temperature.cpp 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "messages.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. #include "config.h"
  36. //===========================================================================
  37. //=============================public variables============================
  38. //===========================================================================
  39. int target_temperature[EXTRUDERS] = { 0 };
  40. int target_temperature_bed = 0;
  41. int current_temperature_raw[EXTRUDERS] = { 0 };
  42. float current_temperature[EXTRUDERS] = { 0.0 };
  43. #ifdef PINDA_THERMISTOR
  44. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  45. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  46. float current_temperature_pinda = 0.0;
  47. #endif //PINDA_THERMISTOR
  48. #ifdef AMBIENT_THERMISTOR
  49. int current_temperature_raw_ambient = 0 ;
  50. float current_temperature_ambient = 0.0;
  51. #endif //AMBIENT_THERMISTOR
  52. #ifdef VOLT_PWR_PIN
  53. int current_voltage_raw_pwr = 0;
  54. #endif
  55. #ifdef VOLT_BED_PIN
  56. int current_voltage_raw_bed = 0;
  57. #endif
  58. #if IR_SENSOR_ANALOG
  59. int current_voltage_raw_IR = 0;
  60. #endif //IR_SENSOR_ANALOG
  61. int current_temperature_bed_raw = 0;
  62. float current_temperature_bed = 0.0;
  63. #ifdef PIDTEMP
  64. float _Kp, _Ki, _Kd;
  65. int pid_cycle, pid_number_of_cycles;
  66. bool pid_tuning_finished = false;
  67. #ifdef PID_ADD_EXTRUSION_RATE
  68. float Kc=DEFAULT_Kc;
  69. #endif
  70. #endif //PIDTEMP
  71. #ifdef FAN_SOFT_PWM
  72. unsigned char fanSpeedSoftPwm;
  73. #endif
  74. #ifdef FANCHECK
  75. volatile uint8_t fan_check_error = EFCE_OK;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. //===========================================================================
  82. //=============================private variables============================
  83. //===========================================================================
  84. static volatile bool temp_meas_ready = false;
  85. #ifdef PIDTEMP
  86. //static cannot be external:
  87. static float iState_sum[EXTRUDERS] = { 0 };
  88. static float dState_last[EXTRUDERS] = { 0 };
  89. static float pTerm[EXTRUDERS];
  90. static float iTerm[EXTRUDERS];
  91. static float dTerm[EXTRUDERS];
  92. //int output;
  93. static float pid_error[EXTRUDERS];
  94. static float iState_sum_min[EXTRUDERS];
  95. static float iState_sum_max[EXTRUDERS];
  96. // static float pid_input[EXTRUDERS];
  97. // static float pid_output[EXTRUDERS];
  98. static bool pid_reset[EXTRUDERS];
  99. #endif //PIDTEMP
  100. #ifdef PIDTEMPBED
  101. //static cannot be external:
  102. static float temp_iState_bed = { 0 };
  103. static float temp_dState_bed = { 0 };
  104. static float pTerm_bed;
  105. static float iTerm_bed;
  106. static float dTerm_bed;
  107. //int output;
  108. static float pid_error_bed;
  109. static float temp_iState_min_bed;
  110. static float temp_iState_max_bed;
  111. #else //PIDTEMPBED
  112. static unsigned long previous_millis_bed_heater;
  113. #endif //PIDTEMPBED
  114. static unsigned char soft_pwm[EXTRUDERS];
  115. #ifdef FAN_SOFT_PWM
  116. static unsigned char soft_pwm_fan;
  117. #endif
  118. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  120. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  121. unsigned long extruder_autofan_last_check = _millis();
  122. uint8_t fanSpeedBckp = 255;
  123. bool fan_measuring = false;
  124. #endif
  125. #if EXTRUDERS > 3
  126. # error Unsupported number of extruders
  127. #elif EXTRUDERS > 2
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  129. #elif EXTRUDERS > 1
  130. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  131. #else
  132. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  133. #endif
  134. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  135. // Init min and max temp with extreme values to prevent false errors during startup
  136. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  137. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  138. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  139. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  140. #ifdef BED_MINTEMP
  141. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  142. #endif
  143. #ifdef BED_MAXTEMP
  144. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  145. #endif
  146. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  147. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  148. static float analog2temp(int raw, uint8_t e);
  149. static float analog2tempBed(int raw);
  150. static float analog2tempAmbient(int raw);
  151. static void updateTemperaturesFromRawValues();
  152. enum TempRunawayStates
  153. {
  154. TempRunaway_INACTIVE = 0,
  155. TempRunaway_PREHEAT = 1,
  156. TempRunaway_ACTIVE = 2,
  157. };
  158. #ifndef SOFT_PWM_SCALE
  159. #define SOFT_PWM_SCALE 0
  160. #endif
  161. //===========================================================================
  162. //============================= functions ============================
  163. //===========================================================================
  164. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  165. static float temp_runaway_status[4];
  166. static float temp_runaway_target[4];
  167. static float temp_runaway_timer[4];
  168. static int temp_runaway_error_counter[4];
  169. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  170. static void temp_runaway_stop(bool isPreheat, bool isBed);
  171. #endif
  172. void PID_autotune(float temp, int extruder, int ncycles)
  173. {
  174. pid_number_of_cycles = ncycles;
  175. pid_tuning_finished = false;
  176. float input = 0.0;
  177. pid_cycle=0;
  178. bool heating = true;
  179. unsigned long temp_millis = _millis();
  180. unsigned long t1=temp_millis;
  181. unsigned long t2=temp_millis;
  182. long t_high = 0;
  183. long t_low = 0;
  184. long bias, d;
  185. float Ku, Tu;
  186. float max = 0, min = 10000;
  187. uint8_t safety_check_cycles = 0;
  188. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  189. float temp_ambient;
  190. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  191. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  192. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  193. unsigned long extruder_autofan_last_check = _millis();
  194. #endif
  195. if ((extruder >= EXTRUDERS)
  196. #if (TEMP_BED_PIN <= -1)
  197. ||(extruder < 0)
  198. #endif
  199. ){
  200. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  201. pid_tuning_finished = true;
  202. pid_cycle = 0;
  203. return;
  204. }
  205. SERIAL_ECHOLN("PID Autotune start");
  206. disable_heater(); // switch off all heaters.
  207. if (extruder<0)
  208. {
  209. soft_pwm_bed = (MAX_BED_POWER)/2;
  210. timer02_set_pwm0(soft_pwm_bed << 1);
  211. bias = d = (MAX_BED_POWER)/2;
  212. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  213. }
  214. else
  215. {
  216. soft_pwm[extruder] = (PID_MAX)/2;
  217. bias = d = (PID_MAX)/2;
  218. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  219. }
  220. for(;;) {
  221. #ifdef WATCHDOG
  222. wdt_reset();
  223. #endif //WATCHDOG
  224. if(temp_meas_ready == true) { // temp sample ready
  225. updateTemperaturesFromRawValues();
  226. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  227. max=max(max,input);
  228. min=min(min,input);
  229. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  230. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  231. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  232. if(_millis() - extruder_autofan_last_check > 2500) {
  233. checkExtruderAutoFans();
  234. extruder_autofan_last_check = _millis();
  235. }
  236. #endif
  237. if(heating == true && input > temp) {
  238. if(_millis() - t2 > 5000) {
  239. heating=false;
  240. if (extruder<0)
  241. {
  242. soft_pwm_bed = (bias - d) >> 1;
  243. timer02_set_pwm0(soft_pwm_bed << 1);
  244. }
  245. else
  246. soft_pwm[extruder] = (bias - d) >> 1;
  247. t1=_millis();
  248. t_high=t1 - t2;
  249. max=temp;
  250. }
  251. }
  252. if(heating == false && input < temp) {
  253. if(_millis() - t1 > 5000) {
  254. heating=true;
  255. t2=_millis();
  256. t_low=t2 - t1;
  257. if(pid_cycle > 0) {
  258. bias += (d*(t_high - t_low))/(t_low + t_high);
  259. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  260. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  261. else d = bias;
  262. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  263. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  264. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  265. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  266. if(pid_cycle > 2) {
  267. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  268. Tu = ((float)(t_low + t_high)/1000.0);
  269. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  270. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  271. _Kp = 0.6*Ku;
  272. _Ki = 2*_Kp/Tu;
  273. _Kd = _Kp*Tu/8;
  274. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  275. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  276. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  277. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  278. /*
  279. _Kp = 0.33*Ku;
  280. _Ki = _Kp/Tu;
  281. _Kd = _Kp*Tu/3;
  282. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  283. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  284. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  285. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  286. _Kp = 0.2*Ku;
  287. _Ki = 2*_Kp/Tu;
  288. _Kd = _Kp*Tu/3;
  289. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  290. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  291. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  292. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  293. */
  294. }
  295. }
  296. if (extruder<0)
  297. {
  298. soft_pwm_bed = (bias + d) >> 1;
  299. timer02_set_pwm0(soft_pwm_bed << 1);
  300. }
  301. else
  302. soft_pwm[extruder] = (bias + d) >> 1;
  303. pid_cycle++;
  304. min=temp;
  305. }
  306. }
  307. }
  308. if(input > (temp + 20)) {
  309. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  310. pid_tuning_finished = true;
  311. pid_cycle = 0;
  312. return;
  313. }
  314. if(_millis() - temp_millis > 2000) {
  315. int p;
  316. if (extruder<0){
  317. p=soft_pwm_bed;
  318. SERIAL_PROTOCOLPGM("B:");
  319. }else{
  320. p=soft_pwm[extruder];
  321. SERIAL_PROTOCOLPGM("T:");
  322. }
  323. SERIAL_PROTOCOL(input);
  324. SERIAL_PROTOCOLPGM(" @:");
  325. SERIAL_PROTOCOLLN(p);
  326. if (safety_check_cycles == 0) { //save ambient temp
  327. temp_ambient = input;
  328. //SERIAL_ECHOPGM("Ambient T: ");
  329. //MYSERIAL.println(temp_ambient);
  330. safety_check_cycles++;
  331. }
  332. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  333. safety_check_cycles++;
  334. }
  335. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  336. safety_check_cycles++;
  337. //SERIAL_ECHOPGM("Time from beginning: ");
  338. //MYSERIAL.print(safety_check_cycles_count * 2);
  339. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  340. //MYSERIAL.println(input - temp_ambient);
  341. if (abs(input - temp_ambient) < 5.0) {
  342. temp_runaway_stop(false, (extruder<0));
  343. pid_tuning_finished = true;
  344. return;
  345. }
  346. }
  347. temp_millis = _millis();
  348. }
  349. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  350. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  351. pid_tuning_finished = true;
  352. pid_cycle = 0;
  353. return;
  354. }
  355. if(pid_cycle > ncycles) {
  356. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  357. pid_tuning_finished = true;
  358. pid_cycle = 0;
  359. return;
  360. }
  361. lcd_update(0);
  362. }
  363. }
  364. void updatePID()
  365. {
  366. #ifdef PIDTEMP
  367. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  368. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  369. }
  370. #endif
  371. #ifdef PIDTEMPBED
  372. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  373. #endif
  374. }
  375. int getHeaterPower(int heater) {
  376. if (heater<0)
  377. return soft_pwm_bed;
  378. return soft_pwm[heater];
  379. }
  380. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  381. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  382. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  383. #if defined(FAN_PIN) && FAN_PIN > -1
  384. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  385. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  386. #endif
  387. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  388. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  389. #endif
  390. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  391. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  392. #endif
  393. #endif
  394. void setExtruderAutoFanState(int pin, bool state)
  395. {
  396. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  397. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  398. pinMode(pin, OUTPUT);
  399. digitalWrite(pin, newFanSpeed);
  400. //analogWrite(pin, newFanSpeed);
  401. }
  402. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  403. void countFanSpeed()
  404. {
  405. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  406. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  407. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  408. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  409. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  410. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  411. SERIAL_ECHOLNPGM(" ");*/
  412. fan_edge_counter[0] = 0;
  413. fan_edge_counter[1] = 0;
  414. }
  415. void checkFanSpeed()
  416. {
  417. uint8_t max_print_fan_errors = 0;
  418. uint8_t max_extruder_fan_errors = 0;
  419. #ifdef FAN_SOFT_PWM
  420. max_print_fan_errors = 3; //15 seconds
  421. max_extruder_fan_errors = 2; //10seconds
  422. #else //FAN_SOFT_PWM
  423. max_print_fan_errors = 15; //15 seconds
  424. max_extruder_fan_errors = 5; //5 seconds
  425. #endif //FAN_SOFT_PWM
  426. if(fans_check_enabled != false)
  427. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  428. static unsigned char fan_speed_errors[2] = { 0,0 };
  429. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  430. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  431. else{
  432. fan_speed_errors[0] = 0;
  433. host_keepalive();
  434. }
  435. #endif
  436. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  437. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  438. else fan_speed_errors[1] = 0;
  439. #endif
  440. // drop the fan_check_error flag when both fans are ok
  441. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  442. // we may even send some info to the LCD from here
  443. fan_check_error = EFCE_FIXED;
  444. }
  445. if ((fan_check_error == EFCE_FIXED) && !PRINTER_ACTIVE){
  446. fan_check_error = EFCE_OK; //if the issue is fixed while the printer is doing nothing, reenable processing immediately.
  447. lcd_reset_alert_level(); //for another fan speed error
  448. }
  449. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  450. fan_speed_errors[0] = 0;
  451. fanSpeedError(0); //extruder fan
  452. }
  453. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  454. fan_speed_errors[1] = 0;
  455. fanSpeedError(1); //print fan
  456. }
  457. }
  458. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  459. //! Extracted from fanSpeedError to save some space.
  460. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  461. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  462. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  463. SERIAL_ECHOLNRPGM(serialMsg);
  464. if (get_message_level() == 0) {
  465. Sound_MakeCustom(200,0,true);
  466. LCD_ALERTMESSAGERPGM(lcdMsg);
  467. }
  468. }
  469. void fanSpeedError(unsigned char _fan) {
  470. if (get_message_level() != 0 && isPrintPaused) return;
  471. //to ensure that target temp. is not set to zero in case that we are resuming print
  472. if (card.sdprinting || is_usb_printing) {
  473. if (heating_status != 0) {
  474. lcd_print_stop();
  475. }
  476. else {
  477. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  478. }
  479. }
  480. else {
  481. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  482. setTargetHotend0(0);
  483. heating_status = 0;
  484. fan_check_error = EFCE_REPORTED;
  485. }
  486. switch (_fan) {
  487. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  488. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  489. break;
  490. case 1:
  491. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  492. break;
  493. }
  494. // SERIAL_PROTOCOLLNRPGM(MSG_OK); //This ok messes things up with octoprint.
  495. }
  496. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  497. void checkExtruderAutoFans()
  498. {
  499. uint8_t fanState = 0;
  500. // which fan pins need to be turned on?
  501. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  502. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  503. fanState |= 1;
  504. #endif
  505. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  506. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  507. {
  508. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  509. fanState |= 1;
  510. else
  511. fanState |= 2;
  512. }
  513. #endif
  514. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  515. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  516. {
  517. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  518. fanState |= 1;
  519. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  520. fanState |= 2;
  521. else
  522. fanState |= 4;
  523. }
  524. #endif
  525. // update extruder auto fan states
  526. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  527. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  528. #endif
  529. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  530. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  531. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  532. #endif
  533. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  534. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  535. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  536. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  537. #endif
  538. }
  539. #endif // any extruder auto fan pins set
  540. // ready for eventually parameters adjusting
  541. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  542. //void resetPID(uint8_t extruder)
  543. {
  544. }
  545. void manage_heater()
  546. {
  547. #ifdef WATCHDOG
  548. wdt_reset();
  549. #endif //WATCHDOG
  550. float pid_input;
  551. float pid_output;
  552. if(temp_meas_ready != true) //better readability
  553. return;
  554. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  555. updateTemperaturesFromRawValues();
  556. check_max_temp();
  557. check_min_temp();
  558. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  559. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  560. #endif
  561. for(int e = 0; e < EXTRUDERS; e++)
  562. {
  563. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  564. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  565. #endif
  566. #ifdef PIDTEMP
  567. pid_input = current_temperature[e];
  568. #ifndef PID_OPENLOOP
  569. if(target_temperature[e] == 0) {
  570. pid_output = 0;
  571. pid_reset[e] = true;
  572. } else {
  573. pid_error[e] = target_temperature[e] - pid_input;
  574. if(pid_reset[e]) {
  575. iState_sum[e] = 0.0;
  576. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  577. pid_reset[e] = false;
  578. }
  579. #ifndef PonM
  580. pTerm[e] = cs.Kp * pid_error[e];
  581. iState_sum[e] += pid_error[e];
  582. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  583. iTerm[e] = cs.Ki * iState_sum[e];
  584. // PID_K1 defined in Configuration.h in the PID settings
  585. #define K2 (1.0-PID_K1)
  586. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  587. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  588. if (pid_output > PID_MAX) {
  589. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  590. pid_output=PID_MAX;
  591. } else if (pid_output < 0) {
  592. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  593. pid_output=0;
  594. }
  595. #else // PonM ("Proportional on Measurement" method)
  596. iState_sum[e] += cs.Ki * pid_error[e];
  597. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  598. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  599. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  600. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  601. pid_output = constrain(pid_output, 0, PID_MAX);
  602. #endif // PonM
  603. }
  604. dState_last[e] = pid_input;
  605. #else
  606. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  607. #endif //PID_OPENLOOP
  608. #ifdef PID_DEBUG
  609. SERIAL_ECHO_START;
  610. SERIAL_ECHO(" PID_DEBUG ");
  611. SERIAL_ECHO(e);
  612. SERIAL_ECHO(": Input ");
  613. SERIAL_ECHO(pid_input);
  614. SERIAL_ECHO(" Output ");
  615. SERIAL_ECHO(pid_output);
  616. SERIAL_ECHO(" pTerm ");
  617. SERIAL_ECHO(pTerm[e]);
  618. SERIAL_ECHO(" iTerm ");
  619. SERIAL_ECHO(iTerm[e]);
  620. SERIAL_ECHO(" dTerm ");
  621. SERIAL_ECHOLN(-dTerm[e]);
  622. #endif //PID_DEBUG
  623. #else /* PID off */
  624. pid_output = 0;
  625. if(current_temperature[e] < target_temperature[e]) {
  626. pid_output = PID_MAX;
  627. }
  628. #endif
  629. // Check if temperature is within the correct range
  630. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  631. {
  632. soft_pwm[e] = (int)pid_output >> 1;
  633. }
  634. else
  635. {
  636. soft_pwm[e] = 0;
  637. }
  638. } // End extruder for loop
  639. #define FAN_CHECK_PERIOD 5000 //5s
  640. #define FAN_CHECK_DURATION 100 //100ms
  641. #ifndef DEBUG_DISABLE_FANCHECK
  642. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  643. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  644. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  645. #ifdef FAN_SOFT_PWM
  646. #ifdef FANCHECK
  647. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  648. extruder_autofan_last_check = _millis();
  649. fanSpeedBckp = fanSpeedSoftPwm;
  650. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  651. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  652. fanSpeedSoftPwm = 255;
  653. }
  654. fan_measuring = true;
  655. }
  656. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  657. countFanSpeed();
  658. checkFanSpeed();
  659. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  660. fanSpeedSoftPwm = fanSpeedBckp;
  661. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  662. extruder_autofan_last_check = _millis();
  663. fan_measuring = false;
  664. }
  665. #endif //FANCHECK
  666. checkExtruderAutoFans();
  667. #else //FAN_SOFT_PWM
  668. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  669. {
  670. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  671. countFanSpeed();
  672. checkFanSpeed();
  673. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  674. checkExtruderAutoFans();
  675. extruder_autofan_last_check = _millis();
  676. }
  677. #endif //FAN_SOFT_PWM
  678. #endif
  679. #endif //DEBUG_DISABLE_FANCHECK
  680. #ifndef PIDTEMPBED
  681. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  682. return;
  683. previous_millis_bed_heater = _millis();
  684. #endif
  685. #if TEMP_SENSOR_BED != 0
  686. #ifdef PIDTEMPBED
  687. pid_input = current_temperature_bed;
  688. #ifndef PID_OPENLOOP
  689. pid_error_bed = target_temperature_bed - pid_input;
  690. pTerm_bed = cs.bedKp * pid_error_bed;
  691. temp_iState_bed += pid_error_bed;
  692. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  693. iTerm_bed = cs.bedKi * temp_iState_bed;
  694. //PID_K1 defined in Configuration.h in the PID settings
  695. #define K2 (1.0-PID_K1)
  696. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  697. temp_dState_bed = pid_input;
  698. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  699. if (pid_output > MAX_BED_POWER) {
  700. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  701. pid_output=MAX_BED_POWER;
  702. } else if (pid_output < 0){
  703. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  704. pid_output=0;
  705. }
  706. #else
  707. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  708. #endif //PID_OPENLOOP
  709. if(current_temperature_bed < BED_MAXTEMP)
  710. {
  711. soft_pwm_bed = (int)pid_output >> 1;
  712. timer02_set_pwm0(soft_pwm_bed << 1);
  713. }
  714. else {
  715. soft_pwm_bed = 0;
  716. timer02_set_pwm0(soft_pwm_bed << 1);
  717. }
  718. #elif !defined(BED_LIMIT_SWITCHING)
  719. // Check if temperature is within the correct range
  720. if(current_temperature_bed < BED_MAXTEMP)
  721. {
  722. if(current_temperature_bed >= target_temperature_bed)
  723. {
  724. soft_pwm_bed = 0;
  725. timer02_set_pwm0(soft_pwm_bed << 1);
  726. }
  727. else
  728. {
  729. soft_pwm_bed = MAX_BED_POWER>>1;
  730. timer02_set_pwm0(soft_pwm_bed << 1);
  731. }
  732. }
  733. else
  734. {
  735. soft_pwm_bed = 0;
  736. timer02_set_pwm0(soft_pwm_bed << 1);
  737. WRITE(HEATER_BED_PIN,LOW);
  738. }
  739. #else //#ifdef BED_LIMIT_SWITCHING
  740. // Check if temperature is within the correct band
  741. if(current_temperature_bed < BED_MAXTEMP)
  742. {
  743. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  744. {
  745. soft_pwm_bed = 0;
  746. timer02_set_pwm0(soft_pwm_bed << 1);
  747. }
  748. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  749. {
  750. soft_pwm_bed = MAX_BED_POWER>>1;
  751. timer02_set_pwm0(soft_pwm_bed << 1);
  752. }
  753. }
  754. else
  755. {
  756. soft_pwm_bed = 0;
  757. timer02_set_pwm0(soft_pwm_bed << 1);
  758. WRITE(HEATER_BED_PIN,LOW);
  759. }
  760. #endif
  761. if(target_temperature_bed==0)
  762. {
  763. soft_pwm_bed = 0;
  764. timer02_set_pwm0(soft_pwm_bed << 1);
  765. }
  766. #endif
  767. host_keepalive();
  768. }
  769. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  770. // Derived from RepRap FiveD extruder::getTemperature()
  771. // For hot end temperature measurement.
  772. static float analog2temp(int raw, uint8_t e) {
  773. if(e >= EXTRUDERS)
  774. {
  775. SERIAL_ERROR_START;
  776. SERIAL_ERROR((int)e);
  777. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  778. kill(NULL, 6);
  779. return 0.0;
  780. }
  781. #ifdef HEATER_0_USES_MAX6675
  782. if (e == 0)
  783. {
  784. return 0.25 * raw;
  785. }
  786. #endif
  787. if(heater_ttbl_map[e] != NULL)
  788. {
  789. float celsius = 0;
  790. uint8_t i;
  791. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  792. for (i=1; i<heater_ttbllen_map[e]; i++)
  793. {
  794. if (PGM_RD_W((*tt)[i][0]) > raw)
  795. {
  796. celsius = PGM_RD_W((*tt)[i-1][1]) +
  797. (raw - PGM_RD_W((*tt)[i-1][0])) *
  798. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  799. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  800. break;
  801. }
  802. }
  803. // Overflow: Set to last value in the table
  804. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  805. return celsius;
  806. }
  807. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  808. }
  809. // Derived from RepRap FiveD extruder::getTemperature()
  810. // For bed temperature measurement.
  811. static float analog2tempBed(int raw) {
  812. #ifdef BED_USES_THERMISTOR
  813. float celsius = 0;
  814. byte i;
  815. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  816. {
  817. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  818. {
  819. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  820. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  821. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  822. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  823. break;
  824. }
  825. }
  826. // Overflow: Set to last value in the table
  827. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  828. // temperature offset adjustment
  829. #ifdef BED_OFFSET
  830. float _offset = BED_OFFSET;
  831. float _offset_center = BED_OFFSET_CENTER;
  832. float _offset_start = BED_OFFSET_START;
  833. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  834. float _second_koef = (_offset / 2) / (100 - _offset_center);
  835. if (celsius >= _offset_start && celsius <= _offset_center)
  836. {
  837. celsius = celsius + (_first_koef * (celsius - _offset_start));
  838. }
  839. else if (celsius > _offset_center && celsius <= 100)
  840. {
  841. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  842. }
  843. else if (celsius > 100)
  844. {
  845. celsius = celsius + _offset;
  846. }
  847. #endif
  848. return celsius;
  849. #elif defined BED_USES_AD595
  850. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  851. #else
  852. return 0;
  853. #endif
  854. }
  855. #ifdef AMBIENT_THERMISTOR
  856. static float analog2tempAmbient(int raw)
  857. {
  858. float celsius = 0;
  859. byte i;
  860. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  861. {
  862. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  863. {
  864. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  865. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  866. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  867. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  868. break;
  869. }
  870. }
  871. // Overflow: Set to last value in the table
  872. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  873. return celsius;
  874. }
  875. #endif //AMBIENT_THERMISTOR
  876. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  877. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  878. static void updateTemperaturesFromRawValues()
  879. {
  880. for(uint8_t e=0;e<EXTRUDERS;e++)
  881. {
  882. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  883. }
  884. #ifdef PINDA_THERMISTOR
  885. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  886. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  887. #endif
  888. #ifdef AMBIENT_THERMISTOR
  889. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  890. #endif
  891. #ifdef DEBUG_HEATER_BED_SIM
  892. current_temperature_bed = target_temperature_bed;
  893. #else //DEBUG_HEATER_BED_SIM
  894. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  895. #endif //DEBUG_HEATER_BED_SIM
  896. CRITICAL_SECTION_START;
  897. temp_meas_ready = false;
  898. CRITICAL_SECTION_END;
  899. }
  900. void tp_init()
  901. {
  902. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  903. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  904. MCUCR=(1<<JTD);
  905. MCUCR=(1<<JTD);
  906. #endif
  907. // Finish init of mult extruder arrays
  908. for(int e = 0; e < EXTRUDERS; e++) {
  909. // populate with the first value
  910. maxttemp[e] = maxttemp[0];
  911. #ifdef PIDTEMP
  912. iState_sum_min[e] = 0.0;
  913. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  914. #endif //PIDTEMP
  915. #ifdef PIDTEMPBED
  916. temp_iState_min_bed = 0.0;
  917. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  918. #endif //PIDTEMPBED
  919. }
  920. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  921. SET_OUTPUT(HEATER_0_PIN);
  922. #endif
  923. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  924. SET_OUTPUT(HEATER_1_PIN);
  925. #endif
  926. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  927. SET_OUTPUT(HEATER_2_PIN);
  928. #endif
  929. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  930. SET_OUTPUT(HEATER_BED_PIN);
  931. #endif
  932. #if defined(FAN_PIN) && (FAN_PIN > -1)
  933. SET_OUTPUT(FAN_PIN);
  934. #ifdef FAST_PWM_FAN
  935. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  936. #endif
  937. #ifdef FAN_SOFT_PWM
  938. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  939. #endif
  940. #endif
  941. #ifdef HEATER_0_USES_MAX6675
  942. #ifndef SDSUPPORT
  943. SET_OUTPUT(SCK_PIN);
  944. WRITE(SCK_PIN,0);
  945. SET_OUTPUT(MOSI_PIN);
  946. WRITE(MOSI_PIN,1);
  947. SET_INPUT(MISO_PIN);
  948. WRITE(MISO_PIN,1);
  949. #endif
  950. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  951. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  952. pinMode(SS_PIN, OUTPUT);
  953. digitalWrite(SS_PIN,0);
  954. pinMode(MAX6675_SS, OUTPUT);
  955. digitalWrite(MAX6675_SS,1);
  956. #endif
  957. adc_init();
  958. timer0_init();
  959. OCR2B = 128;
  960. TIMSK2 |= (1<<OCIE2B);
  961. // Wait for temperature measurement to settle
  962. _delay(250);
  963. #ifdef HEATER_0_MINTEMP
  964. minttemp[0] = HEATER_0_MINTEMP;
  965. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  966. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  967. minttemp_raw[0] += OVERSAMPLENR;
  968. #else
  969. minttemp_raw[0] -= OVERSAMPLENR;
  970. #endif
  971. }
  972. #endif //MINTEMP
  973. #ifdef HEATER_0_MAXTEMP
  974. maxttemp[0] = HEATER_0_MAXTEMP;
  975. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  976. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  977. maxttemp_raw[0] -= OVERSAMPLENR;
  978. #else
  979. maxttemp_raw[0] += OVERSAMPLENR;
  980. #endif
  981. }
  982. #endif //MAXTEMP
  983. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  984. minttemp[1] = HEATER_1_MINTEMP;
  985. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  986. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  987. minttemp_raw[1] += OVERSAMPLENR;
  988. #else
  989. minttemp_raw[1] -= OVERSAMPLENR;
  990. #endif
  991. }
  992. #endif // MINTEMP 1
  993. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  994. maxttemp[1] = HEATER_1_MAXTEMP;
  995. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  996. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  997. maxttemp_raw[1] -= OVERSAMPLENR;
  998. #else
  999. maxttemp_raw[1] += OVERSAMPLENR;
  1000. #endif
  1001. }
  1002. #endif //MAXTEMP 1
  1003. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1004. minttemp[2] = HEATER_2_MINTEMP;
  1005. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1006. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1007. minttemp_raw[2] += OVERSAMPLENR;
  1008. #else
  1009. minttemp_raw[2] -= OVERSAMPLENR;
  1010. #endif
  1011. }
  1012. #endif //MINTEMP 2
  1013. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1014. maxttemp[2] = HEATER_2_MAXTEMP;
  1015. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1016. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1017. maxttemp_raw[2] -= OVERSAMPLENR;
  1018. #else
  1019. maxttemp_raw[2] += OVERSAMPLENR;
  1020. #endif
  1021. }
  1022. #endif //MAXTEMP 2
  1023. #ifdef BED_MINTEMP
  1024. /* No bed MINTEMP error implemented?!? */
  1025. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1026. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1027. bed_minttemp_raw += OVERSAMPLENR;
  1028. #else
  1029. bed_minttemp_raw -= OVERSAMPLENR;
  1030. #endif
  1031. }
  1032. #endif //BED_MINTEMP
  1033. #ifdef BED_MAXTEMP
  1034. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1035. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1036. bed_maxttemp_raw -= OVERSAMPLENR;
  1037. #else
  1038. bed_maxttemp_raw += OVERSAMPLENR;
  1039. #endif
  1040. }
  1041. #endif //BED_MAXTEMP
  1042. }
  1043. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1044. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1045. {
  1046. float __delta;
  1047. float __hysteresis = 0;
  1048. int __timeout = 0;
  1049. bool temp_runaway_check_active = false;
  1050. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1051. static int __preheat_counter[2] = { 0,0};
  1052. static int __preheat_errors[2] = { 0,0};
  1053. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1054. {
  1055. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1056. if (_isbed)
  1057. {
  1058. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1059. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1060. }
  1061. #endif
  1062. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1063. if (!_isbed)
  1064. {
  1065. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1066. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1067. }
  1068. #endif
  1069. temp_runaway_timer[_heater_id] = _millis();
  1070. if (_output == 0)
  1071. {
  1072. temp_runaway_check_active = false;
  1073. temp_runaway_error_counter[_heater_id] = 0;
  1074. }
  1075. if (temp_runaway_target[_heater_id] != _target_temperature)
  1076. {
  1077. if (_target_temperature > 0)
  1078. {
  1079. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1080. temp_runaway_target[_heater_id] = _target_temperature;
  1081. __preheat_start[_heater_id] = _current_temperature;
  1082. __preheat_counter[_heater_id] = 0;
  1083. }
  1084. else
  1085. {
  1086. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1087. temp_runaway_target[_heater_id] = _target_temperature;
  1088. }
  1089. }
  1090. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1091. {
  1092. __preheat_counter[_heater_id]++;
  1093. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1094. {
  1095. /*SERIAL_ECHOPGM("Heater:");
  1096. MYSERIAL.print(_heater_id);
  1097. SERIAL_ECHOPGM(" T:");
  1098. MYSERIAL.print(_current_temperature);
  1099. SERIAL_ECHOPGM(" Tstart:");
  1100. MYSERIAL.print(__preheat_start[_heater_id]);
  1101. SERIAL_ECHOPGM(" delta:");
  1102. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1103. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1104. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1105. __delta=2.0;
  1106. if(_isbed)
  1107. {
  1108. __delta=3.0;
  1109. if(_current_temperature>90.0) __delta=2.0;
  1110. if(_current_temperature>105.0) __delta=0.6;
  1111. }
  1112. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1113. __preheat_errors[_heater_id]++;
  1114. /*SERIAL_ECHOPGM(" Preheat errors:");
  1115. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1116. }
  1117. else {
  1118. //SERIAL_ECHOLNPGM("");
  1119. __preheat_errors[_heater_id] = 0;
  1120. }
  1121. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1122. {
  1123. if (farm_mode) { prusa_statistics(0); }
  1124. temp_runaway_stop(true, _isbed);
  1125. if (farm_mode) { prusa_statistics(91); }
  1126. }
  1127. __preheat_start[_heater_id] = _current_temperature;
  1128. __preheat_counter[_heater_id] = 0;
  1129. }
  1130. }
  1131. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1132. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1133. {
  1134. /*SERIAL_ECHOPGM("Heater:");
  1135. MYSERIAL.print(_heater_id);
  1136. MYSERIAL.println(" ->tempRunaway");*/
  1137. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1138. temp_runaway_check_active = false;
  1139. temp_runaway_error_counter[_heater_id] = 0;
  1140. }
  1141. if (_output > 0)
  1142. {
  1143. temp_runaway_check_active = true;
  1144. }
  1145. if (temp_runaway_check_active)
  1146. {
  1147. // we are in range
  1148. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1149. {
  1150. temp_runaway_check_active = false;
  1151. temp_runaway_error_counter[_heater_id] = 0;
  1152. }
  1153. else
  1154. {
  1155. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1156. {
  1157. temp_runaway_error_counter[_heater_id]++;
  1158. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1159. {
  1160. if (farm_mode) { prusa_statistics(0); }
  1161. temp_runaway_stop(false, _isbed);
  1162. if (farm_mode) { prusa_statistics(90); }
  1163. }
  1164. }
  1165. }
  1166. }
  1167. }
  1168. }
  1169. void temp_runaway_stop(bool isPreheat, bool isBed)
  1170. {
  1171. cancel_heatup = true;
  1172. quickStop();
  1173. if (card.sdprinting)
  1174. {
  1175. card.sdprinting = false;
  1176. card.closefile();
  1177. }
  1178. // Clean the input command queue
  1179. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1180. cmdqueue_reset();
  1181. disable_heater();
  1182. disable_x();
  1183. disable_y();
  1184. disable_e0();
  1185. disable_e1();
  1186. disable_e2();
  1187. manage_heater();
  1188. lcd_update(0);
  1189. Sound_MakeCustom(200,0,true);
  1190. if (isPreheat)
  1191. {
  1192. Stop();
  1193. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1194. SERIAL_ERROR_START;
  1195. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1196. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1197. SET_OUTPUT(FAN_PIN);
  1198. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1199. #ifdef FAN_SOFT_PWM
  1200. fanSpeedSoftPwm = 255;
  1201. #else //FAN_SOFT_PWM
  1202. analogWrite(FAN_PIN, 255);
  1203. #endif //FAN_SOFT_PWM
  1204. fanSpeed = 255;
  1205. delayMicroseconds(2000);
  1206. }
  1207. else
  1208. {
  1209. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1210. SERIAL_ERROR_START;
  1211. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1212. }
  1213. }
  1214. #endif
  1215. void disable_heater()
  1216. {
  1217. setAllTargetHotends(0);
  1218. setTargetBed(0);
  1219. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1220. target_temperature[0]=0;
  1221. soft_pwm[0]=0;
  1222. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1223. WRITE(HEATER_0_PIN,LOW);
  1224. #endif
  1225. #endif
  1226. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1227. target_temperature[1]=0;
  1228. soft_pwm[1]=0;
  1229. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1230. WRITE(HEATER_1_PIN,LOW);
  1231. #endif
  1232. #endif
  1233. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1234. target_temperature[2]=0;
  1235. soft_pwm[2]=0;
  1236. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1237. WRITE(HEATER_2_PIN,LOW);
  1238. #endif
  1239. #endif
  1240. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1241. target_temperature_bed=0;
  1242. soft_pwm_bed=0;
  1243. timer02_set_pwm0(soft_pwm_bed << 1);
  1244. bedPWMDisabled = 0;
  1245. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1246. //WRITE(HEATER_BED_PIN,LOW);
  1247. #endif
  1248. #endif
  1249. }
  1250. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1251. //! than raw const char * of the messages themselves.
  1252. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1253. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1254. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1255. //! remember the last alert message sent to the LCD
  1256. //! to prevent flicker and improve speed
  1257. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1258. void max_temp_error(uint8_t e) {
  1259. disable_heater();
  1260. if(IsStopped() == false) {
  1261. SERIAL_ERROR_START;
  1262. SERIAL_ERRORLN((int)e);
  1263. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1264. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1265. }
  1266. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1267. Stop();
  1268. #endif
  1269. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1270. SET_OUTPUT(FAN_PIN);
  1271. SET_OUTPUT(BEEPER);
  1272. WRITE(FAN_PIN, 1);
  1273. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1274. WRITE(BEEPER, 1);
  1275. // fanSpeed will consumed by the check_axes_activity() routine.
  1276. fanSpeed=255;
  1277. if (farm_mode) { prusa_statistics(93); }
  1278. }
  1279. void min_temp_error(uint8_t e) {
  1280. #ifdef DEBUG_DISABLE_MINTEMP
  1281. return;
  1282. #endif
  1283. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1284. disable_heater();
  1285. static const char err[] PROGMEM = "Err: MINTEMP";
  1286. if(IsStopped() == false) {
  1287. SERIAL_ERROR_START;
  1288. SERIAL_ERRORLN((int)e);
  1289. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1290. lcd_setalertstatuspgm(err);
  1291. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1292. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1293. // we are already stopped due to some error, only update the status message without flickering
  1294. lcd_updatestatuspgm(err);
  1295. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1296. }
  1297. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1298. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1299. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1300. // lcd_print_stop();
  1301. // }
  1302. Stop();
  1303. #endif
  1304. if (farm_mode) { prusa_statistics(92); }
  1305. }
  1306. void bed_max_temp_error(void) {
  1307. #if HEATER_BED_PIN > -1
  1308. //WRITE(HEATER_BED_PIN, 0);
  1309. #endif
  1310. if(IsStopped() == false) {
  1311. SERIAL_ERROR_START;
  1312. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1313. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1314. }
  1315. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1316. Stop();
  1317. #endif
  1318. }
  1319. void bed_min_temp_error(void) {
  1320. #ifdef DEBUG_DISABLE_MINTEMP
  1321. return;
  1322. #endif
  1323. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1324. #if HEATER_BED_PIN > -1
  1325. //WRITE(HEATER_BED_PIN, 0);
  1326. #endif
  1327. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1328. if(IsStopped() == false) {
  1329. SERIAL_ERROR_START;
  1330. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1331. lcd_setalertstatuspgm(err);
  1332. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1333. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1334. // we are already stopped due to some error, only update the status message without flickering
  1335. lcd_updatestatuspgm(err);
  1336. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1337. }
  1338. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1339. Stop();
  1340. #endif
  1341. }
  1342. #ifdef HEATER_0_USES_MAX6675
  1343. #define MAX6675_HEAT_INTERVAL 250
  1344. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1345. int max6675_temp = 2000;
  1346. int read_max6675()
  1347. {
  1348. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1349. return max6675_temp;
  1350. max6675_previous_millis = _millis();
  1351. max6675_temp = 0;
  1352. #ifdef PRR
  1353. PRR &= ~(1<<PRSPI);
  1354. #elif defined PRR0
  1355. PRR0 &= ~(1<<PRSPI);
  1356. #endif
  1357. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1358. // enable TT_MAX6675
  1359. WRITE(MAX6675_SS, 0);
  1360. // ensure 100ns delay - a bit extra is fine
  1361. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1362. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1363. // read MSB
  1364. SPDR = 0;
  1365. for (;(SPSR & (1<<SPIF)) == 0;);
  1366. max6675_temp = SPDR;
  1367. max6675_temp <<= 8;
  1368. // read LSB
  1369. SPDR = 0;
  1370. for (;(SPSR & (1<<SPIF)) == 0;);
  1371. max6675_temp |= SPDR;
  1372. // disable TT_MAX6675
  1373. WRITE(MAX6675_SS, 1);
  1374. if (max6675_temp & 4)
  1375. {
  1376. // thermocouple open
  1377. max6675_temp = 2000;
  1378. }
  1379. else
  1380. {
  1381. max6675_temp = max6675_temp >> 3;
  1382. }
  1383. return max6675_temp;
  1384. }
  1385. #endif
  1386. extern "C" {
  1387. void adc_ready(void) //callback from adc when sampling finished
  1388. {
  1389. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1390. #ifdef PINDA_THERMISTOR
  1391. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1392. #endif //PINDA_THERMISTOR
  1393. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1394. #ifdef VOLT_PWR_PIN
  1395. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1396. #endif
  1397. #ifdef AMBIENT_THERMISTOR
  1398. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6
  1399. #endif //AMBIENT_THERMISTOR
  1400. #ifdef VOLT_BED_PIN
  1401. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1402. #endif
  1403. #if IR_SENSOR_ANALOG
  1404. current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];
  1405. #endif //IR_SENSOR_ANALOG
  1406. temp_meas_ready = true;
  1407. }
  1408. } // extern "C"
  1409. // Timer2 (originaly timer0) is shared with millies
  1410. #ifdef SYSTEM_TIMER_2
  1411. ISR(TIMER2_COMPB_vect)
  1412. #else //SYSTEM_TIMER_2
  1413. ISR(TIMER0_COMPB_vect)
  1414. #endif //SYSTEM_TIMER_2
  1415. {
  1416. static bool _lock = false;
  1417. if (_lock) return;
  1418. _lock = true;
  1419. asm("sei");
  1420. if (!temp_meas_ready) adc_cycle();
  1421. lcd_buttons_update();
  1422. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1423. static uint8_t soft_pwm_0;
  1424. #ifdef SLOW_PWM_HEATERS
  1425. static unsigned char slow_pwm_count = 0;
  1426. static unsigned char state_heater_0 = 0;
  1427. static unsigned char state_timer_heater_0 = 0;
  1428. #endif
  1429. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1430. static unsigned char soft_pwm_1;
  1431. #ifdef SLOW_PWM_HEATERS
  1432. static unsigned char state_heater_1 = 0;
  1433. static unsigned char state_timer_heater_1 = 0;
  1434. #endif
  1435. #endif
  1436. #if EXTRUDERS > 2
  1437. static unsigned char soft_pwm_2;
  1438. #ifdef SLOW_PWM_HEATERS
  1439. static unsigned char state_heater_2 = 0;
  1440. static unsigned char state_timer_heater_2 = 0;
  1441. #endif
  1442. #endif
  1443. #if HEATER_BED_PIN > -1
  1444. // @@DR static unsigned char soft_pwm_b;
  1445. #ifdef SLOW_PWM_HEATERS
  1446. static unsigned char state_heater_b = 0;
  1447. static unsigned char state_timer_heater_b = 0;
  1448. #endif
  1449. #endif
  1450. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1451. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1452. #endif
  1453. #ifndef SLOW_PWM_HEATERS
  1454. /*
  1455. * standard PWM modulation
  1456. */
  1457. if (pwm_count == 0)
  1458. {
  1459. soft_pwm_0 = soft_pwm[0];
  1460. if(soft_pwm_0 > 0)
  1461. {
  1462. WRITE(HEATER_0_PIN,1);
  1463. #ifdef HEATERS_PARALLEL
  1464. WRITE(HEATER_1_PIN,1);
  1465. #endif
  1466. } else WRITE(HEATER_0_PIN,0);
  1467. #if EXTRUDERS > 1
  1468. soft_pwm_1 = soft_pwm[1];
  1469. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1470. #endif
  1471. #if EXTRUDERS > 2
  1472. soft_pwm_2 = soft_pwm[2];
  1473. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1474. #endif
  1475. }
  1476. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1477. #if 0 // @@DR vypnuto pro hw pwm bedu
  1478. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1479. // teoreticky by se tato cast uz vubec nemusela poustet
  1480. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1481. {
  1482. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1483. # ifndef SYSTEM_TIMER_2
  1484. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1485. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1486. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1487. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1488. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1489. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1490. # endif //SYSTEM_TIMER_2
  1491. }
  1492. #endif
  1493. #endif
  1494. #ifdef FAN_SOFT_PWM
  1495. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1496. {
  1497. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1498. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1499. }
  1500. #endif
  1501. if(soft_pwm_0 < pwm_count)
  1502. {
  1503. WRITE(HEATER_0_PIN,0);
  1504. #ifdef HEATERS_PARALLEL
  1505. WRITE(HEATER_1_PIN,0);
  1506. #endif
  1507. }
  1508. #if EXTRUDERS > 1
  1509. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1510. #endif
  1511. #if EXTRUDERS > 2
  1512. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1513. #endif
  1514. #if 0 // @@DR
  1515. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1516. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1517. //WRITE(HEATER_BED_PIN,0);
  1518. }
  1519. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1520. #endif
  1521. #endif
  1522. #ifdef FAN_SOFT_PWM
  1523. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1524. #endif
  1525. pwm_count += (1 << SOFT_PWM_SCALE);
  1526. pwm_count &= 0x7f;
  1527. #else //ifndef SLOW_PWM_HEATERS
  1528. /*
  1529. * SLOW PWM HEATERS
  1530. *
  1531. * for heaters drived by relay
  1532. */
  1533. #ifndef MIN_STATE_TIME
  1534. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1535. #endif
  1536. if (slow_pwm_count == 0) {
  1537. // EXTRUDER 0
  1538. soft_pwm_0 = soft_pwm[0];
  1539. if (soft_pwm_0 > 0) {
  1540. // turn ON heather only if the minimum time is up
  1541. if (state_timer_heater_0 == 0) {
  1542. // if change state set timer
  1543. if (state_heater_0 == 0) {
  1544. state_timer_heater_0 = MIN_STATE_TIME;
  1545. }
  1546. state_heater_0 = 1;
  1547. WRITE(HEATER_0_PIN, 1);
  1548. #ifdef HEATERS_PARALLEL
  1549. WRITE(HEATER_1_PIN, 1);
  1550. #endif
  1551. }
  1552. } else {
  1553. // turn OFF heather only if the minimum time is up
  1554. if (state_timer_heater_0 == 0) {
  1555. // if change state set timer
  1556. if (state_heater_0 == 1) {
  1557. state_timer_heater_0 = MIN_STATE_TIME;
  1558. }
  1559. state_heater_0 = 0;
  1560. WRITE(HEATER_0_PIN, 0);
  1561. #ifdef HEATERS_PARALLEL
  1562. WRITE(HEATER_1_PIN, 0);
  1563. #endif
  1564. }
  1565. }
  1566. #if EXTRUDERS > 1
  1567. // EXTRUDER 1
  1568. soft_pwm_1 = soft_pwm[1];
  1569. if (soft_pwm_1 > 0) {
  1570. // turn ON heather only if the minimum time is up
  1571. if (state_timer_heater_1 == 0) {
  1572. // if change state set timer
  1573. if (state_heater_1 == 0) {
  1574. state_timer_heater_1 = MIN_STATE_TIME;
  1575. }
  1576. state_heater_1 = 1;
  1577. WRITE(HEATER_1_PIN, 1);
  1578. }
  1579. } else {
  1580. // turn OFF heather only if the minimum time is up
  1581. if (state_timer_heater_1 == 0) {
  1582. // if change state set timer
  1583. if (state_heater_1 == 1) {
  1584. state_timer_heater_1 = MIN_STATE_TIME;
  1585. }
  1586. state_heater_1 = 0;
  1587. WRITE(HEATER_1_PIN, 0);
  1588. }
  1589. }
  1590. #endif
  1591. #if EXTRUDERS > 2
  1592. // EXTRUDER 2
  1593. soft_pwm_2 = soft_pwm[2];
  1594. if (soft_pwm_2 > 0) {
  1595. // turn ON heather only if the minimum time is up
  1596. if (state_timer_heater_2 == 0) {
  1597. // if change state set timer
  1598. if (state_heater_2 == 0) {
  1599. state_timer_heater_2 = MIN_STATE_TIME;
  1600. }
  1601. state_heater_2 = 1;
  1602. WRITE(HEATER_2_PIN, 1);
  1603. }
  1604. } else {
  1605. // turn OFF heather only if the minimum time is up
  1606. if (state_timer_heater_2 == 0) {
  1607. // if change state set timer
  1608. if (state_heater_2 == 1) {
  1609. state_timer_heater_2 = MIN_STATE_TIME;
  1610. }
  1611. state_heater_2 = 0;
  1612. WRITE(HEATER_2_PIN, 0);
  1613. }
  1614. }
  1615. #endif
  1616. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1617. // BED
  1618. soft_pwm_b = soft_pwm_bed;
  1619. if (soft_pwm_b > 0) {
  1620. // turn ON heather only if the minimum time is up
  1621. if (state_timer_heater_b == 0) {
  1622. // if change state set timer
  1623. if (state_heater_b == 0) {
  1624. state_timer_heater_b = MIN_STATE_TIME;
  1625. }
  1626. state_heater_b = 1;
  1627. //WRITE(HEATER_BED_PIN, 1);
  1628. }
  1629. } else {
  1630. // turn OFF heather only if the minimum time is up
  1631. if (state_timer_heater_b == 0) {
  1632. // if change state set timer
  1633. if (state_heater_b == 1) {
  1634. state_timer_heater_b = MIN_STATE_TIME;
  1635. }
  1636. state_heater_b = 0;
  1637. WRITE(HEATER_BED_PIN, 0);
  1638. }
  1639. }
  1640. #endif
  1641. } // if (slow_pwm_count == 0)
  1642. // EXTRUDER 0
  1643. if (soft_pwm_0 < slow_pwm_count) {
  1644. // turn OFF heather only if the minimum time is up
  1645. if (state_timer_heater_0 == 0) {
  1646. // if change state set timer
  1647. if (state_heater_0 == 1) {
  1648. state_timer_heater_0 = MIN_STATE_TIME;
  1649. }
  1650. state_heater_0 = 0;
  1651. WRITE(HEATER_0_PIN, 0);
  1652. #ifdef HEATERS_PARALLEL
  1653. WRITE(HEATER_1_PIN, 0);
  1654. #endif
  1655. }
  1656. }
  1657. #if EXTRUDERS > 1
  1658. // EXTRUDER 1
  1659. if (soft_pwm_1 < slow_pwm_count) {
  1660. // turn OFF heather only if the minimum time is up
  1661. if (state_timer_heater_1 == 0) {
  1662. // if change state set timer
  1663. if (state_heater_1 == 1) {
  1664. state_timer_heater_1 = MIN_STATE_TIME;
  1665. }
  1666. state_heater_1 = 0;
  1667. WRITE(HEATER_1_PIN, 0);
  1668. }
  1669. }
  1670. #endif
  1671. #if EXTRUDERS > 2
  1672. // EXTRUDER 2
  1673. if (soft_pwm_2 < slow_pwm_count) {
  1674. // turn OFF heather only if the minimum time is up
  1675. if (state_timer_heater_2 == 0) {
  1676. // if change state set timer
  1677. if (state_heater_2 == 1) {
  1678. state_timer_heater_2 = MIN_STATE_TIME;
  1679. }
  1680. state_heater_2 = 0;
  1681. WRITE(HEATER_2_PIN, 0);
  1682. }
  1683. }
  1684. #endif
  1685. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1686. // BED
  1687. if (soft_pwm_b < slow_pwm_count) {
  1688. // turn OFF heather only if the minimum time is up
  1689. if (state_timer_heater_b == 0) {
  1690. // if change state set timer
  1691. if (state_heater_b == 1) {
  1692. state_timer_heater_b = MIN_STATE_TIME;
  1693. }
  1694. state_heater_b = 0;
  1695. WRITE(HEATER_BED_PIN, 0);
  1696. }
  1697. }
  1698. #endif
  1699. #ifdef FAN_SOFT_PWM
  1700. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1701. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1702. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1703. }
  1704. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1705. #endif
  1706. pwm_count += (1 << SOFT_PWM_SCALE);
  1707. pwm_count &= 0x7f;
  1708. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1709. if ((pwm_count % 64) == 0) {
  1710. slow_pwm_count++;
  1711. slow_pwm_count &= 0x7f;
  1712. // Extruder 0
  1713. if (state_timer_heater_0 > 0) {
  1714. state_timer_heater_0--;
  1715. }
  1716. #if EXTRUDERS > 1
  1717. // Extruder 1
  1718. if (state_timer_heater_1 > 0)
  1719. state_timer_heater_1--;
  1720. #endif
  1721. #if EXTRUDERS > 2
  1722. // Extruder 2
  1723. if (state_timer_heater_2 > 0)
  1724. state_timer_heater_2--;
  1725. #endif
  1726. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1727. // Bed
  1728. if (state_timer_heater_b > 0)
  1729. state_timer_heater_b--;
  1730. #endif
  1731. } //if ((pwm_count % 64) == 0) {
  1732. #endif //ifndef SLOW_PWM_HEATERS
  1733. #ifdef BABYSTEPPING
  1734. for(uint8_t axis=0;axis<3;axis++)
  1735. {
  1736. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1737. if(curTodo>0)
  1738. {
  1739. asm("cli");
  1740. babystep(axis,/*fwd*/true);
  1741. babystepsTodo[axis]--; //less to do next time
  1742. asm("sei");
  1743. }
  1744. else
  1745. if(curTodo<0)
  1746. {
  1747. asm("cli");
  1748. babystep(axis,/*fwd*/false);
  1749. babystepsTodo[axis]++; //less to do next time
  1750. asm("sei");
  1751. }
  1752. }
  1753. #endif //BABYSTEPPING
  1754. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1755. check_fans();
  1756. #endif //(defined(TACH_0))
  1757. _lock = false;
  1758. }
  1759. void check_max_temp()
  1760. {
  1761. //heater
  1762. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1763. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1764. #else
  1765. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1766. #endif
  1767. max_temp_error(0);
  1768. }
  1769. //bed
  1770. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1771. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1772. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1773. #else
  1774. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1775. #endif
  1776. target_temperature_bed = 0;
  1777. bed_max_temp_error();
  1778. }
  1779. #endif
  1780. }
  1781. //! number of repeating the same state with consecutive step() calls
  1782. //! used to slow down text switching
  1783. struct alert_automaton_mintemp {
  1784. const char *m2;
  1785. alert_automaton_mintemp(const char *m2):m2(m2){}
  1786. private:
  1787. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1788. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1789. States state = States::Init;
  1790. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1791. void substep(States next_state){
  1792. if( repeat == 0 ){
  1793. state = next_state; // advance to the next state
  1794. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1795. } else {
  1796. --repeat;
  1797. }
  1798. }
  1799. public:
  1800. //! brief state automaton step routine
  1801. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1802. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1803. void step(float current_temp, float mintemp){
  1804. static const char m1[] PROGMEM = "Please restart";
  1805. switch(state){
  1806. case States::Init: // initial state - check hysteresis
  1807. if( current_temp > mintemp ){
  1808. state = States::TempAboveMintemp;
  1809. }
  1810. // otherwise keep the Err MINTEMP alert message on the display,
  1811. // i.e. do not transfer to state 1
  1812. break;
  1813. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1814. lcd_setalertstatuspgm(m2);
  1815. substep(States::ShowMintemp);
  1816. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1817. break;
  1818. case States::ShowPleaseRestart: // displaying "Please restart"
  1819. lcd_updatestatuspgm(m1);
  1820. substep(States::ShowMintemp);
  1821. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1822. break;
  1823. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1824. lcd_updatestatuspgm(m2);
  1825. substep(States::ShowPleaseRestart);
  1826. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1827. break;
  1828. }
  1829. }
  1830. };
  1831. static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";
  1832. static const char m2bed[] PROGMEM = "MINTEMP BED fixed";
  1833. static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);
  1834. void check_min_temp_heater0()
  1835. {
  1836. //heater
  1837. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1838. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1839. #else
  1840. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1841. #endif
  1842. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1843. min_temp_error(0);
  1844. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1845. // no recovery, just force the user to restart the printer
  1846. // which is a safer variant than just continuing printing
  1847. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1848. // we shall signalize, that MINTEMP has been fixed
  1849. // Code notice: normally the alert_automaton instance would have been placed here
  1850. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1851. // due to stupid compiler that takes 16 more bytes.
  1852. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1853. }
  1854. }
  1855. void check_min_temp_bed()
  1856. {
  1857. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1858. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1859. #else
  1860. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1861. #endif
  1862. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1863. bed_min_temp_error();
  1864. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1865. // no recovery, just force the user to restart the printer
  1866. // which is a safer variant than just continuing printing
  1867. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1868. }
  1869. }
  1870. void check_min_temp()
  1871. {
  1872. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1873. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1874. #ifdef AMBIENT_THERMISTOR
  1875. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1876. { // ambient temperature is low
  1877. #endif //AMBIENT_THERMISTOR
  1878. // *** 'common' part of code for MK2.5 & MK3
  1879. // * nozzle checking
  1880. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1881. { // ~ nozzle heating is on
  1882. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1883. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1884. {
  1885. bCheckingOnHeater=true; // not necessary
  1886. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1887. }
  1888. }
  1889. else { // ~ nozzle heating is off
  1890. oTimer4minTempHeater.start();
  1891. bCheckingOnHeater=false;
  1892. }
  1893. // * bed checking
  1894. if(target_temperature_bed>BED_MINTEMP)
  1895. { // ~ bed heating is on
  1896. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1897. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1898. {
  1899. bCheckingOnBed=true; // not necessary
  1900. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1901. }
  1902. }
  1903. else { // ~ bed heating is off
  1904. oTimer4minTempBed.start();
  1905. bCheckingOnBed=false;
  1906. }
  1907. // *** end of 'common' part
  1908. #ifdef AMBIENT_THERMISTOR
  1909. }
  1910. else { // ambient temperature is standard
  1911. check_min_temp_heater0();
  1912. check_min_temp_bed();
  1913. }
  1914. #endif //AMBIENT_THERMISTOR
  1915. }
  1916. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1917. void check_fans() {
  1918. #ifdef FAN_SOFT_PWM
  1919. if (READ(TACH_0) != fan_state[0]) {
  1920. if(fan_measuring) fan_edge_counter[0] ++;
  1921. fan_state[0] = !fan_state[0];
  1922. }
  1923. #else //FAN_SOFT_PWM
  1924. if (READ(TACH_0) != fan_state[0]) {
  1925. fan_edge_counter[0] ++;
  1926. fan_state[0] = !fan_state[0];
  1927. }
  1928. #endif
  1929. //if (READ(TACH_1) != fan_state[1]) {
  1930. // fan_edge_counter[1] ++;
  1931. // fan_state[1] = !fan_state[1];
  1932. //}
  1933. }
  1934. #endif //TACH_0
  1935. #ifdef PIDTEMP
  1936. // Apply the scale factors to the PID values
  1937. float scalePID_i(float i)
  1938. {
  1939. return i*PID_dT;
  1940. }
  1941. float unscalePID_i(float i)
  1942. {
  1943. return i/PID_dT;
  1944. }
  1945. float scalePID_d(float d)
  1946. {
  1947. return d/PID_dT;
  1948. }
  1949. float unscalePID_d(float d)
  1950. {
  1951. return d*PID_dT;
  1952. }
  1953. #endif //PIDTEMP