Marlin_main.cpp 328 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. #define PRINTING_TYPE_NONE 2
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. int8_t FarmMode = 0;
  170. bool prusa_sd_card_upload = false;
  171. unsigned int status_number = 0;
  172. unsigned long total_filament_used;
  173. unsigned int heating_status;
  174. unsigned int heating_status_counter;
  175. bool loading_flag = false;
  176. char snmm_filaments_used = 0;
  177. bool fan_state[2];
  178. int fan_edge_counter[2];
  179. int fan_speed[2];
  180. char dir_names[3][9];
  181. bool sortAlpha = false;
  182. float extruder_multiplier[EXTRUDERS] = {1.0
  183. #if EXTRUDERS > 1
  184. , 1.0
  185. #if EXTRUDERS > 2
  186. , 1.0
  187. #endif
  188. #endif
  189. };
  190. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  191. //shortcuts for more readable code
  192. #define _x current_position[X_AXIS]
  193. #define _y current_position[Y_AXIS]
  194. #define _z current_position[Z_AXIS]
  195. #define _e current_position[E_AXIS]
  196. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  197. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  198. bool axis_known_position[3] = {false, false, false};
  199. // Extruder offset
  200. #if EXTRUDERS > 1
  201. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  202. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  203. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  204. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  205. #endif
  206. };
  207. #endif
  208. uint8_t active_extruder = 0;
  209. int fanSpeed=0;
  210. #ifdef FWRETRACT
  211. bool retracted[EXTRUDERS]={false
  212. #if EXTRUDERS > 1
  213. , false
  214. #if EXTRUDERS > 2
  215. , false
  216. #endif
  217. #endif
  218. };
  219. bool retracted_swap[EXTRUDERS]={false
  220. #if EXTRUDERS > 1
  221. , false
  222. #if EXTRUDERS > 2
  223. , false
  224. #endif
  225. #endif
  226. };
  227. float retract_length_swap = RETRACT_LENGTH_SWAP;
  228. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  229. #endif
  230. #ifdef PS_DEFAULT_OFF
  231. bool powersupply = false;
  232. #else
  233. bool powersupply = true;
  234. #endif
  235. bool cancel_heatup = false ;
  236. int8_t busy_state = NOT_BUSY;
  237. static long prev_busy_signal_ms = -1;
  238. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  239. const char errormagic[] PROGMEM = "Error:";
  240. const char echomagic[] PROGMEM = "echo:";
  241. bool no_response = false;
  242. uint8_t important_status;
  243. uint8_t saved_filament_type;
  244. // save/restore printing in case that mmu was not responding
  245. bool mmu_print_saved = false;
  246. // storing estimated time to end of print counted by slicer
  247. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  250. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  251. bool wizard_active = false; //autoload temporarily disabled during wizard
  252. //===========================================================================
  253. //=============================Private Variables=============================
  254. //===========================================================================
  255. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  256. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  257. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  258. // For tracing an arc
  259. static float offset[3] = {0.0, 0.0, 0.0};
  260. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  261. // Determines Absolute or Relative Coordinates.
  262. // Also there is bool axis_relative_modes[] per axis flag.
  263. static bool relative_mode = false;
  264. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  265. //static float tt = 0;
  266. //static float bt = 0;
  267. //Inactivity shutdown variables
  268. static unsigned long previous_millis_cmd = 0;
  269. unsigned long max_inactive_time = 0;
  270. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  271. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  272. unsigned long starttime=0;
  273. unsigned long stoptime=0;
  274. unsigned long _usb_timer = 0;
  275. bool extruder_under_pressure = true;
  276. bool Stopped=false;
  277. #if NUM_SERVOS > 0
  278. Servo servos[NUM_SERVOS];
  279. #endif
  280. bool CooldownNoWait = true;
  281. bool target_direction;
  282. //Insert variables if CHDK is defined
  283. #ifdef CHDK
  284. unsigned long chdkHigh = 0;
  285. boolean chdkActive = false;
  286. #endif
  287. //! @name RAM save/restore printing
  288. //! @{
  289. bool saved_printing = false; //!< Print is paused and saved in RAM
  290. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  291. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  292. static float saved_pos[4] = { 0, 0, 0, 0 };
  293. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  294. static float saved_feedrate2 = 0;
  295. static uint8_t saved_active_extruder = 0;
  296. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  297. static bool saved_extruder_under_pressure = false;
  298. static bool saved_extruder_relative_mode = false;
  299. static int saved_fanSpeed = 0; //!< Print fan speed
  300. //! @}
  301. static int saved_feedmultiply_mm = 100;
  302. //===========================================================================
  303. //=============================Routines======================================
  304. //===========================================================================
  305. static void get_arc_coordinates();
  306. static bool setTargetedHotend(int code, uint8_t &extruder);
  307. static void print_time_remaining_init();
  308. static void wait_for_heater(long codenum, uint8_t extruder);
  309. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  310. uint16_t gcode_in_progress = 0;
  311. uint16_t mcode_in_progress = 0;
  312. void serial_echopair_P(const char *s_P, float v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, double v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. void serial_echopair_P(const char *s_P, unsigned long v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. #ifdef SDSUPPORT
  319. #include "SdFatUtil.h"
  320. int freeMemory() { return SdFatUtil::FreeRam(); }
  321. #else
  322. extern "C" {
  323. extern unsigned int __bss_end;
  324. extern unsigned int __heap_start;
  325. extern void *__brkval;
  326. int freeMemory() {
  327. int free_memory;
  328. if ((int)__brkval == 0)
  329. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  330. else
  331. free_memory = ((int)&free_memory) - ((int)__brkval);
  332. return free_memory;
  333. }
  334. }
  335. #endif //!SDSUPPORT
  336. void setup_killpin()
  337. {
  338. #if defined(KILL_PIN) && KILL_PIN > -1
  339. SET_INPUT(KILL_PIN);
  340. WRITE(KILL_PIN,HIGH);
  341. #endif
  342. }
  343. // Set home pin
  344. void setup_homepin(void)
  345. {
  346. #if defined(HOME_PIN) && HOME_PIN > -1
  347. SET_INPUT(HOME_PIN);
  348. WRITE(HOME_PIN,HIGH);
  349. #endif
  350. }
  351. void setup_photpin()
  352. {
  353. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  354. SET_OUTPUT(PHOTOGRAPH_PIN);
  355. WRITE(PHOTOGRAPH_PIN, LOW);
  356. #endif
  357. }
  358. void setup_powerhold()
  359. {
  360. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  361. SET_OUTPUT(SUICIDE_PIN);
  362. WRITE(SUICIDE_PIN, HIGH);
  363. #endif
  364. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  365. SET_OUTPUT(PS_ON_PIN);
  366. #if defined(PS_DEFAULT_OFF)
  367. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  368. #else
  369. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  370. #endif
  371. #endif
  372. }
  373. void suicide()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, LOW);
  378. #endif
  379. }
  380. void servo_init()
  381. {
  382. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  383. servos[0].attach(SERVO0_PIN);
  384. #endif
  385. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  386. servos[1].attach(SERVO1_PIN);
  387. #endif
  388. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  389. servos[2].attach(SERVO2_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  392. servos[3].attach(SERVO3_PIN);
  393. #endif
  394. #if (NUM_SERVOS >= 5)
  395. #error "TODO: enter initalisation code for more servos"
  396. #endif
  397. }
  398. bool fans_check_enabled = true;
  399. #ifdef TMC2130
  400. extern int8_t CrashDetectMenu;
  401. void crashdet_enable()
  402. {
  403. tmc2130_sg_stop_on_crash = true;
  404. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  405. CrashDetectMenu = 1;
  406. }
  407. void crashdet_disable()
  408. {
  409. tmc2130_sg_stop_on_crash = false;
  410. tmc2130_sg_crash = 0;
  411. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  412. CrashDetectMenu = 0;
  413. }
  414. void crashdet_stop_and_save_print()
  415. {
  416. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  417. }
  418. void crashdet_restore_print_and_continue()
  419. {
  420. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  421. // babystep_apply();
  422. }
  423. void crashdet_stop_and_save_print2()
  424. {
  425. cli();
  426. planner_abort_hard(); //abort printing
  427. cmdqueue_reset(); //empty cmdqueue
  428. card.sdprinting = false;
  429. card.closefile();
  430. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  431. st_reset_timer();
  432. sei();
  433. }
  434. void crashdet_detected(uint8_t mask)
  435. {
  436. st_synchronize();
  437. static uint8_t crashDet_counter = 0;
  438. bool automatic_recovery_after_crash = true;
  439. if (crashDet_counter++ == 0) {
  440. crashDetTimer.start();
  441. }
  442. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  443. crashDetTimer.stop();
  444. crashDet_counter = 0;
  445. }
  446. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  447. automatic_recovery_after_crash = false;
  448. crashDetTimer.stop();
  449. crashDet_counter = 0;
  450. }
  451. else {
  452. crashDetTimer.start();
  453. }
  454. lcd_update_enable(true);
  455. lcd_clear();
  456. lcd_update(2);
  457. if (mask & X_AXIS_MASK)
  458. {
  459. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  460. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  461. }
  462. if (mask & Y_AXIS_MASK)
  463. {
  464. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  465. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  466. }
  467. lcd_update_enable(true);
  468. lcd_update(2);
  469. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  470. gcode_G28(true, true, false); //home X and Y
  471. st_synchronize();
  472. if (automatic_recovery_after_crash) {
  473. enquecommand_P(PSTR("CRASH_RECOVER"));
  474. }else{
  475. setTargetHotend(0, active_extruder);
  476. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  477. lcd_update_enable(true);
  478. if (yesno)
  479. {
  480. enquecommand_P(PSTR("CRASH_RECOVER"));
  481. }
  482. else
  483. {
  484. enquecommand_P(PSTR("CRASH_CANCEL"));
  485. }
  486. }
  487. }
  488. void crashdet_recover()
  489. {
  490. crashdet_restore_print_and_continue();
  491. tmc2130_sg_stop_on_crash = true;
  492. }
  493. void crashdet_cancel()
  494. {
  495. saved_printing = false;
  496. tmc2130_sg_stop_on_crash = true;
  497. if (saved_printing_type == PRINTING_TYPE_SD) {
  498. lcd_print_stop();
  499. }else if(saved_printing_type == PRINTING_TYPE_USB){
  500. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  501. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  502. }
  503. }
  504. #endif //TMC2130
  505. void failstats_reset_print()
  506. {
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  513. }
  514. #ifdef MESH_BED_LEVELING
  515. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  516. #endif
  517. // Factory reset function
  518. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  519. // Level input parameter sets depth of reset
  520. int er_progress = 0;
  521. static void factory_reset(char level)
  522. {
  523. lcd_clear();
  524. switch (level) {
  525. // Level 0: Language reset
  526. case 0:
  527. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  528. WRITE(BEEPER, HIGH);
  529. _delay_ms(100);
  530. WRITE(BEEPER, LOW);
  531. lang_reset();
  532. break;
  533. //Level 1: Reset statistics
  534. case 1:
  535. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  536. WRITE(BEEPER, HIGH);
  537. _delay_ms(100);
  538. WRITE(BEEPER, LOW);
  539. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  540. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  553. lcd_menu_statistics();
  554. break;
  555. // Level 2: Prepare for shipping
  556. case 2:
  557. //lcd_puts_P(PSTR("Factory RESET"));
  558. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  559. // Force language selection at the next boot up.
  560. lang_reset();
  561. // Force the "Follow calibration flow" message at the next boot up.
  562. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  563. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  564. farm_no = 0;
  565. farm_mode = false;
  566. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  567. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  568. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  569. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  578. #ifdef FILAMENT_SENSOR
  579. fsensor_enable();
  580. fsensor_autoload_set(true);
  581. #endif //FILAMENT_SENSOR
  582. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  583. WRITE(BEEPER, HIGH);
  584. _delay_ms(100);
  585. WRITE(BEEPER, LOW);
  586. //_delay_ms(2000);
  587. break;
  588. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  589. case 3:
  590. lcd_puts_P(PSTR("Factory RESET"));
  591. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  592. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  593. WRITE(BEEPER, HIGH);
  594. _delay_ms(100);
  595. WRITE(BEEPER, LOW);
  596. er_progress = 0;
  597. lcd_puts_at_P(3, 3, PSTR(" "));
  598. lcd_set_cursor(3, 3);
  599. lcd_print(er_progress);
  600. // Erase EEPROM
  601. for (int i = 0; i < 4096; i++) {
  602. eeprom_update_byte((uint8_t*)i, 0xFF);
  603. if (i % 41 == 0) {
  604. er_progress++;
  605. lcd_puts_at_P(3, 3, PSTR(" "));
  606. lcd_set_cursor(3, 3);
  607. lcd_print(er_progress);
  608. lcd_puts_P(PSTR("%"));
  609. }
  610. }
  611. break;
  612. case 4:
  613. bowden_menu();
  614. break;
  615. default:
  616. break;
  617. }
  618. }
  619. extern "C" {
  620. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  621. }
  622. int uart_putchar(char c, FILE *)
  623. {
  624. MYSERIAL.write(c);
  625. return 0;
  626. }
  627. void lcd_splash()
  628. {
  629. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  630. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  631. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  632. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  633. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  634. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  635. }
  636. void factory_reset()
  637. {
  638. KEEPALIVE_STATE(PAUSED_FOR_USER);
  639. if (!READ(BTN_ENC))
  640. {
  641. _delay_ms(1000);
  642. if (!READ(BTN_ENC))
  643. {
  644. lcd_clear();
  645. lcd_puts_P(PSTR("Factory RESET"));
  646. SET_OUTPUT(BEEPER);
  647. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  648. WRITE(BEEPER, HIGH);
  649. while (!READ(BTN_ENC));
  650. WRITE(BEEPER, LOW);
  651. _delay_ms(2000);
  652. char level = reset_menu();
  653. factory_reset(level);
  654. switch (level) {
  655. case 0: _delay_ms(0); break;
  656. case 1: _delay_ms(0); break;
  657. case 2: _delay_ms(0); break;
  658. case 3: _delay_ms(0); break;
  659. }
  660. }
  661. }
  662. KEEPALIVE_STATE(IN_HANDLER);
  663. }
  664. void show_fw_version_warnings() {
  665. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  666. switch (FW_DEV_VERSION) {
  667. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  668. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  669. case(FW_VERSION_DEVEL):
  670. case(FW_VERSION_DEBUG):
  671. lcd_update_enable(false);
  672. lcd_clear();
  673. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  674. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  675. #else
  676. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  677. #endif
  678. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  679. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  680. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  681. lcd_wait_for_click();
  682. break;
  683. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  684. }
  685. lcd_update_enable(true);
  686. }
  687. //! @brief try to check if firmware is on right type of printer
  688. static void check_if_fw_is_on_right_printer(){
  689. #ifdef FILAMENT_SENSOR
  690. #ifdef IR_SENSOR
  691. swi2c_init();
  692. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  693. if (pat9125_detected){
  694. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  695. #endif //IR_SENSOR
  696. #ifdef PAT9125
  697. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  698. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  699. if (ir_detected){
  700. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  701. #endif //PAT9125
  702. #endif //FILAMENT_SENSOR
  703. }
  704. uint8_t check_printer_version()
  705. {
  706. uint8_t version_changed = 0;
  707. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  708. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  709. if (printer_type != PRINTER_TYPE) {
  710. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  711. else version_changed |= 0b10;
  712. }
  713. if (motherboard != MOTHERBOARD) {
  714. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  715. else version_changed |= 0b01;
  716. }
  717. return version_changed;
  718. }
  719. #ifdef BOOTAPP
  720. #include "bootapp.h" //bootloader support
  721. #endif //BOOTAPP
  722. #if (LANG_MODE != 0) //secondary language support
  723. #ifdef W25X20CL
  724. // language update from external flash
  725. #define LANGBOOT_BLOCKSIZE 0x1000u
  726. #define LANGBOOT_RAMBUFFER 0x0800
  727. void update_sec_lang_from_external_flash()
  728. {
  729. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  730. {
  731. uint8_t lang = boot_reserved >> 4;
  732. uint8_t state = boot_reserved & 0xf;
  733. lang_table_header_t header;
  734. uint32_t src_addr;
  735. if (lang_get_header(lang, &header, &src_addr))
  736. {
  737. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  738. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  739. _delay(100);
  740. boot_reserved = (state + 1) | (lang << 4);
  741. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  742. {
  743. cli();
  744. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  745. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  746. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  747. if (state == 0)
  748. {
  749. //TODO - check header integrity
  750. }
  751. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  752. }
  753. else
  754. {
  755. //TODO - check sec lang data integrity
  756. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  757. }
  758. }
  759. }
  760. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  761. }
  762. #ifdef DEBUG_W25X20CL
  763. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  764. {
  765. lang_table_header_t header;
  766. uint8_t count = 0;
  767. uint32_t addr = 0x00000;
  768. while (1)
  769. {
  770. printf_P(_n("LANGTABLE%d:"), count);
  771. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  772. if (header.magic != LANG_MAGIC)
  773. {
  774. printf_P(_n("NG!\n"));
  775. break;
  776. }
  777. printf_P(_n("OK\n"));
  778. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  779. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  780. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  781. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  782. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  783. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  784. addr += header.size;
  785. codes[count] = header.code;
  786. count ++;
  787. }
  788. return count;
  789. }
  790. void list_sec_lang_from_external_flash()
  791. {
  792. uint16_t codes[8];
  793. uint8_t count = lang_xflash_enum_codes(codes);
  794. printf_P(_n("XFlash lang count = %hhd\n"), count);
  795. }
  796. #endif //DEBUG_W25X20CL
  797. #endif //W25X20CL
  798. #endif //(LANG_MODE != 0)
  799. static void w25x20cl_err_msg()
  800. {
  801. lcd_puts_P(_n(ESC_2J ESC_H(0,0) "External SPI flash" ESC_H(0,1) "W25X20CL is not res-"
  802. ESC_H(0,2) "ponding. Language" ESC_H(0,3) "switch unavailable."));
  803. }
  804. // "Setup" function is called by the Arduino framework on startup.
  805. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  806. // are initialized by the main() routine provided by the Arduino framework.
  807. void setup()
  808. {
  809. mmu_init();
  810. ultralcd_init();
  811. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  812. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  813. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  814. spi_init();
  815. lcd_splash();
  816. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  817. #ifdef W25X20CL
  818. bool w25x20cl_success = w25x20cl_init();
  819. if (w25x20cl_success)
  820. {
  821. optiboot_w25x20cl_enter();
  822. #if (LANG_MODE != 0) //secondary language support
  823. update_sec_lang_from_external_flash();
  824. #endif //(LANG_MODE != 0)
  825. }
  826. else
  827. {
  828. w25x20cl_err_msg();
  829. }
  830. #else
  831. const bool w25x20cl_success = true;
  832. #endif //W25X20CL
  833. setup_killpin();
  834. setup_powerhold();
  835. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  836. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  837. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  838. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  839. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  840. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  841. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  842. if (farm_mode)
  843. {
  844. no_response = true; //we need confirmation by recieving PRUSA thx
  845. important_status = 8;
  846. prusa_statistics(8);
  847. selectedSerialPort = 1;
  848. #ifdef TMC2130
  849. //increased extruder current (PFW363)
  850. tmc2130_current_h[E_AXIS] = 36;
  851. tmc2130_current_r[E_AXIS] = 36;
  852. #endif //TMC2130
  853. #ifdef FILAMENT_SENSOR
  854. //disabled filament autoload (PFW360)
  855. fsensor_autoload_set(false);
  856. #endif //FILAMENT_SENSOR
  857. }
  858. MYSERIAL.begin(BAUDRATE);
  859. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  860. #ifndef W25X20CL
  861. SERIAL_PROTOCOLLNPGM("start");
  862. #endif //W25X20CL
  863. stdout = uartout;
  864. SERIAL_ECHO_START;
  865. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  866. #ifdef DEBUG_SEC_LANG
  867. lang_table_header_t header;
  868. uint32_t src_addr = 0x00000;
  869. if (lang_get_header(1, &header, &src_addr))
  870. {
  871. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  872. #define LT_PRINT_TEST 2
  873. // flash usage
  874. // total p.test
  875. //0 252718 t+c text code
  876. //1 253142 424 170 254
  877. //2 253040 322 164 158
  878. //3 253248 530 135 395
  879. #if (LT_PRINT_TEST==1) //not optimized printf
  880. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  881. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  882. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  883. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  884. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  885. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  886. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  887. #elif (LT_PRINT_TEST==2) //optimized printf
  888. printf_P(
  889. _n(
  890. " _src_addr = 0x%08lx\n"
  891. " _lt_magic = 0x%08lx %S\n"
  892. " _lt_size = 0x%04x (%d)\n"
  893. " _lt_count = 0x%04x (%d)\n"
  894. " _lt_chsum = 0x%04x\n"
  895. " _lt_code = 0x%04x (%c%c)\n"
  896. " _lt_resv1 = 0x%08lx\n"
  897. ),
  898. src_addr,
  899. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  900. header.size, header.size,
  901. header.count, header.count,
  902. header.checksum,
  903. header.code, header.code >> 8, header.code & 0xff,
  904. header.signature
  905. );
  906. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  907. MYSERIAL.print(" _src_addr = 0x");
  908. MYSERIAL.println(src_addr, 16);
  909. MYSERIAL.print(" _lt_magic = 0x");
  910. MYSERIAL.print(header.magic, 16);
  911. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  912. MYSERIAL.print(" _lt_size = 0x");
  913. MYSERIAL.print(header.size, 16);
  914. MYSERIAL.print(" (");
  915. MYSERIAL.print(header.size, 10);
  916. MYSERIAL.println(")");
  917. MYSERIAL.print(" _lt_count = 0x");
  918. MYSERIAL.print(header.count, 16);
  919. MYSERIAL.print(" (");
  920. MYSERIAL.print(header.count, 10);
  921. MYSERIAL.println(")");
  922. MYSERIAL.print(" _lt_chsum = 0x");
  923. MYSERIAL.println(header.checksum, 16);
  924. MYSERIAL.print(" _lt_code = 0x");
  925. MYSERIAL.print(header.code, 16);
  926. MYSERIAL.print(" (");
  927. MYSERIAL.print((char)(header.code >> 8), 0);
  928. MYSERIAL.print((char)(header.code & 0xff), 0);
  929. MYSERIAL.println(")");
  930. MYSERIAL.print(" _lt_resv1 = 0x");
  931. MYSERIAL.println(header.signature, 16);
  932. #endif //(LT_PRINT_TEST==)
  933. #undef LT_PRINT_TEST
  934. #if 0
  935. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  936. for (uint16_t i = 0; i < 1024; i++)
  937. {
  938. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  939. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  940. if ((i % 16) == 15) putchar('\n');
  941. }
  942. #endif
  943. uint16_t sum = 0;
  944. for (uint16_t i = 0; i < header.size; i++)
  945. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  946. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  947. sum -= header.checksum; //subtract checksum
  948. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  949. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  950. if (sum == header.checksum)
  951. printf_P(_n("Checksum OK\n"), sum);
  952. else
  953. printf_P(_n("Checksum NG\n"), sum);
  954. }
  955. else
  956. printf_P(_n("lang_get_header failed!\n"));
  957. #if 0
  958. for (uint16_t i = 0; i < 1024*10; i++)
  959. {
  960. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  961. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  962. if ((i % 16) == 15) putchar('\n');
  963. }
  964. #endif
  965. #if 0
  966. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  967. for (int i = 0; i < 4096; ++i) {
  968. int b = eeprom_read_byte((unsigned char*)i);
  969. if (b != 255) {
  970. SERIAL_ECHO(i);
  971. SERIAL_ECHO(":");
  972. SERIAL_ECHO(b);
  973. SERIAL_ECHOLN("");
  974. }
  975. }
  976. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  977. #endif
  978. #endif //DEBUG_SEC_LANG
  979. // Check startup - does nothing if bootloader sets MCUSR to 0
  980. byte mcu = MCUSR;
  981. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  982. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  983. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  984. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  985. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  986. if (mcu & 1) puts_P(MSG_POWERUP);
  987. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  988. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  989. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  990. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  991. MCUSR = 0;
  992. //SERIAL_ECHORPGM(MSG_MARLIN);
  993. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  994. #ifdef STRING_VERSION_CONFIG_H
  995. #ifdef STRING_CONFIG_H_AUTHOR
  996. SERIAL_ECHO_START;
  997. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  998. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  999. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1000. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1001. SERIAL_ECHOPGM("Compiled: ");
  1002. SERIAL_ECHOLNPGM(__DATE__);
  1003. #endif
  1004. #endif
  1005. SERIAL_ECHO_START;
  1006. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1007. SERIAL_ECHO(freeMemory());
  1008. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1009. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1010. //lcd_update_enable(false); // why do we need this?? - andre
  1011. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1012. bool previous_settings_retrieved = false;
  1013. uint8_t hw_changed = check_printer_version();
  1014. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1015. previous_settings_retrieved = Config_RetrieveSettings();
  1016. }
  1017. else { //printer version was changed so use default settings
  1018. Config_ResetDefault();
  1019. }
  1020. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1021. tp_init(); // Initialize temperature loop
  1022. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1023. else
  1024. {
  1025. w25x20cl_err_msg();
  1026. printf_P(_n("W25X20CL not responding.\n"));
  1027. }
  1028. plan_init(); // Initialize planner;
  1029. factory_reset();
  1030. lcd_encoder_diff=0;
  1031. #ifdef TMC2130
  1032. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1033. if (silentMode == 0xff) silentMode = 0;
  1034. tmc2130_mode = TMC2130_MODE_NORMAL;
  1035. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1036. if (crashdet && !farm_mode)
  1037. {
  1038. crashdet_enable();
  1039. puts_P(_N("CrashDetect ENABLED!"));
  1040. }
  1041. else
  1042. {
  1043. crashdet_disable();
  1044. puts_P(_N("CrashDetect DISABLED"));
  1045. }
  1046. #ifdef TMC2130_LINEARITY_CORRECTION
  1047. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1048. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1049. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1050. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1051. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1052. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1053. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1054. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1055. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1056. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1057. #endif //TMC2130_LINEARITY_CORRECTION
  1058. #ifdef TMC2130_VARIABLE_RESOLUTION
  1059. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1060. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1061. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1062. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1063. #else //TMC2130_VARIABLE_RESOLUTION
  1064. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1065. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1066. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1067. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1068. #endif //TMC2130_VARIABLE_RESOLUTION
  1069. #endif //TMC2130
  1070. st_init(); // Initialize stepper, this enables interrupts!
  1071. #ifdef TMC2130
  1072. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1073. update_mode_profile();
  1074. tmc2130_init();
  1075. #endif //TMC2130
  1076. setup_photpin();
  1077. servo_init();
  1078. // Reset the machine correction matrix.
  1079. // It does not make sense to load the correction matrix until the machine is homed.
  1080. world2machine_reset();
  1081. #ifdef FILAMENT_SENSOR
  1082. fsensor_init();
  1083. #endif //FILAMENT_SENSOR
  1084. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1085. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1086. #endif
  1087. setup_homepin();
  1088. #ifdef TMC2130
  1089. if (1) {
  1090. // try to run to zero phase before powering the Z motor.
  1091. // Move in negative direction
  1092. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1093. // Round the current micro-micro steps to micro steps.
  1094. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1095. // Until the phase counter is reset to zero.
  1096. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1097. _delay(2);
  1098. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1099. _delay(2);
  1100. }
  1101. }
  1102. #endif //TMC2130
  1103. #if defined(Z_AXIS_ALWAYS_ON)
  1104. enable_z();
  1105. #endif
  1106. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1107. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1108. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1109. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1110. if (farm_mode)
  1111. {
  1112. prusa_statistics(8);
  1113. }
  1114. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1115. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1116. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1117. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1118. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1119. // where all the EEPROM entries are set to 0x0ff.
  1120. // Once a firmware boots up, it forces at least a language selection, which changes
  1121. // EEPROM_LANG to number lower than 0x0ff.
  1122. // 1) Set a high power mode.
  1123. #ifdef TMC2130
  1124. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1125. tmc2130_mode = TMC2130_MODE_NORMAL;
  1126. #endif //TMC2130
  1127. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1128. }
  1129. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1130. // but this times out if a blocking dialog is shown in setup().
  1131. card.initsd();
  1132. #ifdef DEBUG_SD_SPEED_TEST
  1133. if (card.cardOK)
  1134. {
  1135. uint8_t* buff = (uint8_t*)block_buffer;
  1136. uint32_t block = 0;
  1137. uint32_t sumr = 0;
  1138. uint32_t sumw = 0;
  1139. for (int i = 0; i < 1024; i++)
  1140. {
  1141. uint32_t u = _micros();
  1142. bool res = card.card.readBlock(i, buff);
  1143. u = _micros() - u;
  1144. if (res)
  1145. {
  1146. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1147. sumr += u;
  1148. u = _micros();
  1149. res = card.card.writeBlock(i, buff);
  1150. u = _micros() - u;
  1151. if (res)
  1152. {
  1153. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1154. sumw += u;
  1155. }
  1156. else
  1157. {
  1158. printf_P(PSTR("writeBlock %4d error\n"), i);
  1159. break;
  1160. }
  1161. }
  1162. else
  1163. {
  1164. printf_P(PSTR("readBlock %4d error\n"), i);
  1165. break;
  1166. }
  1167. }
  1168. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1169. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1170. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1171. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1172. }
  1173. else
  1174. printf_P(PSTR("Card NG!\n"));
  1175. #endif //DEBUG_SD_SPEED_TEST
  1176. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1177. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1178. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1179. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1180. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1181. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1182. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1183. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1184. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1185. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1186. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1187. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1188. #ifdef SNMM
  1189. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1190. int _z = BOWDEN_LENGTH;
  1191. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1192. }
  1193. #endif
  1194. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1195. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1196. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1197. #if (LANG_MODE != 0) //secondary language support
  1198. #ifdef DEBUG_W25X20CL
  1199. W25X20CL_SPI_ENTER();
  1200. uint8_t uid[8]; // 64bit unique id
  1201. w25x20cl_rd_uid(uid);
  1202. puts_P(_n("W25X20CL UID="));
  1203. for (uint8_t i = 0; i < 8; i ++)
  1204. printf_P(PSTR("%02hhx"), uid[i]);
  1205. putchar('\n');
  1206. list_sec_lang_from_external_flash();
  1207. #endif //DEBUG_W25X20CL
  1208. // lang_reset();
  1209. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1210. lcd_language();
  1211. #ifdef DEBUG_SEC_LANG
  1212. uint16_t sec_lang_code = lang_get_code(1);
  1213. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1214. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1215. lang_print_sec_lang(uartout);
  1216. #endif //DEBUG_SEC_LANG
  1217. #endif //(LANG_MODE != 0)
  1218. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1219. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1220. temp_cal_active = false;
  1221. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1222. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1223. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1224. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1225. int16_t z_shift = 0;
  1226. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1227. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1228. temp_cal_active = false;
  1229. }
  1230. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1231. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1232. }
  1233. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1234. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1235. }
  1236. //mbl_mode_init();
  1237. mbl_settings_init();
  1238. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1239. if (SilentModeMenu_MMU == 255) {
  1240. SilentModeMenu_MMU = 1;
  1241. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1242. }
  1243. check_babystep(); //checking if Z babystep is in allowed range
  1244. #ifdef UVLO_SUPPORT
  1245. setup_uvlo_interrupt();
  1246. #endif //UVLO_SUPPORT
  1247. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1248. setup_fan_interrupt();
  1249. #endif //DEBUG_DISABLE_FANCHECK
  1250. #ifdef PAT9125
  1251. fsensor_setup_interrupt();
  1252. #endif //PAT9125
  1253. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1254. #ifndef DEBUG_DISABLE_STARTMSGS
  1255. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1256. check_if_fw_is_on_right_printer();
  1257. show_fw_version_warnings();
  1258. switch (hw_changed) {
  1259. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1260. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1261. case(0b01):
  1262. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1263. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1264. break;
  1265. case(0b10):
  1266. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1267. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1268. break;
  1269. case(0b11):
  1270. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1271. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1272. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1273. break;
  1274. default: break; //no change, show no message
  1275. }
  1276. if (!previous_settings_retrieved) {
  1277. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1278. Config_StoreSettings();
  1279. }
  1280. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1281. lcd_wizard(WizState::Run);
  1282. }
  1283. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1284. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1285. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1286. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1287. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1288. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1289. // Show the message.
  1290. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1291. }
  1292. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1293. // Show the message.
  1294. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1295. lcd_update_enable(true);
  1296. }
  1297. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1298. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1299. lcd_update_enable(true);
  1300. }
  1301. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1302. // Show the message.
  1303. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1304. }
  1305. }
  1306. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1307. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1308. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1309. update_current_firmware_version_to_eeprom();
  1310. lcd_selftest();
  1311. }
  1312. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1313. KEEPALIVE_STATE(IN_PROCESS);
  1314. #endif //DEBUG_DISABLE_STARTMSGS
  1315. lcd_update_enable(true);
  1316. lcd_clear();
  1317. lcd_update(2);
  1318. // Store the currently running firmware into an eeprom,
  1319. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1320. update_current_firmware_version_to_eeprom();
  1321. #ifdef TMC2130
  1322. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1323. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1324. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1325. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1326. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1327. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1328. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1329. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1330. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1331. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1332. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1333. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1334. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1335. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1336. #endif //TMC2130
  1337. #ifdef UVLO_SUPPORT
  1338. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1339. /*
  1340. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1341. else {
  1342. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1343. lcd_update_enable(true);
  1344. lcd_update(2);
  1345. lcd_setstatuspgm(_T(WELCOME_MSG));
  1346. }
  1347. */
  1348. manage_heater(); // Update temperatures
  1349. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1350. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1351. #endif
  1352. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1353. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1354. puts_P(_N("Automatic recovery!"));
  1355. #endif
  1356. recover_print(1);
  1357. }
  1358. else{
  1359. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1360. puts_P(_N("Normal recovery!"));
  1361. #endif
  1362. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1363. else {
  1364. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1365. lcd_update_enable(true);
  1366. lcd_update(2);
  1367. lcd_setstatuspgm(_T(WELCOME_MSG));
  1368. }
  1369. }
  1370. }
  1371. #endif //UVLO_SUPPORT
  1372. KEEPALIVE_STATE(NOT_BUSY);
  1373. #ifdef WATCHDOG
  1374. wdt_enable(WDTO_4S);
  1375. #endif //WATCHDOG
  1376. }
  1377. void trace();
  1378. #define CHUNK_SIZE 64 // bytes
  1379. #define SAFETY_MARGIN 1
  1380. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1381. int chunkHead = 0;
  1382. void serial_read_stream() {
  1383. setAllTargetHotends(0);
  1384. setTargetBed(0);
  1385. lcd_clear();
  1386. lcd_puts_P(PSTR(" Upload in progress"));
  1387. // first wait for how many bytes we will receive
  1388. uint32_t bytesToReceive;
  1389. // receive the four bytes
  1390. char bytesToReceiveBuffer[4];
  1391. for (int i=0; i<4; i++) {
  1392. int data;
  1393. while ((data = MYSERIAL.read()) == -1) {};
  1394. bytesToReceiveBuffer[i] = data;
  1395. }
  1396. // make it a uint32
  1397. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1398. // we're ready, notify the sender
  1399. MYSERIAL.write('+');
  1400. // lock in the routine
  1401. uint32_t receivedBytes = 0;
  1402. while (prusa_sd_card_upload) {
  1403. int i;
  1404. for (i=0; i<CHUNK_SIZE; i++) {
  1405. int data;
  1406. // check if we're not done
  1407. if (receivedBytes == bytesToReceive) {
  1408. break;
  1409. }
  1410. // read the next byte
  1411. while ((data = MYSERIAL.read()) == -1) {};
  1412. receivedBytes++;
  1413. // save it to the chunk
  1414. chunk[i] = data;
  1415. }
  1416. // write the chunk to SD
  1417. card.write_command_no_newline(&chunk[0]);
  1418. // notify the sender we're ready for more data
  1419. MYSERIAL.write('+');
  1420. // for safety
  1421. manage_heater();
  1422. // check if we're done
  1423. if(receivedBytes == bytesToReceive) {
  1424. trace(); // beep
  1425. card.closefile();
  1426. prusa_sd_card_upload = false;
  1427. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1428. }
  1429. }
  1430. }
  1431. /**
  1432. * Output a "busy" message at regular intervals
  1433. * while the machine is not accepting commands.
  1434. */
  1435. void host_keepalive() {
  1436. #ifndef HOST_KEEPALIVE_FEATURE
  1437. return;
  1438. #endif //HOST_KEEPALIVE_FEATURE
  1439. if (farm_mode) return;
  1440. long ms = _millis();
  1441. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1442. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1443. switch (busy_state) {
  1444. case IN_HANDLER:
  1445. case IN_PROCESS:
  1446. SERIAL_ECHO_START;
  1447. SERIAL_ECHOLNPGM("busy: processing");
  1448. break;
  1449. case PAUSED_FOR_USER:
  1450. SERIAL_ECHO_START;
  1451. SERIAL_ECHOLNPGM("busy: paused for user");
  1452. break;
  1453. case PAUSED_FOR_INPUT:
  1454. SERIAL_ECHO_START;
  1455. SERIAL_ECHOLNPGM("busy: paused for input");
  1456. break;
  1457. default:
  1458. break;
  1459. }
  1460. }
  1461. prev_busy_signal_ms = ms;
  1462. }
  1463. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1464. // Before loop(), the setup() function is called by the main() routine.
  1465. void loop()
  1466. {
  1467. KEEPALIVE_STATE(NOT_BUSY);
  1468. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1469. {
  1470. is_usb_printing = true;
  1471. usb_printing_counter--;
  1472. _usb_timer = _millis();
  1473. }
  1474. if (usb_printing_counter == 0)
  1475. {
  1476. is_usb_printing = false;
  1477. }
  1478. if (prusa_sd_card_upload)
  1479. {
  1480. //we read byte-by byte
  1481. serial_read_stream();
  1482. } else
  1483. {
  1484. get_command();
  1485. #ifdef SDSUPPORT
  1486. card.checkautostart(false);
  1487. #endif
  1488. if(buflen)
  1489. {
  1490. cmdbuffer_front_already_processed = false;
  1491. #ifdef SDSUPPORT
  1492. if(card.saving)
  1493. {
  1494. // Saving a G-code file onto an SD-card is in progress.
  1495. // Saving starts with M28, saving until M29 is seen.
  1496. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1497. card.write_command(CMDBUFFER_CURRENT_STRING);
  1498. if(card.logging)
  1499. process_commands();
  1500. else
  1501. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1502. } else {
  1503. card.closefile();
  1504. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1505. }
  1506. } else {
  1507. process_commands();
  1508. }
  1509. #else
  1510. process_commands();
  1511. #endif //SDSUPPORT
  1512. if (! cmdbuffer_front_already_processed && buflen)
  1513. {
  1514. // ptr points to the start of the block currently being processed.
  1515. // The first character in the block is the block type.
  1516. char *ptr = cmdbuffer + bufindr;
  1517. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1518. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1519. union {
  1520. struct {
  1521. char lo;
  1522. char hi;
  1523. } lohi;
  1524. uint16_t value;
  1525. } sdlen;
  1526. sdlen.value = 0;
  1527. {
  1528. // This block locks the interrupts globally for 3.25 us,
  1529. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1530. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1531. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1532. cli();
  1533. // Reset the command to something, which will be ignored by the power panic routine,
  1534. // so this buffer length will not be counted twice.
  1535. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1536. // Extract the current buffer length.
  1537. sdlen.lohi.lo = *ptr ++;
  1538. sdlen.lohi.hi = *ptr;
  1539. // and pass it to the planner queue.
  1540. planner_add_sd_length(sdlen.value);
  1541. sei();
  1542. }
  1543. }
  1544. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1545. cli();
  1546. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1547. // and one for each command to previous block in the planner queue.
  1548. planner_add_sd_length(1);
  1549. sei();
  1550. }
  1551. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1552. // this block's SD card length will not be counted twice as its command type has been replaced
  1553. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1554. cmdqueue_pop_front();
  1555. }
  1556. host_keepalive();
  1557. }
  1558. }
  1559. //check heater every n milliseconds
  1560. manage_heater();
  1561. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1562. checkHitEndstops();
  1563. lcd_update(0);
  1564. #ifdef TMC2130
  1565. tmc2130_check_overtemp();
  1566. if (tmc2130_sg_crash)
  1567. {
  1568. uint8_t crash = tmc2130_sg_crash;
  1569. tmc2130_sg_crash = 0;
  1570. // crashdet_stop_and_save_print();
  1571. switch (crash)
  1572. {
  1573. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1574. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1575. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1576. }
  1577. }
  1578. #endif //TMC2130
  1579. mmu_loop();
  1580. }
  1581. #define DEFINE_PGM_READ_ANY(type, reader) \
  1582. static inline type pgm_read_any(const type *p) \
  1583. { return pgm_read_##reader##_near(p); }
  1584. DEFINE_PGM_READ_ANY(float, float);
  1585. DEFINE_PGM_READ_ANY(signed char, byte);
  1586. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1587. static const PROGMEM type array##_P[3] = \
  1588. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1589. static inline type array(int axis) \
  1590. { return pgm_read_any(&array##_P[axis]); } \
  1591. type array##_ext(int axis) \
  1592. { return pgm_read_any(&array##_P[axis]); }
  1593. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1594. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1595. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1596. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1597. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1598. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1599. static void axis_is_at_home(int axis) {
  1600. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1601. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1602. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1603. }
  1604. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1605. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1606. //! @return original feedmultiply
  1607. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1608. saved_feedrate = feedrate;
  1609. int l_feedmultiply = feedmultiply;
  1610. feedmultiply = 100;
  1611. previous_millis_cmd = _millis();
  1612. enable_endstops(enable_endstops_now);
  1613. return l_feedmultiply;
  1614. }
  1615. //! @param original_feedmultiply feedmultiply to restore
  1616. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1617. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1618. enable_endstops(false);
  1619. #endif
  1620. feedrate = saved_feedrate;
  1621. feedmultiply = original_feedmultiply;
  1622. previous_millis_cmd = _millis();
  1623. }
  1624. #ifdef ENABLE_AUTO_BED_LEVELING
  1625. #ifdef AUTO_BED_LEVELING_GRID
  1626. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1627. {
  1628. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1629. planeNormal.debug("planeNormal");
  1630. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1631. //bedLevel.debug("bedLevel");
  1632. //plan_bed_level_matrix.debug("bed level before");
  1633. //vector_3 uncorrected_position = plan_get_position_mm();
  1634. //uncorrected_position.debug("position before");
  1635. vector_3 corrected_position = plan_get_position();
  1636. // corrected_position.debug("position after");
  1637. current_position[X_AXIS] = corrected_position.x;
  1638. current_position[Y_AXIS] = corrected_position.y;
  1639. current_position[Z_AXIS] = corrected_position.z;
  1640. // put the bed at 0 so we don't go below it.
  1641. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1642. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1643. }
  1644. #else // not AUTO_BED_LEVELING_GRID
  1645. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1646. plan_bed_level_matrix.set_to_identity();
  1647. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1648. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1649. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1650. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1651. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1652. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1653. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1654. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1655. vector_3 corrected_position = plan_get_position();
  1656. current_position[X_AXIS] = corrected_position.x;
  1657. current_position[Y_AXIS] = corrected_position.y;
  1658. current_position[Z_AXIS] = corrected_position.z;
  1659. // put the bed at 0 so we don't go below it.
  1660. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1661. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1662. }
  1663. #endif // AUTO_BED_LEVELING_GRID
  1664. static void run_z_probe() {
  1665. plan_bed_level_matrix.set_to_identity();
  1666. feedrate = homing_feedrate[Z_AXIS];
  1667. // move down until you find the bed
  1668. float zPosition = -10;
  1669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1670. st_synchronize();
  1671. // we have to let the planner know where we are right now as it is not where we said to go.
  1672. zPosition = st_get_position_mm(Z_AXIS);
  1673. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1674. // move up the retract distance
  1675. zPosition += home_retract_mm(Z_AXIS);
  1676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1677. st_synchronize();
  1678. // move back down slowly to find bed
  1679. feedrate = homing_feedrate[Z_AXIS]/4;
  1680. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1682. st_synchronize();
  1683. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1684. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1685. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1686. }
  1687. static void do_blocking_move_to(float x, float y, float z) {
  1688. float oldFeedRate = feedrate;
  1689. feedrate = homing_feedrate[Z_AXIS];
  1690. current_position[Z_AXIS] = z;
  1691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1692. st_synchronize();
  1693. feedrate = XY_TRAVEL_SPEED;
  1694. current_position[X_AXIS] = x;
  1695. current_position[Y_AXIS] = y;
  1696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. feedrate = oldFeedRate;
  1699. }
  1700. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1701. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1702. }
  1703. /// Probe bed height at position (x,y), returns the measured z value
  1704. static float probe_pt(float x, float y, float z_before) {
  1705. // move to right place
  1706. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1707. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1708. run_z_probe();
  1709. float measured_z = current_position[Z_AXIS];
  1710. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1711. SERIAL_PROTOCOLPGM(" x: ");
  1712. SERIAL_PROTOCOL(x);
  1713. SERIAL_PROTOCOLPGM(" y: ");
  1714. SERIAL_PROTOCOL(y);
  1715. SERIAL_PROTOCOLPGM(" z: ");
  1716. SERIAL_PROTOCOL(measured_z);
  1717. SERIAL_PROTOCOLPGM("\n");
  1718. return measured_z;
  1719. }
  1720. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1721. #ifdef LIN_ADVANCE
  1722. /**
  1723. * M900: Set and/or Get advance K factor and WH/D ratio
  1724. *
  1725. * K<factor> Set advance K factor
  1726. * R<ratio> Set ratio directly (overrides WH/D)
  1727. * W<width> H<height> D<diam> Set ratio from WH/D
  1728. */
  1729. inline void gcode_M900() {
  1730. st_synchronize();
  1731. const float newK = code_seen('K') ? code_value_float() : -1;
  1732. if (newK >= 0) extruder_advance_k = newK;
  1733. float newR = code_seen('R') ? code_value_float() : -1;
  1734. if (newR < 0) {
  1735. const float newD = code_seen('D') ? code_value_float() : -1,
  1736. newW = code_seen('W') ? code_value_float() : -1,
  1737. newH = code_seen('H') ? code_value_float() : -1;
  1738. if (newD >= 0 && newW >= 0 && newH >= 0)
  1739. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1740. }
  1741. if (newR >= 0) advance_ed_ratio = newR;
  1742. SERIAL_ECHO_START;
  1743. SERIAL_ECHOPGM("Advance K=");
  1744. SERIAL_ECHOLN(extruder_advance_k);
  1745. SERIAL_ECHOPGM(" E/D=");
  1746. const float ratio = advance_ed_ratio;
  1747. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1748. }
  1749. #endif // LIN_ADVANCE
  1750. bool check_commands() {
  1751. bool end_command_found = false;
  1752. while (buflen)
  1753. {
  1754. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1755. if (!cmdbuffer_front_already_processed)
  1756. cmdqueue_pop_front();
  1757. cmdbuffer_front_already_processed = false;
  1758. }
  1759. return end_command_found;
  1760. }
  1761. #ifdef TMC2130
  1762. bool calibrate_z_auto()
  1763. {
  1764. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1765. lcd_clear();
  1766. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1767. bool endstops_enabled = enable_endstops(true);
  1768. int axis_up_dir = -home_dir(Z_AXIS);
  1769. tmc2130_home_enter(Z_AXIS_MASK);
  1770. current_position[Z_AXIS] = 0;
  1771. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1772. set_destination_to_current();
  1773. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1774. feedrate = homing_feedrate[Z_AXIS];
  1775. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1776. st_synchronize();
  1777. // current_position[axis] = 0;
  1778. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1779. tmc2130_home_exit();
  1780. enable_endstops(false);
  1781. current_position[Z_AXIS] = 0;
  1782. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1783. set_destination_to_current();
  1784. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1785. feedrate = homing_feedrate[Z_AXIS] / 2;
  1786. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1787. st_synchronize();
  1788. enable_endstops(endstops_enabled);
  1789. if (PRINTER_TYPE == PRINTER_MK3) {
  1790. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1791. }
  1792. else {
  1793. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1794. }
  1795. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1796. return true;
  1797. }
  1798. #endif //TMC2130
  1799. #ifdef TMC2130
  1800. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1801. #else
  1802. void homeaxis(int axis, uint8_t cnt)
  1803. #endif //TMC2130
  1804. {
  1805. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1806. #define HOMEAXIS_DO(LETTER) \
  1807. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1808. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1809. {
  1810. int axis_home_dir = home_dir(axis);
  1811. feedrate = homing_feedrate[axis];
  1812. #ifdef TMC2130
  1813. tmc2130_home_enter(X_AXIS_MASK << axis);
  1814. #endif //TMC2130
  1815. // Move away a bit, so that the print head does not touch the end position,
  1816. // and the following movement to endstop has a chance to achieve the required velocity
  1817. // for the stall guard to work.
  1818. current_position[axis] = 0;
  1819. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1820. set_destination_to_current();
  1821. // destination[axis] = 11.f;
  1822. destination[axis] = -3.f * axis_home_dir;
  1823. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1824. st_synchronize();
  1825. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1826. endstops_hit_on_purpose();
  1827. enable_endstops(false);
  1828. current_position[axis] = 0;
  1829. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1830. destination[axis] = 1. * axis_home_dir;
  1831. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1832. st_synchronize();
  1833. // Now continue to move up to the left end stop with the collision detection enabled.
  1834. enable_endstops(true);
  1835. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1836. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1837. st_synchronize();
  1838. for (uint8_t i = 0; i < cnt; i++)
  1839. {
  1840. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1841. endstops_hit_on_purpose();
  1842. enable_endstops(false);
  1843. current_position[axis] = 0;
  1844. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1845. destination[axis] = -10.f * axis_home_dir;
  1846. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1847. st_synchronize();
  1848. endstops_hit_on_purpose();
  1849. // Now move left up to the collision, this time with a repeatable velocity.
  1850. enable_endstops(true);
  1851. destination[axis] = 11.f * axis_home_dir;
  1852. #ifdef TMC2130
  1853. feedrate = homing_feedrate[axis];
  1854. #else //TMC2130
  1855. feedrate = homing_feedrate[axis] / 2;
  1856. #endif //TMC2130
  1857. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1858. st_synchronize();
  1859. #ifdef TMC2130
  1860. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1861. if (pstep) pstep[i] = mscnt >> 4;
  1862. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1863. #endif //TMC2130
  1864. }
  1865. endstops_hit_on_purpose();
  1866. enable_endstops(false);
  1867. #ifdef TMC2130
  1868. uint8_t orig = tmc2130_home_origin[axis];
  1869. uint8_t back = tmc2130_home_bsteps[axis];
  1870. if (tmc2130_home_enabled && (orig <= 63))
  1871. {
  1872. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1873. if (back > 0)
  1874. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1875. }
  1876. else
  1877. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1878. tmc2130_home_exit();
  1879. #endif //TMC2130
  1880. axis_is_at_home(axis);
  1881. axis_known_position[axis] = true;
  1882. // Move from minimum
  1883. #ifdef TMC2130
  1884. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1885. #else //TMC2130
  1886. float dist = - axis_home_dir * 0.01f * 64;
  1887. #endif //TMC2130
  1888. current_position[axis] -= dist;
  1889. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1890. current_position[axis] += dist;
  1891. destination[axis] = current_position[axis];
  1892. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1893. st_synchronize();
  1894. feedrate = 0.0;
  1895. }
  1896. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1897. {
  1898. #ifdef TMC2130
  1899. FORCE_HIGH_POWER_START;
  1900. #endif
  1901. int axis_home_dir = home_dir(axis);
  1902. current_position[axis] = 0;
  1903. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1904. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1905. feedrate = homing_feedrate[axis];
  1906. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1907. st_synchronize();
  1908. #ifdef TMC2130
  1909. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1910. FORCE_HIGH_POWER_END;
  1911. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1912. return;
  1913. }
  1914. #endif //TMC2130
  1915. current_position[axis] = 0;
  1916. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1917. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1918. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1919. st_synchronize();
  1920. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1921. feedrate = homing_feedrate[axis]/2 ;
  1922. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1923. st_synchronize();
  1924. #ifdef TMC2130
  1925. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1926. FORCE_HIGH_POWER_END;
  1927. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1928. return;
  1929. }
  1930. #endif //TMC2130
  1931. axis_is_at_home(axis);
  1932. destination[axis] = current_position[axis];
  1933. feedrate = 0.0;
  1934. endstops_hit_on_purpose();
  1935. axis_known_position[axis] = true;
  1936. #ifdef TMC2130
  1937. FORCE_HIGH_POWER_END;
  1938. #endif
  1939. }
  1940. enable_endstops(endstops_enabled);
  1941. }
  1942. /**/
  1943. void home_xy()
  1944. {
  1945. set_destination_to_current();
  1946. homeaxis(X_AXIS);
  1947. homeaxis(Y_AXIS);
  1948. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1949. endstops_hit_on_purpose();
  1950. }
  1951. void refresh_cmd_timeout(void)
  1952. {
  1953. previous_millis_cmd = _millis();
  1954. }
  1955. #ifdef FWRETRACT
  1956. void retract(bool retracting, bool swapretract = false) {
  1957. if(retracting && !retracted[active_extruder]) {
  1958. destination[X_AXIS]=current_position[X_AXIS];
  1959. destination[Y_AXIS]=current_position[Y_AXIS];
  1960. destination[Z_AXIS]=current_position[Z_AXIS];
  1961. destination[E_AXIS]=current_position[E_AXIS];
  1962. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1963. plan_set_e_position(current_position[E_AXIS]);
  1964. float oldFeedrate = feedrate;
  1965. feedrate=cs.retract_feedrate*60;
  1966. retracted[active_extruder]=true;
  1967. prepare_move();
  1968. current_position[Z_AXIS]-=cs.retract_zlift;
  1969. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1970. prepare_move();
  1971. feedrate = oldFeedrate;
  1972. } else if(!retracting && retracted[active_extruder]) {
  1973. destination[X_AXIS]=current_position[X_AXIS];
  1974. destination[Y_AXIS]=current_position[Y_AXIS];
  1975. destination[Z_AXIS]=current_position[Z_AXIS];
  1976. destination[E_AXIS]=current_position[E_AXIS];
  1977. current_position[Z_AXIS]+=cs.retract_zlift;
  1978. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1979. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1980. plan_set_e_position(current_position[E_AXIS]);
  1981. float oldFeedrate = feedrate;
  1982. feedrate=cs.retract_recover_feedrate*60;
  1983. retracted[active_extruder]=false;
  1984. prepare_move();
  1985. feedrate = oldFeedrate;
  1986. }
  1987. } //retract
  1988. #endif //FWRETRACT
  1989. void trace() {
  1990. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1991. _tone(BEEPER, 440);
  1992. _delay(25);
  1993. _noTone(BEEPER);
  1994. _delay(20);
  1995. }
  1996. /*
  1997. void ramming() {
  1998. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1999. if (current_temperature[0] < 230) {
  2000. //PLA
  2001. max_feedrate[E_AXIS] = 50;
  2002. //current_position[E_AXIS] -= 8;
  2003. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2004. //current_position[E_AXIS] += 8;
  2005. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2006. current_position[E_AXIS] += 5.4;
  2007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2008. current_position[E_AXIS] += 3.2;
  2009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2010. current_position[E_AXIS] += 3;
  2011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2012. st_synchronize();
  2013. max_feedrate[E_AXIS] = 80;
  2014. current_position[E_AXIS] -= 82;
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2016. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2017. current_position[E_AXIS] -= 20;
  2018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2019. current_position[E_AXIS] += 5;
  2020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2021. current_position[E_AXIS] += 5;
  2022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2023. current_position[E_AXIS] -= 10;
  2024. st_synchronize();
  2025. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2026. current_position[E_AXIS] += 10;
  2027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2028. current_position[E_AXIS] -= 10;
  2029. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2030. current_position[E_AXIS] += 10;
  2031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2032. current_position[E_AXIS] -= 10;
  2033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2034. st_synchronize();
  2035. }
  2036. else {
  2037. //ABS
  2038. max_feedrate[E_AXIS] = 50;
  2039. //current_position[E_AXIS] -= 8;
  2040. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2041. //current_position[E_AXIS] += 8;
  2042. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2043. current_position[E_AXIS] += 3.1;
  2044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2045. current_position[E_AXIS] += 3.1;
  2046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2047. current_position[E_AXIS] += 4;
  2048. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2049. st_synchronize();
  2050. //current_position[X_AXIS] += 23; //delay
  2051. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2052. //current_position[X_AXIS] -= 23; //delay
  2053. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2054. _delay(4700);
  2055. max_feedrate[E_AXIS] = 80;
  2056. current_position[E_AXIS] -= 92;
  2057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2058. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2059. current_position[E_AXIS] -= 5;
  2060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2061. current_position[E_AXIS] += 5;
  2062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2063. current_position[E_AXIS] -= 5;
  2064. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2065. st_synchronize();
  2066. current_position[E_AXIS] += 5;
  2067. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2068. current_position[E_AXIS] -= 5;
  2069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2070. current_position[E_AXIS] += 5;
  2071. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2072. current_position[E_AXIS] -= 5;
  2073. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2074. st_synchronize();
  2075. }
  2076. }
  2077. */
  2078. #ifdef TMC2130
  2079. void force_high_power_mode(bool start_high_power_section) {
  2080. uint8_t silent;
  2081. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2082. if (silent == 1) {
  2083. //we are in silent mode, set to normal mode to enable crash detection
  2084. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2085. st_synchronize();
  2086. cli();
  2087. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2088. update_mode_profile();
  2089. tmc2130_init();
  2090. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2091. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2092. st_reset_timer();
  2093. sei();
  2094. }
  2095. }
  2096. #endif //TMC2130
  2097. #ifdef TMC2130
  2098. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2099. #else
  2100. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2101. #endif //TMC2130
  2102. {
  2103. st_synchronize();
  2104. #if 0
  2105. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2106. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2107. #endif
  2108. // Flag for the display update routine and to disable the print cancelation during homing.
  2109. homing_flag = true;
  2110. // Which axes should be homed?
  2111. bool home_x = home_x_axis;
  2112. bool home_y = home_y_axis;
  2113. bool home_z = home_z_axis;
  2114. // Either all X,Y,Z codes are present, or none of them.
  2115. bool home_all_axes = home_x == home_y && home_x == home_z;
  2116. if (home_all_axes)
  2117. // No X/Y/Z code provided means to home all axes.
  2118. home_x = home_y = home_z = true;
  2119. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2120. if (home_all_axes) {
  2121. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2122. feedrate = homing_feedrate[Z_AXIS];
  2123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2124. st_synchronize();
  2125. }
  2126. #ifdef ENABLE_AUTO_BED_LEVELING
  2127. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2128. #endif //ENABLE_AUTO_BED_LEVELING
  2129. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2130. // the planner will not perform any adjustments in the XY plane.
  2131. // Wait for the motors to stop and update the current position with the absolute values.
  2132. world2machine_revert_to_uncorrected();
  2133. // For mesh bed leveling deactivate the matrix temporarily.
  2134. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2135. // in a single axis only.
  2136. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2137. #ifdef MESH_BED_LEVELING
  2138. uint8_t mbl_was_active = mbl.active;
  2139. mbl.active = 0;
  2140. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2141. #endif
  2142. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2143. // consumed during the first movements following this statement.
  2144. if (home_z)
  2145. babystep_undo();
  2146. saved_feedrate = feedrate;
  2147. int l_feedmultiply = feedmultiply;
  2148. feedmultiply = 100;
  2149. previous_millis_cmd = _millis();
  2150. enable_endstops(true);
  2151. memcpy(destination, current_position, sizeof(destination));
  2152. feedrate = 0.0;
  2153. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2154. if(home_z)
  2155. homeaxis(Z_AXIS);
  2156. #endif
  2157. #ifdef QUICK_HOME
  2158. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2159. if(home_x && home_y) //first diagonal move
  2160. {
  2161. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2162. int x_axis_home_dir = home_dir(X_AXIS);
  2163. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2164. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2165. feedrate = homing_feedrate[X_AXIS];
  2166. if(homing_feedrate[Y_AXIS]<feedrate)
  2167. feedrate = homing_feedrate[Y_AXIS];
  2168. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2169. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2170. } else {
  2171. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2172. }
  2173. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2174. st_synchronize();
  2175. axis_is_at_home(X_AXIS);
  2176. axis_is_at_home(Y_AXIS);
  2177. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2178. destination[X_AXIS] = current_position[X_AXIS];
  2179. destination[Y_AXIS] = current_position[Y_AXIS];
  2180. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2181. feedrate = 0.0;
  2182. st_synchronize();
  2183. endstops_hit_on_purpose();
  2184. current_position[X_AXIS] = destination[X_AXIS];
  2185. current_position[Y_AXIS] = destination[Y_AXIS];
  2186. current_position[Z_AXIS] = destination[Z_AXIS];
  2187. }
  2188. #endif /* QUICK_HOME */
  2189. #ifdef TMC2130
  2190. if(home_x)
  2191. {
  2192. if (!calib)
  2193. homeaxis(X_AXIS);
  2194. else
  2195. tmc2130_home_calibrate(X_AXIS);
  2196. }
  2197. if(home_y)
  2198. {
  2199. if (!calib)
  2200. homeaxis(Y_AXIS);
  2201. else
  2202. tmc2130_home_calibrate(Y_AXIS);
  2203. }
  2204. #else //TMC2130
  2205. if(home_x) homeaxis(X_AXIS);
  2206. if(home_y) homeaxis(Y_AXIS);
  2207. #endif //TMC2130
  2208. if(home_x_axis && home_x_value != 0)
  2209. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2210. if(home_y_axis && home_y_value != 0)
  2211. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2212. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2213. #ifndef Z_SAFE_HOMING
  2214. if(home_z) {
  2215. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2216. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2217. feedrate = max_feedrate[Z_AXIS];
  2218. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2219. st_synchronize();
  2220. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2221. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2222. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2223. {
  2224. homeaxis(X_AXIS);
  2225. homeaxis(Y_AXIS);
  2226. }
  2227. // 1st mesh bed leveling measurement point, corrected.
  2228. world2machine_initialize();
  2229. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2230. world2machine_reset();
  2231. if (destination[Y_AXIS] < Y_MIN_POS)
  2232. destination[Y_AXIS] = Y_MIN_POS;
  2233. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2234. feedrate = homing_feedrate[Z_AXIS]/10;
  2235. current_position[Z_AXIS] = 0;
  2236. enable_endstops(false);
  2237. #ifdef DEBUG_BUILD
  2238. SERIAL_ECHOLNPGM("plan_set_position()");
  2239. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2240. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2241. #endif
  2242. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2243. #ifdef DEBUG_BUILD
  2244. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2245. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2246. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2247. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2248. #endif
  2249. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2250. st_synchronize();
  2251. current_position[X_AXIS] = destination[X_AXIS];
  2252. current_position[Y_AXIS] = destination[Y_AXIS];
  2253. enable_endstops(true);
  2254. endstops_hit_on_purpose();
  2255. homeaxis(Z_AXIS);
  2256. #else // MESH_BED_LEVELING
  2257. homeaxis(Z_AXIS);
  2258. #endif // MESH_BED_LEVELING
  2259. }
  2260. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2261. if(home_all_axes) {
  2262. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2263. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2264. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2265. feedrate = XY_TRAVEL_SPEED/60;
  2266. current_position[Z_AXIS] = 0;
  2267. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2268. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2269. st_synchronize();
  2270. current_position[X_AXIS] = destination[X_AXIS];
  2271. current_position[Y_AXIS] = destination[Y_AXIS];
  2272. homeaxis(Z_AXIS);
  2273. }
  2274. // Let's see if X and Y are homed and probe is inside bed area.
  2275. if(home_z) {
  2276. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2277. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2278. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2279. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2280. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2281. current_position[Z_AXIS] = 0;
  2282. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2283. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2284. feedrate = max_feedrate[Z_AXIS];
  2285. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2286. st_synchronize();
  2287. homeaxis(Z_AXIS);
  2288. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2289. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2290. SERIAL_ECHO_START;
  2291. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2292. } else {
  2293. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2294. SERIAL_ECHO_START;
  2295. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2296. }
  2297. }
  2298. #endif // Z_SAFE_HOMING
  2299. #endif // Z_HOME_DIR < 0
  2300. if(home_z_axis && home_z_value != 0)
  2301. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2302. #ifdef ENABLE_AUTO_BED_LEVELING
  2303. if(home_z)
  2304. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2305. #endif
  2306. // Set the planner and stepper routine positions.
  2307. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2308. // contains the machine coordinates.
  2309. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2310. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2311. enable_endstops(false);
  2312. #endif
  2313. feedrate = saved_feedrate;
  2314. feedmultiply = l_feedmultiply;
  2315. previous_millis_cmd = _millis();
  2316. endstops_hit_on_purpose();
  2317. #ifndef MESH_BED_LEVELING
  2318. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2319. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2320. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2321. lcd_adjust_z();
  2322. #endif
  2323. // Load the machine correction matrix
  2324. world2machine_initialize();
  2325. // and correct the current_position XY axes to match the transformed coordinate system.
  2326. world2machine_update_current();
  2327. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2328. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2329. {
  2330. if (! home_z && mbl_was_active) {
  2331. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2332. mbl.active = true;
  2333. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2334. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2335. }
  2336. }
  2337. else
  2338. {
  2339. st_synchronize();
  2340. homing_flag = false;
  2341. }
  2342. #endif
  2343. if (farm_mode) { prusa_statistics(20); };
  2344. homing_flag = false;
  2345. #if 0
  2346. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2347. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2348. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2349. #endif
  2350. }
  2351. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2352. {
  2353. #ifdef TMC2130
  2354. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2355. #else
  2356. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2357. #endif //TMC2130
  2358. }
  2359. void adjust_bed_reset()
  2360. {
  2361. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2362. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2363. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2364. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2365. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2366. }
  2367. //! @brief Calibrate XYZ
  2368. //! @param onlyZ if true, calibrate only Z axis
  2369. //! @param verbosity_level
  2370. //! @retval true Succeeded
  2371. //! @retval false Failed
  2372. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2373. {
  2374. bool final_result = false;
  2375. #ifdef TMC2130
  2376. FORCE_HIGH_POWER_START;
  2377. #endif // TMC2130
  2378. // Only Z calibration?
  2379. if (!onlyZ)
  2380. {
  2381. setTargetBed(0);
  2382. setAllTargetHotends(0);
  2383. adjust_bed_reset(); //reset bed level correction
  2384. }
  2385. // Disable the default update procedure of the display. We will do a modal dialog.
  2386. lcd_update_enable(false);
  2387. // Let the planner use the uncorrected coordinates.
  2388. mbl.reset();
  2389. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2390. // the planner will not perform any adjustments in the XY plane.
  2391. // Wait for the motors to stop and update the current position with the absolute values.
  2392. world2machine_revert_to_uncorrected();
  2393. // Reset the baby step value applied without moving the axes.
  2394. babystep_reset();
  2395. // Mark all axes as in a need for homing.
  2396. memset(axis_known_position, 0, sizeof(axis_known_position));
  2397. // Home in the XY plane.
  2398. //set_destination_to_current();
  2399. int l_feedmultiply = setup_for_endstop_move();
  2400. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2401. home_xy();
  2402. enable_endstops(false);
  2403. current_position[X_AXIS] += 5;
  2404. current_position[Y_AXIS] += 5;
  2405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2406. st_synchronize();
  2407. // Let the user move the Z axes up to the end stoppers.
  2408. #ifdef TMC2130
  2409. if (calibrate_z_auto())
  2410. {
  2411. #else //TMC2130
  2412. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2413. {
  2414. #endif //TMC2130
  2415. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2416. if(onlyZ){
  2417. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2418. lcd_set_cursor(0, 3);
  2419. lcd_print(1);
  2420. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2421. }else{
  2422. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2423. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2424. lcd_set_cursor(0, 2);
  2425. lcd_print(1);
  2426. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2427. }
  2428. refresh_cmd_timeout();
  2429. #ifndef STEEL_SHEET
  2430. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2431. {
  2432. lcd_wait_for_cool_down();
  2433. }
  2434. #endif //STEEL_SHEET
  2435. if(!onlyZ)
  2436. {
  2437. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2438. #ifdef STEEL_SHEET
  2439. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2440. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2441. #endif //STEEL_SHEET
  2442. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2443. KEEPALIVE_STATE(IN_HANDLER);
  2444. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2445. lcd_set_cursor(0, 2);
  2446. lcd_print(1);
  2447. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2448. }
  2449. bool endstops_enabled = enable_endstops(false);
  2450. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2451. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2452. st_synchronize();
  2453. // Move the print head close to the bed.
  2454. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2455. enable_endstops(true);
  2456. #ifdef TMC2130
  2457. tmc2130_home_enter(Z_AXIS_MASK);
  2458. #endif //TMC2130
  2459. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2460. st_synchronize();
  2461. #ifdef TMC2130
  2462. tmc2130_home_exit();
  2463. #endif //TMC2130
  2464. enable_endstops(endstops_enabled);
  2465. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2466. {
  2467. if (onlyZ)
  2468. {
  2469. clean_up_after_endstop_move(l_feedmultiply);
  2470. // Z only calibration.
  2471. // Load the machine correction matrix
  2472. world2machine_initialize();
  2473. // and correct the current_position to match the transformed coordinate system.
  2474. world2machine_update_current();
  2475. //FIXME
  2476. bool result = sample_mesh_and_store_reference();
  2477. if (result)
  2478. {
  2479. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2480. // Shipped, the nozzle height has been set already. The user can start printing now.
  2481. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2482. final_result = true;
  2483. // babystep_apply();
  2484. }
  2485. }
  2486. else
  2487. {
  2488. // Reset the baby step value and the baby step applied flag.
  2489. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2490. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2491. // Complete XYZ calibration.
  2492. uint8_t point_too_far_mask = 0;
  2493. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2494. clean_up_after_endstop_move(l_feedmultiply);
  2495. // Print head up.
  2496. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2497. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2498. st_synchronize();
  2499. //#ifndef NEW_XYZCAL
  2500. if (result >= 0)
  2501. {
  2502. #ifdef HEATBED_V2
  2503. sample_z();
  2504. #else //HEATBED_V2
  2505. point_too_far_mask = 0;
  2506. // Second half: The fine adjustment.
  2507. // Let the planner use the uncorrected coordinates.
  2508. mbl.reset();
  2509. world2machine_reset();
  2510. // Home in the XY plane.
  2511. int l_feedmultiply = setup_for_endstop_move();
  2512. home_xy();
  2513. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2514. clean_up_after_endstop_move(l_feedmultiply);
  2515. // Print head up.
  2516. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2518. st_synchronize();
  2519. // if (result >= 0) babystep_apply();
  2520. #endif //HEATBED_V2
  2521. }
  2522. //#endif //NEW_XYZCAL
  2523. lcd_update_enable(true);
  2524. lcd_update(2);
  2525. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2526. if (result >= 0)
  2527. {
  2528. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2529. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2530. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2531. final_result = true;
  2532. }
  2533. }
  2534. #ifdef TMC2130
  2535. tmc2130_home_exit();
  2536. #endif
  2537. }
  2538. else
  2539. {
  2540. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2541. final_result = false;
  2542. }
  2543. }
  2544. else
  2545. {
  2546. // Timeouted.
  2547. }
  2548. lcd_update_enable(true);
  2549. #ifdef TMC2130
  2550. FORCE_HIGH_POWER_END;
  2551. #endif // TMC2130
  2552. return final_result;
  2553. }
  2554. void gcode_M114()
  2555. {
  2556. SERIAL_PROTOCOLPGM("X:");
  2557. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2558. SERIAL_PROTOCOLPGM(" Y:");
  2559. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2560. SERIAL_PROTOCOLPGM(" Z:");
  2561. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2562. SERIAL_PROTOCOLPGM(" E:");
  2563. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2564. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2565. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2566. SERIAL_PROTOCOLPGM(" Y:");
  2567. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2568. SERIAL_PROTOCOLPGM(" Z:");
  2569. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2570. SERIAL_PROTOCOLPGM(" E:");
  2571. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2572. SERIAL_PROTOCOLLN("");
  2573. }
  2574. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2575. {
  2576. st_synchronize();
  2577. float lastpos[4];
  2578. if (farm_mode)
  2579. {
  2580. prusa_statistics(22);
  2581. }
  2582. //First backup current position and settings
  2583. int feedmultiplyBckp = feedmultiply;
  2584. float HotendTempBckp = degTargetHotend(active_extruder);
  2585. int fanSpeedBckp = fanSpeed;
  2586. lastpos[X_AXIS] = current_position[X_AXIS];
  2587. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2588. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2589. lastpos[E_AXIS] = current_position[E_AXIS];
  2590. //Retract E
  2591. current_position[E_AXIS] += e_shift;
  2592. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2593. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2594. st_synchronize();
  2595. //Lift Z
  2596. current_position[Z_AXIS] += z_shift;
  2597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2598. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2599. st_synchronize();
  2600. //Move XY to side
  2601. current_position[X_AXIS] = x_position;
  2602. current_position[Y_AXIS] = y_position;
  2603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2604. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2605. st_synchronize();
  2606. //Beep, manage nozzle heater and wait for user to start unload filament
  2607. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2608. lcd_change_fil_state = 0;
  2609. // Unload filament
  2610. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2611. else unload_filament(); //unload filament for single material (used also in M702)
  2612. //finish moves
  2613. st_synchronize();
  2614. if (!mmu_enabled)
  2615. {
  2616. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2617. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2618. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2619. if (lcd_change_fil_state == 0)
  2620. {
  2621. lcd_clear();
  2622. lcd_set_cursor(0, 2);
  2623. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2624. current_position[X_AXIS] -= 100;
  2625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2626. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2627. st_synchronize();
  2628. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2629. }
  2630. }
  2631. if (mmu_enabled)
  2632. {
  2633. if (!automatic) {
  2634. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2635. mmu_M600_wait_and_beep();
  2636. if (saved_printing) {
  2637. lcd_clear();
  2638. lcd_set_cursor(0, 2);
  2639. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2640. mmu_command(MmuCmd::R0);
  2641. manage_response(false, false);
  2642. }
  2643. }
  2644. mmu_M600_load_filament(automatic, HotendTempBckp);
  2645. }
  2646. else
  2647. M600_load_filament();
  2648. if (!automatic) M600_check_state(HotendTempBckp);
  2649. lcd_update_enable(true);
  2650. //Not let's go back to print
  2651. fanSpeed = fanSpeedBckp;
  2652. //Feed a little of filament to stabilize pressure
  2653. if (!automatic)
  2654. {
  2655. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2656. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2657. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2658. }
  2659. //Move XY back
  2660. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2661. FILAMENTCHANGE_XYFEED, active_extruder);
  2662. st_synchronize();
  2663. //Move Z back
  2664. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2665. FILAMENTCHANGE_ZFEED, active_extruder);
  2666. st_synchronize();
  2667. //Set E position to original
  2668. plan_set_e_position(lastpos[E_AXIS]);
  2669. memcpy(current_position, lastpos, sizeof(lastpos));
  2670. memcpy(destination, current_position, sizeof(current_position));
  2671. //Recover feed rate
  2672. feedmultiply = feedmultiplyBckp;
  2673. char cmd[9];
  2674. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2675. enquecommand(cmd);
  2676. #ifdef IR_SENSOR
  2677. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2678. fsensor_check_autoload();
  2679. #endif //IR_SENSOR
  2680. lcd_setstatuspgm(_T(WELCOME_MSG));
  2681. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2682. }
  2683. void gcode_M701()
  2684. {
  2685. printf_P(PSTR("gcode_M701 begin\n"));
  2686. if (mmu_enabled)
  2687. {
  2688. extr_adj(tmp_extruder);//loads current extruder
  2689. mmu_extruder = tmp_extruder;
  2690. }
  2691. else
  2692. {
  2693. enable_z();
  2694. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2695. #ifdef FSENSOR_QUALITY
  2696. fsensor_oq_meassure_start(40);
  2697. #endif //FSENSOR_QUALITY
  2698. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2699. current_position[E_AXIS] += 40;
  2700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2701. st_synchronize();
  2702. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2703. current_position[E_AXIS] += 30;
  2704. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2705. load_filament_final_feed(); //slow sequence
  2706. st_synchronize();
  2707. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
  2708. delay_keep_alive(50);
  2709. _noTone(BEEPER);
  2710. if (!farm_mode && loading_flag) {
  2711. lcd_load_filament_color_check();
  2712. }
  2713. lcd_update_enable(true);
  2714. lcd_update(2);
  2715. lcd_setstatuspgm(_T(WELCOME_MSG));
  2716. disable_z();
  2717. loading_flag = false;
  2718. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2719. #ifdef FSENSOR_QUALITY
  2720. fsensor_oq_meassure_stop();
  2721. if (!fsensor_oq_result())
  2722. {
  2723. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2724. lcd_update_enable(true);
  2725. lcd_update(2);
  2726. if (disable)
  2727. fsensor_disable();
  2728. }
  2729. #endif //FSENSOR_QUALITY
  2730. }
  2731. }
  2732. /**
  2733. * @brief Get serial number from 32U2 processor
  2734. *
  2735. * Typical format of S/N is:CZPX0917X003XC13518
  2736. *
  2737. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2738. *
  2739. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2740. * reply is transmitted to serial port 1 character by character.
  2741. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2742. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2743. * in any case.
  2744. */
  2745. static void gcode_PRUSA_SN()
  2746. {
  2747. if (farm_mode) {
  2748. selectedSerialPort = 0;
  2749. putchar(';');
  2750. putchar('S');
  2751. int numbersRead = 0;
  2752. ShortTimer timeout;
  2753. timeout.start();
  2754. while (numbersRead < 19) {
  2755. while (MSerial.available() > 0) {
  2756. uint8_t serial_char = MSerial.read();
  2757. selectedSerialPort = 1;
  2758. putchar(serial_char);
  2759. numbersRead++;
  2760. selectedSerialPort = 0;
  2761. }
  2762. if (timeout.expired(100u)) break;
  2763. }
  2764. selectedSerialPort = 1;
  2765. putchar('\n');
  2766. #if 0
  2767. for (int b = 0; b < 3; b++) {
  2768. _tone(BEEPER, 110);
  2769. _delay(50);
  2770. _noTone(BEEPER);
  2771. _delay(50);
  2772. }
  2773. #endif
  2774. } else {
  2775. puts_P(_N("Not in farm mode."));
  2776. }
  2777. }
  2778. #ifdef BACKLASH_X
  2779. extern uint8_t st_backlash_x;
  2780. #endif //BACKLASH_X
  2781. #ifdef BACKLASH_Y
  2782. extern uint8_t st_backlash_y;
  2783. #endif //BACKLASH_Y
  2784. //! @brief Parse and process commands
  2785. //!
  2786. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2787. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2788. //!
  2789. //! Implemented Codes
  2790. //! -------------------
  2791. //!
  2792. //!@n PRUSA CODES
  2793. //!@n P F - Returns FW versions
  2794. //!@n P R - Returns revision of printer
  2795. //!
  2796. //!@n G0 -> G1
  2797. //!@n G1 - Coordinated Movement X Y Z E
  2798. //!@n G2 - CW ARC
  2799. //!@n G3 - CCW ARC
  2800. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2801. //!@n G10 - retract filament according to settings of M207
  2802. //!@n G11 - retract recover filament according to settings of M208
  2803. //!@n G28 - Home all Axis
  2804. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2805. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2806. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2807. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2808. //!@n G80 - Automatic mesh bed leveling
  2809. //!@n G81 - Print bed profile
  2810. //!@n G90 - Use Absolute Coordinates
  2811. //!@n G91 - Use Relative Coordinates
  2812. //!@n G92 - Set current position to coordinates given
  2813. //!
  2814. //!@n M Codes
  2815. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2816. //!@n M1 - Same as M0
  2817. //!@n M17 - Enable/Power all stepper motors
  2818. //!@n M18 - Disable all stepper motors; same as M84
  2819. //!@n M20 - List SD card
  2820. //!@n M21 - Init SD card
  2821. //!@n M22 - Release SD card
  2822. //!@n M23 - Select SD file (M23 filename.g)
  2823. //!@n M24 - Start/resume SD print
  2824. //!@n M25 - Pause SD print
  2825. //!@n M26 - Set SD position in bytes (M26 S12345)
  2826. //!@n M27 - Report SD print status
  2827. //!@n M28 - Start SD write (M28 filename.g)
  2828. //!@n M29 - Stop SD write
  2829. //!@n M30 - Delete file from SD (M30 filename.g)
  2830. //!@n M31 - Output time since last M109 or SD card start to serial
  2831. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2832. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2833. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2834. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2835. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2836. //!@n M73 - Show percent done and print time remaining
  2837. //!@n M80 - Turn on Power Supply
  2838. //!@n M81 - Turn off Power Supply
  2839. //!@n M82 - Set E codes absolute (default)
  2840. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2841. //!@n M84 - Disable steppers until next move,
  2842. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2843. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2844. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2845. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2846. //!@n M104 - Set extruder target temp
  2847. //!@n M105 - Read current temp
  2848. //!@n M106 - Fan on
  2849. //!@n M107 - Fan off
  2850. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2851. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2852. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2853. //!@n M112 - Emergency stop
  2854. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2855. //!@n M114 - Output current position to serial port
  2856. //!@n M115 - Capabilities string
  2857. //!@n M117 - display message
  2858. //!@n M119 - Output Endstop status to serial port
  2859. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2860. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2861. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2862. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2863. //!@n M140 - Set bed target temp
  2864. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2865. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2866. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2867. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2868. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2869. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2870. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2871. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2872. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2873. //!@n M206 - set additional homing offset
  2874. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2875. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2876. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2877. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2878. //!@n M220 S<factor in percent>- set speed factor override percentage
  2879. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2880. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2881. //!@n M240 - Trigger a camera to take a photograph
  2882. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2883. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2884. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2885. //!@n M301 - Set PID parameters P I and D
  2886. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2887. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2888. //!@n M304 - Set bed PID parameters P I and D
  2889. //!@n M400 - Finish all moves
  2890. //!@n M401 - Lower z-probe if present
  2891. //!@n M402 - Raise z-probe if present
  2892. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2893. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2894. //!@n M406 - Turn off Filament Sensor extrusion control
  2895. //!@n M407 - Displays measured filament diameter
  2896. //!@n M500 - stores parameters in EEPROM
  2897. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2898. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2899. //!@n M503 - print the current settings (from memory not from EEPROM)
  2900. //!@n M509 - force language selection on next restart
  2901. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2902. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2903. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2904. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2905. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2906. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2907. //!@n M907 - Set digital trimpot motor current using axis codes.
  2908. //!@n M908 - Control digital trimpot directly.
  2909. //!@n M350 - Set microstepping mode.
  2910. //!@n M351 - Toggle MS1 MS2 pins directly.
  2911. //!
  2912. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2913. //!@n M999 - Restart after being stopped by error
  2914. void process_commands()
  2915. {
  2916. if (!buflen) return; //empty command
  2917. #ifdef FILAMENT_RUNOUT_SUPPORT
  2918. SET_INPUT(FR_SENS);
  2919. #endif
  2920. #ifdef CMDBUFFER_DEBUG
  2921. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2922. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2923. SERIAL_ECHOLNPGM("");
  2924. SERIAL_ECHOPGM("In cmdqueue: ");
  2925. SERIAL_ECHO(buflen);
  2926. SERIAL_ECHOLNPGM("");
  2927. #endif /* CMDBUFFER_DEBUG */
  2928. unsigned long codenum; //throw away variable
  2929. char *starpos = NULL;
  2930. #ifdef ENABLE_AUTO_BED_LEVELING
  2931. float x_tmp, y_tmp, z_tmp, real_z;
  2932. #endif
  2933. // PRUSA GCODES
  2934. KEEPALIVE_STATE(IN_HANDLER);
  2935. #ifdef SNMM
  2936. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2937. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2938. int8_t SilentMode;
  2939. #endif
  2940. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2941. starpos = (strchr(strchr_pointer + 5, '*'));
  2942. if (starpos != NULL)
  2943. *(starpos) = '\0';
  2944. lcd_setstatus(strchr_pointer + 5);
  2945. }
  2946. #ifdef TMC2130
  2947. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2948. {
  2949. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2950. {
  2951. uint8_t mask = 0;
  2952. if (code_seen('X')) mask |= X_AXIS_MASK;
  2953. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2954. crashdet_detected(mask);
  2955. }
  2956. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2957. crashdet_recover();
  2958. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2959. crashdet_cancel();
  2960. }
  2961. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2962. {
  2963. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2964. {
  2965. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2966. axis = (axis == 'E')?3:(axis - 'X');
  2967. if (axis < 4)
  2968. {
  2969. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2970. tmc2130_set_wave(axis, 247, fac);
  2971. }
  2972. }
  2973. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2974. {
  2975. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2976. axis = (axis == 'E')?3:(axis - 'X');
  2977. if (axis < 4)
  2978. {
  2979. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2980. uint16_t res = tmc2130_get_res(axis);
  2981. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2982. }
  2983. }
  2984. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2985. {
  2986. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2987. axis = (axis == 'E')?3:(axis - 'X');
  2988. if (axis < 4)
  2989. {
  2990. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2991. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2992. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2993. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2994. char* str_end = 0;
  2995. if (CMDBUFFER_CURRENT_STRING[14])
  2996. {
  2997. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2998. if (str_end && *str_end)
  2999. {
  3000. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3001. if (str_end && *str_end)
  3002. {
  3003. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3004. if (str_end && *str_end)
  3005. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3006. }
  3007. }
  3008. }
  3009. tmc2130_chopper_config[axis].toff = chop0;
  3010. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3011. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3012. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3013. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3014. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3015. }
  3016. }
  3017. }
  3018. #ifdef BACKLASH_X
  3019. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3020. {
  3021. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3022. st_backlash_x = bl;
  3023. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3024. }
  3025. #endif //BACKLASH_X
  3026. #ifdef BACKLASH_Y
  3027. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3028. {
  3029. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3030. st_backlash_y = bl;
  3031. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3032. }
  3033. #endif //BACKLASH_Y
  3034. #endif //TMC2130
  3035. else if(code_seen("PRUSA")){
  3036. if (code_seen("Ping")) { //! PRUSA Ping
  3037. if (farm_mode) {
  3038. PingTime = _millis();
  3039. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3040. }
  3041. }
  3042. else if (code_seen("PRN")) { //! PRUSA PRN
  3043. printf_P(_N("%d"), status_number);
  3044. }else if (code_seen("FAN")) { //! PRUSA FAN
  3045. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3046. }else if (code_seen("fn")) { //! PRUSA fn
  3047. if (farm_mode) {
  3048. printf_P(_N("%d"), farm_no);
  3049. }
  3050. else {
  3051. puts_P(_N("Not in farm mode."));
  3052. }
  3053. }
  3054. else if (code_seen("thx")) //! PRUSA thx
  3055. {
  3056. no_response = false;
  3057. }
  3058. else if (code_seen("uvlo")) //! PRUSA uvlo
  3059. {
  3060. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3061. enquecommand_P(PSTR("M24"));
  3062. }
  3063. #ifdef FILAMENT_SENSOR
  3064. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3065. {
  3066. fsensor_restore_print_and_continue();
  3067. }
  3068. #endif //FILAMENT_SENSOR
  3069. else if (code_seen("MMURES")) //! PRUSA MMURES
  3070. {
  3071. mmu_reset();
  3072. }
  3073. else if (code_seen("RESET")) { //! PRUSA RESET
  3074. // careful!
  3075. if (farm_mode) {
  3076. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3077. boot_app_magic = BOOT_APP_MAGIC;
  3078. boot_app_flags = BOOT_APP_FLG_RUN;
  3079. wdt_enable(WDTO_15MS);
  3080. cli();
  3081. while(1);
  3082. #else //WATCHDOG
  3083. asm volatile("jmp 0x3E000");
  3084. #endif //WATCHDOG
  3085. }
  3086. else {
  3087. MYSERIAL.println("Not in farm mode.");
  3088. }
  3089. }else if (code_seen("fv")) { //! PRUSA fv
  3090. // get file version
  3091. #ifdef SDSUPPORT
  3092. card.openFile(strchr_pointer + 3,true);
  3093. while (true) {
  3094. uint16_t readByte = card.get();
  3095. MYSERIAL.write(readByte);
  3096. if (readByte=='\n') {
  3097. break;
  3098. }
  3099. }
  3100. card.closefile();
  3101. #endif // SDSUPPORT
  3102. } else if (code_seen("M28")) { //! PRUSA M28
  3103. trace();
  3104. prusa_sd_card_upload = true;
  3105. card.openFile(strchr_pointer+4,false);
  3106. } else if (code_seen("SN")) { //! PRUSA SN
  3107. gcode_PRUSA_SN();
  3108. } else if(code_seen("Fir")){ //! PRUSA Fir
  3109. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3110. } else if(code_seen("Rev")){ //! PRUSA Rev
  3111. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3112. } else if(code_seen("Lang")) { //! PRUSA Lang
  3113. lang_reset();
  3114. } else if(code_seen("Lz")) { //! PRUSA Lz
  3115. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3116. } else if(code_seen("Beat")) { //! PRUSA Beat
  3117. // Kick farm link timer
  3118. kicktime = _millis();
  3119. } else if(code_seen("FR")) { //! PRUSA FR
  3120. // Factory full reset
  3121. factory_reset(0);
  3122. }
  3123. //else if (code_seen('Cal')) {
  3124. // lcd_calibration();
  3125. // }
  3126. }
  3127. else if (code_seen('^')) {
  3128. // nothing, this is a version line
  3129. } else if(code_seen('G'))
  3130. {
  3131. gcode_in_progress = (int)code_value();
  3132. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3133. switch (gcode_in_progress)
  3134. {
  3135. case 0: // G0 -> G1
  3136. case 1: // G1
  3137. if(Stopped == false) {
  3138. #ifdef FILAMENT_RUNOUT_SUPPORT
  3139. if(READ(FR_SENS)){
  3140. int feedmultiplyBckp=feedmultiply;
  3141. float target[4];
  3142. float lastpos[4];
  3143. target[X_AXIS]=current_position[X_AXIS];
  3144. target[Y_AXIS]=current_position[Y_AXIS];
  3145. target[Z_AXIS]=current_position[Z_AXIS];
  3146. target[E_AXIS]=current_position[E_AXIS];
  3147. lastpos[X_AXIS]=current_position[X_AXIS];
  3148. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3149. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3150. lastpos[E_AXIS]=current_position[E_AXIS];
  3151. //retract by E
  3152. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3153. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3154. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3155. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3156. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3157. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3158. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3159. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3160. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3161. //finish moves
  3162. st_synchronize();
  3163. //disable extruder steppers so filament can be removed
  3164. disable_e0();
  3165. disable_e1();
  3166. disable_e2();
  3167. _delay(100);
  3168. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3169. uint8_t cnt=0;
  3170. int counterBeep = 0;
  3171. lcd_wait_interact();
  3172. while(!lcd_clicked()){
  3173. cnt++;
  3174. manage_heater();
  3175. manage_inactivity(true);
  3176. //lcd_update(0);
  3177. if(cnt==0)
  3178. {
  3179. #if BEEPER > 0
  3180. if (counterBeep== 500){
  3181. counterBeep = 0;
  3182. }
  3183. SET_OUTPUT(BEEPER);
  3184. if (counterBeep== 0){
  3185. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3186. WRITE(BEEPER,HIGH);
  3187. }
  3188. if (counterBeep== 20){
  3189. WRITE(BEEPER,LOW);
  3190. }
  3191. counterBeep++;
  3192. #else
  3193. #endif
  3194. }
  3195. }
  3196. WRITE(BEEPER,LOW);
  3197. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3198. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3199. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3200. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3201. lcd_change_fil_state = 0;
  3202. lcd_loading_filament();
  3203. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3204. lcd_change_fil_state = 0;
  3205. lcd_alright();
  3206. switch(lcd_change_fil_state){
  3207. case 2:
  3208. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3209. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3210. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3211. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3212. lcd_loading_filament();
  3213. break;
  3214. case 3:
  3215. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3216. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3217. lcd_loading_color();
  3218. break;
  3219. default:
  3220. lcd_change_success();
  3221. break;
  3222. }
  3223. }
  3224. target[E_AXIS]+= 5;
  3225. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3226. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3227. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3228. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3229. //plan_set_e_position(current_position[E_AXIS]);
  3230. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3231. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3232. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3233. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3234. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3235. plan_set_e_position(lastpos[E_AXIS]);
  3236. feedmultiply=feedmultiplyBckp;
  3237. char cmd[9];
  3238. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3239. enquecommand(cmd);
  3240. }
  3241. #endif
  3242. get_coordinates(); // For X Y Z E F
  3243. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3244. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3245. }
  3246. #ifdef FWRETRACT
  3247. if(cs.autoretract_enabled)
  3248. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3249. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3250. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3251. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3252. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3253. retract(!retracted[active_extruder]);
  3254. return;
  3255. }
  3256. }
  3257. #endif //FWRETRACT
  3258. prepare_move();
  3259. //ClearToSend();
  3260. }
  3261. break;
  3262. case 2: // G2 - CW ARC
  3263. if(Stopped == false) {
  3264. get_arc_coordinates();
  3265. prepare_arc_move(true);
  3266. }
  3267. break;
  3268. case 3: // G3 - CCW ARC
  3269. if(Stopped == false) {
  3270. get_arc_coordinates();
  3271. prepare_arc_move(false);
  3272. }
  3273. break;
  3274. case 4: // G4 dwell
  3275. codenum = 0;
  3276. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3277. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3278. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3279. st_synchronize();
  3280. codenum += _millis(); // keep track of when we started waiting
  3281. previous_millis_cmd = _millis();
  3282. while(_millis() < codenum) {
  3283. manage_heater();
  3284. manage_inactivity();
  3285. lcd_update(0);
  3286. }
  3287. break;
  3288. #ifdef FWRETRACT
  3289. case 10: // G10 retract
  3290. #if EXTRUDERS > 1
  3291. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3292. retract(true,retracted_swap[active_extruder]);
  3293. #else
  3294. retract(true);
  3295. #endif
  3296. break;
  3297. case 11: // G11 retract_recover
  3298. #if EXTRUDERS > 1
  3299. retract(false,retracted_swap[active_extruder]);
  3300. #else
  3301. retract(false);
  3302. #endif
  3303. break;
  3304. #endif //FWRETRACT
  3305. case 28: //G28 Home all Axis one at a time
  3306. {
  3307. long home_x_value = 0;
  3308. long home_y_value = 0;
  3309. long home_z_value = 0;
  3310. // Which axes should be homed?
  3311. bool home_x = code_seen(axis_codes[X_AXIS]);
  3312. home_x_value = code_value_long();
  3313. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3314. home_y_value = code_value_long();
  3315. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3316. home_z_value = code_value_long();
  3317. bool without_mbl = code_seen('W');
  3318. // calibrate?
  3319. #ifdef TMC2130
  3320. bool calib = code_seen('C');
  3321. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3322. #else
  3323. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3324. #endif //TMC2130
  3325. if ((home_x || home_y || without_mbl || home_z) == false) {
  3326. // Push the commands to the front of the message queue in the reverse order!
  3327. // There shall be always enough space reserved for these commands.
  3328. goto case_G80;
  3329. }
  3330. break;
  3331. }
  3332. #ifdef ENABLE_AUTO_BED_LEVELING
  3333. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3334. {
  3335. #if Z_MIN_PIN == -1
  3336. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3337. #endif
  3338. // Prevent user from running a G29 without first homing in X and Y
  3339. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3340. {
  3341. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3342. SERIAL_ECHO_START;
  3343. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3344. break; // abort G29, since we don't know where we are
  3345. }
  3346. st_synchronize();
  3347. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3348. //vector_3 corrected_position = plan_get_position_mm();
  3349. //corrected_position.debug("position before G29");
  3350. plan_bed_level_matrix.set_to_identity();
  3351. vector_3 uncorrected_position = plan_get_position();
  3352. //uncorrected_position.debug("position durring G29");
  3353. current_position[X_AXIS] = uncorrected_position.x;
  3354. current_position[Y_AXIS] = uncorrected_position.y;
  3355. current_position[Z_AXIS] = uncorrected_position.z;
  3356. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3357. int l_feedmultiply = setup_for_endstop_move();
  3358. feedrate = homing_feedrate[Z_AXIS];
  3359. #ifdef AUTO_BED_LEVELING_GRID
  3360. // probe at the points of a lattice grid
  3361. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3362. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3363. // solve the plane equation ax + by + d = z
  3364. // A is the matrix with rows [x y 1] for all the probed points
  3365. // B is the vector of the Z positions
  3366. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3367. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3368. // "A" matrix of the linear system of equations
  3369. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3370. // "B" vector of Z points
  3371. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3372. int probePointCounter = 0;
  3373. bool zig = true;
  3374. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3375. {
  3376. int xProbe, xInc;
  3377. if (zig)
  3378. {
  3379. xProbe = LEFT_PROBE_BED_POSITION;
  3380. //xEnd = RIGHT_PROBE_BED_POSITION;
  3381. xInc = xGridSpacing;
  3382. zig = false;
  3383. } else // zag
  3384. {
  3385. xProbe = RIGHT_PROBE_BED_POSITION;
  3386. //xEnd = LEFT_PROBE_BED_POSITION;
  3387. xInc = -xGridSpacing;
  3388. zig = true;
  3389. }
  3390. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3391. {
  3392. float z_before;
  3393. if (probePointCounter == 0)
  3394. {
  3395. // raise before probing
  3396. z_before = Z_RAISE_BEFORE_PROBING;
  3397. } else
  3398. {
  3399. // raise extruder
  3400. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3401. }
  3402. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3403. eqnBVector[probePointCounter] = measured_z;
  3404. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3405. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3406. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3407. probePointCounter++;
  3408. xProbe += xInc;
  3409. }
  3410. }
  3411. clean_up_after_endstop_move(l_feedmultiply);
  3412. // solve lsq problem
  3413. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3414. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3415. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3416. SERIAL_PROTOCOLPGM(" b: ");
  3417. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3418. SERIAL_PROTOCOLPGM(" d: ");
  3419. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3420. set_bed_level_equation_lsq(plane_equation_coefficients);
  3421. free(plane_equation_coefficients);
  3422. #else // AUTO_BED_LEVELING_GRID not defined
  3423. // Probe at 3 arbitrary points
  3424. // probe 1
  3425. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3426. // probe 2
  3427. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3428. // probe 3
  3429. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3430. clean_up_after_endstop_move(l_feedmultiply);
  3431. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3432. #endif // AUTO_BED_LEVELING_GRID
  3433. st_synchronize();
  3434. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3435. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3436. // When the bed is uneven, this height must be corrected.
  3437. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3438. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3439. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3440. z_tmp = current_position[Z_AXIS];
  3441. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3442. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3443. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3444. }
  3445. break;
  3446. #ifndef Z_PROBE_SLED
  3447. case 30: // G30 Single Z Probe
  3448. {
  3449. st_synchronize();
  3450. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3451. int l_feedmultiply = setup_for_endstop_move();
  3452. feedrate = homing_feedrate[Z_AXIS];
  3453. run_z_probe();
  3454. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3455. SERIAL_PROTOCOLPGM(" X: ");
  3456. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3457. SERIAL_PROTOCOLPGM(" Y: ");
  3458. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3459. SERIAL_PROTOCOLPGM(" Z: ");
  3460. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3461. SERIAL_PROTOCOLPGM("\n");
  3462. clean_up_after_endstop_move(l_feedmultiply);
  3463. }
  3464. break;
  3465. #else
  3466. case 31: // dock the sled
  3467. dock_sled(true);
  3468. break;
  3469. case 32: // undock the sled
  3470. dock_sled(false);
  3471. break;
  3472. #endif // Z_PROBE_SLED
  3473. #endif // ENABLE_AUTO_BED_LEVELING
  3474. #ifdef MESH_BED_LEVELING
  3475. case 30: // G30 Single Z Probe
  3476. {
  3477. st_synchronize();
  3478. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3479. int l_feedmultiply = setup_for_endstop_move();
  3480. feedrate = homing_feedrate[Z_AXIS];
  3481. find_bed_induction_sensor_point_z(-10.f, 3);
  3482. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3483. clean_up_after_endstop_move(l_feedmultiply);
  3484. }
  3485. break;
  3486. case 75:
  3487. {
  3488. for (int i = 40; i <= 110; i++)
  3489. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3490. }
  3491. break;
  3492. case 76: //! G76 - PINDA probe temperature calibration
  3493. {
  3494. #ifdef PINDA_THERMISTOR
  3495. if (true)
  3496. {
  3497. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3498. //we need to know accurate position of first calibration point
  3499. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3500. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3501. break;
  3502. }
  3503. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3504. {
  3505. // We don't know where we are! HOME!
  3506. // Push the commands to the front of the message queue in the reverse order!
  3507. // There shall be always enough space reserved for these commands.
  3508. repeatcommand_front(); // repeat G76 with all its parameters
  3509. enquecommand_front_P((PSTR("G28 W0")));
  3510. break;
  3511. }
  3512. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3513. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3514. if (result)
  3515. {
  3516. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3518. current_position[Z_AXIS] = 50;
  3519. current_position[Y_AXIS] = 180;
  3520. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3521. st_synchronize();
  3522. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3523. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3524. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3526. st_synchronize();
  3527. gcode_G28(false, false, true);
  3528. }
  3529. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3530. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3531. current_position[Z_AXIS] = 100;
  3532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3533. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3534. lcd_temp_cal_show_result(false);
  3535. break;
  3536. }
  3537. }
  3538. lcd_update_enable(true);
  3539. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3540. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3541. float zero_z;
  3542. int z_shift = 0; //unit: steps
  3543. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3544. if (start_temp < 35) start_temp = 35;
  3545. if (start_temp < current_temperature_pinda) start_temp += 5;
  3546. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3547. // setTargetHotend(200, 0);
  3548. setTargetBed(70 + (start_temp - 30));
  3549. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3550. custom_message_state = 1;
  3551. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3552. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3553. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3554. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3555. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3556. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3557. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3559. st_synchronize();
  3560. while (current_temperature_pinda < start_temp)
  3561. {
  3562. delay_keep_alive(1000);
  3563. serialecho_temperatures();
  3564. }
  3565. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3566. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3568. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3569. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3570. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3571. st_synchronize();
  3572. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3573. if (find_z_result == false) {
  3574. lcd_temp_cal_show_result(find_z_result);
  3575. break;
  3576. }
  3577. zero_z = current_position[Z_AXIS];
  3578. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3579. int i = -1; for (; i < 5; i++)
  3580. {
  3581. float temp = (40 + i * 5);
  3582. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3583. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3584. if (start_temp <= temp) break;
  3585. }
  3586. for (i++; i < 5; i++)
  3587. {
  3588. float temp = (40 + i * 5);
  3589. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3590. custom_message_state = i + 2;
  3591. setTargetBed(50 + 10 * (temp - 30) / 5);
  3592. // setTargetHotend(255, 0);
  3593. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3594. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3595. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3596. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3598. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3600. st_synchronize();
  3601. while (current_temperature_pinda < temp)
  3602. {
  3603. delay_keep_alive(1000);
  3604. serialecho_temperatures();
  3605. }
  3606. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3608. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3609. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3610. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3611. st_synchronize();
  3612. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3613. if (find_z_result == false) {
  3614. lcd_temp_cal_show_result(find_z_result);
  3615. break;
  3616. }
  3617. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3618. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3619. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3620. }
  3621. lcd_temp_cal_show_result(true);
  3622. break;
  3623. }
  3624. #endif //PINDA_THERMISTOR
  3625. setTargetBed(PINDA_MIN_T);
  3626. float zero_z;
  3627. int z_shift = 0; //unit: steps
  3628. int t_c; // temperature
  3629. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3630. // We don't know where we are! HOME!
  3631. // Push the commands to the front of the message queue in the reverse order!
  3632. // There shall be always enough space reserved for these commands.
  3633. repeatcommand_front(); // repeat G76 with all its parameters
  3634. enquecommand_front_P((PSTR("G28 W0")));
  3635. break;
  3636. }
  3637. puts_P(_N("PINDA probe calibration start"));
  3638. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3639. custom_message_state = 1;
  3640. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3641. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3642. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3643. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3645. st_synchronize();
  3646. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3647. delay_keep_alive(1000);
  3648. serialecho_temperatures();
  3649. }
  3650. //enquecommand_P(PSTR("M190 S50"));
  3651. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3652. delay_keep_alive(1000);
  3653. serialecho_temperatures();
  3654. }
  3655. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3656. current_position[Z_AXIS] = 5;
  3657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3658. current_position[X_AXIS] = BED_X0;
  3659. current_position[Y_AXIS] = BED_Y0;
  3660. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3661. st_synchronize();
  3662. find_bed_induction_sensor_point_z(-1.f);
  3663. zero_z = current_position[Z_AXIS];
  3664. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3665. for (int i = 0; i<5; i++) {
  3666. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3667. custom_message_state = i + 2;
  3668. t_c = 60 + i * 10;
  3669. setTargetBed(t_c);
  3670. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3671. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3672. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3673. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3674. st_synchronize();
  3675. while (degBed() < t_c) {
  3676. delay_keep_alive(1000);
  3677. serialecho_temperatures();
  3678. }
  3679. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3680. delay_keep_alive(1000);
  3681. serialecho_temperatures();
  3682. }
  3683. current_position[Z_AXIS] = 5;
  3684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3685. current_position[X_AXIS] = BED_X0;
  3686. current_position[Y_AXIS] = BED_Y0;
  3687. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3688. st_synchronize();
  3689. find_bed_induction_sensor_point_z(-1.f);
  3690. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3691. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3692. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3693. }
  3694. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3695. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3696. puts_P(_N("Temperature calibration done."));
  3697. disable_x();
  3698. disable_y();
  3699. disable_z();
  3700. disable_e0();
  3701. disable_e1();
  3702. disable_e2();
  3703. setTargetBed(0); //set bed target temperature back to 0
  3704. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3705. temp_cal_active = true;
  3706. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3707. lcd_update_enable(true);
  3708. lcd_update(2);
  3709. }
  3710. break;
  3711. /**
  3712. * G80: Mesh-based Z probe, probes a grid and produces a
  3713. * mesh to compensate for variable bed height
  3714. *
  3715. * The S0 report the points as below
  3716. * @code{.unparsed}
  3717. * +----> X-axis
  3718. * |
  3719. * |
  3720. * v Y-axis
  3721. * @endcode
  3722. */
  3723. case 80:
  3724. #ifdef MK1BP
  3725. break;
  3726. #endif //MK1BP
  3727. case_G80:
  3728. {
  3729. mesh_bed_leveling_flag = true;
  3730. static bool run = false;
  3731. #ifdef SUPPORT_VERBOSITY
  3732. int8_t verbosity_level = 0;
  3733. if (code_seen('V')) {
  3734. // Just 'V' without a number counts as V1.
  3735. char c = strchr_pointer[1];
  3736. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3737. }
  3738. #endif //SUPPORT_VERBOSITY
  3739. // Firstly check if we know where we are
  3740. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3741. // We don't know where we are! HOME!
  3742. // Push the commands to the front of the message queue in the reverse order!
  3743. // There shall be always enough space reserved for these commands.
  3744. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3745. repeatcommand_front(); // repeat G80 with all its parameters
  3746. enquecommand_front_P((PSTR("G28 W0")));
  3747. }
  3748. else {
  3749. mesh_bed_leveling_flag = false;
  3750. }
  3751. break;
  3752. }
  3753. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3754. if (code_seen('N')) {
  3755. nMeasPoints = code_value_uint8();
  3756. if (nMeasPoints != 7) {
  3757. nMeasPoints = 3;
  3758. }
  3759. }
  3760. else {
  3761. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3762. }
  3763. uint8_t nProbeRetry = 3;
  3764. if (code_seen('R')) {
  3765. nProbeRetry = code_value_uint8();
  3766. if (nProbeRetry > 10) {
  3767. nProbeRetry = 10;
  3768. }
  3769. }
  3770. else {
  3771. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3772. }
  3773. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3774. bool temp_comp_start = true;
  3775. #ifdef PINDA_THERMISTOR
  3776. temp_comp_start = false;
  3777. #endif //PINDA_THERMISTOR
  3778. if (temp_comp_start)
  3779. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3780. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3781. temp_compensation_start();
  3782. run = true;
  3783. repeatcommand_front(); // repeat G80 with all its parameters
  3784. enquecommand_front_P((PSTR("G28 W0")));
  3785. }
  3786. else {
  3787. mesh_bed_leveling_flag = false;
  3788. }
  3789. break;
  3790. }
  3791. run = false;
  3792. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3793. mesh_bed_leveling_flag = false;
  3794. break;
  3795. }
  3796. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3797. unsigned int custom_message_type_old = custom_message_type;
  3798. unsigned int custom_message_state_old = custom_message_state;
  3799. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3800. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3801. lcd_update(1);
  3802. mbl.reset(); //reset mesh bed leveling
  3803. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3804. // consumed during the first movements following this statement.
  3805. babystep_undo();
  3806. // Cycle through all points and probe them
  3807. // First move up. During this first movement, the babystepping will be reverted.
  3808. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3809. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3810. // The move to the first calibration point.
  3811. current_position[X_AXIS] = BED_X0;
  3812. current_position[Y_AXIS] = BED_Y0;
  3813. #ifdef SUPPORT_VERBOSITY
  3814. if (verbosity_level >= 1)
  3815. {
  3816. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3817. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3818. }
  3819. #else //SUPPORT_VERBOSITY
  3820. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3821. #endif //SUPPORT_VERBOSITY
  3822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3823. // Wait until the move is finished.
  3824. st_synchronize();
  3825. uint8_t mesh_point = 0; //index number of calibration point
  3826. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3827. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3828. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3829. #ifdef SUPPORT_VERBOSITY
  3830. if (verbosity_level >= 1) {
  3831. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3832. }
  3833. #endif // SUPPORT_VERBOSITY
  3834. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3835. const char *kill_message = NULL;
  3836. while (mesh_point != nMeasPoints * nMeasPoints) {
  3837. // Get coords of a measuring point.
  3838. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3839. uint8_t iy = mesh_point / nMeasPoints;
  3840. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3841. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3842. custom_message_state--;
  3843. mesh_point++;
  3844. continue; //skip
  3845. }*/
  3846. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3847. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3848. {
  3849. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3850. }
  3851. float z0 = 0.f;
  3852. if (has_z && (mesh_point > 0)) {
  3853. uint16_t z_offset_u = 0;
  3854. if (nMeasPoints == 7) {
  3855. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3856. }
  3857. else {
  3858. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3859. }
  3860. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3861. #ifdef SUPPORT_VERBOSITY
  3862. if (verbosity_level >= 1) {
  3863. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3864. }
  3865. #endif // SUPPORT_VERBOSITY
  3866. }
  3867. // Move Z up to MESH_HOME_Z_SEARCH.
  3868. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3869. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3870. float init_z_bckp = current_position[Z_AXIS];
  3871. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3872. st_synchronize();
  3873. // Move to XY position of the sensor point.
  3874. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3875. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3876. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3877. #ifdef SUPPORT_VERBOSITY
  3878. if (verbosity_level >= 1) {
  3879. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3880. SERIAL_PROTOCOL(mesh_point);
  3881. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3882. }
  3883. #else //SUPPORT_VERBOSITY
  3884. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3885. #endif // SUPPORT_VERBOSITY
  3886. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3888. st_synchronize();
  3889. // Go down until endstop is hit
  3890. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3891. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3892. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3893. break;
  3894. }
  3895. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3896. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  3897. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3898. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3899. st_synchronize();
  3900. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3901. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3902. break;
  3903. }
  3904. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3905. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  3906. break;
  3907. }
  3908. }
  3909. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3910. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  3911. break;
  3912. }
  3913. #ifdef SUPPORT_VERBOSITY
  3914. if (verbosity_level >= 10) {
  3915. SERIAL_ECHOPGM("X: ");
  3916. MYSERIAL.print(current_position[X_AXIS], 5);
  3917. SERIAL_ECHOLNPGM("");
  3918. SERIAL_ECHOPGM("Y: ");
  3919. MYSERIAL.print(current_position[Y_AXIS], 5);
  3920. SERIAL_PROTOCOLPGM("\n");
  3921. }
  3922. #endif // SUPPORT_VERBOSITY
  3923. float offset_z = 0;
  3924. #ifdef PINDA_THERMISTOR
  3925. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3926. #endif //PINDA_THERMISTOR
  3927. // #ifdef SUPPORT_VERBOSITY
  3928. /* if (verbosity_level >= 1)
  3929. {
  3930. SERIAL_ECHOPGM("mesh bed leveling: ");
  3931. MYSERIAL.print(current_position[Z_AXIS], 5);
  3932. SERIAL_ECHOPGM(" offset: ");
  3933. MYSERIAL.print(offset_z, 5);
  3934. SERIAL_ECHOLNPGM("");
  3935. }*/
  3936. // #endif // SUPPORT_VERBOSITY
  3937. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3938. custom_message_state--;
  3939. mesh_point++;
  3940. lcd_update(1);
  3941. }
  3942. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3943. #ifdef SUPPORT_VERBOSITY
  3944. if (verbosity_level >= 20) {
  3945. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3946. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3947. MYSERIAL.print(current_position[Z_AXIS], 5);
  3948. }
  3949. #endif // SUPPORT_VERBOSITY
  3950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3951. st_synchronize();
  3952. if (mesh_point != nMeasPoints * nMeasPoints) {
  3953. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3954. bool bState;
  3955. do { // repeat until Z-leveling o.k.
  3956. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  3957. #ifdef TMC2130
  3958. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3959. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3960. #else // TMC2130
  3961. lcd_wait_for_click_delay(0); // ~ no timeout
  3962. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3963. #endif // TMC2130
  3964. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3965. bState=enable_z_endstop(false);
  3966. current_position[Z_AXIS] -= 1;
  3967. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3968. st_synchronize();
  3969. enable_z_endstop(true);
  3970. #ifdef TMC2130
  3971. tmc2130_home_enter(Z_AXIS_MASK);
  3972. #endif // TMC2130
  3973. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3974. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3975. st_synchronize();
  3976. #ifdef TMC2130
  3977. tmc2130_home_exit();
  3978. #endif // TMC2130
  3979. enable_z_endstop(bState);
  3980. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  3981. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  3982. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3983. lcd_update_enable(true); // display / status-line recovery
  3984. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  3985. repeatcommand_front(); // re-run (i.e. of "G80")
  3986. break;
  3987. }
  3988. clean_up_after_endstop_move(l_feedmultiply);
  3989. // SERIAL_ECHOLNPGM("clean up finished ");
  3990. bool apply_temp_comp = true;
  3991. #ifdef PINDA_THERMISTOR
  3992. apply_temp_comp = false;
  3993. #endif
  3994. if (apply_temp_comp)
  3995. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3996. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3997. // SERIAL_ECHOLNPGM("babystep applied");
  3998. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3999. #ifdef SUPPORT_VERBOSITY
  4000. if (verbosity_level >= 1) {
  4001. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4002. }
  4003. #endif // SUPPORT_VERBOSITY
  4004. for (uint8_t i = 0; i < 4; ++i) {
  4005. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4006. long correction = 0;
  4007. if (code_seen(codes[i]))
  4008. correction = code_value_long();
  4009. else if (eeprom_bed_correction_valid) {
  4010. unsigned char *addr = (i < 2) ?
  4011. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4012. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4013. correction = eeprom_read_int8(addr);
  4014. }
  4015. if (correction == 0)
  4016. continue;
  4017. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4018. SERIAL_ERROR_START;
  4019. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4020. SERIAL_ECHO(correction);
  4021. SERIAL_ECHOLNPGM(" microns");
  4022. }
  4023. else {
  4024. float offset = float(correction) * 0.001f;
  4025. switch (i) {
  4026. case 0:
  4027. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4028. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4029. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4030. }
  4031. }
  4032. break;
  4033. case 1:
  4034. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4035. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4036. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4037. }
  4038. }
  4039. break;
  4040. case 2:
  4041. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4042. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4043. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4044. }
  4045. }
  4046. break;
  4047. case 3:
  4048. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4049. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4050. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4051. }
  4052. }
  4053. break;
  4054. }
  4055. }
  4056. }
  4057. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4058. if (nMeasPoints == 3) {
  4059. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4060. }
  4061. /*
  4062. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4063. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4064. SERIAL_PROTOCOLPGM(",");
  4065. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4066. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4067. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4068. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4069. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4070. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4071. SERIAL_PROTOCOLPGM(" ");
  4072. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4073. }
  4074. SERIAL_PROTOCOLPGM("\n");
  4075. }
  4076. */
  4077. if (nMeasPoints == 7 && magnet_elimination) {
  4078. mbl_interpolation(nMeasPoints);
  4079. }
  4080. /*
  4081. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4082. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4083. SERIAL_PROTOCOLPGM(",");
  4084. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4085. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4086. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4087. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4088. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4089. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4090. SERIAL_PROTOCOLPGM(" ");
  4091. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4092. }
  4093. SERIAL_PROTOCOLPGM("\n");
  4094. }
  4095. */
  4096. // SERIAL_ECHOLNPGM("Upsample finished");
  4097. mbl.active = 1; //activate mesh bed leveling
  4098. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4099. go_home_with_z_lift();
  4100. // SERIAL_ECHOLNPGM("Go home finished");
  4101. //unretract (after PINDA preheat retraction)
  4102. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4103. current_position[E_AXIS] += default_retraction;
  4104. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4105. }
  4106. KEEPALIVE_STATE(NOT_BUSY);
  4107. // Restore custom message state
  4108. lcd_setstatuspgm(_T(WELCOME_MSG));
  4109. custom_message_type = custom_message_type_old;
  4110. custom_message_state = custom_message_state_old;
  4111. mesh_bed_leveling_flag = false;
  4112. mesh_bed_run_from_menu = false;
  4113. lcd_update(2);
  4114. }
  4115. break;
  4116. /**
  4117. * G81: Print mesh bed leveling status and bed profile if activated
  4118. */
  4119. case 81:
  4120. if (mbl.active) {
  4121. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4122. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4123. SERIAL_PROTOCOLPGM(",");
  4124. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4125. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4126. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4127. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4128. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4129. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4130. SERIAL_PROTOCOLPGM(" ");
  4131. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4132. }
  4133. SERIAL_PROTOCOLPGM("\n");
  4134. }
  4135. }
  4136. else
  4137. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4138. break;
  4139. #if 0
  4140. /**
  4141. * G82: Single Z probe at current location
  4142. *
  4143. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4144. *
  4145. */
  4146. case 82:
  4147. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4148. int l_feedmultiply = setup_for_endstop_move();
  4149. find_bed_induction_sensor_point_z();
  4150. clean_up_after_endstop_move(l_feedmultiply);
  4151. SERIAL_PROTOCOLPGM("Bed found at: ");
  4152. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4153. SERIAL_PROTOCOLPGM("\n");
  4154. break;
  4155. /**
  4156. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4157. */
  4158. case 83:
  4159. {
  4160. int babystepz = code_seen('S') ? code_value() : 0;
  4161. int BabyPosition = code_seen('P') ? code_value() : 0;
  4162. if (babystepz != 0) {
  4163. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4164. // Is the axis indexed starting with zero or one?
  4165. if (BabyPosition > 4) {
  4166. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4167. }else{
  4168. // Save it to the eeprom
  4169. babystepLoadZ = babystepz;
  4170. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4171. // adjust the Z
  4172. babystepsTodoZadd(babystepLoadZ);
  4173. }
  4174. }
  4175. }
  4176. break;
  4177. /**
  4178. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4179. */
  4180. case 84:
  4181. babystepsTodoZsubtract(babystepLoadZ);
  4182. // babystepLoadZ = 0;
  4183. break;
  4184. /**
  4185. * G85: Prusa3D specific: Pick best babystep
  4186. */
  4187. case 85:
  4188. lcd_pick_babystep();
  4189. break;
  4190. #endif
  4191. /**
  4192. * G86: Prusa3D specific: Disable babystep correction after home.
  4193. * This G-code will be performed at the start of a calibration script.
  4194. */
  4195. case 86:
  4196. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4197. break;
  4198. /**
  4199. * G87: Prusa3D specific: Enable babystep correction after home
  4200. * This G-code will be performed at the end of a calibration script.
  4201. */
  4202. case 87:
  4203. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4204. break;
  4205. /**
  4206. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4207. */
  4208. case 88:
  4209. break;
  4210. #endif // ENABLE_MESH_BED_LEVELING
  4211. case 90: // G90
  4212. relative_mode = false;
  4213. break;
  4214. case 91: // G91
  4215. relative_mode = true;
  4216. break;
  4217. case 92: // G92
  4218. if(!code_seen(axis_codes[E_AXIS]))
  4219. st_synchronize();
  4220. for(int8_t i=0; i < NUM_AXIS; i++) {
  4221. if(code_seen(axis_codes[i])) {
  4222. if(i == E_AXIS) {
  4223. current_position[i] = code_value();
  4224. plan_set_e_position(current_position[E_AXIS]);
  4225. }
  4226. else {
  4227. current_position[i] = code_value()+cs.add_homing[i];
  4228. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4229. }
  4230. }
  4231. }
  4232. break;
  4233. case 98: //! G98 (activate farm mode)
  4234. farm_mode = 1;
  4235. PingTime = _millis();
  4236. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4237. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4238. SilentModeMenu = SILENT_MODE_OFF;
  4239. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4240. break;
  4241. case 99: //! G99 (deactivate farm mode)
  4242. farm_mode = 0;
  4243. lcd_printer_connected();
  4244. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4245. lcd_update(2);
  4246. break;
  4247. default:
  4248. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4249. }
  4250. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4251. gcode_in_progress = 0;
  4252. } // end if(code_seen('G'))
  4253. else if(code_seen('M'))
  4254. {
  4255. int index;
  4256. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4257. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4258. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4259. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4260. } else
  4261. {
  4262. mcode_in_progress = (int)code_value();
  4263. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4264. switch(mcode_in_progress)
  4265. {
  4266. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4267. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4268. {
  4269. char *src = strchr_pointer + 2;
  4270. codenum = 0;
  4271. bool hasP = false, hasS = false;
  4272. if (code_seen('P')) {
  4273. codenum = code_value(); // milliseconds to wait
  4274. hasP = codenum > 0;
  4275. }
  4276. if (code_seen('S')) {
  4277. codenum = code_value() * 1000; // seconds to wait
  4278. hasS = codenum > 0;
  4279. }
  4280. starpos = strchr(src, '*');
  4281. if (starpos != NULL) *(starpos) = '\0';
  4282. while (*src == ' ') ++src;
  4283. if (!hasP && !hasS && *src != '\0') {
  4284. lcd_setstatus(src);
  4285. } else {
  4286. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4287. }
  4288. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4289. st_synchronize();
  4290. previous_millis_cmd = _millis();
  4291. if (codenum > 0){
  4292. codenum += _millis(); // keep track of when we started waiting
  4293. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4294. while(_millis() < codenum && !lcd_clicked()){
  4295. manage_heater();
  4296. manage_inactivity(true);
  4297. lcd_update(0);
  4298. }
  4299. KEEPALIVE_STATE(IN_HANDLER);
  4300. lcd_ignore_click(false);
  4301. }else{
  4302. marlin_wait_for_click();
  4303. }
  4304. if (IS_SD_PRINTING)
  4305. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4306. else
  4307. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4308. }
  4309. break;
  4310. case 17:
  4311. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4312. enable_x();
  4313. enable_y();
  4314. enable_z();
  4315. enable_e0();
  4316. enable_e1();
  4317. enable_e2();
  4318. break;
  4319. #ifdef SDSUPPORT
  4320. case 20: // M20 - list SD card
  4321. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4322. card.ls();
  4323. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4324. break;
  4325. case 21: // M21 - init SD card
  4326. card.initsd();
  4327. break;
  4328. case 22: //M22 - release SD card
  4329. card.release();
  4330. break;
  4331. case 23: //M23 - Select file
  4332. starpos = (strchr(strchr_pointer + 4,'*'));
  4333. if(starpos!=NULL)
  4334. *(starpos)='\0';
  4335. card.openFile(strchr_pointer + 4,true);
  4336. break;
  4337. case 24: //M24 - Start SD print
  4338. if (!card.paused)
  4339. failstats_reset_print();
  4340. card.startFileprint();
  4341. starttime=_millis();
  4342. break;
  4343. case 25: //M25 - Pause SD print
  4344. card.pauseSDPrint();
  4345. break;
  4346. case 26: //M26 - Set SD index
  4347. if(card.cardOK && code_seen('S')) {
  4348. card.setIndex(code_value_long());
  4349. }
  4350. break;
  4351. case 27: //M27 - Get SD status
  4352. card.getStatus();
  4353. break;
  4354. case 28: //M28 - Start SD write
  4355. starpos = (strchr(strchr_pointer + 4,'*'));
  4356. if(starpos != NULL){
  4357. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4358. strchr_pointer = strchr(npos,' ') + 1;
  4359. *(starpos) = '\0';
  4360. }
  4361. card.openFile(strchr_pointer+4,false);
  4362. break;
  4363. case 29: //M29 - Stop SD write
  4364. //processed in write to file routine above
  4365. //card,saving = false;
  4366. break;
  4367. case 30: //M30 <filename> Delete File
  4368. if (card.cardOK){
  4369. card.closefile();
  4370. starpos = (strchr(strchr_pointer + 4,'*'));
  4371. if(starpos != NULL){
  4372. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4373. strchr_pointer = strchr(npos,' ') + 1;
  4374. *(starpos) = '\0';
  4375. }
  4376. card.removeFile(strchr_pointer + 4);
  4377. }
  4378. break;
  4379. case 32: //M32 - Select file and start SD print
  4380. {
  4381. if(card.sdprinting) {
  4382. st_synchronize();
  4383. }
  4384. starpos = (strchr(strchr_pointer + 4,'*'));
  4385. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4386. if(namestartpos==NULL)
  4387. {
  4388. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4389. }
  4390. else
  4391. namestartpos++; //to skip the '!'
  4392. if(starpos!=NULL)
  4393. *(starpos)='\0';
  4394. bool call_procedure=(code_seen('P'));
  4395. if(strchr_pointer>namestartpos)
  4396. call_procedure=false; //false alert, 'P' found within filename
  4397. if( card.cardOK )
  4398. {
  4399. card.openFile(namestartpos,true,!call_procedure);
  4400. if(code_seen('S'))
  4401. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4402. card.setIndex(code_value_long());
  4403. card.startFileprint();
  4404. if(!call_procedure)
  4405. starttime=_millis(); //procedure calls count as normal print time.
  4406. }
  4407. } break;
  4408. case 928: //M928 - Start SD write
  4409. starpos = (strchr(strchr_pointer + 5,'*'));
  4410. if(starpos != NULL){
  4411. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4412. strchr_pointer = strchr(npos,' ') + 1;
  4413. *(starpos) = '\0';
  4414. }
  4415. card.openLogFile(strchr_pointer+5);
  4416. break;
  4417. #endif //SDSUPPORT
  4418. case 31: //M31 take time since the start of the SD print or an M109 command
  4419. {
  4420. stoptime=_millis();
  4421. char time[30];
  4422. unsigned long t=(stoptime-starttime)/1000;
  4423. int sec,min;
  4424. min=t/60;
  4425. sec=t%60;
  4426. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4427. SERIAL_ECHO_START;
  4428. SERIAL_ECHOLN(time);
  4429. lcd_setstatus(time);
  4430. autotempShutdown();
  4431. }
  4432. break;
  4433. case 42: //M42 -Change pin status via gcode
  4434. if (code_seen('S'))
  4435. {
  4436. int pin_status = code_value();
  4437. int pin_number = LED_PIN;
  4438. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4439. pin_number = code_value();
  4440. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4441. {
  4442. if (sensitive_pins[i] == pin_number)
  4443. {
  4444. pin_number = -1;
  4445. break;
  4446. }
  4447. }
  4448. #if defined(FAN_PIN) && FAN_PIN > -1
  4449. if (pin_number == FAN_PIN)
  4450. fanSpeed = pin_status;
  4451. #endif
  4452. if (pin_number > -1)
  4453. {
  4454. pinMode(pin_number, OUTPUT);
  4455. digitalWrite(pin_number, pin_status);
  4456. analogWrite(pin_number, pin_status);
  4457. }
  4458. }
  4459. break;
  4460. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4461. // Reset the baby step value and the baby step applied flag.
  4462. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4463. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4464. // Reset the skew and offset in both RAM and EEPROM.
  4465. reset_bed_offset_and_skew();
  4466. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4467. // the planner will not perform any adjustments in the XY plane.
  4468. // Wait for the motors to stop and update the current position with the absolute values.
  4469. world2machine_revert_to_uncorrected();
  4470. break;
  4471. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4472. {
  4473. int8_t verbosity_level = 0;
  4474. bool only_Z = code_seen('Z');
  4475. #ifdef SUPPORT_VERBOSITY
  4476. if (code_seen('V'))
  4477. {
  4478. // Just 'V' without a number counts as V1.
  4479. char c = strchr_pointer[1];
  4480. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4481. }
  4482. #endif //SUPPORT_VERBOSITY
  4483. gcode_M45(only_Z, verbosity_level);
  4484. }
  4485. break;
  4486. /*
  4487. case 46:
  4488. {
  4489. // M46: Prusa3D: Show the assigned IP address.
  4490. uint8_t ip[4];
  4491. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4492. if (hasIP) {
  4493. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4494. SERIAL_ECHO(int(ip[0]));
  4495. SERIAL_ECHOPGM(".");
  4496. SERIAL_ECHO(int(ip[1]));
  4497. SERIAL_ECHOPGM(".");
  4498. SERIAL_ECHO(int(ip[2]));
  4499. SERIAL_ECHOPGM(".");
  4500. SERIAL_ECHO(int(ip[3]));
  4501. SERIAL_ECHOLNPGM("");
  4502. } else {
  4503. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4504. }
  4505. break;
  4506. }
  4507. */
  4508. case 47:
  4509. //! M47: Prusa3D: Show end stops dialog on the display.
  4510. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4511. lcd_diag_show_end_stops();
  4512. KEEPALIVE_STATE(IN_HANDLER);
  4513. break;
  4514. #if 0
  4515. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4516. {
  4517. // Disable the default update procedure of the display. We will do a modal dialog.
  4518. lcd_update_enable(false);
  4519. // Let the planner use the uncorrected coordinates.
  4520. mbl.reset();
  4521. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4522. // the planner will not perform any adjustments in the XY plane.
  4523. // Wait for the motors to stop and update the current position with the absolute values.
  4524. world2machine_revert_to_uncorrected();
  4525. // Move the print head close to the bed.
  4526. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4527. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4528. st_synchronize();
  4529. // Home in the XY plane.
  4530. set_destination_to_current();
  4531. int l_feedmultiply = setup_for_endstop_move();
  4532. home_xy();
  4533. int8_t verbosity_level = 0;
  4534. if (code_seen('V')) {
  4535. // Just 'V' without a number counts as V1.
  4536. char c = strchr_pointer[1];
  4537. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4538. }
  4539. bool success = scan_bed_induction_points(verbosity_level);
  4540. clean_up_after_endstop_move(l_feedmultiply);
  4541. // Print head up.
  4542. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4543. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4544. st_synchronize();
  4545. lcd_update_enable(true);
  4546. break;
  4547. }
  4548. #endif
  4549. #ifdef ENABLE_AUTO_BED_LEVELING
  4550. #ifdef Z_PROBE_REPEATABILITY_TEST
  4551. //! M48 Z-Probe repeatability measurement function.
  4552. //!
  4553. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4554. //!
  4555. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4556. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4557. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4558. //! regenerated.
  4559. //!
  4560. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4561. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4562. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4563. //!
  4564. case 48: // M48 Z-Probe repeatability
  4565. {
  4566. #if Z_MIN_PIN == -1
  4567. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4568. #endif
  4569. double sum=0.0;
  4570. double mean=0.0;
  4571. double sigma=0.0;
  4572. double sample_set[50];
  4573. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4574. double X_current, Y_current, Z_current;
  4575. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4576. if (code_seen('V') || code_seen('v')) {
  4577. verbose_level = code_value();
  4578. if (verbose_level<0 || verbose_level>4 ) {
  4579. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4580. goto Sigma_Exit;
  4581. }
  4582. }
  4583. if (verbose_level > 0) {
  4584. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4585. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4586. }
  4587. if (code_seen('n')) {
  4588. n_samples = code_value();
  4589. if (n_samples<4 || n_samples>50 ) {
  4590. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4591. goto Sigma_Exit;
  4592. }
  4593. }
  4594. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4595. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4596. Z_current = st_get_position_mm(Z_AXIS);
  4597. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4598. ext_position = st_get_position_mm(E_AXIS);
  4599. if (code_seen('X') || code_seen('x') ) {
  4600. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4601. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4602. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4603. goto Sigma_Exit;
  4604. }
  4605. }
  4606. if (code_seen('Y') || code_seen('y') ) {
  4607. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4608. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4609. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4610. goto Sigma_Exit;
  4611. }
  4612. }
  4613. if (code_seen('L') || code_seen('l') ) {
  4614. n_legs = code_value();
  4615. if ( n_legs==1 )
  4616. n_legs = 2;
  4617. if ( n_legs<0 || n_legs>15 ) {
  4618. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4619. goto Sigma_Exit;
  4620. }
  4621. }
  4622. //
  4623. // Do all the preliminary setup work. First raise the probe.
  4624. //
  4625. st_synchronize();
  4626. plan_bed_level_matrix.set_to_identity();
  4627. plan_buffer_line( X_current, Y_current, Z_start_location,
  4628. ext_position,
  4629. homing_feedrate[Z_AXIS]/60,
  4630. active_extruder);
  4631. st_synchronize();
  4632. //
  4633. // Now get everything to the specified probe point So we can safely do a probe to
  4634. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4635. // use that as a starting point for each probe.
  4636. //
  4637. if (verbose_level > 2)
  4638. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4639. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4640. ext_position,
  4641. homing_feedrate[X_AXIS]/60,
  4642. active_extruder);
  4643. st_synchronize();
  4644. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4645. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4646. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4647. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4648. //
  4649. // OK, do the inital probe to get us close to the bed.
  4650. // Then retrace the right amount and use that in subsequent probes
  4651. //
  4652. int l_feedmultiply = setup_for_endstop_move();
  4653. run_z_probe();
  4654. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4655. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4656. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4657. ext_position,
  4658. homing_feedrate[X_AXIS]/60,
  4659. active_extruder);
  4660. st_synchronize();
  4661. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4662. for( n=0; n<n_samples; n++) {
  4663. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4664. if ( n_legs) {
  4665. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4666. int rotational_direction, l;
  4667. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4668. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4669. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4670. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4671. //SERIAL_ECHOPAIR(" theta: ",theta);
  4672. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4673. //SERIAL_PROTOCOLLNPGM("");
  4674. for( l=0; l<n_legs-1; l++) {
  4675. if (rotational_direction==1)
  4676. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4677. else
  4678. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4679. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4680. if ( radius<0.0 )
  4681. radius = -radius;
  4682. X_current = X_probe_location + cos(theta) * radius;
  4683. Y_current = Y_probe_location + sin(theta) * radius;
  4684. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4685. X_current = X_MIN_POS;
  4686. if ( X_current>X_MAX_POS)
  4687. X_current = X_MAX_POS;
  4688. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4689. Y_current = Y_MIN_POS;
  4690. if ( Y_current>Y_MAX_POS)
  4691. Y_current = Y_MAX_POS;
  4692. if (verbose_level>3 ) {
  4693. SERIAL_ECHOPAIR("x: ", X_current);
  4694. SERIAL_ECHOPAIR("y: ", Y_current);
  4695. SERIAL_PROTOCOLLNPGM("");
  4696. }
  4697. do_blocking_move_to( X_current, Y_current, Z_current );
  4698. }
  4699. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4700. }
  4701. int l_feedmultiply = setup_for_endstop_move();
  4702. run_z_probe();
  4703. sample_set[n] = current_position[Z_AXIS];
  4704. //
  4705. // Get the current mean for the data points we have so far
  4706. //
  4707. sum=0.0;
  4708. for( j=0; j<=n; j++) {
  4709. sum = sum + sample_set[j];
  4710. }
  4711. mean = sum / (double (n+1));
  4712. //
  4713. // Now, use that mean to calculate the standard deviation for the
  4714. // data points we have so far
  4715. //
  4716. sum=0.0;
  4717. for( j=0; j<=n; j++) {
  4718. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4719. }
  4720. sigma = sqrt( sum / (double (n+1)) );
  4721. if (verbose_level > 1) {
  4722. SERIAL_PROTOCOL(n+1);
  4723. SERIAL_PROTOCOL(" of ");
  4724. SERIAL_PROTOCOL(n_samples);
  4725. SERIAL_PROTOCOLPGM(" z: ");
  4726. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4727. }
  4728. if (verbose_level > 2) {
  4729. SERIAL_PROTOCOL(" mean: ");
  4730. SERIAL_PROTOCOL_F(mean,6);
  4731. SERIAL_PROTOCOL(" sigma: ");
  4732. SERIAL_PROTOCOL_F(sigma,6);
  4733. }
  4734. if (verbose_level > 0)
  4735. SERIAL_PROTOCOLPGM("\n");
  4736. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4737. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4738. st_synchronize();
  4739. }
  4740. _delay(1000);
  4741. clean_up_after_endstop_move(l_feedmultiply);
  4742. // enable_endstops(true);
  4743. if (verbose_level > 0) {
  4744. SERIAL_PROTOCOLPGM("Mean: ");
  4745. SERIAL_PROTOCOL_F(mean, 6);
  4746. SERIAL_PROTOCOLPGM("\n");
  4747. }
  4748. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4749. SERIAL_PROTOCOL_F(sigma, 6);
  4750. SERIAL_PROTOCOLPGM("\n\n");
  4751. Sigma_Exit:
  4752. break;
  4753. }
  4754. #endif // Z_PROBE_REPEATABILITY_TEST
  4755. #endif // ENABLE_AUTO_BED_LEVELING
  4756. case 73: //M73 show percent done and time remaining
  4757. if(code_seen('P')) print_percent_done_normal = code_value();
  4758. if(code_seen('R')) print_time_remaining_normal = code_value();
  4759. if(code_seen('Q')) print_percent_done_silent = code_value();
  4760. if(code_seen('S')) print_time_remaining_silent = code_value();
  4761. {
  4762. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4763. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4764. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4765. }
  4766. break;
  4767. case 104: // M104
  4768. {
  4769. uint8_t extruder;
  4770. if(setTargetedHotend(104,extruder)){
  4771. break;
  4772. }
  4773. if (code_seen('S'))
  4774. {
  4775. setTargetHotendSafe(code_value(), extruder);
  4776. }
  4777. setWatch();
  4778. break;
  4779. }
  4780. case 112: // M112 -Emergency Stop
  4781. kill(_n(""), 3);
  4782. break;
  4783. case 140: // M140 set bed temp
  4784. if (code_seen('S')) setTargetBed(code_value());
  4785. break;
  4786. case 105 : // M105
  4787. {
  4788. uint8_t extruder;
  4789. if(setTargetedHotend(105, extruder)){
  4790. break;
  4791. }
  4792. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4793. SERIAL_PROTOCOLPGM("ok T:");
  4794. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4795. SERIAL_PROTOCOLPGM(" /");
  4796. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4797. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4798. SERIAL_PROTOCOLPGM(" B:");
  4799. SERIAL_PROTOCOL_F(degBed(),1);
  4800. SERIAL_PROTOCOLPGM(" /");
  4801. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4802. #endif //TEMP_BED_PIN
  4803. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4804. SERIAL_PROTOCOLPGM(" T");
  4805. SERIAL_PROTOCOL(cur_extruder);
  4806. SERIAL_PROTOCOLPGM(":");
  4807. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4808. SERIAL_PROTOCOLPGM(" /");
  4809. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4810. }
  4811. #else
  4812. SERIAL_ERROR_START;
  4813. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  4814. #endif
  4815. SERIAL_PROTOCOLPGM(" @:");
  4816. #ifdef EXTRUDER_WATTS
  4817. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4818. SERIAL_PROTOCOLPGM("W");
  4819. #else
  4820. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4821. #endif
  4822. SERIAL_PROTOCOLPGM(" B@:");
  4823. #ifdef BED_WATTS
  4824. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4825. SERIAL_PROTOCOLPGM("W");
  4826. #else
  4827. SERIAL_PROTOCOL(getHeaterPower(-1));
  4828. #endif
  4829. #ifdef PINDA_THERMISTOR
  4830. SERIAL_PROTOCOLPGM(" P:");
  4831. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4832. #endif //PINDA_THERMISTOR
  4833. #ifdef AMBIENT_THERMISTOR
  4834. SERIAL_PROTOCOLPGM(" A:");
  4835. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4836. #endif //AMBIENT_THERMISTOR
  4837. #ifdef SHOW_TEMP_ADC_VALUES
  4838. {float raw = 0.0;
  4839. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4840. SERIAL_PROTOCOLPGM(" ADC B:");
  4841. SERIAL_PROTOCOL_F(degBed(),1);
  4842. SERIAL_PROTOCOLPGM("C->");
  4843. raw = rawBedTemp();
  4844. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4845. SERIAL_PROTOCOLPGM(" Rb->");
  4846. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4847. SERIAL_PROTOCOLPGM(" Rxb->");
  4848. SERIAL_PROTOCOL_F(raw, 5);
  4849. #endif
  4850. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4851. SERIAL_PROTOCOLPGM(" T");
  4852. SERIAL_PROTOCOL(cur_extruder);
  4853. SERIAL_PROTOCOLPGM(":");
  4854. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4855. SERIAL_PROTOCOLPGM("C->");
  4856. raw = rawHotendTemp(cur_extruder);
  4857. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4858. SERIAL_PROTOCOLPGM(" Rt");
  4859. SERIAL_PROTOCOL(cur_extruder);
  4860. SERIAL_PROTOCOLPGM("->");
  4861. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4862. SERIAL_PROTOCOLPGM(" Rx");
  4863. SERIAL_PROTOCOL(cur_extruder);
  4864. SERIAL_PROTOCOLPGM("->");
  4865. SERIAL_PROTOCOL_F(raw, 5);
  4866. }}
  4867. #endif
  4868. SERIAL_PROTOCOLLN("");
  4869. KEEPALIVE_STATE(NOT_BUSY);
  4870. return;
  4871. break;
  4872. }
  4873. case 109:
  4874. {// M109 - Wait for extruder heater to reach target.
  4875. uint8_t extruder;
  4876. if(setTargetedHotend(109, extruder)){
  4877. break;
  4878. }
  4879. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4880. heating_status = 1;
  4881. if (farm_mode) { prusa_statistics(1); };
  4882. #ifdef AUTOTEMP
  4883. autotemp_enabled=false;
  4884. #endif
  4885. if (code_seen('S')) {
  4886. setTargetHotendSafe(code_value(), extruder);
  4887. CooldownNoWait = true;
  4888. } else if (code_seen('R')) {
  4889. setTargetHotendSafe(code_value(), extruder);
  4890. CooldownNoWait = false;
  4891. }
  4892. #ifdef AUTOTEMP
  4893. if (code_seen('S')) autotemp_min=code_value();
  4894. if (code_seen('B')) autotemp_max=code_value();
  4895. if (code_seen('F'))
  4896. {
  4897. autotemp_factor=code_value();
  4898. autotemp_enabled=true;
  4899. }
  4900. #endif
  4901. setWatch();
  4902. codenum = _millis();
  4903. /* See if we are heating up or cooling down */
  4904. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4905. KEEPALIVE_STATE(NOT_BUSY);
  4906. cancel_heatup = false;
  4907. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4908. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4909. KEEPALIVE_STATE(IN_HANDLER);
  4910. heating_status = 2;
  4911. if (farm_mode) { prusa_statistics(2); };
  4912. //starttime=_millis();
  4913. previous_millis_cmd = _millis();
  4914. }
  4915. break;
  4916. case 190: // M190 - Wait for bed heater to reach target.
  4917. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4918. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4919. heating_status = 3;
  4920. if (farm_mode) { prusa_statistics(1); };
  4921. if (code_seen('S'))
  4922. {
  4923. setTargetBed(code_value());
  4924. CooldownNoWait = true;
  4925. }
  4926. else if (code_seen('R'))
  4927. {
  4928. setTargetBed(code_value());
  4929. CooldownNoWait = false;
  4930. }
  4931. codenum = _millis();
  4932. cancel_heatup = false;
  4933. target_direction = isHeatingBed(); // true if heating, false if cooling
  4934. KEEPALIVE_STATE(NOT_BUSY);
  4935. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4936. {
  4937. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4938. {
  4939. if (!farm_mode) {
  4940. float tt = degHotend(active_extruder);
  4941. SERIAL_PROTOCOLPGM("T:");
  4942. SERIAL_PROTOCOL(tt);
  4943. SERIAL_PROTOCOLPGM(" E:");
  4944. SERIAL_PROTOCOL((int)active_extruder);
  4945. SERIAL_PROTOCOLPGM(" B:");
  4946. SERIAL_PROTOCOL_F(degBed(), 1);
  4947. SERIAL_PROTOCOLLN("");
  4948. }
  4949. codenum = _millis();
  4950. }
  4951. manage_heater();
  4952. manage_inactivity();
  4953. lcd_update(0);
  4954. }
  4955. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4956. KEEPALIVE_STATE(IN_HANDLER);
  4957. heating_status = 4;
  4958. previous_millis_cmd = _millis();
  4959. #endif
  4960. break;
  4961. #if defined(FAN_PIN) && FAN_PIN > -1
  4962. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4963. if (code_seen('S')){
  4964. fanSpeed=constrain(code_value(),0,255);
  4965. }
  4966. else {
  4967. fanSpeed=255;
  4968. }
  4969. break;
  4970. case 107: //M107 Fan Off
  4971. fanSpeed = 0;
  4972. break;
  4973. #endif //FAN_PIN
  4974. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4975. case 80: // M80 - Turn on Power Supply
  4976. SET_OUTPUT(PS_ON_PIN); //GND
  4977. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4978. // If you have a switch on suicide pin, this is useful
  4979. // if you want to start another print with suicide feature after
  4980. // a print without suicide...
  4981. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4982. SET_OUTPUT(SUICIDE_PIN);
  4983. WRITE(SUICIDE_PIN, HIGH);
  4984. #endif
  4985. powersupply = true;
  4986. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4987. lcd_update(0);
  4988. break;
  4989. #endif
  4990. case 81: // M81 - Turn off Power Supply
  4991. disable_heater();
  4992. st_synchronize();
  4993. disable_e0();
  4994. disable_e1();
  4995. disable_e2();
  4996. finishAndDisableSteppers();
  4997. fanSpeed = 0;
  4998. _delay(1000); // Wait a little before to switch off
  4999. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5000. st_synchronize();
  5001. suicide();
  5002. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5003. SET_OUTPUT(PS_ON_PIN);
  5004. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5005. #endif
  5006. powersupply = false;
  5007. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5008. lcd_update(0);
  5009. break;
  5010. case 82:
  5011. axis_relative_modes[3] = false;
  5012. break;
  5013. case 83:
  5014. axis_relative_modes[3] = true;
  5015. break;
  5016. case 18: //compatibility
  5017. case 84: // M84
  5018. if(code_seen('S')){
  5019. stepper_inactive_time = code_value() * 1000;
  5020. }
  5021. else
  5022. {
  5023. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5024. if(all_axis)
  5025. {
  5026. st_synchronize();
  5027. disable_e0();
  5028. disable_e1();
  5029. disable_e2();
  5030. finishAndDisableSteppers();
  5031. }
  5032. else
  5033. {
  5034. st_synchronize();
  5035. if (code_seen('X')) disable_x();
  5036. if (code_seen('Y')) disable_y();
  5037. if (code_seen('Z')) disable_z();
  5038. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5039. if (code_seen('E')) {
  5040. disable_e0();
  5041. disable_e1();
  5042. disable_e2();
  5043. }
  5044. #endif
  5045. }
  5046. }
  5047. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5048. print_time_remaining_init();
  5049. snmm_filaments_used = 0;
  5050. break;
  5051. case 85: // M85
  5052. if(code_seen('S')) {
  5053. max_inactive_time = code_value() * 1000;
  5054. }
  5055. break;
  5056. #ifdef SAFETYTIMER
  5057. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5058. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5059. if (code_seen('S')) {
  5060. safetytimer_inactive_time = code_value() * 1000;
  5061. safetyTimer.start();
  5062. }
  5063. break;
  5064. #endif
  5065. case 92: // M92
  5066. for(int8_t i=0; i < NUM_AXIS; i++)
  5067. {
  5068. if(code_seen(axis_codes[i]))
  5069. {
  5070. if(i == 3) { // E
  5071. float value = code_value();
  5072. if(value < 20.0) {
  5073. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5074. cs.max_jerk[E_AXIS] *= factor;
  5075. max_feedrate[i] *= factor;
  5076. axis_steps_per_sqr_second[i] *= factor;
  5077. }
  5078. cs.axis_steps_per_unit[i] = value;
  5079. }
  5080. else {
  5081. cs.axis_steps_per_unit[i] = code_value();
  5082. }
  5083. }
  5084. }
  5085. break;
  5086. case 110: //! M110 N<line number> - reset line pos
  5087. if (code_seen('N'))
  5088. gcode_LastN = code_value_long();
  5089. break;
  5090. case 113: // M113 - Get or set Host Keepalive interval
  5091. if (code_seen('S')) {
  5092. host_keepalive_interval = (uint8_t)code_value_short();
  5093. // NOMORE(host_keepalive_interval, 60);
  5094. }
  5095. else {
  5096. SERIAL_ECHO_START;
  5097. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5098. SERIAL_PROTOCOLLN("");
  5099. }
  5100. break;
  5101. case 115: // M115
  5102. if (code_seen('V')) {
  5103. // Report the Prusa version number.
  5104. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5105. } else if (code_seen('U')) {
  5106. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5107. // pause the print and ask the user to upgrade the firmware.
  5108. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5109. } else {
  5110. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5111. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5112. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5113. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5114. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5115. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5116. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5117. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5118. SERIAL_ECHOPGM(" UUID:");
  5119. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5120. }
  5121. break;
  5122. /* case 117: // M117 display message
  5123. starpos = (strchr(strchr_pointer + 5,'*'));
  5124. if(starpos!=NULL)
  5125. *(starpos)='\0';
  5126. lcd_setstatus(strchr_pointer + 5);
  5127. break;*/
  5128. case 114: // M114
  5129. gcode_M114();
  5130. break;
  5131. case 120: //! M120 - Disable endstops
  5132. enable_endstops(false) ;
  5133. break;
  5134. case 121: //! M121 - Enable endstops
  5135. enable_endstops(true) ;
  5136. break;
  5137. case 119: // M119
  5138. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5139. SERIAL_PROTOCOLLN("");
  5140. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5141. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5142. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5143. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5144. }else{
  5145. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5146. }
  5147. SERIAL_PROTOCOLLN("");
  5148. #endif
  5149. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5150. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5151. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5152. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5153. }else{
  5154. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5155. }
  5156. SERIAL_PROTOCOLLN("");
  5157. #endif
  5158. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5159. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5160. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5161. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5162. }else{
  5163. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5164. }
  5165. SERIAL_PROTOCOLLN("");
  5166. #endif
  5167. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5168. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5169. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5170. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5171. }else{
  5172. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5173. }
  5174. SERIAL_PROTOCOLLN("");
  5175. #endif
  5176. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5177. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5178. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5179. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5180. }else{
  5181. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5182. }
  5183. SERIAL_PROTOCOLLN("");
  5184. #endif
  5185. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5186. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5187. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5188. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5189. }else{
  5190. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5191. }
  5192. SERIAL_PROTOCOLLN("");
  5193. #endif
  5194. break;
  5195. //TODO: update for all axis, use for loop
  5196. #ifdef BLINKM
  5197. case 150: // M150
  5198. {
  5199. byte red;
  5200. byte grn;
  5201. byte blu;
  5202. if(code_seen('R')) red = code_value();
  5203. if(code_seen('U')) grn = code_value();
  5204. if(code_seen('B')) blu = code_value();
  5205. SendColors(red,grn,blu);
  5206. }
  5207. break;
  5208. #endif //BLINKM
  5209. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5210. {
  5211. uint8_t extruder = active_extruder;
  5212. if(code_seen('T')) {
  5213. extruder = code_value();
  5214. if(extruder >= EXTRUDERS) {
  5215. SERIAL_ECHO_START;
  5216. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5217. break;
  5218. }
  5219. }
  5220. if(code_seen('D')) {
  5221. float diameter = (float)code_value();
  5222. if (diameter == 0.0) {
  5223. // setting any extruder filament size disables volumetric on the assumption that
  5224. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5225. // for all extruders
  5226. cs.volumetric_enabled = false;
  5227. } else {
  5228. cs.filament_size[extruder] = (float)code_value();
  5229. // make sure all extruders have some sane value for the filament size
  5230. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5231. #if EXTRUDERS > 1
  5232. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5233. #if EXTRUDERS > 2
  5234. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5235. #endif
  5236. #endif
  5237. cs.volumetric_enabled = true;
  5238. }
  5239. } else {
  5240. //reserved for setting filament diameter via UFID or filament measuring device
  5241. break;
  5242. }
  5243. calculate_extruder_multipliers();
  5244. }
  5245. break;
  5246. case 201: // M201
  5247. for (int8_t i = 0; i < NUM_AXIS; i++)
  5248. {
  5249. if (code_seen(axis_codes[i]))
  5250. {
  5251. unsigned long val = code_value();
  5252. #ifdef TMC2130
  5253. unsigned long val_silent = val;
  5254. if ((i == X_AXIS) || (i == Y_AXIS))
  5255. {
  5256. if (val > NORMAL_MAX_ACCEL_XY)
  5257. val = NORMAL_MAX_ACCEL_XY;
  5258. if (val_silent > SILENT_MAX_ACCEL_XY)
  5259. val_silent = SILENT_MAX_ACCEL_XY;
  5260. }
  5261. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5262. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5263. #else //TMC2130
  5264. max_acceleration_units_per_sq_second[i] = val;
  5265. #endif //TMC2130
  5266. }
  5267. }
  5268. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5269. reset_acceleration_rates();
  5270. break;
  5271. #if 0 // Not used for Sprinter/grbl gen6
  5272. case 202: // M202
  5273. for(int8_t i=0; i < NUM_AXIS; i++) {
  5274. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5275. }
  5276. break;
  5277. #endif
  5278. case 203: // M203 max feedrate mm/sec
  5279. for (int8_t i = 0; i < NUM_AXIS; i++)
  5280. {
  5281. if (code_seen(axis_codes[i]))
  5282. {
  5283. float val = code_value();
  5284. #ifdef TMC2130
  5285. float val_silent = val;
  5286. if ((i == X_AXIS) || (i == Y_AXIS))
  5287. {
  5288. if (val > NORMAL_MAX_FEEDRATE_XY)
  5289. val = NORMAL_MAX_FEEDRATE_XY;
  5290. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5291. val_silent = SILENT_MAX_FEEDRATE_XY;
  5292. }
  5293. cs.max_feedrate_normal[i] = val;
  5294. cs.max_feedrate_silent[i] = val_silent;
  5295. #else //TMC2130
  5296. max_feedrate[i] = val;
  5297. #endif //TMC2130
  5298. }
  5299. }
  5300. break;
  5301. case 204:
  5302. //! M204 acclereration settings.
  5303. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5304. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5305. {
  5306. if(code_seen('S')) {
  5307. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5308. // and it is also generated by Slic3r to control acceleration per extrusion type
  5309. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5310. cs.acceleration = code_value();
  5311. // Interpret the T value as retract acceleration in the old Marlin format.
  5312. if(code_seen('T'))
  5313. cs.retract_acceleration = code_value();
  5314. } else {
  5315. // New acceleration format, compatible with the upstream Marlin.
  5316. if(code_seen('P'))
  5317. cs.acceleration = code_value();
  5318. if(code_seen('R'))
  5319. cs.retract_acceleration = code_value();
  5320. if(code_seen('T')) {
  5321. // Interpret the T value as the travel acceleration in the new Marlin format.
  5322. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5323. // travel_acceleration = code_value();
  5324. }
  5325. }
  5326. }
  5327. break;
  5328. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5329. {
  5330. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5331. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5332. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5333. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5334. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5335. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5336. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5337. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5338. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5339. }
  5340. break;
  5341. case 206: // M206 additional homing offset
  5342. for(int8_t i=0; i < 3; i++)
  5343. {
  5344. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5345. }
  5346. break;
  5347. #ifdef FWRETRACT
  5348. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5349. {
  5350. if(code_seen('S'))
  5351. {
  5352. cs.retract_length = code_value() ;
  5353. }
  5354. if(code_seen('F'))
  5355. {
  5356. cs.retract_feedrate = code_value()/60 ;
  5357. }
  5358. if(code_seen('Z'))
  5359. {
  5360. cs.retract_zlift = code_value() ;
  5361. }
  5362. }break;
  5363. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5364. {
  5365. if(code_seen('S'))
  5366. {
  5367. cs.retract_recover_length = code_value() ;
  5368. }
  5369. if(code_seen('F'))
  5370. {
  5371. cs.retract_recover_feedrate = code_value()/60 ;
  5372. }
  5373. }break;
  5374. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5375. {
  5376. if(code_seen('S'))
  5377. {
  5378. int t= code_value() ;
  5379. switch(t)
  5380. {
  5381. case 0:
  5382. {
  5383. cs.autoretract_enabled=false;
  5384. retracted[0]=false;
  5385. #if EXTRUDERS > 1
  5386. retracted[1]=false;
  5387. #endif
  5388. #if EXTRUDERS > 2
  5389. retracted[2]=false;
  5390. #endif
  5391. }break;
  5392. case 1:
  5393. {
  5394. cs.autoretract_enabled=true;
  5395. retracted[0]=false;
  5396. #if EXTRUDERS > 1
  5397. retracted[1]=false;
  5398. #endif
  5399. #if EXTRUDERS > 2
  5400. retracted[2]=false;
  5401. #endif
  5402. }break;
  5403. default:
  5404. SERIAL_ECHO_START;
  5405. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5406. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5407. SERIAL_ECHOLNPGM("\"(1)");
  5408. }
  5409. }
  5410. }break;
  5411. #endif // FWRETRACT
  5412. #if EXTRUDERS > 1
  5413. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5414. {
  5415. uint8_t extruder;
  5416. if(setTargetedHotend(218, extruder)){
  5417. break;
  5418. }
  5419. if(code_seen('X'))
  5420. {
  5421. extruder_offset[X_AXIS][extruder] = code_value();
  5422. }
  5423. if(code_seen('Y'))
  5424. {
  5425. extruder_offset[Y_AXIS][extruder] = code_value();
  5426. }
  5427. SERIAL_ECHO_START;
  5428. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5429. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5430. {
  5431. SERIAL_ECHO(" ");
  5432. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5433. SERIAL_ECHO(",");
  5434. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5435. }
  5436. SERIAL_ECHOLN("");
  5437. }break;
  5438. #endif
  5439. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5440. {
  5441. if (code_seen('B')) //backup current speed factor
  5442. {
  5443. saved_feedmultiply_mm = feedmultiply;
  5444. }
  5445. if(code_seen('S'))
  5446. {
  5447. feedmultiply = code_value() ;
  5448. }
  5449. if (code_seen('R')) { //restore previous feedmultiply
  5450. feedmultiply = saved_feedmultiply_mm;
  5451. }
  5452. }
  5453. break;
  5454. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5455. {
  5456. if(code_seen('S'))
  5457. {
  5458. int tmp_code = code_value();
  5459. if (code_seen('T'))
  5460. {
  5461. uint8_t extruder;
  5462. if(setTargetedHotend(221, extruder)){
  5463. break;
  5464. }
  5465. extruder_multiply[extruder] = tmp_code;
  5466. }
  5467. else
  5468. {
  5469. extrudemultiply = tmp_code ;
  5470. }
  5471. }
  5472. calculate_extruder_multipliers();
  5473. }
  5474. break;
  5475. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5476. {
  5477. if(code_seen('P')){
  5478. int pin_number = code_value(); // pin number
  5479. int pin_state = -1; // required pin state - default is inverted
  5480. if(code_seen('S')) pin_state = code_value(); // required pin state
  5481. if(pin_state >= -1 && pin_state <= 1){
  5482. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5483. {
  5484. if (sensitive_pins[i] == pin_number)
  5485. {
  5486. pin_number = -1;
  5487. break;
  5488. }
  5489. }
  5490. if (pin_number > -1)
  5491. {
  5492. int target = LOW;
  5493. st_synchronize();
  5494. pinMode(pin_number, INPUT);
  5495. switch(pin_state){
  5496. case 1:
  5497. target = HIGH;
  5498. break;
  5499. case 0:
  5500. target = LOW;
  5501. break;
  5502. case -1:
  5503. target = !digitalRead(pin_number);
  5504. break;
  5505. }
  5506. while(digitalRead(pin_number) != target){
  5507. manage_heater();
  5508. manage_inactivity();
  5509. lcd_update(0);
  5510. }
  5511. }
  5512. }
  5513. }
  5514. }
  5515. break;
  5516. #if NUM_SERVOS > 0
  5517. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5518. {
  5519. int servo_index = -1;
  5520. int servo_position = 0;
  5521. if (code_seen('P'))
  5522. servo_index = code_value();
  5523. if (code_seen('S')) {
  5524. servo_position = code_value();
  5525. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5526. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5527. servos[servo_index].attach(0);
  5528. #endif
  5529. servos[servo_index].write(servo_position);
  5530. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5531. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5532. servos[servo_index].detach();
  5533. #endif
  5534. }
  5535. else {
  5536. SERIAL_ECHO_START;
  5537. SERIAL_ECHO("Servo ");
  5538. SERIAL_ECHO(servo_index);
  5539. SERIAL_ECHOLN(" out of range");
  5540. }
  5541. }
  5542. else if (servo_index >= 0) {
  5543. SERIAL_PROTOCOL(MSG_OK);
  5544. SERIAL_PROTOCOL(" Servo ");
  5545. SERIAL_PROTOCOL(servo_index);
  5546. SERIAL_PROTOCOL(": ");
  5547. SERIAL_PROTOCOL(servos[servo_index].read());
  5548. SERIAL_PROTOCOLLN("");
  5549. }
  5550. }
  5551. break;
  5552. #endif // NUM_SERVOS > 0
  5553. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5554. case 300: // M300
  5555. {
  5556. int beepS = code_seen('S') ? code_value() : 110;
  5557. int beepP = code_seen('P') ? code_value() : 1000;
  5558. if (beepS > 0)
  5559. {
  5560. #if BEEPER > 0
  5561. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5562. _tone(BEEPER, beepS);
  5563. _delay(beepP);
  5564. _noTone(BEEPER);
  5565. #endif
  5566. }
  5567. else
  5568. {
  5569. _delay(beepP);
  5570. }
  5571. }
  5572. break;
  5573. #endif // M300
  5574. #ifdef PIDTEMP
  5575. case 301: // M301
  5576. {
  5577. if(code_seen('P')) cs.Kp = code_value();
  5578. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5579. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5580. #ifdef PID_ADD_EXTRUSION_RATE
  5581. if(code_seen('C')) Kc = code_value();
  5582. #endif
  5583. updatePID();
  5584. SERIAL_PROTOCOLRPGM(MSG_OK);
  5585. SERIAL_PROTOCOL(" p:");
  5586. SERIAL_PROTOCOL(cs.Kp);
  5587. SERIAL_PROTOCOL(" i:");
  5588. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5589. SERIAL_PROTOCOL(" d:");
  5590. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5591. #ifdef PID_ADD_EXTRUSION_RATE
  5592. SERIAL_PROTOCOL(" c:");
  5593. //Kc does not have scaling applied above, or in resetting defaults
  5594. SERIAL_PROTOCOL(Kc);
  5595. #endif
  5596. SERIAL_PROTOCOLLN("");
  5597. }
  5598. break;
  5599. #endif //PIDTEMP
  5600. #ifdef PIDTEMPBED
  5601. case 304: // M304
  5602. {
  5603. if(code_seen('P')) cs.bedKp = code_value();
  5604. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5605. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5606. updatePID();
  5607. SERIAL_PROTOCOLRPGM(MSG_OK);
  5608. SERIAL_PROTOCOL(" p:");
  5609. SERIAL_PROTOCOL(cs.bedKp);
  5610. SERIAL_PROTOCOL(" i:");
  5611. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5612. SERIAL_PROTOCOL(" d:");
  5613. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5614. SERIAL_PROTOCOLLN("");
  5615. }
  5616. break;
  5617. #endif //PIDTEMP
  5618. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5619. {
  5620. #ifdef CHDK
  5621. SET_OUTPUT(CHDK);
  5622. WRITE(CHDK, HIGH);
  5623. chdkHigh = _millis();
  5624. chdkActive = true;
  5625. #else
  5626. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5627. const uint8_t NUM_PULSES=16;
  5628. const float PULSE_LENGTH=0.01524;
  5629. for(int i=0; i < NUM_PULSES; i++) {
  5630. WRITE(PHOTOGRAPH_PIN, HIGH);
  5631. _delay_ms(PULSE_LENGTH);
  5632. WRITE(PHOTOGRAPH_PIN, LOW);
  5633. _delay_ms(PULSE_LENGTH);
  5634. }
  5635. _delay(7.33);
  5636. for(int i=0; i < NUM_PULSES; i++) {
  5637. WRITE(PHOTOGRAPH_PIN, HIGH);
  5638. _delay_ms(PULSE_LENGTH);
  5639. WRITE(PHOTOGRAPH_PIN, LOW);
  5640. _delay_ms(PULSE_LENGTH);
  5641. }
  5642. #endif
  5643. #endif //chdk end if
  5644. }
  5645. break;
  5646. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5647. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5648. {
  5649. float temp = .0;
  5650. if (code_seen('S')) temp=code_value();
  5651. set_extrude_min_temp(temp);
  5652. }
  5653. break;
  5654. #endif
  5655. case 303: // M303 PID autotune
  5656. {
  5657. float temp = 150.0;
  5658. int e=0;
  5659. int c=5;
  5660. if (code_seen('E')) e=code_value();
  5661. if (e<0)
  5662. temp=70;
  5663. if (code_seen('S')) temp=code_value();
  5664. if (code_seen('C')) c=code_value();
  5665. PID_autotune(temp, e, c);
  5666. }
  5667. break;
  5668. case 400: // M400 finish all moves
  5669. {
  5670. st_synchronize();
  5671. }
  5672. break;
  5673. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5674. {
  5675. //! currently three different materials are needed (default, flex and PVA)
  5676. //! add storing this information for different load/unload profiles etc. in the future
  5677. //!firmware does not wait for "ok" from mmu
  5678. if (mmu_enabled)
  5679. {
  5680. uint8_t extruder = 255;
  5681. uint8_t filament = FILAMENT_UNDEFINED;
  5682. if(code_seen('E')) extruder = code_value();
  5683. if(code_seen('F')) filament = code_value();
  5684. mmu_set_filament_type(extruder, filament);
  5685. }
  5686. }
  5687. break;
  5688. case 500: // M500 Store settings in EEPROM
  5689. {
  5690. Config_StoreSettings();
  5691. }
  5692. break;
  5693. case 501: // M501 Read settings from EEPROM
  5694. {
  5695. Config_RetrieveSettings();
  5696. }
  5697. break;
  5698. case 502: // M502 Revert to default settings
  5699. {
  5700. Config_ResetDefault();
  5701. }
  5702. break;
  5703. case 503: // M503 print settings currently in memory
  5704. {
  5705. Config_PrintSettings();
  5706. }
  5707. break;
  5708. case 509: //M509 Force language selection
  5709. {
  5710. lang_reset();
  5711. SERIAL_ECHO_START;
  5712. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5713. }
  5714. break;
  5715. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5716. case 540:
  5717. {
  5718. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5719. }
  5720. break;
  5721. #endif
  5722. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5723. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5724. {
  5725. float value;
  5726. if (code_seen('Z'))
  5727. {
  5728. value = code_value();
  5729. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5730. {
  5731. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5732. SERIAL_ECHO_START;
  5733. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5734. SERIAL_PROTOCOLLN("");
  5735. }
  5736. else
  5737. {
  5738. SERIAL_ECHO_START;
  5739. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5740. SERIAL_ECHORPGM(MSG_Z_MIN);
  5741. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5742. SERIAL_ECHORPGM(MSG_Z_MAX);
  5743. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5744. SERIAL_PROTOCOLLN("");
  5745. }
  5746. }
  5747. else
  5748. {
  5749. SERIAL_ECHO_START;
  5750. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5751. SERIAL_ECHO(-cs.zprobe_zoffset);
  5752. SERIAL_PROTOCOLLN("");
  5753. }
  5754. break;
  5755. }
  5756. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5757. #ifdef FILAMENTCHANGEENABLE
  5758. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5759. {
  5760. st_synchronize();
  5761. float x_position = current_position[X_AXIS];
  5762. float y_position = current_position[Y_AXIS];
  5763. float z_shift = 0;
  5764. float e_shift_init = 0;
  5765. float e_shift_late = 0;
  5766. bool automatic = false;
  5767. //Retract extruder
  5768. if(code_seen('E'))
  5769. {
  5770. e_shift_init = code_value();
  5771. }
  5772. else
  5773. {
  5774. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5775. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5776. #endif
  5777. }
  5778. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5779. if (code_seen('L'))
  5780. {
  5781. e_shift_late = code_value();
  5782. }
  5783. else
  5784. {
  5785. #ifdef FILAMENTCHANGE_FINALRETRACT
  5786. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5787. #endif
  5788. }
  5789. //Lift Z
  5790. if(code_seen('Z'))
  5791. {
  5792. z_shift = code_value();
  5793. }
  5794. else
  5795. {
  5796. #ifdef FILAMENTCHANGE_ZADD
  5797. z_shift= FILAMENTCHANGE_ZADD ;
  5798. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5799. #endif
  5800. }
  5801. //Move XY to side
  5802. if(code_seen('X'))
  5803. {
  5804. x_position = code_value();
  5805. }
  5806. else
  5807. {
  5808. #ifdef FILAMENTCHANGE_XPOS
  5809. x_position = FILAMENTCHANGE_XPOS;
  5810. #endif
  5811. }
  5812. if(code_seen('Y'))
  5813. {
  5814. y_position = code_value();
  5815. }
  5816. else
  5817. {
  5818. #ifdef FILAMENTCHANGE_YPOS
  5819. y_position = FILAMENTCHANGE_YPOS ;
  5820. #endif
  5821. }
  5822. if (mmu_enabled && code_seen("AUTO"))
  5823. automatic = true;
  5824. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5825. }
  5826. break;
  5827. #endif //FILAMENTCHANGEENABLE
  5828. case 601: //! M601 - Pause print
  5829. {
  5830. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5831. lcd_pause_print();
  5832. }
  5833. break;
  5834. case 602: { //! M602 - Resume print
  5835. lcd_resume_print();
  5836. }
  5837. break;
  5838. #ifdef PINDA_THERMISTOR
  5839. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5840. {
  5841. int set_target_pinda = 0;
  5842. if (code_seen('S')) {
  5843. set_target_pinda = code_value();
  5844. }
  5845. else {
  5846. break;
  5847. }
  5848. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5849. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5850. SERIAL_PROTOCOL(set_target_pinda);
  5851. SERIAL_PROTOCOLLN("");
  5852. codenum = _millis();
  5853. cancel_heatup = false;
  5854. bool is_pinda_cooling = false;
  5855. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5856. is_pinda_cooling = true;
  5857. }
  5858. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5859. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5860. {
  5861. SERIAL_PROTOCOLPGM("P:");
  5862. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5863. SERIAL_PROTOCOLPGM("/");
  5864. SERIAL_PROTOCOL(set_target_pinda);
  5865. SERIAL_PROTOCOLLN("");
  5866. codenum = _millis();
  5867. }
  5868. manage_heater();
  5869. manage_inactivity();
  5870. lcd_update(0);
  5871. }
  5872. LCD_MESSAGERPGM(MSG_OK);
  5873. break;
  5874. }
  5875. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5876. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5877. uint8_t cal_status = calibration_status_pinda();
  5878. int16_t usteps = 0;
  5879. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5880. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5881. for (uint8_t i = 0; i < 6; i++)
  5882. {
  5883. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5884. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5885. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5886. SERIAL_PROTOCOLPGM(", ");
  5887. SERIAL_PROTOCOL(35 + (i * 5));
  5888. SERIAL_PROTOCOLPGM(", ");
  5889. SERIAL_PROTOCOL(usteps);
  5890. SERIAL_PROTOCOLPGM(", ");
  5891. SERIAL_PROTOCOL(mm * 1000);
  5892. SERIAL_PROTOCOLLN("");
  5893. }
  5894. }
  5895. else if (code_seen('!')) { // ! - Set factory default values
  5896. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5897. int16_t z_shift = 8; //40C - 20um - 8usteps
  5898. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5899. z_shift = 24; //45C - 60um - 24usteps
  5900. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5901. z_shift = 48; //50C - 120um - 48usteps
  5902. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5903. z_shift = 80; //55C - 200um - 80usteps
  5904. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5905. z_shift = 120; //60C - 300um - 120usteps
  5906. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5907. SERIAL_PROTOCOLLN("factory restored");
  5908. }
  5909. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5910. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5911. int16_t z_shift = 0;
  5912. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5913. SERIAL_PROTOCOLLN("zerorized");
  5914. }
  5915. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5916. int16_t usteps = code_value();
  5917. if (code_seen('I')) {
  5918. uint8_t index = code_value();
  5919. if (index < 5) {
  5920. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5921. SERIAL_PROTOCOLLN("OK");
  5922. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5923. for (uint8_t i = 0; i < 6; i++)
  5924. {
  5925. usteps = 0;
  5926. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5927. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5928. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5929. SERIAL_PROTOCOLPGM(", ");
  5930. SERIAL_PROTOCOL(35 + (i * 5));
  5931. SERIAL_PROTOCOLPGM(", ");
  5932. SERIAL_PROTOCOL(usteps);
  5933. SERIAL_PROTOCOLPGM(", ");
  5934. SERIAL_PROTOCOL(mm * 1000);
  5935. SERIAL_PROTOCOLLN("");
  5936. }
  5937. }
  5938. }
  5939. }
  5940. else {
  5941. SERIAL_PROTOCOLPGM("no valid command");
  5942. }
  5943. break;
  5944. #endif //PINDA_THERMISTOR
  5945. #ifdef LIN_ADVANCE
  5946. case 900: // M900: Set LIN_ADVANCE options.
  5947. gcode_M900();
  5948. break;
  5949. #endif
  5950. case 907: // M907 Set digital trimpot motor current using axis codes.
  5951. {
  5952. #ifdef TMC2130
  5953. for (int i = 0; i < NUM_AXIS; i++)
  5954. if(code_seen(axis_codes[i]))
  5955. {
  5956. long cur_mA = code_value_long();
  5957. uint8_t val = tmc2130_cur2val(cur_mA);
  5958. tmc2130_set_current_h(i, val);
  5959. tmc2130_set_current_r(i, val);
  5960. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  5961. }
  5962. #else //TMC2130
  5963. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5964. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5965. if(code_seen('B')) st_current_set(4,code_value());
  5966. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5967. #endif
  5968. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5969. if(code_seen('X')) st_current_set(0, code_value());
  5970. #endif
  5971. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5972. if(code_seen('Z')) st_current_set(1, code_value());
  5973. #endif
  5974. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5975. if(code_seen('E')) st_current_set(2, code_value());
  5976. #endif
  5977. #endif //TMC2130
  5978. }
  5979. break;
  5980. case 908: // M908 Control digital trimpot directly.
  5981. {
  5982. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5983. uint8_t channel,current;
  5984. if(code_seen('P')) channel=code_value();
  5985. if(code_seen('S')) current=code_value();
  5986. digitalPotWrite(channel, current);
  5987. #endif
  5988. }
  5989. break;
  5990. #ifdef TMC2130_SERVICE_CODES_M910_M918
  5991. case 910: //! M910 - TMC2130 init
  5992. {
  5993. tmc2130_init();
  5994. }
  5995. break;
  5996. case 911: //! M911 - Set TMC2130 holding currents
  5997. {
  5998. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5999. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6000. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6001. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6002. }
  6003. break;
  6004. case 912: //! M912 - Set TMC2130 running currents
  6005. {
  6006. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6007. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6008. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6009. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6010. }
  6011. break;
  6012. case 913: //! M913 - Print TMC2130 currents
  6013. {
  6014. tmc2130_print_currents();
  6015. }
  6016. break;
  6017. case 914: //! M914 - Set normal mode
  6018. {
  6019. tmc2130_mode = TMC2130_MODE_NORMAL;
  6020. update_mode_profile();
  6021. tmc2130_init();
  6022. }
  6023. break;
  6024. case 915: //! M915 - Set silent mode
  6025. {
  6026. tmc2130_mode = TMC2130_MODE_SILENT;
  6027. update_mode_profile();
  6028. tmc2130_init();
  6029. }
  6030. break;
  6031. case 916: //! M916 - Set sg_thrs
  6032. {
  6033. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6034. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6035. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6036. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6037. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6038. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6039. }
  6040. break;
  6041. case 917: //! M917 - Set TMC2130 pwm_ampl
  6042. {
  6043. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6044. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6045. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6046. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6047. }
  6048. break;
  6049. case 918: //! M918 - Set TMC2130 pwm_grad
  6050. {
  6051. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6052. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6053. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6054. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6055. }
  6056. break;
  6057. #endif //TMC2130_SERVICE_CODES_M910_M918
  6058. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6059. {
  6060. #ifdef TMC2130
  6061. if(code_seen('E'))
  6062. {
  6063. uint16_t res_new = code_value();
  6064. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6065. {
  6066. st_synchronize();
  6067. uint8_t axis = E_AXIS;
  6068. uint16_t res = tmc2130_get_res(axis);
  6069. tmc2130_set_res(axis, res_new);
  6070. cs.axis_ustep_resolution[axis] = res_new;
  6071. if (res_new > res)
  6072. {
  6073. uint16_t fac = (res_new / res);
  6074. cs.axis_steps_per_unit[axis] *= fac;
  6075. position[E_AXIS] *= fac;
  6076. }
  6077. else
  6078. {
  6079. uint16_t fac = (res / res_new);
  6080. cs.axis_steps_per_unit[axis] /= fac;
  6081. position[E_AXIS] /= fac;
  6082. }
  6083. }
  6084. }
  6085. #else //TMC2130
  6086. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6087. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6088. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6089. if(code_seen('B')) microstep_mode(4,code_value());
  6090. microstep_readings();
  6091. #endif
  6092. #endif //TMC2130
  6093. }
  6094. break;
  6095. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6096. {
  6097. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6098. if(code_seen('S')) switch((int)code_value())
  6099. {
  6100. case 1:
  6101. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6102. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6103. break;
  6104. case 2:
  6105. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6106. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6107. break;
  6108. }
  6109. microstep_readings();
  6110. #endif
  6111. }
  6112. break;
  6113. case 701: //! M701 - load filament
  6114. {
  6115. if (mmu_enabled && code_seen('E'))
  6116. tmp_extruder = code_value();
  6117. gcode_M701();
  6118. }
  6119. break;
  6120. case 702: //! M702 [U C] -
  6121. {
  6122. #ifdef SNMM
  6123. if (code_seen('U'))
  6124. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6125. else if (code_seen('C'))
  6126. extr_unload(); //! if "C" unload just current filament
  6127. else
  6128. extr_unload_all(); //! otherwise unload all filaments
  6129. #else
  6130. if (code_seen('C')) {
  6131. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6132. }
  6133. else {
  6134. if(mmu_enabled) extr_unload(); //! unload current filament
  6135. else unload_filament();
  6136. }
  6137. #endif //SNMM
  6138. }
  6139. break;
  6140. case 999: // M999: Restart after being stopped
  6141. Stopped = false;
  6142. lcd_reset_alert_level();
  6143. gcode_LastN = Stopped_gcode_LastN;
  6144. FlushSerialRequestResend();
  6145. break;
  6146. default:
  6147. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6148. }
  6149. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6150. mcode_in_progress = 0;
  6151. }
  6152. }
  6153. // end if(code_seen('M')) (end of M codes)
  6154. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6155. //! select filament in case of MMU_V2
  6156. //! if extruder is "?", open menu to let the user select extruder/filament
  6157. //!
  6158. //! For MMU_V2:
  6159. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6160. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6161. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6162. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6163. else if(code_seen('T'))
  6164. {
  6165. int index;
  6166. bool load_to_nozzle = false;
  6167. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6168. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6169. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6170. SERIAL_ECHOLNPGM("Invalid T code.");
  6171. }
  6172. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6173. if (mmu_enabled)
  6174. {
  6175. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6176. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6177. {
  6178. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6179. }
  6180. else
  6181. {
  6182. st_synchronize();
  6183. mmu_command(MmuCmd::T0 + tmp_extruder);
  6184. manage_response(true, true, MMU_TCODE_MOVE);
  6185. }
  6186. }
  6187. }
  6188. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6189. if (mmu_enabled)
  6190. {
  6191. st_synchronize();
  6192. mmu_continue_loading(is_usb_printing);
  6193. mmu_extruder = tmp_extruder; //filament change is finished
  6194. mmu_load_to_nozzle();
  6195. }
  6196. }
  6197. else {
  6198. if (*(strchr_pointer + index) == '?')
  6199. {
  6200. if(mmu_enabled)
  6201. {
  6202. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6203. load_to_nozzle = true;
  6204. } else
  6205. {
  6206. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6207. }
  6208. }
  6209. else {
  6210. tmp_extruder = code_value();
  6211. if (mmu_enabled && lcd_autoDepleteEnabled())
  6212. {
  6213. tmp_extruder = ad_getAlternative(tmp_extruder);
  6214. }
  6215. }
  6216. st_synchronize();
  6217. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6218. if (mmu_enabled)
  6219. {
  6220. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6221. {
  6222. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6223. }
  6224. else
  6225. {
  6226. mmu_command(MmuCmd::T0 + tmp_extruder);
  6227. manage_response(true, true, MMU_TCODE_MOVE);
  6228. mmu_continue_loading(is_usb_printing);
  6229. mmu_extruder = tmp_extruder; //filament change is finished
  6230. if (load_to_nozzle)// for single material usage with mmu
  6231. {
  6232. mmu_load_to_nozzle();
  6233. }
  6234. }
  6235. }
  6236. else
  6237. {
  6238. #ifdef SNMM
  6239. #ifdef LIN_ADVANCE
  6240. if (mmu_extruder != tmp_extruder)
  6241. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6242. #endif
  6243. mmu_extruder = tmp_extruder;
  6244. _delay(100);
  6245. disable_e0();
  6246. disable_e1();
  6247. disable_e2();
  6248. pinMode(E_MUX0_PIN, OUTPUT);
  6249. pinMode(E_MUX1_PIN, OUTPUT);
  6250. _delay(100);
  6251. SERIAL_ECHO_START;
  6252. SERIAL_ECHO("T:");
  6253. SERIAL_ECHOLN((int)tmp_extruder);
  6254. switch (tmp_extruder) {
  6255. case 1:
  6256. WRITE(E_MUX0_PIN, HIGH);
  6257. WRITE(E_MUX1_PIN, LOW);
  6258. break;
  6259. case 2:
  6260. WRITE(E_MUX0_PIN, LOW);
  6261. WRITE(E_MUX1_PIN, HIGH);
  6262. break;
  6263. case 3:
  6264. WRITE(E_MUX0_PIN, HIGH);
  6265. WRITE(E_MUX1_PIN, HIGH);
  6266. break;
  6267. default:
  6268. WRITE(E_MUX0_PIN, LOW);
  6269. WRITE(E_MUX1_PIN, LOW);
  6270. break;
  6271. }
  6272. _delay(100);
  6273. #else //SNMM
  6274. if (tmp_extruder >= EXTRUDERS) {
  6275. SERIAL_ECHO_START;
  6276. SERIAL_ECHOPGM("T");
  6277. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6278. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6279. }
  6280. else {
  6281. #if EXTRUDERS > 1
  6282. boolean make_move = false;
  6283. #endif
  6284. if (code_seen('F')) {
  6285. #if EXTRUDERS > 1
  6286. make_move = true;
  6287. #endif
  6288. next_feedrate = code_value();
  6289. if (next_feedrate > 0.0) {
  6290. feedrate = next_feedrate;
  6291. }
  6292. }
  6293. #if EXTRUDERS > 1
  6294. if (tmp_extruder != active_extruder) {
  6295. // Save current position to return to after applying extruder offset
  6296. memcpy(destination, current_position, sizeof(destination));
  6297. // Offset extruder (only by XY)
  6298. int i;
  6299. for (i = 0; i < 2; i++) {
  6300. current_position[i] = current_position[i] -
  6301. extruder_offset[i][active_extruder] +
  6302. extruder_offset[i][tmp_extruder];
  6303. }
  6304. // Set the new active extruder and position
  6305. active_extruder = tmp_extruder;
  6306. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6307. // Move to the old position if 'F' was in the parameters
  6308. if (make_move && Stopped == false) {
  6309. prepare_move();
  6310. }
  6311. }
  6312. #endif
  6313. SERIAL_ECHO_START;
  6314. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6315. SERIAL_PROTOCOLLN((int)active_extruder);
  6316. }
  6317. #endif //SNMM
  6318. }
  6319. }
  6320. } // end if(code_seen('T')) (end of T codes)
  6321. else if (code_seen('D')) // D codes (debug)
  6322. {
  6323. switch((int)code_value())
  6324. {
  6325. case -1: //! D-1 - Endless loop
  6326. dcode__1(); break;
  6327. #ifdef DEBUG_DCODES
  6328. case 0: //! D0 - Reset
  6329. dcode_0(); break;
  6330. case 1: //! D1 - Clear EEPROM
  6331. dcode_1(); break;
  6332. case 2: //! D2 - Read/Write RAM
  6333. dcode_2(); break;
  6334. #endif //DEBUG_DCODES
  6335. #ifdef DEBUG_DCODE3
  6336. case 3: //! D3 - Read/Write EEPROM
  6337. dcode_3(); break;
  6338. #endif //DEBUG_DCODE3
  6339. #ifdef DEBUG_DCODES
  6340. case 4: //! D4 - Read/Write PIN
  6341. dcode_4(); break;
  6342. #endif //DEBUG_DCODES
  6343. #ifdef DEBUG_DCODE5
  6344. case 5: // D5 - Read/Write FLASH
  6345. dcode_5(); break;
  6346. break;
  6347. #endif //DEBUG_DCODE5
  6348. #ifdef DEBUG_DCODES
  6349. case 6: // D6 - Read/Write external FLASH
  6350. dcode_6(); break;
  6351. case 7: //! D7 - Read/Write Bootloader
  6352. dcode_7(); break;
  6353. case 8: //! D8 - Read/Write PINDA
  6354. dcode_8(); break;
  6355. case 9: //! D9 - Read/Write ADC
  6356. dcode_9(); break;
  6357. case 10: //! D10 - XYZ calibration = OK
  6358. dcode_10(); break;
  6359. #endif //DEBUG_DCODES
  6360. #ifdef HEATBED_ANALYSIS
  6361. case 80:
  6362. {
  6363. float dimension_x = 40;
  6364. float dimension_y = 40;
  6365. int points_x = 40;
  6366. int points_y = 40;
  6367. float offset_x = 74;
  6368. float offset_y = 33;
  6369. if (code_seen('E')) dimension_x = code_value();
  6370. if (code_seen('F')) dimension_y = code_value();
  6371. if (code_seen('G')) {points_x = code_value(); }
  6372. if (code_seen('H')) {points_y = code_value(); }
  6373. if (code_seen('I')) {offset_x = code_value(); }
  6374. if (code_seen('J')) {offset_y = code_value(); }
  6375. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6376. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6377. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6378. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6379. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6380. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6381. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6382. }break;
  6383. case 81:
  6384. {
  6385. float dimension_x = 40;
  6386. float dimension_y = 40;
  6387. int points_x = 40;
  6388. int points_y = 40;
  6389. float offset_x = 74;
  6390. float offset_y = 33;
  6391. if (code_seen('E')) dimension_x = code_value();
  6392. if (code_seen('F')) dimension_y = code_value();
  6393. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6394. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6395. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6396. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6397. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6398. } break;
  6399. #endif //HEATBED_ANALYSIS
  6400. #ifdef DEBUG_DCODES
  6401. case 106: //D106 print measured fan speed for different pwm values
  6402. {
  6403. for (int i = 255; i > 0; i = i - 5) {
  6404. fanSpeed = i;
  6405. //delay_keep_alive(2000);
  6406. for (int j = 0; j < 100; j++) {
  6407. delay_keep_alive(100);
  6408. }
  6409. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6410. }
  6411. }break;
  6412. #ifdef TMC2130
  6413. case 2130: //! D2130 - TMC2130
  6414. dcode_2130(); break;
  6415. #endif //TMC2130
  6416. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6417. case 9125: //! D9125 - FILAMENT_SENSOR
  6418. dcode_9125(); break;
  6419. #endif //FILAMENT_SENSOR
  6420. #endif //DEBUG_DCODES
  6421. }
  6422. }
  6423. else
  6424. {
  6425. SERIAL_ECHO_START;
  6426. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6427. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6428. SERIAL_ECHOLNPGM("\"(2)");
  6429. }
  6430. KEEPALIVE_STATE(NOT_BUSY);
  6431. ClearToSend();
  6432. }
  6433. void FlushSerialRequestResend()
  6434. {
  6435. //char cmdbuffer[bufindr][100]="Resend:";
  6436. MYSERIAL.flush();
  6437. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6438. }
  6439. // Confirm the execution of a command, if sent from a serial line.
  6440. // Execution of a command from a SD card will not be confirmed.
  6441. void ClearToSend()
  6442. {
  6443. previous_millis_cmd = _millis();
  6444. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6445. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6446. }
  6447. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6448. void update_currents() {
  6449. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6450. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6451. float tmp_motor[3];
  6452. //SERIAL_ECHOLNPGM("Currents updated: ");
  6453. if (destination[Z_AXIS] < Z_SILENT) {
  6454. //SERIAL_ECHOLNPGM("LOW");
  6455. for (uint8_t i = 0; i < 3; i++) {
  6456. st_current_set(i, current_low[i]);
  6457. /*MYSERIAL.print(int(i));
  6458. SERIAL_ECHOPGM(": ");
  6459. MYSERIAL.println(current_low[i]);*/
  6460. }
  6461. }
  6462. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6463. //SERIAL_ECHOLNPGM("HIGH");
  6464. for (uint8_t i = 0; i < 3; i++) {
  6465. st_current_set(i, current_high[i]);
  6466. /*MYSERIAL.print(int(i));
  6467. SERIAL_ECHOPGM(": ");
  6468. MYSERIAL.println(current_high[i]);*/
  6469. }
  6470. }
  6471. else {
  6472. for (uint8_t i = 0; i < 3; i++) {
  6473. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6474. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6475. st_current_set(i, tmp_motor[i]);
  6476. /*MYSERIAL.print(int(i));
  6477. SERIAL_ECHOPGM(": ");
  6478. MYSERIAL.println(tmp_motor[i]);*/
  6479. }
  6480. }
  6481. }
  6482. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6483. void get_coordinates()
  6484. {
  6485. bool seen[4]={false,false,false,false};
  6486. for(int8_t i=0; i < NUM_AXIS; i++) {
  6487. if(code_seen(axis_codes[i]))
  6488. {
  6489. bool relative = axis_relative_modes[i] || relative_mode;
  6490. destination[i] = (float)code_value();
  6491. if (i == E_AXIS) {
  6492. float emult = extruder_multiplier[active_extruder];
  6493. if (emult != 1.) {
  6494. if (! relative) {
  6495. destination[i] -= current_position[i];
  6496. relative = true;
  6497. }
  6498. destination[i] *= emult;
  6499. }
  6500. }
  6501. if (relative)
  6502. destination[i] += current_position[i];
  6503. seen[i]=true;
  6504. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6505. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6506. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6507. }
  6508. else destination[i] = current_position[i]; //Are these else lines really needed?
  6509. }
  6510. if(code_seen('F')) {
  6511. next_feedrate = code_value();
  6512. #ifdef MAX_SILENT_FEEDRATE
  6513. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6514. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6515. #endif //MAX_SILENT_FEEDRATE
  6516. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6517. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6518. {
  6519. // float e_max_speed =
  6520. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6521. }
  6522. }
  6523. }
  6524. void get_arc_coordinates()
  6525. {
  6526. #ifdef SF_ARC_FIX
  6527. bool relative_mode_backup = relative_mode;
  6528. relative_mode = true;
  6529. #endif
  6530. get_coordinates();
  6531. #ifdef SF_ARC_FIX
  6532. relative_mode=relative_mode_backup;
  6533. #endif
  6534. if(code_seen('I')) {
  6535. offset[0] = code_value();
  6536. }
  6537. else {
  6538. offset[0] = 0.0;
  6539. }
  6540. if(code_seen('J')) {
  6541. offset[1] = code_value();
  6542. }
  6543. else {
  6544. offset[1] = 0.0;
  6545. }
  6546. }
  6547. void clamp_to_software_endstops(float target[3])
  6548. {
  6549. #ifdef DEBUG_DISABLE_SWLIMITS
  6550. return;
  6551. #endif //DEBUG_DISABLE_SWLIMITS
  6552. world2machine_clamp(target[0], target[1]);
  6553. // Clamp the Z coordinate.
  6554. if (min_software_endstops) {
  6555. float negative_z_offset = 0;
  6556. #ifdef ENABLE_AUTO_BED_LEVELING
  6557. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6558. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6559. #endif
  6560. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6561. }
  6562. if (max_software_endstops) {
  6563. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6564. }
  6565. }
  6566. #ifdef MESH_BED_LEVELING
  6567. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6568. float dx = x - current_position[X_AXIS];
  6569. float dy = y - current_position[Y_AXIS];
  6570. float dz = z - current_position[Z_AXIS];
  6571. int n_segments = 0;
  6572. if (mbl.active) {
  6573. float len = abs(dx) + abs(dy);
  6574. if (len > 0)
  6575. // Split to 3cm segments or shorter.
  6576. n_segments = int(ceil(len / 30.f));
  6577. }
  6578. if (n_segments > 1) {
  6579. float de = e - current_position[E_AXIS];
  6580. for (int i = 1; i < n_segments; ++ i) {
  6581. float t = float(i) / float(n_segments);
  6582. if (saved_printing || (mbl.active == false)) return;
  6583. plan_buffer_line(
  6584. current_position[X_AXIS] + t * dx,
  6585. current_position[Y_AXIS] + t * dy,
  6586. current_position[Z_AXIS] + t * dz,
  6587. current_position[E_AXIS] + t * de,
  6588. feed_rate, extruder);
  6589. }
  6590. }
  6591. // The rest of the path.
  6592. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6593. current_position[X_AXIS] = x;
  6594. current_position[Y_AXIS] = y;
  6595. current_position[Z_AXIS] = z;
  6596. current_position[E_AXIS] = e;
  6597. }
  6598. #endif // MESH_BED_LEVELING
  6599. void prepare_move()
  6600. {
  6601. clamp_to_software_endstops(destination);
  6602. previous_millis_cmd = _millis();
  6603. // Do not use feedmultiply for E or Z only moves
  6604. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6605. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6606. }
  6607. else {
  6608. #ifdef MESH_BED_LEVELING
  6609. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6610. #else
  6611. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6612. #endif
  6613. }
  6614. for(int8_t i=0; i < NUM_AXIS; i++) {
  6615. current_position[i] = destination[i];
  6616. }
  6617. }
  6618. void prepare_arc_move(char isclockwise) {
  6619. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6620. // Trace the arc
  6621. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6622. // As far as the parser is concerned, the position is now == target. In reality the
  6623. // motion control system might still be processing the action and the real tool position
  6624. // in any intermediate location.
  6625. for(int8_t i=0; i < NUM_AXIS; i++) {
  6626. current_position[i] = destination[i];
  6627. }
  6628. previous_millis_cmd = _millis();
  6629. }
  6630. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6631. #if defined(FAN_PIN)
  6632. #if CONTROLLERFAN_PIN == FAN_PIN
  6633. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6634. #endif
  6635. #endif
  6636. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6637. unsigned long lastMotorCheck = 0;
  6638. void controllerFan()
  6639. {
  6640. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6641. {
  6642. lastMotorCheck = _millis();
  6643. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6644. #if EXTRUDERS > 2
  6645. || !READ(E2_ENABLE_PIN)
  6646. #endif
  6647. #if EXTRUDER > 1
  6648. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6649. || !READ(X2_ENABLE_PIN)
  6650. #endif
  6651. || !READ(E1_ENABLE_PIN)
  6652. #endif
  6653. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6654. {
  6655. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6656. }
  6657. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6658. {
  6659. digitalWrite(CONTROLLERFAN_PIN, 0);
  6660. analogWrite(CONTROLLERFAN_PIN, 0);
  6661. }
  6662. else
  6663. {
  6664. // allows digital or PWM fan output to be used (see M42 handling)
  6665. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6666. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6667. }
  6668. }
  6669. }
  6670. #endif
  6671. #ifdef TEMP_STAT_LEDS
  6672. static bool blue_led = false;
  6673. static bool red_led = false;
  6674. static uint32_t stat_update = 0;
  6675. void handle_status_leds(void) {
  6676. float max_temp = 0.0;
  6677. if(_millis() > stat_update) {
  6678. stat_update += 500; // Update every 0.5s
  6679. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6680. max_temp = max(max_temp, degHotend(cur_extruder));
  6681. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6682. }
  6683. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6684. max_temp = max(max_temp, degTargetBed());
  6685. max_temp = max(max_temp, degBed());
  6686. #endif
  6687. if((max_temp > 55.0) && (red_led == false)) {
  6688. digitalWrite(STAT_LED_RED, 1);
  6689. digitalWrite(STAT_LED_BLUE, 0);
  6690. red_led = true;
  6691. blue_led = false;
  6692. }
  6693. if((max_temp < 54.0) && (blue_led == false)) {
  6694. digitalWrite(STAT_LED_RED, 0);
  6695. digitalWrite(STAT_LED_BLUE, 1);
  6696. red_led = false;
  6697. blue_led = true;
  6698. }
  6699. }
  6700. }
  6701. #endif
  6702. #ifdef SAFETYTIMER
  6703. /**
  6704. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6705. *
  6706. * Full screen blocking notification message is shown after heater turning off.
  6707. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6708. * damage print.
  6709. *
  6710. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6711. */
  6712. static void handleSafetyTimer()
  6713. {
  6714. #if (EXTRUDERS > 1)
  6715. #error Implemented only for one extruder.
  6716. #endif //(EXTRUDERS > 1)
  6717. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6718. {
  6719. safetyTimer.stop();
  6720. }
  6721. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6722. {
  6723. safetyTimer.start();
  6724. }
  6725. else if (safetyTimer.expired(safetytimer_inactive_time))
  6726. {
  6727. setTargetBed(0);
  6728. setAllTargetHotends(0);
  6729. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  6730. }
  6731. }
  6732. #endif //SAFETYTIMER
  6733. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6734. {
  6735. bool bInhibitFlag;
  6736. #ifdef FILAMENT_SENSOR
  6737. if (mmu_enabled == false)
  6738. {
  6739. //-// if (mcode_in_progress != 600) //M600 not in progress
  6740. #ifdef PAT9125
  6741. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6742. #endif // PAT9125
  6743. #ifdef IR_SENSOR
  6744. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6745. #endif // IR_SENSOR
  6746. if ((mcode_in_progress != 600) && (eFilamentAction != e_FILAMENT_ACTION_autoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6747. {
  6748. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6749. {
  6750. if (fsensor_check_autoload())
  6751. {
  6752. #ifdef PAT9125
  6753. fsensor_autoload_check_stop();
  6754. #endif //PAT9125
  6755. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6756. if(0)
  6757. {
  6758. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6759. _tone(BEEPER, 1000);
  6760. delay_keep_alive(50);
  6761. _noTone(BEEPER);
  6762. loading_flag = true;
  6763. enquecommand_front_P((PSTR("M701")));
  6764. }
  6765. else
  6766. {
  6767. /*
  6768. lcd_update_enable(false);
  6769. show_preheat_nozzle_warning();
  6770. lcd_update_enable(true);
  6771. */
  6772. eFilamentAction=e_FILAMENT_ACTION_autoLoad;
  6773. bFilamentFirstRun=false;
  6774. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6775. {
  6776. bFilamentPreheatState=true;
  6777. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6778. menu_submenu(mFilamentItemForce);
  6779. }
  6780. else
  6781. {
  6782. menu_submenu(mFilamentMenu);
  6783. lcd_timeoutToStatus.start();
  6784. }
  6785. }
  6786. }
  6787. }
  6788. else
  6789. {
  6790. #ifdef PAT9125
  6791. fsensor_autoload_check_stop();
  6792. #endif //PAT9125
  6793. fsensor_update();
  6794. }
  6795. }
  6796. }
  6797. #endif //FILAMENT_SENSOR
  6798. #ifdef SAFETYTIMER
  6799. handleSafetyTimer();
  6800. #endif //SAFETYTIMER
  6801. #if defined(KILL_PIN) && KILL_PIN > -1
  6802. static int killCount = 0; // make the inactivity button a bit less responsive
  6803. const int KILL_DELAY = 10000;
  6804. #endif
  6805. if(buflen < (BUFSIZE-1)){
  6806. get_command();
  6807. }
  6808. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6809. if(max_inactive_time)
  6810. kill(_n(""), 4);
  6811. if(stepper_inactive_time) {
  6812. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6813. {
  6814. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6815. disable_x();
  6816. disable_y();
  6817. disable_z();
  6818. disable_e0();
  6819. disable_e1();
  6820. disable_e2();
  6821. }
  6822. }
  6823. }
  6824. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6825. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6826. {
  6827. chdkActive = false;
  6828. WRITE(CHDK, LOW);
  6829. }
  6830. #endif
  6831. #if defined(KILL_PIN) && KILL_PIN > -1
  6832. // Check if the kill button was pressed and wait just in case it was an accidental
  6833. // key kill key press
  6834. // -------------------------------------------------------------------------------
  6835. if( 0 == READ(KILL_PIN) )
  6836. {
  6837. killCount++;
  6838. }
  6839. else if (killCount > 0)
  6840. {
  6841. killCount--;
  6842. }
  6843. // Exceeded threshold and we can confirm that it was not accidental
  6844. // KILL the machine
  6845. // ----------------------------------------------------------------
  6846. if ( killCount >= KILL_DELAY)
  6847. {
  6848. kill("", 5);
  6849. }
  6850. #endif
  6851. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6852. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6853. #endif
  6854. #ifdef EXTRUDER_RUNOUT_PREVENT
  6855. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6856. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6857. {
  6858. bool oldstatus=READ(E0_ENABLE_PIN);
  6859. enable_e0();
  6860. float oldepos=current_position[E_AXIS];
  6861. float oldedes=destination[E_AXIS];
  6862. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6863. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6864. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6865. current_position[E_AXIS]=oldepos;
  6866. destination[E_AXIS]=oldedes;
  6867. plan_set_e_position(oldepos);
  6868. previous_millis_cmd=_millis();
  6869. st_synchronize();
  6870. WRITE(E0_ENABLE_PIN,oldstatus);
  6871. }
  6872. #endif
  6873. #ifdef TEMP_STAT_LEDS
  6874. handle_status_leds();
  6875. #endif
  6876. check_axes_activity();
  6877. mmu_loop();
  6878. }
  6879. void kill(const char *full_screen_message, unsigned char id)
  6880. {
  6881. printf_P(_N("KILL: %d\n"), id);
  6882. //return;
  6883. cli(); // Stop interrupts
  6884. disable_heater();
  6885. disable_x();
  6886. // SERIAL_ECHOLNPGM("kill - disable Y");
  6887. disable_y();
  6888. disable_z();
  6889. disable_e0();
  6890. disable_e1();
  6891. disable_e2();
  6892. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6893. pinMode(PS_ON_PIN,INPUT);
  6894. #endif
  6895. SERIAL_ERROR_START;
  6896. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  6897. if (full_screen_message != NULL) {
  6898. SERIAL_ERRORLNRPGM(full_screen_message);
  6899. lcd_display_message_fullscreen_P(full_screen_message);
  6900. } else {
  6901. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  6902. }
  6903. // FMC small patch to update the LCD before ending
  6904. sei(); // enable interrupts
  6905. for ( int i=5; i--; lcd_update(0))
  6906. {
  6907. _delay(200);
  6908. }
  6909. cli(); // disable interrupts
  6910. suicide();
  6911. while(1)
  6912. {
  6913. #ifdef WATCHDOG
  6914. wdt_reset();
  6915. #endif //WATCHDOG
  6916. /* Intentionally left empty */
  6917. } // Wait for reset
  6918. }
  6919. void Stop()
  6920. {
  6921. disable_heater();
  6922. if(Stopped == false) {
  6923. Stopped = true;
  6924. lcd_print_stop();
  6925. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6926. SERIAL_ERROR_START;
  6927. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6928. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6929. }
  6930. }
  6931. bool IsStopped() { return Stopped; };
  6932. #ifdef FAST_PWM_FAN
  6933. void setPwmFrequency(uint8_t pin, int val)
  6934. {
  6935. val &= 0x07;
  6936. switch(digitalPinToTimer(pin))
  6937. {
  6938. #if defined(TCCR0A)
  6939. case TIMER0A:
  6940. case TIMER0B:
  6941. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6942. // TCCR0B |= val;
  6943. break;
  6944. #endif
  6945. #if defined(TCCR1A)
  6946. case TIMER1A:
  6947. case TIMER1B:
  6948. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6949. // TCCR1B |= val;
  6950. break;
  6951. #endif
  6952. #if defined(TCCR2)
  6953. case TIMER2:
  6954. case TIMER2:
  6955. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6956. TCCR2 |= val;
  6957. break;
  6958. #endif
  6959. #if defined(TCCR2A)
  6960. case TIMER2A:
  6961. case TIMER2B:
  6962. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6963. TCCR2B |= val;
  6964. break;
  6965. #endif
  6966. #if defined(TCCR3A)
  6967. case TIMER3A:
  6968. case TIMER3B:
  6969. case TIMER3C:
  6970. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6971. TCCR3B |= val;
  6972. break;
  6973. #endif
  6974. #if defined(TCCR4A)
  6975. case TIMER4A:
  6976. case TIMER4B:
  6977. case TIMER4C:
  6978. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6979. TCCR4B |= val;
  6980. break;
  6981. #endif
  6982. #if defined(TCCR5A)
  6983. case TIMER5A:
  6984. case TIMER5B:
  6985. case TIMER5C:
  6986. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6987. TCCR5B |= val;
  6988. break;
  6989. #endif
  6990. }
  6991. }
  6992. #endif //FAST_PWM_FAN
  6993. //! @brief Get and validate extruder number
  6994. //!
  6995. //! If it is not specified, active_extruder is returned in parameter extruder.
  6996. //! @param [in] code M code number
  6997. //! @param [out] extruder
  6998. //! @return error
  6999. //! @retval true Invalid extruder specified in T code
  7000. //! @retval false Valid extruder specified in T code, or not specifiead
  7001. bool setTargetedHotend(int code, uint8_t &extruder)
  7002. {
  7003. extruder = active_extruder;
  7004. if(code_seen('T')) {
  7005. extruder = code_value();
  7006. if(extruder >= EXTRUDERS) {
  7007. SERIAL_ECHO_START;
  7008. switch(code){
  7009. case 104:
  7010. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7011. break;
  7012. case 105:
  7013. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7014. break;
  7015. case 109:
  7016. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7017. break;
  7018. case 218:
  7019. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7020. break;
  7021. case 221:
  7022. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7023. break;
  7024. }
  7025. SERIAL_PROTOCOLLN((int)extruder);
  7026. return true;
  7027. }
  7028. }
  7029. return false;
  7030. }
  7031. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7032. {
  7033. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7034. {
  7035. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7036. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7037. }
  7038. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7039. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7040. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7041. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7042. total_filament_used = 0;
  7043. }
  7044. float calculate_extruder_multiplier(float diameter) {
  7045. float out = 1.f;
  7046. if (cs.volumetric_enabled && diameter > 0.f) {
  7047. float area = M_PI * diameter * diameter * 0.25;
  7048. out = 1.f / area;
  7049. }
  7050. if (extrudemultiply != 100)
  7051. out *= float(extrudemultiply) * 0.01f;
  7052. return out;
  7053. }
  7054. void calculate_extruder_multipliers() {
  7055. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7056. #if EXTRUDERS > 1
  7057. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7058. #if EXTRUDERS > 2
  7059. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7060. #endif
  7061. #endif
  7062. }
  7063. void delay_keep_alive(unsigned int ms)
  7064. {
  7065. for (;;) {
  7066. manage_heater();
  7067. // Manage inactivity, but don't disable steppers on timeout.
  7068. manage_inactivity(true);
  7069. lcd_update(0);
  7070. if (ms == 0)
  7071. break;
  7072. else if (ms >= 50) {
  7073. _delay(50);
  7074. ms -= 50;
  7075. } else {
  7076. _delay(ms);
  7077. ms = 0;
  7078. }
  7079. }
  7080. }
  7081. static void wait_for_heater(long codenum, uint8_t extruder) {
  7082. #ifdef TEMP_RESIDENCY_TIME
  7083. long residencyStart;
  7084. residencyStart = -1;
  7085. /* continue to loop until we have reached the target temp
  7086. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7087. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7088. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7089. #else
  7090. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7091. #endif //TEMP_RESIDENCY_TIME
  7092. if ((_millis() - codenum) > 1000UL)
  7093. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7094. if (!farm_mode) {
  7095. SERIAL_PROTOCOLPGM("T:");
  7096. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7097. SERIAL_PROTOCOLPGM(" E:");
  7098. SERIAL_PROTOCOL((int)extruder);
  7099. #ifdef TEMP_RESIDENCY_TIME
  7100. SERIAL_PROTOCOLPGM(" W:");
  7101. if (residencyStart > -1)
  7102. {
  7103. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7104. SERIAL_PROTOCOLLN(codenum);
  7105. }
  7106. else
  7107. {
  7108. SERIAL_PROTOCOLLN("?");
  7109. }
  7110. }
  7111. #else
  7112. SERIAL_PROTOCOLLN("");
  7113. #endif
  7114. codenum = _millis();
  7115. }
  7116. manage_heater();
  7117. manage_inactivity(true); //do not disable steppers
  7118. lcd_update(0);
  7119. #ifdef TEMP_RESIDENCY_TIME
  7120. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7121. or when current temp falls outside the hysteresis after target temp was reached */
  7122. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7123. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7124. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7125. {
  7126. residencyStart = _millis();
  7127. }
  7128. #endif //TEMP_RESIDENCY_TIME
  7129. }
  7130. }
  7131. void check_babystep()
  7132. {
  7133. int babystep_z;
  7134. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7135. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7136. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7137. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7138. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7139. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7140. lcd_update_enable(true);
  7141. }
  7142. }
  7143. #ifdef HEATBED_ANALYSIS
  7144. void d_setup()
  7145. {
  7146. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7147. pinMode(D_DATA, INPUT_PULLUP);
  7148. pinMode(D_REQUIRE, OUTPUT);
  7149. digitalWrite(D_REQUIRE, HIGH);
  7150. }
  7151. float d_ReadData()
  7152. {
  7153. int digit[13];
  7154. String mergeOutput;
  7155. float output;
  7156. digitalWrite(D_REQUIRE, HIGH);
  7157. for (int i = 0; i<13; i++)
  7158. {
  7159. for (int j = 0; j < 4; j++)
  7160. {
  7161. while (digitalRead(D_DATACLOCK) == LOW) {}
  7162. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7163. bitWrite(digit[i], j, digitalRead(D_DATA));
  7164. }
  7165. }
  7166. digitalWrite(D_REQUIRE, LOW);
  7167. mergeOutput = "";
  7168. output = 0;
  7169. for (int r = 5; r <= 10; r++) //Merge digits
  7170. {
  7171. mergeOutput += digit[r];
  7172. }
  7173. output = mergeOutput.toFloat();
  7174. if (digit[4] == 8) //Handle sign
  7175. {
  7176. output *= -1;
  7177. }
  7178. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7179. {
  7180. output /= 10;
  7181. }
  7182. return output;
  7183. }
  7184. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7185. int t1 = 0;
  7186. int t_delay = 0;
  7187. int digit[13];
  7188. int m;
  7189. char str[3];
  7190. //String mergeOutput;
  7191. char mergeOutput[15];
  7192. float output;
  7193. int mesh_point = 0; //index number of calibration point
  7194. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7195. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7196. float mesh_home_z_search = 4;
  7197. float measure_z_heigth = 0.2f;
  7198. float row[x_points_num];
  7199. int ix = 0;
  7200. int iy = 0;
  7201. const char* filename_wldsd = "mesh.txt";
  7202. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7203. char numb_wldsd[8]; // (" -A.BCD" + null)
  7204. #ifdef MICROMETER_LOGGING
  7205. d_setup();
  7206. #endif //MICROMETER_LOGGING
  7207. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7208. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7209. unsigned int custom_message_type_old = custom_message_type;
  7210. unsigned int custom_message_state_old = custom_message_state;
  7211. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7212. custom_message_state = (x_points_num * y_points_num) + 10;
  7213. lcd_update(1);
  7214. //mbl.reset();
  7215. babystep_undo();
  7216. card.openFile(filename_wldsd, false);
  7217. /*destination[Z_AXIS] = mesh_home_z_search;
  7218. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7219. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7220. for(int8_t i=0; i < NUM_AXIS; i++) {
  7221. current_position[i] = destination[i];
  7222. }
  7223. st_synchronize();
  7224. */
  7225. destination[Z_AXIS] = measure_z_heigth;
  7226. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7227. for(int8_t i=0; i < NUM_AXIS; i++) {
  7228. current_position[i] = destination[i];
  7229. }
  7230. st_synchronize();
  7231. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7232. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7233. SERIAL_PROTOCOL(x_points_num);
  7234. SERIAL_PROTOCOLPGM(",");
  7235. SERIAL_PROTOCOL(y_points_num);
  7236. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7237. SERIAL_PROTOCOL(mesh_home_z_search);
  7238. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7239. SERIAL_PROTOCOL(x_dimension);
  7240. SERIAL_PROTOCOLPGM(",");
  7241. SERIAL_PROTOCOL(y_dimension);
  7242. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7243. while (mesh_point != x_points_num * y_points_num) {
  7244. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7245. iy = mesh_point / x_points_num;
  7246. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7247. float z0 = 0.f;
  7248. /*destination[Z_AXIS] = mesh_home_z_search;
  7249. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7250. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7251. for(int8_t i=0; i < NUM_AXIS; i++) {
  7252. current_position[i] = destination[i];
  7253. }
  7254. st_synchronize();*/
  7255. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7256. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7257. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7258. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7259. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7260. for(int8_t i=0; i < NUM_AXIS; i++) {
  7261. current_position[i] = destination[i];
  7262. }
  7263. st_synchronize();
  7264. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7265. delay_keep_alive(1000);
  7266. #ifdef MICROMETER_LOGGING
  7267. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7268. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7269. //strcat(data_wldsd, numb_wldsd);
  7270. //MYSERIAL.println(data_wldsd);
  7271. //delay(1000);
  7272. //delay(3000);
  7273. //t1 = millis();
  7274. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7275. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7276. memset(digit, 0, sizeof(digit));
  7277. //cli();
  7278. digitalWrite(D_REQUIRE, LOW);
  7279. for (int i = 0; i<13; i++)
  7280. {
  7281. //t1 = millis();
  7282. for (int j = 0; j < 4; j++)
  7283. {
  7284. while (digitalRead(D_DATACLOCK) == LOW) {}
  7285. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7286. //printf_P(PSTR("Done %d\n"), j);
  7287. bitWrite(digit[i], j, digitalRead(D_DATA));
  7288. }
  7289. //t_delay = (millis() - t1);
  7290. //SERIAL_PROTOCOLPGM(" ");
  7291. //SERIAL_PROTOCOL_F(t_delay, 5);
  7292. //SERIAL_PROTOCOLPGM(" ");
  7293. }
  7294. //sei();
  7295. digitalWrite(D_REQUIRE, HIGH);
  7296. mergeOutput[0] = '\0';
  7297. output = 0;
  7298. for (int r = 5; r <= 10; r++) //Merge digits
  7299. {
  7300. sprintf(str, "%d", digit[r]);
  7301. strcat(mergeOutput, str);
  7302. }
  7303. output = atof(mergeOutput);
  7304. if (digit[4] == 8) //Handle sign
  7305. {
  7306. output *= -1;
  7307. }
  7308. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7309. {
  7310. output *= 0.1;
  7311. }
  7312. //output = d_ReadData();
  7313. //row[ix] = current_position[Z_AXIS];
  7314. //row[ix] = d_ReadData();
  7315. row[ix] = output;
  7316. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7317. memset(data_wldsd, 0, sizeof(data_wldsd));
  7318. for (int i = 0; i < x_points_num; i++) {
  7319. SERIAL_PROTOCOLPGM(" ");
  7320. SERIAL_PROTOCOL_F(row[i], 5);
  7321. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7322. dtostrf(row[i], 7, 3, numb_wldsd);
  7323. strcat(data_wldsd, numb_wldsd);
  7324. }
  7325. card.write_command(data_wldsd);
  7326. SERIAL_PROTOCOLPGM("\n");
  7327. }
  7328. custom_message_state--;
  7329. mesh_point++;
  7330. lcd_update(1);
  7331. }
  7332. #endif //MICROMETER_LOGGING
  7333. card.closefile();
  7334. //clean_up_after_endstop_move(l_feedmultiply);
  7335. }
  7336. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7337. int t1 = 0;
  7338. int t_delay = 0;
  7339. int digit[13];
  7340. int m;
  7341. char str[3];
  7342. //String mergeOutput;
  7343. char mergeOutput[15];
  7344. float output;
  7345. int mesh_point = 0; //index number of calibration point
  7346. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7347. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7348. float mesh_home_z_search = 4;
  7349. float row[x_points_num];
  7350. int ix = 0;
  7351. int iy = 0;
  7352. const char* filename_wldsd = "wldsd.txt";
  7353. char data_wldsd[70];
  7354. char numb_wldsd[10];
  7355. d_setup();
  7356. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7357. // We don't know where we are! HOME!
  7358. // Push the commands to the front of the message queue in the reverse order!
  7359. // There shall be always enough space reserved for these commands.
  7360. repeatcommand_front(); // repeat G80 with all its parameters
  7361. enquecommand_front_P((PSTR("G28 W0")));
  7362. enquecommand_front_P((PSTR("G1 Z5")));
  7363. return;
  7364. }
  7365. unsigned int custom_message_type_old = custom_message_type;
  7366. unsigned int custom_message_state_old = custom_message_state;
  7367. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7368. custom_message_state = (x_points_num * y_points_num) + 10;
  7369. lcd_update(1);
  7370. mbl.reset();
  7371. babystep_undo();
  7372. card.openFile(filename_wldsd, false);
  7373. current_position[Z_AXIS] = mesh_home_z_search;
  7374. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7375. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7376. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7377. int l_feedmultiply = setup_for_endstop_move(false);
  7378. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7379. SERIAL_PROTOCOL(x_points_num);
  7380. SERIAL_PROTOCOLPGM(",");
  7381. SERIAL_PROTOCOL(y_points_num);
  7382. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7383. SERIAL_PROTOCOL(mesh_home_z_search);
  7384. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7385. SERIAL_PROTOCOL(x_dimension);
  7386. SERIAL_PROTOCOLPGM(",");
  7387. SERIAL_PROTOCOL(y_dimension);
  7388. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7389. while (mesh_point != x_points_num * y_points_num) {
  7390. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7391. iy = mesh_point / x_points_num;
  7392. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7393. float z0 = 0.f;
  7394. current_position[Z_AXIS] = mesh_home_z_search;
  7395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7396. st_synchronize();
  7397. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7398. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7399. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7400. st_synchronize();
  7401. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7402. break;
  7403. card.closefile();
  7404. }
  7405. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7406. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7407. //strcat(data_wldsd, numb_wldsd);
  7408. //MYSERIAL.println(data_wldsd);
  7409. //_delay(1000);
  7410. //_delay(3000);
  7411. //t1 = _millis();
  7412. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7413. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7414. memset(digit, 0, sizeof(digit));
  7415. //cli();
  7416. digitalWrite(D_REQUIRE, LOW);
  7417. for (int i = 0; i<13; i++)
  7418. {
  7419. //t1 = _millis();
  7420. for (int j = 0; j < 4; j++)
  7421. {
  7422. while (digitalRead(D_DATACLOCK) == LOW) {}
  7423. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7424. bitWrite(digit[i], j, digitalRead(D_DATA));
  7425. }
  7426. //t_delay = (_millis() - t1);
  7427. //SERIAL_PROTOCOLPGM(" ");
  7428. //SERIAL_PROTOCOL_F(t_delay, 5);
  7429. //SERIAL_PROTOCOLPGM(" ");
  7430. }
  7431. //sei();
  7432. digitalWrite(D_REQUIRE, HIGH);
  7433. mergeOutput[0] = '\0';
  7434. output = 0;
  7435. for (int r = 5; r <= 10; r++) //Merge digits
  7436. {
  7437. sprintf(str, "%d", digit[r]);
  7438. strcat(mergeOutput, str);
  7439. }
  7440. output = atof(mergeOutput);
  7441. if (digit[4] == 8) //Handle sign
  7442. {
  7443. output *= -1;
  7444. }
  7445. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7446. {
  7447. output *= 0.1;
  7448. }
  7449. //output = d_ReadData();
  7450. //row[ix] = current_position[Z_AXIS];
  7451. memset(data_wldsd, 0, sizeof(data_wldsd));
  7452. for (int i = 0; i <3; i++) {
  7453. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7454. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7455. strcat(data_wldsd, numb_wldsd);
  7456. strcat(data_wldsd, ";");
  7457. }
  7458. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7459. dtostrf(output, 8, 5, numb_wldsd);
  7460. strcat(data_wldsd, numb_wldsd);
  7461. //strcat(data_wldsd, ";");
  7462. card.write_command(data_wldsd);
  7463. //row[ix] = d_ReadData();
  7464. row[ix] = output; // current_position[Z_AXIS];
  7465. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7466. for (int i = 0; i < x_points_num; i++) {
  7467. SERIAL_PROTOCOLPGM(" ");
  7468. SERIAL_PROTOCOL_F(row[i], 5);
  7469. }
  7470. SERIAL_PROTOCOLPGM("\n");
  7471. }
  7472. custom_message_state--;
  7473. mesh_point++;
  7474. lcd_update(1);
  7475. }
  7476. card.closefile();
  7477. clean_up_after_endstop_move(l_feedmultiply);
  7478. }
  7479. #endif //HEATBED_ANALYSIS
  7480. void temp_compensation_start() {
  7481. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7482. custom_message_state = PINDA_HEAT_T + 1;
  7483. lcd_update(2);
  7484. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7485. current_position[E_AXIS] -= default_retraction;
  7486. }
  7487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7488. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7489. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7490. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7491. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7492. st_synchronize();
  7493. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7494. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7495. delay_keep_alive(1000);
  7496. custom_message_state = PINDA_HEAT_T - i;
  7497. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7498. else lcd_update(1);
  7499. }
  7500. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7501. custom_message_state = 0;
  7502. }
  7503. void temp_compensation_apply() {
  7504. int i_add;
  7505. int z_shift = 0;
  7506. float z_shift_mm;
  7507. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7508. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7509. i_add = (target_temperature_bed - 60) / 10;
  7510. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7511. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7512. }else {
  7513. //interpolation
  7514. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7515. }
  7516. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7518. st_synchronize();
  7519. plan_set_z_position(current_position[Z_AXIS]);
  7520. }
  7521. else {
  7522. //we have no temp compensation data
  7523. }
  7524. }
  7525. float temp_comp_interpolation(float inp_temperature) {
  7526. //cubic spline interpolation
  7527. int n, i, j;
  7528. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7529. int shift[10];
  7530. int temp_C[10];
  7531. n = 6; //number of measured points
  7532. shift[0] = 0;
  7533. for (i = 0; i < n; i++) {
  7534. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7535. temp_C[i] = 50 + i * 10; //temperature in C
  7536. #ifdef PINDA_THERMISTOR
  7537. temp_C[i] = 35 + i * 5; //temperature in C
  7538. #else
  7539. temp_C[i] = 50 + i * 10; //temperature in C
  7540. #endif
  7541. x[i] = (float)temp_C[i];
  7542. f[i] = (float)shift[i];
  7543. }
  7544. if (inp_temperature < x[0]) return 0;
  7545. for (i = n - 1; i>0; i--) {
  7546. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7547. h[i - 1] = x[i] - x[i - 1];
  7548. }
  7549. //*********** formation of h, s , f matrix **************
  7550. for (i = 1; i<n - 1; i++) {
  7551. m[i][i] = 2 * (h[i - 1] + h[i]);
  7552. if (i != 1) {
  7553. m[i][i - 1] = h[i - 1];
  7554. m[i - 1][i] = h[i - 1];
  7555. }
  7556. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7557. }
  7558. //*********** forward elimination **************
  7559. for (i = 1; i<n - 2; i++) {
  7560. temp = (m[i + 1][i] / m[i][i]);
  7561. for (j = 1; j <= n - 1; j++)
  7562. m[i + 1][j] -= temp*m[i][j];
  7563. }
  7564. //*********** backward substitution *********
  7565. for (i = n - 2; i>0; i--) {
  7566. sum = 0;
  7567. for (j = i; j <= n - 2; j++)
  7568. sum += m[i][j] * s[j];
  7569. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7570. }
  7571. for (i = 0; i<n - 1; i++)
  7572. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7573. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7574. b = s[i] / 2;
  7575. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7576. d = f[i];
  7577. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7578. }
  7579. return sum;
  7580. }
  7581. #ifdef PINDA_THERMISTOR
  7582. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7583. {
  7584. if (!temp_cal_active) return 0;
  7585. if (!calibration_status_pinda()) return 0;
  7586. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7587. }
  7588. #endif //PINDA_THERMISTOR
  7589. void long_pause() //long pause print
  7590. {
  7591. st_synchronize();
  7592. start_pause_print = _millis();
  7593. //retract
  7594. current_position[E_AXIS] -= default_retraction;
  7595. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7596. //lift z
  7597. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7598. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7600. //Move XY to side
  7601. current_position[X_AXIS] = X_PAUSE_POS;
  7602. current_position[Y_AXIS] = Y_PAUSE_POS;
  7603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7604. // Turn off the print fan
  7605. fanSpeed = 0;
  7606. st_synchronize();
  7607. }
  7608. void serialecho_temperatures() {
  7609. float tt = degHotend(active_extruder);
  7610. SERIAL_PROTOCOLPGM("T:");
  7611. SERIAL_PROTOCOL(tt);
  7612. SERIAL_PROTOCOLPGM(" E:");
  7613. SERIAL_PROTOCOL((int)active_extruder);
  7614. SERIAL_PROTOCOLPGM(" B:");
  7615. SERIAL_PROTOCOL_F(degBed(), 1);
  7616. SERIAL_PROTOCOLLN("");
  7617. }
  7618. extern uint32_t sdpos_atomic;
  7619. #ifdef UVLO_SUPPORT
  7620. void uvlo_()
  7621. {
  7622. unsigned long time_start = _millis();
  7623. bool sd_print = card.sdprinting;
  7624. // Conserve power as soon as possible.
  7625. disable_x();
  7626. disable_y();
  7627. #ifdef TMC2130
  7628. tmc2130_set_current_h(Z_AXIS, 20);
  7629. tmc2130_set_current_r(Z_AXIS, 20);
  7630. tmc2130_set_current_h(E_AXIS, 20);
  7631. tmc2130_set_current_r(E_AXIS, 20);
  7632. #endif //TMC2130
  7633. // Indicate that the interrupt has been triggered.
  7634. // SERIAL_ECHOLNPGM("UVLO");
  7635. // Read out the current Z motor microstep counter. This will be later used
  7636. // for reaching the zero full step before powering off.
  7637. uint16_t z_microsteps = 0;
  7638. #ifdef TMC2130
  7639. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7640. #endif //TMC2130
  7641. // Calculate the file position, from which to resume this print.
  7642. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7643. {
  7644. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7645. sd_position -= sdlen_planner;
  7646. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7647. sd_position -= sdlen_cmdqueue;
  7648. if (sd_position < 0) sd_position = 0;
  7649. }
  7650. // Backup the feedrate in mm/min.
  7651. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7652. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7653. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7654. // are in action.
  7655. planner_abort_hard();
  7656. // Store the current extruder position.
  7657. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7658. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7659. // Clean the input command queue.
  7660. cmdqueue_reset();
  7661. card.sdprinting = false;
  7662. // card.closefile();
  7663. // Enable stepper driver interrupt to move Z axis.
  7664. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7665. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7666. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7667. sei();
  7668. plan_buffer_line(
  7669. current_position[X_AXIS],
  7670. current_position[Y_AXIS],
  7671. current_position[Z_AXIS],
  7672. current_position[E_AXIS] - default_retraction,
  7673. 95, active_extruder);
  7674. st_synchronize();
  7675. disable_e0();
  7676. plan_buffer_line(
  7677. current_position[X_AXIS],
  7678. current_position[Y_AXIS],
  7679. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7680. current_position[E_AXIS] - default_retraction,
  7681. 40, active_extruder);
  7682. st_synchronize();
  7683. disable_e0();
  7684. plan_buffer_line(
  7685. current_position[X_AXIS],
  7686. current_position[Y_AXIS],
  7687. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7688. current_position[E_AXIS] - default_retraction,
  7689. 40, active_extruder);
  7690. st_synchronize();
  7691. disable_e0();
  7692. disable_z();
  7693. // Move Z up to the next 0th full step.
  7694. // Write the file position.
  7695. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7696. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7697. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7698. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7699. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7700. // Scale the z value to 1u resolution.
  7701. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7702. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7703. }
  7704. // Read out the current Z motor microstep counter. This will be later used
  7705. // for reaching the zero full step before powering off.
  7706. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7707. // Store the current position.
  7708. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7709. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7710. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7711. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7712. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7713. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7714. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7715. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7716. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7717. #if EXTRUDERS > 1
  7718. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7719. #if EXTRUDERS > 2
  7720. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7721. #endif
  7722. #endif
  7723. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7724. // Finaly store the "power outage" flag.
  7725. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7726. st_synchronize();
  7727. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7728. disable_z();
  7729. // Increment power failure counter
  7730. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7731. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7732. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7733. #if 0
  7734. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7735. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7737. st_synchronize();
  7738. #endif
  7739. wdt_enable(WDTO_500MS);
  7740. WRITE(BEEPER,HIGH);
  7741. while(1)
  7742. ;
  7743. }
  7744. void uvlo_tiny()
  7745. {
  7746. uint16_t z_microsteps=0;
  7747. // Conserve power as soon as possible.
  7748. disable_x();
  7749. disable_y();
  7750. disable_e0();
  7751. #ifdef TMC2130
  7752. tmc2130_set_current_h(Z_AXIS, 20);
  7753. tmc2130_set_current_r(Z_AXIS, 20);
  7754. #endif //TMC2130
  7755. // Read out the current Z motor microstep counter
  7756. #ifdef TMC2130
  7757. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7758. #endif //TMC2130
  7759. planner_abort_hard();
  7760. sei();
  7761. plan_buffer_line(
  7762. current_position[X_AXIS],
  7763. current_position[Y_AXIS],
  7764. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7765. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7766. current_position[E_AXIS],
  7767. 40, active_extruder);
  7768. st_synchronize();
  7769. disable_z();
  7770. // Finaly store the "power outage" flag.
  7771. //if(sd_print)
  7772. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7773. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7774. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7775. // Increment power failure counter
  7776. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7777. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7778. wdt_enable(WDTO_500MS);
  7779. WRITE(BEEPER,HIGH);
  7780. while(1)
  7781. ;
  7782. }
  7783. #endif //UVLO_SUPPORT
  7784. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7785. void setup_fan_interrupt() {
  7786. //INT7
  7787. DDRE &= ~(1 << 7); //input pin
  7788. PORTE &= ~(1 << 7); //no internal pull-up
  7789. //start with sensing rising edge
  7790. EICRB &= ~(1 << 6);
  7791. EICRB |= (1 << 7);
  7792. //enable INT7 interrupt
  7793. EIMSK |= (1 << 7);
  7794. }
  7795. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7796. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7797. ISR(INT7_vect) {
  7798. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7799. #ifdef FAN_SOFT_PWM
  7800. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7801. #else //FAN_SOFT_PWM
  7802. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7803. #endif //FAN_SOFT_PWM
  7804. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7805. t_fan_rising_edge = millis_nc();
  7806. }
  7807. else { //interrupt was triggered by falling edge
  7808. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7809. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7810. }
  7811. }
  7812. EICRB ^= (1 << 6); //change edge
  7813. }
  7814. #endif
  7815. #ifdef UVLO_SUPPORT
  7816. void setup_uvlo_interrupt() {
  7817. DDRE &= ~(1 << 4); //input pin
  7818. PORTE &= ~(1 << 4); //no internal pull-up
  7819. //sensing falling edge
  7820. EICRB |= (1 << 0);
  7821. EICRB &= ~(1 << 1);
  7822. //enable INT4 interrupt
  7823. EIMSK |= (1 << 4);
  7824. }
  7825. ISR(INT4_vect) {
  7826. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7827. SERIAL_ECHOLNPGM("INT4");
  7828. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7829. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7830. }
  7831. void recover_print(uint8_t automatic) {
  7832. char cmd[30];
  7833. lcd_update_enable(true);
  7834. lcd_update(2);
  7835. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7836. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7837. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7838. // Lift the print head, so one may remove the excess priming material.
  7839. if(!bTiny&&(current_position[Z_AXIS]<25))
  7840. enquecommand_P(PSTR("G1 Z25 F800"));
  7841. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7842. enquecommand_P(PSTR("G28 X Y"));
  7843. // Set the target bed and nozzle temperatures and wait.
  7844. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7845. enquecommand(cmd);
  7846. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7847. enquecommand(cmd);
  7848. enquecommand_P(PSTR("M83")); //E axis relative mode
  7849. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7850. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7851. if(automatic == 0){
  7852. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7853. }
  7854. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7855. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7856. // Restart the print.
  7857. restore_print_from_eeprom();
  7858. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7859. }
  7860. void recover_machine_state_after_power_panic(bool bTiny)
  7861. {
  7862. char cmd[30];
  7863. // 1) Recover the logical cordinates at the time of the power panic.
  7864. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7865. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7866. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7867. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7868. // The current position after power panic is moved to the next closest 0th full step.
  7869. if(bTiny)
  7870. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7871. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7872. else
  7873. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7874. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7875. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7876. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7877. sprintf_P(cmd, PSTR("G92 E"));
  7878. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7879. enquecommand(cmd);
  7880. }
  7881. memcpy(destination, current_position, sizeof(destination));
  7882. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7883. print_world_coordinates();
  7884. // 2) Initialize the logical to physical coordinate system transformation.
  7885. world2machine_initialize();
  7886. // 3) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7887. mbl.active = false;
  7888. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7889. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7890. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7891. // Scale the z value to 10u resolution.
  7892. int16_t v;
  7893. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  7894. if (v != 0)
  7895. mbl.active = true;
  7896. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7897. }
  7898. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7899. // print_mesh_bed_leveling_table();
  7900. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7901. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7902. babystep_load();
  7903. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7904. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7905. // 6) Power up the motors, mark their positions as known.
  7906. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7907. axis_known_position[X_AXIS] = true; enable_x();
  7908. axis_known_position[Y_AXIS] = true; enable_y();
  7909. axis_known_position[Z_AXIS] = true; enable_z();
  7910. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7911. print_physical_coordinates();
  7912. // 7) Recover the target temperatures.
  7913. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7914. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7915. // 8) Recover extruder multipilers
  7916. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7917. #if EXTRUDERS > 1
  7918. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7919. #if EXTRUDERS > 2
  7920. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7921. #endif
  7922. #endif
  7923. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7924. }
  7925. void restore_print_from_eeprom() {
  7926. int feedrate_rec;
  7927. uint8_t fan_speed_rec;
  7928. char cmd[30];
  7929. char filename[13];
  7930. uint8_t depth = 0;
  7931. char dir_name[9];
  7932. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7933. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7934. SERIAL_ECHOPGM("Feedrate:");
  7935. MYSERIAL.println(feedrate_rec);
  7936. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7937. MYSERIAL.println(int(depth));
  7938. for (int i = 0; i < depth; i++) {
  7939. for (int j = 0; j < 8; j++) {
  7940. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7941. }
  7942. dir_name[8] = '\0';
  7943. MYSERIAL.println(dir_name);
  7944. strcpy(dir_names[i], dir_name);
  7945. card.chdir(dir_name);
  7946. }
  7947. for (int i = 0; i < 8; i++) {
  7948. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7949. }
  7950. filename[8] = '\0';
  7951. MYSERIAL.print(filename);
  7952. strcat_P(filename, PSTR(".gco"));
  7953. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7954. enquecommand(cmd);
  7955. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7956. SERIAL_ECHOPGM("Position read from eeprom:");
  7957. MYSERIAL.println(position);
  7958. // E axis relative mode.
  7959. enquecommand_P(PSTR("M83"));
  7960. // Move to the XY print position in logical coordinates, where the print has been killed.
  7961. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7962. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7963. strcat_P(cmd, PSTR(" F2000"));
  7964. enquecommand(cmd);
  7965. // Move the Z axis down to the print, in logical coordinates.
  7966. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7967. enquecommand(cmd);
  7968. // Unretract.
  7969. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7970. // Set the feedrate saved at the power panic.
  7971. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7972. enquecommand(cmd);
  7973. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7974. {
  7975. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7976. }
  7977. // Set the fan speed saved at the power panic.
  7978. strcpy_P(cmd, PSTR("M106 S"));
  7979. strcat(cmd, itostr3(int(fan_speed_rec)));
  7980. enquecommand(cmd);
  7981. // Set a position in the file.
  7982. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7983. enquecommand(cmd);
  7984. enquecommand_P(PSTR("G4 S0"));
  7985. enquecommand_P(PSTR("PRUSA uvlo"));
  7986. }
  7987. #endif //UVLO_SUPPORT
  7988. //! @brief Immediately stop print moves
  7989. //!
  7990. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7991. //! If printing from sd card, position in file is saved.
  7992. //! If printing from USB, line number is saved.
  7993. //!
  7994. //! @param z_move
  7995. //! @param e_move
  7996. void stop_and_save_print_to_ram(float z_move, float e_move)
  7997. {
  7998. if (saved_printing) return;
  7999. #if 0
  8000. unsigned char nplanner_blocks;
  8001. #endif
  8002. unsigned char nlines;
  8003. uint16_t sdlen_planner;
  8004. uint16_t sdlen_cmdqueue;
  8005. cli();
  8006. if (card.sdprinting) {
  8007. #if 0
  8008. nplanner_blocks = number_of_blocks();
  8009. #endif
  8010. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8011. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8012. saved_sdpos -= sdlen_planner;
  8013. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8014. saved_sdpos -= sdlen_cmdqueue;
  8015. saved_printing_type = PRINTING_TYPE_SD;
  8016. }
  8017. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8018. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8019. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8020. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8021. saved_sdpos -= nlines;
  8022. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8023. saved_printing_type = PRINTING_TYPE_USB;
  8024. }
  8025. else {
  8026. saved_printing_type = PRINTING_TYPE_NONE;
  8027. //not sd printing nor usb printing
  8028. }
  8029. #if 0
  8030. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8031. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8032. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8033. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8034. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8035. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8036. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8037. {
  8038. card.setIndex(saved_sdpos);
  8039. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8040. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8041. MYSERIAL.print(char(card.get()));
  8042. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8043. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8044. MYSERIAL.print(char(card.get()));
  8045. SERIAL_ECHOLNPGM("End of command buffer");
  8046. }
  8047. {
  8048. // Print the content of the planner buffer, line by line:
  8049. card.setIndex(saved_sdpos);
  8050. int8_t iline = 0;
  8051. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8052. SERIAL_ECHOPGM("Planner line (from file): ");
  8053. MYSERIAL.print(int(iline), DEC);
  8054. SERIAL_ECHOPGM(", length: ");
  8055. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8056. SERIAL_ECHOPGM(", steps: (");
  8057. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8058. SERIAL_ECHOPGM(",");
  8059. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8060. SERIAL_ECHOPGM(",");
  8061. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8062. SERIAL_ECHOPGM(",");
  8063. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8064. SERIAL_ECHOPGM("), events: ");
  8065. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8066. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8067. MYSERIAL.print(char(card.get()));
  8068. }
  8069. }
  8070. {
  8071. // Print the content of the command buffer, line by line:
  8072. int8_t iline = 0;
  8073. union {
  8074. struct {
  8075. char lo;
  8076. char hi;
  8077. } lohi;
  8078. uint16_t value;
  8079. } sdlen_single;
  8080. int _bufindr = bufindr;
  8081. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8082. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8083. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8084. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8085. }
  8086. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8087. MYSERIAL.print(int(iline), DEC);
  8088. SERIAL_ECHOPGM(", type: ");
  8089. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8090. SERIAL_ECHOPGM(", len: ");
  8091. MYSERIAL.println(sdlen_single.value, DEC);
  8092. // Print the content of the buffer line.
  8093. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8094. SERIAL_ECHOPGM("Buffer line (from file): ");
  8095. MYSERIAL.println(int(iline), DEC);
  8096. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8097. MYSERIAL.print(char(card.get()));
  8098. if (-- _buflen == 0)
  8099. break;
  8100. // First skip the current command ID and iterate up to the end of the string.
  8101. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8102. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8103. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8104. // If the end of the buffer was empty,
  8105. if (_bufindr == sizeof(cmdbuffer)) {
  8106. // skip to the start and find the nonzero command.
  8107. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8108. }
  8109. }
  8110. }
  8111. #endif
  8112. #if 0
  8113. saved_feedrate2 = feedrate; //save feedrate
  8114. #else
  8115. // Try to deduce the feedrate from the first block of the planner.
  8116. // Speed is in mm/min.
  8117. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8118. #endif
  8119. planner_abort_hard(); //abort printing
  8120. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8121. saved_active_extruder = active_extruder; //save active_extruder
  8122. saved_extruder_temperature = degTargetHotend(active_extruder);
  8123. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8124. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8125. saved_fanSpeed = fanSpeed;
  8126. cmdqueue_reset(); //empty cmdqueue
  8127. card.sdprinting = false;
  8128. // card.closefile();
  8129. saved_printing = true;
  8130. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8131. st_reset_timer();
  8132. sei();
  8133. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8134. #if 1
  8135. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8136. char buf[48];
  8137. // First unretract (relative extrusion)
  8138. if(!saved_extruder_relative_mode){
  8139. strcpy_P(buf, PSTR("M83"));
  8140. enquecommand(buf, false);
  8141. }
  8142. //retract 45mm/s
  8143. strcpy_P(buf, PSTR("G1 E"));
  8144. dtostrf(e_move, 6, 3, buf + strlen(buf));
  8145. strcat_P(buf, PSTR(" F"));
  8146. dtostrf(2700, 8, 3, buf + strlen(buf));
  8147. enquecommand(buf, false);
  8148. // Then lift Z axis
  8149. strcpy_P(buf, PSTR("G1 Z"));
  8150. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  8151. strcat_P(buf, PSTR(" F"));
  8152. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  8153. // At this point the command queue is empty.
  8154. enquecommand(buf, false);
  8155. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8156. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8157. repeatcommand_front();
  8158. #else
  8159. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8160. st_synchronize(); //wait moving
  8161. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8162. memcpy(destination, current_position, sizeof(destination));
  8163. #endif
  8164. }
  8165. }
  8166. //! @brief Restore print from ram
  8167. //!
  8168. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8169. //! waits for extruder temperature restore, then restores position and continues
  8170. //! print moves.
  8171. //! Internaly lcd_update() is called by wait_for_heater().
  8172. //!
  8173. //! @param e_move
  8174. void restore_print_from_ram_and_continue(float e_move)
  8175. {
  8176. if (!saved_printing) return;
  8177. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8178. // current_position[axis] = st_get_position_mm(axis);
  8179. active_extruder = saved_active_extruder; //restore active_extruder
  8180. if (saved_extruder_temperature) {
  8181. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8182. heating_status = 1;
  8183. wait_for_heater(_millis(), saved_active_extruder);
  8184. heating_status = 2;
  8185. }
  8186. feedrate = saved_feedrate2; //restore feedrate
  8187. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8188. fanSpeed = saved_fanSpeed;
  8189. float e = saved_pos[E_AXIS] - e_move;
  8190. plan_set_e_position(e);
  8191. //first move print head in XY to the saved position:
  8192. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8193. st_synchronize();
  8194. //then move Z
  8195. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8196. st_synchronize();
  8197. //and finaly unretract (35mm/s)
  8198. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8199. st_synchronize();
  8200. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8201. memcpy(destination, current_position, sizeof(destination));
  8202. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8203. card.setIndex(saved_sdpos);
  8204. sdpos_atomic = saved_sdpos;
  8205. card.sdprinting = true;
  8206. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8207. }
  8208. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8209. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8210. serial_count = 0;
  8211. FlushSerialRequestResend();
  8212. }
  8213. else {
  8214. //not sd printing nor usb printing
  8215. }
  8216. lcd_setstatuspgm(_T(WELCOME_MSG));
  8217. saved_printing = false;
  8218. }
  8219. void print_world_coordinates()
  8220. {
  8221. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8222. }
  8223. void print_physical_coordinates()
  8224. {
  8225. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8226. }
  8227. void print_mesh_bed_leveling_table()
  8228. {
  8229. SERIAL_ECHOPGM("mesh bed leveling: ");
  8230. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8231. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8232. MYSERIAL.print(mbl.z_values[y][x], 3);
  8233. SERIAL_ECHOPGM(" ");
  8234. }
  8235. SERIAL_ECHOLNPGM("");
  8236. }
  8237. uint16_t print_time_remaining() {
  8238. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8239. #ifdef TMC2130
  8240. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8241. else print_t = print_time_remaining_silent;
  8242. #else
  8243. print_t = print_time_remaining_normal;
  8244. #endif //TMC2130
  8245. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8246. return print_t;
  8247. }
  8248. uint8_t calc_percent_done()
  8249. {
  8250. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8251. uint8_t percent_done = 0;
  8252. #ifdef TMC2130
  8253. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8254. percent_done = print_percent_done_normal;
  8255. }
  8256. else if (print_percent_done_silent <= 100) {
  8257. percent_done = print_percent_done_silent;
  8258. }
  8259. #else
  8260. if (print_percent_done_normal <= 100) {
  8261. percent_done = print_percent_done_normal;
  8262. }
  8263. #endif //TMC2130
  8264. else {
  8265. percent_done = card.percentDone();
  8266. }
  8267. return percent_done;
  8268. }
  8269. static void print_time_remaining_init()
  8270. {
  8271. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8272. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8273. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8274. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8275. }
  8276. void load_filament_final_feed()
  8277. {
  8278. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8279. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8280. }
  8281. //! @brief Wait for user to check the state
  8282. //! @par nozzle_temp nozzle temperature to load filament
  8283. void M600_check_state(float nozzle_temp)
  8284. {
  8285. lcd_change_fil_state = 0;
  8286. while (lcd_change_fil_state != 1)
  8287. {
  8288. lcd_change_fil_state = 0;
  8289. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8290. lcd_alright();
  8291. KEEPALIVE_STATE(IN_HANDLER);
  8292. switch(lcd_change_fil_state)
  8293. {
  8294. // Filament failed to load so load it again
  8295. case 2:
  8296. if (mmu_enabled)
  8297. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8298. else
  8299. M600_load_filament_movements();
  8300. break;
  8301. // Filament loaded properly but color is not clear
  8302. case 3:
  8303. st_synchronize();
  8304. load_filament_final_feed();
  8305. lcd_loading_color();
  8306. st_synchronize();
  8307. break;
  8308. // Everything good
  8309. default:
  8310. lcd_change_success();
  8311. break;
  8312. }
  8313. }
  8314. }
  8315. //! @brief Wait for user action
  8316. //!
  8317. //! Beep, manage nozzle heater and wait for user to start unload filament
  8318. //! If times out, active extruder temperature is set to 0.
  8319. //!
  8320. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8321. void M600_wait_for_user(float HotendTempBckp) {
  8322. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8323. int counterBeep = 0;
  8324. unsigned long waiting_start_time = _millis();
  8325. uint8_t wait_for_user_state = 0;
  8326. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8327. bool bFirst=true;
  8328. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8329. manage_heater();
  8330. manage_inactivity(true);
  8331. #if BEEPER > 0
  8332. if (counterBeep == 500) {
  8333. counterBeep = 0;
  8334. }
  8335. SET_OUTPUT(BEEPER);
  8336. if (counterBeep == 0) {
  8337. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8338. {
  8339. bFirst=false;
  8340. WRITE(BEEPER, HIGH);
  8341. }
  8342. }
  8343. if (counterBeep == 20) {
  8344. WRITE(BEEPER, LOW);
  8345. }
  8346. counterBeep++;
  8347. #endif //BEEPER > 0
  8348. switch (wait_for_user_state) {
  8349. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8350. delay_keep_alive(4);
  8351. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8352. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8353. wait_for_user_state = 1;
  8354. setAllTargetHotends(0);
  8355. st_synchronize();
  8356. disable_e0();
  8357. disable_e1();
  8358. disable_e2();
  8359. }
  8360. break;
  8361. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8362. delay_keep_alive(4);
  8363. if (lcd_clicked()) {
  8364. setTargetHotend(HotendTempBckp, active_extruder);
  8365. lcd_wait_for_heater();
  8366. wait_for_user_state = 2;
  8367. }
  8368. break;
  8369. case 2: //waiting for nozzle to reach target temperature
  8370. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8371. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8372. waiting_start_time = _millis();
  8373. wait_for_user_state = 0;
  8374. }
  8375. else {
  8376. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8377. lcd_set_cursor(1, 4);
  8378. lcd_print(ftostr3(degHotend(active_extruder)));
  8379. }
  8380. break;
  8381. }
  8382. }
  8383. WRITE(BEEPER, LOW);
  8384. }
  8385. void M600_load_filament_movements()
  8386. {
  8387. #ifdef SNMM
  8388. display_loading();
  8389. do
  8390. {
  8391. current_position[E_AXIS] += 0.002;
  8392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8393. delay_keep_alive(2);
  8394. }
  8395. while (!lcd_clicked());
  8396. st_synchronize();
  8397. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8398. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8399. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8400. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8401. current_position[E_AXIS] += 40;
  8402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8403. current_position[E_AXIS] += 10;
  8404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8405. #else
  8406. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8408. #endif
  8409. load_filament_final_feed();
  8410. lcd_loading_filament();
  8411. st_synchronize();
  8412. }
  8413. void M600_load_filament() {
  8414. //load filament for single material and SNMM
  8415. lcd_wait_interact();
  8416. //load_filament_time = _millis();
  8417. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8418. #ifdef PAT9125
  8419. fsensor_autoload_check_start();
  8420. #endif //PAT9125
  8421. while(!lcd_clicked())
  8422. {
  8423. manage_heater();
  8424. manage_inactivity(true);
  8425. #ifdef FILAMENT_SENSOR
  8426. if (fsensor_check_autoload())
  8427. {
  8428. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8429. _tone(BEEPER, 1000);
  8430. delay_keep_alive(50);
  8431. _noTone(BEEPER);
  8432. break;
  8433. }
  8434. #endif //FILAMENT_SENSOR
  8435. }
  8436. #ifdef PAT9125
  8437. fsensor_autoload_check_stop();
  8438. #endif //PAT9125
  8439. KEEPALIVE_STATE(IN_HANDLER);
  8440. #ifdef FSENSOR_QUALITY
  8441. fsensor_oq_meassure_start(70);
  8442. #endif //FSENSOR_QUALITY
  8443. M600_load_filament_movements();
  8444. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8445. _tone(BEEPER, 500);
  8446. delay_keep_alive(50);
  8447. _noTone(BEEPER);
  8448. #ifdef FSENSOR_QUALITY
  8449. fsensor_oq_meassure_stop();
  8450. if (!fsensor_oq_result())
  8451. {
  8452. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8453. lcd_update_enable(true);
  8454. lcd_update(2);
  8455. if (disable)
  8456. fsensor_disable();
  8457. }
  8458. #endif //FSENSOR_QUALITY
  8459. lcd_update_enable(false);
  8460. }
  8461. //! @brief Wait for click
  8462. //!
  8463. //! Set
  8464. void marlin_wait_for_click()
  8465. {
  8466. int8_t busy_state_backup = busy_state;
  8467. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8468. lcd_consume_click();
  8469. while(!lcd_clicked())
  8470. {
  8471. manage_heater();
  8472. manage_inactivity(true);
  8473. lcd_update(0);
  8474. }
  8475. KEEPALIVE_STATE(busy_state_backup);
  8476. }
  8477. #define FIL_LOAD_LENGTH 60