply = code_value() ;
  4148. }
  4149. }
  4150. break;
  4151. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4152. {
  4153. if(code_seen('S'))
  4154. {
  4155. int tmp_code = code_value();
  4156. if (code_seen('T'))
  4157. {
  4158. if(setTargetedHotend(221)){
  4159. break;
  4160. }
  4161. extruder_multiply[tmp_extruder] = tmp_code;
  4162. }
  4163. else
  4164. {
  4165. extrudemultiply = tmp_code ;
  4166. }
  4167. }
  4168. }
  4169. break;
  4170. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4171. {
  4172. if(code_seen('P')){
  4173. int pin_number = code_value(); // pin number
  4174. int pin_state = -1; // required pin state - default is inverted
  4175. if(code_seen('S')) pin_state = code_value(); // required pin state
  4176. if(pin_state >= -1 && pin_state <= 1){
  4177. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4178. {
  4179. if (sensitive_pins[i] == pin_number)
  4180. {
  4181. pin_number = -1;
  4182. break;
  4183. }
  4184. }
  4185. if (pin_number > -1)
  4186. {
  4187. int target = LOW;
  4188. st_synchronize();
  4189. pinMode(pin_number, INPUT);
  4190. switch(pin_state){
  4191. case 1:
  4192. target = HIGH;
  4193. break;
  4194. case 0:
  4195. target = LOW;
  4196. break;
  4197. case -1:
  4198. target = !digitalRead(pin_number);
  4199. break;
  4200. }
  4201. while(digitalRead(pin_number) != target){
  4202. manage_heater();
  4203. manage_inactivity();
  4204. lcd_update();
  4205. }
  4206. }
  4207. }
  4208. }
  4209. }
  4210. break;
  4211. #if NUM_SERVOS > 0
  4212. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4213. {
  4214. int servo_index = -1;
  4215. int servo_position = 0;
  4216. if (code_seen('P'))
  4217. servo_index = code_value();
  4218. if (code_seen('S')) {
  4219. servo_position = code_value();
  4220. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4221. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4222. servos[servo_index].attach(0);
  4223. #endif
  4224. servos[servo_index].write(servo_position);
  4225. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4226. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4227. servos[servo_index].detach();
  4228. #endif
  4229. }
  4230. else {
  4231. SERIAL_ECHO_START;
  4232. SERIAL_ECHO("Servo ");
  4233. SERIAL_ECHO(servo_index);
  4234. SERIAL_ECHOLN(" out of range");
  4235. }
  4236. }
  4237. else if (servo_index >= 0) {
  4238. SERIAL_PROTOCOL(MSG_OK);
  4239. SERIAL_PROTOCOL(" Servo ");
  4240. SERIAL_PROTOCOL(servo_index);
  4241. SERIAL_PROTOCOL(": ");
  4242. SERIAL_PROTOCOL(servos[servo_index].read());
  4243. SERIAL_PROTOCOLLN("");
  4244. }
  4245. }
  4246. break;
  4247. #endif // NUM_SERVOS > 0
  4248. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4249. case 300: // M300
  4250. {
  4251. int beepS = code_seen('S') ? code_value() : 110;
  4252. int beepP = code_seen('P') ? code_value() : 1000;
  4253. if (beepS > 0)
  4254. {
  4255. #if BEEPER > 0
  4256. tone(BEEPER, beepS);
  4257. delay(beepP);
  4258. noTone(BEEPER);
  4259. #elif defined(ULTRALCD)
  4260. lcd_buzz(beepS, beepP);
  4261. #elif defined(LCD_USE_I2C_BUZZER)
  4262. lcd_buzz(beepP, beepS);
  4263. #endif
  4264. }
  4265. else
  4266. {
  4267. delay(beepP);
  4268. }
  4269. }
  4270. break;
  4271. #endif // M300
  4272. #ifdef PIDTEMP
  4273. case 301: // M301
  4274. {
  4275. if(code_seen('P')) Kp = code_value();
  4276. if(code_seen('I')) Ki = scalePID_i(code_value());
  4277. if(code_seen('D')) Kd = scalePID_d(code_value());
  4278. #ifdef PID_ADD_EXTRUSION_RATE
  4279. if(code_seen('C')) Kc = code_value();
  4280. #endif
  4281. updatePID();
  4282. SERIAL_PROTOCOLRPGM(MSG_OK);
  4283. SERIAL_PROTOCOL(" p:");
  4284. SERIAL_PROTOCOL(Kp);
  4285. SERIAL_PROTOCOL(" i:");
  4286. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4287. SERIAL_PROTOCOL(" d:");
  4288. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4289. #ifdef PID_ADD_EXTRUSION_RATE
  4290. SERIAL_PROTOCOL(" c:");
  4291. //Kc does not have scaling applied above, or in resetting defaults
  4292. SERIAL_PROTOCOL(Kc);
  4293. #endif
  4294. SERIAL_PROTOCOLLN("");
  4295. }
  4296. break;
  4297. #endif //PIDTEMP
  4298. #ifdef PIDTEMPBED
  4299. case 304: // M304
  4300. {
  4301. if(code_seen('P')) bedKp = code_value();
  4302. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4303. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4304. updatePID();
  4305. SERIAL_PROTOCOLRPGM(MSG_OK);
  4306. SERIAL_PROTOCOL(" p:");
  4307. SERIAL_PROTOCOL(bedKp);
  4308. SERIAL_PROTOCOL(" i:");
  4309. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4310. SERIAL_PROTOCOL(" d:");
  4311. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4312. SERIAL_PROTOCOLLN("");
  4313. }
  4314. break;
  4315. #endif //PIDTEMP
  4316. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4317. {
  4318. #ifdef CHDK
  4319. SET_OUTPUT(CHDK);
  4320. WRITE(CHDK, HIGH);
  4321. chdkHigh = millis();
  4322. chdkActive = true;
  4323. #else
  4324. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4325. const uint8_t NUM_PULSES=16;
  4326. const float PULSE_LENGTH=0.01524;
  4327. for(int i=0; i < NUM_PULSES; i++) {
  4328. WRITE(PHOTOGRAPH_PIN, HIGH);
  4329. _delay_ms(PULSE_LENGTH);
  4330. WRITE(PHOTOGRAPH_PIN, LOW);
  4331. _delay_ms(PULSE_LENGTH);
  4332. }
  4333. delay(7.33);
  4334. for(int i=0; i < NUM_PULSES; i++) {
  4335. WRITE(PHOTOGRAPH_PIN, HIGH);
  4336. _delay_ms(PULSE_LENGTH);
  4337. WRITE(PHOTOGRAPH_PIN, LOW);
  4338. _delay_ms(PULSE_LENGTH);
  4339. }
  4340. #endif
  4341. #endif //chdk end if
  4342. }
  4343. break;
  4344. #ifdef DOGLCD
  4345. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4346. {
  4347. if (code_seen('C')) {
  4348. lcd_setcontrast( ((int)code_value())&63 );
  4349. }
  4350. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4351. SERIAL_PROTOCOL(lcd_contrast);
  4352. SERIAL_PROTOCOLLN("");
  4353. }
  4354. break;
  4355. #endif
  4356. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4357. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4358. {
  4359. float temp = .0;
  4360. if (code_seen('S')) temp=code_value();
  4361. set_extrude_min_temp(temp);
  4362. }
  4363. break;
  4364. #endif
  4365. case 303: // M303 PID autotune
  4366. {
  4367. float temp = 150.0;
  4368. int e=0;
  4369. int c=5;
  4370. if (code_seen('E')) e=code_value();
  4371. if (e<0)
  4372. temp=70;
  4373. if (code_seen('S')) temp=code_value();
  4374. if (code_seen('C')) c=code_value();
  4375. PID_autotune(temp, e, c);
  4376. }
  4377. break;
  4378. case 400: // M400 finish all moves
  4379. {
  4380. st_synchronize();
  4381. }
  4382. break;
  4383. #ifdef FILAMENT_SENSOR
  4384. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4385. {
  4386. #if (FILWIDTH_PIN > -1)
  4387. if(code_seen('N')) filament_width_nominal=code_value();
  4388. else{
  4389. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4390. SERIAL_PROTOCOLLN(filament_width_nominal);
  4391. }
  4392. #endif
  4393. }
  4394. break;
  4395. case 405: //M405 Turn on filament sensor for control
  4396. {
  4397. if(code_seen('D')) meas_delay_cm=code_value();
  4398. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4399. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4400. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4401. {
  4402. int temp_ratio = widthFil_to_size_ratio();
  4403. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4404. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4405. }
  4406. delay_index1=0;
  4407. delay_index2=0;
  4408. }
  4409. filament_sensor = true ;
  4410. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4411. //SERIAL_PROTOCOL(filament_width_meas);
  4412. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4413. //SERIAL_PROTOCOL(extrudemultiply);
  4414. }
  4415. break;
  4416. case 406: //M406 Turn off filament sensor for control
  4417. {
  4418. filament_sensor = false ;
  4419. }
  4420. break;
  4421. case 407: //M407 Display measured filament diameter
  4422. {
  4423. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4424. SERIAL_PROTOCOLLN(filament_width_meas);
  4425. }
  4426. break;
  4427. #endif
  4428. case 500: // M500 Store settings in EEPROM
  4429. {
  4430. Config_StoreSettings();
  4431. }
  4432. break;
  4433. case 501: // M501 Read settings from EEPROM
  4434. {
  4435. Config_RetrieveSettings();
  4436. }
  4437. break;
  4438. case 502: // M502 Revert to default settings
  4439. {
  4440. Config_ResetDefault();
  4441. }
  4442. break;
  4443. case 503: // M503 print settings currently in memory
  4444. {
  4445. Config_PrintSettings();
  4446. }
  4447. break;
  4448. case 509: //M509 Force language selection
  4449. {
  4450. lcd_force_language_selection();
  4451. SERIAL_ECHO_START;
  4452. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4453. }
  4454. break;
  4455. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4456. case 540:
  4457. {
  4458. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4459. }
  4460. break;
  4461. #endif
  4462. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4463. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4464. {
  4465. float value;
  4466. if (code_seen('Z'))
  4467. {
  4468. value = code_value();
  4469. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4470. {
  4471. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4472. SERIAL_ECHO_START;
  4473. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4474. SERIAL_PROTOCOLLN("");
  4475. }
  4476. else
  4477. {
  4478. SERIAL_ECHO_START;
  4479. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4480. SERIAL_ECHORPGM(MSG_Z_MIN);
  4481. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4482. SERIAL_ECHORPGM(MSG_Z_MAX);
  4483. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4484. SERIAL_PROTOCOLLN("");
  4485. }
  4486. }
  4487. else
  4488. {
  4489. SERIAL_ECHO_START;
  4490. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4491. SERIAL_ECHO(-zprobe_zoffset);
  4492. SERIAL_PROTOCOLLN("");
  4493. }
  4494. break;
  4495. }
  4496. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4497. #ifdef FILAMENTCHANGEENABLE
  4498. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4499. {
  4500. st_synchronize();
  4501. float target[4];
  4502. float lastpos[4];
  4503. if (farm_mode)
  4504. {
  4505. prusa_statistics(22);
  4506. }
  4507. feedmultiplyBckp=feedmultiply;
  4508. int8_t TooLowZ = 0;
  4509. target[X_AXIS]=current_position[X_AXIS];
  4510. target[Y_AXIS]=current_position[Y_AXIS];
  4511. target[Z_AXIS]=current_position[Z_AXIS];
  4512. target[E_AXIS]=current_position[E_AXIS];
  4513. lastpos[X_AXIS]=current_position[X_AXIS];
  4514. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4515. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4516. lastpos[E_AXIS]=current_position[E_AXIS];
  4517. //Restract extruder
  4518. if(code_seen('E'))
  4519. {
  4520. target[E_AXIS]+= code_value();
  4521. }
  4522. else
  4523. {
  4524. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4525. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4526. #endif
  4527. }
  4528. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4529. //Lift Z
  4530. if(code_seen('Z'))
  4531. {
  4532. target[Z_AXIS]+= code_value();
  4533. }
  4534. else
  4535. {
  4536. #ifdef FILAMENTCHANGE_ZADD
  4537. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4538. if(target[Z_AXIS] < 10){
  4539. target[Z_AXIS]+= 10 ;
  4540. TooLowZ = 1;
  4541. }else{
  4542. TooLowZ = 0;
  4543. }
  4544. #endif
  4545. }
  4546. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4547. //Move XY to side
  4548. if(code_seen('X'))
  4549. {
  4550. target[X_AXIS]+= code_value();
  4551. }
  4552. else
  4553. {
  4554. #ifdef FILAMENTCHANGE_XPOS
  4555. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4556. #endif
  4557. }
  4558. if(code_seen('Y'))
  4559. {
  4560. target[Y_AXIS]= code_value();
  4561. }
  4562. else
  4563. {
  4564. #ifdef FILAMENTCHANGE_YPOS
  4565. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4566. #endif
  4567. }
  4568. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4569. st_synchronize();
  4570. custom_message = true;
  4571. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4572. // Unload filament
  4573. if(code_seen('L'))
  4574. {
  4575. target[E_AXIS]+= code_value();
  4576. }
  4577. else
  4578. {
  4579. #ifdef SNMM
  4580. #else
  4581. #ifdef FILAMENTCHANGE_FINALRETRACT
  4582. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4583. #endif
  4584. #endif // SNMM
  4585. }
  4586. #ifdef SNMM
  4587. target[E_AXIS] += 12;
  4588. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4589. target[E_AXIS] += 6;
  4590. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4591. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4592. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4593. st_synchronize();
  4594. target[E_AXIS] += (FIL_COOLING);
  4595. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4596. target[E_AXIS] += (FIL_COOLING*-1);
  4597. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4598. target[E_AXIS] += (bowden_length[snmm_extruder] *-1);
  4599. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4600. st_synchronize();
  4601. #else
  4602. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4603. #endif // SNMM
  4604. //finish moves
  4605. st_synchronize();
  4606. //disable extruder steppers so filament can be removed
  4607. disable_e0();
  4608. disable_e1();
  4609. disable_e2();
  4610. delay(100);
  4611. //Wait for user to insert filament
  4612. uint8_t cnt=0;
  4613. int counterBeep = 0;
  4614. lcd_wait_interact();
  4615. load_filament_time = millis();
  4616. while(!lcd_clicked()){
  4617. cnt++;
  4618. manage_heater();
  4619. manage_inactivity(true);
  4620. /*#ifdef SNMM
  4621. target[E_AXIS] += 0.002;
  4622. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4623. #endif // SNMM*/
  4624. if(cnt==0)
  4625. {
  4626. #if BEEPER > 0
  4627. if (counterBeep== 500){
  4628. counterBeep = 0;
  4629. }
  4630. SET_OUTPUT(BEEPER);
  4631. if (counterBeep== 0){
  4632. WRITE(BEEPER,HIGH);
  4633. }
  4634. if (counterBeep== 20){
  4635. WRITE(BEEPER,LOW);
  4636. }
  4637. counterBeep++;
  4638. #else
  4639. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4640. lcd_buzz(1000/6,100);
  4641. #else
  4642. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  4643. #endif
  4644. #endif
  4645. }
  4646. }
  4647. #ifdef SNMM
  4648. display_loading();
  4649. do {
  4650. target[E_AXIS] += 0.002;
  4651. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4652. delay_keep_alive(2);
  4653. } while (!lcd_clicked());
  4654. /*if (millis() - load_filament_time > 2) {
  4655. load_filament_time = millis();
  4656. target[E_AXIS] += 0.001;
  4657. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  4658. }*/
  4659. #endif
  4660. //Filament inserted
  4661. WRITE(BEEPER,LOW);
  4662. //Feed the filament to the end of nozzle quickly
  4663. #ifdef SNMM
  4664. st_synchronize();
  4665. target[E_AXIS] += bowden_length[snmm_extruder];
  4666. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4667. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4668. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4669. target[E_AXIS] += 40;
  4670. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4671. target[E_AXIS] += 10;
  4672. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4673. #else
  4674. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  4675. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4676. #endif // SNMM
  4677. //Extrude some filament
  4678. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4679. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4680. //Wait for user to check the state
  4681. lcd_change_fil_state = 0;
  4682. lcd_loading_filament();
  4683. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  4684. lcd_change_fil_state = 0;
  4685. lcd_alright();
  4686. switch(lcd_change_fil_state){
  4687. // Filament failed to load so load it again
  4688. case 2:
  4689. #ifdef SNMM
  4690. display_loading();
  4691. do {
  4692. target[E_AXIS] += 0.002;
  4693. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4694. delay_keep_alive(2);
  4695. } while (!lcd_clicked());
  4696. st_synchronize();
  4697. target[E_AXIS] += bowden_length[snmm_extruder];
  4698. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4699. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  4700. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  4701. target[E_AXIS] += 40;
  4702. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  4703. target[E_AXIS] += 10;
  4704. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4705. #else
  4706. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  4707. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  4708. #endif
  4709. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4710. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4711. lcd_loading_filament();
  4712. break;
  4713. // Filament loaded properly but color is not clear
  4714. case 3:
  4715. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  4716. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  4717. lcd_loading_color();
  4718. break;
  4719. // Everything good
  4720. default:
  4721. lcd_change_success();
  4722. lcd_update_enable(true);
  4723. break;
  4724. }
  4725. }
  4726. //Not let's go back to print
  4727. //Feed a little of filament to stabilize pressure
  4728. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  4729. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  4730. //Retract
  4731. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  4732. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4733. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  4734. //Move XY back
  4735. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4736. //Move Z back
  4737. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4738. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  4739. //Unretract
  4740. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4741. //Set E position to original
  4742. plan_set_e_position(lastpos[E_AXIS]);
  4743. //Recover feed rate
  4744. feedmultiply=feedmultiplyBckp;
  4745. char cmd[9];
  4746. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  4747. enquecommand(cmd);
  4748. lcd_setstatuspgm(WELCOME_MSG);
  4749. custom_message = false;
  4750. custom_message_type = 0;
  4751. }
  4752. break;
  4753. #endif //FILAMENTCHANGEENABLE
  4754. case 601: {
  4755. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  4756. }
  4757. break;
  4758. case 602: {
  4759. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  4760. }
  4761. break;
  4762. case 907: // M907 Set digital trimpot motor current using axis codes.
  4763. {
  4764. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4765. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  4766. if(code_seen('B')) digipot_current(4,code_value());
  4767. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  4768. #endif
  4769. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4770. if(code_seen('X')) digipot_current(0, code_value());
  4771. #endif
  4772. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4773. if(code_seen('Z')) digipot_current(1, code_value());
  4774. #endif
  4775. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4776. if(code_seen('E')) digipot_current(2, code_value());
  4777. #endif
  4778. #ifdef DIGIPOT_I2C
  4779. // this one uses actual amps in floating point
  4780. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4781. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4782. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4783. #endif
  4784. }
  4785. break;
  4786. case 908: // M908 Control digital trimpot directly.
  4787. {
  4788. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  4789. uint8_t channel,current;
  4790. if(code_seen('P')) channel=code_value();
  4791. if(code_seen('S')) current=code_value();
  4792. digitalPotWrite(channel, current);
  4793. #endif
  4794. }
  4795. break;
  4796. case 910: // M910 TMC2130 init
  4797. {
  4798. tmc2130_init();
  4799. }
  4800. break;
  4801. case 911: // M911 Set TMC2130 holding currents
  4802. {
  4803. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  4804. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  4805. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  4806. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  4807. }
  4808. break;
  4809. case 912: // M912 Set TMC2130 running currents
  4810. {
  4811. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  4812. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  4813. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  4814. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  4815. }
  4816. break;
  4817. case 913: // M913 Print TMC2130 currents
  4818. {
  4819. tmc2130_print_currents();
  4820. }
  4821. break;
  4822. case 914: // M914 Set normal mode
  4823. {
  4824. tmc2130_mode = TMC2130_MODE_NORMAL;
  4825. tmc2130_init();
  4826. }
  4827. break;
  4828. case 915: // M915 Set silent mode
  4829. {
  4830. tmc2130_mode = TMC2130_MODE_SILENT;
  4831. tmc2130_init();
  4832. }
  4833. break;
  4834. case 916: // M916 Set sg_thrs
  4835. {
  4836. if (code_seen('X')) sg_thrs_x = code_value();
  4837. if (code_seen('Y')) sg_thrs_y = code_value();
  4838. MYSERIAL.print("sg_thrs_x=");
  4839. MYSERIAL.print(sg_thrs_x, DEC);
  4840. MYSERIAL.print(" sg_thrs_y=");
  4841. MYSERIAL.println(sg_thrs_y, DEC);
  4842. }
  4843. break;
  4844. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4845. {
  4846. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4847. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4848. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4849. if(code_seen('B')) microstep_mode(4,code_value());
  4850. microstep_readings();
  4851. #endif
  4852. }
  4853. break;
  4854. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4855. {
  4856. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  4857. if(code_seen('S')) switch((int)code_value())
  4858. {
  4859. case 1:
  4860. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  4861. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  4862. break;
  4863. case 2:
  4864. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  4865. if(code_seen('B')) microstep_ms(4,-1,code_value());
  4866. break;
  4867. }
  4868. microstep_readings();
  4869. #endif
  4870. }
  4871. break;
  4872. case 701: //M701: load filament
  4873. {
  4874. enable_z();
  4875. custom_message = true;
  4876. custom_message_type = 2;
  4877. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  4878. current_position[E_AXIS] += 70;
  4879. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  4880. current_position[E_AXIS] += 25;
  4881. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4882. st_synchronize();
  4883. if (!farm_mode && loading_flag) {
  4884. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4885. while (!clean) {
  4886. lcd_update_enable(true);
  4887. lcd_update(2);
  4888. current_position[E_AXIS] += 25;
  4889. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  4890. st_synchronize();
  4891. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  4892. }
  4893. }
  4894. lcd_update_enable(true);
  4895. lcd_update(2);
  4896. lcd_setstatuspgm(WELCOME_MSG);
  4897. disable_z();
  4898. loading_flag = false;
  4899. custom_message = false;
  4900. custom_message_type = 0;
  4901. }
  4902. break;
  4903. case 702:
  4904. {
  4905. #ifdef SNMM
  4906. if (code_seen('U')) {
  4907. extr_unload_used(); //unload all filaments which were used in current print
  4908. }
  4909. else if (code_seen('C')) {
  4910. extr_unload(); //unload just current filament
  4911. }
  4912. else {
  4913. extr_unload_all(); //unload all filaments
  4914. }
  4915. #else
  4916. custom_message = true;
  4917. custom_message_type = 2;
  4918. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4919. current_position[E_AXIS] -= 80;
  4920. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 7000 / 60, active_extruder);
  4921. st_synchronize();
  4922. lcd_setstatuspgm(WELCOME_MSG);
  4923. custom_message = false;
  4924. custom_message_type = 0;
  4925. #endif
  4926. }
  4927. break;
  4928. case 999: // M999: Restart after being stopped
  4929. Stopped = false;
  4930. lcd_reset_alert_level();
  4931. gcode_LastN = Stopped_gcode_LastN;
  4932. FlushSerialRequestResend();
  4933. break;
  4934. default: SERIAL_ECHOLNPGM("Invalid M code.");
  4935. }
  4936. } // end if(code_seen('M')) (end of M codes)
  4937. else if(code_seen('T'))
  4938. {
  4939. int index;
  4940. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4941. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  4942. SERIAL_ECHOLNPGM("Invalid T code.");
  4943. }
  4944. else {
  4945. if (*(strchr_pointer + index) == '?') {
  4946. tmp_extruder = choose_extruder_menu();
  4947. }
  4948. else {
  4949. tmp_extruder = code_value();
  4950. }
  4951. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  4952. #ifdef SNMM
  4953. snmm_extruder = tmp_extruder;
  4954. st_synchronize();
  4955. delay(100);
  4956. disable_e0();
  4957. disable_e1();
  4958. disable_e2();
  4959. pinMode(E_MUX0_PIN, OUTPUT);
  4960. pinMode(E_MUX1_PIN, OUTPUT);
  4961. pinMode(E_MUX2_PIN, OUTPUT);
  4962. delay(100);
  4963. SERIAL_ECHO_START;
  4964. SERIAL_ECHO("T:");
  4965. SERIAL_ECHOLN((int)tmp_extruder);
  4966. switch (tmp_extruder) {
  4967. case 1:
  4968. WRITE(E_MUX0_PIN, HIGH);
  4969. WRITE(E_MUX1_PIN, LOW);
  4970. WRITE(E_MUX2_PIN, LOW);
  4971. break;
  4972. case 2:
  4973. WRITE(E_MUX0_PIN, LOW);
  4974. WRITE(E_MUX1_PIN, HIGH);
  4975. WRITE(E_MUX2_PIN, LOW);
  4976. break;
  4977. case 3:
  4978. WRITE(E_MUX0_PIN, HIGH);
  4979. WRITE(E_MUX1_PIN, HIGH);
  4980. WRITE(E_MUX2_PIN, LOW);
  4981. break;
  4982. default:
  4983. WRITE(E_MUX0_PIN, LOW);
  4984. WRITE(E_MUX1_PIN, LOW);
  4985. WRITE(E_MUX2_PIN, LOW);
  4986. break;
  4987. }
  4988. delay(100);
  4989. #else
  4990. if (tmp_extruder >= EXTRUDERS) {
  4991. SERIAL_ECHO_START;
  4992. SERIAL_ECHOPGM("T");
  4993. SERIAL_PROTOCOLLN((int)tmp_extruder);
  4994. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  4995. }
  4996. else {
  4997. boolean make_move = false;
  4998. if (code_seen('F')) {
  4999. make_move = true;
  5000. next_feedrate = code_value();
  5001. if (next_feedrate > 0.0) {
  5002. feedrate = next_feedrate;
  5003. }
  5004. }
  5005. #if EXTRUDERS > 1
  5006. if (tmp_extruder != active_extruder) {
  5007. // Save current position to return to after applying extruder offset
  5008. memcpy(destination, current_position, sizeof(destination));
  5009. // Offset extruder (only by XY)
  5010. int i;
  5011. for (i = 0; i < 2; i++) {
  5012. current_position[i] = current_position[i] -
  5013. extruder_offset[i][active_extruder] +
  5014. extruder_offset[i][tmp_extruder];
  5015. }
  5016. // Set the new active extruder and position
  5017. active_extruder = tmp_extruder;
  5018. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5019. // Move to the old position if 'F' was in the parameters
  5020. if (make_move && Stopped == false) {
  5021. prepare_move();
  5022. }
  5023. }
  5024. #endif
  5025. SERIAL_ECHO_START;
  5026. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5027. SERIAL_PROTOCOLLN((int)active_extruder);
  5028. }
  5029. #endif
  5030. }
  5031. } // end if(code_seen('T')) (end of T codes)
  5032. else
  5033. {
  5034. SERIAL_ECHO_START;
  5035. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5036. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5037. SERIAL_ECHOLNPGM("\"");
  5038. }
  5039. ClearToSend();
  5040. }
  5041. void FlushSerialRequestResend()
  5042. {
  5043. //char cmdbuffer[bufindr][100]="Resend:";
  5044. MYSERIAL.flush();
  5045. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5046. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5047. ClearToSend();
  5048. }
  5049. // Confirm the execution of a command, if sent from a serial line.
  5050. // Execution of a command from a SD card will not be confirmed.
  5051. void ClearToSend()
  5052. {
  5053. previous_millis_cmd = millis();
  5054. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5055. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5056. }
  5057. void get_coordinates()
  5058. {
  5059. bool seen[4]={false,false,false,false};
  5060. for(int8_t i=0; i < NUM_AXIS; i++) {
  5061. if(code_seen(axis_codes[i]))
  5062. {
  5063. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5064. seen[i]=true;
  5065. }
  5066. else destination[i] = current_position[i]; //Are these else lines really needed?
  5067. }
  5068. if(code_seen('F')) {
  5069. next_feedrate = code_value();
  5070. #ifdef MAX_SILENT_FEEDRATE
  5071. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5072. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5073. #endif //MAX_SILENT_FEEDRATE
  5074. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5075. }
  5076. }
  5077. void get_arc_coordinates()
  5078. {
  5079. #ifdef SF_ARC_FIX
  5080. bool relative_mode_backup = relative_mode;
  5081. relative_mode = true;
  5082. #endif
  5083. get_coordinates();
  5084. #ifdef SF_ARC_FIX
  5085. relative_mode=relative_mode_backup;
  5086. #endif
  5087. if(code_seen('I')) {
  5088. offset[0] = code_value();
  5089. }
  5090. else {
  5091. offset[0] = 0.0;
  5092. }
  5093. if(code_seen('J')) {
  5094. offset[1] = code_value();
  5095. }
  5096. else {
  5097. offset[1] = 0.0;
  5098. }
  5099. }
  5100. void clamp_to_software_endstops(float target[3])
  5101. {
  5102. world2machine_clamp(target[0], target[1]);
  5103. // Clamp the Z coordinate.
  5104. if (min_software_endstops) {
  5105. float negative_z_offset = 0;
  5106. #ifdef ENABLE_AUTO_BED_LEVELING
  5107. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5108. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5109. #endif
  5110. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5111. }
  5112. if (max_software_endstops) {
  5113. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5114. }
  5115. }
  5116. #ifdef MESH_BED_LEVELING
  5117. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5118. float dx = x - current_position[X_AXIS];
  5119. float dy = y - current_position[Y_AXIS];
  5120. float dz = z - current_position[Z_AXIS];
  5121. int n_segments = 0;
  5122. if (mbl.active) {
  5123. float len = abs(dx) + abs(dy);
  5124. if (len > 0)
  5125. // Split to 3cm segments or shorter.
  5126. n_segments = int(ceil(len / 30.f));
  5127. }
  5128. if (n_segments > 1) {
  5129. float de = e - current_position[E_AXIS];
  5130. for (int i = 1; i < n_segments; ++ i) {
  5131. float t = float(i) / float(n_segments);
  5132. plan_buffer_line(
  5133. current_position[X_AXIS] + t * dx,
  5134. current_position[Y_AXIS] + t * dy,
  5135. current_position[Z_AXIS] + t * dz,
  5136. current_position[E_AXIS] + t * de,
  5137. feed_rate, extruder);
  5138. }
  5139. }
  5140. // The rest of the path.
  5141. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5142. current_position[X_AXIS] = x;
  5143. current_position[Y_AXIS] = y;
  5144. current_position[Z_AXIS] = z;
  5145. current_position[E_AXIS] = e;
  5146. }
  5147. #endif // MESH_BED_LEVELING
  5148. void prepare_move()
  5149. {
  5150. clamp_to_software_endstops(destination);
  5151. previous_millis_cmd = millis();
  5152. // Do not use feedmultiply for E or Z only moves
  5153. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5154. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5155. }
  5156. else {
  5157. #ifdef MESH_BED_LEVELING
  5158. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5159. #else
  5160. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5161. #endif
  5162. }
  5163. for(int8_t i=0; i < NUM_AXIS; i++) {
  5164. current_position[i] = destination[i];
  5165. }
  5166. }
  5167. void prepare_arc_move(char isclockwise) {
  5168. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5169. // Trace the arc
  5170. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5171. // As far as the parser is concerned, the position is now == target. In reality the
  5172. // motion control system might still be processing the action and the real tool position
  5173. // in any intermediate location.
  5174. for(int8_t i=0; i < NUM_AXIS; i++) {
  5175. current_position[i] = destination[i];
  5176. }
  5177. previous_millis_cmd = millis();
  5178. }
  5179. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5180. #if defined(FAN_PIN)
  5181. #if CONTROLLERFAN_PIN == FAN_PIN
  5182. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5183. #endif
  5184. #endif
  5185. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5186. unsigned long lastMotorCheck = 0;
  5187. void controllerFan()
  5188. {
  5189. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5190. {
  5191. lastMotorCheck = millis();
  5192. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5193. #if EXTRUDERS > 2
  5194. || !READ(E2_ENABLE_PIN)
  5195. #endif
  5196. #if EXTRUDER > 1
  5197. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5198. || !READ(X2_ENABLE_PIN)
  5199. #endif
  5200. || !READ(E1_ENABLE_PIN)
  5201. #endif
  5202. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5203. {
  5204. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5205. }
  5206. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5207. {
  5208. digitalWrite(CONTROLLERFAN_PIN, 0);
  5209. analogWrite(CONTROLLERFAN_PIN, 0);
  5210. }
  5211. else
  5212. {
  5213. // allows digital or PWM fan output to be used (see M42 handling)
  5214. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5215. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5216. }
  5217. }
  5218. }
  5219. #endif
  5220. #ifdef TEMP_STAT_LEDS
  5221. static bool blue_led = false;
  5222. static bool red_led = false;
  5223. static uint32_t stat_update = 0;
  5224. void handle_status_leds(void) {
  5225. float max_temp = 0.0;
  5226. if(millis() > stat_update) {
  5227. stat_update += 500; // Update every 0.5s
  5228. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5229. max_temp = max(max_temp, degHotend(cur_extruder));
  5230. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5231. }
  5232. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5233. max_temp = max(max_temp, degTargetBed());
  5234. max_temp = max(max_temp, degBed());
  5235. #endif
  5236. if((max_temp > 55.0) && (red_led == false)) {
  5237. digitalWrite(STAT_LED_RED, 1);
  5238. digitalWrite(STAT_LED_BLUE, 0);
  5239. red_led = true;
  5240. blue_led = false;
  5241. }
  5242. if((max_temp < 54.0) && (blue_led == false)) {
  5243. digitalWrite(STAT_LED_RED, 0);
  5244. digitalWrite(STAT_LED_BLUE, 1);
  5245. red_led = false;
  5246. blue_led = true;
  5247. }
  5248. }
  5249. }
  5250. #endif
  5251. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5252. {
  5253. #if defined(KILL_PIN) && KILL_PIN > -1
  5254. static int killCount = 0; // make the inactivity button a bit less responsive
  5255. const int KILL_DELAY = 10000;
  5256. #endif
  5257. if(buflen < (BUFSIZE-1)){
  5258. get_command();
  5259. }
  5260. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5261. if(max_inactive_time)
  5262. kill("", 4);
  5263. if(stepper_inactive_time) {
  5264. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5265. {
  5266. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5267. disable_x();
  5268. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5269. disable_y();
  5270. disable_z();
  5271. disable_e0();
  5272. disable_e1();
  5273. disable_e2();
  5274. }
  5275. }
  5276. }
  5277. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5278. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5279. {
  5280. chdkActive = false;
  5281. WRITE(CHDK, LOW);
  5282. }
  5283. #endif
  5284. #if defined(KILL_PIN) && KILL_PIN > -1
  5285. // Check if the kill button was pressed and wait just in case it was an accidental
  5286. // key kill key press
  5287. // -------------------------------------------------------------------------------
  5288. if( 0 == READ(KILL_PIN) )
  5289. {
  5290. killCount++;
  5291. }
  5292. else if (killCount > 0)
  5293. {
  5294. killCount--;
  5295. }
  5296. // Exceeded threshold and we can confirm that it was not accidental
  5297. // KILL the machine
  5298. // ----------------------------------------------------------------
  5299. if ( killCount >= KILL_DELAY)
  5300. {
  5301. kill("", 5);
  5302. }
  5303. #endif
  5304. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5305. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5306. #endif
  5307. #ifdef EXTRUDER_RUNOUT_PREVENT
  5308. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5309. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5310. {
  5311. bool oldstatus=READ(E0_ENABLE_PIN);
  5312. enable_e0();
  5313. float oldepos=current_position[E_AXIS];
  5314. float oldedes=destination[E_AXIS];
  5315. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5316. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5317. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5318. current_position[E_AXIS]=oldepos;
  5319. destination[E_AXIS]=oldedes;
  5320. plan_set_e_position(oldepos);
  5321. previous_millis_cmd=millis();
  5322. st_synchronize();
  5323. WRITE(E0_ENABLE_PIN,oldstatus);
  5324. }
  5325. #endif
  5326. #ifdef TEMP_STAT_LEDS
  5327. handle_status_leds();
  5328. #endif
  5329. check_axes_activity();
  5330. }
  5331. void kill(const char *full_screen_message, unsigned char id)
  5332. {
  5333. SERIAL_ECHOPGM("KILL: ");
  5334. MYSERIAL.println(int(id));
  5335. //return;
  5336. cli(); // Stop interrupts
  5337. disable_heater();
  5338. disable_x();
  5339. // SERIAL_ECHOLNPGM("kill - disable Y");
  5340. disable_y();
  5341. disable_z();
  5342. disable_e0();
  5343. disable_e1();
  5344. disable_e2();
  5345. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5346. pinMode(PS_ON_PIN,INPUT);
  5347. #endif
  5348. SERIAL_ERROR_START;
  5349. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5350. if (full_screen_message != NULL) {
  5351. SERIAL_ERRORLNRPGM(full_screen_message);
  5352. lcd_display_message_fullscreen_P(full_screen_message);
  5353. } else {
  5354. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5355. }
  5356. // FMC small patch to update the LCD before ending
  5357. sei(); // enable interrupts
  5358. for ( int i=5; i--; lcd_update())
  5359. {
  5360. delay(200);
  5361. }
  5362. cli(); // disable interrupts
  5363. suicide();
  5364. while(1) { /* Intentionally left empty */ } // Wait for reset
  5365. }
  5366. void Stop()
  5367. {
  5368. disable_heater();
  5369. if(Stopped == false) {
  5370. Stopped = true;
  5371. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5372. SERIAL_ERROR_START;
  5373. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5374. LCD_MESSAGERPGM(MSG_STOPPED);
  5375. }
  5376. }
  5377. bool IsStopped() { return Stopped; };
  5378. #ifdef FAST_PWM_FAN
  5379. void setPwmFrequency(uint8_t pin, int val)
  5380. {
  5381. val &= 0x07;
  5382. switch(digitalPinToTimer(pin))
  5383. {
  5384. #if defined(TCCR0A)
  5385. case TIMER0A:
  5386. case TIMER0B:
  5387. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5388. // TCCR0B |= val;
  5389. break;
  5390. #endif
  5391. #if defined(TCCR1A)
  5392. case TIMER1A:
  5393. case TIMER1B:
  5394. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5395. // TCCR1B |= val;
  5396. break;
  5397. #endif
  5398. #if defined(TCCR2)
  5399. case TIMER2:
  5400. case TIMER2:
  5401. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5402. TCCR2 |= val;
  5403. break;
  5404. #endif
  5405. #if defined(TCCR2A)
  5406. case TIMER2A:
  5407. case TIMER2B:
  5408. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5409. TCCR2B |= val;
  5410. break;
  5411. #endif
  5412. #if defined(TCCR3A)
  5413. case TIMER3A:
  5414. case TIMER3B:
  5415. case TIMER3C:
  5416. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5417. TCCR3B |= val;
  5418. break;
  5419. #endif
  5420. #if defined(TCCR4A)
  5421. case TIMER4A:
  5422. case TIMER4B:
  5423. case TIMER4C:
  5424. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5425. TCCR4B |= val;
  5426. break;
  5427. #endif
  5428. #if defined(TCCR5A)
  5429. case TIMER5A:
  5430. case TIMER5B:
  5431. case TIMER5C:
  5432. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5433. TCCR5B |= val;
  5434. break;
  5435. #endif
  5436. }
  5437. }
  5438. #endif //FAST_PWM_FAN
  5439. bool setTargetedHotend(int code){
  5440. tmp_extruder = active_extruder;
  5441. if(code_seen('T')) {
  5442. tmp_extruder = code_value();
  5443. if(tmp_extruder >= EXTRUDERS) {
  5444. SERIAL_ECHO_START;
  5445. switch(code){
  5446. case 104:
  5447. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5448. break;
  5449. case 105:
  5450. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5451. break;
  5452. case 109:
  5453. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5454. break;
  5455. case 218:
  5456. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5457. break;
  5458. case 221:
  5459. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5460. break;
  5461. }
  5462. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5463. return true;
  5464. }
  5465. }
  5466. return false;
  5467. }
  5468. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  5469. {
  5470. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  5471. {
  5472. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  5473. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  5474. }
  5475. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  5476. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  5477. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  5478. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  5479. total_filament_used = 0;
  5480. }
  5481. float calculate_volumetric_multiplier(float diameter) {
  5482. float area = .0;
  5483. float radius = .0;
  5484. radius = diameter * .5;
  5485. if (! volumetric_enabled || radius == 0) {
  5486. area = 1;
  5487. }
  5488. else {
  5489. area = M_PI * pow(radius, 2);
  5490. }
  5491. return 1.0 / area;
  5492. }
  5493. void calculate_volumetric_multipliers() {
  5494. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  5495. #if EXTRUDERS > 1
  5496. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  5497. #if EXTRUDERS > 2
  5498. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  5499. #endif
  5500. #endif
  5501. }
  5502. void delay_keep_alive(unsigned int ms)
  5503. {
  5504. for (;;) {
  5505. manage_heater();
  5506. // Manage inactivity, but don't disable steppers on timeout.
  5507. manage_inactivity(true);
  5508. lcd_update();
  5509. if (ms == 0)
  5510. break;
  5511. else if (ms >= 50) {
  5512. delay(50);
  5513. ms -= 50;
  5514. } else {
  5515. delay(ms);
  5516. ms = 0;
  5517. }
  5518. }
  5519. }
  5520. void wait_for_heater(long codenum) {
  5521. #ifdef TEMP_RESIDENCY_TIME
  5522. long residencyStart;
  5523. residencyStart = -1;
  5524. /* continue to loop until we have reached the target temp
  5525. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  5526. while ((!cancel_heatup) && ((residencyStart == -1) ||
  5527. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  5528. #else
  5529. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  5530. #endif //TEMP_RESIDENCY_TIME
  5531. if ((millis() - codenum) > 1000UL)
  5532. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  5533. if (!farm_mode) {
  5534. SERIAL_PROTOCOLPGM("T:");
  5535. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  5536. SERIAL_PROTOCOLPGM(" E:");
  5537. SERIAL_PROTOCOL((int)tmp_extruder);
  5538. #ifdef TEMP_RESIDENCY_TIME
  5539. SERIAL_PROTOCOLPGM(" W:");
  5540. if (residencyStart > -1)
  5541. {
  5542. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  5543. SERIAL_PROTOCOLLN(codenum);
  5544. }
  5545. else
  5546. {
  5547. SERIAL_PROTOCOLLN("?");
  5548. }
  5549. }
  5550. #else
  5551. SERIAL_PROTOCOLLN("");
  5552. #endif
  5553. codenum = millis();
  5554. }
  5555. manage_heater();
  5556. manage_inactivity();
  5557. lcd_update();
  5558. #ifdef TEMP_RESIDENCY_TIME
  5559. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  5560. or when current temp falls outside the hysteresis after target temp was reached */
  5561. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  5562. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  5563. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  5564. {
  5565. residencyStart = millis();
  5566. }
  5567. #endif //TEMP_RESIDENCY_TIME
  5568. }
  5569. }
  5570. void check_babystep() {
  5571. int babystep_z;
  5572. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5573. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  5574. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  5575. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  5576. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  5577. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  5578. lcd_update_enable(true);
  5579. }
  5580. }
  5581. #ifdef DIS
  5582. void d_setup()
  5583. {
  5584. pinMode(D_DATACLOCK, INPUT_PULLUP);
  5585. pinMode(D_DATA, INPUT_PULLUP);
  5586. pinMode(D_REQUIRE, OUTPUT);
  5587. digitalWrite(D_REQUIRE, HIGH);
  5588. }
  5589. float d_ReadData()
  5590. {
  5591. int digit[13];
  5592. String mergeOutput;
  5593. float output;
  5594. digitalWrite(D_REQUIRE, HIGH);
  5595. for (int i = 0; i<13; i++)
  5596. {
  5597. for (int j = 0; j < 4; j++)
  5598. {
  5599. while (digitalRead(D_DATACLOCK) == LOW) {}
  5600. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5601. bitWrite(digit[i], j, digitalRead(D_DATA));
  5602. }
  5603. }
  5604. digitalWrite(D_REQUIRE, LOW);
  5605. mergeOutput = "";
  5606. output = 0;
  5607. for (int r = 5; r <= 10; r++) //Merge digits
  5608. {
  5609. mergeOutput += digit[r];
  5610. }
  5611. output = mergeOutput.toFloat();
  5612. if (digit[4] == 8) //Handle sign
  5613. {
  5614. output *= -1;
  5615. }
  5616. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5617. {
  5618. output /= 10;
  5619. }
  5620. return output;
  5621. }
  5622. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  5623. int t1 = 0;
  5624. int t_delay = 0;
  5625. int digit[13];
  5626. int m;
  5627. char str[3];
  5628. //String mergeOutput;
  5629. char mergeOutput[15];
  5630. float output;
  5631. int mesh_point = 0; //index number of calibration point
  5632. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  5633. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  5634. float mesh_home_z_search = 4;
  5635. float row[x_points_num];
  5636. int ix = 0;
  5637. int iy = 0;
  5638. char* filename_wldsd = "wldsd.txt";
  5639. char data_wldsd[70];
  5640. char numb_wldsd[10];
  5641. d_setup();
  5642. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  5643. // We don't know where we are! HOME!
  5644. // Push the commands to the front of the message queue in the reverse order!
  5645. // There shall be always enough space reserved for these commands.
  5646. repeatcommand_front(); // repeat G80 with all its parameters
  5647. enquecommand_front_P((PSTR("G28 W0")));
  5648. enquecommand_front_P((PSTR("G1 Z5")));
  5649. return;
  5650. }
  5651. bool custom_message_old = custom_message;
  5652. unsigned int custom_message_type_old = custom_message_type;
  5653. unsigned int custom_message_state_old = custom_message_state;
  5654. custom_message = true;
  5655. custom_message_type = 1;
  5656. custom_message_state = (x_points_num * y_points_num) + 10;
  5657. lcd_update(1);
  5658. mbl.reset();
  5659. babystep_undo();
  5660. card.openFile(filename_wldsd, false);
  5661. current_position[Z_AXIS] = mesh_home_z_search;
  5662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  5663. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  5664. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  5665. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  5666. setup_for_endstop_move(false);
  5667. SERIAL_PROTOCOLPGM("Num X,Y: ");
  5668. SERIAL_PROTOCOL(x_points_num);
  5669. SERIAL_PROTOCOLPGM(",");
  5670. SERIAL_PROTOCOL(y_points_num);
  5671. SERIAL_PROTOCOLPGM("\nZ search height: ");
  5672. SERIAL_PROTOCOL(mesh_home_z_search);
  5673. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  5674. SERIAL_PROTOCOL(x_dimension);
  5675. SERIAL_PROTOCOLPGM(",");
  5676. SERIAL_PROTOCOL(y_dimension);
  5677. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  5678. while (mesh_point != x_points_num * y_points_num) {
  5679. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  5680. iy = mesh_point / x_points_num;
  5681. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  5682. float z0 = 0.f;
  5683. current_position[Z_AXIS] = mesh_home_z_search;
  5684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  5685. st_synchronize();
  5686. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  5687. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  5688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  5689. st_synchronize();
  5690. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  5691. break;
  5692. card.closefile();
  5693. }
  5694. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5695. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  5696. //strcat(data_wldsd, numb_wldsd);
  5697. //MYSERIAL.println(data_wldsd);
  5698. //delay(1000);
  5699. //delay(3000);
  5700. //t1 = millis();
  5701. //while (digitalRead(D_DATACLOCK) == LOW) {}
  5702. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  5703. memset(digit, 0, sizeof(digit));
  5704. //cli();
  5705. digitalWrite(D_REQUIRE, LOW);
  5706. for (int i = 0; i<13; i++)
  5707. {
  5708. //t1 = millis();
  5709. for (int j = 0; j < 4; j++)
  5710. {
  5711. while (digitalRead(D_DATACLOCK) == LOW) {}
  5712. while (digitalRead(D_DATACLOCK) == HIGH) {}
  5713. bitWrite(digit[i], j, digitalRead(D_DATA));
  5714. }
  5715. //t_delay = (millis() - t1);
  5716. //SERIAL_PROTOCOLPGM(" ");
  5717. //SERIAL_PROTOCOL_F(t_delay, 5);
  5718. //SERIAL_PROTOCOLPGM(" ");
  5719. }
  5720. //sei();
  5721. digitalWrite(D_REQUIRE, HIGH);
  5722. mergeOutput[0] = '\0';
  5723. output = 0;
  5724. for (int r = 5; r <= 10; r++) //Merge digits
  5725. {
  5726. sprintf(str, "%d", digit[r]);
  5727. strcat(mergeOutput, str);
  5728. }
  5729. output = atof(mergeOutput);
  5730. if (digit[4] == 8) //Handle sign
  5731. {
  5732. output *= -1;
  5733. }
  5734. for (int i = digit[11]; i > 0; i--) //Handle floating point
  5735. {
  5736. output *= 0.1;
  5737. }
  5738. //output = d_ReadData();
  5739. //row[ix] = current_position[Z_AXIS];
  5740. memset(data_wldsd, 0, sizeof(data_wldsd));
  5741. for (int i = 0; i <3; i++) {
  5742. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5743. dtostrf(current_position[i], 8, 5, numb_wldsd);
  5744. strcat(data_wldsd, numb_wldsd);
  5745. strcat(data_wldsd, ";");
  5746. }
  5747. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  5748. dtostrf(output, 8, 5, numb_wldsd);
  5749. strcat(data_wldsd, numb_wldsd);
  5750. //strcat(data_wldsd, ";");
  5751. card.write_command(data_wldsd);
  5752. //row[ix] = d_ReadData();
  5753. row[ix] = output; // current_position[Z_AXIS];
  5754. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  5755. for (int i = 0; i < x_points_num; i++) {
  5756. SERIAL_PROTOCOLPGM(" ");
  5757. SERIAL_PROTOCOL_F(row[i], 5);
  5758. }
  5759. SERIAL_PROTOCOLPGM("\n");
  5760. }
  5761. custom_message_state--;
  5762. mesh_point++;
  5763. lcd_update(1);
  5764. }
  5765. card.closefile();
  5766. }
  5767. #endif
  5768. void temp_compensation_start() {
  5769. custom_message = true;
  5770. custom_message_type = 5;
  5771. custom_message_state = PINDA_HEAT_T + 1;
  5772. lcd_update(2);
  5773. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  5774. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5775. }
  5776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5777. current_position[X_AXIS] = PINDA_PREHEAT_X;
  5778. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  5779. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  5780. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  5781. st_synchronize();
  5782. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  5783. for (int i = 0; i < PINDA_HEAT_T; i++) {
  5784. delay_keep_alive(1000);
  5785. custom_message_state = PINDA_HEAT_T - i;
  5786. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  5787. else lcd_update(1);
  5788. }
  5789. custom_message_type = 0;
  5790. custom_message_state = 0;
  5791. custom_message = false;
  5792. }
  5793. void temp_compensation_apply() {
  5794. int i_add;
  5795. int compensation_value;
  5796. int z_shift = 0;
  5797. float z_shift_mm;
  5798. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  5799. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  5800. i_add = (target_temperature_bed - 60) / 10;
  5801. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  5802. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  5803. }else {
  5804. //interpolation
  5805. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  5806. }
  5807. SERIAL_PROTOCOLPGM("\n");
  5808. SERIAL_PROTOCOLPGM("Z shift applied:");
  5809. MYSERIAL.print(z_shift_mm);
  5810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  5811. st_synchronize();
  5812. plan_set_z_position(current_position[Z_AXIS]);
  5813. }
  5814. else {
  5815. //we have no temp compensation data
  5816. }
  5817. }
  5818. float temp_comp_interpolation(float inp_temperature) {
  5819. //cubic spline interpolation
  5820. int n, i, j, k;
  5821. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  5822. int shift[10];
  5823. int temp_C[10];
  5824. n = 6; //number of measured points
  5825. shift[0] = 0;
  5826. for (i = 0; i < n; i++) {
  5827. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  5828. temp_C[i] = 50 + i * 10; //temperature in C
  5829. x[i] = (float)temp_C[i];
  5830. f[i] = (float)shift[i];
  5831. }
  5832. if (inp_temperature < x[0]) return 0;
  5833. for (i = n - 1; i>0; i--) {
  5834. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  5835. h[i - 1] = x[i] - x[i - 1];
  5836. }
  5837. //*********** formation of h, s , f matrix **************
  5838. for (i = 1; i<n - 1; i++) {
  5839. m[i][i] = 2 * (h[i - 1] + h[i]);
  5840. if (i != 1) {
  5841. m[i][i - 1] = h[i - 1];
  5842. m[i - 1][i] = h[i - 1];
  5843. }
  5844. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  5845. }
  5846. //*********** forward elimination **************
  5847. for (i = 1; i<n - 2; i++) {
  5848. temp = (m[i + 1][i] / m[i][i]);
  5849. for (j = 1; j <= n - 1; j++)
  5850. m[i + 1][j] -= temp*m[i][j];
  5851. }
  5852. //*********** backward substitution *********
  5853. for (i = n - 2; i>0; i--) {
  5854. sum = 0;
  5855. for (j = i; j <= n - 2; j++)
  5856. sum += m[i][j] * s[j];
  5857. s[i] = (m[i][n - 1] - sum) / m[i][i];
  5858. }
  5859. for (i = 0; i<n - 1; i++)
  5860. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  5861. a = (s[i + 1] - s[i]) / (6 * h[i]);
  5862. b = s[i] / 2;
  5863. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  5864. d = f[i];
  5865. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  5866. }
  5867. return sum;
  5868. }
  5869. void long_pause() //long pause print
  5870. {
  5871. st_synchronize();
  5872. //save currently set parameters to global variables
  5873. saved_feedmultiply = feedmultiply;
  5874. HotendTempBckp = degTargetHotend(active_extruder);
  5875. fanSpeedBckp = fanSpeed;
  5876. start_pause_print = millis();
  5877. //save position
  5878. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  5879. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  5880. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  5881. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  5882. //retract
  5883. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5884. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5885. //lift z
  5886. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  5887. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  5888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  5889. //set nozzle target temperature to 0
  5890. setTargetHotend(0, 0);
  5891. setTargetHotend(0, 1);
  5892. setTargetHotend(0, 2);
  5893. //Move XY to side
  5894. current_position[X_AXIS] = X_PAUSE_POS;
  5895. current_position[Y_AXIS] = Y_PAUSE_POS;
  5896. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5897. // Turn off the print fan
  5898. fanSpeed = 0;
  5899. st_synchronize();
  5900. }
  5901. void serialecho_temperatures() {
  5902. float tt = degHotend(active_extruder);
  5903. SERIAL_PROTOCOLPGM("T:");
  5904. SERIAL_PROTOCOL(tt);
  5905. SERIAL_PROTOCOLPGM(" E:");
  5906. SERIAL_PROTOCOL((int)active_extruder);
  5907. SERIAL_PROTOCOLPGM(" B:");
  5908. SERIAL_PROTOCOL_F(degBed(), 1);
  5909. SERIAL_PROTOCOLLN("");
  5910. }
  5911. void uvlo_() {
  5912. //SERIAL_ECHOLNPGM("UVLO");
  5913. save_print_to_eeprom();
  5914. float current_position_bckp[2];
  5915. int feedrate_bckp = feedrate;
  5916. current_position_bckp[X_AXIS] = st_get_position_mm(X_AXIS);
  5917. current_position_bckp[Y_AXIS] = st_get_position_mm(Y_AXIS);
  5918. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position_bckp[X_AXIS]);
  5919. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position_bckp[Y_AXIS]);
  5920. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  5921. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  5922. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  5923. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  5924. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  5925. disable_x();
  5926. disable_y();
  5927. planner_abort_hard();
  5928. // Because the planner_abort_hard() initialized current_position[Z] from the stepper,
  5929. // Z baystep is no more applied. Reset it.
  5930. babystep_reset();
  5931. // Clean the input command queue.
  5932. cmdqueue_reset();
  5933. card.sdprinting = false;
  5934. card.closefile();
  5935. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  5936. sei(); //enable stepper driver interrupt to move Z axis
  5937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  5938. st_synchronize();
  5939. current_position[Z_AXIS] += UVLO_Z_AXIS_SHIFT;
  5940. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 40, active_extruder);
  5941. st_synchronize();
  5942. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  5943. }
  5944. void setup_uvlo_interrupt() {
  5945. DDRE &= ~(1 << 4); //input pin
  5946. PORTE &= ~(1 << 4); //no internal pull-up
  5947. //sensing falling edge
  5948. EICRB |= (1 << 0);
  5949. EICRB &= ~(1 << 1);
  5950. //enable INT4 interrupt
  5951. EIMSK |= (1 << 4);
  5952. }
  5953. ISR(INT4_vect) {
  5954. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  5955. SERIAL_ECHOLNPGM("INT4");
  5956. if (IS_SD_PRINTING) uvlo_();
  5957. }
  5958. void save_print_to_eeprom() {
  5959. //eeprom_update_word((uint16_t*)(EPROM_UVLO_CMD_QUEUE), bufindw - bufindr );
  5960. //BLOCK_BUFFER_SIZE: max. 16 linear moves in planner buffer
  5961. #define TYP_GCODE_LENGTH 30 //G1 X117.489 Y22.814 E1.46695 + cr lf
  5962. //card.get_sdpos() -> byte currently read from SD card
  5963. //bufindw -> position in circular buffer where to write
  5964. //bufindr -> position in circular buffer where to read
  5965. //bufflen -> number of lines in buffer -> for each line one special character??
  5966. //number_of_blocks() returns number of linear movements buffered in planner
  5967. long sd_position = card.get_sdpos() - ((bufindw > bufindr) ? (bufindw - bufindr) : sizeof(cmdbuffer) - bufindr + bufindw) - TYP_GCODE_LENGTH* number_of_blocks();
  5968. if (sd_position < 0) sd_position = 0;
  5969. /*SERIAL_ECHOPGM("sd position before correction:");
  5970. MYSERIAL.println(card.get_sdpos());
  5971. SERIAL_ECHOPGM("bufindw:");
  5972. MYSERIAL.println(bufindw);
  5973. SERIAL_ECHOPGM("bufindr:");
  5974. MYSERIAL.println(bufindr);
  5975. SERIAL_ECHOPGM("sizeof(cmd_buffer):");
  5976. MYSERIAL.println(sizeof(cmdbuffer));
  5977. SERIAL_ECHOPGM("sd position after correction:");
  5978. MYSERIAL.println(sd_position);*/
  5979. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  5980. }
  5981. void recover_print() {
  5982. char cmd[30];
  5983. lcd_update_enable(true);
  5984. lcd_update(2);
  5985. lcd_setstatuspgm(WELCOME_MSG);
  5986. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  5987. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  5988. float z_pos = UVLO_Z_AXIS_SHIFT + eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z));
  5989. SERIAL_ECHOPGM("Target temperature:");
  5990. MYSERIAL.println(target_temperature[0]);
  5991. SERIAL_ECHOPGM("Target temp bed:");
  5992. MYSERIAL.println(target_temperature_bed);
  5993. enquecommand_P(PSTR("G28 X"));
  5994. enquecommand_P(PSTR("G28 Y"));
  5995. strcpy(cmd, "G92 Z");
  5996. strcat(cmd, ftostr43(z_pos));
  5997. enquecommand(cmd);
  5998. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  5999. while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6000. delay_keep_alive(1000);
  6001. }
  6002. restore_print_from_eeprom();
  6003. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6004. MYSERIAL.print(current_position[Z_AXIS]);
  6005. }
  6006. void restore_print_from_eeprom() {
  6007. float x_rec, y_rec;
  6008. int feedrate_rec;
  6009. uint8_t fan_speed_rec;
  6010. char cmd[30];
  6011. char* c;
  6012. char filename[13];
  6013. char str[5] = ".gco";
  6014. x_rec = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6015. y_rec = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6016. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6017. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6018. SERIAL_ECHOPGM("Feedrate:");
  6019. MYSERIAL.println(feedrate_rec);
  6020. for (int i = 0; i < 8; i++) {
  6021. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6022. }
  6023. filename[8] = '\0';
  6024. MYSERIAL.print(filename);
  6025. strcat(filename, str);
  6026. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6027. for (c = &cmd[4]; *c; c++)
  6028. *c = tolower(*c);
  6029. enquecommand(cmd);
  6030. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6031. SERIAL_ECHOPGM("Position read from eeprom:");
  6032. MYSERIAL.println(position);
  6033. enquecommand_P(PSTR("M24")); //M24 - Start SD print
  6034. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6035. enquecommand(cmd);
  6036. enquecommand_P(PSTR("M83")); //E axis relative mode
  6037. strcpy(cmd, "G1 X");
  6038. strcat(cmd, ftostr32(x_rec));
  6039. strcat(cmd, " Y");
  6040. strcat(cmd, ftostr32(y_rec));
  6041. enquecommand(cmd);
  6042. enquecommand_P(PSTR("G1 Z" STRINGIFY(-UVLO_Z_AXIS_SHIFT)));
  6043. enquecommand_P(PSTR("G1 E" STRINGIFY(DEFAULT_RETRACTION)" F480"));
  6044. enquecommand_P(PSTR("G1 E0.5"));
  6045. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6046. enquecommand(cmd);
  6047. strcpy(cmd, "M106 S");
  6048. strcat(cmd, itostr3(int(fan_speed_rec)));
  6049. enquecommand(cmd);
  6050. }