Marlin_main.cpp 290 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include <avr/pgmspace.h>
  50. #include "Dcodes.h"
  51. #ifdef SWSPI
  52. #include "swspi.h"
  53. #endif //SWSPI
  54. #ifdef NEW_SPI
  55. #include "spi.h"
  56. #endif //NEW_SPI
  57. #ifdef SWI2C
  58. #include "swi2c.h"
  59. #endif //SWI2C
  60. #ifdef PAT9125
  61. #include "pat9125.h"
  62. #include "fsensor.h"
  63. #endif //PAT9125
  64. #ifdef TMC2130
  65. #include "tmc2130.h"
  66. #endif //TMC2130
  67. #ifdef BLINKM
  68. #include "BlinkM.h"
  69. #include "Wire.h"
  70. #endif
  71. #ifdef ULTRALCD
  72. #include "ultralcd.h"
  73. #endif
  74. #if NUM_SERVOS > 0
  75. #include "Servo.h"
  76. #endif
  77. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  78. #include <SPI.h>
  79. #endif
  80. #define VERSION_STRING "1.0.2"
  81. #include "ultralcd.h"
  82. #include "cmdqueue.h"
  83. // Macros for bit masks
  84. #define BIT(b) (1<<(b))
  85. #define TEST(n,b) (((n)&BIT(b))!=0)
  86. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  87. //Macro for print fan speed
  88. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  89. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  90. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  91. //Implemented Codes
  92. //-------------------
  93. // PRUSA CODES
  94. // P F - Returns FW versions
  95. // P R - Returns revision of printer
  96. // G0 -> G1
  97. // G1 - Coordinated Movement X Y Z E
  98. // G2 - CW ARC
  99. // G3 - CCW ARC
  100. // G4 - Dwell S<seconds> or P<milliseconds>
  101. // G10 - retract filament according to settings of M207
  102. // G11 - retract recover filament according to settings of M208
  103. // G28 - Home all Axis
  104. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. // G30 - Single Z Probe, probes bed at current XY location.
  106. // G31 - Dock sled (Z_PROBE_SLED only)
  107. // G32 - Undock sled (Z_PROBE_SLED only)
  108. // G80 - Automatic mesh bed leveling
  109. // G81 - Print bed profile
  110. // G90 - Use Absolute Coordinates
  111. // G91 - Use Relative Coordinates
  112. // G92 - Set current position to coordinates given
  113. // M Codes
  114. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. // M1 - Same as M0
  116. // M17 - Enable/Power all stepper motors
  117. // M18 - Disable all stepper motors; same as M84
  118. // M20 - List SD card
  119. // M21 - Init SD card
  120. // M22 - Release SD card
  121. // M23 - Select SD file (M23 filename.g)
  122. // M24 - Start/resume SD print
  123. // M25 - Pause SD print
  124. // M26 - Set SD position in bytes (M26 S12345)
  125. // M27 - Report SD print status
  126. // M28 - Start SD write (M28 filename.g)
  127. // M29 - Stop SD write
  128. // M30 - Delete file from SD (M30 filename.g)
  129. // M31 - Output time since last M109 or SD card start to serial
  130. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  135. // M80 - Turn on Power Supply
  136. // M81 - Turn off Power Supply
  137. // M82 - Set E codes absolute (default)
  138. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  139. // M84 - Disable steppers until next move,
  140. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  141. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  142. // M92 - Set axis_steps_per_unit - same syntax as G92
  143. // M104 - Set extruder target temp
  144. // M105 - Read current temp
  145. // M106 - Fan on
  146. // M107 - Fan off
  147. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  148. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  149. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  150. // M112 - Emergency stop
  151. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  152. // M114 - Output current position to serial port
  153. // M115 - Capabilities string
  154. // M117 - display message
  155. // M119 - Output Endstop status to serial port
  156. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  157. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  158. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  159. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  160. // M140 - Set bed target temp
  161. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  162. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  163. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  164. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  165. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  166. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  167. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  168. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  169. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  170. // M206 - set additional homing offset
  171. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  172. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  173. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  174. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  175. // M220 S<factor in percent>- set speed factor override percentage
  176. // M221 S<factor in percent>- set extrude factor override percentage
  177. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  178. // M240 - Trigger a camera to take a photograph
  179. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  180. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  181. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  182. // M301 - Set PID parameters P I and D
  183. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  184. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  185. // M304 - Set bed PID parameters P I and D
  186. // M400 - Finish all moves
  187. // M401 - Lower z-probe if present
  188. // M402 - Raise z-probe if present
  189. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. // M406 - Turn off Filament Sensor extrusion control
  192. // M407 - Displays measured filament diameter
  193. // M500 - stores parameters in EEPROM
  194. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. // M503 - print the current settings (from memory not from EEPROM)
  197. // M509 - force language selection on next restart
  198. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  199. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  200. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  201. // M860 - Wait for PINDA thermistor to reach target temperature.
  202. // M861 - Set / Read PINDA temperature compensation offsets
  203. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  204. // M907 - Set digital trimpot motor current using axis codes.
  205. // M908 - Control digital trimpot directly.
  206. // M350 - Set microstepping mode.
  207. // M351 - Toggle MS1 MS2 pins directly.
  208. // M928 - Start SD logging (M928 filename.g) - ended by M29
  209. // M999 - Restart after being stopped by error
  210. //Stepper Movement Variables
  211. //===========================================================================
  212. //=============================imported variables============================
  213. //===========================================================================
  214. //===========================================================================
  215. //=============================public variables=============================
  216. //===========================================================================
  217. #ifdef SDSUPPORT
  218. CardReader card;
  219. #endif
  220. unsigned long PingTime = millis();
  221. unsigned long NcTime;
  222. union Data
  223. {
  224. byte b[2];
  225. int value;
  226. };
  227. float homing_feedrate[] = HOMING_FEEDRATE;
  228. // Currently only the extruder axis may be switched to a relative mode.
  229. // Other axes are always absolute or relative based on the common relative_mode flag.
  230. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  231. int feedmultiply=100; //100->1 200->2
  232. int saved_feedmultiply;
  233. int extrudemultiply=100; //100->1 200->2
  234. int extruder_multiply[EXTRUDERS] = {100
  235. #if EXTRUDERS > 1
  236. , 100
  237. #if EXTRUDERS > 2
  238. , 100
  239. #endif
  240. #endif
  241. };
  242. int bowden_length[4] = {385, 385, 385, 385};
  243. bool is_usb_printing = false;
  244. bool homing_flag = false;
  245. bool temp_cal_active = false;
  246. unsigned long kicktime = millis()+100000;
  247. unsigned int usb_printing_counter;
  248. int lcd_change_fil_state = 0;
  249. int feedmultiplyBckp = 100;
  250. float HotendTempBckp = 0;
  251. int fanSpeedBckp = 0;
  252. float pause_lastpos[4];
  253. unsigned long pause_time = 0;
  254. unsigned long start_pause_print = millis();
  255. unsigned long t_fan_rising_edge = millis();
  256. //unsigned long load_filament_time;
  257. bool mesh_bed_leveling_flag = false;
  258. bool mesh_bed_run_from_menu = false;
  259. //unsigned char lang_selected = 0;
  260. int8_t FarmMode = 0;
  261. bool prusa_sd_card_upload = false;
  262. unsigned int status_number = 0;
  263. unsigned long total_filament_used;
  264. unsigned int heating_status;
  265. unsigned int heating_status_counter;
  266. bool custom_message;
  267. bool loading_flag = false;
  268. unsigned int custom_message_type;
  269. unsigned int custom_message_state;
  270. char snmm_filaments_used = 0;
  271. bool fan_state[2];
  272. int fan_edge_counter[2];
  273. int fan_speed[2];
  274. char dir_names[3][9];
  275. bool sortAlpha = false;
  276. bool volumetric_enabled = false;
  277. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  278. #if EXTRUDERS > 1
  279. , DEFAULT_NOMINAL_FILAMENT_DIA
  280. #if EXTRUDERS > 2
  281. , DEFAULT_NOMINAL_FILAMENT_DIA
  282. #endif
  283. #endif
  284. };
  285. float extruder_multiplier[EXTRUDERS] = {1.0
  286. #if EXTRUDERS > 1
  287. , 1.0
  288. #if EXTRUDERS > 2
  289. , 1.0
  290. #endif
  291. #endif
  292. };
  293. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  294. float add_homing[3]={0,0,0};
  295. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  296. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  297. bool axis_known_position[3] = {false, false, false};
  298. float zprobe_zoffset;
  299. // Extruder offset
  300. #if EXTRUDERS > 1
  301. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  302. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  303. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  304. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  305. #endif
  306. };
  307. #endif
  308. uint8_t active_extruder = 0;
  309. int fanSpeed=0;
  310. #ifdef FWRETRACT
  311. bool autoretract_enabled=false;
  312. bool retracted[EXTRUDERS]={false
  313. #if EXTRUDERS > 1
  314. , false
  315. #if EXTRUDERS > 2
  316. , false
  317. #endif
  318. #endif
  319. };
  320. bool retracted_swap[EXTRUDERS]={false
  321. #if EXTRUDERS > 1
  322. , false
  323. #if EXTRUDERS > 2
  324. , false
  325. #endif
  326. #endif
  327. };
  328. float retract_length = RETRACT_LENGTH;
  329. float retract_length_swap = RETRACT_LENGTH_SWAP;
  330. float retract_feedrate = RETRACT_FEEDRATE;
  331. float retract_zlift = RETRACT_ZLIFT;
  332. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  333. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  334. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  335. #endif
  336. #ifdef ULTIPANEL
  337. #ifdef PS_DEFAULT_OFF
  338. bool powersupply = false;
  339. #else
  340. bool powersupply = true;
  341. #endif
  342. #endif
  343. bool cancel_heatup = false ;
  344. #ifdef HOST_KEEPALIVE_FEATURE
  345. int busy_state = NOT_BUSY;
  346. static long prev_busy_signal_ms = -1;
  347. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  348. #else
  349. #define host_keepalive();
  350. #define KEEPALIVE_STATE(n);
  351. #endif
  352. const char errormagic[] PROGMEM = "Error:";
  353. const char echomagic[] PROGMEM = "echo:";
  354. bool no_response = false;
  355. uint8_t important_status;
  356. uint8_t saved_filament_type;
  357. // save/restore printing
  358. bool saved_printing = false;
  359. //===========================================================================
  360. //=============================Private Variables=============================
  361. //===========================================================================
  362. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  363. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  364. static float delta[3] = {0.0, 0.0, 0.0};
  365. // For tracing an arc
  366. static float offset[3] = {0.0, 0.0, 0.0};
  367. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  368. // Determines Absolute or Relative Coordinates.
  369. // Also there is bool axis_relative_modes[] per axis flag.
  370. static bool relative_mode = false;
  371. #ifndef _DISABLE_M42_M226
  372. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  373. #endif //_DISABLE_M42_M226
  374. //static float tt = 0;
  375. //static float bt = 0;
  376. //Inactivity shutdown variables
  377. static unsigned long previous_millis_cmd = 0;
  378. unsigned long max_inactive_time = 0;
  379. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  380. unsigned long starttime=0;
  381. unsigned long stoptime=0;
  382. unsigned long _usb_timer = 0;
  383. static uint8_t tmp_extruder;
  384. bool extruder_under_pressure = true;
  385. bool Stopped=false;
  386. #if NUM_SERVOS > 0
  387. Servo servos[NUM_SERVOS];
  388. #endif
  389. bool CooldownNoWait = true;
  390. bool target_direction;
  391. //Insert variables if CHDK is defined
  392. #ifdef CHDK
  393. unsigned long chdkHigh = 0;
  394. boolean chdkActive = false;
  395. #endif
  396. // save/restore printing
  397. static uint32_t saved_sdpos = 0;
  398. static float saved_pos[4] = { 0, 0, 0, 0 };
  399. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  400. static float saved_feedrate2 = 0;
  401. static uint8_t saved_active_extruder = 0;
  402. static bool saved_extruder_under_pressure = false;
  403. //===========================================================================
  404. //=============================Routines======================================
  405. //===========================================================================
  406. void get_arc_coordinates();
  407. bool setTargetedHotend(int code);
  408. void serial_echopair_P(const char *s_P, float v)
  409. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  410. void serial_echopair_P(const char *s_P, double v)
  411. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  412. void serial_echopair_P(const char *s_P, unsigned long v)
  413. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  414. #ifdef SDSUPPORT
  415. #include "SdFatUtil.h"
  416. int freeMemory() { return SdFatUtil::FreeRam(); }
  417. #else
  418. extern "C" {
  419. extern unsigned int __bss_end;
  420. extern unsigned int __heap_start;
  421. extern void *__brkval;
  422. int freeMemory() {
  423. int free_memory;
  424. if ((int)__brkval == 0)
  425. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  426. else
  427. free_memory = ((int)&free_memory) - ((int)__brkval);
  428. return free_memory;
  429. }
  430. }
  431. #endif //!SDSUPPORT
  432. void setup_killpin()
  433. {
  434. #if defined(KILL_PIN) && KILL_PIN > -1
  435. SET_INPUT(KILL_PIN);
  436. WRITE(KILL_PIN,HIGH);
  437. #endif
  438. }
  439. // Set home pin
  440. void setup_homepin(void)
  441. {
  442. #if defined(HOME_PIN) && HOME_PIN > -1
  443. SET_INPUT(HOME_PIN);
  444. WRITE(HOME_PIN,HIGH);
  445. #endif
  446. }
  447. void setup_photpin()
  448. {
  449. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  450. SET_OUTPUT(PHOTOGRAPH_PIN);
  451. WRITE(PHOTOGRAPH_PIN, LOW);
  452. #endif
  453. }
  454. void setup_powerhold()
  455. {
  456. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  457. SET_OUTPUT(SUICIDE_PIN);
  458. WRITE(SUICIDE_PIN, HIGH);
  459. #endif
  460. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  461. SET_OUTPUT(PS_ON_PIN);
  462. #if defined(PS_DEFAULT_OFF)
  463. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  464. #else
  465. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  466. #endif
  467. #endif
  468. }
  469. void suicide()
  470. {
  471. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  472. SET_OUTPUT(SUICIDE_PIN);
  473. WRITE(SUICIDE_PIN, LOW);
  474. #endif
  475. }
  476. void servo_init()
  477. {
  478. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  479. servos[0].attach(SERVO0_PIN);
  480. #endif
  481. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  482. servos[1].attach(SERVO1_PIN);
  483. #endif
  484. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  485. servos[2].attach(SERVO2_PIN);
  486. #endif
  487. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  488. servos[3].attach(SERVO3_PIN);
  489. #endif
  490. #if (NUM_SERVOS >= 5)
  491. #error "TODO: enter initalisation code for more servos"
  492. #endif
  493. }
  494. static void lcd_language_menu();
  495. void stop_and_save_print_to_ram(float z_move, float e_move);
  496. void restore_print_from_ram_and_continue(float e_move);
  497. bool fans_check_enabled = true;
  498. bool filament_autoload_enabled = true;
  499. #ifdef TMC2130
  500. extern int8_t CrashDetectMenu;
  501. void crashdet_enable()
  502. {
  503. // MYSERIAL.println("crashdet_enable");
  504. tmc2130_sg_stop_on_crash = true;
  505. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  506. CrashDetectMenu = 1;
  507. }
  508. void crashdet_disable()
  509. {
  510. // MYSERIAL.println("crashdet_disable");
  511. tmc2130_sg_stop_on_crash = false;
  512. tmc2130_sg_crash = 0;
  513. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  514. CrashDetectMenu = 0;
  515. }
  516. void crashdet_stop_and_save_print()
  517. {
  518. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  519. }
  520. void crashdet_restore_print_and_continue()
  521. {
  522. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  523. // babystep_apply();
  524. }
  525. void crashdet_stop_and_save_print2()
  526. {
  527. cli();
  528. planner_abort_hard(); //abort printing
  529. cmdqueue_reset(); //empty cmdqueue
  530. card.sdprinting = false;
  531. card.closefile();
  532. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  533. st_reset_timer();
  534. sei();
  535. }
  536. void crashdet_detected(uint8_t mask)
  537. {
  538. // printf("CRASH_DETECTED");
  539. /* while (!is_buffer_empty())
  540. {
  541. process_commands();
  542. cmdqueue_pop_front();
  543. }*/
  544. st_synchronize();
  545. lcd_update_enable(true);
  546. lcd_implementation_clear();
  547. lcd_update(2);
  548. if (mask & X_AXIS_MASK)
  549. {
  550. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  551. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  552. }
  553. if (mask & Y_AXIS_MASK)
  554. {
  555. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  556. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  557. }
  558. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  559. bool yesno = true;
  560. #else
  561. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_CRASH_DETECTED), false);
  562. #endif
  563. lcd_update_enable(true);
  564. lcd_update(2);
  565. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  566. if (yesno)
  567. {
  568. enquecommand_P(PSTR("G28 X Y"));
  569. enquecommand_P(PSTR("CRASH_RECOVER"));
  570. }
  571. else
  572. {
  573. enquecommand_P(PSTR("CRASH_CANCEL"));
  574. }
  575. }
  576. void crashdet_recover()
  577. {
  578. crashdet_restore_print_and_continue();
  579. tmc2130_sg_stop_on_crash = true;
  580. }
  581. void crashdet_cancel()
  582. {
  583. card.sdprinting = false;
  584. card.closefile();
  585. tmc2130_sg_stop_on_crash = true;
  586. }
  587. #endif //TMC2130
  588. void failstats_reset_print()
  589. {
  590. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  591. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  592. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  593. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  594. }
  595. #ifdef MESH_BED_LEVELING
  596. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  597. #endif
  598. // Factory reset function
  599. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  600. // Level input parameter sets depth of reset
  601. // Quiet parameter masks all waitings for user interact.
  602. int er_progress = 0;
  603. void factory_reset(char level, bool quiet)
  604. {
  605. lcd_implementation_clear();
  606. int cursor_pos = 0;
  607. switch (level) {
  608. // Level 0: Language reset
  609. case 0:
  610. WRITE(BEEPER, HIGH);
  611. _delay_ms(100);
  612. WRITE(BEEPER, LOW);
  613. lcd_force_language_selection();
  614. break;
  615. //Level 1: Reset statistics
  616. case 1:
  617. WRITE(BEEPER, HIGH);
  618. _delay_ms(100);
  619. WRITE(BEEPER, LOW);
  620. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  621. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  622. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  623. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  624. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  625. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  626. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  627. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  628. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  629. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  630. lcd_menu_statistics();
  631. break;
  632. // Level 2: Prepare for shipping
  633. case 2:
  634. //lcd_printPGM(PSTR("Factory RESET"));
  635. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  636. // Force language selection at the next boot up.
  637. lcd_force_language_selection();
  638. // Force the "Follow calibration flow" message at the next boot up.
  639. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  640. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  641. farm_no = 0;
  642. //*** MaR::180501_01
  643. farm_mode = false;
  644. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  645. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  646. WRITE(BEEPER, HIGH);
  647. _delay_ms(100);
  648. WRITE(BEEPER, LOW);
  649. //_delay_ms(2000);
  650. break;
  651. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  652. case 3:
  653. lcd_printPGM(PSTR("Factory RESET"));
  654. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  655. WRITE(BEEPER, HIGH);
  656. _delay_ms(100);
  657. WRITE(BEEPER, LOW);
  658. er_progress = 0;
  659. lcd_print_at_PGM(3, 3, PSTR(" "));
  660. lcd_implementation_print_at(3, 3, er_progress);
  661. // Erase EEPROM
  662. for (int i = 0; i < 4096; i++) {
  663. eeprom_write_byte((uint8_t*)i, 0xFF);
  664. if (i % 41 == 0) {
  665. er_progress++;
  666. lcd_print_at_PGM(3, 3, PSTR(" "));
  667. lcd_implementation_print_at(3, 3, er_progress);
  668. lcd_printPGM(PSTR("%"));
  669. }
  670. }
  671. break;
  672. case 4:
  673. bowden_menu();
  674. break;
  675. default:
  676. break;
  677. }
  678. }
  679. #include "LiquidCrystal_Prusa.h"
  680. extern LiquidCrystal_Prusa lcd;
  681. FILE _lcdout = {0};
  682. int lcd_putchar(char c, FILE *stream)
  683. {
  684. lcd.write(c);
  685. return 0;
  686. }
  687. FILE _uartout = {0};
  688. int uart_putchar(char c, FILE *stream)
  689. {
  690. MYSERIAL.write(c);
  691. return 0;
  692. }
  693. void lcd_splash()
  694. {
  695. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  696. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  697. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  698. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  699. }
  700. void factory_reset()
  701. {
  702. KEEPALIVE_STATE(PAUSED_FOR_USER);
  703. if (!READ(BTN_ENC))
  704. {
  705. _delay_ms(1000);
  706. if (!READ(BTN_ENC))
  707. {
  708. lcd_implementation_clear();
  709. lcd_printPGM(PSTR("Factory RESET"));
  710. SET_OUTPUT(BEEPER);
  711. WRITE(BEEPER, HIGH);
  712. while (!READ(BTN_ENC));
  713. WRITE(BEEPER, LOW);
  714. _delay_ms(2000);
  715. char level = reset_menu();
  716. factory_reset(level, false);
  717. switch (level) {
  718. case 0: _delay_ms(0); break;
  719. case 1: _delay_ms(0); break;
  720. case 2: _delay_ms(0); break;
  721. case 3: _delay_ms(0); break;
  722. }
  723. // _delay_ms(100);
  724. /*
  725. #ifdef MESH_BED_LEVELING
  726. _delay_ms(2000);
  727. if (!READ(BTN_ENC))
  728. {
  729. WRITE(BEEPER, HIGH);
  730. _delay_ms(100);
  731. WRITE(BEEPER, LOW);
  732. _delay_ms(200);
  733. WRITE(BEEPER, HIGH);
  734. _delay_ms(100);
  735. WRITE(BEEPER, LOW);
  736. int _z = 0;
  737. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  738. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  739. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  740. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  741. }
  742. else
  743. {
  744. WRITE(BEEPER, HIGH);
  745. _delay_ms(100);
  746. WRITE(BEEPER, LOW);
  747. }
  748. #endif // mesh */
  749. }
  750. }
  751. else
  752. {
  753. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  754. }
  755. KEEPALIVE_STATE(IN_HANDLER);
  756. }
  757. void show_fw_version_warnings() {
  758. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  759. switch (FW_DEV_VERSION) {
  760. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  761. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  762. case(FW_VERSION_DEVEL):
  763. case(FW_VERSION_DEBUG):
  764. lcd_update_enable(false);
  765. lcd_implementation_clear();
  766. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  767. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  768. #else
  769. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  770. #endif
  771. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  772. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  773. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  774. lcd_wait_for_click();
  775. break;
  776. default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  777. }
  778. lcd_update_enable(true);
  779. }
  780. uint8_t check_printer_version()
  781. {
  782. uint8_t version_changed = 0;
  783. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  784. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  785. if (printer_type != PRINTER_TYPE) {
  786. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  787. else version_changed |= 0b10;
  788. }
  789. if (motherboard != MOTHERBOARD) {
  790. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  791. else version_changed |= 0b01;
  792. }
  793. return version_changed;
  794. }
  795. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  796. {
  797. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  798. }
  799. #include "bootapp.h"
  800. void __test()
  801. {
  802. cli();
  803. boot_app_magic = 0x55aa55aa;
  804. boot_app_flags = BOOT_APP_FLG_USER0;
  805. boot_reserved = 0x00;
  806. wdt_enable(WDTO_15MS);
  807. while(1);
  808. }
  809. void upgrade_sec_lang_from_external_flash()
  810. {
  811. if ((boot_app_magic == 0x55aa55aa) && (boot_app_flags & BOOT_APP_FLG_USER0))
  812. {
  813. fprintf_P(lcdout, PSTR(ESC_2J ESC_H(1,1) "TEST %d"), boot_reserved);
  814. boot_reserved++;
  815. if (boot_reserved < 4)
  816. {
  817. _delay_ms(1000);
  818. cli();
  819. wdt_enable(WDTO_15MS);
  820. while(1);
  821. }
  822. }
  823. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  824. }
  825. // "Setup" function is called by the Arduino framework on startup.
  826. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  827. // are initialized by the main() routine provided by the Arduino framework.
  828. void setup()
  829. {
  830. lcd_init();
  831. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  832. // upgrade_sec_lang_from_external_flash();
  833. lcd_splash();
  834. setup_killpin();
  835. setup_powerhold();
  836. //*** MaR::180501_02b
  837. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  838. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  839. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  840. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  841. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  842. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  843. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  844. if (farm_mode)
  845. {
  846. no_response = true; //we need confirmation by recieving PRUSA thx
  847. important_status = 8;
  848. prusa_statistics(8);
  849. selectedSerialPort = 1;
  850. }
  851. MYSERIAL.begin(BAUDRATE);
  852. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  853. stdout = uartout;
  854. SERIAL_PROTOCOLLNPGM("start");
  855. SERIAL_ECHO_START;
  856. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  857. #if 0
  858. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  859. for (int i = 0; i < 4096; ++i) {
  860. int b = eeprom_read_byte((unsigned char*)i);
  861. if (b != 255) {
  862. SERIAL_ECHO(i);
  863. SERIAL_ECHO(":");
  864. SERIAL_ECHO(b);
  865. SERIAL_ECHOLN("");
  866. }
  867. }
  868. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  869. #endif
  870. // Check startup - does nothing if bootloader sets MCUSR to 0
  871. byte mcu = MCUSR;
  872. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  873. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  874. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  875. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  876. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  877. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  878. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  879. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  880. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  881. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  882. MCUSR = 0;
  883. //SERIAL_ECHORPGM(MSG_MARLIN);
  884. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  885. #ifdef STRING_VERSION_CONFIG_H
  886. #ifdef STRING_CONFIG_H_AUTHOR
  887. SERIAL_ECHO_START;
  888. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  889. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  890. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  891. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  892. SERIAL_ECHOPGM("Compiled: ");
  893. SERIAL_ECHOLNPGM(__DATE__);
  894. #endif
  895. #endif
  896. SERIAL_ECHO_START;
  897. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  898. SERIAL_ECHO(freeMemory());
  899. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  900. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  901. //lcd_update_enable(false); // why do we need this?? - andre
  902. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  903. bool previous_settings_retrieved = false;
  904. uint8_t hw_changed = check_printer_version();
  905. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  906. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  907. }
  908. else { //printer version was changed so use default settings
  909. Config_ResetDefault();
  910. }
  911. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  912. tp_init(); // Initialize temperature loop
  913. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  914. plan_init(); // Initialize planner;
  915. factory_reset();
  916. #ifdef TMC2130
  917. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  918. if (silentMode == 0xff) silentMode = 0;
  919. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  920. tmc2130_mode = TMC2130_MODE_NORMAL;
  921. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  922. if (crashdet && !farm_mode)
  923. {
  924. crashdet_enable();
  925. MYSERIAL.println("CrashDetect ENABLED!");
  926. }
  927. else
  928. {
  929. crashdet_disable();
  930. MYSERIAL.println("CrashDetect DISABLED");
  931. }
  932. #ifdef TMC2130_LINEARITY_CORRECTION
  933. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  934. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  935. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  936. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  937. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  938. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  939. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  940. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  941. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  942. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  943. #endif //TMC2130_LINEARITY_CORRECTION
  944. #ifdef TMC2130_VARIABLE_RESOLUTION
  945. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  946. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  947. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  948. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  949. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  950. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  951. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  952. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  953. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  954. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  955. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  956. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  957. #else //TMC2130_VARIABLE_RESOLUTION
  958. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  959. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  960. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  961. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  962. #endif //TMC2130_VARIABLE_RESOLUTION
  963. #endif //TMC2130
  964. #ifdef NEW_SPI
  965. spi_init();
  966. #endif //NEW_SPI
  967. st_init(); // Initialize stepper, this enables interrupts!
  968. #ifdef TMC2130
  969. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  970. tmc2130_init();
  971. #endif //TMC2130
  972. setup_photpin();
  973. servo_init();
  974. // Reset the machine correction matrix.
  975. // It does not make sense to load the correction matrix until the machine is homed.
  976. world2machine_reset();
  977. #ifdef PAT9125
  978. fsensor_init();
  979. #endif //PAT9125
  980. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  981. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  982. #endif
  983. setup_homepin();
  984. #ifdef TMC2130
  985. if (1) {
  986. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  987. // try to run to zero phase before powering the Z motor.
  988. // Move in negative direction
  989. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  990. // Round the current micro-micro steps to micro steps.
  991. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  992. // Until the phase counter is reset to zero.
  993. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  994. delay(2);
  995. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  996. delay(2);
  997. }
  998. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  999. }
  1000. #endif //TMC2130
  1001. #if defined(Z_AXIS_ALWAYS_ON)
  1002. enable_z();
  1003. #endif
  1004. //*** MaR::180501_02
  1005. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1006. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1007. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1008. if (farm_no == 0xFFFF) farm_no = 0;
  1009. if (farm_mode)
  1010. {
  1011. prusa_statistics(8);
  1012. }
  1013. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1014. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1015. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1016. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1017. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1018. // where all the EEPROM entries are set to 0x0ff.
  1019. // Once a firmware boots up, it forces at least a language selection, which changes
  1020. // EEPROM_LANG to number lower than 0x0ff.
  1021. // 1) Set a high power mode.
  1022. #ifdef TMC2130
  1023. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1024. tmc2130_mode = TMC2130_MODE_NORMAL;
  1025. #endif //TMC2130
  1026. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1027. }
  1028. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1029. // but this times out if a blocking dialog is shown in setup().
  1030. card.initsd();
  1031. #ifdef DEBUG_SD_SPEED_TEST
  1032. if (card.cardOK)
  1033. {
  1034. uint8_t* buff = (uint8_t*)block_buffer;
  1035. uint32_t block = 0;
  1036. uint32_t sumr = 0;
  1037. uint32_t sumw = 0;
  1038. for (int i = 0; i < 1024; i++)
  1039. {
  1040. uint32_t u = micros();
  1041. bool res = card.card.readBlock(i, buff);
  1042. u = micros() - u;
  1043. if (res)
  1044. {
  1045. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1046. sumr += u;
  1047. u = micros();
  1048. res = card.card.writeBlock(i, buff);
  1049. u = micros() - u;
  1050. if (res)
  1051. {
  1052. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1053. sumw += u;
  1054. }
  1055. else
  1056. {
  1057. printf_P(PSTR("writeBlock %4d error\n"), i);
  1058. break;
  1059. }
  1060. }
  1061. else
  1062. {
  1063. printf_P(PSTR("readBlock %4d error\n"), i);
  1064. break;
  1065. }
  1066. }
  1067. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1068. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1069. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1070. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1071. }
  1072. else
  1073. printf_P(PSTR("Card NG!\n"));
  1074. #endif DEBUG_SD_SPEED_TEST
  1075. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1076. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1077. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1078. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1079. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1080. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1081. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1082. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1083. #ifdef SNMM
  1084. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1085. int _z = BOWDEN_LENGTH;
  1086. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1087. }
  1088. #endif
  1089. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1090. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1091. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1092. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1093. if (lang_selected >= LANG_NUM)
  1094. {
  1095. lcd_mylang();
  1096. }
  1097. lang_select(lang_selected);
  1098. puts_P(_n("\nNew ML support"));
  1099. printf_P(_n(" lang_selected = %d\n"), lang_selected);
  1100. printf_P(_n(" &_SEC_LANG = 0x%04x\n"), &_SEC_LANG);
  1101. printf_P(_n(" sizeof(_SEC_LANG) = 0x%04x\n"), sizeof(_SEC_LANG));
  1102. uint16_t ptr_lang_table0 = ((uint16_t)(&_SEC_LANG) + 0xff) & 0xff00;
  1103. printf_P(_n(" &_lang_table0 = 0x%04x\n"), ptr_lang_table0);
  1104. uint32_t _lt_magic = pgm_read_dword(((uint32_t*)(ptr_lang_table0 + 0)));
  1105. uint16_t _lt_size = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 4)));
  1106. uint16_t _lt_count = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 6)));
  1107. uint16_t _lt_chsum = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 8)));
  1108. uint16_t _lt_resv0 = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 10)));
  1109. uint32_t _lt_resv1 = pgm_read_dword(((uint32_t*)(ptr_lang_table0 + 12)));
  1110. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), _lt_magic, (_lt_magic==0x4bb45aa5)?_n("OK"):_n("NA"));
  1111. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), _lt_size, _lt_size);
  1112. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), _lt_count, _lt_count);
  1113. printf_P(_n(" _lt_chsum = 0x%04x\n"), _lt_chsum);
  1114. printf_P(_n(" _lt_resv0 = 0x%04x\n"), _lt_resv0);
  1115. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), _lt_resv1);
  1116. puts_P(_n("\n"));
  1117. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1118. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1119. temp_cal_active = false;
  1120. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1121. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1122. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1123. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1124. int16_t z_shift = 0;
  1125. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1126. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1127. temp_cal_active = false;
  1128. }
  1129. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1130. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1131. }
  1132. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1133. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1134. }
  1135. check_babystep(); //checking if Z babystep is in allowed range
  1136. #ifdef UVLO_SUPPORT
  1137. setup_uvlo_interrupt();
  1138. #endif //UVLO_SUPPORT
  1139. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1140. setup_fan_interrupt();
  1141. #endif //DEBUG_DISABLE_FANCHECK
  1142. #ifdef PAT9125
  1143. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1144. fsensor_setup_interrupt();
  1145. #endif //DEBUG_DISABLE_FSENSORCHECK
  1146. #endif //PAT9125
  1147. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1148. #ifndef DEBUG_DISABLE_STARTMSGS
  1149. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1150. show_fw_version_warnings();
  1151. switch (hw_changed) {
  1152. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1153. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1154. case(0b01):
  1155. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1156. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1157. break;
  1158. case(0b10):
  1159. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1160. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1161. break;
  1162. case(0b11):
  1163. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1164. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1165. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1166. break;
  1167. default: break; //no change, show no message
  1168. }
  1169. if (!previous_settings_retrieved) {
  1170. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1171. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1172. }
  1173. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1174. lcd_wizard(0);
  1175. }
  1176. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1177. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1178. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1179. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1180. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1181. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1182. // Show the message.
  1183. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1184. }
  1185. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1186. // Show the message.
  1187. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1188. lcd_update_enable(true);
  1189. }
  1190. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1191. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1192. lcd_update_enable(true);
  1193. }
  1194. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1195. // Show the message.
  1196. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1197. }
  1198. }
  1199. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1200. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1201. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1202. update_current_firmware_version_to_eeprom();
  1203. lcd_selftest();
  1204. }
  1205. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1206. KEEPALIVE_STATE(IN_PROCESS);
  1207. #endif //DEBUG_DISABLE_STARTMSGS
  1208. lcd_update_enable(true);
  1209. lcd_implementation_clear();
  1210. lcd_update(2);
  1211. // Store the currently running firmware into an eeprom,
  1212. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1213. update_current_firmware_version_to_eeprom();
  1214. #ifdef TMC2130
  1215. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1216. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1217. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1218. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1219. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1220. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1221. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1222. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1223. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1224. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1225. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1226. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1227. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1228. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1229. #endif //TMC2130
  1230. #ifdef UVLO_SUPPORT
  1231. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1232. /*
  1233. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1234. else {
  1235. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1236. lcd_update_enable(true);
  1237. lcd_update(2);
  1238. lcd_setstatuspgm(_T(WELCOME_MSG));
  1239. }
  1240. */
  1241. manage_heater(); // Update temperatures
  1242. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1243. MYSERIAL.println("Power panic detected!");
  1244. MYSERIAL.print("Current bed temp:");
  1245. MYSERIAL.println(degBed());
  1246. MYSERIAL.print("Saved bed temp:");
  1247. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1248. #endif
  1249. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1250. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1251. MYSERIAL.println("Automatic recovery!");
  1252. #endif
  1253. recover_print(1);
  1254. }
  1255. else{
  1256. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1257. MYSERIAL.println("Normal recovery!");
  1258. #endif
  1259. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1260. else {
  1261. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1262. lcd_update_enable(true);
  1263. lcd_update(2);
  1264. lcd_setstatuspgm(_T(WELCOME_MSG));
  1265. }
  1266. }
  1267. }
  1268. #endif //UVLO_SUPPORT
  1269. KEEPALIVE_STATE(NOT_BUSY);
  1270. #ifdef WATCHDOG
  1271. wdt_enable(WDTO_4S);
  1272. #endif //WATCHDOG
  1273. }
  1274. #ifdef PAT9125
  1275. void fsensor_init() {
  1276. int pat9125 = pat9125_init();
  1277. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1278. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1279. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1280. if (!pat9125)
  1281. {
  1282. fsensor = 0; //disable sensor
  1283. fsensor_not_responding = true;
  1284. }
  1285. else {
  1286. fsensor_not_responding = false;
  1287. }
  1288. puts_P(PSTR("FSensor "));
  1289. if (fsensor)
  1290. {
  1291. puts_P(PSTR("ENABLED\n"));
  1292. fsensor_enable();
  1293. }
  1294. else
  1295. {
  1296. puts_P(PSTR("DISABLED\n"));
  1297. fsensor_disable();
  1298. }
  1299. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1300. filament_autoload_enabled = false;
  1301. fsensor_disable();
  1302. #endif //DEBUG_DISABLE_FSENSORCHECK
  1303. }
  1304. #endif //PAT9125
  1305. void trace();
  1306. #define CHUNK_SIZE 64 // bytes
  1307. #define SAFETY_MARGIN 1
  1308. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1309. int chunkHead = 0;
  1310. int serial_read_stream() {
  1311. setTargetHotend(0, 0);
  1312. setTargetBed(0);
  1313. lcd_implementation_clear();
  1314. lcd_printPGM(PSTR(" Upload in progress"));
  1315. // first wait for how many bytes we will receive
  1316. uint32_t bytesToReceive;
  1317. // receive the four bytes
  1318. char bytesToReceiveBuffer[4];
  1319. for (int i=0; i<4; i++) {
  1320. int data;
  1321. while ((data = MYSERIAL.read()) == -1) {};
  1322. bytesToReceiveBuffer[i] = data;
  1323. }
  1324. // make it a uint32
  1325. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1326. // we're ready, notify the sender
  1327. MYSERIAL.write('+');
  1328. // lock in the routine
  1329. uint32_t receivedBytes = 0;
  1330. while (prusa_sd_card_upload) {
  1331. int i;
  1332. for (i=0; i<CHUNK_SIZE; i++) {
  1333. int data;
  1334. // check if we're not done
  1335. if (receivedBytes == bytesToReceive) {
  1336. break;
  1337. }
  1338. // read the next byte
  1339. while ((data = MYSERIAL.read()) == -1) {};
  1340. receivedBytes++;
  1341. // save it to the chunk
  1342. chunk[i] = data;
  1343. }
  1344. // write the chunk to SD
  1345. card.write_command_no_newline(&chunk[0]);
  1346. // notify the sender we're ready for more data
  1347. MYSERIAL.write('+');
  1348. // for safety
  1349. manage_heater();
  1350. // check if we're done
  1351. if(receivedBytes == bytesToReceive) {
  1352. trace(); // beep
  1353. card.closefile();
  1354. prusa_sd_card_upload = false;
  1355. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1356. return 0;
  1357. }
  1358. }
  1359. }
  1360. #ifdef HOST_KEEPALIVE_FEATURE
  1361. /**
  1362. * Output a "busy" message at regular intervals
  1363. * while the machine is not accepting commands.
  1364. */
  1365. void host_keepalive() {
  1366. if (farm_mode) return;
  1367. long ms = millis();
  1368. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1369. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1370. switch (busy_state) {
  1371. case IN_HANDLER:
  1372. case IN_PROCESS:
  1373. SERIAL_ECHO_START;
  1374. SERIAL_ECHOLNPGM("busy: processing");
  1375. break;
  1376. case PAUSED_FOR_USER:
  1377. SERIAL_ECHO_START;
  1378. SERIAL_ECHOLNPGM("busy: paused for user");
  1379. break;
  1380. case PAUSED_FOR_INPUT:
  1381. SERIAL_ECHO_START;
  1382. SERIAL_ECHOLNPGM("busy: paused for input");
  1383. break;
  1384. default:
  1385. break;
  1386. }
  1387. }
  1388. prev_busy_signal_ms = ms;
  1389. }
  1390. #endif
  1391. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1392. // Before loop(), the setup() function is called by the main() routine.
  1393. void loop()
  1394. {
  1395. KEEPALIVE_STATE(NOT_BUSY);
  1396. bool stack_integrity = true;
  1397. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1398. {
  1399. is_usb_printing = true;
  1400. usb_printing_counter--;
  1401. _usb_timer = millis();
  1402. }
  1403. if (usb_printing_counter == 0)
  1404. {
  1405. is_usb_printing = false;
  1406. }
  1407. if (prusa_sd_card_upload)
  1408. {
  1409. //we read byte-by byte
  1410. serial_read_stream();
  1411. } else
  1412. {
  1413. get_command();
  1414. #ifdef SDSUPPORT
  1415. card.checkautostart(false);
  1416. #endif
  1417. if(buflen)
  1418. {
  1419. cmdbuffer_front_already_processed = false;
  1420. #ifdef SDSUPPORT
  1421. if(card.saving)
  1422. {
  1423. // Saving a G-code file onto an SD-card is in progress.
  1424. // Saving starts with M28, saving until M29 is seen.
  1425. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1426. card.write_command(CMDBUFFER_CURRENT_STRING);
  1427. if(card.logging)
  1428. process_commands();
  1429. else
  1430. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1431. } else {
  1432. card.closefile();
  1433. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1434. }
  1435. } else {
  1436. process_commands();
  1437. }
  1438. #else
  1439. process_commands();
  1440. #endif //SDSUPPORT
  1441. if (! cmdbuffer_front_already_processed && buflen)
  1442. {
  1443. // ptr points to the start of the block currently being processed.
  1444. // The first character in the block is the block type.
  1445. char *ptr = cmdbuffer + bufindr;
  1446. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1447. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1448. union {
  1449. struct {
  1450. char lo;
  1451. char hi;
  1452. } lohi;
  1453. uint16_t value;
  1454. } sdlen;
  1455. sdlen.value = 0;
  1456. {
  1457. // This block locks the interrupts globally for 3.25 us,
  1458. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1459. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1460. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1461. cli();
  1462. // Reset the command to something, which will be ignored by the power panic routine,
  1463. // so this buffer length will not be counted twice.
  1464. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1465. // Extract the current buffer length.
  1466. sdlen.lohi.lo = *ptr ++;
  1467. sdlen.lohi.hi = *ptr;
  1468. // and pass it to the planner queue.
  1469. planner_add_sd_length(sdlen.value);
  1470. sei();
  1471. }
  1472. }
  1473. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1474. // this block's SD card length will not be counted twice as its command type has been replaced
  1475. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1476. cmdqueue_pop_front();
  1477. }
  1478. host_keepalive();
  1479. }
  1480. }
  1481. //check heater every n milliseconds
  1482. manage_heater();
  1483. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1484. checkHitEndstops();
  1485. lcd_update();
  1486. #ifdef PAT9125
  1487. fsensor_update();
  1488. #endif //PAT9125
  1489. #ifdef TMC2130
  1490. tmc2130_check_overtemp();
  1491. if (tmc2130_sg_crash)
  1492. {
  1493. uint8_t crash = tmc2130_sg_crash;
  1494. tmc2130_sg_crash = 0;
  1495. // crashdet_stop_and_save_print();
  1496. switch (crash)
  1497. {
  1498. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1499. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1500. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1501. }
  1502. }
  1503. #endif //TMC2130
  1504. }
  1505. #define DEFINE_PGM_READ_ANY(type, reader) \
  1506. static inline type pgm_read_any(const type *p) \
  1507. { return pgm_read_##reader##_near(p); }
  1508. DEFINE_PGM_READ_ANY(float, float);
  1509. DEFINE_PGM_READ_ANY(signed char, byte);
  1510. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1511. static const PROGMEM type array##_P[3] = \
  1512. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1513. static inline type array(int axis) \
  1514. { return pgm_read_any(&array##_P[axis]); } \
  1515. type array##_ext(int axis) \
  1516. { return pgm_read_any(&array##_P[axis]); }
  1517. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1518. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1519. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1520. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1521. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1522. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1523. static void axis_is_at_home(int axis) {
  1524. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1525. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1526. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1527. }
  1528. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1529. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1530. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1531. saved_feedrate = feedrate;
  1532. saved_feedmultiply = feedmultiply;
  1533. feedmultiply = 100;
  1534. previous_millis_cmd = millis();
  1535. enable_endstops(enable_endstops_now);
  1536. }
  1537. static void clean_up_after_endstop_move() {
  1538. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1539. enable_endstops(false);
  1540. #endif
  1541. feedrate = saved_feedrate;
  1542. feedmultiply = saved_feedmultiply;
  1543. previous_millis_cmd = millis();
  1544. }
  1545. #ifdef ENABLE_AUTO_BED_LEVELING
  1546. #ifdef AUTO_BED_LEVELING_GRID
  1547. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1548. {
  1549. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1550. planeNormal.debug("planeNormal");
  1551. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1552. //bedLevel.debug("bedLevel");
  1553. //plan_bed_level_matrix.debug("bed level before");
  1554. //vector_3 uncorrected_position = plan_get_position_mm();
  1555. //uncorrected_position.debug("position before");
  1556. vector_3 corrected_position = plan_get_position();
  1557. // corrected_position.debug("position after");
  1558. current_position[X_AXIS] = corrected_position.x;
  1559. current_position[Y_AXIS] = corrected_position.y;
  1560. current_position[Z_AXIS] = corrected_position.z;
  1561. // put the bed at 0 so we don't go below it.
  1562. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1563. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1564. }
  1565. #else // not AUTO_BED_LEVELING_GRID
  1566. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1567. plan_bed_level_matrix.set_to_identity();
  1568. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1569. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1570. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1571. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1572. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1573. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1574. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1575. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1576. vector_3 corrected_position = plan_get_position();
  1577. current_position[X_AXIS] = corrected_position.x;
  1578. current_position[Y_AXIS] = corrected_position.y;
  1579. current_position[Z_AXIS] = corrected_position.z;
  1580. // put the bed at 0 so we don't go below it.
  1581. current_position[Z_AXIS] = zprobe_zoffset;
  1582. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1583. }
  1584. #endif // AUTO_BED_LEVELING_GRID
  1585. static void run_z_probe() {
  1586. plan_bed_level_matrix.set_to_identity();
  1587. feedrate = homing_feedrate[Z_AXIS];
  1588. // move down until you find the bed
  1589. float zPosition = -10;
  1590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1591. st_synchronize();
  1592. // we have to let the planner know where we are right now as it is not where we said to go.
  1593. zPosition = st_get_position_mm(Z_AXIS);
  1594. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1595. // move up the retract distance
  1596. zPosition += home_retract_mm(Z_AXIS);
  1597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1598. st_synchronize();
  1599. // move back down slowly to find bed
  1600. feedrate = homing_feedrate[Z_AXIS]/4;
  1601. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1603. st_synchronize();
  1604. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1605. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1606. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1607. }
  1608. static void do_blocking_move_to(float x, float y, float z) {
  1609. float oldFeedRate = feedrate;
  1610. feedrate = homing_feedrate[Z_AXIS];
  1611. current_position[Z_AXIS] = z;
  1612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1613. st_synchronize();
  1614. feedrate = XY_TRAVEL_SPEED;
  1615. current_position[X_AXIS] = x;
  1616. current_position[Y_AXIS] = y;
  1617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1618. st_synchronize();
  1619. feedrate = oldFeedRate;
  1620. }
  1621. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1622. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1623. }
  1624. /// Probe bed height at position (x,y), returns the measured z value
  1625. static float probe_pt(float x, float y, float z_before) {
  1626. // move to right place
  1627. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1628. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1629. run_z_probe();
  1630. float measured_z = current_position[Z_AXIS];
  1631. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1632. SERIAL_PROTOCOLPGM(" x: ");
  1633. SERIAL_PROTOCOL(x);
  1634. SERIAL_PROTOCOLPGM(" y: ");
  1635. SERIAL_PROTOCOL(y);
  1636. SERIAL_PROTOCOLPGM(" z: ");
  1637. SERIAL_PROTOCOL(measured_z);
  1638. SERIAL_PROTOCOLPGM("\n");
  1639. return measured_z;
  1640. }
  1641. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1642. #ifdef LIN_ADVANCE
  1643. /**
  1644. * M900: Set and/or Get advance K factor and WH/D ratio
  1645. *
  1646. * K<factor> Set advance K factor
  1647. * R<ratio> Set ratio directly (overrides WH/D)
  1648. * W<width> H<height> D<diam> Set ratio from WH/D
  1649. */
  1650. inline void gcode_M900() {
  1651. st_synchronize();
  1652. const float newK = code_seen('K') ? code_value_float() : -1;
  1653. if (newK >= 0) extruder_advance_k = newK;
  1654. float newR = code_seen('R') ? code_value_float() : -1;
  1655. if (newR < 0) {
  1656. const float newD = code_seen('D') ? code_value_float() : -1,
  1657. newW = code_seen('W') ? code_value_float() : -1,
  1658. newH = code_seen('H') ? code_value_float() : -1;
  1659. if (newD >= 0 && newW >= 0 && newH >= 0)
  1660. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1661. }
  1662. if (newR >= 0) advance_ed_ratio = newR;
  1663. SERIAL_ECHO_START;
  1664. SERIAL_ECHOPGM("Advance K=");
  1665. SERIAL_ECHOLN(extruder_advance_k);
  1666. SERIAL_ECHOPGM(" E/D=");
  1667. const float ratio = advance_ed_ratio;
  1668. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1669. }
  1670. #endif // LIN_ADVANCE
  1671. bool check_commands() {
  1672. bool end_command_found = false;
  1673. while (buflen)
  1674. {
  1675. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1676. if (!cmdbuffer_front_already_processed)
  1677. cmdqueue_pop_front();
  1678. cmdbuffer_front_already_processed = false;
  1679. }
  1680. return end_command_found;
  1681. }
  1682. #ifdef TMC2130
  1683. bool calibrate_z_auto()
  1684. {
  1685. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1686. lcd_implementation_clear();
  1687. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1688. bool endstops_enabled = enable_endstops(true);
  1689. int axis_up_dir = -home_dir(Z_AXIS);
  1690. tmc2130_home_enter(Z_AXIS_MASK);
  1691. current_position[Z_AXIS] = 0;
  1692. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1693. set_destination_to_current();
  1694. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1695. feedrate = homing_feedrate[Z_AXIS];
  1696. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. // current_position[axis] = 0;
  1699. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1700. tmc2130_home_exit();
  1701. enable_endstops(false);
  1702. current_position[Z_AXIS] = 0;
  1703. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1704. set_destination_to_current();
  1705. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1706. feedrate = homing_feedrate[Z_AXIS] / 2;
  1707. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1708. st_synchronize();
  1709. enable_endstops(endstops_enabled);
  1710. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1711. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1712. return true;
  1713. }
  1714. #endif //TMC2130
  1715. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1716. {
  1717. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1718. #define HOMEAXIS_DO(LETTER) \
  1719. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1720. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1721. {
  1722. int axis_home_dir = home_dir(axis);
  1723. feedrate = homing_feedrate[axis];
  1724. #ifdef TMC2130
  1725. tmc2130_home_enter(X_AXIS_MASK << axis);
  1726. #endif //TMC2130
  1727. // Move right a bit, so that the print head does not touch the left end position,
  1728. // and the following left movement has a chance to achieve the required velocity
  1729. // for the stall guard to work.
  1730. current_position[axis] = 0;
  1731. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1732. set_destination_to_current();
  1733. // destination[axis] = 11.f;
  1734. destination[axis] = 3.f;
  1735. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1736. st_synchronize();
  1737. // Move left away from the possible collision with the collision detection disabled.
  1738. endstops_hit_on_purpose();
  1739. enable_endstops(false);
  1740. current_position[axis] = 0;
  1741. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1742. destination[axis] = - 1.;
  1743. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1744. st_synchronize();
  1745. // Now continue to move up to the left end stop with the collision detection enabled.
  1746. enable_endstops(true);
  1747. destination[axis] = - 1.1 * max_length(axis);
  1748. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1749. st_synchronize();
  1750. for (uint8_t i = 0; i < cnt; i++)
  1751. {
  1752. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1753. endstops_hit_on_purpose();
  1754. enable_endstops(false);
  1755. current_position[axis] = 0;
  1756. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1757. destination[axis] = 10.f;
  1758. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1759. st_synchronize();
  1760. endstops_hit_on_purpose();
  1761. // Now move left up to the collision, this time with a repeatable velocity.
  1762. enable_endstops(true);
  1763. destination[axis] = - 11.f;
  1764. #ifdef TMC2130
  1765. feedrate = homing_feedrate[axis];
  1766. #else //TMC2130
  1767. feedrate = homing_feedrate[axis] / 2;
  1768. #endif //TMC2130
  1769. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1770. st_synchronize();
  1771. #ifdef TMC2130
  1772. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1773. if (pstep) pstep[i] = mscnt >> 4;
  1774. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1775. #endif //TMC2130
  1776. }
  1777. endstops_hit_on_purpose();
  1778. enable_endstops(false);
  1779. #ifdef TMC2130
  1780. uint8_t orig = tmc2130_home_origin[axis];
  1781. uint8_t back = tmc2130_home_bsteps[axis];
  1782. if (tmc2130_home_enabled && (orig <= 63))
  1783. {
  1784. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1785. if (back > 0)
  1786. tmc2130_do_steps(axis, back, 1, 1000);
  1787. }
  1788. else
  1789. tmc2130_do_steps(axis, 8, 2, 1000);
  1790. tmc2130_home_exit();
  1791. #endif //TMC2130
  1792. axis_is_at_home(axis);
  1793. axis_known_position[axis] = true;
  1794. // Move from minimum
  1795. #ifdef TMC2130
  1796. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1797. #else //TMC2130
  1798. float dist = 0.01f * 64;
  1799. #endif //TMC2130
  1800. current_position[axis] -= dist;
  1801. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1802. current_position[axis] += dist;
  1803. destination[axis] = current_position[axis];
  1804. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1805. st_synchronize();
  1806. feedrate = 0.0;
  1807. }
  1808. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1809. {
  1810. int axis_home_dir = home_dir(axis);
  1811. current_position[axis] = 0;
  1812. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1813. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1814. feedrate = homing_feedrate[axis];
  1815. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1816. st_synchronize();
  1817. #ifdef TMC2130
  1818. if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) return; //Z crash
  1819. #endif //TMC2130
  1820. current_position[axis] = 0;
  1821. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1822. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1823. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1824. st_synchronize();
  1825. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1826. feedrate = homing_feedrate[axis]/2 ;
  1827. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1828. st_synchronize();
  1829. #ifdef TMC2130
  1830. if ((tmc2130_mode == TMC2130_MODE_NORMAL) && (READ(Z_TMC2130_DIAG) != 0)) return; //Z crash
  1831. #endif //TMC2130
  1832. axis_is_at_home(axis);
  1833. destination[axis] = current_position[axis];
  1834. feedrate = 0.0;
  1835. endstops_hit_on_purpose();
  1836. axis_known_position[axis] = true;
  1837. }
  1838. enable_endstops(endstops_enabled);
  1839. }
  1840. /**/
  1841. void home_xy()
  1842. {
  1843. set_destination_to_current();
  1844. homeaxis(X_AXIS);
  1845. homeaxis(Y_AXIS);
  1846. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1847. endstops_hit_on_purpose();
  1848. }
  1849. void refresh_cmd_timeout(void)
  1850. {
  1851. previous_millis_cmd = millis();
  1852. }
  1853. #ifdef FWRETRACT
  1854. void retract(bool retracting, bool swapretract = false) {
  1855. if(retracting && !retracted[active_extruder]) {
  1856. destination[X_AXIS]=current_position[X_AXIS];
  1857. destination[Y_AXIS]=current_position[Y_AXIS];
  1858. destination[Z_AXIS]=current_position[Z_AXIS];
  1859. destination[E_AXIS]=current_position[E_AXIS];
  1860. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1861. plan_set_e_position(current_position[E_AXIS]);
  1862. float oldFeedrate = feedrate;
  1863. feedrate=retract_feedrate*60;
  1864. retracted[active_extruder]=true;
  1865. prepare_move();
  1866. current_position[Z_AXIS]-=retract_zlift;
  1867. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1868. prepare_move();
  1869. feedrate = oldFeedrate;
  1870. } else if(!retracting && retracted[active_extruder]) {
  1871. destination[X_AXIS]=current_position[X_AXIS];
  1872. destination[Y_AXIS]=current_position[Y_AXIS];
  1873. destination[Z_AXIS]=current_position[Z_AXIS];
  1874. destination[E_AXIS]=current_position[E_AXIS];
  1875. current_position[Z_AXIS]+=retract_zlift;
  1876. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1877. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1878. plan_set_e_position(current_position[E_AXIS]);
  1879. float oldFeedrate = feedrate;
  1880. feedrate=retract_recover_feedrate*60;
  1881. retracted[active_extruder]=false;
  1882. prepare_move();
  1883. feedrate = oldFeedrate;
  1884. }
  1885. } //retract
  1886. #endif //FWRETRACT
  1887. void trace() {
  1888. tone(BEEPER, 440);
  1889. delay(25);
  1890. noTone(BEEPER);
  1891. delay(20);
  1892. }
  1893. /*
  1894. void ramming() {
  1895. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1896. if (current_temperature[0] < 230) {
  1897. //PLA
  1898. max_feedrate[E_AXIS] = 50;
  1899. //current_position[E_AXIS] -= 8;
  1900. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1901. //current_position[E_AXIS] += 8;
  1902. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1903. current_position[E_AXIS] += 5.4;
  1904. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1905. current_position[E_AXIS] += 3.2;
  1906. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1907. current_position[E_AXIS] += 3;
  1908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1909. st_synchronize();
  1910. max_feedrate[E_AXIS] = 80;
  1911. current_position[E_AXIS] -= 82;
  1912. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1913. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1914. current_position[E_AXIS] -= 20;
  1915. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1916. current_position[E_AXIS] += 5;
  1917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1918. current_position[E_AXIS] += 5;
  1919. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1920. current_position[E_AXIS] -= 10;
  1921. st_synchronize();
  1922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1923. current_position[E_AXIS] += 10;
  1924. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1925. current_position[E_AXIS] -= 10;
  1926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1927. current_position[E_AXIS] += 10;
  1928. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1929. current_position[E_AXIS] -= 10;
  1930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1931. st_synchronize();
  1932. }
  1933. else {
  1934. //ABS
  1935. max_feedrate[E_AXIS] = 50;
  1936. //current_position[E_AXIS] -= 8;
  1937. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1938. //current_position[E_AXIS] += 8;
  1939. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1940. current_position[E_AXIS] += 3.1;
  1941. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1942. current_position[E_AXIS] += 3.1;
  1943. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1944. current_position[E_AXIS] += 4;
  1945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1946. st_synchronize();
  1947. //current_position[X_AXIS] += 23; //delay
  1948. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1949. //current_position[X_AXIS] -= 23; //delay
  1950. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1951. delay(4700);
  1952. max_feedrate[E_AXIS] = 80;
  1953. current_position[E_AXIS] -= 92;
  1954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1955. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1956. current_position[E_AXIS] -= 5;
  1957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1958. current_position[E_AXIS] += 5;
  1959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1960. current_position[E_AXIS] -= 5;
  1961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1962. st_synchronize();
  1963. current_position[E_AXIS] += 5;
  1964. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1965. current_position[E_AXIS] -= 5;
  1966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1967. current_position[E_AXIS] += 5;
  1968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1969. current_position[E_AXIS] -= 5;
  1970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1971. st_synchronize();
  1972. }
  1973. }
  1974. */
  1975. #ifdef TMC2130
  1976. void force_high_power_mode(bool start_high_power_section) {
  1977. uint8_t silent;
  1978. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1979. if (silent == 1) {
  1980. //we are in silent mode, set to normal mode to enable crash detection
  1981. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1982. st_synchronize();
  1983. cli();
  1984. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1985. tmc2130_init();
  1986. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1987. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1988. st_reset_timer();
  1989. sei();
  1990. }
  1991. }
  1992. #endif //TMC2130
  1993. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  1994. {
  1995. bool final_result = false;
  1996. #ifdef TMC2130
  1997. FORCE_HIGH_POWER_START;
  1998. #endif // TMC2130
  1999. // Only Z calibration?
  2000. if (!onlyZ)
  2001. {
  2002. setTargetBed(0);
  2003. setTargetHotend(0, 0);
  2004. setTargetHotend(0, 1);
  2005. setTargetHotend(0, 2);
  2006. adjust_bed_reset(); //reset bed level correction
  2007. }
  2008. // Disable the default update procedure of the display. We will do a modal dialog.
  2009. lcd_update_enable(false);
  2010. // Let the planner use the uncorrected coordinates.
  2011. mbl.reset();
  2012. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2013. // the planner will not perform any adjustments in the XY plane.
  2014. // Wait for the motors to stop and update the current position with the absolute values.
  2015. world2machine_revert_to_uncorrected();
  2016. // Reset the baby step value applied without moving the axes.
  2017. babystep_reset();
  2018. // Mark all axes as in a need for homing.
  2019. memset(axis_known_position, 0, sizeof(axis_known_position));
  2020. // Home in the XY plane.
  2021. //set_destination_to_current();
  2022. setup_for_endstop_move();
  2023. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2024. home_xy();
  2025. enable_endstops(false);
  2026. current_position[X_AXIS] += 5;
  2027. current_position[Y_AXIS] += 5;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2029. st_synchronize();
  2030. // Let the user move the Z axes up to the end stoppers.
  2031. #ifdef TMC2130
  2032. if (calibrate_z_auto())
  2033. {
  2034. #else //TMC2130
  2035. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2036. {
  2037. #endif //TMC2130
  2038. refresh_cmd_timeout();
  2039. #ifndef STEEL_SHEET
  2040. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2041. {
  2042. lcd_wait_for_cool_down();
  2043. }
  2044. #endif //STEEL_SHEET
  2045. if(!onlyZ)
  2046. {
  2047. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2048. #ifdef STEEL_SHEET
  2049. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2050. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2051. #endif //STEEL_SHEET
  2052. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2053. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2054. KEEPALIVE_STATE(IN_HANDLER);
  2055. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2056. lcd_implementation_print_at(0, 2, 1);
  2057. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2058. }
  2059. // Move the print head close to the bed.
  2060. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2061. bool endstops_enabled = enable_endstops(true);
  2062. #ifdef TMC2130
  2063. tmc2130_home_enter(Z_AXIS_MASK);
  2064. #endif //TMC2130
  2065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2066. st_synchronize();
  2067. #ifdef TMC2130
  2068. tmc2130_home_exit();
  2069. #endif //TMC2130
  2070. enable_endstops(endstops_enabled);
  2071. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2072. {
  2073. int8_t verbosity_level = 0;
  2074. if (code_seen('V'))
  2075. {
  2076. // Just 'V' without a number counts as V1.
  2077. char c = strchr_pointer[1];
  2078. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2079. }
  2080. if (onlyZ)
  2081. {
  2082. clean_up_after_endstop_move();
  2083. // Z only calibration.
  2084. // Load the machine correction matrix
  2085. world2machine_initialize();
  2086. // and correct the current_position to match the transformed coordinate system.
  2087. world2machine_update_current();
  2088. //FIXME
  2089. bool result = sample_mesh_and_store_reference();
  2090. if (result)
  2091. {
  2092. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2093. // Shipped, the nozzle height has been set already. The user can start printing now.
  2094. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2095. final_result = true;
  2096. // babystep_apply();
  2097. }
  2098. }
  2099. else
  2100. {
  2101. // Reset the baby step value and the baby step applied flag.
  2102. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2103. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2104. // Complete XYZ calibration.
  2105. uint8_t point_too_far_mask = 0;
  2106. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2107. clean_up_after_endstop_move();
  2108. // Print head up.
  2109. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2111. st_synchronize();
  2112. //#ifndef NEW_XYZCAL
  2113. if (result >= 0)
  2114. {
  2115. #ifdef HEATBED_V2
  2116. sample_z();
  2117. #else //HEATBED_V2
  2118. point_too_far_mask = 0;
  2119. // Second half: The fine adjustment.
  2120. // Let the planner use the uncorrected coordinates.
  2121. mbl.reset();
  2122. world2machine_reset();
  2123. // Home in the XY plane.
  2124. setup_for_endstop_move();
  2125. home_xy();
  2126. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2127. clean_up_after_endstop_move();
  2128. // Print head up.
  2129. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2131. st_synchronize();
  2132. // if (result >= 0) babystep_apply();
  2133. #endif //HEATBED_V2
  2134. }
  2135. //#endif //NEW_XYZCAL
  2136. lcd_update_enable(true);
  2137. lcd_update(2);
  2138. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2139. if (result >= 0)
  2140. {
  2141. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2142. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2143. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2144. final_result = true;
  2145. }
  2146. }
  2147. #ifdef TMC2130
  2148. tmc2130_home_exit();
  2149. #endif
  2150. }
  2151. else
  2152. {
  2153. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2154. final_result = false;
  2155. }
  2156. }
  2157. else
  2158. {
  2159. // Timeouted.
  2160. }
  2161. lcd_update_enable(true);
  2162. #ifdef TMC2130
  2163. FORCE_HIGH_POWER_END;
  2164. #endif // TMC2130
  2165. return final_result;
  2166. }
  2167. void gcode_M114()
  2168. {
  2169. SERIAL_PROTOCOLPGM("X:");
  2170. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2171. SERIAL_PROTOCOLPGM(" Y:");
  2172. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2173. SERIAL_PROTOCOLPGM(" Z:");
  2174. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2175. SERIAL_PROTOCOLPGM(" E:");
  2176. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2177. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2178. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2179. SERIAL_PROTOCOLPGM(" Y:");
  2180. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2181. SERIAL_PROTOCOLPGM(" Z:");
  2182. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2183. SERIAL_PROTOCOLPGM(" E:");
  2184. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2185. SERIAL_PROTOCOLLN("");
  2186. }
  2187. void gcode_M701()
  2188. {
  2189. #ifdef SNMM
  2190. extr_adj(snmm_extruder);//loads current extruder
  2191. #else
  2192. enable_z();
  2193. custom_message = true;
  2194. custom_message_type = 2;
  2195. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2196. current_position[E_AXIS] += 70;
  2197. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2198. current_position[E_AXIS] += 25;
  2199. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2200. st_synchronize();
  2201. tone(BEEPER, 500);
  2202. delay_keep_alive(50);
  2203. noTone(BEEPER);
  2204. if (!farm_mode && loading_flag) {
  2205. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2206. while (!clean) {
  2207. lcd_update_enable(true);
  2208. lcd_update(2);
  2209. current_position[E_AXIS] += 25;
  2210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2211. st_synchronize();
  2212. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2213. }
  2214. }
  2215. lcd_update_enable(true);
  2216. lcd_update(2);
  2217. lcd_setstatuspgm(_T(WELCOME_MSG));
  2218. disable_z();
  2219. loading_flag = false;
  2220. custom_message = false;
  2221. custom_message_type = 0;
  2222. #endif
  2223. }
  2224. /**
  2225. * @brief Get serial number from 32U2 processor
  2226. *
  2227. * Typical format of S/N is:CZPX0917X003XC13518
  2228. *
  2229. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2230. *
  2231. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2232. * reply is transmitted to serial port 1 character by character.
  2233. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2234. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2235. * in any case.
  2236. */
  2237. static void gcode_PRUSA_SN()
  2238. {
  2239. if (farm_mode) {
  2240. selectedSerialPort = 0;
  2241. MSerial.write(";S");
  2242. int numbersRead = 0;
  2243. Timer timeout;
  2244. timeout.start();
  2245. while (numbersRead < 19) {
  2246. while (MSerial.available() > 0) {
  2247. uint8_t serial_char = MSerial.read();
  2248. selectedSerialPort = 1;
  2249. MSerial.write(serial_char);
  2250. numbersRead++;
  2251. selectedSerialPort = 0;
  2252. }
  2253. if (timeout.expired(100)) break;
  2254. }
  2255. selectedSerialPort = 1;
  2256. MSerial.write('\n');
  2257. #if 0
  2258. for (int b = 0; b < 3; b++) {
  2259. tone(BEEPER, 110);
  2260. delay(50);
  2261. noTone(BEEPER);
  2262. delay(50);
  2263. }
  2264. #endif
  2265. } else {
  2266. MYSERIAL.println("Not in farm mode.");
  2267. }
  2268. }
  2269. void process_commands()
  2270. {
  2271. if (!buflen) return; //empty command
  2272. #ifdef FILAMENT_RUNOUT_SUPPORT
  2273. SET_INPUT(FR_SENS);
  2274. #endif
  2275. #ifdef CMDBUFFER_DEBUG
  2276. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2277. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2278. SERIAL_ECHOLNPGM("");
  2279. SERIAL_ECHOPGM("In cmdqueue: ");
  2280. SERIAL_ECHO(buflen);
  2281. SERIAL_ECHOLNPGM("");
  2282. #endif /* CMDBUFFER_DEBUG */
  2283. unsigned long codenum; //throw away variable
  2284. char *starpos = NULL;
  2285. #ifdef ENABLE_AUTO_BED_LEVELING
  2286. float x_tmp, y_tmp, z_tmp, real_z;
  2287. #endif
  2288. // PRUSA GCODES
  2289. KEEPALIVE_STATE(IN_HANDLER);
  2290. #ifdef SNMM
  2291. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2292. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2293. int8_t SilentMode;
  2294. #endif
  2295. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2296. starpos = (strchr(strchr_pointer + 5, '*'));
  2297. if (starpos != NULL)
  2298. *(starpos) = '\0';
  2299. lcd_setstatus(strchr_pointer + 5);
  2300. }
  2301. #ifdef TMC2130
  2302. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2303. {
  2304. if(code_seen("CRASH_DETECTED"))
  2305. {
  2306. uint8_t mask = 0;
  2307. if (code_seen("X")) mask |= X_AXIS_MASK;
  2308. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2309. crashdet_detected(mask);
  2310. }
  2311. else if(code_seen("CRASH_RECOVER"))
  2312. crashdet_recover();
  2313. else if(code_seen("CRASH_CANCEL"))
  2314. crashdet_cancel();
  2315. }
  2316. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2317. {
  2318. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2319. {
  2320. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2321. tmc2130_set_wave(E_AXIS, 247, fac);
  2322. }
  2323. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2324. {
  2325. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2326. uint16_t res = tmc2130_get_res(E_AXIS);
  2327. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2328. }
  2329. }
  2330. #endif //TMC2130
  2331. else if(code_seen("PRUSA")){
  2332. if (code_seen("Ping")) { //PRUSA Ping
  2333. if (farm_mode) {
  2334. PingTime = millis();
  2335. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2336. }
  2337. }
  2338. else if (code_seen("PRN")) {
  2339. MYSERIAL.println(status_number);
  2340. }else if (code_seen("FAN")) {
  2341. MYSERIAL.print("E0:");
  2342. MYSERIAL.print(60*fan_speed[0]);
  2343. MYSERIAL.println(" RPM");
  2344. MYSERIAL.print("PRN0:");
  2345. MYSERIAL.print(60*fan_speed[1]);
  2346. MYSERIAL.println(" RPM");
  2347. }else if (code_seen("fn")) {
  2348. if (farm_mode) {
  2349. MYSERIAL.println(farm_no);
  2350. }
  2351. else {
  2352. MYSERIAL.println("Not in farm mode.");
  2353. }
  2354. }
  2355. else if (code_seen("thx")) {
  2356. no_response = false;
  2357. }else if (code_seen("fv")) {
  2358. // get file version
  2359. #ifdef SDSUPPORT
  2360. card.openFile(strchr_pointer + 3,true);
  2361. while (true) {
  2362. uint16_t readByte = card.get();
  2363. MYSERIAL.write(readByte);
  2364. if (readByte=='\n') {
  2365. break;
  2366. }
  2367. }
  2368. card.closefile();
  2369. #endif // SDSUPPORT
  2370. } else if (code_seen("M28")) {
  2371. trace();
  2372. prusa_sd_card_upload = true;
  2373. card.openFile(strchr_pointer+4,false);
  2374. } else if (code_seen("SN")) {
  2375. gcode_PRUSA_SN();
  2376. } else if(code_seen("Fir")){
  2377. SERIAL_PROTOCOLLN(FW_VERSION);
  2378. } else if(code_seen("Rev")){
  2379. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2380. } else if(code_seen("Lang")) {
  2381. lcd_force_language_selection();
  2382. } else if(code_seen("Lz")) {
  2383. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2384. } else if (code_seen("SERIAL LOW")) {
  2385. MYSERIAL.println("SERIAL LOW");
  2386. MYSERIAL.begin(BAUDRATE);
  2387. return;
  2388. } else if (code_seen("SERIAL HIGH")) {
  2389. MYSERIAL.println("SERIAL HIGH");
  2390. MYSERIAL.begin(1152000);
  2391. return;
  2392. } else if(code_seen("Beat")) {
  2393. // Kick farm link timer
  2394. kicktime = millis();
  2395. } else if(code_seen("FR")) {
  2396. // Factory full reset
  2397. factory_reset(0,true);
  2398. }
  2399. //else if (code_seen('Cal')) {
  2400. // lcd_calibration();
  2401. // }
  2402. }
  2403. else if (code_seen('^')) {
  2404. // nothing, this is a version line
  2405. } else if(code_seen('G'))
  2406. {
  2407. switch((int)code_value())
  2408. {
  2409. case 0: // G0 -> G1
  2410. case 1: // G1
  2411. if(Stopped == false) {
  2412. #ifdef FILAMENT_RUNOUT_SUPPORT
  2413. if(READ(FR_SENS)){
  2414. feedmultiplyBckp=feedmultiply;
  2415. float target[4];
  2416. float lastpos[4];
  2417. target[X_AXIS]=current_position[X_AXIS];
  2418. target[Y_AXIS]=current_position[Y_AXIS];
  2419. target[Z_AXIS]=current_position[Z_AXIS];
  2420. target[E_AXIS]=current_position[E_AXIS];
  2421. lastpos[X_AXIS]=current_position[X_AXIS];
  2422. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2423. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2424. lastpos[E_AXIS]=current_position[E_AXIS];
  2425. //retract by E
  2426. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2427. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2428. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2429. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2430. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2431. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2432. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2433. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2434. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2435. //finish moves
  2436. st_synchronize();
  2437. //disable extruder steppers so filament can be removed
  2438. disable_e0();
  2439. disable_e1();
  2440. disable_e2();
  2441. delay(100);
  2442. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2443. uint8_t cnt=0;
  2444. int counterBeep = 0;
  2445. lcd_wait_interact();
  2446. while(!lcd_clicked()){
  2447. cnt++;
  2448. manage_heater();
  2449. manage_inactivity(true);
  2450. //lcd_update();
  2451. if(cnt==0)
  2452. {
  2453. #if BEEPER > 0
  2454. if (counterBeep== 500){
  2455. counterBeep = 0;
  2456. }
  2457. SET_OUTPUT(BEEPER);
  2458. if (counterBeep== 0){
  2459. WRITE(BEEPER,HIGH);
  2460. }
  2461. if (counterBeep== 20){
  2462. WRITE(BEEPER,LOW);
  2463. }
  2464. counterBeep++;
  2465. #else
  2466. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2467. lcd_buzz(1000/6,100);
  2468. #else
  2469. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2470. #endif
  2471. #endif
  2472. }
  2473. }
  2474. WRITE(BEEPER,LOW);
  2475. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2476. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2477. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2478. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2479. lcd_change_fil_state = 0;
  2480. lcd_loading_filament();
  2481. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2482. lcd_change_fil_state = 0;
  2483. lcd_alright();
  2484. switch(lcd_change_fil_state){
  2485. case 2:
  2486. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2487. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2488. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2489. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2490. lcd_loading_filament();
  2491. break;
  2492. case 3:
  2493. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2494. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2495. lcd_loading_color();
  2496. break;
  2497. default:
  2498. lcd_change_success();
  2499. break;
  2500. }
  2501. }
  2502. target[E_AXIS]+= 5;
  2503. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2504. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2505. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2506. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2507. //plan_set_e_position(current_position[E_AXIS]);
  2508. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2509. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2510. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2511. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2512. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2513. plan_set_e_position(lastpos[E_AXIS]);
  2514. feedmultiply=feedmultiplyBckp;
  2515. char cmd[9];
  2516. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2517. enquecommand(cmd);
  2518. }
  2519. #endif
  2520. get_coordinates(); // For X Y Z E F
  2521. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2522. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2523. }
  2524. #ifdef FWRETRACT
  2525. if(autoretract_enabled)
  2526. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2527. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2528. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2529. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2530. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2531. retract(!retracted);
  2532. return;
  2533. }
  2534. }
  2535. #endif //FWRETRACT
  2536. prepare_move();
  2537. //ClearToSend();
  2538. }
  2539. break;
  2540. case 2: // G2 - CW ARC
  2541. if(Stopped == false) {
  2542. get_arc_coordinates();
  2543. prepare_arc_move(true);
  2544. }
  2545. break;
  2546. case 3: // G3 - CCW ARC
  2547. if(Stopped == false) {
  2548. get_arc_coordinates();
  2549. prepare_arc_move(false);
  2550. }
  2551. break;
  2552. case 4: // G4 dwell
  2553. codenum = 0;
  2554. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2555. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2556. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  2557. st_synchronize();
  2558. codenum += millis(); // keep track of when we started waiting
  2559. previous_millis_cmd = millis();
  2560. while(millis() < codenum) {
  2561. manage_heater();
  2562. manage_inactivity();
  2563. lcd_update();
  2564. }
  2565. break;
  2566. #ifdef FWRETRACT
  2567. case 10: // G10 retract
  2568. #if EXTRUDERS > 1
  2569. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2570. retract(true,retracted_swap[active_extruder]);
  2571. #else
  2572. retract(true);
  2573. #endif
  2574. break;
  2575. case 11: // G11 retract_recover
  2576. #if EXTRUDERS > 1
  2577. retract(false,retracted_swap[active_extruder]);
  2578. #else
  2579. retract(false);
  2580. #endif
  2581. break;
  2582. #endif //FWRETRACT
  2583. case 28: //G28 Home all Axis one at a time
  2584. {
  2585. st_synchronize();
  2586. #if 0
  2587. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2588. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2589. #endif
  2590. // Flag for the display update routine and to disable the print cancelation during homing.
  2591. homing_flag = true;
  2592. // Which axes should be homed?
  2593. bool home_x = code_seen(axis_codes[X_AXIS]);
  2594. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2595. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2596. // calibrate?
  2597. bool calib = code_seen('C');
  2598. // Either all X,Y,Z codes are present, or none of them.
  2599. bool home_all_axes = home_x == home_y && home_x == home_z;
  2600. if (home_all_axes)
  2601. // No X/Y/Z code provided means to home all axes.
  2602. home_x = home_y = home_z = true;
  2603. #ifdef ENABLE_AUTO_BED_LEVELING
  2604. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2605. #endif //ENABLE_AUTO_BED_LEVELING
  2606. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2607. // the planner will not perform any adjustments in the XY plane.
  2608. // Wait for the motors to stop and update the current position with the absolute values.
  2609. world2machine_revert_to_uncorrected();
  2610. // For mesh bed leveling deactivate the matrix temporarily.
  2611. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2612. // in a single axis only.
  2613. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2614. #ifdef MESH_BED_LEVELING
  2615. uint8_t mbl_was_active = mbl.active;
  2616. mbl.active = 0;
  2617. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2618. #endif
  2619. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2620. // consumed during the first movements following this statement.
  2621. if (home_z)
  2622. babystep_undo();
  2623. saved_feedrate = feedrate;
  2624. saved_feedmultiply = feedmultiply;
  2625. feedmultiply = 100;
  2626. previous_millis_cmd = millis();
  2627. enable_endstops(true);
  2628. memcpy(destination, current_position, sizeof(destination));
  2629. feedrate = 0.0;
  2630. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2631. if(home_z)
  2632. homeaxis(Z_AXIS);
  2633. #endif
  2634. #ifdef QUICK_HOME
  2635. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2636. if(home_x && home_y) //first diagonal move
  2637. {
  2638. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2639. int x_axis_home_dir = home_dir(X_AXIS);
  2640. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2641. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2642. feedrate = homing_feedrate[X_AXIS];
  2643. if(homing_feedrate[Y_AXIS]<feedrate)
  2644. feedrate = homing_feedrate[Y_AXIS];
  2645. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2646. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2647. } else {
  2648. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2649. }
  2650. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2651. st_synchronize();
  2652. axis_is_at_home(X_AXIS);
  2653. axis_is_at_home(Y_AXIS);
  2654. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2655. destination[X_AXIS] = current_position[X_AXIS];
  2656. destination[Y_AXIS] = current_position[Y_AXIS];
  2657. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2658. feedrate = 0.0;
  2659. st_synchronize();
  2660. endstops_hit_on_purpose();
  2661. current_position[X_AXIS] = destination[X_AXIS];
  2662. current_position[Y_AXIS] = destination[Y_AXIS];
  2663. current_position[Z_AXIS] = destination[Z_AXIS];
  2664. }
  2665. #endif /* QUICK_HOME */
  2666. #ifdef TMC2130
  2667. if(home_x)
  2668. {
  2669. if (!calib)
  2670. homeaxis(X_AXIS);
  2671. else
  2672. tmc2130_home_calibrate(X_AXIS);
  2673. }
  2674. if(home_y)
  2675. {
  2676. if (!calib)
  2677. homeaxis(Y_AXIS);
  2678. else
  2679. tmc2130_home_calibrate(Y_AXIS);
  2680. }
  2681. #endif //TMC2130
  2682. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2683. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2684. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2685. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2686. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2687. #ifndef Z_SAFE_HOMING
  2688. if(home_z) {
  2689. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2690. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2691. feedrate = max_feedrate[Z_AXIS];
  2692. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2693. st_synchronize();
  2694. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2695. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2696. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2697. {
  2698. homeaxis(X_AXIS);
  2699. homeaxis(Y_AXIS);
  2700. }
  2701. // 1st mesh bed leveling measurement point, corrected.
  2702. world2machine_initialize();
  2703. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2704. world2machine_reset();
  2705. if (destination[Y_AXIS] < Y_MIN_POS)
  2706. destination[Y_AXIS] = Y_MIN_POS;
  2707. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2708. feedrate = homing_feedrate[Z_AXIS]/10;
  2709. current_position[Z_AXIS] = 0;
  2710. enable_endstops(false);
  2711. #ifdef DEBUG_BUILD
  2712. SERIAL_ECHOLNPGM("plan_set_position()");
  2713. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2714. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2715. #endif
  2716. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2717. #ifdef DEBUG_BUILD
  2718. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2719. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2720. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2721. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2722. #endif
  2723. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2724. st_synchronize();
  2725. current_position[X_AXIS] = destination[X_AXIS];
  2726. current_position[Y_AXIS] = destination[Y_AXIS];
  2727. enable_endstops(true);
  2728. endstops_hit_on_purpose();
  2729. homeaxis(Z_AXIS);
  2730. #else // MESH_BED_LEVELING
  2731. homeaxis(Z_AXIS);
  2732. #endif // MESH_BED_LEVELING
  2733. }
  2734. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2735. if(home_all_axes) {
  2736. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2737. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2738. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2739. feedrate = XY_TRAVEL_SPEED/60;
  2740. current_position[Z_AXIS] = 0;
  2741. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2742. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2743. st_synchronize();
  2744. current_position[X_AXIS] = destination[X_AXIS];
  2745. current_position[Y_AXIS] = destination[Y_AXIS];
  2746. homeaxis(Z_AXIS);
  2747. }
  2748. // Let's see if X and Y are homed and probe is inside bed area.
  2749. if(home_z) {
  2750. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2751. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2752. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2753. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2754. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2755. current_position[Z_AXIS] = 0;
  2756. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2757. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2758. feedrate = max_feedrate[Z_AXIS];
  2759. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2760. st_synchronize();
  2761. homeaxis(Z_AXIS);
  2762. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2763. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2764. SERIAL_ECHO_START;
  2765. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2766. } else {
  2767. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2768. SERIAL_ECHO_START;
  2769. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2770. }
  2771. }
  2772. #endif // Z_SAFE_HOMING
  2773. #endif // Z_HOME_DIR < 0
  2774. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2775. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2776. #ifdef ENABLE_AUTO_BED_LEVELING
  2777. if(home_z)
  2778. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2779. #endif
  2780. // Set the planner and stepper routine positions.
  2781. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2782. // contains the machine coordinates.
  2783. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2784. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2785. enable_endstops(false);
  2786. #endif
  2787. feedrate = saved_feedrate;
  2788. feedmultiply = saved_feedmultiply;
  2789. previous_millis_cmd = millis();
  2790. endstops_hit_on_purpose();
  2791. #ifndef MESH_BED_LEVELING
  2792. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2793. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2794. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2795. lcd_adjust_z();
  2796. #endif
  2797. // Load the machine correction matrix
  2798. world2machine_initialize();
  2799. // and correct the current_position XY axes to match the transformed coordinate system.
  2800. world2machine_update_current();
  2801. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2802. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2803. {
  2804. if (! home_z && mbl_was_active) {
  2805. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2806. mbl.active = true;
  2807. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2808. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2809. }
  2810. }
  2811. else
  2812. {
  2813. st_synchronize();
  2814. homing_flag = false;
  2815. // Push the commands to the front of the message queue in the reverse order!
  2816. // There shall be always enough space reserved for these commands.
  2817. // enquecommand_front_P((PSTR("G80")));
  2818. goto case_G80;
  2819. }
  2820. #endif
  2821. if (farm_mode) { prusa_statistics(20); };
  2822. homing_flag = false;
  2823. #if 0
  2824. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2825. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2826. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2827. #endif
  2828. break;
  2829. }
  2830. #ifdef ENABLE_AUTO_BED_LEVELING
  2831. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2832. {
  2833. #if Z_MIN_PIN == -1
  2834. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2835. #endif
  2836. // Prevent user from running a G29 without first homing in X and Y
  2837. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2838. {
  2839. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2840. SERIAL_ECHO_START;
  2841. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2842. break; // abort G29, since we don't know where we are
  2843. }
  2844. st_synchronize();
  2845. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2846. //vector_3 corrected_position = plan_get_position_mm();
  2847. //corrected_position.debug("position before G29");
  2848. plan_bed_level_matrix.set_to_identity();
  2849. vector_3 uncorrected_position = plan_get_position();
  2850. //uncorrected_position.debug("position durring G29");
  2851. current_position[X_AXIS] = uncorrected_position.x;
  2852. current_position[Y_AXIS] = uncorrected_position.y;
  2853. current_position[Z_AXIS] = uncorrected_position.z;
  2854. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2855. setup_for_endstop_move();
  2856. feedrate = homing_feedrate[Z_AXIS];
  2857. #ifdef AUTO_BED_LEVELING_GRID
  2858. // probe at the points of a lattice grid
  2859. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2860. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2861. // solve the plane equation ax + by + d = z
  2862. // A is the matrix with rows [x y 1] for all the probed points
  2863. // B is the vector of the Z positions
  2864. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2865. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2866. // "A" matrix of the linear system of equations
  2867. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2868. // "B" vector of Z points
  2869. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2870. int probePointCounter = 0;
  2871. bool zig = true;
  2872. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2873. {
  2874. int xProbe, xInc;
  2875. if (zig)
  2876. {
  2877. xProbe = LEFT_PROBE_BED_POSITION;
  2878. //xEnd = RIGHT_PROBE_BED_POSITION;
  2879. xInc = xGridSpacing;
  2880. zig = false;
  2881. } else // zag
  2882. {
  2883. xProbe = RIGHT_PROBE_BED_POSITION;
  2884. //xEnd = LEFT_PROBE_BED_POSITION;
  2885. xInc = -xGridSpacing;
  2886. zig = true;
  2887. }
  2888. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2889. {
  2890. float z_before;
  2891. if (probePointCounter == 0)
  2892. {
  2893. // raise before probing
  2894. z_before = Z_RAISE_BEFORE_PROBING;
  2895. } else
  2896. {
  2897. // raise extruder
  2898. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2899. }
  2900. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2901. eqnBVector[probePointCounter] = measured_z;
  2902. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2903. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2904. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2905. probePointCounter++;
  2906. xProbe += xInc;
  2907. }
  2908. }
  2909. clean_up_after_endstop_move();
  2910. // solve lsq problem
  2911. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2912. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2913. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2914. SERIAL_PROTOCOLPGM(" b: ");
  2915. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2916. SERIAL_PROTOCOLPGM(" d: ");
  2917. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2918. set_bed_level_equation_lsq(plane_equation_coefficients);
  2919. free(plane_equation_coefficients);
  2920. #else // AUTO_BED_LEVELING_GRID not defined
  2921. // Probe at 3 arbitrary points
  2922. // probe 1
  2923. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2924. // probe 2
  2925. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2926. // probe 3
  2927. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2928. clean_up_after_endstop_move();
  2929. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2930. #endif // AUTO_BED_LEVELING_GRID
  2931. st_synchronize();
  2932. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2933. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2934. // When the bed is uneven, this height must be corrected.
  2935. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2936. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2937. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2938. z_tmp = current_position[Z_AXIS];
  2939. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2940. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2941. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2942. }
  2943. break;
  2944. #ifndef Z_PROBE_SLED
  2945. case 30: // G30 Single Z Probe
  2946. {
  2947. st_synchronize();
  2948. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2949. setup_for_endstop_move();
  2950. feedrate = homing_feedrate[Z_AXIS];
  2951. run_z_probe();
  2952. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  2953. SERIAL_PROTOCOLPGM(" X: ");
  2954. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2955. SERIAL_PROTOCOLPGM(" Y: ");
  2956. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2957. SERIAL_PROTOCOLPGM(" Z: ");
  2958. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2959. SERIAL_PROTOCOLPGM("\n");
  2960. clean_up_after_endstop_move();
  2961. }
  2962. break;
  2963. #else
  2964. case 31: // dock the sled
  2965. dock_sled(true);
  2966. break;
  2967. case 32: // undock the sled
  2968. dock_sled(false);
  2969. break;
  2970. #endif // Z_PROBE_SLED
  2971. #endif // ENABLE_AUTO_BED_LEVELING
  2972. #ifdef MESH_BED_LEVELING
  2973. case 30: // G30 Single Z Probe
  2974. {
  2975. st_synchronize();
  2976. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2977. setup_for_endstop_move();
  2978. feedrate = homing_feedrate[Z_AXIS];
  2979. find_bed_induction_sensor_point_z(-10.f, 3);
  2980. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  2981. SERIAL_PROTOCOLPGM(" X: ");
  2982. MYSERIAL.print(current_position[X_AXIS], 5);
  2983. SERIAL_PROTOCOLPGM(" Y: ");
  2984. MYSERIAL.print(current_position[Y_AXIS], 5);
  2985. SERIAL_PROTOCOLPGM(" Z: ");
  2986. MYSERIAL.print(current_position[Z_AXIS], 5);
  2987. SERIAL_PROTOCOLPGM("\n");
  2988. clean_up_after_endstop_move();
  2989. }
  2990. break;
  2991. case 75:
  2992. {
  2993. for (int i = 40; i <= 110; i++) {
  2994. MYSERIAL.print(i);
  2995. MYSERIAL.print(" ");
  2996. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2997. }
  2998. }
  2999. break;
  3000. case 76: //PINDA probe temperature calibration
  3001. {
  3002. #ifdef PINDA_THERMISTOR
  3003. if (true)
  3004. {
  3005. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3006. {
  3007. // We don't know where we are! HOME!
  3008. // Push the commands to the front of the message queue in the reverse order!
  3009. // There shall be always enough space reserved for these commands.
  3010. repeatcommand_front(); // repeat G76 with all its parameters
  3011. enquecommand_front_P((PSTR("G28 W0")));
  3012. break;
  3013. }
  3014. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3015. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3016. if (result)
  3017. {
  3018. current_position[Z_AXIS] = 50;
  3019. current_position[Y_AXIS] += 180;
  3020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3021. st_synchronize();
  3022. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3023. current_position[Y_AXIS] -= 180;
  3024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3025. st_synchronize();
  3026. feedrate = homing_feedrate[Z_AXIS] / 10;
  3027. enable_endstops(true);
  3028. endstops_hit_on_purpose();
  3029. homeaxis(Z_AXIS);
  3030. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3031. enable_endstops(false);
  3032. }
  3033. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3034. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3035. current_position[Z_AXIS] = 100;
  3036. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3037. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3038. lcd_temp_cal_show_result(false);
  3039. break;
  3040. }
  3041. }
  3042. lcd_update_enable(true);
  3043. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3044. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3045. float zero_z;
  3046. int z_shift = 0; //unit: steps
  3047. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3048. if (start_temp < 35) start_temp = 35;
  3049. if (start_temp < current_temperature_pinda) start_temp += 5;
  3050. SERIAL_ECHOPGM("start temperature: ");
  3051. MYSERIAL.println(start_temp);
  3052. // setTargetHotend(200, 0);
  3053. setTargetBed(70 + (start_temp - 30));
  3054. custom_message = true;
  3055. custom_message_type = 4;
  3056. custom_message_state = 1;
  3057. custom_message = _T(MSG_TEMP_CALIBRATION);
  3058. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3059. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3060. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3062. st_synchronize();
  3063. while (current_temperature_pinda < start_temp)
  3064. {
  3065. delay_keep_alive(1000);
  3066. serialecho_temperatures();
  3067. }
  3068. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3069. current_position[Z_AXIS] = 5;
  3070. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3071. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3072. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3073. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3074. st_synchronize();
  3075. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3076. if (find_z_result == false) {
  3077. lcd_temp_cal_show_result(find_z_result);
  3078. break;
  3079. }
  3080. zero_z = current_position[Z_AXIS];
  3081. //current_position[Z_AXIS]
  3082. SERIAL_ECHOLNPGM("");
  3083. SERIAL_ECHOPGM("ZERO: ");
  3084. MYSERIAL.print(current_position[Z_AXIS]);
  3085. SERIAL_ECHOLNPGM("");
  3086. int i = -1; for (; i < 5; i++)
  3087. {
  3088. float temp = (40 + i * 5);
  3089. SERIAL_ECHOPGM("Step: ");
  3090. MYSERIAL.print(i + 2);
  3091. SERIAL_ECHOLNPGM("/6 (skipped)");
  3092. SERIAL_ECHOPGM("PINDA temperature: ");
  3093. MYSERIAL.print((40 + i*5));
  3094. SERIAL_ECHOPGM(" Z shift (mm):");
  3095. MYSERIAL.print(0);
  3096. SERIAL_ECHOLNPGM("");
  3097. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3098. if (start_temp <= temp) break;
  3099. }
  3100. for (i++; i < 5; i++)
  3101. {
  3102. float temp = (40 + i * 5);
  3103. SERIAL_ECHOPGM("Step: ");
  3104. MYSERIAL.print(i + 2);
  3105. SERIAL_ECHOLNPGM("/6");
  3106. custom_message_state = i + 2;
  3107. setTargetBed(50 + 10 * (temp - 30) / 5);
  3108. // setTargetHotend(255, 0);
  3109. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3110. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3111. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3112. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3113. st_synchronize();
  3114. while (current_temperature_pinda < temp)
  3115. {
  3116. delay_keep_alive(1000);
  3117. serialecho_temperatures();
  3118. }
  3119. current_position[Z_AXIS] = 5;
  3120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3121. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3122. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3124. st_synchronize();
  3125. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3126. if (find_z_result == false) {
  3127. lcd_temp_cal_show_result(find_z_result);
  3128. break;
  3129. }
  3130. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3131. SERIAL_ECHOLNPGM("");
  3132. SERIAL_ECHOPGM("PINDA temperature: ");
  3133. MYSERIAL.print(current_temperature_pinda);
  3134. SERIAL_ECHOPGM(" Z shift (mm):");
  3135. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3136. SERIAL_ECHOLNPGM("");
  3137. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3138. }
  3139. lcd_temp_cal_show_result(true);
  3140. break;
  3141. }
  3142. #endif //PINDA_THERMISTOR
  3143. setTargetBed(PINDA_MIN_T);
  3144. float zero_z;
  3145. int z_shift = 0; //unit: steps
  3146. int t_c; // temperature
  3147. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3148. // We don't know where we are! HOME!
  3149. // Push the commands to the front of the message queue in the reverse order!
  3150. // There shall be always enough space reserved for these commands.
  3151. repeatcommand_front(); // repeat G76 with all its parameters
  3152. enquecommand_front_P((PSTR("G28 W0")));
  3153. break;
  3154. }
  3155. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3156. custom_message = true;
  3157. custom_message_type = 4;
  3158. custom_message_state = 1;
  3159. custom_message = _T(MSG_TEMP_CALIBRATION);
  3160. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3161. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3162. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3163. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3164. st_synchronize();
  3165. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3166. delay_keep_alive(1000);
  3167. serialecho_temperatures();
  3168. }
  3169. //enquecommand_P(PSTR("M190 S50"));
  3170. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3171. delay_keep_alive(1000);
  3172. serialecho_temperatures();
  3173. }
  3174. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3175. current_position[Z_AXIS] = 5;
  3176. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3177. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3178. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3179. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3180. st_synchronize();
  3181. find_bed_induction_sensor_point_z(-1.f);
  3182. zero_z = current_position[Z_AXIS];
  3183. //current_position[Z_AXIS]
  3184. SERIAL_ECHOLNPGM("");
  3185. SERIAL_ECHOPGM("ZERO: ");
  3186. MYSERIAL.print(current_position[Z_AXIS]);
  3187. SERIAL_ECHOLNPGM("");
  3188. for (int i = 0; i<5; i++) {
  3189. SERIAL_ECHOPGM("Step: ");
  3190. MYSERIAL.print(i+2);
  3191. SERIAL_ECHOLNPGM("/6");
  3192. custom_message_state = i + 2;
  3193. t_c = 60 + i * 10;
  3194. setTargetBed(t_c);
  3195. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3196. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3197. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3198. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3199. st_synchronize();
  3200. while (degBed() < t_c) {
  3201. delay_keep_alive(1000);
  3202. serialecho_temperatures();
  3203. }
  3204. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3205. delay_keep_alive(1000);
  3206. serialecho_temperatures();
  3207. }
  3208. current_position[Z_AXIS] = 5;
  3209. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3210. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3211. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3212. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3213. st_synchronize();
  3214. find_bed_induction_sensor_point_z(-1.f);
  3215. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3216. SERIAL_ECHOLNPGM("");
  3217. SERIAL_ECHOPGM("Temperature: ");
  3218. MYSERIAL.print(t_c);
  3219. SERIAL_ECHOPGM(" Z shift (mm):");
  3220. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3221. SERIAL_ECHOLNPGM("");
  3222. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3223. }
  3224. custom_message_type = 0;
  3225. custom_message = false;
  3226. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3227. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3228. disable_x();
  3229. disable_y();
  3230. disable_z();
  3231. disable_e0();
  3232. disable_e1();
  3233. disable_e2();
  3234. setTargetBed(0); //set bed target temperature back to 0
  3235. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3236. temp_cal_active = true;
  3237. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3238. lcd_update_enable(true);
  3239. lcd_update(2);
  3240. }
  3241. break;
  3242. #ifdef DIS
  3243. case 77:
  3244. {
  3245. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3246. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3247. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3248. float dimension_x = 40;
  3249. float dimension_y = 40;
  3250. int points_x = 40;
  3251. int points_y = 40;
  3252. float offset_x = 74;
  3253. float offset_y = 33;
  3254. if (code_seen('X')) dimension_x = code_value();
  3255. if (code_seen('Y')) dimension_y = code_value();
  3256. if (code_seen('XP')) points_x = code_value();
  3257. if (code_seen('YP')) points_y = code_value();
  3258. if (code_seen('XO')) offset_x = code_value();
  3259. if (code_seen('YO')) offset_y = code_value();
  3260. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3261. } break;
  3262. #endif
  3263. case 79: {
  3264. for (int i = 255; i > 0; i = i - 5) {
  3265. fanSpeed = i;
  3266. //delay_keep_alive(2000);
  3267. for (int j = 0; j < 100; j++) {
  3268. delay_keep_alive(100);
  3269. }
  3270. fan_speed[1];
  3271. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3272. }
  3273. }break;
  3274. /**
  3275. * G80: Mesh-based Z probe, probes a grid and produces a
  3276. * mesh to compensate for variable bed height
  3277. *
  3278. * The S0 report the points as below
  3279. *
  3280. * +----> X-axis
  3281. * |
  3282. * |
  3283. * v Y-axis
  3284. *
  3285. */
  3286. case 80:
  3287. #ifdef MK1BP
  3288. break;
  3289. #endif //MK1BP
  3290. case_G80:
  3291. {
  3292. #ifdef TMC2130
  3293. //previously enqueued "G28 W0" failed (crash Z)
  3294. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && !axis_known_position[Z_AXIS] && (READ(Z_TMC2130_DIAG) != 0))
  3295. {
  3296. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3297. break;
  3298. }
  3299. #endif //TMC2130
  3300. mesh_bed_leveling_flag = true;
  3301. int8_t verbosity_level = 0;
  3302. static bool run = false;
  3303. if (code_seen('V')) {
  3304. // Just 'V' without a number counts as V1.
  3305. char c = strchr_pointer[1];
  3306. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3307. }
  3308. // Firstly check if we know where we are
  3309. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3310. // We don't know where we are! HOME!
  3311. // Push the commands to the front of the message queue in the reverse order!
  3312. // There shall be always enough space reserved for these commands.
  3313. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3314. repeatcommand_front(); // repeat G80 with all its parameters
  3315. enquecommand_front_P((PSTR("G28 W0")));
  3316. }
  3317. else {
  3318. mesh_bed_leveling_flag = false;
  3319. }
  3320. break;
  3321. }
  3322. bool temp_comp_start = true;
  3323. #ifdef PINDA_THERMISTOR
  3324. temp_comp_start = false;
  3325. #endif //PINDA_THERMISTOR
  3326. if (temp_comp_start)
  3327. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3328. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3329. temp_compensation_start();
  3330. run = true;
  3331. repeatcommand_front(); // repeat G80 with all its parameters
  3332. enquecommand_front_P((PSTR("G28 W0")));
  3333. }
  3334. else {
  3335. mesh_bed_leveling_flag = false;
  3336. }
  3337. break;
  3338. }
  3339. run = false;
  3340. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3341. mesh_bed_leveling_flag = false;
  3342. break;
  3343. }
  3344. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3345. bool custom_message_old = custom_message;
  3346. unsigned int custom_message_type_old = custom_message_type;
  3347. unsigned int custom_message_state_old = custom_message_state;
  3348. custom_message = true;
  3349. custom_message_type = 1;
  3350. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3351. lcd_update(1);
  3352. mbl.reset(); //reset mesh bed leveling
  3353. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3354. // consumed during the first movements following this statement.
  3355. babystep_undo();
  3356. // Cycle through all points and probe them
  3357. // First move up. During this first movement, the babystepping will be reverted.
  3358. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3359. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3360. // The move to the first calibration point.
  3361. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3362. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3363. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3364. #ifdef SUPPORT_VERBOSITY
  3365. if (verbosity_level >= 1) {
  3366. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3367. }
  3368. #endif //SUPPORT_VERBOSITY
  3369. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3370. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3371. // Wait until the move is finished.
  3372. st_synchronize();
  3373. int mesh_point = 0; //index number of calibration point
  3374. int ix = 0;
  3375. int iy = 0;
  3376. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3377. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3378. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3379. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3380. #ifdef SUPPORT_VERBOSITY
  3381. if (verbosity_level >= 1) {
  3382. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3383. }
  3384. #endif // SUPPORT_VERBOSITY
  3385. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3386. const char *kill_message = NULL;
  3387. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3388. // Get coords of a measuring point.
  3389. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3390. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3391. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3392. float z0 = 0.f;
  3393. if (has_z && mesh_point > 0) {
  3394. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3395. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3396. //#if 0
  3397. #ifdef SUPPORT_VERBOSITY
  3398. if (verbosity_level >= 1) {
  3399. SERIAL_ECHOLNPGM("");
  3400. SERIAL_ECHOPGM("Bed leveling, point: ");
  3401. MYSERIAL.print(mesh_point);
  3402. SERIAL_ECHOPGM(", calibration z: ");
  3403. MYSERIAL.print(z0, 5);
  3404. SERIAL_ECHOLNPGM("");
  3405. }
  3406. #endif // SUPPORT_VERBOSITY
  3407. //#endif
  3408. }
  3409. // Move Z up to MESH_HOME_Z_SEARCH.
  3410. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3411. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3412. st_synchronize();
  3413. // Move to XY position of the sensor point.
  3414. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3415. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3416. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3417. #ifdef SUPPORT_VERBOSITY
  3418. if (verbosity_level >= 1) {
  3419. SERIAL_PROTOCOL(mesh_point);
  3420. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3421. }
  3422. #endif // SUPPORT_VERBOSITY
  3423. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3424. st_synchronize();
  3425. // Go down until endstop is hit
  3426. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3427. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3428. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3429. break;
  3430. }
  3431. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3432. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3433. break;
  3434. }
  3435. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3436. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3437. break;
  3438. }
  3439. #ifdef SUPPORT_VERBOSITY
  3440. if (verbosity_level >= 10) {
  3441. SERIAL_ECHOPGM("X: ");
  3442. MYSERIAL.print(current_position[X_AXIS], 5);
  3443. SERIAL_ECHOLNPGM("");
  3444. SERIAL_ECHOPGM("Y: ");
  3445. MYSERIAL.print(current_position[Y_AXIS], 5);
  3446. SERIAL_PROTOCOLPGM("\n");
  3447. }
  3448. #endif // SUPPORT_VERBOSITY
  3449. float offset_z = 0;
  3450. #ifdef PINDA_THERMISTOR
  3451. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3452. #endif //PINDA_THERMISTOR
  3453. // #ifdef SUPPORT_VERBOSITY
  3454. /* if (verbosity_level >= 1)
  3455. {
  3456. SERIAL_ECHOPGM("mesh bed leveling: ");
  3457. MYSERIAL.print(current_position[Z_AXIS], 5);
  3458. SERIAL_ECHOPGM(" offset: ");
  3459. MYSERIAL.print(offset_z, 5);
  3460. SERIAL_ECHOLNPGM("");
  3461. }*/
  3462. // #endif // SUPPORT_VERBOSITY
  3463. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3464. custom_message_state--;
  3465. mesh_point++;
  3466. lcd_update(1);
  3467. }
  3468. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3469. #ifdef SUPPORT_VERBOSITY
  3470. if (verbosity_level >= 20) {
  3471. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3472. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3473. MYSERIAL.print(current_position[Z_AXIS], 5);
  3474. }
  3475. #endif // SUPPORT_VERBOSITY
  3476. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3477. st_synchronize();
  3478. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3479. kill(kill_message);
  3480. SERIAL_ECHOLNPGM("killed");
  3481. }
  3482. clean_up_after_endstop_move();
  3483. // SERIAL_ECHOLNPGM("clean up finished ");
  3484. bool apply_temp_comp = true;
  3485. #ifdef PINDA_THERMISTOR
  3486. apply_temp_comp = false;
  3487. #endif
  3488. if (apply_temp_comp)
  3489. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3490. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3491. // SERIAL_ECHOLNPGM("babystep applied");
  3492. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3493. #ifdef SUPPORT_VERBOSITY
  3494. if (verbosity_level >= 1) {
  3495. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3496. }
  3497. #endif // SUPPORT_VERBOSITY
  3498. for (uint8_t i = 0; i < 4; ++i) {
  3499. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3500. long correction = 0;
  3501. if (code_seen(codes[i]))
  3502. correction = code_value_long();
  3503. else if (eeprom_bed_correction_valid) {
  3504. unsigned char *addr = (i < 2) ?
  3505. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3506. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3507. correction = eeprom_read_int8(addr);
  3508. }
  3509. if (correction == 0)
  3510. continue;
  3511. float offset = float(correction) * 0.001f;
  3512. if (fabs(offset) > 0.101f) {
  3513. SERIAL_ERROR_START;
  3514. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3515. SERIAL_ECHO(offset);
  3516. SERIAL_ECHOLNPGM(" microns");
  3517. }
  3518. else {
  3519. switch (i) {
  3520. case 0:
  3521. for (uint8_t row = 0; row < 3; ++row) {
  3522. mbl.z_values[row][1] += 0.5f * offset;
  3523. mbl.z_values[row][0] += offset;
  3524. }
  3525. break;
  3526. case 1:
  3527. for (uint8_t row = 0; row < 3; ++row) {
  3528. mbl.z_values[row][1] += 0.5f * offset;
  3529. mbl.z_values[row][2] += offset;
  3530. }
  3531. break;
  3532. case 2:
  3533. for (uint8_t col = 0; col < 3; ++col) {
  3534. mbl.z_values[1][col] += 0.5f * offset;
  3535. mbl.z_values[0][col] += offset;
  3536. }
  3537. break;
  3538. case 3:
  3539. for (uint8_t col = 0; col < 3; ++col) {
  3540. mbl.z_values[1][col] += 0.5f * offset;
  3541. mbl.z_values[2][col] += offset;
  3542. }
  3543. break;
  3544. }
  3545. }
  3546. }
  3547. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3548. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3549. // SERIAL_ECHOLNPGM("Upsample finished");
  3550. mbl.active = 1; //activate mesh bed leveling
  3551. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3552. go_home_with_z_lift();
  3553. // SERIAL_ECHOLNPGM("Go home finished");
  3554. //unretract (after PINDA preheat retraction)
  3555. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3556. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3557. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3558. }
  3559. KEEPALIVE_STATE(NOT_BUSY);
  3560. // Restore custom message state
  3561. custom_message = custom_message_old;
  3562. custom_message_type = custom_message_type_old;
  3563. custom_message_state = custom_message_state_old;
  3564. mesh_bed_leveling_flag = false;
  3565. mesh_bed_run_from_menu = false;
  3566. lcd_update(2);
  3567. }
  3568. break;
  3569. /**
  3570. * G81: Print mesh bed leveling status and bed profile if activated
  3571. */
  3572. case 81:
  3573. if (mbl.active) {
  3574. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3575. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3576. SERIAL_PROTOCOLPGM(",");
  3577. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3578. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3579. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3580. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3581. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3582. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3583. SERIAL_PROTOCOLPGM(" ");
  3584. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3585. }
  3586. SERIAL_PROTOCOLPGM("\n");
  3587. }
  3588. }
  3589. else
  3590. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3591. break;
  3592. #if 0
  3593. /**
  3594. * G82: Single Z probe at current location
  3595. *
  3596. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3597. *
  3598. */
  3599. case 82:
  3600. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3601. setup_for_endstop_move();
  3602. find_bed_induction_sensor_point_z();
  3603. clean_up_after_endstop_move();
  3604. SERIAL_PROTOCOLPGM("Bed found at: ");
  3605. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3606. SERIAL_PROTOCOLPGM("\n");
  3607. break;
  3608. /**
  3609. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3610. */
  3611. case 83:
  3612. {
  3613. int babystepz = code_seen('S') ? code_value() : 0;
  3614. int BabyPosition = code_seen('P') ? code_value() : 0;
  3615. if (babystepz != 0) {
  3616. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3617. // Is the axis indexed starting with zero or one?
  3618. if (BabyPosition > 4) {
  3619. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3620. }else{
  3621. // Save it to the eeprom
  3622. babystepLoadZ = babystepz;
  3623. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3624. // adjust the Z
  3625. babystepsTodoZadd(babystepLoadZ);
  3626. }
  3627. }
  3628. }
  3629. break;
  3630. /**
  3631. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3632. */
  3633. case 84:
  3634. babystepsTodoZsubtract(babystepLoadZ);
  3635. // babystepLoadZ = 0;
  3636. break;
  3637. /**
  3638. * G85: Prusa3D specific: Pick best babystep
  3639. */
  3640. case 85:
  3641. lcd_pick_babystep();
  3642. break;
  3643. #endif
  3644. /**
  3645. * G86: Prusa3D specific: Disable babystep correction after home.
  3646. * This G-code will be performed at the start of a calibration script.
  3647. */
  3648. case 86:
  3649. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3650. break;
  3651. /**
  3652. * G87: Prusa3D specific: Enable babystep correction after home
  3653. * This G-code will be performed at the end of a calibration script.
  3654. */
  3655. case 87:
  3656. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3657. break;
  3658. /**
  3659. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3660. */
  3661. case 88:
  3662. break;
  3663. #endif // ENABLE_MESH_BED_LEVELING
  3664. case 90: // G90
  3665. relative_mode = false;
  3666. break;
  3667. case 91: // G91
  3668. relative_mode = true;
  3669. break;
  3670. case 92: // G92
  3671. if(!code_seen(axis_codes[E_AXIS]))
  3672. st_synchronize();
  3673. for(int8_t i=0; i < NUM_AXIS; i++) {
  3674. if(code_seen(axis_codes[i])) {
  3675. if(i == E_AXIS) {
  3676. current_position[i] = code_value();
  3677. plan_set_e_position(current_position[E_AXIS]);
  3678. }
  3679. else {
  3680. current_position[i] = code_value()+add_homing[i];
  3681. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3682. }
  3683. }
  3684. }
  3685. break;
  3686. case 98: // G98 (activate farm mode)
  3687. farm_mode = 1;
  3688. PingTime = millis();
  3689. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3690. SilentModeMenu = SILENT_MODE_OFF;
  3691. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3692. break;
  3693. case 99: // G99 (deactivate farm mode)
  3694. farm_mode = 0;
  3695. lcd_printer_connected();
  3696. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3697. lcd_update(2);
  3698. break;
  3699. default:
  3700. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3701. }
  3702. } // end if(code_seen('G'))
  3703. else if(code_seen('M'))
  3704. {
  3705. int index;
  3706. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3707. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3708. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3709. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3710. } else
  3711. switch((int)code_value())
  3712. {
  3713. #ifdef ULTIPANEL
  3714. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3715. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3716. {
  3717. char *src = strchr_pointer + 2;
  3718. codenum = 0;
  3719. bool hasP = false, hasS = false;
  3720. if (code_seen('P')) {
  3721. codenum = code_value(); // milliseconds to wait
  3722. hasP = codenum > 0;
  3723. }
  3724. if (code_seen('S')) {
  3725. codenum = code_value() * 1000; // seconds to wait
  3726. hasS = codenum > 0;
  3727. }
  3728. starpos = strchr(src, '*');
  3729. if (starpos != NULL) *(starpos) = '\0';
  3730. while (*src == ' ') ++src;
  3731. if (!hasP && !hasS && *src != '\0') {
  3732. lcd_setstatus(src);
  3733. } else {
  3734. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3735. }
  3736. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3737. st_synchronize();
  3738. previous_millis_cmd = millis();
  3739. if (codenum > 0){
  3740. codenum += millis(); // keep track of when we started waiting
  3741. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3742. while(millis() < codenum && !lcd_clicked()){
  3743. manage_heater();
  3744. manage_inactivity(true);
  3745. lcd_update();
  3746. }
  3747. KEEPALIVE_STATE(IN_HANDLER);
  3748. lcd_ignore_click(false);
  3749. }else{
  3750. if (!lcd_detected())
  3751. break;
  3752. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3753. while(!lcd_clicked()){
  3754. manage_heater();
  3755. manage_inactivity(true);
  3756. lcd_update();
  3757. }
  3758. KEEPALIVE_STATE(IN_HANDLER);
  3759. }
  3760. if (IS_SD_PRINTING)
  3761. LCD_MESSAGERPGM(_i("Resuming print"));////MSG_RESUMING c=0 r=0
  3762. else
  3763. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3764. }
  3765. break;
  3766. #endif
  3767. case 17:
  3768. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3769. enable_x();
  3770. enable_y();
  3771. enable_z();
  3772. enable_e0();
  3773. enable_e1();
  3774. enable_e2();
  3775. break;
  3776. #ifdef SDSUPPORT
  3777. case 20: // M20 - list SD card
  3778. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3779. card.ls();
  3780. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3781. break;
  3782. case 21: // M21 - init SD card
  3783. card.initsd();
  3784. break;
  3785. case 22: //M22 - release SD card
  3786. card.release();
  3787. break;
  3788. case 23: //M23 - Select file
  3789. starpos = (strchr(strchr_pointer + 4,'*'));
  3790. if(starpos!=NULL)
  3791. *(starpos)='\0';
  3792. card.openFile(strchr_pointer + 4,true);
  3793. break;
  3794. case 24: //M24 - Start SD print
  3795. if (!card.paused)
  3796. failstats_reset_print();
  3797. card.startFileprint();
  3798. starttime=millis();
  3799. break;
  3800. case 25: //M25 - Pause SD print
  3801. card.pauseSDPrint();
  3802. break;
  3803. case 26: //M26 - Set SD index
  3804. if(card.cardOK && code_seen('S')) {
  3805. card.setIndex(code_value_long());
  3806. }
  3807. break;
  3808. case 27: //M27 - Get SD status
  3809. card.getStatus();
  3810. break;
  3811. case 28: //M28 - Start SD write
  3812. starpos = (strchr(strchr_pointer + 4,'*'));
  3813. if(starpos != NULL){
  3814. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3815. strchr_pointer = strchr(npos,' ') + 1;
  3816. *(starpos) = '\0';
  3817. }
  3818. card.openFile(strchr_pointer+4,false);
  3819. break;
  3820. case 29: //M29 - Stop SD write
  3821. //processed in write to file routine above
  3822. //card,saving = false;
  3823. break;
  3824. case 30: //M30 <filename> Delete File
  3825. if (card.cardOK){
  3826. card.closefile();
  3827. starpos = (strchr(strchr_pointer + 4,'*'));
  3828. if(starpos != NULL){
  3829. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3830. strchr_pointer = strchr(npos,' ') + 1;
  3831. *(starpos) = '\0';
  3832. }
  3833. card.removeFile(strchr_pointer + 4);
  3834. }
  3835. break;
  3836. case 32: //M32 - Select file and start SD print
  3837. {
  3838. if(card.sdprinting) {
  3839. st_synchronize();
  3840. }
  3841. starpos = (strchr(strchr_pointer + 4,'*'));
  3842. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3843. if(namestartpos==NULL)
  3844. {
  3845. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3846. }
  3847. else
  3848. namestartpos++; //to skip the '!'
  3849. if(starpos!=NULL)
  3850. *(starpos)='\0';
  3851. bool call_procedure=(code_seen('P'));
  3852. if(strchr_pointer>namestartpos)
  3853. call_procedure=false; //false alert, 'P' found within filename
  3854. if( card.cardOK )
  3855. {
  3856. card.openFile(namestartpos,true,!call_procedure);
  3857. if(code_seen('S'))
  3858. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3859. card.setIndex(code_value_long());
  3860. card.startFileprint();
  3861. if(!call_procedure)
  3862. starttime=millis(); //procedure calls count as normal print time.
  3863. }
  3864. } break;
  3865. case 928: //M928 - Start SD write
  3866. starpos = (strchr(strchr_pointer + 5,'*'));
  3867. if(starpos != NULL){
  3868. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3869. strchr_pointer = strchr(npos,' ') + 1;
  3870. *(starpos) = '\0';
  3871. }
  3872. card.openLogFile(strchr_pointer+5);
  3873. break;
  3874. #endif //SDSUPPORT
  3875. case 31: //M31 take time since the start of the SD print or an M109 command
  3876. {
  3877. stoptime=millis();
  3878. char time[30];
  3879. unsigned long t=(stoptime-starttime)/1000;
  3880. int sec,min;
  3881. min=t/60;
  3882. sec=t%60;
  3883. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3884. SERIAL_ECHO_START;
  3885. SERIAL_ECHOLN(time);
  3886. lcd_setstatus(time);
  3887. autotempShutdown();
  3888. }
  3889. break;
  3890. #ifndef _DISABLE_M42_M226
  3891. case 42: //M42 -Change pin status via gcode
  3892. if (code_seen('S'))
  3893. {
  3894. int pin_status = code_value();
  3895. int pin_number = LED_PIN;
  3896. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3897. pin_number = code_value();
  3898. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3899. {
  3900. if (sensitive_pins[i] == pin_number)
  3901. {
  3902. pin_number = -1;
  3903. break;
  3904. }
  3905. }
  3906. #if defined(FAN_PIN) && FAN_PIN > -1
  3907. if (pin_number == FAN_PIN)
  3908. fanSpeed = pin_status;
  3909. #endif
  3910. if (pin_number > -1)
  3911. {
  3912. pinMode(pin_number, OUTPUT);
  3913. digitalWrite(pin_number, pin_status);
  3914. analogWrite(pin_number, pin_status);
  3915. }
  3916. }
  3917. break;
  3918. #endif //_DISABLE_M42_M226
  3919. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3920. // Reset the baby step value and the baby step applied flag.
  3921. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3922. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3923. // Reset the skew and offset in both RAM and EEPROM.
  3924. reset_bed_offset_and_skew();
  3925. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3926. // the planner will not perform any adjustments in the XY plane.
  3927. // Wait for the motors to stop and update the current position with the absolute values.
  3928. world2machine_revert_to_uncorrected();
  3929. break;
  3930. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3931. {
  3932. int8_t verbosity_level = 0;
  3933. bool only_Z = code_seen('Z');
  3934. #ifdef SUPPORT_VERBOSITY
  3935. if (code_seen('V'))
  3936. {
  3937. // Just 'V' without a number counts as V1.
  3938. char c = strchr_pointer[1];
  3939. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3940. }
  3941. #endif //SUPPORT_VERBOSITY
  3942. gcode_M45(only_Z, verbosity_level);
  3943. }
  3944. break;
  3945. /*
  3946. case 46:
  3947. {
  3948. // M46: Prusa3D: Show the assigned IP address.
  3949. uint8_t ip[4];
  3950. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3951. if (hasIP) {
  3952. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3953. SERIAL_ECHO(int(ip[0]));
  3954. SERIAL_ECHOPGM(".");
  3955. SERIAL_ECHO(int(ip[1]));
  3956. SERIAL_ECHOPGM(".");
  3957. SERIAL_ECHO(int(ip[2]));
  3958. SERIAL_ECHOPGM(".");
  3959. SERIAL_ECHO(int(ip[3]));
  3960. SERIAL_ECHOLNPGM("");
  3961. } else {
  3962. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3963. }
  3964. break;
  3965. }
  3966. */
  3967. case 47:
  3968. // M47: Prusa3D: Show end stops dialog on the display.
  3969. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3970. lcd_diag_show_end_stops();
  3971. KEEPALIVE_STATE(IN_HANDLER);
  3972. break;
  3973. #if 0
  3974. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3975. {
  3976. // Disable the default update procedure of the display. We will do a modal dialog.
  3977. lcd_update_enable(false);
  3978. // Let the planner use the uncorrected coordinates.
  3979. mbl.reset();
  3980. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3981. // the planner will not perform any adjustments in the XY plane.
  3982. // Wait for the motors to stop and update the current position with the absolute values.
  3983. world2machine_revert_to_uncorrected();
  3984. // Move the print head close to the bed.
  3985. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3986. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3987. st_synchronize();
  3988. // Home in the XY plane.
  3989. set_destination_to_current();
  3990. setup_for_endstop_move();
  3991. home_xy();
  3992. int8_t verbosity_level = 0;
  3993. if (code_seen('V')) {
  3994. // Just 'V' without a number counts as V1.
  3995. char c = strchr_pointer[1];
  3996. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3997. }
  3998. bool success = scan_bed_induction_points(verbosity_level);
  3999. clean_up_after_endstop_move();
  4000. // Print head up.
  4001. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4003. st_synchronize();
  4004. lcd_update_enable(true);
  4005. break;
  4006. }
  4007. #endif
  4008. // M48 Z-Probe repeatability measurement function.
  4009. //
  4010. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4011. //
  4012. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4013. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4014. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4015. // regenerated.
  4016. //
  4017. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4018. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4019. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4020. //
  4021. #ifdef ENABLE_AUTO_BED_LEVELING
  4022. #ifdef Z_PROBE_REPEATABILITY_TEST
  4023. case 48: // M48 Z-Probe repeatability
  4024. {
  4025. #if Z_MIN_PIN == -1
  4026. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4027. #endif
  4028. double sum=0.0;
  4029. double mean=0.0;
  4030. double sigma=0.0;
  4031. double sample_set[50];
  4032. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4033. double X_current, Y_current, Z_current;
  4034. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4035. if (code_seen('V') || code_seen('v')) {
  4036. verbose_level = code_value();
  4037. if (verbose_level<0 || verbose_level>4 ) {
  4038. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4039. goto Sigma_Exit;
  4040. }
  4041. }
  4042. if (verbose_level > 0) {
  4043. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4044. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4045. }
  4046. if (code_seen('n')) {
  4047. n_samples = code_value();
  4048. if (n_samples<4 || n_samples>50 ) {
  4049. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4050. goto Sigma_Exit;
  4051. }
  4052. }
  4053. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4054. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4055. Z_current = st_get_position_mm(Z_AXIS);
  4056. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4057. ext_position = st_get_position_mm(E_AXIS);
  4058. if (code_seen('X') || code_seen('x') ) {
  4059. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4060. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4061. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4062. goto Sigma_Exit;
  4063. }
  4064. }
  4065. if (code_seen('Y') || code_seen('y') ) {
  4066. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4067. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4068. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4069. goto Sigma_Exit;
  4070. }
  4071. }
  4072. if (code_seen('L') || code_seen('l') ) {
  4073. n_legs = code_value();
  4074. if ( n_legs==1 )
  4075. n_legs = 2;
  4076. if ( n_legs<0 || n_legs>15 ) {
  4077. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4078. goto Sigma_Exit;
  4079. }
  4080. }
  4081. //
  4082. // Do all the preliminary setup work. First raise the probe.
  4083. //
  4084. st_synchronize();
  4085. plan_bed_level_matrix.set_to_identity();
  4086. plan_buffer_line( X_current, Y_current, Z_start_location,
  4087. ext_position,
  4088. homing_feedrate[Z_AXIS]/60,
  4089. active_extruder);
  4090. st_synchronize();
  4091. //
  4092. // Now get everything to the specified probe point So we can safely do a probe to
  4093. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4094. // use that as a starting point for each probe.
  4095. //
  4096. if (verbose_level > 2)
  4097. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4098. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4099. ext_position,
  4100. homing_feedrate[X_AXIS]/60,
  4101. active_extruder);
  4102. st_synchronize();
  4103. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4104. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4105. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4106. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4107. //
  4108. // OK, do the inital probe to get us close to the bed.
  4109. // Then retrace the right amount and use that in subsequent probes
  4110. //
  4111. setup_for_endstop_move();
  4112. run_z_probe();
  4113. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4114. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4115. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4116. ext_position,
  4117. homing_feedrate[X_AXIS]/60,
  4118. active_extruder);
  4119. st_synchronize();
  4120. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4121. for( n=0; n<n_samples; n++) {
  4122. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4123. if ( n_legs) {
  4124. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4125. int rotational_direction, l;
  4126. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4127. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4128. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4129. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4130. //SERIAL_ECHOPAIR(" theta: ",theta);
  4131. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4132. //SERIAL_PROTOCOLLNPGM("");
  4133. for( l=0; l<n_legs-1; l++) {
  4134. if (rotational_direction==1)
  4135. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4136. else
  4137. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4138. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4139. if ( radius<0.0 )
  4140. radius = -radius;
  4141. X_current = X_probe_location + cos(theta) * radius;
  4142. Y_current = Y_probe_location + sin(theta) * radius;
  4143. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4144. X_current = X_MIN_POS;
  4145. if ( X_current>X_MAX_POS)
  4146. X_current = X_MAX_POS;
  4147. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4148. Y_current = Y_MIN_POS;
  4149. if ( Y_current>Y_MAX_POS)
  4150. Y_current = Y_MAX_POS;
  4151. if (verbose_level>3 ) {
  4152. SERIAL_ECHOPAIR("x: ", X_current);
  4153. SERIAL_ECHOPAIR("y: ", Y_current);
  4154. SERIAL_PROTOCOLLNPGM("");
  4155. }
  4156. do_blocking_move_to( X_current, Y_current, Z_current );
  4157. }
  4158. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4159. }
  4160. setup_for_endstop_move();
  4161. run_z_probe();
  4162. sample_set[n] = current_position[Z_AXIS];
  4163. //
  4164. // Get the current mean for the data points we have so far
  4165. //
  4166. sum=0.0;
  4167. for( j=0; j<=n; j++) {
  4168. sum = sum + sample_set[j];
  4169. }
  4170. mean = sum / (double (n+1));
  4171. //
  4172. // Now, use that mean to calculate the standard deviation for the
  4173. // data points we have so far
  4174. //
  4175. sum=0.0;
  4176. for( j=0; j<=n; j++) {
  4177. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4178. }
  4179. sigma = sqrt( sum / (double (n+1)) );
  4180. if (verbose_level > 1) {
  4181. SERIAL_PROTOCOL(n+1);
  4182. SERIAL_PROTOCOL(" of ");
  4183. SERIAL_PROTOCOL(n_samples);
  4184. SERIAL_PROTOCOLPGM(" z: ");
  4185. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4186. }
  4187. if (verbose_level > 2) {
  4188. SERIAL_PROTOCOL(" mean: ");
  4189. SERIAL_PROTOCOL_F(mean,6);
  4190. SERIAL_PROTOCOL(" sigma: ");
  4191. SERIAL_PROTOCOL_F(sigma,6);
  4192. }
  4193. if (verbose_level > 0)
  4194. SERIAL_PROTOCOLPGM("\n");
  4195. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4196. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4197. st_synchronize();
  4198. }
  4199. delay(1000);
  4200. clean_up_after_endstop_move();
  4201. // enable_endstops(true);
  4202. if (verbose_level > 0) {
  4203. SERIAL_PROTOCOLPGM("Mean: ");
  4204. SERIAL_PROTOCOL_F(mean, 6);
  4205. SERIAL_PROTOCOLPGM("\n");
  4206. }
  4207. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4208. SERIAL_PROTOCOL_F(sigma, 6);
  4209. SERIAL_PROTOCOLPGM("\n\n");
  4210. Sigma_Exit:
  4211. break;
  4212. }
  4213. #endif // Z_PROBE_REPEATABILITY_TEST
  4214. #endif // ENABLE_AUTO_BED_LEVELING
  4215. case 104: // M104
  4216. if(setTargetedHotend(104)){
  4217. break;
  4218. }
  4219. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4220. setWatch();
  4221. break;
  4222. case 112: // M112 -Emergency Stop
  4223. kill("", 3);
  4224. break;
  4225. case 140: // M140 set bed temp
  4226. if (code_seen('S')) setTargetBed(code_value());
  4227. break;
  4228. case 105 : // M105
  4229. if(setTargetedHotend(105)){
  4230. break;
  4231. }
  4232. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4233. SERIAL_PROTOCOLPGM("ok T:");
  4234. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4235. SERIAL_PROTOCOLPGM(" /");
  4236. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4237. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4238. SERIAL_PROTOCOLPGM(" B:");
  4239. SERIAL_PROTOCOL_F(degBed(),1);
  4240. SERIAL_PROTOCOLPGM(" /");
  4241. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4242. #endif //TEMP_BED_PIN
  4243. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4244. SERIAL_PROTOCOLPGM(" T");
  4245. SERIAL_PROTOCOL(cur_extruder);
  4246. SERIAL_PROTOCOLPGM(":");
  4247. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4248. SERIAL_PROTOCOLPGM(" /");
  4249. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4250. }
  4251. #else
  4252. SERIAL_ERROR_START;
  4253. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4254. #endif
  4255. SERIAL_PROTOCOLPGM(" @:");
  4256. #ifdef EXTRUDER_WATTS
  4257. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4258. SERIAL_PROTOCOLPGM("W");
  4259. #else
  4260. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4261. #endif
  4262. SERIAL_PROTOCOLPGM(" B@:");
  4263. #ifdef BED_WATTS
  4264. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4265. SERIAL_PROTOCOLPGM("W");
  4266. #else
  4267. SERIAL_PROTOCOL(getHeaterPower(-1));
  4268. #endif
  4269. #ifdef PINDA_THERMISTOR
  4270. SERIAL_PROTOCOLPGM(" P:");
  4271. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4272. #endif //PINDA_THERMISTOR
  4273. #ifdef AMBIENT_THERMISTOR
  4274. SERIAL_PROTOCOLPGM(" A:");
  4275. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4276. #endif //AMBIENT_THERMISTOR
  4277. #ifdef SHOW_TEMP_ADC_VALUES
  4278. {float raw = 0.0;
  4279. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4280. SERIAL_PROTOCOLPGM(" ADC B:");
  4281. SERIAL_PROTOCOL_F(degBed(),1);
  4282. SERIAL_PROTOCOLPGM("C->");
  4283. raw = rawBedTemp();
  4284. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4285. SERIAL_PROTOCOLPGM(" Rb->");
  4286. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4287. SERIAL_PROTOCOLPGM(" Rxb->");
  4288. SERIAL_PROTOCOL_F(raw, 5);
  4289. #endif
  4290. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4291. SERIAL_PROTOCOLPGM(" T");
  4292. SERIAL_PROTOCOL(cur_extruder);
  4293. SERIAL_PROTOCOLPGM(":");
  4294. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4295. SERIAL_PROTOCOLPGM("C->");
  4296. raw = rawHotendTemp(cur_extruder);
  4297. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4298. SERIAL_PROTOCOLPGM(" Rt");
  4299. SERIAL_PROTOCOL(cur_extruder);
  4300. SERIAL_PROTOCOLPGM("->");
  4301. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4302. SERIAL_PROTOCOLPGM(" Rx");
  4303. SERIAL_PROTOCOL(cur_extruder);
  4304. SERIAL_PROTOCOLPGM("->");
  4305. SERIAL_PROTOCOL_F(raw, 5);
  4306. }}
  4307. #endif
  4308. SERIAL_PROTOCOLLN("");
  4309. KEEPALIVE_STATE(NOT_BUSY);
  4310. return;
  4311. break;
  4312. case 109:
  4313. {// M109 - Wait for extruder heater to reach target.
  4314. if(setTargetedHotend(109)){
  4315. break;
  4316. }
  4317. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4318. heating_status = 1;
  4319. if (farm_mode) { prusa_statistics(1); };
  4320. #ifdef AUTOTEMP
  4321. autotemp_enabled=false;
  4322. #endif
  4323. if (code_seen('S')) {
  4324. setTargetHotend(code_value(), tmp_extruder);
  4325. CooldownNoWait = true;
  4326. } else if (code_seen('R')) {
  4327. setTargetHotend(code_value(), tmp_extruder);
  4328. CooldownNoWait = false;
  4329. }
  4330. #ifdef AUTOTEMP
  4331. if (code_seen('S')) autotemp_min=code_value();
  4332. if (code_seen('B')) autotemp_max=code_value();
  4333. if (code_seen('F'))
  4334. {
  4335. autotemp_factor=code_value();
  4336. autotemp_enabled=true;
  4337. }
  4338. #endif
  4339. setWatch();
  4340. codenum = millis();
  4341. /* See if we are heating up or cooling down */
  4342. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4343. KEEPALIVE_STATE(NOT_BUSY);
  4344. cancel_heatup = false;
  4345. wait_for_heater(codenum); //loops until target temperature is reached
  4346. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4347. KEEPALIVE_STATE(IN_HANDLER);
  4348. heating_status = 2;
  4349. if (farm_mode) { prusa_statistics(2); };
  4350. //starttime=millis();
  4351. previous_millis_cmd = millis();
  4352. }
  4353. break;
  4354. case 190: // M190 - Wait for bed heater to reach target.
  4355. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4356. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4357. heating_status = 3;
  4358. if (farm_mode) { prusa_statistics(1); };
  4359. if (code_seen('S'))
  4360. {
  4361. setTargetBed(code_value());
  4362. CooldownNoWait = true;
  4363. }
  4364. else if (code_seen('R'))
  4365. {
  4366. setTargetBed(code_value());
  4367. CooldownNoWait = false;
  4368. }
  4369. codenum = millis();
  4370. cancel_heatup = false;
  4371. target_direction = isHeatingBed(); // true if heating, false if cooling
  4372. KEEPALIVE_STATE(NOT_BUSY);
  4373. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4374. {
  4375. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4376. {
  4377. if (!farm_mode) {
  4378. float tt = degHotend(active_extruder);
  4379. SERIAL_PROTOCOLPGM("T:");
  4380. SERIAL_PROTOCOL(tt);
  4381. SERIAL_PROTOCOLPGM(" E:");
  4382. SERIAL_PROTOCOL((int)active_extruder);
  4383. SERIAL_PROTOCOLPGM(" B:");
  4384. SERIAL_PROTOCOL_F(degBed(), 1);
  4385. SERIAL_PROTOCOLLN("");
  4386. }
  4387. codenum = millis();
  4388. }
  4389. manage_heater();
  4390. manage_inactivity();
  4391. lcd_update();
  4392. }
  4393. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4394. KEEPALIVE_STATE(IN_HANDLER);
  4395. heating_status = 4;
  4396. previous_millis_cmd = millis();
  4397. #endif
  4398. break;
  4399. #if defined(FAN_PIN) && FAN_PIN > -1
  4400. case 106: //M106 Fan On
  4401. if (code_seen('S')){
  4402. fanSpeed=constrain(code_value(),0,255);
  4403. }
  4404. else {
  4405. fanSpeed=255;
  4406. }
  4407. break;
  4408. case 107: //M107 Fan Off
  4409. fanSpeed = 0;
  4410. break;
  4411. #endif //FAN_PIN
  4412. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4413. case 80: // M80 - Turn on Power Supply
  4414. SET_OUTPUT(PS_ON_PIN); //GND
  4415. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4416. // If you have a switch on suicide pin, this is useful
  4417. // if you want to start another print with suicide feature after
  4418. // a print without suicide...
  4419. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4420. SET_OUTPUT(SUICIDE_PIN);
  4421. WRITE(SUICIDE_PIN, HIGH);
  4422. #endif
  4423. #ifdef ULTIPANEL
  4424. powersupply = true;
  4425. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4426. lcd_update();
  4427. #endif
  4428. break;
  4429. #endif
  4430. case 81: // M81 - Turn off Power Supply
  4431. disable_heater();
  4432. st_synchronize();
  4433. disable_e0();
  4434. disable_e1();
  4435. disable_e2();
  4436. finishAndDisableSteppers();
  4437. fanSpeed = 0;
  4438. delay(1000); // Wait a little before to switch off
  4439. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4440. st_synchronize();
  4441. suicide();
  4442. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4443. SET_OUTPUT(PS_ON_PIN);
  4444. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4445. #endif
  4446. #ifdef ULTIPANEL
  4447. powersupply = false;
  4448. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4449. /*
  4450. MACHNAME = "Prusa i3"
  4451. MSGOFF = "Vypnuto"
  4452. "Prusai3"" ""vypnuto""."
  4453. "Prusa i3"" "_T(MSG_ALL)[lang_selected][50]"."
  4454. */
  4455. lcd_update();
  4456. #endif
  4457. break;
  4458. case 82:
  4459. axis_relative_modes[3] = false;
  4460. break;
  4461. case 83:
  4462. axis_relative_modes[3] = true;
  4463. break;
  4464. case 18: //compatibility
  4465. case 84: // M84
  4466. if(code_seen('S')){
  4467. stepper_inactive_time = code_value() * 1000;
  4468. }
  4469. else
  4470. {
  4471. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4472. if(all_axis)
  4473. {
  4474. st_synchronize();
  4475. disable_e0();
  4476. disable_e1();
  4477. disable_e2();
  4478. finishAndDisableSteppers();
  4479. }
  4480. else
  4481. {
  4482. st_synchronize();
  4483. if (code_seen('X')) disable_x();
  4484. if (code_seen('Y')) disable_y();
  4485. if (code_seen('Z')) disable_z();
  4486. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4487. if (code_seen('E')) {
  4488. disable_e0();
  4489. disable_e1();
  4490. disable_e2();
  4491. }
  4492. #endif
  4493. }
  4494. }
  4495. snmm_filaments_used = 0;
  4496. break;
  4497. case 85: // M85
  4498. if(code_seen('S')) {
  4499. max_inactive_time = code_value() * 1000;
  4500. }
  4501. break;
  4502. case 92: // M92
  4503. for(int8_t i=0; i < NUM_AXIS; i++)
  4504. {
  4505. if(code_seen(axis_codes[i]))
  4506. {
  4507. if(i == 3) { // E
  4508. float value = code_value();
  4509. if(value < 20.0) {
  4510. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4511. max_jerk[E_AXIS] *= factor;
  4512. max_feedrate[i] *= factor;
  4513. axis_steps_per_sqr_second[i] *= factor;
  4514. }
  4515. axis_steps_per_unit[i] = value;
  4516. }
  4517. else {
  4518. axis_steps_per_unit[i] = code_value();
  4519. }
  4520. }
  4521. }
  4522. break;
  4523. case 110: // M110 - reset line pos
  4524. if (code_seen('N'))
  4525. gcode_LastN = code_value_long();
  4526. break;
  4527. #ifdef HOST_KEEPALIVE_FEATURE
  4528. case 113: // M113 - Get or set Host Keepalive interval
  4529. if (code_seen('S')) {
  4530. host_keepalive_interval = (uint8_t)code_value_short();
  4531. // NOMORE(host_keepalive_interval, 60);
  4532. }
  4533. else {
  4534. SERIAL_ECHO_START;
  4535. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4536. SERIAL_PROTOCOLLN("");
  4537. }
  4538. break;
  4539. #endif
  4540. case 115: // M115
  4541. if (code_seen('V')) {
  4542. // Report the Prusa version number.
  4543. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4544. } else if (code_seen('U')) {
  4545. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4546. // pause the print and ask the user to upgrade the firmware.
  4547. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4548. } else {
  4549. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4550. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4551. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4552. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4553. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4554. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4555. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4556. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4557. SERIAL_ECHOPGM(" UUID:");
  4558. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4559. }
  4560. break;
  4561. /* case 117: // M117 display message
  4562. starpos = (strchr(strchr_pointer + 5,'*'));
  4563. if(starpos!=NULL)
  4564. *(starpos)='\0';
  4565. lcd_setstatus(strchr_pointer + 5);
  4566. break;*/
  4567. case 114: // M114
  4568. gcode_M114();
  4569. break;
  4570. case 120: // M120
  4571. enable_endstops(false) ;
  4572. break;
  4573. case 121: // M121
  4574. enable_endstops(true) ;
  4575. break;
  4576. case 119: // M119
  4577. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4578. SERIAL_PROTOCOLLN("");
  4579. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4580. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4581. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4582. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4583. }else{
  4584. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4585. }
  4586. SERIAL_PROTOCOLLN("");
  4587. #endif
  4588. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4589. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4590. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4591. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4592. }else{
  4593. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4594. }
  4595. SERIAL_PROTOCOLLN("");
  4596. #endif
  4597. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4598. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4599. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4600. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4601. }else{
  4602. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4603. }
  4604. SERIAL_PROTOCOLLN("");
  4605. #endif
  4606. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4607. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4608. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4609. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4610. }else{
  4611. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4612. }
  4613. SERIAL_PROTOCOLLN("");
  4614. #endif
  4615. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4616. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4617. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4618. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4619. }else{
  4620. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4621. }
  4622. SERIAL_PROTOCOLLN("");
  4623. #endif
  4624. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4625. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4626. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4627. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4628. }else{
  4629. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4630. }
  4631. SERIAL_PROTOCOLLN("");
  4632. #endif
  4633. break;
  4634. //TODO: update for all axis, use for loop
  4635. #ifdef BLINKM
  4636. case 150: // M150
  4637. {
  4638. byte red;
  4639. byte grn;
  4640. byte blu;
  4641. if(code_seen('R')) red = code_value();
  4642. if(code_seen('U')) grn = code_value();
  4643. if(code_seen('B')) blu = code_value();
  4644. SendColors(red,grn,blu);
  4645. }
  4646. break;
  4647. #endif //BLINKM
  4648. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4649. {
  4650. tmp_extruder = active_extruder;
  4651. if(code_seen('T')) {
  4652. tmp_extruder = code_value();
  4653. if(tmp_extruder >= EXTRUDERS) {
  4654. SERIAL_ECHO_START;
  4655. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4656. break;
  4657. }
  4658. }
  4659. float area = .0;
  4660. if(code_seen('D')) {
  4661. float diameter = (float)code_value();
  4662. if (diameter == 0.0) {
  4663. // setting any extruder filament size disables volumetric on the assumption that
  4664. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4665. // for all extruders
  4666. volumetric_enabled = false;
  4667. } else {
  4668. filament_size[tmp_extruder] = (float)code_value();
  4669. // make sure all extruders have some sane value for the filament size
  4670. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4671. #if EXTRUDERS > 1
  4672. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4673. #if EXTRUDERS > 2
  4674. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4675. #endif
  4676. #endif
  4677. volumetric_enabled = true;
  4678. }
  4679. } else {
  4680. //reserved for setting filament diameter via UFID or filament measuring device
  4681. break;
  4682. }
  4683. calculate_extruder_multipliers();
  4684. }
  4685. break;
  4686. case 201: // M201
  4687. for(int8_t i=0; i < NUM_AXIS; i++)
  4688. {
  4689. if(code_seen(axis_codes[i]))
  4690. {
  4691. max_acceleration_units_per_sq_second[i] = code_value();
  4692. }
  4693. }
  4694. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4695. reset_acceleration_rates();
  4696. break;
  4697. #if 0 // Not used for Sprinter/grbl gen6
  4698. case 202: // M202
  4699. for(int8_t i=0; i < NUM_AXIS; i++) {
  4700. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4701. }
  4702. break;
  4703. #endif
  4704. case 203: // M203 max feedrate mm/sec
  4705. for(int8_t i=0; i < NUM_AXIS; i++) {
  4706. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4707. }
  4708. break;
  4709. case 204: // M204 acclereration S normal moves T filmanent only moves
  4710. {
  4711. if(code_seen('S')) acceleration = code_value() ;
  4712. if(code_seen('T')) retract_acceleration = code_value() ;
  4713. }
  4714. break;
  4715. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4716. {
  4717. if(code_seen('S')) minimumfeedrate = code_value();
  4718. if(code_seen('T')) mintravelfeedrate = code_value();
  4719. if(code_seen('B')) minsegmenttime = code_value() ;
  4720. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4721. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4722. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4723. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4724. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4725. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4726. }
  4727. break;
  4728. case 206: // M206 additional homing offset
  4729. for(int8_t i=0; i < 3; i++)
  4730. {
  4731. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4732. }
  4733. break;
  4734. #ifdef FWRETRACT
  4735. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4736. {
  4737. if(code_seen('S'))
  4738. {
  4739. retract_length = code_value() ;
  4740. }
  4741. if(code_seen('F'))
  4742. {
  4743. retract_feedrate = code_value()/60 ;
  4744. }
  4745. if(code_seen('Z'))
  4746. {
  4747. retract_zlift = code_value() ;
  4748. }
  4749. }break;
  4750. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4751. {
  4752. if(code_seen('S'))
  4753. {
  4754. retract_recover_length = code_value() ;
  4755. }
  4756. if(code_seen('F'))
  4757. {
  4758. retract_recover_feedrate = code_value()/60 ;
  4759. }
  4760. }break;
  4761. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4762. {
  4763. if(code_seen('S'))
  4764. {
  4765. int t= code_value() ;
  4766. switch(t)
  4767. {
  4768. case 0:
  4769. {
  4770. autoretract_enabled=false;
  4771. retracted[0]=false;
  4772. #if EXTRUDERS > 1
  4773. retracted[1]=false;
  4774. #endif
  4775. #if EXTRUDERS > 2
  4776. retracted[2]=false;
  4777. #endif
  4778. }break;
  4779. case 1:
  4780. {
  4781. autoretract_enabled=true;
  4782. retracted[0]=false;
  4783. #if EXTRUDERS > 1
  4784. retracted[1]=false;
  4785. #endif
  4786. #if EXTRUDERS > 2
  4787. retracted[2]=false;
  4788. #endif
  4789. }break;
  4790. default:
  4791. SERIAL_ECHO_START;
  4792. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4793. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4794. SERIAL_ECHOLNPGM("\"(1)");
  4795. }
  4796. }
  4797. }break;
  4798. #endif // FWRETRACT
  4799. #if EXTRUDERS > 1
  4800. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4801. {
  4802. if(setTargetedHotend(218)){
  4803. break;
  4804. }
  4805. if(code_seen('X'))
  4806. {
  4807. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4808. }
  4809. if(code_seen('Y'))
  4810. {
  4811. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4812. }
  4813. SERIAL_ECHO_START;
  4814. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4815. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4816. {
  4817. SERIAL_ECHO(" ");
  4818. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4819. SERIAL_ECHO(",");
  4820. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4821. }
  4822. SERIAL_ECHOLN("");
  4823. }break;
  4824. #endif
  4825. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4826. {
  4827. if(code_seen('S'))
  4828. {
  4829. feedmultiply = code_value() ;
  4830. }
  4831. }
  4832. break;
  4833. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4834. {
  4835. if(code_seen('S'))
  4836. {
  4837. int tmp_code = code_value();
  4838. if (code_seen('T'))
  4839. {
  4840. if(setTargetedHotend(221)){
  4841. break;
  4842. }
  4843. extruder_multiply[tmp_extruder] = tmp_code;
  4844. }
  4845. else
  4846. {
  4847. extrudemultiply = tmp_code ;
  4848. }
  4849. }
  4850. calculate_extruder_multipliers();
  4851. }
  4852. break;
  4853. #ifndef _DISABLE_M42_M226
  4854. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4855. {
  4856. if(code_seen('P')){
  4857. int pin_number = code_value(); // pin number
  4858. int pin_state = -1; // required pin state - default is inverted
  4859. if(code_seen('S')) pin_state = code_value(); // required pin state
  4860. if(pin_state >= -1 && pin_state <= 1){
  4861. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4862. {
  4863. if (sensitive_pins[i] == pin_number)
  4864. {
  4865. pin_number = -1;
  4866. break;
  4867. }
  4868. }
  4869. if (pin_number > -1)
  4870. {
  4871. int target = LOW;
  4872. st_synchronize();
  4873. pinMode(pin_number, INPUT);
  4874. switch(pin_state){
  4875. case 1:
  4876. target = HIGH;
  4877. break;
  4878. case 0:
  4879. target = LOW;
  4880. break;
  4881. case -1:
  4882. target = !digitalRead(pin_number);
  4883. break;
  4884. }
  4885. while(digitalRead(pin_number) != target){
  4886. manage_heater();
  4887. manage_inactivity();
  4888. lcd_update();
  4889. }
  4890. }
  4891. }
  4892. }
  4893. }
  4894. break;
  4895. #endif //_DISABLE_M42_M226
  4896. #if NUM_SERVOS > 0
  4897. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4898. {
  4899. int servo_index = -1;
  4900. int servo_position = 0;
  4901. if (code_seen('P'))
  4902. servo_index = code_value();
  4903. if (code_seen('S')) {
  4904. servo_position = code_value();
  4905. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4906. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4907. servos[servo_index].attach(0);
  4908. #endif
  4909. servos[servo_index].write(servo_position);
  4910. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4911. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4912. servos[servo_index].detach();
  4913. #endif
  4914. }
  4915. else {
  4916. SERIAL_ECHO_START;
  4917. SERIAL_ECHO("Servo ");
  4918. SERIAL_ECHO(servo_index);
  4919. SERIAL_ECHOLN(" out of range");
  4920. }
  4921. }
  4922. else if (servo_index >= 0) {
  4923. SERIAL_PROTOCOL(_T(MSG_OK));
  4924. SERIAL_PROTOCOL(" Servo ");
  4925. SERIAL_PROTOCOL(servo_index);
  4926. SERIAL_PROTOCOL(": ");
  4927. SERIAL_PROTOCOL(servos[servo_index].read());
  4928. SERIAL_PROTOCOLLN("");
  4929. }
  4930. }
  4931. break;
  4932. #endif // NUM_SERVOS > 0
  4933. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4934. case 300: // M300
  4935. {
  4936. int beepS = code_seen('S') ? code_value() : 110;
  4937. int beepP = code_seen('P') ? code_value() : 1000;
  4938. if (beepS > 0)
  4939. {
  4940. #if BEEPER > 0
  4941. tone(BEEPER, beepS);
  4942. delay(beepP);
  4943. noTone(BEEPER);
  4944. #elif defined(ULTRALCD)
  4945. lcd_buzz(beepS, beepP);
  4946. #elif defined(LCD_USE_I2C_BUZZER)
  4947. lcd_buzz(beepP, beepS);
  4948. #endif
  4949. }
  4950. else
  4951. {
  4952. delay(beepP);
  4953. }
  4954. }
  4955. break;
  4956. #endif // M300
  4957. #ifdef PIDTEMP
  4958. case 301: // M301
  4959. {
  4960. if(code_seen('P')) Kp = code_value();
  4961. if(code_seen('I')) Ki = scalePID_i(code_value());
  4962. if(code_seen('D')) Kd = scalePID_d(code_value());
  4963. #ifdef PID_ADD_EXTRUSION_RATE
  4964. if(code_seen('C')) Kc = code_value();
  4965. #endif
  4966. updatePID();
  4967. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  4968. SERIAL_PROTOCOL(" p:");
  4969. SERIAL_PROTOCOL(Kp);
  4970. SERIAL_PROTOCOL(" i:");
  4971. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4972. SERIAL_PROTOCOL(" d:");
  4973. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4974. #ifdef PID_ADD_EXTRUSION_RATE
  4975. SERIAL_PROTOCOL(" c:");
  4976. //Kc does not have scaling applied above, or in resetting defaults
  4977. SERIAL_PROTOCOL(Kc);
  4978. #endif
  4979. SERIAL_PROTOCOLLN("");
  4980. }
  4981. break;
  4982. #endif //PIDTEMP
  4983. #ifdef PIDTEMPBED
  4984. case 304: // M304
  4985. {
  4986. if(code_seen('P')) bedKp = code_value();
  4987. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4988. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4989. updatePID();
  4990. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  4991. SERIAL_PROTOCOL(" p:");
  4992. SERIAL_PROTOCOL(bedKp);
  4993. SERIAL_PROTOCOL(" i:");
  4994. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4995. SERIAL_PROTOCOL(" d:");
  4996. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4997. SERIAL_PROTOCOLLN("");
  4998. }
  4999. break;
  5000. #endif //PIDTEMP
  5001. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5002. {
  5003. #ifdef CHDK
  5004. SET_OUTPUT(CHDK);
  5005. WRITE(CHDK, HIGH);
  5006. chdkHigh = millis();
  5007. chdkActive = true;
  5008. #else
  5009. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5010. const uint8_t NUM_PULSES=16;
  5011. const float PULSE_LENGTH=0.01524;
  5012. for(int i=0; i < NUM_PULSES; i++) {
  5013. WRITE(PHOTOGRAPH_PIN, HIGH);
  5014. _delay_ms(PULSE_LENGTH);
  5015. WRITE(PHOTOGRAPH_PIN, LOW);
  5016. _delay_ms(PULSE_LENGTH);
  5017. }
  5018. delay(7.33);
  5019. for(int i=0; i < NUM_PULSES; i++) {
  5020. WRITE(PHOTOGRAPH_PIN, HIGH);
  5021. _delay_ms(PULSE_LENGTH);
  5022. WRITE(PHOTOGRAPH_PIN, LOW);
  5023. _delay_ms(PULSE_LENGTH);
  5024. }
  5025. #endif
  5026. #endif //chdk end if
  5027. }
  5028. break;
  5029. #ifdef DOGLCD
  5030. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5031. {
  5032. if (code_seen('C')) {
  5033. lcd_setcontrast( ((int)code_value())&63 );
  5034. }
  5035. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5036. SERIAL_PROTOCOL(lcd_contrast);
  5037. SERIAL_PROTOCOLLN("");
  5038. }
  5039. break;
  5040. #endif
  5041. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5042. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5043. {
  5044. float temp = .0;
  5045. if (code_seen('S')) temp=code_value();
  5046. set_extrude_min_temp(temp);
  5047. }
  5048. break;
  5049. #endif
  5050. case 303: // M303 PID autotune
  5051. {
  5052. float temp = 150.0;
  5053. int e=0;
  5054. int c=5;
  5055. if (code_seen('E')) e=code_value();
  5056. if (e<0)
  5057. temp=70;
  5058. if (code_seen('S')) temp=code_value();
  5059. if (code_seen('C')) c=code_value();
  5060. PID_autotune(temp, e, c);
  5061. }
  5062. break;
  5063. case 400: // M400 finish all moves
  5064. {
  5065. st_synchronize();
  5066. }
  5067. break;
  5068. case 500: // M500 Store settings in EEPROM
  5069. {
  5070. Config_StoreSettings(EEPROM_OFFSET);
  5071. }
  5072. break;
  5073. case 501: // M501 Read settings from EEPROM
  5074. {
  5075. Config_RetrieveSettings(EEPROM_OFFSET);
  5076. }
  5077. break;
  5078. case 502: // M502 Revert to default settings
  5079. {
  5080. Config_ResetDefault();
  5081. }
  5082. break;
  5083. case 503: // M503 print settings currently in memory
  5084. {
  5085. Config_PrintSettings();
  5086. }
  5087. break;
  5088. case 509: //M509 Force language selection
  5089. {
  5090. lcd_force_language_selection();
  5091. SERIAL_ECHO_START;
  5092. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5093. }
  5094. break;
  5095. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5096. case 540:
  5097. {
  5098. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5099. }
  5100. break;
  5101. #endif
  5102. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5103. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5104. {
  5105. float value;
  5106. if (code_seen('Z'))
  5107. {
  5108. value = code_value();
  5109. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5110. {
  5111. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5112. SERIAL_ECHO_START;
  5113. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5114. SERIAL_PROTOCOLLN("");
  5115. }
  5116. else
  5117. {
  5118. SERIAL_ECHO_START;
  5119. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5120. SERIAL_ECHORPGM(MSG_Z_MIN);
  5121. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5122. SERIAL_ECHORPGM(MSG_Z_MAX);
  5123. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5124. SERIAL_PROTOCOLLN("");
  5125. }
  5126. }
  5127. else
  5128. {
  5129. SERIAL_ECHO_START;
  5130. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5131. SERIAL_ECHO(-zprobe_zoffset);
  5132. SERIAL_PROTOCOLLN("");
  5133. }
  5134. break;
  5135. }
  5136. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5137. #ifdef FILAMENTCHANGEENABLE
  5138. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5139. {
  5140. #ifdef PAT9125
  5141. bool old_fsensor_enabled = fsensor_enabled;
  5142. fsensor_enabled = false; //temporary solution for unexpected restarting
  5143. #endif //PAT9125
  5144. st_synchronize();
  5145. float target[4];
  5146. float lastpos[4];
  5147. if (farm_mode)
  5148. {
  5149. prusa_statistics(22);
  5150. }
  5151. feedmultiplyBckp=feedmultiply;
  5152. int8_t TooLowZ = 0;
  5153. float HotendTempBckp = degTargetHotend(active_extruder);
  5154. int fanSpeedBckp = fanSpeed;
  5155. target[X_AXIS]=current_position[X_AXIS];
  5156. target[Y_AXIS]=current_position[Y_AXIS];
  5157. target[Z_AXIS]=current_position[Z_AXIS];
  5158. target[E_AXIS]=current_position[E_AXIS];
  5159. lastpos[X_AXIS]=current_position[X_AXIS];
  5160. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5161. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5162. lastpos[E_AXIS]=current_position[E_AXIS];
  5163. //Restract extruder
  5164. if(code_seen('E'))
  5165. {
  5166. target[E_AXIS]+= code_value();
  5167. }
  5168. else
  5169. {
  5170. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5171. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5172. #endif
  5173. }
  5174. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5175. //Lift Z
  5176. if(code_seen('Z'))
  5177. {
  5178. target[Z_AXIS]+= code_value();
  5179. }
  5180. else
  5181. {
  5182. #ifdef FILAMENTCHANGE_ZADD
  5183. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5184. if(target[Z_AXIS] < 10){
  5185. target[Z_AXIS]+= 10 ;
  5186. TooLowZ = 1;
  5187. }else{
  5188. TooLowZ = 0;
  5189. }
  5190. #endif
  5191. }
  5192. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5193. //Move XY to side
  5194. if(code_seen('X'))
  5195. {
  5196. target[X_AXIS]+= code_value();
  5197. }
  5198. else
  5199. {
  5200. #ifdef FILAMENTCHANGE_XPOS
  5201. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5202. #endif
  5203. }
  5204. if(code_seen('Y'))
  5205. {
  5206. target[Y_AXIS]= code_value();
  5207. }
  5208. else
  5209. {
  5210. #ifdef FILAMENTCHANGE_YPOS
  5211. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5212. #endif
  5213. }
  5214. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5215. st_synchronize();
  5216. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5217. uint8_t cnt = 0;
  5218. int counterBeep = 0;
  5219. fanSpeed = 0;
  5220. unsigned long waiting_start_time = millis();
  5221. uint8_t wait_for_user_state = 0;
  5222. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5223. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5224. //cnt++;
  5225. manage_heater();
  5226. manage_inactivity(true);
  5227. /*#ifdef SNMM
  5228. target[E_AXIS] += 0.002;
  5229. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5230. #endif // SNMM*/
  5231. //if (cnt == 0)
  5232. {
  5233. #if BEEPER > 0
  5234. if (counterBeep == 500) {
  5235. counterBeep = 0;
  5236. }
  5237. SET_OUTPUT(BEEPER);
  5238. if (counterBeep == 0) {
  5239. WRITE(BEEPER, HIGH);
  5240. }
  5241. if (counterBeep == 20) {
  5242. WRITE(BEEPER, LOW);
  5243. }
  5244. counterBeep++;
  5245. #else
  5246. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5247. lcd_buzz(1000 / 6, 100);
  5248. #else
  5249. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5250. #endif
  5251. #endif
  5252. }
  5253. switch (wait_for_user_state) {
  5254. case 0:
  5255. delay_keep_alive(4);
  5256. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5257. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5258. wait_for_user_state = 1;
  5259. setTargetHotend(0, 0);
  5260. setTargetHotend(0, 1);
  5261. setTargetHotend(0, 2);
  5262. st_synchronize();
  5263. disable_e0();
  5264. disable_e1();
  5265. disable_e2();
  5266. }
  5267. break;
  5268. case 1:
  5269. delay_keep_alive(4);
  5270. if (lcd_clicked()) {
  5271. setTargetHotend(HotendTempBckp, active_extruder);
  5272. lcd_wait_for_heater();
  5273. wait_for_user_state = 2;
  5274. }
  5275. break;
  5276. case 2:
  5277. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5278. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5279. waiting_start_time = millis();
  5280. wait_for_user_state = 0;
  5281. }
  5282. else {
  5283. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5284. lcd.setCursor(1, 4);
  5285. lcd.print(ftostr3(degHotend(active_extruder)));
  5286. }
  5287. break;
  5288. }
  5289. }
  5290. WRITE(BEEPER, LOW);
  5291. lcd_change_fil_state = 0;
  5292. // Unload filament
  5293. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5294. KEEPALIVE_STATE(IN_HANDLER);
  5295. custom_message = true;
  5296. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5297. if (code_seen('L'))
  5298. {
  5299. target[E_AXIS] += code_value();
  5300. }
  5301. else
  5302. {
  5303. #ifdef SNMM
  5304. #else
  5305. #ifdef FILAMENTCHANGE_FINALRETRACT
  5306. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5307. #endif
  5308. #endif // SNMM
  5309. }
  5310. #ifdef SNMM
  5311. target[E_AXIS] += 12;
  5312. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5313. target[E_AXIS] += 6;
  5314. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5315. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5316. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5317. st_synchronize();
  5318. target[E_AXIS] += (FIL_COOLING);
  5319. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5320. target[E_AXIS] += (FIL_COOLING*-1);
  5321. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5322. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5323. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5324. st_synchronize();
  5325. #else
  5326. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5327. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5328. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5329. st_synchronize();
  5330. #ifdef TMC2130
  5331. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5332. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5333. #else
  5334. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5335. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5336. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5337. #endif //TMC2130
  5338. target[E_AXIS] -= 45;
  5339. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5340. st_synchronize();
  5341. target[E_AXIS] -= 15;
  5342. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5343. st_synchronize();
  5344. target[E_AXIS] -= 20;
  5345. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5346. st_synchronize();
  5347. #ifdef TMC2130
  5348. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5349. #else
  5350. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5351. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5352. else st_current_set(2, tmp_motor_loud[2]);
  5353. #endif //TMC2130
  5354. #endif // SNMM
  5355. //finish moves
  5356. st_synchronize();
  5357. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5358. //disable extruder steppers so filament can be removed
  5359. disable_e0();
  5360. disable_e1();
  5361. disable_e2();
  5362. delay(100);
  5363. WRITE(BEEPER, HIGH);
  5364. counterBeep = 0;
  5365. while(!lcd_clicked() && (counterBeep < 50)) {
  5366. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5367. delay_keep_alive(100);
  5368. counterBeep++;
  5369. }
  5370. WRITE(BEEPER, LOW);
  5371. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5372. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5373. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5374. //lcd_return_to_status();
  5375. lcd_update_enable(true);
  5376. //Wait for user to insert filament
  5377. lcd_wait_interact();
  5378. //load_filament_time = millis();
  5379. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5380. #ifdef PAT9125
  5381. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5382. #endif //PAT9125
  5383. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5384. while(!lcd_clicked())
  5385. {
  5386. manage_heater();
  5387. manage_inactivity(true);
  5388. #ifdef PAT9125
  5389. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5390. {
  5391. tone(BEEPER, 1000);
  5392. delay_keep_alive(50);
  5393. noTone(BEEPER);
  5394. break;
  5395. }
  5396. #endif //PAT9125
  5397. /*#ifdef SNMM
  5398. target[E_AXIS] += 0.002;
  5399. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5400. #endif // SNMM*/
  5401. }
  5402. #ifdef PAT9125
  5403. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5404. #endif //PAT9125
  5405. //WRITE(BEEPER, LOW);
  5406. KEEPALIVE_STATE(IN_HANDLER);
  5407. #ifdef SNMM
  5408. display_loading();
  5409. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5410. do {
  5411. target[E_AXIS] += 0.002;
  5412. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5413. delay_keep_alive(2);
  5414. } while (!lcd_clicked());
  5415. KEEPALIVE_STATE(IN_HANDLER);
  5416. /*if (millis() - load_filament_time > 2) {
  5417. load_filament_time = millis();
  5418. target[E_AXIS] += 0.001;
  5419. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5420. }*/
  5421. //Filament inserted
  5422. //Feed the filament to the end of nozzle quickly
  5423. st_synchronize();
  5424. target[E_AXIS] += bowden_length[snmm_extruder];
  5425. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5426. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5427. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5428. target[E_AXIS] += 40;
  5429. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5430. target[E_AXIS] += 10;
  5431. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5432. #else
  5433. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5434. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5435. #endif // SNMM
  5436. //Extrude some filament
  5437. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5438. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5439. //Wait for user to check the state
  5440. lcd_change_fil_state = 0;
  5441. lcd_loading_filament();
  5442. tone(BEEPER, 500);
  5443. delay_keep_alive(50);
  5444. noTone(BEEPER);
  5445. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5446. lcd_change_fil_state = 0;
  5447. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5448. lcd_alright();
  5449. KEEPALIVE_STATE(IN_HANDLER);
  5450. switch(lcd_change_fil_state){
  5451. // Filament failed to load so load it again
  5452. case 2:
  5453. #ifdef SNMM
  5454. display_loading();
  5455. do {
  5456. target[E_AXIS] += 0.002;
  5457. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5458. delay_keep_alive(2);
  5459. } while (!lcd_clicked());
  5460. st_synchronize();
  5461. target[E_AXIS] += bowden_length[snmm_extruder];
  5462. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5463. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5464. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5465. target[E_AXIS] += 40;
  5466. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5467. target[E_AXIS] += 10;
  5468. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5469. #else
  5470. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5471. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5472. #endif
  5473. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5474. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5475. lcd_loading_filament();
  5476. break;
  5477. // Filament loaded properly but color is not clear
  5478. case 3:
  5479. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5480. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5481. lcd_loading_color();
  5482. break;
  5483. // Everything good
  5484. default:
  5485. lcd_change_success();
  5486. lcd_update_enable(true);
  5487. break;
  5488. }
  5489. }
  5490. //Not let's go back to print
  5491. fanSpeed = fanSpeedBckp;
  5492. //Feed a little of filament to stabilize pressure
  5493. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5494. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5495. //Retract
  5496. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5497. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5498. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5499. //Move XY back
  5500. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5501. //Move Z back
  5502. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5503. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5504. //Unretract
  5505. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5506. //Set E position to original
  5507. plan_set_e_position(lastpos[E_AXIS]);
  5508. //Recover feed rate
  5509. feedmultiply=feedmultiplyBckp;
  5510. char cmd[9];
  5511. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5512. enquecommand(cmd);
  5513. lcd_setstatuspgm(_T(WELCOME_MSG));
  5514. custom_message = false;
  5515. custom_message_type = 0;
  5516. #ifdef PAT9125
  5517. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5518. if (fsensor_M600)
  5519. {
  5520. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5521. st_synchronize();
  5522. while (!is_buffer_empty())
  5523. {
  5524. process_commands();
  5525. cmdqueue_pop_front();
  5526. }
  5527. fsensor_enable();
  5528. fsensor_restore_print_and_continue();
  5529. }
  5530. #endif //PAT9125
  5531. }
  5532. break;
  5533. #endif //FILAMENTCHANGEENABLE
  5534. case 601: {
  5535. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5536. }
  5537. break;
  5538. case 602: {
  5539. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5540. }
  5541. break;
  5542. #ifdef PINDA_THERMISTOR
  5543. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5544. {
  5545. int setTargetPinda = 0;
  5546. if (code_seen('S')) {
  5547. setTargetPinda = code_value();
  5548. }
  5549. else {
  5550. break;
  5551. }
  5552. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5553. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5554. SERIAL_PROTOCOL(setTargetPinda);
  5555. SERIAL_PROTOCOLLN("");
  5556. codenum = millis();
  5557. cancel_heatup = false;
  5558. while ((!cancel_heatup) && current_temperature_pinda < setTargetPinda) {
  5559. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5560. {
  5561. SERIAL_PROTOCOLPGM("P:");
  5562. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5563. SERIAL_PROTOCOLPGM("/");
  5564. SERIAL_PROTOCOL(setTargetPinda);
  5565. SERIAL_PROTOCOLLN("");
  5566. codenum = millis();
  5567. }
  5568. manage_heater();
  5569. manage_inactivity();
  5570. lcd_update();
  5571. }
  5572. LCD_MESSAGERPGM(_T(MSG_OK));
  5573. break;
  5574. }
  5575. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5576. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5577. uint8_t cal_status = calibration_status_pinda();
  5578. int16_t usteps = 0;
  5579. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5580. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5581. for (uint8_t i = 0; i < 6; i++)
  5582. {
  5583. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5584. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5585. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5586. SERIAL_PROTOCOLPGM(", ");
  5587. SERIAL_PROTOCOL(35 + (i * 5));
  5588. SERIAL_PROTOCOLPGM(", ");
  5589. SERIAL_PROTOCOL(usteps);
  5590. SERIAL_PROTOCOLPGM(", ");
  5591. SERIAL_PROTOCOL(mm * 1000);
  5592. SERIAL_PROTOCOLLN("");
  5593. }
  5594. }
  5595. else if (code_seen('!')) { // ! - Set factory default values
  5596. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5597. int16_t z_shift = 8; //40C - 20um - 8usteps
  5598. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5599. z_shift = 24; //45C - 60um - 24usteps
  5600. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5601. z_shift = 48; //50C - 120um - 48usteps
  5602. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5603. z_shift = 80; //55C - 200um - 80usteps
  5604. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5605. z_shift = 120; //60C - 300um - 120usteps
  5606. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5607. SERIAL_PROTOCOLLN("factory restored");
  5608. }
  5609. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5610. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5611. int16_t z_shift = 0;
  5612. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5613. SERIAL_PROTOCOLLN("zerorized");
  5614. }
  5615. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5616. int16_t usteps = code_value();
  5617. if (code_seen('I')) {
  5618. byte index = code_value();
  5619. if ((index >= 0) && (index < 5)) {
  5620. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5621. SERIAL_PROTOCOLLN("OK");
  5622. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5623. for (uint8_t i = 0; i < 6; i++)
  5624. {
  5625. usteps = 0;
  5626. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5627. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5628. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5629. SERIAL_PROTOCOLPGM(", ");
  5630. SERIAL_PROTOCOL(35 + (i * 5));
  5631. SERIAL_PROTOCOLPGM(", ");
  5632. SERIAL_PROTOCOL(usteps);
  5633. SERIAL_PROTOCOLPGM(", ");
  5634. SERIAL_PROTOCOL(mm * 1000);
  5635. SERIAL_PROTOCOLLN("");
  5636. }
  5637. }
  5638. }
  5639. }
  5640. else {
  5641. SERIAL_PROTOCOLPGM("no valid command");
  5642. }
  5643. break;
  5644. #endif //PINDA_THERMISTOR
  5645. #ifdef LIN_ADVANCE
  5646. case 900: // M900: Set LIN_ADVANCE options.
  5647. gcode_M900();
  5648. break;
  5649. #endif
  5650. case 907: // M907 Set digital trimpot motor current using axis codes.
  5651. {
  5652. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5653. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5654. if(code_seen('B')) st_current_set(4,code_value());
  5655. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5656. #endif
  5657. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5658. if(code_seen('X')) st_current_set(0, code_value());
  5659. #endif
  5660. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5661. if(code_seen('Z')) st_current_set(1, code_value());
  5662. #endif
  5663. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5664. if(code_seen('E')) st_current_set(2, code_value());
  5665. #endif
  5666. }
  5667. break;
  5668. case 908: // M908 Control digital trimpot directly.
  5669. {
  5670. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5671. uint8_t channel,current;
  5672. if(code_seen('P')) channel=code_value();
  5673. if(code_seen('S')) current=code_value();
  5674. digitalPotWrite(channel, current);
  5675. #endif
  5676. }
  5677. break;
  5678. #ifdef TMC2130
  5679. case 910: // M910 TMC2130 init
  5680. {
  5681. tmc2130_init();
  5682. }
  5683. break;
  5684. case 911: // M911 Set TMC2130 holding currents
  5685. {
  5686. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5687. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5688. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5689. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5690. }
  5691. break;
  5692. case 912: // M912 Set TMC2130 running currents
  5693. {
  5694. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5695. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5696. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5697. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5698. }
  5699. break;
  5700. case 913: // M913 Print TMC2130 currents
  5701. {
  5702. tmc2130_print_currents();
  5703. }
  5704. break;
  5705. case 914: // M914 Set normal mode
  5706. {
  5707. tmc2130_mode = TMC2130_MODE_NORMAL;
  5708. tmc2130_init();
  5709. }
  5710. break;
  5711. case 915: // M915 Set silent mode
  5712. {
  5713. tmc2130_mode = TMC2130_MODE_SILENT;
  5714. tmc2130_init();
  5715. }
  5716. break;
  5717. case 916: // M916 Set sg_thrs
  5718. {
  5719. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5720. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5721. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5722. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5723. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5724. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5725. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5726. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5727. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5728. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5729. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5730. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5731. }
  5732. break;
  5733. case 917: // M917 Set TMC2130 pwm_ampl
  5734. {
  5735. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5736. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5737. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5738. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5739. }
  5740. break;
  5741. case 918: // M918 Set TMC2130 pwm_grad
  5742. {
  5743. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5744. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5745. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5746. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5747. }
  5748. break;
  5749. #endif //TMC2130
  5750. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5751. {
  5752. #ifdef TMC2130
  5753. if(code_seen('E'))
  5754. {
  5755. uint16_t res_new = code_value();
  5756. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5757. {
  5758. st_synchronize();
  5759. uint8_t axis = E_AXIS;
  5760. uint16_t res = tmc2130_get_res(axis);
  5761. tmc2130_set_res(axis, res_new);
  5762. if (res_new > res)
  5763. {
  5764. uint16_t fac = (res_new / res);
  5765. axis_steps_per_unit[axis] *= fac;
  5766. position[E_AXIS] *= fac;
  5767. }
  5768. else
  5769. {
  5770. uint16_t fac = (res / res_new);
  5771. axis_steps_per_unit[axis] /= fac;
  5772. position[E_AXIS] /= fac;
  5773. }
  5774. }
  5775. }
  5776. #else //TMC2130
  5777. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5778. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5779. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5780. if(code_seen('B')) microstep_mode(4,code_value());
  5781. microstep_readings();
  5782. #endif
  5783. #endif //TMC2130
  5784. }
  5785. break;
  5786. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5787. {
  5788. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5789. if(code_seen('S')) switch((int)code_value())
  5790. {
  5791. case 1:
  5792. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5793. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5794. break;
  5795. case 2:
  5796. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5797. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5798. break;
  5799. }
  5800. microstep_readings();
  5801. #endif
  5802. }
  5803. break;
  5804. case 701: //M701: load filament
  5805. {
  5806. gcode_M701();
  5807. }
  5808. break;
  5809. case 702:
  5810. {
  5811. #ifdef SNMM
  5812. if (code_seen('U')) {
  5813. extr_unload_used(); //unload all filaments which were used in current print
  5814. }
  5815. else if (code_seen('C')) {
  5816. extr_unload(); //unload just current filament
  5817. }
  5818. else {
  5819. extr_unload_all(); //unload all filaments
  5820. }
  5821. #else
  5822. #ifdef PAT9125
  5823. bool old_fsensor_enabled = fsensor_enabled;
  5824. fsensor_enabled = false;
  5825. #endif //PAT9125
  5826. custom_message = true;
  5827. custom_message_type = 2;
  5828. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5829. // extr_unload2();
  5830. current_position[E_AXIS] -= 45;
  5831. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5832. st_synchronize();
  5833. current_position[E_AXIS] -= 15;
  5834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5835. st_synchronize();
  5836. current_position[E_AXIS] -= 20;
  5837. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5838. st_synchronize();
  5839. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5840. //disable extruder steppers so filament can be removed
  5841. disable_e0();
  5842. disable_e1();
  5843. disable_e2();
  5844. delay(100);
  5845. WRITE(BEEPER, HIGH);
  5846. uint8_t counterBeep = 0;
  5847. while (!lcd_clicked() && (counterBeep < 50)) {
  5848. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5849. delay_keep_alive(100);
  5850. counterBeep++;
  5851. }
  5852. WRITE(BEEPER, LOW);
  5853. st_synchronize();
  5854. while (lcd_clicked()) delay_keep_alive(100);
  5855. lcd_update_enable(true);
  5856. lcd_setstatuspgm(_T(WELCOME_MSG));
  5857. custom_message = false;
  5858. custom_message_type = 0;
  5859. #ifdef PAT9125
  5860. fsensor_enabled = old_fsensor_enabled;
  5861. #endif //PAT9125
  5862. #endif
  5863. }
  5864. break;
  5865. case 999: // M999: Restart after being stopped
  5866. Stopped = false;
  5867. lcd_reset_alert_level();
  5868. gcode_LastN = Stopped_gcode_LastN;
  5869. FlushSerialRequestResend();
  5870. break;
  5871. default:
  5872. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5873. }
  5874. } // end if(code_seen('M')) (end of M codes)
  5875. else if(code_seen('T'))
  5876. {
  5877. int index;
  5878. st_synchronize();
  5879. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5880. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5881. SERIAL_ECHOLNPGM("Invalid T code.");
  5882. }
  5883. else {
  5884. if (*(strchr_pointer + index) == '?') {
  5885. tmp_extruder = choose_extruder_menu();
  5886. }
  5887. else {
  5888. tmp_extruder = code_value();
  5889. }
  5890. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5891. #ifdef SNMM
  5892. #ifdef LIN_ADVANCE
  5893. if (snmm_extruder != tmp_extruder)
  5894. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5895. #endif
  5896. snmm_extruder = tmp_extruder;
  5897. delay(100);
  5898. disable_e0();
  5899. disable_e1();
  5900. disable_e2();
  5901. pinMode(E_MUX0_PIN, OUTPUT);
  5902. pinMode(E_MUX1_PIN, OUTPUT);
  5903. delay(100);
  5904. SERIAL_ECHO_START;
  5905. SERIAL_ECHO("T:");
  5906. SERIAL_ECHOLN((int)tmp_extruder);
  5907. switch (tmp_extruder) {
  5908. case 1:
  5909. WRITE(E_MUX0_PIN, HIGH);
  5910. WRITE(E_MUX1_PIN, LOW);
  5911. break;
  5912. case 2:
  5913. WRITE(E_MUX0_PIN, LOW);
  5914. WRITE(E_MUX1_PIN, HIGH);
  5915. break;
  5916. case 3:
  5917. WRITE(E_MUX0_PIN, HIGH);
  5918. WRITE(E_MUX1_PIN, HIGH);
  5919. break;
  5920. default:
  5921. WRITE(E_MUX0_PIN, LOW);
  5922. WRITE(E_MUX1_PIN, LOW);
  5923. break;
  5924. }
  5925. delay(100);
  5926. #else
  5927. if (tmp_extruder >= EXTRUDERS) {
  5928. SERIAL_ECHO_START;
  5929. SERIAL_ECHOPGM("T");
  5930. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5931. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  5932. }
  5933. else {
  5934. boolean make_move = false;
  5935. if (code_seen('F')) {
  5936. make_move = true;
  5937. next_feedrate = code_value();
  5938. if (next_feedrate > 0.0) {
  5939. feedrate = next_feedrate;
  5940. }
  5941. }
  5942. #if EXTRUDERS > 1
  5943. if (tmp_extruder != active_extruder) {
  5944. // Save current position to return to after applying extruder offset
  5945. memcpy(destination, current_position, sizeof(destination));
  5946. // Offset extruder (only by XY)
  5947. int i;
  5948. for (i = 0; i < 2; i++) {
  5949. current_position[i] = current_position[i] -
  5950. extruder_offset[i][active_extruder] +
  5951. extruder_offset[i][tmp_extruder];
  5952. }
  5953. // Set the new active extruder and position
  5954. active_extruder = tmp_extruder;
  5955. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5956. // Move to the old position if 'F' was in the parameters
  5957. if (make_move && Stopped == false) {
  5958. prepare_move();
  5959. }
  5960. }
  5961. #endif
  5962. SERIAL_ECHO_START;
  5963. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  5964. SERIAL_PROTOCOLLN((int)active_extruder);
  5965. }
  5966. #endif
  5967. }
  5968. } // end if(code_seen('T')) (end of T codes)
  5969. #ifdef DEBUG_DCODES
  5970. else if (code_seen('D')) // D codes (debug)
  5971. {
  5972. switch((int)code_value())
  5973. {
  5974. case -1: // D-1 - Endless loop
  5975. dcode__1(); break;
  5976. case 0: // D0 - Reset
  5977. dcode_0(); break;
  5978. case 1: // D1 - Clear EEPROM
  5979. dcode_1(); break;
  5980. case 2: // D2 - Read/Write RAM
  5981. dcode_2(); break;
  5982. case 3: // D3 - Read/Write EEPROM
  5983. dcode_3(); break;
  5984. case 4: // D4 - Read/Write PIN
  5985. dcode_4(); break;
  5986. case 5: // D5 - Read/Write FLASH
  5987. // dcode_5(); break;
  5988. break;
  5989. case 6: // D6 - Read/Write external FLASH
  5990. dcode_6(); break;
  5991. case 7: // D7 - Read/Write Bootloader
  5992. dcode_7(); break;
  5993. case 8: // D8 - Read/Write PINDA
  5994. dcode_8(); break;
  5995. case 9: // D9 - Read/Write ADC
  5996. dcode_9(); break;
  5997. case 10: // D10 - XYZ calibration = OK
  5998. dcode_10(); break;
  5999. #ifdef TMC2130
  6000. case 2130: // D9125 - TMC2130
  6001. dcode_2130(); break;
  6002. #endif //TMC2130
  6003. #ifdef PAT9125
  6004. case 9125: // D9125 - PAT9125
  6005. dcode_9125(); break;
  6006. #endif //PAT9125
  6007. }
  6008. }
  6009. #endif //DEBUG_DCODES
  6010. else
  6011. {
  6012. SERIAL_ECHO_START;
  6013. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6014. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6015. SERIAL_ECHOLNPGM("\"(2)");
  6016. }
  6017. KEEPALIVE_STATE(NOT_BUSY);
  6018. ClearToSend();
  6019. }
  6020. void FlushSerialRequestResend()
  6021. {
  6022. //char cmdbuffer[bufindr][100]="Resend:";
  6023. MYSERIAL.flush();
  6024. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6025. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6026. previous_millis_cmd = millis();
  6027. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6028. }
  6029. // Confirm the execution of a command, if sent from a serial line.
  6030. // Execution of a command from a SD card will not be confirmed.
  6031. void ClearToSend()
  6032. {
  6033. previous_millis_cmd = millis();
  6034. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  6035. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6036. }
  6037. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6038. void update_currents() {
  6039. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6040. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6041. float tmp_motor[3];
  6042. //SERIAL_ECHOLNPGM("Currents updated: ");
  6043. if (destination[Z_AXIS] < Z_SILENT) {
  6044. //SERIAL_ECHOLNPGM("LOW");
  6045. for (uint8_t i = 0; i < 3; i++) {
  6046. st_current_set(i, current_low[i]);
  6047. /*MYSERIAL.print(int(i));
  6048. SERIAL_ECHOPGM(": ");
  6049. MYSERIAL.println(current_low[i]);*/
  6050. }
  6051. }
  6052. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6053. //SERIAL_ECHOLNPGM("HIGH");
  6054. for (uint8_t i = 0; i < 3; i++) {
  6055. st_current_set(i, current_high[i]);
  6056. /*MYSERIAL.print(int(i));
  6057. SERIAL_ECHOPGM(": ");
  6058. MYSERIAL.println(current_high[i]);*/
  6059. }
  6060. }
  6061. else {
  6062. for (uint8_t i = 0; i < 3; i++) {
  6063. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6064. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6065. st_current_set(i, tmp_motor[i]);
  6066. /*MYSERIAL.print(int(i));
  6067. SERIAL_ECHOPGM(": ");
  6068. MYSERIAL.println(tmp_motor[i]);*/
  6069. }
  6070. }
  6071. }
  6072. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6073. void get_coordinates()
  6074. {
  6075. bool seen[4]={false,false,false,false};
  6076. for(int8_t i=0; i < NUM_AXIS; i++) {
  6077. if(code_seen(axis_codes[i]))
  6078. {
  6079. bool relative = axis_relative_modes[i] || relative_mode;
  6080. destination[i] = (float)code_value();
  6081. if (i == E_AXIS) {
  6082. float emult = extruder_multiplier[active_extruder];
  6083. if (emult != 1.) {
  6084. if (! relative) {
  6085. destination[i] -= current_position[i];
  6086. relative = true;
  6087. }
  6088. destination[i] *= emult;
  6089. }
  6090. }
  6091. if (relative)
  6092. destination[i] += current_position[i];
  6093. seen[i]=true;
  6094. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6095. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6096. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6097. }
  6098. else destination[i] = current_position[i]; //Are these else lines really needed?
  6099. }
  6100. if(code_seen('F')) {
  6101. next_feedrate = code_value();
  6102. #ifdef MAX_SILENT_FEEDRATE
  6103. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6104. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6105. #endif //MAX_SILENT_FEEDRATE
  6106. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6107. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6108. {
  6109. // float e_max_speed =
  6110. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6111. }
  6112. }
  6113. }
  6114. void get_arc_coordinates()
  6115. {
  6116. #ifdef SF_ARC_FIX
  6117. bool relative_mode_backup = relative_mode;
  6118. relative_mode = true;
  6119. #endif
  6120. get_coordinates();
  6121. #ifdef SF_ARC_FIX
  6122. relative_mode=relative_mode_backup;
  6123. #endif
  6124. if(code_seen('I')) {
  6125. offset[0] = code_value();
  6126. }
  6127. else {
  6128. offset[0] = 0.0;
  6129. }
  6130. if(code_seen('J')) {
  6131. offset[1] = code_value();
  6132. }
  6133. else {
  6134. offset[1] = 0.0;
  6135. }
  6136. }
  6137. void clamp_to_software_endstops(float target[3])
  6138. {
  6139. #ifdef DEBUG_DISABLE_SWLIMITS
  6140. return;
  6141. #endif //DEBUG_DISABLE_SWLIMITS
  6142. world2machine_clamp(target[0], target[1]);
  6143. // Clamp the Z coordinate.
  6144. if (min_software_endstops) {
  6145. float negative_z_offset = 0;
  6146. #ifdef ENABLE_AUTO_BED_LEVELING
  6147. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6148. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6149. #endif
  6150. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6151. }
  6152. if (max_software_endstops) {
  6153. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6154. }
  6155. }
  6156. #ifdef MESH_BED_LEVELING
  6157. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6158. float dx = x - current_position[X_AXIS];
  6159. float dy = y - current_position[Y_AXIS];
  6160. float dz = z - current_position[Z_AXIS];
  6161. int n_segments = 0;
  6162. if (mbl.active) {
  6163. float len = abs(dx) + abs(dy);
  6164. if (len > 0)
  6165. // Split to 3cm segments or shorter.
  6166. n_segments = int(ceil(len / 30.f));
  6167. }
  6168. if (n_segments > 1) {
  6169. float de = e - current_position[E_AXIS];
  6170. for (int i = 1; i < n_segments; ++ i) {
  6171. float t = float(i) / float(n_segments);
  6172. plan_buffer_line(
  6173. current_position[X_AXIS] + t * dx,
  6174. current_position[Y_AXIS] + t * dy,
  6175. current_position[Z_AXIS] + t * dz,
  6176. current_position[E_AXIS] + t * de,
  6177. feed_rate, extruder);
  6178. }
  6179. }
  6180. // The rest of the path.
  6181. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6182. current_position[X_AXIS] = x;
  6183. current_position[Y_AXIS] = y;
  6184. current_position[Z_AXIS] = z;
  6185. current_position[E_AXIS] = e;
  6186. }
  6187. #endif // MESH_BED_LEVELING
  6188. void prepare_move()
  6189. {
  6190. clamp_to_software_endstops(destination);
  6191. previous_millis_cmd = millis();
  6192. // Do not use feedmultiply for E or Z only moves
  6193. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6194. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6195. }
  6196. else {
  6197. #ifdef MESH_BED_LEVELING
  6198. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6199. #else
  6200. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6201. #endif
  6202. }
  6203. for(int8_t i=0; i < NUM_AXIS; i++) {
  6204. current_position[i] = destination[i];
  6205. }
  6206. }
  6207. void prepare_arc_move(char isclockwise) {
  6208. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6209. // Trace the arc
  6210. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6211. // As far as the parser is concerned, the position is now == target. In reality the
  6212. // motion control system might still be processing the action and the real tool position
  6213. // in any intermediate location.
  6214. for(int8_t i=0; i < NUM_AXIS; i++) {
  6215. current_position[i] = destination[i];
  6216. }
  6217. previous_millis_cmd = millis();
  6218. }
  6219. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6220. #if defined(FAN_PIN)
  6221. #if CONTROLLERFAN_PIN == FAN_PIN
  6222. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6223. #endif
  6224. #endif
  6225. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6226. unsigned long lastMotorCheck = 0;
  6227. void controllerFan()
  6228. {
  6229. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6230. {
  6231. lastMotorCheck = millis();
  6232. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6233. #if EXTRUDERS > 2
  6234. || !READ(E2_ENABLE_PIN)
  6235. #endif
  6236. #if EXTRUDER > 1
  6237. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6238. || !READ(X2_ENABLE_PIN)
  6239. #endif
  6240. || !READ(E1_ENABLE_PIN)
  6241. #endif
  6242. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6243. {
  6244. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6245. }
  6246. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6247. {
  6248. digitalWrite(CONTROLLERFAN_PIN, 0);
  6249. analogWrite(CONTROLLERFAN_PIN, 0);
  6250. }
  6251. else
  6252. {
  6253. // allows digital or PWM fan output to be used (see M42 handling)
  6254. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6255. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6256. }
  6257. }
  6258. }
  6259. #endif
  6260. #ifdef TEMP_STAT_LEDS
  6261. static bool blue_led = false;
  6262. static bool red_led = false;
  6263. static uint32_t stat_update = 0;
  6264. void handle_status_leds(void) {
  6265. float max_temp = 0.0;
  6266. if(millis() > stat_update) {
  6267. stat_update += 500; // Update every 0.5s
  6268. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6269. max_temp = max(max_temp, degHotend(cur_extruder));
  6270. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6271. }
  6272. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6273. max_temp = max(max_temp, degTargetBed());
  6274. max_temp = max(max_temp, degBed());
  6275. #endif
  6276. if((max_temp > 55.0) && (red_led == false)) {
  6277. digitalWrite(STAT_LED_RED, 1);
  6278. digitalWrite(STAT_LED_BLUE, 0);
  6279. red_led = true;
  6280. blue_led = false;
  6281. }
  6282. if((max_temp < 54.0) && (blue_led == false)) {
  6283. digitalWrite(STAT_LED_RED, 0);
  6284. digitalWrite(STAT_LED_BLUE, 1);
  6285. red_led = false;
  6286. blue_led = true;
  6287. }
  6288. }
  6289. }
  6290. #endif
  6291. #ifdef SAFETYTIMER
  6292. /**
  6293. * @brief Turn off heating after 30 minutes of inactivity
  6294. *
  6295. * Full screen blocking notification message is shown after heater turning off.
  6296. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6297. * damage print.
  6298. */
  6299. static void handleSafetyTimer()
  6300. {
  6301. #if (EXTRUDERS > 1)
  6302. #error Implemented only for one extruder.
  6303. #endif //(EXTRUDERS > 1)
  6304. static Timer safetyTimer;
  6305. if (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4) || saved_printing
  6306. || (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0)))
  6307. {
  6308. safetyTimer.stop();
  6309. }
  6310. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6311. {
  6312. safetyTimer.start();
  6313. }
  6314. else if (safetyTimer.expired(1800000ul)) //30 min
  6315. {
  6316. setTargetBed(0);
  6317. setTargetHotend(0, 0);
  6318. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6319. }
  6320. }
  6321. #endif //SAFETYTIMER
  6322. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6323. {
  6324. #ifdef PAT9125
  6325. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6326. {
  6327. if (fsensor_autoload_enabled)
  6328. {
  6329. if (fsensor_check_autoload())
  6330. {
  6331. if (degHotend0() > EXTRUDE_MINTEMP)
  6332. {
  6333. fsensor_autoload_check_stop();
  6334. tone(BEEPER, 1000);
  6335. delay_keep_alive(50);
  6336. noTone(BEEPER);
  6337. loading_flag = true;
  6338. enquecommand_front_P((PSTR("M701")));
  6339. }
  6340. else
  6341. {
  6342. lcd_update_enable(false);
  6343. lcd_implementation_clear();
  6344. lcd.setCursor(0, 0);
  6345. lcd_printPGM(_T(MSG_ERROR));
  6346. lcd.setCursor(0, 2);
  6347. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6348. delay(2000);
  6349. lcd_implementation_clear();
  6350. lcd_update_enable(true);
  6351. }
  6352. }
  6353. }
  6354. else
  6355. fsensor_autoload_check_start();
  6356. }
  6357. else
  6358. if (fsensor_autoload_enabled)
  6359. fsensor_autoload_check_stop();
  6360. #endif //PAT9125
  6361. #ifdef SAFETYTIMER
  6362. handleSafetyTimer();
  6363. #endif //SAFETYTIMER
  6364. #if defined(KILL_PIN) && KILL_PIN > -1
  6365. static int killCount = 0; // make the inactivity button a bit less responsive
  6366. const int KILL_DELAY = 10000;
  6367. #endif
  6368. if(buflen < (BUFSIZE-1)){
  6369. get_command();
  6370. }
  6371. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6372. if(max_inactive_time)
  6373. kill("", 4);
  6374. if(stepper_inactive_time) {
  6375. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6376. {
  6377. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6378. disable_x();
  6379. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6380. disable_y();
  6381. disable_z();
  6382. disable_e0();
  6383. disable_e1();
  6384. disable_e2();
  6385. }
  6386. }
  6387. }
  6388. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6389. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6390. {
  6391. chdkActive = false;
  6392. WRITE(CHDK, LOW);
  6393. }
  6394. #endif
  6395. #if defined(KILL_PIN) && KILL_PIN > -1
  6396. // Check if the kill button was pressed and wait just in case it was an accidental
  6397. // key kill key press
  6398. // -------------------------------------------------------------------------------
  6399. if( 0 == READ(KILL_PIN) )
  6400. {
  6401. killCount++;
  6402. }
  6403. else if (killCount > 0)
  6404. {
  6405. killCount--;
  6406. }
  6407. // Exceeded threshold and we can confirm that it was not accidental
  6408. // KILL the machine
  6409. // ----------------------------------------------------------------
  6410. if ( killCount >= KILL_DELAY)
  6411. {
  6412. kill("", 5);
  6413. }
  6414. #endif
  6415. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6416. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6417. #endif
  6418. #ifdef EXTRUDER_RUNOUT_PREVENT
  6419. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6420. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6421. {
  6422. bool oldstatus=READ(E0_ENABLE_PIN);
  6423. enable_e0();
  6424. float oldepos=current_position[E_AXIS];
  6425. float oldedes=destination[E_AXIS];
  6426. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6427. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6428. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6429. current_position[E_AXIS]=oldepos;
  6430. destination[E_AXIS]=oldedes;
  6431. plan_set_e_position(oldepos);
  6432. previous_millis_cmd=millis();
  6433. st_synchronize();
  6434. WRITE(E0_ENABLE_PIN,oldstatus);
  6435. }
  6436. #endif
  6437. #ifdef TEMP_STAT_LEDS
  6438. handle_status_leds();
  6439. #endif
  6440. check_axes_activity();
  6441. }
  6442. void kill(const char *full_screen_message, unsigned char id)
  6443. {
  6444. SERIAL_ECHOPGM("KILL: ");
  6445. MYSERIAL.println(int(id));
  6446. //return;
  6447. cli(); // Stop interrupts
  6448. disable_heater();
  6449. disable_x();
  6450. // SERIAL_ECHOLNPGM("kill - disable Y");
  6451. disable_y();
  6452. disable_z();
  6453. disable_e0();
  6454. disable_e1();
  6455. disable_e2();
  6456. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6457. pinMode(PS_ON_PIN,INPUT);
  6458. #endif
  6459. SERIAL_ERROR_START;
  6460. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6461. if (full_screen_message != NULL) {
  6462. SERIAL_ERRORLNRPGM(full_screen_message);
  6463. lcd_display_message_fullscreen_P(full_screen_message);
  6464. } else {
  6465. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6466. }
  6467. // FMC small patch to update the LCD before ending
  6468. sei(); // enable interrupts
  6469. for ( int i=5; i--; lcd_update())
  6470. {
  6471. delay(200);
  6472. }
  6473. cli(); // disable interrupts
  6474. suicide();
  6475. while(1)
  6476. {
  6477. #ifdef WATCHDOG
  6478. wdt_reset();
  6479. #endif //WATCHDOG
  6480. /* Intentionally left empty */
  6481. } // Wait for reset
  6482. }
  6483. void Stop()
  6484. {
  6485. disable_heater();
  6486. if(Stopped == false) {
  6487. Stopped = true;
  6488. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6489. SERIAL_ERROR_START;
  6490. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6491. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6492. }
  6493. }
  6494. bool IsStopped() { return Stopped; };
  6495. #ifdef FAST_PWM_FAN
  6496. void setPwmFrequency(uint8_t pin, int val)
  6497. {
  6498. val &= 0x07;
  6499. switch(digitalPinToTimer(pin))
  6500. {
  6501. #if defined(TCCR0A)
  6502. case TIMER0A:
  6503. case TIMER0B:
  6504. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6505. // TCCR0B |= val;
  6506. break;
  6507. #endif
  6508. #if defined(TCCR1A)
  6509. case TIMER1A:
  6510. case TIMER1B:
  6511. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6512. // TCCR1B |= val;
  6513. break;
  6514. #endif
  6515. #if defined(TCCR2)
  6516. case TIMER2:
  6517. case TIMER2:
  6518. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6519. TCCR2 |= val;
  6520. break;
  6521. #endif
  6522. #if defined(TCCR2A)
  6523. case TIMER2A:
  6524. case TIMER2B:
  6525. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6526. TCCR2B |= val;
  6527. break;
  6528. #endif
  6529. #if defined(TCCR3A)
  6530. case TIMER3A:
  6531. case TIMER3B:
  6532. case TIMER3C:
  6533. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6534. TCCR3B |= val;
  6535. break;
  6536. #endif
  6537. #if defined(TCCR4A)
  6538. case TIMER4A:
  6539. case TIMER4B:
  6540. case TIMER4C:
  6541. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6542. TCCR4B |= val;
  6543. break;
  6544. #endif
  6545. #if defined(TCCR5A)
  6546. case TIMER5A:
  6547. case TIMER5B:
  6548. case TIMER5C:
  6549. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6550. TCCR5B |= val;
  6551. break;
  6552. #endif
  6553. }
  6554. }
  6555. #endif //FAST_PWM_FAN
  6556. bool setTargetedHotend(int code){
  6557. tmp_extruder = active_extruder;
  6558. if(code_seen('T')) {
  6559. tmp_extruder = code_value();
  6560. if(tmp_extruder >= EXTRUDERS) {
  6561. SERIAL_ECHO_START;
  6562. switch(code){
  6563. case 104:
  6564. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6565. break;
  6566. case 105:
  6567. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6568. break;
  6569. case 109:
  6570. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6571. break;
  6572. case 218:
  6573. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6574. break;
  6575. case 221:
  6576. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6577. break;
  6578. }
  6579. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6580. return true;
  6581. }
  6582. }
  6583. return false;
  6584. }
  6585. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6586. {
  6587. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6588. {
  6589. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6590. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6591. }
  6592. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6593. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6594. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6595. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6596. total_filament_used = 0;
  6597. }
  6598. float calculate_extruder_multiplier(float diameter) {
  6599. float out = 1.f;
  6600. if (volumetric_enabled && diameter > 0.f) {
  6601. float area = M_PI * diameter * diameter * 0.25;
  6602. out = 1.f / area;
  6603. }
  6604. if (extrudemultiply != 100)
  6605. out *= float(extrudemultiply) * 0.01f;
  6606. return out;
  6607. }
  6608. void calculate_extruder_multipliers() {
  6609. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6610. #if EXTRUDERS > 1
  6611. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6612. #if EXTRUDERS > 2
  6613. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6614. #endif
  6615. #endif
  6616. }
  6617. void delay_keep_alive(unsigned int ms)
  6618. {
  6619. for (;;) {
  6620. manage_heater();
  6621. // Manage inactivity, but don't disable steppers on timeout.
  6622. manage_inactivity(true);
  6623. lcd_update();
  6624. if (ms == 0)
  6625. break;
  6626. else if (ms >= 50) {
  6627. delay(50);
  6628. ms -= 50;
  6629. } else {
  6630. delay(ms);
  6631. ms = 0;
  6632. }
  6633. }
  6634. }
  6635. void wait_for_heater(long codenum) {
  6636. #ifdef TEMP_RESIDENCY_TIME
  6637. long residencyStart;
  6638. residencyStart = -1;
  6639. /* continue to loop until we have reached the target temp
  6640. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6641. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6642. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6643. #else
  6644. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6645. #endif //TEMP_RESIDENCY_TIME
  6646. if ((millis() - codenum) > 1000UL)
  6647. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6648. if (!farm_mode) {
  6649. SERIAL_PROTOCOLPGM("T:");
  6650. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6651. SERIAL_PROTOCOLPGM(" E:");
  6652. SERIAL_PROTOCOL((int)tmp_extruder);
  6653. #ifdef TEMP_RESIDENCY_TIME
  6654. SERIAL_PROTOCOLPGM(" W:");
  6655. if (residencyStart > -1)
  6656. {
  6657. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6658. SERIAL_PROTOCOLLN(codenum);
  6659. }
  6660. else
  6661. {
  6662. SERIAL_PROTOCOLLN("?");
  6663. }
  6664. }
  6665. #else
  6666. SERIAL_PROTOCOLLN("");
  6667. #endif
  6668. codenum = millis();
  6669. }
  6670. manage_heater();
  6671. manage_inactivity();
  6672. lcd_update();
  6673. #ifdef TEMP_RESIDENCY_TIME
  6674. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6675. or when current temp falls outside the hysteresis after target temp was reached */
  6676. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6677. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6678. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6679. {
  6680. residencyStart = millis();
  6681. }
  6682. #endif //TEMP_RESIDENCY_TIME
  6683. }
  6684. }
  6685. void check_babystep() {
  6686. int babystep_z;
  6687. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6688. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6689. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6690. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6691. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6692. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6693. lcd_update_enable(true);
  6694. }
  6695. }
  6696. #ifdef DIS
  6697. void d_setup()
  6698. {
  6699. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6700. pinMode(D_DATA, INPUT_PULLUP);
  6701. pinMode(D_REQUIRE, OUTPUT);
  6702. digitalWrite(D_REQUIRE, HIGH);
  6703. }
  6704. float d_ReadData()
  6705. {
  6706. int digit[13];
  6707. String mergeOutput;
  6708. float output;
  6709. digitalWrite(D_REQUIRE, HIGH);
  6710. for (int i = 0; i<13; i++)
  6711. {
  6712. for (int j = 0; j < 4; j++)
  6713. {
  6714. while (digitalRead(D_DATACLOCK) == LOW) {}
  6715. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6716. bitWrite(digit[i], j, digitalRead(D_DATA));
  6717. }
  6718. }
  6719. digitalWrite(D_REQUIRE, LOW);
  6720. mergeOutput = "";
  6721. output = 0;
  6722. for (int r = 5; r <= 10; r++) //Merge digits
  6723. {
  6724. mergeOutput += digit[r];
  6725. }
  6726. output = mergeOutput.toFloat();
  6727. if (digit[4] == 8) //Handle sign
  6728. {
  6729. output *= -1;
  6730. }
  6731. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6732. {
  6733. output /= 10;
  6734. }
  6735. return output;
  6736. }
  6737. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6738. int t1 = 0;
  6739. int t_delay = 0;
  6740. int digit[13];
  6741. int m;
  6742. char str[3];
  6743. //String mergeOutput;
  6744. char mergeOutput[15];
  6745. float output;
  6746. int mesh_point = 0; //index number of calibration point
  6747. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6748. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6749. float mesh_home_z_search = 4;
  6750. float row[x_points_num];
  6751. int ix = 0;
  6752. int iy = 0;
  6753. char* filename_wldsd = "wldsd.txt";
  6754. char data_wldsd[70];
  6755. char numb_wldsd[10];
  6756. d_setup();
  6757. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6758. // We don't know where we are! HOME!
  6759. // Push the commands to the front of the message queue in the reverse order!
  6760. // There shall be always enough space reserved for these commands.
  6761. repeatcommand_front(); // repeat G80 with all its parameters
  6762. enquecommand_front_P((PSTR("G28 W0")));
  6763. enquecommand_front_P((PSTR("G1 Z5")));
  6764. return;
  6765. }
  6766. bool custom_message_old = custom_message;
  6767. unsigned int custom_message_type_old = custom_message_type;
  6768. unsigned int custom_message_state_old = custom_message_state;
  6769. custom_message = true;
  6770. custom_message_type = 1;
  6771. custom_message_state = (x_points_num * y_points_num) + 10;
  6772. lcd_update(1);
  6773. mbl.reset();
  6774. babystep_undo();
  6775. card.openFile(filename_wldsd, false);
  6776. current_position[Z_AXIS] = mesh_home_z_search;
  6777. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6778. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6779. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6780. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6781. setup_for_endstop_move(false);
  6782. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6783. SERIAL_PROTOCOL(x_points_num);
  6784. SERIAL_PROTOCOLPGM(",");
  6785. SERIAL_PROTOCOL(y_points_num);
  6786. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6787. SERIAL_PROTOCOL(mesh_home_z_search);
  6788. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6789. SERIAL_PROTOCOL(x_dimension);
  6790. SERIAL_PROTOCOLPGM(",");
  6791. SERIAL_PROTOCOL(y_dimension);
  6792. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6793. while (mesh_point != x_points_num * y_points_num) {
  6794. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6795. iy = mesh_point / x_points_num;
  6796. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6797. float z0 = 0.f;
  6798. current_position[Z_AXIS] = mesh_home_z_search;
  6799. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6800. st_synchronize();
  6801. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6802. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6803. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6804. st_synchronize();
  6805. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6806. break;
  6807. card.closefile();
  6808. }
  6809. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6810. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6811. //strcat(data_wldsd, numb_wldsd);
  6812. //MYSERIAL.println(data_wldsd);
  6813. //delay(1000);
  6814. //delay(3000);
  6815. //t1 = millis();
  6816. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6817. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6818. memset(digit, 0, sizeof(digit));
  6819. //cli();
  6820. digitalWrite(D_REQUIRE, LOW);
  6821. for (int i = 0; i<13; i++)
  6822. {
  6823. //t1 = millis();
  6824. for (int j = 0; j < 4; j++)
  6825. {
  6826. while (digitalRead(D_DATACLOCK) == LOW) {}
  6827. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6828. bitWrite(digit[i], j, digitalRead(D_DATA));
  6829. }
  6830. //t_delay = (millis() - t1);
  6831. //SERIAL_PROTOCOLPGM(" ");
  6832. //SERIAL_PROTOCOL_F(t_delay, 5);
  6833. //SERIAL_PROTOCOLPGM(" ");
  6834. }
  6835. //sei();
  6836. digitalWrite(D_REQUIRE, HIGH);
  6837. mergeOutput[0] = '\0';
  6838. output = 0;
  6839. for (int r = 5; r <= 10; r++) //Merge digits
  6840. {
  6841. sprintf(str, "%d", digit[r]);
  6842. strcat(mergeOutput, str);
  6843. }
  6844. output = atof(mergeOutput);
  6845. if (digit[4] == 8) //Handle sign
  6846. {
  6847. output *= -1;
  6848. }
  6849. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6850. {
  6851. output *= 0.1;
  6852. }
  6853. //output = d_ReadData();
  6854. //row[ix] = current_position[Z_AXIS];
  6855. memset(data_wldsd, 0, sizeof(data_wldsd));
  6856. for (int i = 0; i <3; i++) {
  6857. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6858. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6859. strcat(data_wldsd, numb_wldsd);
  6860. strcat(data_wldsd, ";");
  6861. }
  6862. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6863. dtostrf(output, 8, 5, numb_wldsd);
  6864. strcat(data_wldsd, numb_wldsd);
  6865. //strcat(data_wldsd, ";");
  6866. card.write_command(data_wldsd);
  6867. //row[ix] = d_ReadData();
  6868. row[ix] = output; // current_position[Z_AXIS];
  6869. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6870. for (int i = 0; i < x_points_num; i++) {
  6871. SERIAL_PROTOCOLPGM(" ");
  6872. SERIAL_PROTOCOL_F(row[i], 5);
  6873. }
  6874. SERIAL_PROTOCOLPGM("\n");
  6875. }
  6876. custom_message_state--;
  6877. mesh_point++;
  6878. lcd_update(1);
  6879. }
  6880. card.closefile();
  6881. }
  6882. #endif
  6883. void temp_compensation_start() {
  6884. custom_message = true;
  6885. custom_message_type = 5;
  6886. custom_message_state = PINDA_HEAT_T + 1;
  6887. lcd_update(2);
  6888. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6889. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6890. }
  6891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6892. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6893. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6894. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6896. st_synchronize();
  6897. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6898. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6899. delay_keep_alive(1000);
  6900. custom_message_state = PINDA_HEAT_T - i;
  6901. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6902. else lcd_update(1);
  6903. }
  6904. custom_message_type = 0;
  6905. custom_message_state = 0;
  6906. custom_message = false;
  6907. }
  6908. void temp_compensation_apply() {
  6909. int i_add;
  6910. int compensation_value;
  6911. int z_shift = 0;
  6912. float z_shift_mm;
  6913. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6914. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6915. i_add = (target_temperature_bed - 60) / 10;
  6916. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6917. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6918. }else {
  6919. //interpolation
  6920. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6921. }
  6922. SERIAL_PROTOCOLPGM("\n");
  6923. SERIAL_PROTOCOLPGM("Z shift applied:");
  6924. MYSERIAL.print(z_shift_mm);
  6925. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6926. st_synchronize();
  6927. plan_set_z_position(current_position[Z_AXIS]);
  6928. }
  6929. else {
  6930. //we have no temp compensation data
  6931. }
  6932. }
  6933. float temp_comp_interpolation(float inp_temperature) {
  6934. //cubic spline interpolation
  6935. int n, i, j, k;
  6936. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6937. int shift[10];
  6938. int temp_C[10];
  6939. n = 6; //number of measured points
  6940. shift[0] = 0;
  6941. for (i = 0; i < n; i++) {
  6942. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6943. temp_C[i] = 50 + i * 10; //temperature in C
  6944. #ifdef PINDA_THERMISTOR
  6945. temp_C[i] = 35 + i * 5; //temperature in C
  6946. #else
  6947. temp_C[i] = 50 + i * 10; //temperature in C
  6948. #endif
  6949. x[i] = (float)temp_C[i];
  6950. f[i] = (float)shift[i];
  6951. }
  6952. if (inp_temperature < x[0]) return 0;
  6953. for (i = n - 1; i>0; i--) {
  6954. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6955. h[i - 1] = x[i] - x[i - 1];
  6956. }
  6957. //*********** formation of h, s , f matrix **************
  6958. for (i = 1; i<n - 1; i++) {
  6959. m[i][i] = 2 * (h[i - 1] + h[i]);
  6960. if (i != 1) {
  6961. m[i][i - 1] = h[i - 1];
  6962. m[i - 1][i] = h[i - 1];
  6963. }
  6964. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6965. }
  6966. //*********** forward elimination **************
  6967. for (i = 1; i<n - 2; i++) {
  6968. temp = (m[i + 1][i] / m[i][i]);
  6969. for (j = 1; j <= n - 1; j++)
  6970. m[i + 1][j] -= temp*m[i][j];
  6971. }
  6972. //*********** backward substitution *********
  6973. for (i = n - 2; i>0; i--) {
  6974. sum = 0;
  6975. for (j = i; j <= n - 2; j++)
  6976. sum += m[i][j] * s[j];
  6977. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6978. }
  6979. for (i = 0; i<n - 1; i++)
  6980. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6981. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6982. b = s[i] / 2;
  6983. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6984. d = f[i];
  6985. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6986. }
  6987. return sum;
  6988. }
  6989. #ifdef PINDA_THERMISTOR
  6990. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6991. {
  6992. if (!temp_cal_active) return 0;
  6993. if (!calibration_status_pinda()) return 0;
  6994. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6995. }
  6996. #endif //PINDA_THERMISTOR
  6997. void long_pause() //long pause print
  6998. {
  6999. st_synchronize();
  7000. //save currently set parameters to global variables
  7001. saved_feedmultiply = feedmultiply;
  7002. HotendTempBckp = degTargetHotend(active_extruder);
  7003. fanSpeedBckp = fanSpeed;
  7004. start_pause_print = millis();
  7005. //save position
  7006. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7007. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7008. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7009. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7010. //retract
  7011. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7013. //lift z
  7014. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7015. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7016. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7017. //set nozzle target temperature to 0
  7018. setTargetHotend(0, 0);
  7019. setTargetHotend(0, 1);
  7020. setTargetHotend(0, 2);
  7021. //Move XY to side
  7022. current_position[X_AXIS] = X_PAUSE_POS;
  7023. current_position[Y_AXIS] = Y_PAUSE_POS;
  7024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7025. // Turn off the print fan
  7026. fanSpeed = 0;
  7027. st_synchronize();
  7028. }
  7029. void serialecho_temperatures() {
  7030. float tt = degHotend(active_extruder);
  7031. SERIAL_PROTOCOLPGM("T:");
  7032. SERIAL_PROTOCOL(tt);
  7033. SERIAL_PROTOCOLPGM(" E:");
  7034. SERIAL_PROTOCOL((int)active_extruder);
  7035. SERIAL_PROTOCOLPGM(" B:");
  7036. SERIAL_PROTOCOL_F(degBed(), 1);
  7037. SERIAL_PROTOCOLLN("");
  7038. }
  7039. extern uint32_t sdpos_atomic;
  7040. #ifdef UVLO_SUPPORT
  7041. void uvlo_()
  7042. {
  7043. unsigned long time_start = millis();
  7044. bool sd_print = card.sdprinting;
  7045. // Conserve power as soon as possible.
  7046. disable_x();
  7047. disable_y();
  7048. disable_e0();
  7049. #ifdef TMC2130
  7050. tmc2130_set_current_h(Z_AXIS, 20);
  7051. tmc2130_set_current_r(Z_AXIS, 20);
  7052. tmc2130_set_current_h(E_AXIS, 20);
  7053. tmc2130_set_current_r(E_AXIS, 20);
  7054. #endif //TMC2130
  7055. // Indicate that the interrupt has been triggered.
  7056. // SERIAL_ECHOLNPGM("UVLO");
  7057. // Read out the current Z motor microstep counter. This will be later used
  7058. // for reaching the zero full step before powering off.
  7059. uint16_t z_microsteps = 0;
  7060. #ifdef TMC2130
  7061. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7062. #endif //TMC2130
  7063. // Calculate the file position, from which to resume this print.
  7064. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7065. {
  7066. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7067. sd_position -= sdlen_planner;
  7068. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7069. sd_position -= sdlen_cmdqueue;
  7070. if (sd_position < 0) sd_position = 0;
  7071. }
  7072. // Backup the feedrate in mm/min.
  7073. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7074. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7075. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7076. // are in action.
  7077. planner_abort_hard();
  7078. // Store the current extruder position.
  7079. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7080. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7081. // Clean the input command queue.
  7082. cmdqueue_reset();
  7083. card.sdprinting = false;
  7084. // card.closefile();
  7085. // Enable stepper driver interrupt to move Z axis.
  7086. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7087. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7088. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7089. sei();
  7090. plan_buffer_line(
  7091. current_position[X_AXIS],
  7092. current_position[Y_AXIS],
  7093. current_position[Z_AXIS],
  7094. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7095. 95, active_extruder);
  7096. st_synchronize();
  7097. disable_e0();
  7098. plan_buffer_line(
  7099. current_position[X_AXIS],
  7100. current_position[Y_AXIS],
  7101. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7102. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7103. 40, active_extruder);
  7104. st_synchronize();
  7105. disable_e0();
  7106. plan_buffer_line(
  7107. current_position[X_AXIS],
  7108. current_position[Y_AXIS],
  7109. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7110. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7111. 40, active_extruder);
  7112. st_synchronize();
  7113. disable_e0();
  7114. disable_z();
  7115. // Move Z up to the next 0th full step.
  7116. // Write the file position.
  7117. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7118. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7119. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7120. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7121. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7122. // Scale the z value to 1u resolution.
  7123. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7124. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7125. }
  7126. // Read out the current Z motor microstep counter. This will be later used
  7127. // for reaching the zero full step before powering off.
  7128. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7129. // Store the current position.
  7130. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7131. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7132. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7133. // Store the current feed rate, temperatures and fan speed.
  7134. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7135. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7136. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7137. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7138. // Finaly store the "power outage" flag.
  7139. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7140. st_synchronize();
  7141. SERIAL_ECHOPGM("stps");
  7142. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7143. disable_z();
  7144. // Increment power failure counter
  7145. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7146. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7147. SERIAL_ECHOLNPGM("UVLO - end");
  7148. MYSERIAL.println(millis() - time_start);
  7149. #if 0
  7150. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7151. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7153. st_synchronize();
  7154. #endif
  7155. cli();
  7156. volatile unsigned int ppcount = 0;
  7157. SET_OUTPUT(BEEPER);
  7158. WRITE(BEEPER, HIGH);
  7159. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7160. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7161. }
  7162. WRITE(BEEPER, LOW);
  7163. while(1){
  7164. #if 1
  7165. WRITE(BEEPER, LOW);
  7166. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7167. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7168. }
  7169. #endif
  7170. };
  7171. }
  7172. #endif //UVLO_SUPPORT
  7173. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7174. void setup_fan_interrupt() {
  7175. //INT7
  7176. DDRE &= ~(1 << 7); //input pin
  7177. PORTE &= ~(1 << 7); //no internal pull-up
  7178. //start with sensing rising edge
  7179. EICRB &= ~(1 << 6);
  7180. EICRB |= (1 << 7);
  7181. //enable INT7 interrupt
  7182. EIMSK |= (1 << 7);
  7183. }
  7184. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7185. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7186. ISR(INT7_vect) {
  7187. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7188. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7189. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7190. t_fan_rising_edge = millis_nc();
  7191. }
  7192. else { //interrupt was triggered by falling edge
  7193. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7194. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7195. }
  7196. }
  7197. EICRB ^= (1 << 6); //change edge
  7198. }
  7199. #endif
  7200. #ifdef UVLO_SUPPORT
  7201. void setup_uvlo_interrupt() {
  7202. DDRE &= ~(1 << 4); //input pin
  7203. PORTE &= ~(1 << 4); //no internal pull-up
  7204. //sensing falling edge
  7205. EICRB |= (1 << 0);
  7206. EICRB &= ~(1 << 1);
  7207. //enable INT4 interrupt
  7208. EIMSK |= (1 << 4);
  7209. }
  7210. ISR(INT4_vect) {
  7211. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7212. SERIAL_ECHOLNPGM("INT4");
  7213. if (IS_SD_PRINTING) uvlo_();
  7214. }
  7215. void recover_print(uint8_t automatic) {
  7216. char cmd[30];
  7217. lcd_update_enable(true);
  7218. lcd_update(2);
  7219. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7220. recover_machine_state_after_power_panic();
  7221. // Set the target bed and nozzle temperatures.
  7222. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  7223. enquecommand(cmd);
  7224. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  7225. enquecommand(cmd);
  7226. // Lift the print head, so one may remove the excess priming material.
  7227. if (current_position[Z_AXIS] < 25)
  7228. enquecommand_P(PSTR("G1 Z25 F800"));
  7229. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7230. enquecommand_P(PSTR("G28 X Y"));
  7231. // Set the target bed and nozzle temperatures and wait.
  7232. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7233. enquecommand(cmd);
  7234. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7235. enquecommand(cmd);
  7236. enquecommand_P(PSTR("M83")); //E axis relative mode
  7237. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7238. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7239. if(automatic == 0){
  7240. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7241. }
  7242. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7243. // Mark the power panic status as inactive.
  7244. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7245. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7246. delay_keep_alive(1000);
  7247. }*/
  7248. SERIAL_ECHOPGM("After waiting for temp:");
  7249. SERIAL_ECHOPGM("Current position X_AXIS:");
  7250. MYSERIAL.println(current_position[X_AXIS]);
  7251. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7252. MYSERIAL.println(current_position[Y_AXIS]);
  7253. // Restart the print.
  7254. restore_print_from_eeprom();
  7255. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7256. MYSERIAL.print(current_position[Z_AXIS]);
  7257. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7258. MYSERIAL.print(current_position[E_AXIS]);
  7259. }
  7260. void recover_machine_state_after_power_panic()
  7261. {
  7262. char cmd[30];
  7263. // 1) Recover the logical cordinates at the time of the power panic.
  7264. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7265. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7266. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7267. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7268. // The current position after power panic is moved to the next closest 0th full step.
  7269. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7270. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7271. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7272. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7273. sprintf_P(cmd, PSTR("G92 E"));
  7274. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7275. enquecommand(cmd);
  7276. }
  7277. memcpy(destination, current_position, sizeof(destination));
  7278. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7279. print_world_coordinates();
  7280. // 2) Initialize the logical to physical coordinate system transformation.
  7281. world2machine_initialize();
  7282. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7283. mbl.active = false;
  7284. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7285. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7286. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7287. // Scale the z value to 10u resolution.
  7288. int16_t v;
  7289. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7290. if (v != 0)
  7291. mbl.active = true;
  7292. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7293. }
  7294. if (mbl.active)
  7295. mbl.upsample_3x3();
  7296. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7297. // print_mesh_bed_leveling_table();
  7298. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7299. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7300. babystep_load();
  7301. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7302. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7303. // 6) Power up the motors, mark their positions as known.
  7304. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7305. axis_known_position[X_AXIS] = true; enable_x();
  7306. axis_known_position[Y_AXIS] = true; enable_y();
  7307. axis_known_position[Z_AXIS] = true; enable_z();
  7308. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7309. print_physical_coordinates();
  7310. // 7) Recover the target temperatures.
  7311. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7312. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7313. }
  7314. void restore_print_from_eeprom() {
  7315. float x_rec, y_rec, z_pos;
  7316. int feedrate_rec;
  7317. uint8_t fan_speed_rec;
  7318. char cmd[30];
  7319. char* c;
  7320. char filename[13];
  7321. uint8_t depth = 0;
  7322. char dir_name[9];
  7323. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7324. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7325. SERIAL_ECHOPGM("Feedrate:");
  7326. MYSERIAL.println(feedrate_rec);
  7327. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7328. MYSERIAL.println(int(depth));
  7329. for (int i = 0; i < depth; i++) {
  7330. for (int j = 0; j < 8; j++) {
  7331. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7332. }
  7333. dir_name[8] = '\0';
  7334. MYSERIAL.println(dir_name);
  7335. card.chdir(dir_name);
  7336. }
  7337. for (int i = 0; i < 8; i++) {
  7338. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7339. }
  7340. filename[8] = '\0';
  7341. MYSERIAL.print(filename);
  7342. strcat_P(filename, PSTR(".gco"));
  7343. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7344. for (c = &cmd[4]; *c; c++)
  7345. *c = tolower(*c);
  7346. enquecommand(cmd);
  7347. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7348. SERIAL_ECHOPGM("Position read from eeprom:");
  7349. MYSERIAL.println(position);
  7350. // E axis relative mode.
  7351. enquecommand_P(PSTR("M83"));
  7352. // Move to the XY print position in logical coordinates, where the print has been killed.
  7353. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7354. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7355. strcat_P(cmd, PSTR(" F2000"));
  7356. enquecommand(cmd);
  7357. // Move the Z axis down to the print, in logical coordinates.
  7358. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7359. enquecommand(cmd);
  7360. // Unretract.
  7361. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7362. // Set the feedrate saved at the power panic.
  7363. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7364. enquecommand(cmd);
  7365. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7366. {
  7367. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7368. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7369. }
  7370. // Set the fan speed saved at the power panic.
  7371. strcpy_P(cmd, PSTR("M106 S"));
  7372. strcat(cmd, itostr3(int(fan_speed_rec)));
  7373. enquecommand(cmd);
  7374. // Set a position in the file.
  7375. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7376. enquecommand(cmd);
  7377. // Start SD print.
  7378. enquecommand_P(PSTR("M24"));
  7379. }
  7380. #endif //UVLO_SUPPORT
  7381. ////////////////////////////////////////////////////////////////////////////////
  7382. // save/restore printing
  7383. void stop_and_save_print_to_ram(float z_move, float e_move)
  7384. {
  7385. if (saved_printing) return;
  7386. cli();
  7387. unsigned char nplanner_blocks = number_of_blocks();
  7388. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7389. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7390. saved_sdpos -= sdlen_planner;
  7391. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7392. saved_sdpos -= sdlen_cmdqueue;
  7393. #if 0
  7394. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7395. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7396. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7397. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7398. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7399. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7400. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7401. {
  7402. card.setIndex(saved_sdpos);
  7403. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7404. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7405. MYSERIAL.print(char(card.get()));
  7406. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7407. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7408. MYSERIAL.print(char(card.get()));
  7409. SERIAL_ECHOLNPGM("End of command buffer");
  7410. }
  7411. {
  7412. // Print the content of the planner buffer, line by line:
  7413. card.setIndex(saved_sdpos);
  7414. int8_t iline = 0;
  7415. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7416. SERIAL_ECHOPGM("Planner line (from file): ");
  7417. MYSERIAL.print(int(iline), DEC);
  7418. SERIAL_ECHOPGM(", length: ");
  7419. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7420. SERIAL_ECHOPGM(", steps: (");
  7421. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7422. SERIAL_ECHOPGM(",");
  7423. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7424. SERIAL_ECHOPGM(",");
  7425. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7426. SERIAL_ECHOPGM(",");
  7427. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7428. SERIAL_ECHOPGM("), events: ");
  7429. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7430. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7431. MYSERIAL.print(char(card.get()));
  7432. }
  7433. }
  7434. {
  7435. // Print the content of the command buffer, line by line:
  7436. int8_t iline = 0;
  7437. union {
  7438. struct {
  7439. char lo;
  7440. char hi;
  7441. } lohi;
  7442. uint16_t value;
  7443. } sdlen_single;
  7444. int _bufindr = bufindr;
  7445. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7446. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7447. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7448. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7449. }
  7450. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7451. MYSERIAL.print(int(iline), DEC);
  7452. SERIAL_ECHOPGM(", type: ");
  7453. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7454. SERIAL_ECHOPGM(", len: ");
  7455. MYSERIAL.println(sdlen_single.value, DEC);
  7456. // Print the content of the buffer line.
  7457. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7458. SERIAL_ECHOPGM("Buffer line (from file): ");
  7459. MYSERIAL.print(int(iline), DEC);
  7460. MYSERIAL.println(int(iline), DEC);
  7461. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7462. MYSERIAL.print(char(card.get()));
  7463. if (-- _buflen == 0)
  7464. break;
  7465. // First skip the current command ID and iterate up to the end of the string.
  7466. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7467. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7468. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7469. // If the end of the buffer was empty,
  7470. if (_bufindr == sizeof(cmdbuffer)) {
  7471. // skip to the start and find the nonzero command.
  7472. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7473. }
  7474. }
  7475. }
  7476. #endif
  7477. #if 0
  7478. saved_feedrate2 = feedrate; //save feedrate
  7479. #else
  7480. // Try to deduce the feedrate from the first block of the planner.
  7481. // Speed is in mm/min.
  7482. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7483. #endif
  7484. planner_abort_hard(); //abort printing
  7485. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7486. saved_active_extruder = active_extruder; //save active_extruder
  7487. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7488. cmdqueue_reset(); //empty cmdqueue
  7489. card.sdprinting = false;
  7490. // card.closefile();
  7491. saved_printing = true;
  7492. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7493. st_reset_timer();
  7494. sei();
  7495. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7496. #if 1
  7497. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7498. char buf[48];
  7499. strcpy_P(buf, PSTR("G1 Z"));
  7500. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7501. strcat_P(buf, PSTR(" E"));
  7502. // Relative extrusion
  7503. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7504. strcat_P(buf, PSTR(" F"));
  7505. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7506. // At this point the command queue is empty.
  7507. enquecommand(buf, false);
  7508. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7509. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7510. repeatcommand_front();
  7511. #else
  7512. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7513. st_synchronize(); //wait moving
  7514. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7515. memcpy(destination, current_position, sizeof(destination));
  7516. #endif
  7517. }
  7518. }
  7519. void restore_print_from_ram_and_continue(float e_move)
  7520. {
  7521. if (!saved_printing) return;
  7522. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7523. // current_position[axis] = st_get_position_mm(axis);
  7524. active_extruder = saved_active_extruder; //restore active_extruder
  7525. feedrate = saved_feedrate2; //restore feedrate
  7526. float e = saved_pos[E_AXIS] - e_move;
  7527. plan_set_e_position(e);
  7528. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7529. st_synchronize();
  7530. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7531. memcpy(destination, current_position, sizeof(destination));
  7532. card.setIndex(saved_sdpos);
  7533. sdpos_atomic = saved_sdpos;
  7534. card.sdprinting = true;
  7535. saved_printing = false;
  7536. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7537. }
  7538. void print_world_coordinates()
  7539. {
  7540. SERIAL_ECHOPGM("world coordinates: (");
  7541. MYSERIAL.print(current_position[X_AXIS], 3);
  7542. SERIAL_ECHOPGM(", ");
  7543. MYSERIAL.print(current_position[Y_AXIS], 3);
  7544. SERIAL_ECHOPGM(", ");
  7545. MYSERIAL.print(current_position[Z_AXIS], 3);
  7546. SERIAL_ECHOLNPGM(")");
  7547. }
  7548. void print_physical_coordinates()
  7549. {
  7550. SERIAL_ECHOPGM("physical coordinates: (");
  7551. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7552. SERIAL_ECHOPGM(", ");
  7553. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7554. SERIAL_ECHOPGM(", ");
  7555. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7556. SERIAL_ECHOLNPGM(")");
  7557. }
  7558. void print_mesh_bed_leveling_table()
  7559. {
  7560. SERIAL_ECHOPGM("mesh bed leveling: ");
  7561. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7562. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7563. MYSERIAL.print(mbl.z_values[y][x], 3);
  7564. SERIAL_ECHOPGM(" ");
  7565. }
  7566. SERIAL_ECHOLNPGM("");
  7567. }
  7568. #define FIL_LOAD_LENGTH 60