Marlin_main.cpp 316 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. #define PRINTING_TYPE_NONE 2
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. //used for PINDA temp calibration and pause print
  136. #define DEFAULT_RETRACTION 1
  137. #define DEFAULT_RETRACTION_MM 4 //MM
  138. float default_retraction = DEFAULT_RETRACTION;
  139. float homing_feedrate[] = HOMING_FEEDRATE;
  140. // Currently only the extruder axis may be switched to a relative mode.
  141. // Other axes are always absolute or relative based on the common relative_mode flag.
  142. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  143. int feedmultiply=100; //100->1 200->2
  144. int extrudemultiply=100; //100->1 200->2
  145. int extruder_multiply[EXTRUDERS] = {100
  146. #if EXTRUDERS > 1
  147. , 100
  148. #if EXTRUDERS > 2
  149. , 100
  150. #endif
  151. #endif
  152. };
  153. int bowden_length[4] = {385, 385, 385, 385};
  154. bool is_usb_printing = false;
  155. bool homing_flag = false;
  156. bool temp_cal_active = false;
  157. unsigned long kicktime = _millis()+100000;
  158. unsigned int usb_printing_counter;
  159. int8_t lcd_change_fil_state = 0;
  160. unsigned long pause_time = 0;
  161. unsigned long start_pause_print = _millis();
  162. unsigned long t_fan_rising_edge = _millis();
  163. LongTimer safetyTimer;
  164. static LongTimer crashDetTimer;
  165. //unsigned long load_filament_time;
  166. bool mesh_bed_leveling_flag = false;
  167. bool mesh_bed_run_from_menu = false;
  168. int8_t FarmMode = 0;
  169. bool prusa_sd_card_upload = false;
  170. unsigned int status_number = 0;
  171. unsigned long total_filament_used;
  172. unsigned int heating_status;
  173. unsigned int heating_status_counter;
  174. bool loading_flag = false;
  175. char snmm_filaments_used = 0;
  176. bool fan_state[2];
  177. int fan_edge_counter[2];
  178. int fan_speed[2];
  179. char dir_names[3][9];
  180. bool sortAlpha = false;
  181. float extruder_multiplier[EXTRUDERS] = {1.0
  182. #if EXTRUDERS > 1
  183. , 1.0
  184. #if EXTRUDERS > 2
  185. , 1.0
  186. #endif
  187. #endif
  188. };
  189. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  190. //shortcuts for more readable code
  191. #define _x current_position[X_AXIS]
  192. #define _y current_position[Y_AXIS]
  193. #define _z current_position[Z_AXIS]
  194. #define _e current_position[E_AXIS]
  195. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  196. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  197. bool axis_known_position[3] = {false, false, false};
  198. // Extruder offset
  199. #if EXTRUDERS > 1
  200. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  201. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  202. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  203. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  204. #endif
  205. };
  206. #endif
  207. uint8_t active_extruder = 0;
  208. int fanSpeed=0;
  209. #ifdef FWRETRACT
  210. bool retracted[EXTRUDERS]={false
  211. #if EXTRUDERS > 1
  212. , false
  213. #if EXTRUDERS > 2
  214. , false
  215. #endif
  216. #endif
  217. };
  218. bool retracted_swap[EXTRUDERS]={false
  219. #if EXTRUDERS > 1
  220. , false
  221. #if EXTRUDERS > 2
  222. , false
  223. #endif
  224. #endif
  225. };
  226. float retract_length_swap = RETRACT_LENGTH_SWAP;
  227. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  228. #endif
  229. #ifdef PS_DEFAULT_OFF
  230. bool powersupply = false;
  231. #else
  232. bool powersupply = true;
  233. #endif
  234. bool cancel_heatup = false ;
  235. #ifdef HOST_KEEPALIVE_FEATURE
  236. int busy_state = NOT_BUSY;
  237. static long prev_busy_signal_ms = -1;
  238. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  239. #else
  240. #define host_keepalive();
  241. #define KEEPALIVE_STATE(n);
  242. #endif
  243. const char errormagic[] PROGMEM = "Error:";
  244. const char echomagic[] PROGMEM = "echo:";
  245. bool no_response = false;
  246. uint8_t important_status;
  247. uint8_t saved_filament_type;
  248. // save/restore printing in case that mmu was not responding
  249. bool mmu_print_saved = false;
  250. // storing estimated time to end of print counted by slicer
  251. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  252. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  253. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  254. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  255. bool wizard_active = false; //autoload temporarily disabled during wizard
  256. //===========================================================================
  257. //=============================Private Variables=============================
  258. //===========================================================================
  259. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  260. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  261. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  262. // For tracing an arc
  263. static float offset[3] = {0.0, 0.0, 0.0};
  264. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  265. // Determines Absolute or Relative Coordinates.
  266. // Also there is bool axis_relative_modes[] per axis flag.
  267. static bool relative_mode = false;
  268. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  269. //static float tt = 0;
  270. //static float bt = 0;
  271. //Inactivity shutdown variables
  272. static unsigned long previous_millis_cmd = 0;
  273. unsigned long max_inactive_time = 0;
  274. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  275. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  276. unsigned long starttime=0;
  277. unsigned long stoptime=0;
  278. unsigned long _usb_timer = 0;
  279. bool extruder_under_pressure = true;
  280. bool Stopped=false;
  281. #if NUM_SERVOS > 0
  282. Servo servos[NUM_SERVOS];
  283. #endif
  284. bool CooldownNoWait = true;
  285. bool target_direction;
  286. //Insert variables if CHDK is defined
  287. #ifdef CHDK
  288. unsigned long chdkHigh = 0;
  289. boolean chdkActive = false;
  290. #endif
  291. //! @name RAM save/restore printing
  292. //! @{
  293. bool saved_printing = false; //!< Print is paused and saved in RAM
  294. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  295. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  296. static float saved_pos[4] = { 0, 0, 0, 0 };
  297. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  298. static float saved_feedrate2 = 0;
  299. static uint8_t saved_active_extruder = 0;
  300. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  301. static bool saved_extruder_under_pressure = false;
  302. static bool saved_extruder_relative_mode = false;
  303. static int saved_fanSpeed = 0; //!< Print fan speed
  304. //! @}
  305. static int saved_feedmultiply_mm = 100;
  306. //===========================================================================
  307. //=============================Routines======================================
  308. //===========================================================================
  309. static void get_arc_coordinates();
  310. static bool setTargetedHotend(int code, uint8_t &extruder);
  311. static void print_time_remaining_init();
  312. static void wait_for_heater(long codenum, uint8_t extruder);
  313. uint16_t gcode_in_progress = 0;
  314. uint16_t mcode_in_progress = 0;
  315. void serial_echopair_P(const char *s_P, float v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. void serial_echopair_P(const char *s_P, double v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. void serial_echopair_P(const char *s_P, unsigned long v)
  320. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  321. #ifdef SDSUPPORT
  322. #include "SdFatUtil.h"
  323. int freeMemory() { return SdFatUtil::FreeRam(); }
  324. #else
  325. extern "C" {
  326. extern unsigned int __bss_end;
  327. extern unsigned int __heap_start;
  328. extern void *__brkval;
  329. int freeMemory() {
  330. int free_memory;
  331. if ((int)__brkval == 0)
  332. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  333. else
  334. free_memory = ((int)&free_memory) - ((int)__brkval);
  335. return free_memory;
  336. }
  337. }
  338. #endif //!SDSUPPORT
  339. void setup_killpin()
  340. {
  341. #if defined(KILL_PIN) && KILL_PIN > -1
  342. SET_INPUT(KILL_PIN);
  343. WRITE(KILL_PIN,HIGH);
  344. #endif
  345. }
  346. // Set home pin
  347. void setup_homepin(void)
  348. {
  349. #if defined(HOME_PIN) && HOME_PIN > -1
  350. SET_INPUT(HOME_PIN);
  351. WRITE(HOME_PIN,HIGH);
  352. #endif
  353. }
  354. void setup_photpin()
  355. {
  356. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  357. SET_OUTPUT(PHOTOGRAPH_PIN);
  358. WRITE(PHOTOGRAPH_PIN, LOW);
  359. #endif
  360. }
  361. void setup_powerhold()
  362. {
  363. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  364. SET_OUTPUT(SUICIDE_PIN);
  365. WRITE(SUICIDE_PIN, HIGH);
  366. #endif
  367. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  368. SET_OUTPUT(PS_ON_PIN);
  369. #if defined(PS_DEFAULT_OFF)
  370. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  371. #else
  372. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  373. #endif
  374. #endif
  375. }
  376. void suicide()
  377. {
  378. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  379. SET_OUTPUT(SUICIDE_PIN);
  380. WRITE(SUICIDE_PIN, LOW);
  381. #endif
  382. }
  383. void servo_init()
  384. {
  385. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  386. servos[0].attach(SERVO0_PIN);
  387. #endif
  388. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  389. servos[1].attach(SERVO1_PIN);
  390. #endif
  391. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  392. servos[2].attach(SERVO2_PIN);
  393. #endif
  394. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  395. servos[3].attach(SERVO3_PIN);
  396. #endif
  397. #if (NUM_SERVOS >= 5)
  398. #error "TODO: enter initalisation code for more servos"
  399. #endif
  400. }
  401. bool fans_check_enabled = true;
  402. #ifdef TMC2130
  403. extern int8_t CrashDetectMenu;
  404. void crashdet_enable()
  405. {
  406. tmc2130_sg_stop_on_crash = true;
  407. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  408. CrashDetectMenu = 1;
  409. }
  410. void crashdet_disable()
  411. {
  412. tmc2130_sg_stop_on_crash = false;
  413. tmc2130_sg_crash = 0;
  414. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  415. CrashDetectMenu = 0;
  416. }
  417. void crashdet_stop_and_save_print()
  418. {
  419. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  420. }
  421. void crashdet_restore_print_and_continue()
  422. {
  423. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  424. // babystep_apply();
  425. }
  426. void crashdet_stop_and_save_print2()
  427. {
  428. cli();
  429. planner_abort_hard(); //abort printing
  430. cmdqueue_reset(); //empty cmdqueue
  431. card.sdprinting = false;
  432. card.closefile();
  433. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  434. st_reset_timer();
  435. sei();
  436. }
  437. void crashdet_detected(uint8_t mask)
  438. {
  439. st_synchronize();
  440. static uint8_t crashDet_counter = 0;
  441. bool automatic_recovery_after_crash = true;
  442. if (crashDet_counter++ == 0) {
  443. crashDetTimer.start();
  444. }
  445. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  446. crashDetTimer.stop();
  447. crashDet_counter = 0;
  448. }
  449. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  450. automatic_recovery_after_crash = false;
  451. crashDetTimer.stop();
  452. crashDet_counter = 0;
  453. }
  454. else {
  455. crashDetTimer.start();
  456. }
  457. lcd_update_enable(true);
  458. lcd_clear();
  459. lcd_update(2);
  460. if (mask & X_AXIS_MASK)
  461. {
  462. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  463. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  464. }
  465. if (mask & Y_AXIS_MASK)
  466. {
  467. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  468. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  469. }
  470. lcd_update_enable(true);
  471. lcd_update(2);
  472. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  473. gcode_G28(true, true, false); //home X and Y
  474. st_synchronize();
  475. if (automatic_recovery_after_crash) {
  476. enquecommand_P(PSTR("CRASH_RECOVER"));
  477. }else{
  478. setTargetHotend(0, active_extruder);
  479. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  480. lcd_update_enable(true);
  481. if (yesno)
  482. {
  483. enquecommand_P(PSTR("CRASH_RECOVER"));
  484. }
  485. else
  486. {
  487. enquecommand_P(PSTR("CRASH_CANCEL"));
  488. }
  489. }
  490. }
  491. void crashdet_recover()
  492. {
  493. crashdet_restore_print_and_continue();
  494. tmc2130_sg_stop_on_crash = true;
  495. }
  496. void crashdet_cancel()
  497. {
  498. saved_printing = false;
  499. tmc2130_sg_stop_on_crash = true;
  500. if (saved_printing_type == PRINTING_TYPE_SD) {
  501. lcd_print_stop();
  502. }else if(saved_printing_type == PRINTING_TYPE_USB){
  503. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  504. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  505. }
  506. }
  507. #endif //TMC2130
  508. void failstats_reset_print()
  509. {
  510. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  514. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  515. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  516. }
  517. #ifdef MESH_BED_LEVELING
  518. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  519. #endif
  520. // Factory reset function
  521. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  522. // Level input parameter sets depth of reset
  523. int er_progress = 0;
  524. static void factory_reset(char level)
  525. {
  526. lcd_clear();
  527. switch (level) {
  528. // Level 0: Language reset
  529. case 0:
  530. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  531. WRITE(BEEPER, HIGH);
  532. _delay_ms(100);
  533. WRITE(BEEPER, LOW);
  534. lang_reset();
  535. break;
  536. //Level 1: Reset statistics
  537. case 1:
  538. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  539. WRITE(BEEPER, HIGH);
  540. _delay_ms(100);
  541. WRITE(BEEPER, LOW);
  542. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  543. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  545. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  547. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  551. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  552. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  553. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  554. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  555. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  556. lcd_menu_statistics();
  557. break;
  558. // Level 2: Prepare for shipping
  559. case 2:
  560. //lcd_puts_P(PSTR("Factory RESET"));
  561. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  562. // Force language selection at the next boot up.
  563. lang_reset();
  564. // Force the "Follow calibration flow" message at the next boot up.
  565. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  566. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  567. farm_no = 0;
  568. farm_mode = false;
  569. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  570. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  571. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  572. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  576. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  577. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  578. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  579. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  580. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  581. #ifdef FILAMENT_SENSOR
  582. fsensor_enable();
  583. fsensor_autoload_set(true);
  584. #endif //FILAMENT_SENSOR
  585. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  586. WRITE(BEEPER, HIGH);
  587. _delay_ms(100);
  588. WRITE(BEEPER, LOW);
  589. //_delay_ms(2000);
  590. break;
  591. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  592. case 3:
  593. lcd_puts_P(PSTR("Factory RESET"));
  594. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  595. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  596. WRITE(BEEPER, HIGH);
  597. _delay_ms(100);
  598. WRITE(BEEPER, LOW);
  599. er_progress = 0;
  600. lcd_puts_at_P(3, 3, PSTR(" "));
  601. lcd_set_cursor(3, 3);
  602. lcd_print(er_progress);
  603. // Erase EEPROM
  604. for (int i = 0; i < 4096; i++) {
  605. eeprom_update_byte((uint8_t*)i, 0xFF);
  606. if (i % 41 == 0) {
  607. er_progress++;
  608. lcd_puts_at_P(3, 3, PSTR(" "));
  609. lcd_set_cursor(3, 3);
  610. lcd_print(er_progress);
  611. lcd_puts_P(PSTR("%"));
  612. }
  613. }
  614. break;
  615. case 4:
  616. bowden_menu();
  617. break;
  618. default:
  619. break;
  620. }
  621. }
  622. extern "C" {
  623. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  624. }
  625. int uart_putchar(char c, FILE *)
  626. {
  627. MYSERIAL.write(c);
  628. return 0;
  629. }
  630. void lcd_splash()
  631. {
  632. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  633. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  634. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  635. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  636. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  637. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  638. }
  639. void factory_reset()
  640. {
  641. KEEPALIVE_STATE(PAUSED_FOR_USER);
  642. if (!READ(BTN_ENC))
  643. {
  644. _delay_ms(1000);
  645. if (!READ(BTN_ENC))
  646. {
  647. lcd_clear();
  648. lcd_puts_P(PSTR("Factory RESET"));
  649. SET_OUTPUT(BEEPER);
  650. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  651. WRITE(BEEPER, HIGH);
  652. while (!READ(BTN_ENC));
  653. WRITE(BEEPER, LOW);
  654. _delay_ms(2000);
  655. char level = reset_menu();
  656. factory_reset(level);
  657. switch (level) {
  658. case 0: _delay_ms(0); break;
  659. case 1: _delay_ms(0); break;
  660. case 2: _delay_ms(0); break;
  661. case 3: _delay_ms(0); break;
  662. }
  663. }
  664. }
  665. KEEPALIVE_STATE(IN_HANDLER);
  666. }
  667. void show_fw_version_warnings() {
  668. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  669. switch (FW_DEV_VERSION) {
  670. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  671. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  672. case(FW_VERSION_DEVEL):
  673. case(FW_VERSION_DEBUG):
  674. lcd_update_enable(false);
  675. lcd_clear();
  676. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  677. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  678. #else
  679. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  680. #endif
  681. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  682. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  683. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  684. lcd_wait_for_click();
  685. break;
  686. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  687. }
  688. lcd_update_enable(true);
  689. }
  690. uint8_t check_printer_version()
  691. {
  692. uint8_t version_changed = 0;
  693. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  694. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  695. if (printer_type != PRINTER_TYPE) {
  696. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  697. else version_changed |= 0b10;
  698. }
  699. if (motherboard != MOTHERBOARD) {
  700. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  701. else version_changed |= 0b01;
  702. }
  703. return version_changed;
  704. }
  705. #ifdef BOOTAPP
  706. #include "bootapp.h" //bootloader support
  707. #endif //BOOTAPP
  708. #if (LANG_MODE != 0) //secondary language support
  709. #ifdef W25X20CL
  710. // language update from external flash
  711. #define LANGBOOT_BLOCKSIZE 0x1000u
  712. #define LANGBOOT_RAMBUFFER 0x0800
  713. void update_sec_lang_from_external_flash()
  714. {
  715. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  716. {
  717. uint8_t lang = boot_reserved >> 4;
  718. uint8_t state = boot_reserved & 0xf;
  719. lang_table_header_t header;
  720. uint32_t src_addr;
  721. if (lang_get_header(lang, &header, &src_addr))
  722. {
  723. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  724. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  725. _delay(100);
  726. boot_reserved = (state + 1) | (lang << 4);
  727. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  728. {
  729. cli();
  730. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  731. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  732. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  733. if (state == 0)
  734. {
  735. //TODO - check header integrity
  736. }
  737. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  738. }
  739. else
  740. {
  741. //TODO - check sec lang data integrity
  742. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  743. }
  744. }
  745. }
  746. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  747. }
  748. #ifdef DEBUG_W25X20CL
  749. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  750. {
  751. lang_table_header_t header;
  752. uint8_t count = 0;
  753. uint32_t addr = 0x00000;
  754. while (1)
  755. {
  756. printf_P(_n("LANGTABLE%d:"), count);
  757. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  758. if (header.magic != LANG_MAGIC)
  759. {
  760. printf_P(_n("NG!\n"));
  761. break;
  762. }
  763. printf_P(_n("OK\n"));
  764. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  765. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  766. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  767. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  768. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  769. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  770. addr += header.size;
  771. codes[count] = header.code;
  772. count ++;
  773. }
  774. return count;
  775. }
  776. void list_sec_lang_from_external_flash()
  777. {
  778. uint16_t codes[8];
  779. uint8_t count = lang_xflash_enum_codes(codes);
  780. printf_P(_n("XFlash lang count = %hhd\n"), count);
  781. }
  782. #endif //DEBUG_W25X20CL
  783. #endif //W25X20CL
  784. #endif //(LANG_MODE != 0)
  785. // "Setup" function is called by the Arduino framework on startup.
  786. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  787. // are initialized by the main() routine provided by the Arduino framework.
  788. void setup()
  789. {
  790. mmu_init();
  791. ultralcd_init();
  792. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  793. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  794. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  795. spi_init();
  796. lcd_splash();
  797. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  798. #ifdef W25X20CL
  799. if (!w25x20cl_init())
  800. kill(_i("External SPI flash W25X20CL not responding."));
  801. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  802. optiboot_w25x20cl_enter();
  803. #endif
  804. #if (LANG_MODE != 0) //secondary language support
  805. #ifdef W25X20CL
  806. if (w25x20cl_init())
  807. update_sec_lang_from_external_flash();
  808. #endif //W25X20CL
  809. #endif //(LANG_MODE != 0)
  810. setup_killpin();
  811. setup_powerhold();
  812. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  813. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  814. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  815. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  816. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  817. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  818. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  819. if (farm_mode)
  820. {
  821. no_response = true; //we need confirmation by recieving PRUSA thx
  822. important_status = 8;
  823. prusa_statistics(8);
  824. selectedSerialPort = 1;
  825. #ifdef TMC2130
  826. //increased extruder current (PFW363)
  827. tmc2130_current_h[E_AXIS] = 36;
  828. tmc2130_current_r[E_AXIS] = 36;
  829. #endif //TMC2130
  830. #ifdef FILAMENT_SENSOR
  831. //disabled filament autoload (PFW360)
  832. fsensor_autoload_set(false);
  833. #endif //FILAMENT_SENSOR
  834. }
  835. MYSERIAL.begin(BAUDRATE);
  836. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  837. #ifndef W25X20CL
  838. SERIAL_PROTOCOLLNPGM("start");
  839. #endif //W25X20CL
  840. stdout = uartout;
  841. SERIAL_ECHO_START;
  842. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  843. #ifdef DEBUG_SEC_LANG
  844. lang_table_header_t header;
  845. uint32_t src_addr = 0x00000;
  846. if (lang_get_header(1, &header, &src_addr))
  847. {
  848. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  849. #define LT_PRINT_TEST 2
  850. // flash usage
  851. // total p.test
  852. //0 252718 t+c text code
  853. //1 253142 424 170 254
  854. //2 253040 322 164 158
  855. //3 253248 530 135 395
  856. #if (LT_PRINT_TEST==1) //not optimized printf
  857. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  858. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  859. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  860. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  861. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  862. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  863. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  864. #elif (LT_PRINT_TEST==2) //optimized printf
  865. printf_P(
  866. _n(
  867. " _src_addr = 0x%08lx\n"
  868. " _lt_magic = 0x%08lx %S\n"
  869. " _lt_size = 0x%04x (%d)\n"
  870. " _lt_count = 0x%04x (%d)\n"
  871. " _lt_chsum = 0x%04x\n"
  872. " _lt_code = 0x%04x (%c%c)\n"
  873. " _lt_resv1 = 0x%08lx\n"
  874. ),
  875. src_addr,
  876. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  877. header.size, header.size,
  878. header.count, header.count,
  879. header.checksum,
  880. header.code, header.code >> 8, header.code & 0xff,
  881. header.signature
  882. );
  883. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  884. MYSERIAL.print(" _src_addr = 0x");
  885. MYSERIAL.println(src_addr, 16);
  886. MYSERIAL.print(" _lt_magic = 0x");
  887. MYSERIAL.print(header.magic, 16);
  888. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  889. MYSERIAL.print(" _lt_size = 0x");
  890. MYSERIAL.print(header.size, 16);
  891. MYSERIAL.print(" (");
  892. MYSERIAL.print(header.size, 10);
  893. MYSERIAL.println(")");
  894. MYSERIAL.print(" _lt_count = 0x");
  895. MYSERIAL.print(header.count, 16);
  896. MYSERIAL.print(" (");
  897. MYSERIAL.print(header.count, 10);
  898. MYSERIAL.println(")");
  899. MYSERIAL.print(" _lt_chsum = 0x");
  900. MYSERIAL.println(header.checksum, 16);
  901. MYSERIAL.print(" _lt_code = 0x");
  902. MYSERIAL.print(header.code, 16);
  903. MYSERIAL.print(" (");
  904. MYSERIAL.print((char)(header.code >> 8), 0);
  905. MYSERIAL.print((char)(header.code & 0xff), 0);
  906. MYSERIAL.println(")");
  907. MYSERIAL.print(" _lt_resv1 = 0x");
  908. MYSERIAL.println(header.signature, 16);
  909. #endif //(LT_PRINT_TEST==)
  910. #undef LT_PRINT_TEST
  911. #if 0
  912. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  913. for (uint16_t i = 0; i < 1024; i++)
  914. {
  915. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  916. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  917. if ((i % 16) == 15) putchar('\n');
  918. }
  919. #endif
  920. uint16_t sum = 0;
  921. for (uint16_t i = 0; i < header.size; i++)
  922. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  923. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  924. sum -= header.checksum; //subtract checksum
  925. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  926. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  927. if (sum == header.checksum)
  928. printf_P(_n("Checksum OK\n"), sum);
  929. else
  930. printf_P(_n("Checksum NG\n"), sum);
  931. }
  932. else
  933. printf_P(_n("lang_get_header failed!\n"));
  934. #if 0
  935. for (uint16_t i = 0; i < 1024*10; i++)
  936. {
  937. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  938. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  939. if ((i % 16) == 15) putchar('\n');
  940. }
  941. #endif
  942. #if 0
  943. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  944. for (int i = 0; i < 4096; ++i) {
  945. int b = eeprom_read_byte((unsigned char*)i);
  946. if (b != 255) {
  947. SERIAL_ECHO(i);
  948. SERIAL_ECHO(":");
  949. SERIAL_ECHO(b);
  950. SERIAL_ECHOLN("");
  951. }
  952. }
  953. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  954. #endif
  955. #endif //DEBUG_SEC_LANG
  956. // Check startup - does nothing if bootloader sets MCUSR to 0
  957. byte mcu = MCUSR;
  958. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  959. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  960. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  961. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  962. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  963. if (mcu & 1) puts_P(MSG_POWERUP);
  964. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  965. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  966. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  967. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  968. MCUSR = 0;
  969. //SERIAL_ECHORPGM(MSG_MARLIN);
  970. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  971. #ifdef STRING_VERSION_CONFIG_H
  972. #ifdef STRING_CONFIG_H_AUTHOR
  973. SERIAL_ECHO_START;
  974. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  975. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  976. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  977. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  978. SERIAL_ECHOPGM("Compiled: ");
  979. SERIAL_ECHOLNPGM(__DATE__);
  980. #endif
  981. #endif
  982. SERIAL_ECHO_START;
  983. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  984. SERIAL_ECHO(freeMemory());
  985. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  986. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  987. //lcd_update_enable(false); // why do we need this?? - andre
  988. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  989. bool previous_settings_retrieved = false;
  990. uint8_t hw_changed = check_printer_version();
  991. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  992. previous_settings_retrieved = Config_RetrieveSettings();
  993. }
  994. else { //printer version was changed so use default settings
  995. Config_ResetDefault();
  996. }
  997. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  998. tp_init(); // Initialize temperature loop
  999. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1000. plan_init(); // Initialize planner;
  1001. factory_reset();
  1002. lcd_encoder_diff=0;
  1003. #ifdef TMC2130
  1004. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1005. if (silentMode == 0xff) silentMode = 0;
  1006. tmc2130_mode = TMC2130_MODE_NORMAL;
  1007. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1008. if (crashdet && !farm_mode)
  1009. {
  1010. crashdet_enable();
  1011. puts_P(_N("CrashDetect ENABLED!"));
  1012. }
  1013. else
  1014. {
  1015. crashdet_disable();
  1016. puts_P(_N("CrashDetect DISABLED"));
  1017. }
  1018. #ifdef TMC2130_LINEARITY_CORRECTION
  1019. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1020. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1021. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1022. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1023. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1024. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1025. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1026. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1027. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1028. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1029. #endif //TMC2130_LINEARITY_CORRECTION
  1030. #ifdef TMC2130_VARIABLE_RESOLUTION
  1031. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1032. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1033. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1034. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1035. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1036. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1037. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1038. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1039. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1040. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1041. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1042. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1043. #else //TMC2130_VARIABLE_RESOLUTION
  1044. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1045. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1046. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1047. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1048. #endif //TMC2130_VARIABLE_RESOLUTION
  1049. #endif //TMC2130
  1050. st_init(); // Initialize stepper, this enables interrupts!
  1051. #ifdef TMC2130
  1052. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1053. update_mode_profile();
  1054. tmc2130_init();
  1055. #endif //TMC2130
  1056. setup_photpin();
  1057. servo_init();
  1058. // Reset the machine correction matrix.
  1059. // It does not make sense to load the correction matrix until the machine is homed.
  1060. world2machine_reset();
  1061. #ifdef FILAMENT_SENSOR
  1062. fsensor_init();
  1063. #endif //FILAMENT_SENSOR
  1064. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1065. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1066. #endif
  1067. setup_homepin();
  1068. #ifdef TMC2130
  1069. if (1) {
  1070. // try to run to zero phase before powering the Z motor.
  1071. // Move in negative direction
  1072. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1073. // Round the current micro-micro steps to micro steps.
  1074. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1075. // Until the phase counter is reset to zero.
  1076. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1077. _delay(2);
  1078. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1079. _delay(2);
  1080. }
  1081. }
  1082. #endif //TMC2130
  1083. #if defined(Z_AXIS_ALWAYS_ON)
  1084. enable_z();
  1085. #endif
  1086. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1087. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1088. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1089. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1090. if (farm_mode)
  1091. {
  1092. prusa_statistics(8);
  1093. }
  1094. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1095. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1096. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1097. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1098. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1099. // where all the EEPROM entries are set to 0x0ff.
  1100. // Once a firmware boots up, it forces at least a language selection, which changes
  1101. // EEPROM_LANG to number lower than 0x0ff.
  1102. // 1) Set a high power mode.
  1103. #ifdef TMC2130
  1104. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1105. tmc2130_mode = TMC2130_MODE_NORMAL;
  1106. #endif //TMC2130
  1107. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1108. }
  1109. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1110. // but this times out if a blocking dialog is shown in setup().
  1111. card.initsd();
  1112. #ifdef DEBUG_SD_SPEED_TEST
  1113. if (card.cardOK)
  1114. {
  1115. uint8_t* buff = (uint8_t*)block_buffer;
  1116. uint32_t block = 0;
  1117. uint32_t sumr = 0;
  1118. uint32_t sumw = 0;
  1119. for (int i = 0; i < 1024; i++)
  1120. {
  1121. uint32_t u = _micros();
  1122. bool res = card.card.readBlock(i, buff);
  1123. u = _micros() - u;
  1124. if (res)
  1125. {
  1126. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1127. sumr += u;
  1128. u = _micros();
  1129. res = card.card.writeBlock(i, buff);
  1130. u = _micros() - u;
  1131. if (res)
  1132. {
  1133. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1134. sumw += u;
  1135. }
  1136. else
  1137. {
  1138. printf_P(PSTR("writeBlock %4d error\n"), i);
  1139. break;
  1140. }
  1141. }
  1142. else
  1143. {
  1144. printf_P(PSTR("readBlock %4d error\n"), i);
  1145. break;
  1146. }
  1147. }
  1148. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1149. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1150. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1151. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1152. }
  1153. else
  1154. printf_P(PSTR("Card NG!\n"));
  1155. #endif //DEBUG_SD_SPEED_TEST
  1156. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1157. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1158. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1159. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1160. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1161. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1162. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1163. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1164. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1165. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1166. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1167. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1168. #ifdef SNMM
  1169. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1170. int _z = BOWDEN_LENGTH;
  1171. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1172. }
  1173. #endif
  1174. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1175. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1176. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1177. #if (LANG_MODE != 0) //secondary language support
  1178. #ifdef DEBUG_W25X20CL
  1179. W25X20CL_SPI_ENTER();
  1180. uint8_t uid[8]; // 64bit unique id
  1181. w25x20cl_rd_uid(uid);
  1182. puts_P(_n("W25X20CL UID="));
  1183. for (uint8_t i = 0; i < 8; i ++)
  1184. printf_P(PSTR("%02hhx"), uid[i]);
  1185. putchar('\n');
  1186. list_sec_lang_from_external_flash();
  1187. #endif //DEBUG_W25X20CL
  1188. // lang_reset();
  1189. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1190. lcd_language();
  1191. #ifdef DEBUG_SEC_LANG
  1192. uint16_t sec_lang_code = lang_get_code(1);
  1193. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1194. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1195. lang_print_sec_lang(uartout);
  1196. #endif //DEBUG_SEC_LANG
  1197. #endif //(LANG_MODE != 0)
  1198. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1199. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1200. temp_cal_active = false;
  1201. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1202. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1203. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1204. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1205. int16_t z_shift = 0;
  1206. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1207. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1208. temp_cal_active = false;
  1209. }
  1210. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1211. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1212. }
  1213. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1214. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1215. }
  1216. check_babystep(); //checking if Z babystep is in allowed range
  1217. #ifdef UVLO_SUPPORT
  1218. setup_uvlo_interrupt();
  1219. #endif //UVLO_SUPPORT
  1220. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1221. setup_fan_interrupt();
  1222. #endif //DEBUG_DISABLE_FANCHECK
  1223. #ifdef PAT9125
  1224. fsensor_setup_interrupt();
  1225. #endif //PAT9125
  1226. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1227. #ifndef DEBUG_DISABLE_STARTMSGS
  1228. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1229. show_fw_version_warnings();
  1230. switch (hw_changed) {
  1231. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1232. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1233. case(0b01):
  1234. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1235. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1236. break;
  1237. case(0b10):
  1238. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1239. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1240. break;
  1241. case(0b11):
  1242. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1243. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1244. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1245. break;
  1246. default: break; //no change, show no message
  1247. }
  1248. if (!previous_settings_retrieved) {
  1249. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1250. Config_StoreSettings();
  1251. }
  1252. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1253. lcd_wizard(WizState::Run);
  1254. }
  1255. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1256. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1257. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1258. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1259. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1260. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1261. // Show the message.
  1262. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1263. }
  1264. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1265. // Show the message.
  1266. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1267. lcd_update_enable(true);
  1268. }
  1269. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1270. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1271. lcd_update_enable(true);
  1272. }
  1273. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1274. // Show the message.
  1275. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1276. }
  1277. }
  1278. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1279. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1280. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1281. update_current_firmware_version_to_eeprom();
  1282. lcd_selftest();
  1283. }
  1284. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1285. KEEPALIVE_STATE(IN_PROCESS);
  1286. #endif //DEBUG_DISABLE_STARTMSGS
  1287. lcd_update_enable(true);
  1288. lcd_clear();
  1289. lcd_update(2);
  1290. // Store the currently running firmware into an eeprom,
  1291. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1292. update_current_firmware_version_to_eeprom();
  1293. #ifdef TMC2130
  1294. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1295. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1296. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1297. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1298. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1299. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1300. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1301. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1302. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1303. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1304. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1305. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1306. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1307. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1308. #endif //TMC2130
  1309. #ifdef UVLO_SUPPORT
  1310. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1311. /*
  1312. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1313. else {
  1314. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1315. lcd_update_enable(true);
  1316. lcd_update(2);
  1317. lcd_setstatuspgm(_T(WELCOME_MSG));
  1318. }
  1319. */
  1320. manage_heater(); // Update temperatures
  1321. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1322. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1323. #endif
  1324. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1325. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1326. puts_P(_N("Automatic recovery!"));
  1327. #endif
  1328. recover_print(1);
  1329. }
  1330. else{
  1331. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1332. puts_P(_N("Normal recovery!"));
  1333. #endif
  1334. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1335. else {
  1336. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1337. lcd_update_enable(true);
  1338. lcd_update(2);
  1339. lcd_setstatuspgm(_T(WELCOME_MSG));
  1340. }
  1341. }
  1342. }
  1343. #endif //UVLO_SUPPORT
  1344. KEEPALIVE_STATE(NOT_BUSY);
  1345. #ifdef WATCHDOG
  1346. wdt_enable(WDTO_4S);
  1347. #endif //WATCHDOG
  1348. }
  1349. void trace();
  1350. #define CHUNK_SIZE 64 // bytes
  1351. #define SAFETY_MARGIN 1
  1352. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1353. int chunkHead = 0;
  1354. void serial_read_stream() {
  1355. setAllTargetHotends(0);
  1356. setTargetBed(0);
  1357. lcd_clear();
  1358. lcd_puts_P(PSTR(" Upload in progress"));
  1359. // first wait for how many bytes we will receive
  1360. uint32_t bytesToReceive;
  1361. // receive the four bytes
  1362. char bytesToReceiveBuffer[4];
  1363. for (int i=0; i<4; i++) {
  1364. int data;
  1365. while ((data = MYSERIAL.read()) == -1) {};
  1366. bytesToReceiveBuffer[i] = data;
  1367. }
  1368. // make it a uint32
  1369. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1370. // we're ready, notify the sender
  1371. MYSERIAL.write('+');
  1372. // lock in the routine
  1373. uint32_t receivedBytes = 0;
  1374. while (prusa_sd_card_upload) {
  1375. int i;
  1376. for (i=0; i<CHUNK_SIZE; i++) {
  1377. int data;
  1378. // check if we're not done
  1379. if (receivedBytes == bytesToReceive) {
  1380. break;
  1381. }
  1382. // read the next byte
  1383. while ((data = MYSERIAL.read()) == -1) {};
  1384. receivedBytes++;
  1385. // save it to the chunk
  1386. chunk[i] = data;
  1387. }
  1388. // write the chunk to SD
  1389. card.write_command_no_newline(&chunk[0]);
  1390. // notify the sender we're ready for more data
  1391. MYSERIAL.write('+');
  1392. // for safety
  1393. manage_heater();
  1394. // check if we're done
  1395. if(receivedBytes == bytesToReceive) {
  1396. trace(); // beep
  1397. card.closefile();
  1398. prusa_sd_card_upload = false;
  1399. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1400. }
  1401. }
  1402. }
  1403. #ifdef HOST_KEEPALIVE_FEATURE
  1404. /**
  1405. * Output a "busy" message at regular intervals
  1406. * while the machine is not accepting commands.
  1407. */
  1408. void host_keepalive() {
  1409. if (farm_mode) return;
  1410. long ms = _millis();
  1411. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1412. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1413. switch (busy_state) {
  1414. case IN_HANDLER:
  1415. case IN_PROCESS:
  1416. SERIAL_ECHO_START;
  1417. SERIAL_ECHOLNPGM("busy: processing");
  1418. break;
  1419. case PAUSED_FOR_USER:
  1420. SERIAL_ECHO_START;
  1421. SERIAL_ECHOLNPGM("busy: paused for user");
  1422. break;
  1423. case PAUSED_FOR_INPUT:
  1424. SERIAL_ECHO_START;
  1425. SERIAL_ECHOLNPGM("busy: paused for input");
  1426. break;
  1427. default:
  1428. break;
  1429. }
  1430. }
  1431. prev_busy_signal_ms = ms;
  1432. }
  1433. #endif
  1434. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1435. // Before loop(), the setup() function is called by the main() routine.
  1436. void loop()
  1437. {
  1438. KEEPALIVE_STATE(NOT_BUSY);
  1439. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1440. {
  1441. is_usb_printing = true;
  1442. usb_printing_counter--;
  1443. _usb_timer = _millis();
  1444. }
  1445. if (usb_printing_counter == 0)
  1446. {
  1447. is_usb_printing = false;
  1448. }
  1449. if (prusa_sd_card_upload)
  1450. {
  1451. //we read byte-by byte
  1452. serial_read_stream();
  1453. } else
  1454. {
  1455. get_command();
  1456. #ifdef SDSUPPORT
  1457. card.checkautostart(false);
  1458. #endif
  1459. if(buflen)
  1460. {
  1461. cmdbuffer_front_already_processed = false;
  1462. #ifdef SDSUPPORT
  1463. if(card.saving)
  1464. {
  1465. // Saving a G-code file onto an SD-card is in progress.
  1466. // Saving starts with M28, saving until M29 is seen.
  1467. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1468. card.write_command(CMDBUFFER_CURRENT_STRING);
  1469. if(card.logging)
  1470. process_commands();
  1471. else
  1472. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1473. } else {
  1474. card.closefile();
  1475. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1476. }
  1477. } else {
  1478. process_commands();
  1479. }
  1480. #else
  1481. process_commands();
  1482. #endif //SDSUPPORT
  1483. if (! cmdbuffer_front_already_processed && buflen)
  1484. {
  1485. // ptr points to the start of the block currently being processed.
  1486. // The first character in the block is the block type.
  1487. char *ptr = cmdbuffer + bufindr;
  1488. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1489. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1490. union {
  1491. struct {
  1492. char lo;
  1493. char hi;
  1494. } lohi;
  1495. uint16_t value;
  1496. } sdlen;
  1497. sdlen.value = 0;
  1498. {
  1499. // This block locks the interrupts globally for 3.25 us,
  1500. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1501. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1502. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1503. cli();
  1504. // Reset the command to something, which will be ignored by the power panic routine,
  1505. // so this buffer length will not be counted twice.
  1506. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1507. // Extract the current buffer length.
  1508. sdlen.lohi.lo = *ptr ++;
  1509. sdlen.lohi.hi = *ptr;
  1510. // and pass it to the planner queue.
  1511. planner_add_sd_length(sdlen.value);
  1512. sei();
  1513. }
  1514. }
  1515. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1516. cli();
  1517. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1518. // and one for each command to previous block in the planner queue.
  1519. planner_add_sd_length(1);
  1520. sei();
  1521. }
  1522. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1523. // this block's SD card length will not be counted twice as its command type has been replaced
  1524. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1525. cmdqueue_pop_front();
  1526. }
  1527. host_keepalive();
  1528. }
  1529. }
  1530. //check heater every n milliseconds
  1531. manage_heater();
  1532. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1533. checkHitEndstops();
  1534. lcd_update(0);
  1535. #ifdef TMC2130
  1536. tmc2130_check_overtemp();
  1537. if (tmc2130_sg_crash)
  1538. {
  1539. uint8_t crash = tmc2130_sg_crash;
  1540. tmc2130_sg_crash = 0;
  1541. // crashdet_stop_and_save_print();
  1542. switch (crash)
  1543. {
  1544. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1545. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1546. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1547. }
  1548. }
  1549. #endif //TMC2130
  1550. mmu_loop();
  1551. }
  1552. #define DEFINE_PGM_READ_ANY(type, reader) \
  1553. static inline type pgm_read_any(const type *p) \
  1554. { return pgm_read_##reader##_near(p); }
  1555. DEFINE_PGM_READ_ANY(float, float);
  1556. DEFINE_PGM_READ_ANY(signed char, byte);
  1557. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1558. static const PROGMEM type array##_P[3] = \
  1559. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1560. static inline type array(int axis) \
  1561. { return pgm_read_any(&array##_P[axis]); } \
  1562. type array##_ext(int axis) \
  1563. { return pgm_read_any(&array##_P[axis]); }
  1564. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1565. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1566. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1567. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1568. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1569. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1570. static void axis_is_at_home(int axis) {
  1571. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1572. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1573. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1574. }
  1575. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1576. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1577. //! @return original feedmultiply
  1578. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1579. saved_feedrate = feedrate;
  1580. int l_feedmultiply = feedmultiply;
  1581. feedmultiply = 100;
  1582. previous_millis_cmd = _millis();
  1583. enable_endstops(enable_endstops_now);
  1584. return l_feedmultiply;
  1585. }
  1586. //! @param original_feedmultiply feedmultiply to restore
  1587. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1588. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1589. enable_endstops(false);
  1590. #endif
  1591. feedrate = saved_feedrate;
  1592. feedmultiply = original_feedmultiply;
  1593. previous_millis_cmd = _millis();
  1594. }
  1595. #ifdef ENABLE_AUTO_BED_LEVELING
  1596. #ifdef AUTO_BED_LEVELING_GRID
  1597. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1598. {
  1599. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1600. planeNormal.debug("planeNormal");
  1601. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1602. //bedLevel.debug("bedLevel");
  1603. //plan_bed_level_matrix.debug("bed level before");
  1604. //vector_3 uncorrected_position = plan_get_position_mm();
  1605. //uncorrected_position.debug("position before");
  1606. vector_3 corrected_position = plan_get_position();
  1607. // corrected_position.debug("position after");
  1608. current_position[X_AXIS] = corrected_position.x;
  1609. current_position[Y_AXIS] = corrected_position.y;
  1610. current_position[Z_AXIS] = corrected_position.z;
  1611. // put the bed at 0 so we don't go below it.
  1612. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1613. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1614. }
  1615. #else // not AUTO_BED_LEVELING_GRID
  1616. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1617. plan_bed_level_matrix.set_to_identity();
  1618. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1619. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1620. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1621. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1622. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1623. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1624. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1625. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1626. vector_3 corrected_position = plan_get_position();
  1627. current_position[X_AXIS] = corrected_position.x;
  1628. current_position[Y_AXIS] = corrected_position.y;
  1629. current_position[Z_AXIS] = corrected_position.z;
  1630. // put the bed at 0 so we don't go below it.
  1631. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1632. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1633. }
  1634. #endif // AUTO_BED_LEVELING_GRID
  1635. static void run_z_probe() {
  1636. plan_bed_level_matrix.set_to_identity();
  1637. feedrate = homing_feedrate[Z_AXIS];
  1638. // move down until you find the bed
  1639. float zPosition = -10;
  1640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1641. st_synchronize();
  1642. // we have to let the planner know where we are right now as it is not where we said to go.
  1643. zPosition = st_get_position_mm(Z_AXIS);
  1644. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1645. // move up the retract distance
  1646. zPosition += home_retract_mm(Z_AXIS);
  1647. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1648. st_synchronize();
  1649. // move back down slowly to find bed
  1650. feedrate = homing_feedrate[Z_AXIS]/4;
  1651. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1653. st_synchronize();
  1654. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1655. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1656. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1657. }
  1658. static void do_blocking_move_to(float x, float y, float z) {
  1659. float oldFeedRate = feedrate;
  1660. feedrate = homing_feedrate[Z_AXIS];
  1661. current_position[Z_AXIS] = z;
  1662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1663. st_synchronize();
  1664. feedrate = XY_TRAVEL_SPEED;
  1665. current_position[X_AXIS] = x;
  1666. current_position[Y_AXIS] = y;
  1667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1668. st_synchronize();
  1669. feedrate = oldFeedRate;
  1670. }
  1671. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1672. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1673. }
  1674. /// Probe bed height at position (x,y), returns the measured z value
  1675. static float probe_pt(float x, float y, float z_before) {
  1676. // move to right place
  1677. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1678. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1679. run_z_probe();
  1680. float measured_z = current_position[Z_AXIS];
  1681. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1682. SERIAL_PROTOCOLPGM(" x: ");
  1683. SERIAL_PROTOCOL(x);
  1684. SERIAL_PROTOCOLPGM(" y: ");
  1685. SERIAL_PROTOCOL(y);
  1686. SERIAL_PROTOCOLPGM(" z: ");
  1687. SERIAL_PROTOCOL(measured_z);
  1688. SERIAL_PROTOCOLPGM("\n");
  1689. return measured_z;
  1690. }
  1691. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1692. #ifdef LIN_ADVANCE
  1693. /**
  1694. * M900: Set and/or Get advance K factor and WH/D ratio
  1695. *
  1696. * K<factor> Set advance K factor
  1697. * R<ratio> Set ratio directly (overrides WH/D)
  1698. * W<width> H<height> D<diam> Set ratio from WH/D
  1699. */
  1700. inline void gcode_M900() {
  1701. st_synchronize();
  1702. const float newK = code_seen('K') ? code_value_float() : -1;
  1703. if (newK >= 0) extruder_advance_k = newK;
  1704. float newR = code_seen('R') ? code_value_float() : -1;
  1705. if (newR < 0) {
  1706. const float newD = code_seen('D') ? code_value_float() : -1,
  1707. newW = code_seen('W') ? code_value_float() : -1,
  1708. newH = code_seen('H') ? code_value_float() : -1;
  1709. if (newD >= 0 && newW >= 0 && newH >= 0)
  1710. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1711. }
  1712. if (newR >= 0) advance_ed_ratio = newR;
  1713. SERIAL_ECHO_START;
  1714. SERIAL_ECHOPGM("Advance K=");
  1715. SERIAL_ECHOLN(extruder_advance_k);
  1716. SERIAL_ECHOPGM(" E/D=");
  1717. const float ratio = advance_ed_ratio;
  1718. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1719. }
  1720. #endif // LIN_ADVANCE
  1721. bool check_commands() {
  1722. bool end_command_found = false;
  1723. while (buflen)
  1724. {
  1725. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1726. if (!cmdbuffer_front_already_processed)
  1727. cmdqueue_pop_front();
  1728. cmdbuffer_front_already_processed = false;
  1729. }
  1730. return end_command_found;
  1731. }
  1732. #ifdef TMC2130
  1733. bool calibrate_z_auto()
  1734. {
  1735. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1736. lcd_clear();
  1737. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1738. bool endstops_enabled = enable_endstops(true);
  1739. int axis_up_dir = -home_dir(Z_AXIS);
  1740. tmc2130_home_enter(Z_AXIS_MASK);
  1741. current_position[Z_AXIS] = 0;
  1742. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1743. set_destination_to_current();
  1744. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1745. feedrate = homing_feedrate[Z_AXIS];
  1746. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1747. st_synchronize();
  1748. // current_position[axis] = 0;
  1749. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1750. tmc2130_home_exit();
  1751. enable_endstops(false);
  1752. current_position[Z_AXIS] = 0;
  1753. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1754. set_destination_to_current();
  1755. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1756. feedrate = homing_feedrate[Z_AXIS] / 2;
  1757. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1758. st_synchronize();
  1759. enable_endstops(endstops_enabled);
  1760. if (PRINTER_TYPE == PRINTER_MK3) {
  1761. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1762. }
  1763. else {
  1764. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1765. }
  1766. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1767. return true;
  1768. }
  1769. #endif //TMC2130
  1770. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1771. {
  1772. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1773. #define HOMEAXIS_DO(LETTER) \
  1774. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1775. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1776. {
  1777. int axis_home_dir = home_dir(axis);
  1778. feedrate = homing_feedrate[axis];
  1779. #ifdef TMC2130
  1780. tmc2130_home_enter(X_AXIS_MASK << axis);
  1781. #endif //TMC2130
  1782. // Move away a bit, so that the print head does not touch the end position,
  1783. // and the following movement to endstop has a chance to achieve the required velocity
  1784. // for the stall guard to work.
  1785. current_position[axis] = 0;
  1786. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1787. set_destination_to_current();
  1788. // destination[axis] = 11.f;
  1789. destination[axis] = -3.f * axis_home_dir;
  1790. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1791. st_synchronize();
  1792. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1793. endstops_hit_on_purpose();
  1794. enable_endstops(false);
  1795. current_position[axis] = 0;
  1796. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1797. destination[axis] = 1. * axis_home_dir;
  1798. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1799. st_synchronize();
  1800. // Now continue to move up to the left end stop with the collision detection enabled.
  1801. enable_endstops(true);
  1802. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1803. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1804. st_synchronize();
  1805. for (uint8_t i = 0; i < cnt; i++)
  1806. {
  1807. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1808. endstops_hit_on_purpose();
  1809. enable_endstops(false);
  1810. current_position[axis] = 0;
  1811. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1812. destination[axis] = -10.f * axis_home_dir;
  1813. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1814. st_synchronize();
  1815. endstops_hit_on_purpose();
  1816. // Now move left up to the collision, this time with a repeatable velocity.
  1817. enable_endstops(true);
  1818. destination[axis] = 11.f * axis_home_dir;
  1819. #ifdef TMC2130
  1820. feedrate = homing_feedrate[axis];
  1821. #else //TMC2130
  1822. feedrate = homing_feedrate[axis] / 2;
  1823. #endif //TMC2130
  1824. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1825. st_synchronize();
  1826. #ifdef TMC2130
  1827. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1828. if (pstep) pstep[i] = mscnt >> 4;
  1829. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1830. #endif //TMC2130
  1831. }
  1832. endstops_hit_on_purpose();
  1833. enable_endstops(false);
  1834. #ifdef TMC2130
  1835. uint8_t orig = tmc2130_home_origin[axis];
  1836. uint8_t back = tmc2130_home_bsteps[axis];
  1837. if (tmc2130_home_enabled && (orig <= 63))
  1838. {
  1839. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1840. if (back > 0)
  1841. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1842. }
  1843. else
  1844. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1845. tmc2130_home_exit();
  1846. #endif //TMC2130
  1847. axis_is_at_home(axis);
  1848. axis_known_position[axis] = true;
  1849. // Move from minimum
  1850. #ifdef TMC2130
  1851. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1852. #else //TMC2130
  1853. float dist = - axis_home_dir * 0.01f * 64;
  1854. #endif //TMC2130
  1855. current_position[axis] -= dist;
  1856. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1857. current_position[axis] += dist;
  1858. destination[axis] = current_position[axis];
  1859. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1860. st_synchronize();
  1861. feedrate = 0.0;
  1862. }
  1863. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1864. {
  1865. #ifdef TMC2130
  1866. FORCE_HIGH_POWER_START;
  1867. #endif
  1868. int axis_home_dir = home_dir(axis);
  1869. current_position[axis] = 0;
  1870. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1871. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1872. feedrate = homing_feedrate[axis];
  1873. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1874. st_synchronize();
  1875. #ifdef TMC2130
  1876. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1877. FORCE_HIGH_POWER_END;
  1878. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1879. return;
  1880. }
  1881. #endif //TMC2130
  1882. current_position[axis] = 0;
  1883. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1884. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1885. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1886. st_synchronize();
  1887. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1888. feedrate = homing_feedrate[axis]/2 ;
  1889. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1890. st_synchronize();
  1891. #ifdef TMC2130
  1892. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1893. FORCE_HIGH_POWER_END;
  1894. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1895. return;
  1896. }
  1897. #endif //TMC2130
  1898. axis_is_at_home(axis);
  1899. destination[axis] = current_position[axis];
  1900. feedrate = 0.0;
  1901. endstops_hit_on_purpose();
  1902. axis_known_position[axis] = true;
  1903. #ifdef TMC2130
  1904. FORCE_HIGH_POWER_END;
  1905. #endif
  1906. }
  1907. enable_endstops(endstops_enabled);
  1908. }
  1909. /**/
  1910. void home_xy()
  1911. {
  1912. set_destination_to_current();
  1913. homeaxis(X_AXIS);
  1914. homeaxis(Y_AXIS);
  1915. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1916. endstops_hit_on_purpose();
  1917. }
  1918. void refresh_cmd_timeout(void)
  1919. {
  1920. previous_millis_cmd = _millis();
  1921. }
  1922. #ifdef FWRETRACT
  1923. void retract(bool retracting, bool swapretract = false) {
  1924. if(retracting && !retracted[active_extruder]) {
  1925. destination[X_AXIS]=current_position[X_AXIS];
  1926. destination[Y_AXIS]=current_position[Y_AXIS];
  1927. destination[Z_AXIS]=current_position[Z_AXIS];
  1928. destination[E_AXIS]=current_position[E_AXIS];
  1929. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1930. plan_set_e_position(current_position[E_AXIS]);
  1931. float oldFeedrate = feedrate;
  1932. feedrate=cs.retract_feedrate*60;
  1933. retracted[active_extruder]=true;
  1934. prepare_move();
  1935. current_position[Z_AXIS]-=cs.retract_zlift;
  1936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1937. prepare_move();
  1938. feedrate = oldFeedrate;
  1939. } else if(!retracting && retracted[active_extruder]) {
  1940. destination[X_AXIS]=current_position[X_AXIS];
  1941. destination[Y_AXIS]=current_position[Y_AXIS];
  1942. destination[Z_AXIS]=current_position[Z_AXIS];
  1943. destination[E_AXIS]=current_position[E_AXIS];
  1944. current_position[Z_AXIS]+=cs.retract_zlift;
  1945. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1946. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1947. plan_set_e_position(current_position[E_AXIS]);
  1948. float oldFeedrate = feedrate;
  1949. feedrate=cs.retract_recover_feedrate*60;
  1950. retracted[active_extruder]=false;
  1951. prepare_move();
  1952. feedrate = oldFeedrate;
  1953. }
  1954. } //retract
  1955. #endif //FWRETRACT
  1956. void trace() {
  1957. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1958. _tone(BEEPER, 440);
  1959. _delay(25);
  1960. _noTone(BEEPER);
  1961. _delay(20);
  1962. }
  1963. /*
  1964. void ramming() {
  1965. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1966. if (current_temperature[0] < 230) {
  1967. //PLA
  1968. max_feedrate[E_AXIS] = 50;
  1969. //current_position[E_AXIS] -= 8;
  1970. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1971. //current_position[E_AXIS] += 8;
  1972. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1973. current_position[E_AXIS] += 5.4;
  1974. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1975. current_position[E_AXIS] += 3.2;
  1976. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1977. current_position[E_AXIS] += 3;
  1978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1979. st_synchronize();
  1980. max_feedrate[E_AXIS] = 80;
  1981. current_position[E_AXIS] -= 82;
  1982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1983. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1984. current_position[E_AXIS] -= 20;
  1985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1986. current_position[E_AXIS] += 5;
  1987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1988. current_position[E_AXIS] += 5;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1990. current_position[E_AXIS] -= 10;
  1991. st_synchronize();
  1992. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1993. current_position[E_AXIS] += 10;
  1994. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1995. current_position[E_AXIS] -= 10;
  1996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1997. current_position[E_AXIS] += 10;
  1998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1999. current_position[E_AXIS] -= 10;
  2000. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2001. st_synchronize();
  2002. }
  2003. else {
  2004. //ABS
  2005. max_feedrate[E_AXIS] = 50;
  2006. //current_position[E_AXIS] -= 8;
  2007. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2008. //current_position[E_AXIS] += 8;
  2009. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2010. current_position[E_AXIS] += 3.1;
  2011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2012. current_position[E_AXIS] += 3.1;
  2013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2014. current_position[E_AXIS] += 4;
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2016. st_synchronize();
  2017. //current_position[X_AXIS] += 23; //delay
  2018. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2019. //current_position[X_AXIS] -= 23; //delay
  2020. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2021. _delay(4700);
  2022. max_feedrate[E_AXIS] = 80;
  2023. current_position[E_AXIS] -= 92;
  2024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2025. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2026. current_position[E_AXIS] -= 5;
  2027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2028. current_position[E_AXIS] += 5;
  2029. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2030. current_position[E_AXIS] -= 5;
  2031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2032. st_synchronize();
  2033. current_position[E_AXIS] += 5;
  2034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2035. current_position[E_AXIS] -= 5;
  2036. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2037. current_position[E_AXIS] += 5;
  2038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2039. current_position[E_AXIS] -= 5;
  2040. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2041. st_synchronize();
  2042. }
  2043. }
  2044. */
  2045. #ifdef TMC2130
  2046. void force_high_power_mode(bool start_high_power_section) {
  2047. uint8_t silent;
  2048. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2049. if (silent == 1) {
  2050. //we are in silent mode, set to normal mode to enable crash detection
  2051. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2052. st_synchronize();
  2053. cli();
  2054. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2055. update_mode_profile();
  2056. tmc2130_init();
  2057. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2058. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2059. st_reset_timer();
  2060. sei();
  2061. }
  2062. }
  2063. #endif //TMC2130
  2064. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2065. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2066. }
  2067. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2068. st_synchronize();
  2069. #if 0
  2070. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2071. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2072. #endif
  2073. // Flag for the display update routine and to disable the print cancelation during homing.
  2074. homing_flag = true;
  2075. // Which axes should be homed?
  2076. bool home_x = home_x_axis;
  2077. bool home_y = home_y_axis;
  2078. bool home_z = home_z_axis;
  2079. // Either all X,Y,Z codes are present, or none of them.
  2080. bool home_all_axes = home_x == home_y && home_x == home_z;
  2081. if (home_all_axes)
  2082. // No X/Y/Z code provided means to home all axes.
  2083. home_x = home_y = home_z = true;
  2084. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2085. if (home_all_axes) {
  2086. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2087. feedrate = homing_feedrate[Z_AXIS];
  2088. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2089. st_synchronize();
  2090. }
  2091. #ifdef ENABLE_AUTO_BED_LEVELING
  2092. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2093. #endif //ENABLE_AUTO_BED_LEVELING
  2094. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2095. // the planner will not perform any adjustments in the XY plane.
  2096. // Wait for the motors to stop and update the current position with the absolute values.
  2097. world2machine_revert_to_uncorrected();
  2098. // For mesh bed leveling deactivate the matrix temporarily.
  2099. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2100. // in a single axis only.
  2101. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2102. #ifdef MESH_BED_LEVELING
  2103. uint8_t mbl_was_active = mbl.active;
  2104. mbl.active = 0;
  2105. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2106. #endif
  2107. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2108. // consumed during the first movements following this statement.
  2109. if (home_z)
  2110. babystep_undo();
  2111. saved_feedrate = feedrate;
  2112. int l_feedmultiply = feedmultiply;
  2113. feedmultiply = 100;
  2114. previous_millis_cmd = _millis();
  2115. enable_endstops(true);
  2116. memcpy(destination, current_position, sizeof(destination));
  2117. feedrate = 0.0;
  2118. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2119. if(home_z)
  2120. homeaxis(Z_AXIS);
  2121. #endif
  2122. #ifdef QUICK_HOME
  2123. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2124. if(home_x && home_y) //first diagonal move
  2125. {
  2126. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2127. int x_axis_home_dir = home_dir(X_AXIS);
  2128. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2129. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2130. feedrate = homing_feedrate[X_AXIS];
  2131. if(homing_feedrate[Y_AXIS]<feedrate)
  2132. feedrate = homing_feedrate[Y_AXIS];
  2133. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2134. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2135. } else {
  2136. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2137. }
  2138. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2139. st_synchronize();
  2140. axis_is_at_home(X_AXIS);
  2141. axis_is_at_home(Y_AXIS);
  2142. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2143. destination[X_AXIS] = current_position[X_AXIS];
  2144. destination[Y_AXIS] = current_position[Y_AXIS];
  2145. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2146. feedrate = 0.0;
  2147. st_synchronize();
  2148. endstops_hit_on_purpose();
  2149. current_position[X_AXIS] = destination[X_AXIS];
  2150. current_position[Y_AXIS] = destination[Y_AXIS];
  2151. current_position[Z_AXIS] = destination[Z_AXIS];
  2152. }
  2153. #endif /* QUICK_HOME */
  2154. #ifdef TMC2130
  2155. if(home_x)
  2156. {
  2157. if (!calib)
  2158. homeaxis(X_AXIS);
  2159. else
  2160. tmc2130_home_calibrate(X_AXIS);
  2161. }
  2162. if(home_y)
  2163. {
  2164. if (!calib)
  2165. homeaxis(Y_AXIS);
  2166. else
  2167. tmc2130_home_calibrate(Y_AXIS);
  2168. }
  2169. #else //TMC2130
  2170. if(home_x) homeaxis(X_AXIS);
  2171. if(home_y) homeaxis(Y_AXIS);
  2172. #endif //TMC2130
  2173. if(home_x_axis && home_x_value != 0)
  2174. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2175. if(home_y_axis && home_y_value != 0)
  2176. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2177. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2178. #ifndef Z_SAFE_HOMING
  2179. if(home_z) {
  2180. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2181. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2182. feedrate = max_feedrate[Z_AXIS];
  2183. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2184. st_synchronize();
  2185. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2186. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2187. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2188. {
  2189. homeaxis(X_AXIS);
  2190. homeaxis(Y_AXIS);
  2191. }
  2192. // 1st mesh bed leveling measurement point, corrected.
  2193. world2machine_initialize();
  2194. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2195. world2machine_reset();
  2196. if (destination[Y_AXIS] < Y_MIN_POS)
  2197. destination[Y_AXIS] = Y_MIN_POS;
  2198. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2199. feedrate = homing_feedrate[Z_AXIS]/10;
  2200. current_position[Z_AXIS] = 0;
  2201. enable_endstops(false);
  2202. #ifdef DEBUG_BUILD
  2203. SERIAL_ECHOLNPGM("plan_set_position()");
  2204. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2205. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2206. #endif
  2207. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2208. #ifdef DEBUG_BUILD
  2209. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2210. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2211. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2212. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2213. #endif
  2214. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2215. st_synchronize();
  2216. current_position[X_AXIS] = destination[X_AXIS];
  2217. current_position[Y_AXIS] = destination[Y_AXIS];
  2218. enable_endstops(true);
  2219. endstops_hit_on_purpose();
  2220. homeaxis(Z_AXIS);
  2221. #else // MESH_BED_LEVELING
  2222. homeaxis(Z_AXIS);
  2223. #endif // MESH_BED_LEVELING
  2224. }
  2225. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2226. if(home_all_axes) {
  2227. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2228. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2229. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2230. feedrate = XY_TRAVEL_SPEED/60;
  2231. current_position[Z_AXIS] = 0;
  2232. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2233. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2234. st_synchronize();
  2235. current_position[X_AXIS] = destination[X_AXIS];
  2236. current_position[Y_AXIS] = destination[Y_AXIS];
  2237. homeaxis(Z_AXIS);
  2238. }
  2239. // Let's see if X and Y are homed and probe is inside bed area.
  2240. if(home_z) {
  2241. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2242. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2243. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2244. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2245. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2246. current_position[Z_AXIS] = 0;
  2247. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2248. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2249. feedrate = max_feedrate[Z_AXIS];
  2250. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2251. st_synchronize();
  2252. homeaxis(Z_AXIS);
  2253. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2254. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2255. SERIAL_ECHO_START;
  2256. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2257. } else {
  2258. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2259. SERIAL_ECHO_START;
  2260. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2261. }
  2262. }
  2263. #endif // Z_SAFE_HOMING
  2264. #endif // Z_HOME_DIR < 0
  2265. if(home_z_axis && home_z_value != 0)
  2266. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2267. #ifdef ENABLE_AUTO_BED_LEVELING
  2268. if(home_z)
  2269. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2270. #endif
  2271. // Set the planner and stepper routine positions.
  2272. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2273. // contains the machine coordinates.
  2274. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2275. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2276. enable_endstops(false);
  2277. #endif
  2278. feedrate = saved_feedrate;
  2279. feedmultiply = l_feedmultiply;
  2280. previous_millis_cmd = _millis();
  2281. endstops_hit_on_purpose();
  2282. #ifndef MESH_BED_LEVELING
  2283. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2284. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2285. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2286. lcd_adjust_z();
  2287. #endif
  2288. // Load the machine correction matrix
  2289. world2machine_initialize();
  2290. // and correct the current_position XY axes to match the transformed coordinate system.
  2291. world2machine_update_current();
  2292. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2293. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2294. {
  2295. if (! home_z && mbl_was_active) {
  2296. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2297. mbl.active = true;
  2298. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2299. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2300. }
  2301. }
  2302. else
  2303. {
  2304. st_synchronize();
  2305. homing_flag = false;
  2306. }
  2307. #endif
  2308. if (farm_mode) { prusa_statistics(20); };
  2309. homing_flag = false;
  2310. #if 0
  2311. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2312. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2313. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2314. #endif
  2315. }
  2316. void adjust_bed_reset()
  2317. {
  2318. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2319. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2320. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2321. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2322. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2323. }
  2324. //! @brief Calibrate XYZ
  2325. //! @param onlyZ if true, calibrate only Z axis
  2326. //! @param verbosity_level
  2327. //! @retval true Succeeded
  2328. //! @retval false Failed
  2329. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2330. {
  2331. bool final_result = false;
  2332. #ifdef TMC2130
  2333. FORCE_HIGH_POWER_START;
  2334. #endif // TMC2130
  2335. // Only Z calibration?
  2336. if (!onlyZ)
  2337. {
  2338. setTargetBed(0);
  2339. setAllTargetHotends(0);
  2340. adjust_bed_reset(); //reset bed level correction
  2341. }
  2342. // Disable the default update procedure of the display. We will do a modal dialog.
  2343. lcd_update_enable(false);
  2344. // Let the planner use the uncorrected coordinates.
  2345. mbl.reset();
  2346. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2347. // the planner will not perform any adjustments in the XY plane.
  2348. // Wait for the motors to stop and update the current position with the absolute values.
  2349. world2machine_revert_to_uncorrected();
  2350. // Reset the baby step value applied without moving the axes.
  2351. babystep_reset();
  2352. // Mark all axes as in a need for homing.
  2353. memset(axis_known_position, 0, sizeof(axis_known_position));
  2354. // Home in the XY plane.
  2355. //set_destination_to_current();
  2356. int l_feedmultiply = setup_for_endstop_move();
  2357. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2358. home_xy();
  2359. enable_endstops(false);
  2360. current_position[X_AXIS] += 5;
  2361. current_position[Y_AXIS] += 5;
  2362. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2363. st_synchronize();
  2364. // Let the user move the Z axes up to the end stoppers.
  2365. #ifdef TMC2130
  2366. if (calibrate_z_auto())
  2367. {
  2368. #else //TMC2130
  2369. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2370. {
  2371. #endif //TMC2130
  2372. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2373. if(onlyZ){
  2374. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2375. lcd_set_cursor(0, 3);
  2376. lcd_print(1);
  2377. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2378. }else{
  2379. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2380. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2381. lcd_set_cursor(0, 2);
  2382. lcd_print(1);
  2383. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2384. }
  2385. refresh_cmd_timeout();
  2386. #ifndef STEEL_SHEET
  2387. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2388. {
  2389. lcd_wait_for_cool_down();
  2390. }
  2391. #endif //STEEL_SHEET
  2392. if(!onlyZ)
  2393. {
  2394. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2395. #ifdef STEEL_SHEET
  2396. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2397. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2398. #endif //STEEL_SHEET
  2399. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2400. KEEPALIVE_STATE(IN_HANDLER);
  2401. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2402. lcd_set_cursor(0, 2);
  2403. lcd_print(1);
  2404. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2405. }
  2406. bool endstops_enabled = enable_endstops(false);
  2407. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2408. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2409. st_synchronize();
  2410. // Move the print head close to the bed.
  2411. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2412. enable_endstops(true);
  2413. #ifdef TMC2130
  2414. tmc2130_home_enter(Z_AXIS_MASK);
  2415. #endif //TMC2130
  2416. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2417. st_synchronize();
  2418. #ifdef TMC2130
  2419. tmc2130_home_exit();
  2420. #endif //TMC2130
  2421. enable_endstops(endstops_enabled);
  2422. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2423. {
  2424. if (onlyZ)
  2425. {
  2426. clean_up_after_endstop_move(l_feedmultiply);
  2427. // Z only calibration.
  2428. // Load the machine correction matrix
  2429. world2machine_initialize();
  2430. // and correct the current_position to match the transformed coordinate system.
  2431. world2machine_update_current();
  2432. //FIXME
  2433. bool result = sample_mesh_and_store_reference();
  2434. if (result)
  2435. {
  2436. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2437. // Shipped, the nozzle height has been set already. The user can start printing now.
  2438. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2439. final_result = true;
  2440. // babystep_apply();
  2441. }
  2442. }
  2443. else
  2444. {
  2445. // Reset the baby step value and the baby step applied flag.
  2446. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2447. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2448. // Complete XYZ calibration.
  2449. uint8_t point_too_far_mask = 0;
  2450. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2451. clean_up_after_endstop_move(l_feedmultiply);
  2452. // Print head up.
  2453. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2454. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2455. st_synchronize();
  2456. //#ifndef NEW_XYZCAL
  2457. if (result >= 0)
  2458. {
  2459. #ifdef HEATBED_V2
  2460. sample_z();
  2461. #else //HEATBED_V2
  2462. point_too_far_mask = 0;
  2463. // Second half: The fine adjustment.
  2464. // Let the planner use the uncorrected coordinates.
  2465. mbl.reset();
  2466. world2machine_reset();
  2467. // Home in the XY plane.
  2468. int l_feedmultiply = setup_for_endstop_move();
  2469. home_xy();
  2470. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2471. clean_up_after_endstop_move(l_feedmultiply);
  2472. // Print head up.
  2473. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2475. st_synchronize();
  2476. // if (result >= 0) babystep_apply();
  2477. #endif //HEATBED_V2
  2478. }
  2479. //#endif //NEW_XYZCAL
  2480. lcd_update_enable(true);
  2481. lcd_update(2);
  2482. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2483. if (result >= 0)
  2484. {
  2485. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2486. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2487. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2488. final_result = true;
  2489. }
  2490. }
  2491. #ifdef TMC2130
  2492. tmc2130_home_exit();
  2493. #endif
  2494. }
  2495. else
  2496. {
  2497. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2498. final_result = false;
  2499. }
  2500. }
  2501. else
  2502. {
  2503. // Timeouted.
  2504. }
  2505. lcd_update_enable(true);
  2506. #ifdef TMC2130
  2507. FORCE_HIGH_POWER_END;
  2508. #endif // TMC2130
  2509. return final_result;
  2510. }
  2511. void gcode_M114()
  2512. {
  2513. SERIAL_PROTOCOLPGM("X:");
  2514. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2515. SERIAL_PROTOCOLPGM(" Y:");
  2516. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2517. SERIAL_PROTOCOLPGM(" Z:");
  2518. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2519. SERIAL_PROTOCOLPGM(" E:");
  2520. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2521. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2522. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2523. SERIAL_PROTOCOLPGM(" Y:");
  2524. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2525. SERIAL_PROTOCOLPGM(" Z:");
  2526. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2527. SERIAL_PROTOCOLPGM(" E:");
  2528. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2529. SERIAL_PROTOCOLLN("");
  2530. }
  2531. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2532. {
  2533. st_synchronize();
  2534. float lastpos[4];
  2535. if (farm_mode)
  2536. {
  2537. prusa_statistics(22);
  2538. }
  2539. //First backup current position and settings
  2540. int feedmultiplyBckp = feedmultiply;
  2541. float HotendTempBckp = degTargetHotend(active_extruder);
  2542. int fanSpeedBckp = fanSpeed;
  2543. lastpos[X_AXIS] = current_position[X_AXIS];
  2544. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2545. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2546. lastpos[E_AXIS] = current_position[E_AXIS];
  2547. //Retract E
  2548. current_position[E_AXIS] += e_shift;
  2549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2550. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2551. st_synchronize();
  2552. //Lift Z
  2553. current_position[Z_AXIS] += z_shift;
  2554. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2555. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2556. st_synchronize();
  2557. //Move XY to side
  2558. current_position[X_AXIS] = x_position;
  2559. current_position[Y_AXIS] = y_position;
  2560. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2561. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2562. st_synchronize();
  2563. //Beep, manage nozzle heater and wait for user to start unload filament
  2564. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2565. lcd_change_fil_state = 0;
  2566. // Unload filament
  2567. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2568. else unload_filament(); //unload filament for single material (used also in M702)
  2569. //finish moves
  2570. st_synchronize();
  2571. if (!mmu_enabled)
  2572. {
  2573. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2574. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2575. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2576. if (lcd_change_fil_state == 0)
  2577. {
  2578. lcd_clear();
  2579. lcd_set_cursor(0, 2);
  2580. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2581. current_position[X_AXIS] -= 100;
  2582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2583. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2584. st_synchronize();
  2585. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2586. }
  2587. }
  2588. if (mmu_enabled)
  2589. {
  2590. if (!automatic) {
  2591. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2592. mmu_M600_wait_and_beep();
  2593. if (saved_printing) {
  2594. lcd_clear();
  2595. lcd_set_cursor(0, 2);
  2596. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2597. mmu_command(MmuCmd::R0);
  2598. manage_response(false, false);
  2599. }
  2600. }
  2601. mmu_M600_load_filament(automatic);
  2602. }
  2603. else
  2604. M600_load_filament();
  2605. if (!automatic) M600_check_state();
  2606. lcd_update_enable(true);
  2607. //Not let's go back to print
  2608. fanSpeed = fanSpeedBckp;
  2609. //Feed a little of filament to stabilize pressure
  2610. if (!automatic)
  2611. {
  2612. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2613. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2614. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2615. }
  2616. //Move XY back
  2617. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2618. FILAMENTCHANGE_XYFEED, active_extruder);
  2619. st_synchronize();
  2620. //Move Z back
  2621. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2622. FILAMENTCHANGE_ZFEED, active_extruder);
  2623. st_synchronize();
  2624. //Set E position to original
  2625. plan_set_e_position(lastpos[E_AXIS]);
  2626. memcpy(current_position, lastpos, sizeof(lastpos));
  2627. memcpy(destination, current_position, sizeof(current_position));
  2628. //Recover feed rate
  2629. feedmultiply = feedmultiplyBckp;
  2630. char cmd[9];
  2631. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2632. enquecommand(cmd);
  2633. #ifdef IR_SENSOR
  2634. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2635. fsensor_check_autoload();
  2636. #endif //IR_SENSOR
  2637. lcd_setstatuspgm(_T(WELCOME_MSG));
  2638. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2639. }
  2640. void gcode_M701()
  2641. {
  2642. printf_P(PSTR("gcode_M701 begin\n"));
  2643. if (mmu_enabled)
  2644. {
  2645. extr_adj(tmp_extruder);//loads current extruder
  2646. mmu_extruder = tmp_extruder;
  2647. }
  2648. else
  2649. {
  2650. enable_z();
  2651. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2652. #ifdef FSENSOR_QUALITY
  2653. fsensor_oq_meassure_start(40);
  2654. #endif //FSENSOR_QUALITY
  2655. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2656. current_position[E_AXIS] += 40;
  2657. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2658. st_synchronize();
  2659. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2660. current_position[E_AXIS] += 30;
  2661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2662. load_filament_final_feed(); //slow sequence
  2663. st_synchronize();
  2664. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
  2665. delay_keep_alive(50);
  2666. _noTone(BEEPER);
  2667. if (!farm_mode && loading_flag) {
  2668. lcd_load_filament_color_check();
  2669. }
  2670. lcd_update_enable(true);
  2671. lcd_update(2);
  2672. lcd_setstatuspgm(_T(WELCOME_MSG));
  2673. disable_z();
  2674. loading_flag = false;
  2675. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2676. #ifdef FSENSOR_QUALITY
  2677. fsensor_oq_meassure_stop();
  2678. if (!fsensor_oq_result())
  2679. {
  2680. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2681. lcd_update_enable(true);
  2682. lcd_update(2);
  2683. if (disable)
  2684. fsensor_disable();
  2685. }
  2686. #endif //FSENSOR_QUALITY
  2687. }
  2688. }
  2689. /**
  2690. * @brief Get serial number from 32U2 processor
  2691. *
  2692. * Typical format of S/N is:CZPX0917X003XC13518
  2693. *
  2694. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2695. *
  2696. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2697. * reply is transmitted to serial port 1 character by character.
  2698. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2699. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2700. * in any case.
  2701. */
  2702. static void gcode_PRUSA_SN()
  2703. {
  2704. if (farm_mode) {
  2705. selectedSerialPort = 0;
  2706. putchar(';');
  2707. putchar('S');
  2708. int numbersRead = 0;
  2709. ShortTimer timeout;
  2710. timeout.start();
  2711. while (numbersRead < 19) {
  2712. while (MSerial.available() > 0) {
  2713. uint8_t serial_char = MSerial.read();
  2714. selectedSerialPort = 1;
  2715. putchar(serial_char);
  2716. numbersRead++;
  2717. selectedSerialPort = 0;
  2718. }
  2719. if (timeout.expired(100u)) break;
  2720. }
  2721. selectedSerialPort = 1;
  2722. putchar('\n');
  2723. #if 0
  2724. for (int b = 0; b < 3; b++) {
  2725. _tone(BEEPER, 110);
  2726. _delay(50);
  2727. _noTone(BEEPER);
  2728. _delay(50);
  2729. }
  2730. #endif
  2731. } else {
  2732. puts_P(_N("Not in farm mode."));
  2733. }
  2734. }
  2735. #ifdef BACKLASH_X
  2736. extern uint8_t st_backlash_x;
  2737. #endif //BACKLASH_X
  2738. #ifdef BACKLASH_Y
  2739. extern uint8_t st_backlash_y;
  2740. #endif //BACKLASH_Y
  2741. //! @brief Parse and process commands
  2742. //!
  2743. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2744. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2745. //!
  2746. //! Implemented Codes
  2747. //! -------------------
  2748. //!
  2749. //!@n PRUSA CODES
  2750. //!@n P F - Returns FW versions
  2751. //!@n P R - Returns revision of printer
  2752. //!
  2753. //!@n G0 -> G1
  2754. //!@n G1 - Coordinated Movement X Y Z E
  2755. //!@n G2 - CW ARC
  2756. //!@n G3 - CCW ARC
  2757. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2758. //!@n G10 - retract filament according to settings of M207
  2759. //!@n G11 - retract recover filament according to settings of M208
  2760. //!@n G28 - Home all Axis
  2761. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2762. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2763. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2764. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2765. //!@n G80 - Automatic mesh bed leveling
  2766. //!@n G81 - Print bed profile
  2767. //!@n G90 - Use Absolute Coordinates
  2768. //!@n G91 - Use Relative Coordinates
  2769. //!@n G92 - Set current position to coordinates given
  2770. //!
  2771. //!@n M Codes
  2772. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2773. //!@n M1 - Same as M0
  2774. //!@n M17 - Enable/Power all stepper motors
  2775. //!@n M18 - Disable all stepper motors; same as M84
  2776. //!@n M20 - List SD card
  2777. //!@n M21 - Init SD card
  2778. //!@n M22 - Release SD card
  2779. //!@n M23 - Select SD file (M23 filename.g)
  2780. //!@n M24 - Start/resume SD print
  2781. //!@n M25 - Pause SD print
  2782. //!@n M26 - Set SD position in bytes (M26 S12345)
  2783. //!@n M27 - Report SD print status
  2784. //!@n M28 - Start SD write (M28 filename.g)
  2785. //!@n M29 - Stop SD write
  2786. //!@n M30 - Delete file from SD (M30 filename.g)
  2787. //!@n M31 - Output time since last M109 or SD card start to serial
  2788. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2789. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2790. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2791. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2792. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2793. //!@n M73 - Show percent done and print time remaining
  2794. //!@n M80 - Turn on Power Supply
  2795. //!@n M81 - Turn off Power Supply
  2796. //!@n M82 - Set E codes absolute (default)
  2797. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2798. //!@n M84 - Disable steppers until next move,
  2799. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2800. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2801. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2802. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2803. //!@n M104 - Set extruder target temp
  2804. //!@n M105 - Read current temp
  2805. //!@n M106 - Fan on
  2806. //!@n M107 - Fan off
  2807. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2808. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2809. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2810. //!@n M112 - Emergency stop
  2811. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2812. //!@n M114 - Output current position to serial port
  2813. //!@n M115 - Capabilities string
  2814. //!@n M117 - display message
  2815. //!@n M119 - Output Endstop status to serial port
  2816. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2817. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2818. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2819. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2820. //!@n M140 - Set bed target temp
  2821. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2822. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2823. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2824. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2825. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2826. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2827. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2828. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2829. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2830. //!@n M206 - set additional homing offset
  2831. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2832. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2833. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2834. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2835. //!@n M220 S<factor in percent>- set speed factor override percentage
  2836. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2837. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2838. //!@n M240 - Trigger a camera to take a photograph
  2839. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2840. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2841. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2842. //!@n M301 - Set PID parameters P I and D
  2843. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2844. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2845. //!@n M304 - Set bed PID parameters P I and D
  2846. //!@n M400 - Finish all moves
  2847. //!@n M401 - Lower z-probe if present
  2848. //!@n M402 - Raise z-probe if present
  2849. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2850. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2851. //!@n M406 - Turn off Filament Sensor extrusion control
  2852. //!@n M407 - Displays measured filament diameter
  2853. //!@n M500 - stores parameters in EEPROM
  2854. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2855. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2856. //!@n M503 - print the current settings (from memory not from EEPROM)
  2857. //!@n M509 - force language selection on next restart
  2858. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2859. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2860. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2861. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2862. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2863. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2864. //!@n M907 - Set digital trimpot motor current using axis codes.
  2865. //!@n M908 - Control digital trimpot directly.
  2866. //!@n M350 - Set microstepping mode.
  2867. //!@n M351 - Toggle MS1 MS2 pins directly.
  2868. //!
  2869. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2870. //!@n M999 - Restart after being stopped by error
  2871. void process_commands()
  2872. {
  2873. if (!buflen) return; //empty command
  2874. #ifdef FILAMENT_RUNOUT_SUPPORT
  2875. SET_INPUT(FR_SENS);
  2876. #endif
  2877. #ifdef CMDBUFFER_DEBUG
  2878. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2879. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2880. SERIAL_ECHOLNPGM("");
  2881. SERIAL_ECHOPGM("In cmdqueue: ");
  2882. SERIAL_ECHO(buflen);
  2883. SERIAL_ECHOLNPGM("");
  2884. #endif /* CMDBUFFER_DEBUG */
  2885. unsigned long codenum; //throw away variable
  2886. char *starpos = NULL;
  2887. #ifdef ENABLE_AUTO_BED_LEVELING
  2888. float x_tmp, y_tmp, z_tmp, real_z;
  2889. #endif
  2890. // PRUSA GCODES
  2891. KEEPALIVE_STATE(IN_HANDLER);
  2892. #ifdef SNMM
  2893. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2894. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2895. int8_t SilentMode;
  2896. #endif
  2897. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2898. starpos = (strchr(strchr_pointer + 5, '*'));
  2899. if (starpos != NULL)
  2900. *(starpos) = '\0';
  2901. lcd_setstatus(strchr_pointer + 5);
  2902. }
  2903. #ifdef TMC2130
  2904. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2905. {
  2906. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2907. {
  2908. uint8_t mask = 0;
  2909. if (code_seen('X')) mask |= X_AXIS_MASK;
  2910. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2911. crashdet_detected(mask);
  2912. }
  2913. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2914. crashdet_recover();
  2915. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2916. crashdet_cancel();
  2917. }
  2918. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2919. {
  2920. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2921. {
  2922. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2923. axis = (axis == 'E')?3:(axis - 'X');
  2924. if (axis < 4)
  2925. {
  2926. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2927. tmc2130_set_wave(axis, 247, fac);
  2928. }
  2929. }
  2930. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2931. {
  2932. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2933. axis = (axis == 'E')?3:(axis - 'X');
  2934. if (axis < 4)
  2935. {
  2936. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2937. uint16_t res = tmc2130_get_res(axis);
  2938. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2939. }
  2940. }
  2941. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2942. {
  2943. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2944. axis = (axis == 'E')?3:(axis - 'X');
  2945. if (axis < 4)
  2946. {
  2947. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2948. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2949. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2950. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2951. char* str_end = 0;
  2952. if (CMDBUFFER_CURRENT_STRING[14])
  2953. {
  2954. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2955. if (str_end && *str_end)
  2956. {
  2957. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2958. if (str_end && *str_end)
  2959. {
  2960. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2961. if (str_end && *str_end)
  2962. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2963. }
  2964. }
  2965. }
  2966. tmc2130_chopper_config[axis].toff = chop0;
  2967. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2968. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2969. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2970. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2971. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2972. }
  2973. }
  2974. }
  2975. #ifdef BACKLASH_X
  2976. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2977. {
  2978. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2979. st_backlash_x = bl;
  2980. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2981. }
  2982. #endif //BACKLASH_X
  2983. #ifdef BACKLASH_Y
  2984. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2985. {
  2986. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2987. st_backlash_y = bl;
  2988. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2989. }
  2990. #endif //BACKLASH_Y
  2991. #endif //TMC2130
  2992. #ifdef FILAMENT_SENSOR
  2993. else if (code_seen("FSENSOR_RECOVER")) { //! FSENSOR_RECOVER
  2994. fsensor_restore_print_and_continue();
  2995. }
  2996. #endif //FILAMENT_SENSOR
  2997. else if(code_seen("PRUSA")){
  2998. if (code_seen("Ping")) { //! PRUSA Ping
  2999. if (farm_mode) {
  3000. PingTime = _millis();
  3001. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3002. }
  3003. }
  3004. else if (code_seen("PRN")) { //! PRUSA PRN
  3005. printf_P(_N("%d"), status_number);
  3006. }else if (code_seen("FAN")) { //! PRUSA FAN
  3007. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3008. }else if (code_seen("fn")) { //! PRUSA fn
  3009. if (farm_mode) {
  3010. printf_P(_N("%d"), farm_no);
  3011. }
  3012. else {
  3013. puts_P(_N("Not in farm mode."));
  3014. }
  3015. }
  3016. else if (code_seen("thx")) //! PRUSA thx
  3017. {
  3018. no_response = false;
  3019. }
  3020. else if (code_seen("uvlo")) //! PRUSA uvlo
  3021. {
  3022. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3023. enquecommand_P(PSTR("M24"));
  3024. }
  3025. else if (code_seen("MMURES")) //! PRUSA MMURES
  3026. {
  3027. mmu_reset();
  3028. }
  3029. else if (code_seen("RESET")) { //! PRUSA RESET
  3030. // careful!
  3031. if (farm_mode) {
  3032. #ifdef WATCHDOG
  3033. boot_app_magic = BOOT_APP_MAGIC;
  3034. boot_app_flags = BOOT_APP_FLG_RUN;
  3035. wdt_enable(WDTO_15MS);
  3036. cli();
  3037. while(1);
  3038. #else //WATCHDOG
  3039. asm volatile("jmp 0x3E000");
  3040. #endif //WATCHDOG
  3041. }
  3042. else {
  3043. MYSERIAL.println("Not in farm mode.");
  3044. }
  3045. }else if (code_seen("fv")) { //! PRUSA fv
  3046. // get file version
  3047. #ifdef SDSUPPORT
  3048. card.openFile(strchr_pointer + 3,true);
  3049. while (true) {
  3050. uint16_t readByte = card.get();
  3051. MYSERIAL.write(readByte);
  3052. if (readByte=='\n') {
  3053. break;
  3054. }
  3055. }
  3056. card.closefile();
  3057. #endif // SDSUPPORT
  3058. } else if (code_seen("M28")) { //! PRUSA M28
  3059. trace();
  3060. prusa_sd_card_upload = true;
  3061. card.openFile(strchr_pointer+4,false);
  3062. } else if (code_seen("SN")) { //! PRUSA SN
  3063. gcode_PRUSA_SN();
  3064. } else if(code_seen("Fir")){ //! PRUSA Fir
  3065. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3066. } else if(code_seen("Rev")){ //! PRUSA Rev
  3067. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3068. } else if(code_seen("Lang")) { //! PRUSA Lang
  3069. lang_reset();
  3070. } else if(code_seen("Lz")) { //! PRUSA Lz
  3071. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3072. } else if(code_seen("Beat")) { //! PRUSA Beat
  3073. // Kick farm link timer
  3074. kicktime = _millis();
  3075. } else if(code_seen("FR")) { //! PRUSA FR
  3076. // Factory full reset
  3077. factory_reset(0);
  3078. }
  3079. //else if (code_seen('Cal')) {
  3080. // lcd_calibration();
  3081. // }
  3082. }
  3083. else if (code_seen('^')) {
  3084. // nothing, this is a version line
  3085. } else if(code_seen('G'))
  3086. {
  3087. gcode_in_progress = (int)code_value();
  3088. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3089. switch (gcode_in_progress)
  3090. {
  3091. case 0: // G0 -> G1
  3092. case 1: // G1
  3093. if(Stopped == false) {
  3094. #ifdef FILAMENT_RUNOUT_SUPPORT
  3095. if(READ(FR_SENS)){
  3096. int feedmultiplyBckp=feedmultiply;
  3097. float target[4];
  3098. float lastpos[4];
  3099. target[X_AXIS]=current_position[X_AXIS];
  3100. target[Y_AXIS]=current_position[Y_AXIS];
  3101. target[Z_AXIS]=current_position[Z_AXIS];
  3102. target[E_AXIS]=current_position[E_AXIS];
  3103. lastpos[X_AXIS]=current_position[X_AXIS];
  3104. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3105. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3106. lastpos[E_AXIS]=current_position[E_AXIS];
  3107. //retract by E
  3108. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3109. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3110. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3111. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3112. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3113. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3114. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3115. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3116. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3117. //finish moves
  3118. st_synchronize();
  3119. //disable extruder steppers so filament can be removed
  3120. disable_e0();
  3121. disable_e1();
  3122. disable_e2();
  3123. _delay(100);
  3124. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3125. uint8_t cnt=0;
  3126. int counterBeep = 0;
  3127. lcd_wait_interact();
  3128. while(!lcd_clicked()){
  3129. cnt++;
  3130. manage_heater();
  3131. manage_inactivity(true);
  3132. //lcd_update(0);
  3133. if(cnt==0)
  3134. {
  3135. #if BEEPER > 0
  3136. if (counterBeep== 500){
  3137. counterBeep = 0;
  3138. }
  3139. SET_OUTPUT(BEEPER);
  3140. if (counterBeep== 0){
  3141. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3142. WRITE(BEEPER,HIGH);
  3143. }
  3144. if (counterBeep== 20){
  3145. WRITE(BEEPER,LOW);
  3146. }
  3147. counterBeep++;
  3148. #else
  3149. #endif
  3150. }
  3151. }
  3152. WRITE(BEEPER,LOW);
  3153. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3154. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3155. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3156. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3157. lcd_change_fil_state = 0;
  3158. lcd_loading_filament();
  3159. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3160. lcd_change_fil_state = 0;
  3161. lcd_alright();
  3162. switch(lcd_change_fil_state){
  3163. case 2:
  3164. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3165. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3166. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3167. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3168. lcd_loading_filament();
  3169. break;
  3170. case 3:
  3171. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3172. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3173. lcd_loading_color();
  3174. break;
  3175. default:
  3176. lcd_change_success();
  3177. break;
  3178. }
  3179. }
  3180. target[E_AXIS]+= 5;
  3181. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3182. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3183. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3184. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3185. //plan_set_e_position(current_position[E_AXIS]);
  3186. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3187. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3188. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3189. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3190. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3191. plan_set_e_position(lastpos[E_AXIS]);
  3192. feedmultiply=feedmultiplyBckp;
  3193. char cmd[9];
  3194. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3195. enquecommand(cmd);
  3196. }
  3197. #endif
  3198. get_coordinates(); // For X Y Z E F
  3199. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3200. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3201. }
  3202. #ifdef FWRETRACT
  3203. if(cs.autoretract_enabled)
  3204. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3205. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3206. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3207. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3208. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3209. retract(!retracted[active_extruder]);
  3210. return;
  3211. }
  3212. }
  3213. #endif //FWRETRACT
  3214. prepare_move();
  3215. //ClearToSend();
  3216. }
  3217. break;
  3218. case 2: // G2 - CW ARC
  3219. if(Stopped == false) {
  3220. get_arc_coordinates();
  3221. prepare_arc_move(true);
  3222. }
  3223. break;
  3224. case 3: // G3 - CCW ARC
  3225. if(Stopped == false) {
  3226. get_arc_coordinates();
  3227. prepare_arc_move(false);
  3228. }
  3229. break;
  3230. case 4: // G4 dwell
  3231. codenum = 0;
  3232. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3233. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3234. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL c=0 r=0
  3235. st_synchronize();
  3236. codenum += _millis(); // keep track of when we started waiting
  3237. previous_millis_cmd = _millis();
  3238. while(_millis() < codenum) {
  3239. manage_heater();
  3240. manage_inactivity();
  3241. lcd_update(0);
  3242. }
  3243. break;
  3244. #ifdef FWRETRACT
  3245. case 10: // G10 retract
  3246. #if EXTRUDERS > 1
  3247. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3248. retract(true,retracted_swap[active_extruder]);
  3249. #else
  3250. retract(true);
  3251. #endif
  3252. break;
  3253. case 11: // G11 retract_recover
  3254. #if EXTRUDERS > 1
  3255. retract(false,retracted_swap[active_extruder]);
  3256. #else
  3257. retract(false);
  3258. #endif
  3259. break;
  3260. #endif //FWRETRACT
  3261. case 28: //G28 Home all Axis one at a time
  3262. {
  3263. long home_x_value = 0;
  3264. long home_y_value = 0;
  3265. long home_z_value = 0;
  3266. // Which axes should be homed?
  3267. bool home_x = code_seen(axis_codes[X_AXIS]);
  3268. home_x_value = code_value_long();
  3269. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3270. home_y_value = code_value_long();
  3271. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3272. home_z_value = code_value_long();
  3273. bool without_mbl = code_seen('W');
  3274. // calibrate?
  3275. bool calib = code_seen('C');
  3276. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3277. if ((home_x || home_y || without_mbl || home_z) == false) {
  3278. // Push the commands to the front of the message queue in the reverse order!
  3279. // There shall be always enough space reserved for these commands.
  3280. goto case_G80;
  3281. }
  3282. break;
  3283. }
  3284. #ifdef ENABLE_AUTO_BED_LEVELING
  3285. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3286. {
  3287. #if Z_MIN_PIN == -1
  3288. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3289. #endif
  3290. // Prevent user from running a G29 without first homing in X and Y
  3291. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3292. {
  3293. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3294. SERIAL_ECHO_START;
  3295. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3296. break; // abort G29, since we don't know where we are
  3297. }
  3298. st_synchronize();
  3299. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3300. //vector_3 corrected_position = plan_get_position_mm();
  3301. //corrected_position.debug("position before G29");
  3302. plan_bed_level_matrix.set_to_identity();
  3303. vector_3 uncorrected_position = plan_get_position();
  3304. //uncorrected_position.debug("position durring G29");
  3305. current_position[X_AXIS] = uncorrected_position.x;
  3306. current_position[Y_AXIS] = uncorrected_position.y;
  3307. current_position[Z_AXIS] = uncorrected_position.z;
  3308. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3309. int l_feedmultiply = setup_for_endstop_move();
  3310. feedrate = homing_feedrate[Z_AXIS];
  3311. #ifdef AUTO_BED_LEVELING_GRID
  3312. // probe at the points of a lattice grid
  3313. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3314. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3315. // solve the plane equation ax + by + d = z
  3316. // A is the matrix with rows [x y 1] for all the probed points
  3317. // B is the vector of the Z positions
  3318. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3319. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3320. // "A" matrix of the linear system of equations
  3321. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3322. // "B" vector of Z points
  3323. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3324. int probePointCounter = 0;
  3325. bool zig = true;
  3326. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3327. {
  3328. int xProbe, xInc;
  3329. if (zig)
  3330. {
  3331. xProbe = LEFT_PROBE_BED_POSITION;
  3332. //xEnd = RIGHT_PROBE_BED_POSITION;
  3333. xInc = xGridSpacing;
  3334. zig = false;
  3335. } else // zag
  3336. {
  3337. xProbe = RIGHT_PROBE_BED_POSITION;
  3338. //xEnd = LEFT_PROBE_BED_POSITION;
  3339. xInc = -xGridSpacing;
  3340. zig = true;
  3341. }
  3342. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3343. {
  3344. float z_before;
  3345. if (probePointCounter == 0)
  3346. {
  3347. // raise before probing
  3348. z_before = Z_RAISE_BEFORE_PROBING;
  3349. } else
  3350. {
  3351. // raise extruder
  3352. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3353. }
  3354. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3355. eqnBVector[probePointCounter] = measured_z;
  3356. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3357. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3358. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3359. probePointCounter++;
  3360. xProbe += xInc;
  3361. }
  3362. }
  3363. clean_up_after_endstop_move(l_feedmultiply);
  3364. // solve lsq problem
  3365. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3366. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3367. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3368. SERIAL_PROTOCOLPGM(" b: ");
  3369. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3370. SERIAL_PROTOCOLPGM(" d: ");
  3371. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3372. set_bed_level_equation_lsq(plane_equation_coefficients);
  3373. free(plane_equation_coefficients);
  3374. #else // AUTO_BED_LEVELING_GRID not defined
  3375. // Probe at 3 arbitrary points
  3376. // probe 1
  3377. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3378. // probe 2
  3379. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3380. // probe 3
  3381. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3382. clean_up_after_endstop_move(l_feedmultiply);
  3383. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3384. #endif // AUTO_BED_LEVELING_GRID
  3385. st_synchronize();
  3386. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3387. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3388. // When the bed is uneven, this height must be corrected.
  3389. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3390. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3391. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3392. z_tmp = current_position[Z_AXIS];
  3393. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3394. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3395. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3396. }
  3397. break;
  3398. #ifndef Z_PROBE_SLED
  3399. case 30: // G30 Single Z Probe
  3400. {
  3401. st_synchronize();
  3402. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3403. int l_feedmultiply = setup_for_endstop_move();
  3404. feedrate = homing_feedrate[Z_AXIS];
  3405. run_z_probe();
  3406. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3407. SERIAL_PROTOCOLPGM(" X: ");
  3408. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3409. SERIAL_PROTOCOLPGM(" Y: ");
  3410. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3411. SERIAL_PROTOCOLPGM(" Z: ");
  3412. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3413. SERIAL_PROTOCOLPGM("\n");
  3414. clean_up_after_endstop_move(l_feedmultiply);
  3415. }
  3416. break;
  3417. #else
  3418. case 31: // dock the sled
  3419. dock_sled(true);
  3420. break;
  3421. case 32: // undock the sled
  3422. dock_sled(false);
  3423. break;
  3424. #endif // Z_PROBE_SLED
  3425. #endif // ENABLE_AUTO_BED_LEVELING
  3426. #ifdef MESH_BED_LEVELING
  3427. case 30: // G30 Single Z Probe
  3428. {
  3429. st_synchronize();
  3430. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3431. int l_feedmultiply = setup_for_endstop_move();
  3432. feedrate = homing_feedrate[Z_AXIS];
  3433. find_bed_induction_sensor_point_z(-10.f, 3);
  3434. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3435. clean_up_after_endstop_move(l_feedmultiply);
  3436. }
  3437. break;
  3438. case 75:
  3439. {
  3440. for (int i = 40; i <= 110; i++)
  3441. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3442. }
  3443. break;
  3444. case 76: //! G76 - PINDA probe temperature calibration
  3445. {
  3446. #ifdef PINDA_THERMISTOR
  3447. if (true)
  3448. {
  3449. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3450. //we need to know accurate position of first calibration point
  3451. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3452. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3453. break;
  3454. }
  3455. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3456. {
  3457. // We don't know where we are! HOME!
  3458. // Push the commands to the front of the message queue in the reverse order!
  3459. // There shall be always enough space reserved for these commands.
  3460. repeatcommand_front(); // repeat G76 with all its parameters
  3461. enquecommand_front_P((PSTR("G28 W0")));
  3462. break;
  3463. }
  3464. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3465. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3466. if (result)
  3467. {
  3468. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3469. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3470. current_position[Z_AXIS] = 50;
  3471. current_position[Y_AXIS] = 180;
  3472. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3473. st_synchronize();
  3474. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3475. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3476. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3478. st_synchronize();
  3479. gcode_G28(false, false, true);
  3480. }
  3481. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3482. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3483. current_position[Z_AXIS] = 100;
  3484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3485. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3486. lcd_temp_cal_show_result(false);
  3487. break;
  3488. }
  3489. }
  3490. lcd_update_enable(true);
  3491. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3492. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3493. float zero_z;
  3494. int z_shift = 0; //unit: steps
  3495. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3496. if (start_temp < 35) start_temp = 35;
  3497. if (start_temp < current_temperature_pinda) start_temp += 5;
  3498. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3499. // setTargetHotend(200, 0);
  3500. setTargetBed(70 + (start_temp - 30));
  3501. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3502. custom_message_state = 1;
  3503. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3504. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3506. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3507. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3509. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3510. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3511. st_synchronize();
  3512. while (current_temperature_pinda < start_temp)
  3513. {
  3514. delay_keep_alive(1000);
  3515. serialecho_temperatures();
  3516. }
  3517. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3518. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3519. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3520. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3521. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3523. st_synchronize();
  3524. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3525. if (find_z_result == false) {
  3526. lcd_temp_cal_show_result(find_z_result);
  3527. break;
  3528. }
  3529. zero_z = current_position[Z_AXIS];
  3530. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3531. int i = -1; for (; i < 5; i++)
  3532. {
  3533. float temp = (40 + i * 5);
  3534. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3535. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3536. if (start_temp <= temp) break;
  3537. }
  3538. for (i++; i < 5; i++)
  3539. {
  3540. float temp = (40 + i * 5);
  3541. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3542. custom_message_state = i + 2;
  3543. setTargetBed(50 + 10 * (temp - 30) / 5);
  3544. // setTargetHotend(255, 0);
  3545. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3546. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3547. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3548. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3549. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3550. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3551. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3552. st_synchronize();
  3553. while (current_temperature_pinda < temp)
  3554. {
  3555. delay_keep_alive(1000);
  3556. serialecho_temperatures();
  3557. }
  3558. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3560. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3561. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3563. st_synchronize();
  3564. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3565. if (find_z_result == false) {
  3566. lcd_temp_cal_show_result(find_z_result);
  3567. break;
  3568. }
  3569. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3570. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3571. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3572. }
  3573. lcd_temp_cal_show_result(true);
  3574. break;
  3575. }
  3576. #endif //PINDA_THERMISTOR
  3577. setTargetBed(PINDA_MIN_T);
  3578. float zero_z;
  3579. int z_shift = 0; //unit: steps
  3580. int t_c; // temperature
  3581. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3582. // We don't know where we are! HOME!
  3583. // Push the commands to the front of the message queue in the reverse order!
  3584. // There shall be always enough space reserved for these commands.
  3585. repeatcommand_front(); // repeat G76 with all its parameters
  3586. enquecommand_front_P((PSTR("G28 W0")));
  3587. break;
  3588. }
  3589. puts_P(_N("PINDA probe calibration start"));
  3590. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3591. custom_message_state = 1;
  3592. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3593. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3594. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3595. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3596. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3597. st_synchronize();
  3598. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3599. delay_keep_alive(1000);
  3600. serialecho_temperatures();
  3601. }
  3602. //enquecommand_P(PSTR("M190 S50"));
  3603. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3604. delay_keep_alive(1000);
  3605. serialecho_temperatures();
  3606. }
  3607. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3608. current_position[Z_AXIS] = 5;
  3609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3610. current_position[X_AXIS] = BED_X0;
  3611. current_position[Y_AXIS] = BED_Y0;
  3612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3613. st_synchronize();
  3614. find_bed_induction_sensor_point_z(-1.f);
  3615. zero_z = current_position[Z_AXIS];
  3616. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3617. for (int i = 0; i<5; i++) {
  3618. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3619. custom_message_state = i + 2;
  3620. t_c = 60 + i * 10;
  3621. setTargetBed(t_c);
  3622. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3623. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3624. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3625. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3626. st_synchronize();
  3627. while (degBed() < t_c) {
  3628. delay_keep_alive(1000);
  3629. serialecho_temperatures();
  3630. }
  3631. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3632. delay_keep_alive(1000);
  3633. serialecho_temperatures();
  3634. }
  3635. current_position[Z_AXIS] = 5;
  3636. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3637. current_position[X_AXIS] = BED_X0;
  3638. current_position[Y_AXIS] = BED_Y0;
  3639. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3640. st_synchronize();
  3641. find_bed_induction_sensor_point_z(-1.f);
  3642. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3643. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3644. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3645. }
  3646. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3647. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3648. puts_P(_N("Temperature calibration done."));
  3649. disable_x();
  3650. disable_y();
  3651. disable_z();
  3652. disable_e0();
  3653. disable_e1();
  3654. disable_e2();
  3655. setTargetBed(0); //set bed target temperature back to 0
  3656. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3657. temp_cal_active = true;
  3658. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3659. lcd_update_enable(true);
  3660. lcd_update(2);
  3661. }
  3662. break;
  3663. #ifdef DIS
  3664. case 77:
  3665. {
  3666. //! G77 X200 Y150 XP100 YP15 XO10 Y015
  3667. //! for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3668. //! G77 X232 Y218 XP116 YP109 XO-11 YO0
  3669. float dimension_x = 40;
  3670. float dimension_y = 40;
  3671. int points_x = 40;
  3672. int points_y = 40;
  3673. float offset_x = 74;
  3674. float offset_y = 33;
  3675. if (code_seen('X')) dimension_x = code_value();
  3676. if (code_seen('Y')) dimension_y = code_value();
  3677. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3678. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3679. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3680. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3681. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3682. } break;
  3683. #endif
  3684. case 79: {
  3685. for (int i = 255; i > 0; i = i - 5) {
  3686. fanSpeed = i;
  3687. //delay_keep_alive(2000);
  3688. for (int j = 0; j < 100; j++) {
  3689. delay_keep_alive(100);
  3690. }
  3691. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3692. }
  3693. }break;
  3694. /**
  3695. * G80: Mesh-based Z probe, probes a grid and produces a
  3696. * mesh to compensate for variable bed height
  3697. *
  3698. * The S0 report the points as below
  3699. * @code{.unparsed}
  3700. * +----> X-axis
  3701. * |
  3702. * |
  3703. * v Y-axis
  3704. * @endcode
  3705. */
  3706. case 80:
  3707. #ifdef MK1BP
  3708. break;
  3709. #endif //MK1BP
  3710. case_G80:
  3711. {
  3712. mesh_bed_leveling_flag = true;
  3713. static bool run = false;
  3714. #ifdef SUPPORT_VERBOSITY
  3715. int8_t verbosity_level = 0;
  3716. if (code_seen('V')) {
  3717. // Just 'V' without a number counts as V1.
  3718. char c = strchr_pointer[1];
  3719. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3720. }
  3721. #endif //SUPPORT_VERBOSITY
  3722. // Firstly check if we know where we are
  3723. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3724. // We don't know where we are! HOME!
  3725. // Push the commands to the front of the message queue in the reverse order!
  3726. // There shall be always enough space reserved for these commands.
  3727. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3728. repeatcommand_front(); // repeat G80 with all its parameters
  3729. enquecommand_front_P((PSTR("G28 W0")));
  3730. }
  3731. else {
  3732. mesh_bed_leveling_flag = false;
  3733. }
  3734. break;
  3735. }
  3736. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3737. if (code_seen('N')) {
  3738. nMeasPoints = code_value_uint8();
  3739. if (nMeasPoints != 7) {
  3740. nMeasPoints = 3;
  3741. }
  3742. }
  3743. uint8_t nProbeRetry = 3;
  3744. if (code_seen('R')) {
  3745. nProbeRetry = code_value_uint8();
  3746. if (nProbeRetry > 10) {
  3747. nProbeRetry = 3;
  3748. }
  3749. }
  3750. bool temp_comp_start = true;
  3751. #ifdef PINDA_THERMISTOR
  3752. temp_comp_start = false;
  3753. #endif //PINDA_THERMISTOR
  3754. if (temp_comp_start)
  3755. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3756. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3757. temp_compensation_start();
  3758. run = true;
  3759. repeatcommand_front(); // repeat G80 with all its parameters
  3760. enquecommand_front_P((PSTR("G28 W0")));
  3761. }
  3762. else {
  3763. mesh_bed_leveling_flag = false;
  3764. }
  3765. break;
  3766. }
  3767. run = false;
  3768. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3769. mesh_bed_leveling_flag = false;
  3770. break;
  3771. }
  3772. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3773. unsigned int custom_message_type_old = custom_message_type;
  3774. unsigned int custom_message_state_old = custom_message_state;
  3775. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3776. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3777. lcd_update(1);
  3778. mbl.reset(); //reset mesh bed leveling
  3779. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3780. // consumed during the first movements following this statement.
  3781. babystep_undo();
  3782. // Cycle through all points and probe them
  3783. // First move up. During this first movement, the babystepping will be reverted.
  3784. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3785. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3786. // The move to the first calibration point.
  3787. current_position[X_AXIS] = BED_X0;
  3788. current_position[Y_AXIS] = BED_Y0;
  3789. #ifdef SUPPORT_VERBOSITY
  3790. if (verbosity_level >= 1)
  3791. {
  3792. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3793. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3794. }
  3795. #endif //SUPPORT_VERBOSITY
  3796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3797. // Wait until the move is finished.
  3798. st_synchronize();
  3799. uint8_t mesh_point = 0; //index number of calibration point
  3800. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3801. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3802. bool has_z = (nMeasPoints == 3) && is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3803. #ifdef SUPPORT_VERBOSITY
  3804. if (verbosity_level >= 1) {
  3805. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3806. }
  3807. #endif // SUPPORT_VERBOSITY
  3808. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3809. const char *kill_message = NULL;
  3810. while (mesh_point != nMeasPoints * nMeasPoints) {
  3811. // Get coords of a measuring point.
  3812. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3813. uint8_t iy = mesh_point / nMeasPoints;
  3814. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3815. float z0 = 0.f;
  3816. if (has_z && (mesh_point > 0)) {
  3817. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3818. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3819. //#if 0
  3820. #ifdef SUPPORT_VERBOSITY
  3821. if (verbosity_level >= 1) {
  3822. SERIAL_ECHOLNPGM("");
  3823. SERIAL_ECHOPGM("Bed leveling, point: ");
  3824. MYSERIAL.print(mesh_point);
  3825. SERIAL_ECHOPGM(", calibration z: ");
  3826. MYSERIAL.print(z0, 5);
  3827. SERIAL_ECHOLNPGM("");
  3828. }
  3829. #endif // SUPPORT_VERBOSITY
  3830. //#endif
  3831. }
  3832. // Move Z up to MESH_HOME_Z_SEARCH.
  3833. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3834. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3835. st_synchronize();
  3836. // Move to XY position of the sensor point.
  3837. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3838. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3839. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3840. #ifdef SUPPORT_VERBOSITY
  3841. if (verbosity_level >= 1) {
  3842. SERIAL_PROTOCOL(mesh_point);
  3843. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3844. }
  3845. #endif // SUPPORT_VERBOSITY
  3846. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3847. st_synchronize();
  3848. // Go down until endstop is hit
  3849. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3850. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3851. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3852. break;
  3853. }
  3854. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3855. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3856. break;
  3857. }
  3858. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3859. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3860. break;
  3861. }
  3862. #ifdef SUPPORT_VERBOSITY
  3863. if (verbosity_level >= 10) {
  3864. SERIAL_ECHOPGM("X: ");
  3865. MYSERIAL.print(current_position[X_AXIS], 5);
  3866. SERIAL_ECHOLNPGM("");
  3867. SERIAL_ECHOPGM("Y: ");
  3868. MYSERIAL.print(current_position[Y_AXIS], 5);
  3869. SERIAL_PROTOCOLPGM("\n");
  3870. }
  3871. #endif // SUPPORT_VERBOSITY
  3872. float offset_z = 0;
  3873. #ifdef PINDA_THERMISTOR
  3874. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3875. #endif //PINDA_THERMISTOR
  3876. // #ifdef SUPPORT_VERBOSITY
  3877. /* if (verbosity_level >= 1)
  3878. {
  3879. SERIAL_ECHOPGM("mesh bed leveling: ");
  3880. MYSERIAL.print(current_position[Z_AXIS], 5);
  3881. SERIAL_ECHOPGM(" offset: ");
  3882. MYSERIAL.print(offset_z, 5);
  3883. SERIAL_ECHOLNPGM("");
  3884. }*/
  3885. // #endif // SUPPORT_VERBOSITY
  3886. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3887. custom_message_state--;
  3888. mesh_point++;
  3889. lcd_update(1);
  3890. }
  3891. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3892. #ifdef SUPPORT_VERBOSITY
  3893. if (verbosity_level >= 20) {
  3894. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3895. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3896. MYSERIAL.print(current_position[Z_AXIS], 5);
  3897. }
  3898. #endif // SUPPORT_VERBOSITY
  3899. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3900. st_synchronize();
  3901. if (mesh_point != nMeasPoints * nMeasPoints) {
  3902. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3903. bool bState;
  3904. do { // repeat until Z-leveling o.k.
  3905. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  3906. #ifdef TMC2130
  3907. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3908. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3909. #else // TMC2130
  3910. lcd_wait_for_click_delay(0); // ~ no timeout
  3911. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3912. #endif // TMC2130
  3913. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3914. bState=enable_z_endstop(false);
  3915. current_position[Z_AXIS] -= 1;
  3916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3917. st_synchronize();
  3918. enable_z_endstop(true);
  3919. #ifdef TMC2130
  3920. tmc2130_home_enter(Z_AXIS_MASK);
  3921. #endif // TMC2130
  3922. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3924. st_synchronize();
  3925. #ifdef TMC2130
  3926. tmc2130_home_exit();
  3927. #endif // TMC2130
  3928. enable_z_endstop(bState);
  3929. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  3930. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  3931. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3932. lcd_update_enable(true); // display / status-line recovery
  3933. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  3934. repeatcommand_front(); // re-run (i.e. of "G80")
  3935. break;
  3936. }
  3937. clean_up_after_endstop_move(l_feedmultiply);
  3938. // SERIAL_ECHOLNPGM("clean up finished ");
  3939. bool apply_temp_comp = true;
  3940. #ifdef PINDA_THERMISTOR
  3941. apply_temp_comp = false;
  3942. #endif
  3943. if (apply_temp_comp)
  3944. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3945. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3946. // SERIAL_ECHOLNPGM("babystep applied");
  3947. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3948. #ifdef SUPPORT_VERBOSITY
  3949. if (verbosity_level >= 1) {
  3950. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3951. }
  3952. #endif // SUPPORT_VERBOSITY
  3953. for (uint8_t i = 0; i < 4; ++i) {
  3954. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3955. long correction = 0;
  3956. if (code_seen(codes[i]))
  3957. correction = code_value_long();
  3958. else if (eeprom_bed_correction_valid) {
  3959. unsigned char *addr = (i < 2) ?
  3960. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3961. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3962. correction = eeprom_read_int8(addr);
  3963. }
  3964. if (correction == 0)
  3965. continue;
  3966. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  3967. SERIAL_ERROR_START;
  3968. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3969. SERIAL_ECHO(correction);
  3970. SERIAL_ECHOLNPGM(" microns");
  3971. }
  3972. else {
  3973. float offset = float(correction) * 0.001f;
  3974. switch (i) {
  3975. case 0:
  3976. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  3977. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  3978. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  3979. }
  3980. }
  3981. break;
  3982. case 1:
  3983. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  3984. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  3985. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  3986. }
  3987. }
  3988. break;
  3989. case 2:
  3990. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  3991. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  3992. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  3993. }
  3994. }
  3995. break;
  3996. case 3:
  3997. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  3998. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  3999. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4000. }
  4001. }
  4002. break;
  4003. }
  4004. }
  4005. }
  4006. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4007. if (nMeasPoints == 3) {
  4008. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4009. }
  4010. // SERIAL_ECHOLNPGM("Upsample finished");
  4011. mbl.active = 1; //activate mesh bed leveling
  4012. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4013. go_home_with_z_lift();
  4014. // SERIAL_ECHOLNPGM("Go home finished");
  4015. //unretract (after PINDA preheat retraction)
  4016. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4017. current_position[E_AXIS] += default_retraction;
  4018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4019. }
  4020. KEEPALIVE_STATE(NOT_BUSY);
  4021. // Restore custom message state
  4022. lcd_setstatuspgm(_T(WELCOME_MSG));
  4023. custom_message_type = custom_message_type_old;
  4024. custom_message_state = custom_message_state_old;
  4025. mesh_bed_leveling_flag = false;
  4026. mesh_bed_run_from_menu = false;
  4027. lcd_update(2);
  4028. }
  4029. break;
  4030. /**
  4031. * G81: Print mesh bed leveling status and bed profile if activated
  4032. */
  4033. case 81:
  4034. if (mbl.active) {
  4035. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4036. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4037. SERIAL_PROTOCOLPGM(",");
  4038. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4039. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4040. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4041. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4042. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4043. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4044. SERIAL_PROTOCOLPGM(" ");
  4045. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4046. }
  4047. SERIAL_PROTOCOLPGM("\n");
  4048. }
  4049. }
  4050. else
  4051. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4052. break;
  4053. #if 0
  4054. /**
  4055. * G82: Single Z probe at current location
  4056. *
  4057. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4058. *
  4059. */
  4060. case 82:
  4061. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4062. int l_feedmultiply = setup_for_endstop_move();
  4063. find_bed_induction_sensor_point_z();
  4064. clean_up_after_endstop_move(l_feedmultiply);
  4065. SERIAL_PROTOCOLPGM("Bed found at: ");
  4066. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4067. SERIAL_PROTOCOLPGM("\n");
  4068. break;
  4069. /**
  4070. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4071. */
  4072. case 83:
  4073. {
  4074. int babystepz = code_seen('S') ? code_value() : 0;
  4075. int BabyPosition = code_seen('P') ? code_value() : 0;
  4076. if (babystepz != 0) {
  4077. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4078. // Is the axis indexed starting with zero or one?
  4079. if (BabyPosition > 4) {
  4080. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4081. }else{
  4082. // Save it to the eeprom
  4083. babystepLoadZ = babystepz;
  4084. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4085. // adjust the Z
  4086. babystepsTodoZadd(babystepLoadZ);
  4087. }
  4088. }
  4089. }
  4090. break;
  4091. /**
  4092. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4093. */
  4094. case 84:
  4095. babystepsTodoZsubtract(babystepLoadZ);
  4096. // babystepLoadZ = 0;
  4097. break;
  4098. /**
  4099. * G85: Prusa3D specific: Pick best babystep
  4100. */
  4101. case 85:
  4102. lcd_pick_babystep();
  4103. break;
  4104. #endif
  4105. /**
  4106. * G86: Prusa3D specific: Disable babystep correction after home.
  4107. * This G-code will be performed at the start of a calibration script.
  4108. */
  4109. case 86:
  4110. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4111. break;
  4112. /**
  4113. * G87: Prusa3D specific: Enable babystep correction after home
  4114. * This G-code will be performed at the end of a calibration script.
  4115. */
  4116. case 87:
  4117. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4118. break;
  4119. /**
  4120. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4121. */
  4122. case 88:
  4123. break;
  4124. #endif // ENABLE_MESH_BED_LEVELING
  4125. case 90: // G90
  4126. relative_mode = false;
  4127. break;
  4128. case 91: // G91
  4129. relative_mode = true;
  4130. break;
  4131. case 92: // G92
  4132. if(!code_seen(axis_codes[E_AXIS]))
  4133. st_synchronize();
  4134. for(int8_t i=0; i < NUM_AXIS; i++) {
  4135. if(code_seen(axis_codes[i])) {
  4136. if(i == E_AXIS) {
  4137. current_position[i] = code_value();
  4138. plan_set_e_position(current_position[E_AXIS]);
  4139. }
  4140. else {
  4141. current_position[i] = code_value()+cs.add_homing[i];
  4142. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4143. }
  4144. }
  4145. }
  4146. break;
  4147. case 98: //! G98 (activate farm mode)
  4148. farm_mode = 1;
  4149. PingTime = _millis();
  4150. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4151. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4152. SilentModeMenu = SILENT_MODE_OFF;
  4153. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4154. break;
  4155. case 99: //! G99 (deactivate farm mode)
  4156. farm_mode = 0;
  4157. lcd_printer_connected();
  4158. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4159. lcd_update(2);
  4160. break;
  4161. default:
  4162. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4163. }
  4164. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4165. gcode_in_progress = 0;
  4166. } // end if(code_seen('G'))
  4167. else if(code_seen('M'))
  4168. {
  4169. int index;
  4170. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4171. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4172. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4173. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4174. } else
  4175. {
  4176. mcode_in_progress = (int)code_value();
  4177. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4178. switch(mcode_in_progress)
  4179. {
  4180. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4181. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4182. {
  4183. char *src = strchr_pointer + 2;
  4184. codenum = 0;
  4185. bool hasP = false, hasS = false;
  4186. if (code_seen('P')) {
  4187. codenum = code_value(); // milliseconds to wait
  4188. hasP = codenum > 0;
  4189. }
  4190. if (code_seen('S')) {
  4191. codenum = code_value() * 1000; // seconds to wait
  4192. hasS = codenum > 0;
  4193. }
  4194. starpos = strchr(src, '*');
  4195. if (starpos != NULL) *(starpos) = '\0';
  4196. while (*src == ' ') ++src;
  4197. if (!hasP && !hasS && *src != '\0') {
  4198. lcd_setstatus(src);
  4199. } else {
  4200. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4201. }
  4202. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4203. st_synchronize();
  4204. previous_millis_cmd = _millis();
  4205. if (codenum > 0){
  4206. codenum += _millis(); // keep track of when we started waiting
  4207. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4208. while(_millis() < codenum && !lcd_clicked()){
  4209. manage_heater();
  4210. manage_inactivity(true);
  4211. lcd_update(0);
  4212. }
  4213. KEEPALIVE_STATE(IN_HANDLER);
  4214. lcd_ignore_click(false);
  4215. }else{
  4216. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4217. while(!lcd_clicked()){
  4218. manage_heater();
  4219. manage_inactivity(true);
  4220. lcd_update(0);
  4221. }
  4222. KEEPALIVE_STATE(IN_HANDLER);
  4223. }
  4224. if (IS_SD_PRINTING)
  4225. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4226. else
  4227. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4228. }
  4229. break;
  4230. case 17:
  4231. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4232. enable_x();
  4233. enable_y();
  4234. enable_z();
  4235. enable_e0();
  4236. enable_e1();
  4237. enable_e2();
  4238. break;
  4239. #ifdef SDSUPPORT
  4240. case 20: // M20 - list SD card
  4241. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4242. card.ls();
  4243. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4244. break;
  4245. case 21: // M21 - init SD card
  4246. card.initsd();
  4247. break;
  4248. case 22: //M22 - release SD card
  4249. card.release();
  4250. break;
  4251. case 23: //M23 - Select file
  4252. starpos = (strchr(strchr_pointer + 4,'*'));
  4253. if(starpos!=NULL)
  4254. *(starpos)='\0';
  4255. card.openFile(strchr_pointer + 4,true);
  4256. break;
  4257. case 24: //M24 - Start SD print
  4258. if (!card.paused)
  4259. failstats_reset_print();
  4260. card.startFileprint();
  4261. starttime=_millis();
  4262. break;
  4263. case 25: //M25 - Pause SD print
  4264. card.pauseSDPrint();
  4265. break;
  4266. case 26: //M26 - Set SD index
  4267. if(card.cardOK && code_seen('S')) {
  4268. card.setIndex(code_value_long());
  4269. }
  4270. break;
  4271. case 27: //M27 - Get SD status
  4272. card.getStatus();
  4273. break;
  4274. case 28: //M28 - Start SD write
  4275. starpos = (strchr(strchr_pointer + 4,'*'));
  4276. if(starpos != NULL){
  4277. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4278. strchr_pointer = strchr(npos,' ') + 1;
  4279. *(starpos) = '\0';
  4280. }
  4281. card.openFile(strchr_pointer+4,false);
  4282. break;
  4283. case 29: //M29 - Stop SD write
  4284. //processed in write to file routine above
  4285. //card,saving = false;
  4286. break;
  4287. case 30: //M30 <filename> Delete File
  4288. if (card.cardOK){
  4289. card.closefile();
  4290. starpos = (strchr(strchr_pointer + 4,'*'));
  4291. if(starpos != NULL){
  4292. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4293. strchr_pointer = strchr(npos,' ') + 1;
  4294. *(starpos) = '\0';
  4295. }
  4296. card.removeFile(strchr_pointer + 4);
  4297. }
  4298. break;
  4299. case 32: //M32 - Select file and start SD print
  4300. {
  4301. if(card.sdprinting) {
  4302. st_synchronize();
  4303. }
  4304. starpos = (strchr(strchr_pointer + 4,'*'));
  4305. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4306. if(namestartpos==NULL)
  4307. {
  4308. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4309. }
  4310. else
  4311. namestartpos++; //to skip the '!'
  4312. if(starpos!=NULL)
  4313. *(starpos)='\0';
  4314. bool call_procedure=(code_seen('P'));
  4315. if(strchr_pointer>namestartpos)
  4316. call_procedure=false; //false alert, 'P' found within filename
  4317. if( card.cardOK )
  4318. {
  4319. card.openFile(namestartpos,true,!call_procedure);
  4320. if(code_seen('S'))
  4321. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4322. card.setIndex(code_value_long());
  4323. card.startFileprint();
  4324. if(!call_procedure)
  4325. starttime=_millis(); //procedure calls count as normal print time.
  4326. }
  4327. } break;
  4328. case 928: //M928 - Start SD write
  4329. starpos = (strchr(strchr_pointer + 5,'*'));
  4330. if(starpos != NULL){
  4331. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4332. strchr_pointer = strchr(npos,' ') + 1;
  4333. *(starpos) = '\0';
  4334. }
  4335. card.openLogFile(strchr_pointer+5);
  4336. break;
  4337. #endif //SDSUPPORT
  4338. case 31: //M31 take time since the start of the SD print or an M109 command
  4339. {
  4340. stoptime=_millis();
  4341. char time[30];
  4342. unsigned long t=(stoptime-starttime)/1000;
  4343. int sec,min;
  4344. min=t/60;
  4345. sec=t%60;
  4346. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4347. SERIAL_ECHO_START;
  4348. SERIAL_ECHOLN(time);
  4349. lcd_setstatus(time);
  4350. autotempShutdown();
  4351. }
  4352. break;
  4353. case 42: //M42 -Change pin status via gcode
  4354. if (code_seen('S'))
  4355. {
  4356. int pin_status = code_value();
  4357. int pin_number = LED_PIN;
  4358. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4359. pin_number = code_value();
  4360. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4361. {
  4362. if (sensitive_pins[i] == pin_number)
  4363. {
  4364. pin_number = -1;
  4365. break;
  4366. }
  4367. }
  4368. #if defined(FAN_PIN) && FAN_PIN > -1
  4369. if (pin_number == FAN_PIN)
  4370. fanSpeed = pin_status;
  4371. #endif
  4372. if (pin_number > -1)
  4373. {
  4374. pinMode(pin_number, OUTPUT);
  4375. digitalWrite(pin_number, pin_status);
  4376. analogWrite(pin_number, pin_status);
  4377. }
  4378. }
  4379. break;
  4380. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4381. // Reset the baby step value and the baby step applied flag.
  4382. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4383. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4384. // Reset the skew and offset in both RAM and EEPROM.
  4385. reset_bed_offset_and_skew();
  4386. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4387. // the planner will not perform any adjustments in the XY plane.
  4388. // Wait for the motors to stop and update the current position with the absolute values.
  4389. world2machine_revert_to_uncorrected();
  4390. break;
  4391. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4392. {
  4393. int8_t verbosity_level = 0;
  4394. bool only_Z = code_seen('Z');
  4395. #ifdef SUPPORT_VERBOSITY
  4396. if (code_seen('V'))
  4397. {
  4398. // Just 'V' without a number counts as V1.
  4399. char c = strchr_pointer[1];
  4400. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4401. }
  4402. #endif //SUPPORT_VERBOSITY
  4403. gcode_M45(only_Z, verbosity_level);
  4404. }
  4405. break;
  4406. /*
  4407. case 46:
  4408. {
  4409. // M46: Prusa3D: Show the assigned IP address.
  4410. uint8_t ip[4];
  4411. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4412. if (hasIP) {
  4413. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4414. SERIAL_ECHO(int(ip[0]));
  4415. SERIAL_ECHOPGM(".");
  4416. SERIAL_ECHO(int(ip[1]));
  4417. SERIAL_ECHOPGM(".");
  4418. SERIAL_ECHO(int(ip[2]));
  4419. SERIAL_ECHOPGM(".");
  4420. SERIAL_ECHO(int(ip[3]));
  4421. SERIAL_ECHOLNPGM("");
  4422. } else {
  4423. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4424. }
  4425. break;
  4426. }
  4427. */
  4428. case 47:
  4429. //! M47: Prusa3D: Show end stops dialog on the display.
  4430. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4431. lcd_diag_show_end_stops();
  4432. KEEPALIVE_STATE(IN_HANDLER);
  4433. break;
  4434. #if 0
  4435. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4436. {
  4437. // Disable the default update procedure of the display. We will do a modal dialog.
  4438. lcd_update_enable(false);
  4439. // Let the planner use the uncorrected coordinates.
  4440. mbl.reset();
  4441. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4442. // the planner will not perform any adjustments in the XY plane.
  4443. // Wait for the motors to stop and update the current position with the absolute values.
  4444. world2machine_revert_to_uncorrected();
  4445. // Move the print head close to the bed.
  4446. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4447. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4448. st_synchronize();
  4449. // Home in the XY plane.
  4450. set_destination_to_current();
  4451. int l_feedmultiply = setup_for_endstop_move();
  4452. home_xy();
  4453. int8_t verbosity_level = 0;
  4454. if (code_seen('V')) {
  4455. // Just 'V' without a number counts as V1.
  4456. char c = strchr_pointer[1];
  4457. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4458. }
  4459. bool success = scan_bed_induction_points(verbosity_level);
  4460. clean_up_after_endstop_move(l_feedmultiply);
  4461. // Print head up.
  4462. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4463. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4464. st_synchronize();
  4465. lcd_update_enable(true);
  4466. break;
  4467. }
  4468. #endif
  4469. #ifdef ENABLE_AUTO_BED_LEVELING
  4470. #ifdef Z_PROBE_REPEATABILITY_TEST
  4471. //! M48 Z-Probe repeatability measurement function.
  4472. //!
  4473. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4474. //!
  4475. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4476. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4477. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4478. //! regenerated.
  4479. //!
  4480. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4481. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4482. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4483. //!
  4484. case 48: // M48 Z-Probe repeatability
  4485. {
  4486. #if Z_MIN_PIN == -1
  4487. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4488. #endif
  4489. double sum=0.0;
  4490. double mean=0.0;
  4491. double sigma=0.0;
  4492. double sample_set[50];
  4493. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4494. double X_current, Y_current, Z_current;
  4495. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4496. if (code_seen('V') || code_seen('v')) {
  4497. verbose_level = code_value();
  4498. if (verbose_level<0 || verbose_level>4 ) {
  4499. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4500. goto Sigma_Exit;
  4501. }
  4502. }
  4503. if (verbose_level > 0) {
  4504. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4505. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4506. }
  4507. if (code_seen('n')) {
  4508. n_samples = code_value();
  4509. if (n_samples<4 || n_samples>50 ) {
  4510. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4511. goto Sigma_Exit;
  4512. }
  4513. }
  4514. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4515. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4516. Z_current = st_get_position_mm(Z_AXIS);
  4517. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4518. ext_position = st_get_position_mm(E_AXIS);
  4519. if (code_seen('X') || code_seen('x') ) {
  4520. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4521. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4522. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4523. goto Sigma_Exit;
  4524. }
  4525. }
  4526. if (code_seen('Y') || code_seen('y') ) {
  4527. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4528. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4529. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4530. goto Sigma_Exit;
  4531. }
  4532. }
  4533. if (code_seen('L') || code_seen('l') ) {
  4534. n_legs = code_value();
  4535. if ( n_legs==1 )
  4536. n_legs = 2;
  4537. if ( n_legs<0 || n_legs>15 ) {
  4538. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4539. goto Sigma_Exit;
  4540. }
  4541. }
  4542. //
  4543. // Do all the preliminary setup work. First raise the probe.
  4544. //
  4545. st_synchronize();
  4546. plan_bed_level_matrix.set_to_identity();
  4547. plan_buffer_line( X_current, Y_current, Z_start_location,
  4548. ext_position,
  4549. homing_feedrate[Z_AXIS]/60,
  4550. active_extruder);
  4551. st_synchronize();
  4552. //
  4553. // Now get everything to the specified probe point So we can safely do a probe to
  4554. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4555. // use that as a starting point for each probe.
  4556. //
  4557. if (verbose_level > 2)
  4558. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4559. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4560. ext_position,
  4561. homing_feedrate[X_AXIS]/60,
  4562. active_extruder);
  4563. st_synchronize();
  4564. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4565. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4566. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4567. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4568. //
  4569. // OK, do the inital probe to get us close to the bed.
  4570. // Then retrace the right amount and use that in subsequent probes
  4571. //
  4572. int l_feedmultiply = setup_for_endstop_move();
  4573. run_z_probe();
  4574. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4575. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4576. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4577. ext_position,
  4578. homing_feedrate[X_AXIS]/60,
  4579. active_extruder);
  4580. st_synchronize();
  4581. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4582. for( n=0; n<n_samples; n++) {
  4583. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4584. if ( n_legs) {
  4585. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4586. int rotational_direction, l;
  4587. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4588. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4589. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4590. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4591. //SERIAL_ECHOPAIR(" theta: ",theta);
  4592. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4593. //SERIAL_PROTOCOLLNPGM("");
  4594. for( l=0; l<n_legs-1; l++) {
  4595. if (rotational_direction==1)
  4596. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4597. else
  4598. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4599. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4600. if ( radius<0.0 )
  4601. radius = -radius;
  4602. X_current = X_probe_location + cos(theta) * radius;
  4603. Y_current = Y_probe_location + sin(theta) * radius;
  4604. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4605. X_current = X_MIN_POS;
  4606. if ( X_current>X_MAX_POS)
  4607. X_current = X_MAX_POS;
  4608. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4609. Y_current = Y_MIN_POS;
  4610. if ( Y_current>Y_MAX_POS)
  4611. Y_current = Y_MAX_POS;
  4612. if (verbose_level>3 ) {
  4613. SERIAL_ECHOPAIR("x: ", X_current);
  4614. SERIAL_ECHOPAIR("y: ", Y_current);
  4615. SERIAL_PROTOCOLLNPGM("");
  4616. }
  4617. do_blocking_move_to( X_current, Y_current, Z_current );
  4618. }
  4619. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4620. }
  4621. int l_feedmultiply = setup_for_endstop_move();
  4622. run_z_probe();
  4623. sample_set[n] = current_position[Z_AXIS];
  4624. //
  4625. // Get the current mean for the data points we have so far
  4626. //
  4627. sum=0.0;
  4628. for( j=0; j<=n; j++) {
  4629. sum = sum + sample_set[j];
  4630. }
  4631. mean = sum / (double (n+1));
  4632. //
  4633. // Now, use that mean to calculate the standard deviation for the
  4634. // data points we have so far
  4635. //
  4636. sum=0.0;
  4637. for( j=0; j<=n; j++) {
  4638. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4639. }
  4640. sigma = sqrt( sum / (double (n+1)) );
  4641. if (verbose_level > 1) {
  4642. SERIAL_PROTOCOL(n+1);
  4643. SERIAL_PROTOCOL(" of ");
  4644. SERIAL_PROTOCOL(n_samples);
  4645. SERIAL_PROTOCOLPGM(" z: ");
  4646. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4647. }
  4648. if (verbose_level > 2) {
  4649. SERIAL_PROTOCOL(" mean: ");
  4650. SERIAL_PROTOCOL_F(mean,6);
  4651. SERIAL_PROTOCOL(" sigma: ");
  4652. SERIAL_PROTOCOL_F(sigma,6);
  4653. }
  4654. if (verbose_level > 0)
  4655. SERIAL_PROTOCOLPGM("\n");
  4656. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4657. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4658. st_synchronize();
  4659. }
  4660. _delay(1000);
  4661. clean_up_after_endstop_move(l_feedmultiply);
  4662. // enable_endstops(true);
  4663. if (verbose_level > 0) {
  4664. SERIAL_PROTOCOLPGM("Mean: ");
  4665. SERIAL_PROTOCOL_F(mean, 6);
  4666. SERIAL_PROTOCOLPGM("\n");
  4667. }
  4668. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4669. SERIAL_PROTOCOL_F(sigma, 6);
  4670. SERIAL_PROTOCOLPGM("\n\n");
  4671. Sigma_Exit:
  4672. break;
  4673. }
  4674. #endif // Z_PROBE_REPEATABILITY_TEST
  4675. #endif // ENABLE_AUTO_BED_LEVELING
  4676. case 73: //M73 show percent done and time remaining
  4677. if(code_seen('P')) print_percent_done_normal = code_value();
  4678. if(code_seen('R')) print_time_remaining_normal = code_value();
  4679. if(code_seen('Q')) print_percent_done_silent = code_value();
  4680. if(code_seen('S')) print_time_remaining_silent = code_value();
  4681. {
  4682. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4683. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4684. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4685. }
  4686. break;
  4687. case 104: // M104
  4688. {
  4689. uint8_t extruder;
  4690. if(setTargetedHotend(104,extruder)){
  4691. break;
  4692. }
  4693. if (code_seen('S'))
  4694. {
  4695. setTargetHotendSafe(code_value(), extruder);
  4696. }
  4697. setWatch();
  4698. break;
  4699. }
  4700. case 112: // M112 -Emergency Stop
  4701. kill(_n(""), 3);
  4702. break;
  4703. case 140: // M140 set bed temp
  4704. if (code_seen('S')) setTargetBed(code_value());
  4705. break;
  4706. case 105 : // M105
  4707. {
  4708. uint8_t extruder;
  4709. if(setTargetedHotend(105, extruder)){
  4710. break;
  4711. }
  4712. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4713. SERIAL_PROTOCOLPGM("ok T:");
  4714. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4715. SERIAL_PROTOCOLPGM(" /");
  4716. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4717. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4718. SERIAL_PROTOCOLPGM(" B:");
  4719. SERIAL_PROTOCOL_F(degBed(),1);
  4720. SERIAL_PROTOCOLPGM(" /");
  4721. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4722. #endif //TEMP_BED_PIN
  4723. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4724. SERIAL_PROTOCOLPGM(" T");
  4725. SERIAL_PROTOCOL(cur_extruder);
  4726. SERIAL_PROTOCOLPGM(":");
  4727. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4728. SERIAL_PROTOCOLPGM(" /");
  4729. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4730. }
  4731. #else
  4732. SERIAL_ERROR_START;
  4733. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4734. #endif
  4735. SERIAL_PROTOCOLPGM(" @:");
  4736. #ifdef EXTRUDER_WATTS
  4737. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4738. SERIAL_PROTOCOLPGM("W");
  4739. #else
  4740. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4741. #endif
  4742. SERIAL_PROTOCOLPGM(" B@:");
  4743. #ifdef BED_WATTS
  4744. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4745. SERIAL_PROTOCOLPGM("W");
  4746. #else
  4747. SERIAL_PROTOCOL(getHeaterPower(-1));
  4748. #endif
  4749. #ifdef PINDA_THERMISTOR
  4750. SERIAL_PROTOCOLPGM(" P:");
  4751. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4752. #endif //PINDA_THERMISTOR
  4753. #ifdef AMBIENT_THERMISTOR
  4754. SERIAL_PROTOCOLPGM(" A:");
  4755. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4756. #endif //AMBIENT_THERMISTOR
  4757. #ifdef SHOW_TEMP_ADC_VALUES
  4758. {float raw = 0.0;
  4759. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4760. SERIAL_PROTOCOLPGM(" ADC B:");
  4761. SERIAL_PROTOCOL_F(degBed(),1);
  4762. SERIAL_PROTOCOLPGM("C->");
  4763. raw = rawBedTemp();
  4764. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4765. SERIAL_PROTOCOLPGM(" Rb->");
  4766. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4767. SERIAL_PROTOCOLPGM(" Rxb->");
  4768. SERIAL_PROTOCOL_F(raw, 5);
  4769. #endif
  4770. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4771. SERIAL_PROTOCOLPGM(" T");
  4772. SERIAL_PROTOCOL(cur_extruder);
  4773. SERIAL_PROTOCOLPGM(":");
  4774. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4775. SERIAL_PROTOCOLPGM("C->");
  4776. raw = rawHotendTemp(cur_extruder);
  4777. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4778. SERIAL_PROTOCOLPGM(" Rt");
  4779. SERIAL_PROTOCOL(cur_extruder);
  4780. SERIAL_PROTOCOLPGM("->");
  4781. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4782. SERIAL_PROTOCOLPGM(" Rx");
  4783. SERIAL_PROTOCOL(cur_extruder);
  4784. SERIAL_PROTOCOLPGM("->");
  4785. SERIAL_PROTOCOL_F(raw, 5);
  4786. }}
  4787. #endif
  4788. SERIAL_PROTOCOLLN("");
  4789. KEEPALIVE_STATE(NOT_BUSY);
  4790. return;
  4791. break;
  4792. }
  4793. case 109:
  4794. {// M109 - Wait for extruder heater to reach target.
  4795. uint8_t extruder;
  4796. if(setTargetedHotend(109, extruder)){
  4797. break;
  4798. }
  4799. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4800. heating_status = 1;
  4801. if (farm_mode) { prusa_statistics(1); };
  4802. #ifdef AUTOTEMP
  4803. autotemp_enabled=false;
  4804. #endif
  4805. if (code_seen('S')) {
  4806. setTargetHotendSafe(code_value(), extruder);
  4807. CooldownNoWait = true;
  4808. } else if (code_seen('R')) {
  4809. setTargetHotendSafe(code_value(), extruder);
  4810. CooldownNoWait = false;
  4811. }
  4812. #ifdef AUTOTEMP
  4813. if (code_seen('S')) autotemp_min=code_value();
  4814. if (code_seen('B')) autotemp_max=code_value();
  4815. if (code_seen('F'))
  4816. {
  4817. autotemp_factor=code_value();
  4818. autotemp_enabled=true;
  4819. }
  4820. #endif
  4821. setWatch();
  4822. codenum = _millis();
  4823. /* See if we are heating up or cooling down */
  4824. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4825. KEEPALIVE_STATE(NOT_BUSY);
  4826. cancel_heatup = false;
  4827. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4828. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4829. KEEPALIVE_STATE(IN_HANDLER);
  4830. heating_status = 2;
  4831. if (farm_mode) { prusa_statistics(2); };
  4832. //starttime=_millis();
  4833. previous_millis_cmd = _millis();
  4834. }
  4835. break;
  4836. case 190: // M190 - Wait for bed heater to reach target.
  4837. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4838. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4839. heating_status = 3;
  4840. if (farm_mode) { prusa_statistics(1); };
  4841. if (code_seen('S'))
  4842. {
  4843. setTargetBed(code_value());
  4844. CooldownNoWait = true;
  4845. }
  4846. else if (code_seen('R'))
  4847. {
  4848. setTargetBed(code_value());
  4849. CooldownNoWait = false;
  4850. }
  4851. codenum = _millis();
  4852. cancel_heatup = false;
  4853. target_direction = isHeatingBed(); // true if heating, false if cooling
  4854. KEEPALIVE_STATE(NOT_BUSY);
  4855. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4856. {
  4857. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4858. {
  4859. if (!farm_mode) {
  4860. float tt = degHotend(active_extruder);
  4861. SERIAL_PROTOCOLPGM("T:");
  4862. SERIAL_PROTOCOL(tt);
  4863. SERIAL_PROTOCOLPGM(" E:");
  4864. SERIAL_PROTOCOL((int)active_extruder);
  4865. SERIAL_PROTOCOLPGM(" B:");
  4866. SERIAL_PROTOCOL_F(degBed(), 1);
  4867. SERIAL_PROTOCOLLN("");
  4868. }
  4869. codenum = _millis();
  4870. }
  4871. manage_heater();
  4872. manage_inactivity();
  4873. lcd_update(0);
  4874. }
  4875. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4876. KEEPALIVE_STATE(IN_HANDLER);
  4877. heating_status = 4;
  4878. previous_millis_cmd = _millis();
  4879. #endif
  4880. break;
  4881. #if defined(FAN_PIN) && FAN_PIN > -1
  4882. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4883. if (code_seen('S')){
  4884. fanSpeed=constrain(code_value(),0,255);
  4885. }
  4886. else {
  4887. fanSpeed=255;
  4888. }
  4889. break;
  4890. case 107: //M107 Fan Off
  4891. fanSpeed = 0;
  4892. break;
  4893. #endif //FAN_PIN
  4894. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4895. case 80: // M80 - Turn on Power Supply
  4896. SET_OUTPUT(PS_ON_PIN); //GND
  4897. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4898. // If you have a switch on suicide pin, this is useful
  4899. // if you want to start another print with suicide feature after
  4900. // a print without suicide...
  4901. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4902. SET_OUTPUT(SUICIDE_PIN);
  4903. WRITE(SUICIDE_PIN, HIGH);
  4904. #endif
  4905. powersupply = true;
  4906. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4907. lcd_update(0);
  4908. break;
  4909. #endif
  4910. case 81: // M81 - Turn off Power Supply
  4911. disable_heater();
  4912. st_synchronize();
  4913. disable_e0();
  4914. disable_e1();
  4915. disable_e2();
  4916. finishAndDisableSteppers();
  4917. fanSpeed = 0;
  4918. _delay(1000); // Wait a little before to switch off
  4919. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4920. st_synchronize();
  4921. suicide();
  4922. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4923. SET_OUTPUT(PS_ON_PIN);
  4924. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4925. #endif
  4926. powersupply = false;
  4927. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4928. lcd_update(0);
  4929. break;
  4930. case 82:
  4931. axis_relative_modes[3] = false;
  4932. break;
  4933. case 83:
  4934. axis_relative_modes[3] = true;
  4935. break;
  4936. case 18: //compatibility
  4937. case 84: // M84
  4938. if(code_seen('S')){
  4939. stepper_inactive_time = code_value() * 1000;
  4940. }
  4941. else
  4942. {
  4943. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4944. if(all_axis)
  4945. {
  4946. st_synchronize();
  4947. disable_e0();
  4948. disable_e1();
  4949. disable_e2();
  4950. finishAndDisableSteppers();
  4951. }
  4952. else
  4953. {
  4954. st_synchronize();
  4955. if (code_seen('X')) disable_x();
  4956. if (code_seen('Y')) disable_y();
  4957. if (code_seen('Z')) disable_z();
  4958. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4959. if (code_seen('E')) {
  4960. disable_e0();
  4961. disable_e1();
  4962. disable_e2();
  4963. }
  4964. #endif
  4965. }
  4966. }
  4967. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4968. print_time_remaining_init();
  4969. snmm_filaments_used = 0;
  4970. break;
  4971. case 85: // M85
  4972. if(code_seen('S')) {
  4973. max_inactive_time = code_value() * 1000;
  4974. }
  4975. break;
  4976. #ifdef SAFETYTIMER
  4977. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4978. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4979. if (code_seen('S')) {
  4980. safetytimer_inactive_time = code_value() * 1000;
  4981. safetyTimer.start();
  4982. }
  4983. break;
  4984. #endif
  4985. case 92: // M92
  4986. for(int8_t i=0; i < NUM_AXIS; i++)
  4987. {
  4988. if(code_seen(axis_codes[i]))
  4989. {
  4990. if(i == 3) { // E
  4991. float value = code_value();
  4992. if(value < 20.0) {
  4993. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4994. cs.max_jerk[E_AXIS] *= factor;
  4995. max_feedrate[i] *= factor;
  4996. axis_steps_per_sqr_second[i] *= factor;
  4997. }
  4998. cs.axis_steps_per_unit[i] = value;
  4999. }
  5000. else {
  5001. cs.axis_steps_per_unit[i] = code_value();
  5002. }
  5003. }
  5004. }
  5005. break;
  5006. case 110: //! M110 N<line number> - reset line pos
  5007. if (code_seen('N'))
  5008. gcode_LastN = code_value_long();
  5009. break;
  5010. #ifdef HOST_KEEPALIVE_FEATURE
  5011. case 113: // M113 - Get or set Host Keepalive interval
  5012. if (code_seen('S')) {
  5013. host_keepalive_interval = (uint8_t)code_value_short();
  5014. // NOMORE(host_keepalive_interval, 60);
  5015. }
  5016. else {
  5017. SERIAL_ECHO_START;
  5018. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5019. SERIAL_PROTOCOLLN("");
  5020. }
  5021. break;
  5022. #endif
  5023. case 115: // M115
  5024. if (code_seen('V')) {
  5025. // Report the Prusa version number.
  5026. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5027. } else if (code_seen('U')) {
  5028. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5029. // pause the print and ask the user to upgrade the firmware.
  5030. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5031. } else {
  5032. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5033. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5034. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5035. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5036. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5037. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5038. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5039. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5040. SERIAL_ECHOPGM(" UUID:");
  5041. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5042. }
  5043. break;
  5044. /* case 117: // M117 display message
  5045. starpos = (strchr(strchr_pointer + 5,'*'));
  5046. if(starpos!=NULL)
  5047. *(starpos)='\0';
  5048. lcd_setstatus(strchr_pointer + 5);
  5049. break;*/
  5050. case 114: // M114
  5051. gcode_M114();
  5052. break;
  5053. case 120: //! M120 - Disable endstops
  5054. enable_endstops(false) ;
  5055. break;
  5056. case 121: //! M121 - Enable endstops
  5057. enable_endstops(true) ;
  5058. break;
  5059. case 119: // M119
  5060. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  5061. SERIAL_PROTOCOLLN("");
  5062. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5063. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  5064. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5065. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5066. }else{
  5067. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5068. }
  5069. SERIAL_PROTOCOLLN("");
  5070. #endif
  5071. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5072. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  5073. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5074. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5075. }else{
  5076. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5077. }
  5078. SERIAL_PROTOCOLLN("");
  5079. #endif
  5080. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5081. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5082. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5083. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5084. }else{
  5085. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5086. }
  5087. SERIAL_PROTOCOLLN("");
  5088. #endif
  5089. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5090. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5091. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5092. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5093. }else{
  5094. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5095. }
  5096. SERIAL_PROTOCOLLN("");
  5097. #endif
  5098. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5099. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5100. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5101. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5102. }else{
  5103. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5104. }
  5105. SERIAL_PROTOCOLLN("");
  5106. #endif
  5107. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5108. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5109. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5110. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5111. }else{
  5112. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5113. }
  5114. SERIAL_PROTOCOLLN("");
  5115. #endif
  5116. break;
  5117. //TODO: update for all axis, use for loop
  5118. #ifdef BLINKM
  5119. case 150: // M150
  5120. {
  5121. byte red;
  5122. byte grn;
  5123. byte blu;
  5124. if(code_seen('R')) red = code_value();
  5125. if(code_seen('U')) grn = code_value();
  5126. if(code_seen('B')) blu = code_value();
  5127. SendColors(red,grn,blu);
  5128. }
  5129. break;
  5130. #endif //BLINKM
  5131. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5132. {
  5133. uint8_t extruder = active_extruder;
  5134. if(code_seen('T')) {
  5135. extruder = code_value();
  5136. if(extruder >= EXTRUDERS) {
  5137. SERIAL_ECHO_START;
  5138. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5139. break;
  5140. }
  5141. }
  5142. if(code_seen('D')) {
  5143. float diameter = (float)code_value();
  5144. if (diameter == 0.0) {
  5145. // setting any extruder filament size disables volumetric on the assumption that
  5146. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5147. // for all extruders
  5148. cs.volumetric_enabled = false;
  5149. } else {
  5150. cs.filament_size[extruder] = (float)code_value();
  5151. // make sure all extruders have some sane value for the filament size
  5152. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5153. #if EXTRUDERS > 1
  5154. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5155. #if EXTRUDERS > 2
  5156. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5157. #endif
  5158. #endif
  5159. cs.volumetric_enabled = true;
  5160. }
  5161. } else {
  5162. //reserved for setting filament diameter via UFID or filament measuring device
  5163. break;
  5164. }
  5165. calculate_extruder_multipliers();
  5166. }
  5167. break;
  5168. case 201: // M201
  5169. for (int8_t i = 0; i < NUM_AXIS; i++)
  5170. {
  5171. if (code_seen(axis_codes[i]))
  5172. {
  5173. unsigned long val = code_value();
  5174. #ifdef TMC2130
  5175. unsigned long val_silent = val;
  5176. if ((i == X_AXIS) || (i == Y_AXIS))
  5177. {
  5178. if (val > NORMAL_MAX_ACCEL_XY)
  5179. val = NORMAL_MAX_ACCEL_XY;
  5180. if (val_silent > SILENT_MAX_ACCEL_XY)
  5181. val_silent = SILENT_MAX_ACCEL_XY;
  5182. }
  5183. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5184. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5185. #else //TMC2130
  5186. max_acceleration_units_per_sq_second[i] = val;
  5187. #endif //TMC2130
  5188. }
  5189. }
  5190. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5191. reset_acceleration_rates();
  5192. break;
  5193. #if 0 // Not used for Sprinter/grbl gen6
  5194. case 202: // M202
  5195. for(int8_t i=0; i < NUM_AXIS; i++) {
  5196. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5197. }
  5198. break;
  5199. #endif
  5200. case 203: // M203 max feedrate mm/sec
  5201. for (int8_t i = 0; i < NUM_AXIS; i++)
  5202. {
  5203. if (code_seen(axis_codes[i]))
  5204. {
  5205. float val = code_value();
  5206. #ifdef TMC2130
  5207. float val_silent = val;
  5208. if ((i == X_AXIS) || (i == Y_AXIS))
  5209. {
  5210. if (val > NORMAL_MAX_FEEDRATE_XY)
  5211. val = NORMAL_MAX_FEEDRATE_XY;
  5212. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5213. val_silent = SILENT_MAX_FEEDRATE_XY;
  5214. }
  5215. cs.max_feedrate_normal[i] = val;
  5216. cs.max_feedrate_silent[i] = val_silent;
  5217. #else //TMC2130
  5218. max_feedrate[i] = val;
  5219. #endif //TMC2130
  5220. }
  5221. }
  5222. break;
  5223. case 204:
  5224. //! M204 acclereration settings.
  5225. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5226. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5227. {
  5228. if(code_seen('S')) {
  5229. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5230. // and it is also generated by Slic3r to control acceleration per extrusion type
  5231. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5232. cs.acceleration = code_value();
  5233. // Interpret the T value as retract acceleration in the old Marlin format.
  5234. if(code_seen('T'))
  5235. cs.retract_acceleration = code_value();
  5236. } else {
  5237. // New acceleration format, compatible with the upstream Marlin.
  5238. if(code_seen('P'))
  5239. cs.acceleration = code_value();
  5240. if(code_seen('R'))
  5241. cs.retract_acceleration = code_value();
  5242. if(code_seen('T')) {
  5243. // Interpret the T value as the travel acceleration in the new Marlin format.
  5244. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5245. // travel_acceleration = code_value();
  5246. }
  5247. }
  5248. }
  5249. break;
  5250. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5251. {
  5252. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5253. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5254. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5255. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5256. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5257. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5258. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5259. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5260. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5261. }
  5262. break;
  5263. case 206: // M206 additional homing offset
  5264. for(int8_t i=0; i < 3; i++)
  5265. {
  5266. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5267. }
  5268. break;
  5269. #ifdef FWRETRACT
  5270. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5271. {
  5272. if(code_seen('S'))
  5273. {
  5274. cs.retract_length = code_value() ;
  5275. }
  5276. if(code_seen('F'))
  5277. {
  5278. cs.retract_feedrate = code_value()/60 ;
  5279. }
  5280. if(code_seen('Z'))
  5281. {
  5282. cs.retract_zlift = code_value() ;
  5283. }
  5284. }break;
  5285. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5286. {
  5287. if(code_seen('S'))
  5288. {
  5289. cs.retract_recover_length = code_value() ;
  5290. }
  5291. if(code_seen('F'))
  5292. {
  5293. cs.retract_recover_feedrate = code_value()/60 ;
  5294. }
  5295. }break;
  5296. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5297. {
  5298. if(code_seen('S'))
  5299. {
  5300. int t= code_value() ;
  5301. switch(t)
  5302. {
  5303. case 0:
  5304. {
  5305. cs.autoretract_enabled=false;
  5306. retracted[0]=false;
  5307. #if EXTRUDERS > 1
  5308. retracted[1]=false;
  5309. #endif
  5310. #if EXTRUDERS > 2
  5311. retracted[2]=false;
  5312. #endif
  5313. }break;
  5314. case 1:
  5315. {
  5316. cs.autoretract_enabled=true;
  5317. retracted[0]=false;
  5318. #if EXTRUDERS > 1
  5319. retracted[1]=false;
  5320. #endif
  5321. #if EXTRUDERS > 2
  5322. retracted[2]=false;
  5323. #endif
  5324. }break;
  5325. default:
  5326. SERIAL_ECHO_START;
  5327. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5328. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5329. SERIAL_ECHOLNPGM("\"(1)");
  5330. }
  5331. }
  5332. }break;
  5333. #endif // FWRETRACT
  5334. #if EXTRUDERS > 1
  5335. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5336. {
  5337. uint8_t extruder;
  5338. if(setTargetedHotend(218, extruder)){
  5339. break;
  5340. }
  5341. if(code_seen('X'))
  5342. {
  5343. extruder_offset[X_AXIS][extruder] = code_value();
  5344. }
  5345. if(code_seen('Y'))
  5346. {
  5347. extruder_offset[Y_AXIS][extruder] = code_value();
  5348. }
  5349. SERIAL_ECHO_START;
  5350. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5351. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5352. {
  5353. SERIAL_ECHO(" ");
  5354. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5355. SERIAL_ECHO(",");
  5356. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5357. }
  5358. SERIAL_ECHOLN("");
  5359. }break;
  5360. #endif
  5361. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5362. {
  5363. if (code_seen('B')) //backup current speed factor
  5364. {
  5365. saved_feedmultiply_mm = feedmultiply;
  5366. }
  5367. if(code_seen('S'))
  5368. {
  5369. feedmultiply = code_value() ;
  5370. }
  5371. if (code_seen('R')) { //restore previous feedmultiply
  5372. feedmultiply = saved_feedmultiply_mm;
  5373. }
  5374. }
  5375. break;
  5376. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5377. {
  5378. if(code_seen('S'))
  5379. {
  5380. int tmp_code = code_value();
  5381. if (code_seen('T'))
  5382. {
  5383. uint8_t extruder;
  5384. if(setTargetedHotend(221, extruder)){
  5385. break;
  5386. }
  5387. extruder_multiply[extruder] = tmp_code;
  5388. }
  5389. else
  5390. {
  5391. extrudemultiply = tmp_code ;
  5392. }
  5393. }
  5394. calculate_extruder_multipliers();
  5395. }
  5396. break;
  5397. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5398. {
  5399. if(code_seen('P')){
  5400. int pin_number = code_value(); // pin number
  5401. int pin_state = -1; // required pin state - default is inverted
  5402. if(code_seen('S')) pin_state = code_value(); // required pin state
  5403. if(pin_state >= -1 && pin_state <= 1){
  5404. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5405. {
  5406. if (sensitive_pins[i] == pin_number)
  5407. {
  5408. pin_number = -1;
  5409. break;
  5410. }
  5411. }
  5412. if (pin_number > -1)
  5413. {
  5414. int target = LOW;
  5415. st_synchronize();
  5416. pinMode(pin_number, INPUT);
  5417. switch(pin_state){
  5418. case 1:
  5419. target = HIGH;
  5420. break;
  5421. case 0:
  5422. target = LOW;
  5423. break;
  5424. case -1:
  5425. target = !digitalRead(pin_number);
  5426. break;
  5427. }
  5428. while(digitalRead(pin_number) != target){
  5429. manage_heater();
  5430. manage_inactivity();
  5431. lcd_update(0);
  5432. }
  5433. }
  5434. }
  5435. }
  5436. }
  5437. break;
  5438. #if NUM_SERVOS > 0
  5439. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5440. {
  5441. int servo_index = -1;
  5442. int servo_position = 0;
  5443. if (code_seen('P'))
  5444. servo_index = code_value();
  5445. if (code_seen('S')) {
  5446. servo_position = code_value();
  5447. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5448. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5449. servos[servo_index].attach(0);
  5450. #endif
  5451. servos[servo_index].write(servo_position);
  5452. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5453. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5454. servos[servo_index].detach();
  5455. #endif
  5456. }
  5457. else {
  5458. SERIAL_ECHO_START;
  5459. SERIAL_ECHO("Servo ");
  5460. SERIAL_ECHO(servo_index);
  5461. SERIAL_ECHOLN(" out of range");
  5462. }
  5463. }
  5464. else if (servo_index >= 0) {
  5465. SERIAL_PROTOCOL(MSG_OK);
  5466. SERIAL_PROTOCOL(" Servo ");
  5467. SERIAL_PROTOCOL(servo_index);
  5468. SERIAL_PROTOCOL(": ");
  5469. SERIAL_PROTOCOL(servos[servo_index].read());
  5470. SERIAL_PROTOCOLLN("");
  5471. }
  5472. }
  5473. break;
  5474. #endif // NUM_SERVOS > 0
  5475. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5476. case 300: // M300
  5477. {
  5478. int beepS = code_seen('S') ? code_value() : 110;
  5479. int beepP = code_seen('P') ? code_value() : 1000;
  5480. if (beepS > 0)
  5481. {
  5482. #if BEEPER > 0
  5483. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5484. _tone(BEEPER, beepS);
  5485. _delay(beepP);
  5486. _noTone(BEEPER);
  5487. #endif
  5488. }
  5489. else
  5490. {
  5491. _delay(beepP);
  5492. }
  5493. }
  5494. break;
  5495. #endif // M300
  5496. #ifdef PIDTEMP
  5497. case 301: // M301
  5498. {
  5499. if(code_seen('P')) cs.Kp = code_value();
  5500. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5501. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5502. #ifdef PID_ADD_EXTRUSION_RATE
  5503. if(code_seen('C')) Kc = code_value();
  5504. #endif
  5505. updatePID();
  5506. SERIAL_PROTOCOLRPGM(MSG_OK);
  5507. SERIAL_PROTOCOL(" p:");
  5508. SERIAL_PROTOCOL(cs.Kp);
  5509. SERIAL_PROTOCOL(" i:");
  5510. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5511. SERIAL_PROTOCOL(" d:");
  5512. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5513. #ifdef PID_ADD_EXTRUSION_RATE
  5514. SERIAL_PROTOCOL(" c:");
  5515. //Kc does not have scaling applied above, or in resetting defaults
  5516. SERIAL_PROTOCOL(Kc);
  5517. #endif
  5518. SERIAL_PROTOCOLLN("");
  5519. }
  5520. break;
  5521. #endif //PIDTEMP
  5522. #ifdef PIDTEMPBED
  5523. case 304: // M304
  5524. {
  5525. if(code_seen('P')) cs.bedKp = code_value();
  5526. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5527. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5528. updatePID();
  5529. SERIAL_PROTOCOLRPGM(MSG_OK);
  5530. SERIAL_PROTOCOL(" p:");
  5531. SERIAL_PROTOCOL(cs.bedKp);
  5532. SERIAL_PROTOCOL(" i:");
  5533. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5534. SERIAL_PROTOCOL(" d:");
  5535. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5536. SERIAL_PROTOCOLLN("");
  5537. }
  5538. break;
  5539. #endif //PIDTEMP
  5540. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5541. {
  5542. #ifdef CHDK
  5543. SET_OUTPUT(CHDK);
  5544. WRITE(CHDK, HIGH);
  5545. chdkHigh = _millis();
  5546. chdkActive = true;
  5547. #else
  5548. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5549. const uint8_t NUM_PULSES=16;
  5550. const float PULSE_LENGTH=0.01524;
  5551. for(int i=0; i < NUM_PULSES; i++) {
  5552. WRITE(PHOTOGRAPH_PIN, HIGH);
  5553. _delay_ms(PULSE_LENGTH);
  5554. WRITE(PHOTOGRAPH_PIN, LOW);
  5555. _delay_ms(PULSE_LENGTH);
  5556. }
  5557. _delay(7.33);
  5558. for(int i=0; i < NUM_PULSES; i++) {
  5559. WRITE(PHOTOGRAPH_PIN, HIGH);
  5560. _delay_ms(PULSE_LENGTH);
  5561. WRITE(PHOTOGRAPH_PIN, LOW);
  5562. _delay_ms(PULSE_LENGTH);
  5563. }
  5564. #endif
  5565. #endif //chdk end if
  5566. }
  5567. break;
  5568. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5569. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5570. {
  5571. float temp = .0;
  5572. if (code_seen('S')) temp=code_value();
  5573. set_extrude_min_temp(temp);
  5574. }
  5575. break;
  5576. #endif
  5577. case 303: // M303 PID autotune
  5578. {
  5579. float temp = 150.0;
  5580. int e=0;
  5581. int c=5;
  5582. if (code_seen('E')) e=code_value();
  5583. if (e<0)
  5584. temp=70;
  5585. if (code_seen('S')) temp=code_value();
  5586. if (code_seen('C')) c=code_value();
  5587. PID_autotune(temp, e, c);
  5588. }
  5589. break;
  5590. case 400: // M400 finish all moves
  5591. {
  5592. st_synchronize();
  5593. }
  5594. break;
  5595. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5596. {
  5597. //! currently three different materials are needed (default, flex and PVA)
  5598. //! add storing this information for different load/unload profiles etc. in the future
  5599. //!firmware does not wait for "ok" from mmu
  5600. if (mmu_enabled)
  5601. {
  5602. uint8_t extruder = 255;
  5603. uint8_t filament = FILAMENT_UNDEFINED;
  5604. if(code_seen('E')) extruder = code_value();
  5605. if(code_seen('F')) filament = code_value();
  5606. mmu_set_filament_type(extruder, filament);
  5607. }
  5608. }
  5609. break;
  5610. case 500: // M500 Store settings in EEPROM
  5611. {
  5612. Config_StoreSettings();
  5613. }
  5614. break;
  5615. case 501: // M501 Read settings from EEPROM
  5616. {
  5617. Config_RetrieveSettings();
  5618. }
  5619. break;
  5620. case 502: // M502 Revert to default settings
  5621. {
  5622. Config_ResetDefault();
  5623. }
  5624. break;
  5625. case 503: // M503 print settings currently in memory
  5626. {
  5627. Config_PrintSettings();
  5628. }
  5629. break;
  5630. case 509: //M509 Force language selection
  5631. {
  5632. lang_reset();
  5633. SERIAL_ECHO_START;
  5634. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5635. }
  5636. break;
  5637. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5638. case 540:
  5639. {
  5640. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5641. }
  5642. break;
  5643. #endif
  5644. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5645. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5646. {
  5647. float value;
  5648. if (code_seen('Z'))
  5649. {
  5650. value = code_value();
  5651. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5652. {
  5653. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5654. SERIAL_ECHO_START;
  5655. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5656. SERIAL_PROTOCOLLN("");
  5657. }
  5658. else
  5659. {
  5660. SERIAL_ECHO_START;
  5661. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5662. SERIAL_ECHORPGM(MSG_Z_MIN);
  5663. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5664. SERIAL_ECHORPGM(MSG_Z_MAX);
  5665. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5666. SERIAL_PROTOCOLLN("");
  5667. }
  5668. }
  5669. else
  5670. {
  5671. SERIAL_ECHO_START;
  5672. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5673. SERIAL_ECHO(-cs.zprobe_zoffset);
  5674. SERIAL_PROTOCOLLN("");
  5675. }
  5676. break;
  5677. }
  5678. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5679. #ifdef FILAMENTCHANGEENABLE
  5680. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5681. {
  5682. st_synchronize();
  5683. float x_position = current_position[X_AXIS];
  5684. float y_position = current_position[Y_AXIS];
  5685. float z_shift = 0;
  5686. float e_shift_init = 0;
  5687. float e_shift_late = 0;
  5688. bool automatic = false;
  5689. //Retract extruder
  5690. if(code_seen('E'))
  5691. {
  5692. e_shift_init = code_value();
  5693. }
  5694. else
  5695. {
  5696. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5697. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5698. #endif
  5699. }
  5700. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5701. if (code_seen('L'))
  5702. {
  5703. e_shift_late = code_value();
  5704. }
  5705. else
  5706. {
  5707. #ifdef FILAMENTCHANGE_FINALRETRACT
  5708. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5709. #endif
  5710. }
  5711. //Lift Z
  5712. if(code_seen('Z'))
  5713. {
  5714. z_shift = code_value();
  5715. }
  5716. else
  5717. {
  5718. #ifdef FILAMENTCHANGE_ZADD
  5719. z_shift= FILAMENTCHANGE_ZADD ;
  5720. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5721. #endif
  5722. }
  5723. //Move XY to side
  5724. if(code_seen('X'))
  5725. {
  5726. x_position = code_value();
  5727. }
  5728. else
  5729. {
  5730. #ifdef FILAMENTCHANGE_XPOS
  5731. x_position = FILAMENTCHANGE_XPOS;
  5732. #endif
  5733. }
  5734. if(code_seen('Y'))
  5735. {
  5736. y_position = code_value();
  5737. }
  5738. else
  5739. {
  5740. #ifdef FILAMENTCHANGE_YPOS
  5741. y_position = FILAMENTCHANGE_YPOS ;
  5742. #endif
  5743. }
  5744. if (mmu_enabled && code_seen("AUTO"))
  5745. automatic = true;
  5746. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5747. }
  5748. break;
  5749. #endif //FILAMENTCHANGEENABLE
  5750. case 601: //! M601 - Pause print
  5751. {
  5752. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5753. lcd_pause_print();
  5754. }
  5755. break;
  5756. case 602: { //! M602 - Resume print
  5757. lcd_resume_print();
  5758. }
  5759. break;
  5760. #ifdef PINDA_THERMISTOR
  5761. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5762. {
  5763. int set_target_pinda = 0;
  5764. if (code_seen('S')) {
  5765. set_target_pinda = code_value();
  5766. }
  5767. else {
  5768. break;
  5769. }
  5770. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5771. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5772. SERIAL_PROTOCOL(set_target_pinda);
  5773. SERIAL_PROTOCOLLN("");
  5774. codenum = _millis();
  5775. cancel_heatup = false;
  5776. bool is_pinda_cooling = false;
  5777. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5778. is_pinda_cooling = true;
  5779. }
  5780. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5781. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5782. {
  5783. SERIAL_PROTOCOLPGM("P:");
  5784. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5785. SERIAL_PROTOCOLPGM("/");
  5786. SERIAL_PROTOCOL(set_target_pinda);
  5787. SERIAL_PROTOCOLLN("");
  5788. codenum = _millis();
  5789. }
  5790. manage_heater();
  5791. manage_inactivity();
  5792. lcd_update(0);
  5793. }
  5794. LCD_MESSAGERPGM(MSG_OK);
  5795. break;
  5796. }
  5797. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5798. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5799. uint8_t cal_status = calibration_status_pinda();
  5800. int16_t usteps = 0;
  5801. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5802. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5803. for (uint8_t i = 0; i < 6; i++)
  5804. {
  5805. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5806. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5807. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5808. SERIAL_PROTOCOLPGM(", ");
  5809. SERIAL_PROTOCOL(35 + (i * 5));
  5810. SERIAL_PROTOCOLPGM(", ");
  5811. SERIAL_PROTOCOL(usteps);
  5812. SERIAL_PROTOCOLPGM(", ");
  5813. SERIAL_PROTOCOL(mm * 1000);
  5814. SERIAL_PROTOCOLLN("");
  5815. }
  5816. }
  5817. else if (code_seen('!')) { // ! - Set factory default values
  5818. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5819. int16_t z_shift = 8; //40C - 20um - 8usteps
  5820. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5821. z_shift = 24; //45C - 60um - 24usteps
  5822. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5823. z_shift = 48; //50C - 120um - 48usteps
  5824. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5825. z_shift = 80; //55C - 200um - 80usteps
  5826. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5827. z_shift = 120; //60C - 300um - 120usteps
  5828. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5829. SERIAL_PROTOCOLLN("factory restored");
  5830. }
  5831. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5832. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5833. int16_t z_shift = 0;
  5834. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5835. SERIAL_PROTOCOLLN("zerorized");
  5836. }
  5837. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5838. int16_t usteps = code_value();
  5839. if (code_seen('I')) {
  5840. uint8_t index = code_value();
  5841. if (index < 5) {
  5842. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5843. SERIAL_PROTOCOLLN("OK");
  5844. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5845. for (uint8_t i = 0; i < 6; i++)
  5846. {
  5847. usteps = 0;
  5848. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5849. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5850. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5851. SERIAL_PROTOCOLPGM(", ");
  5852. SERIAL_PROTOCOL(35 + (i * 5));
  5853. SERIAL_PROTOCOLPGM(", ");
  5854. SERIAL_PROTOCOL(usteps);
  5855. SERIAL_PROTOCOLPGM(", ");
  5856. SERIAL_PROTOCOL(mm * 1000);
  5857. SERIAL_PROTOCOLLN("");
  5858. }
  5859. }
  5860. }
  5861. }
  5862. else {
  5863. SERIAL_PROTOCOLPGM("no valid command");
  5864. }
  5865. break;
  5866. #endif //PINDA_THERMISTOR
  5867. #ifdef LIN_ADVANCE
  5868. case 900: // M900: Set LIN_ADVANCE options.
  5869. gcode_M900();
  5870. break;
  5871. #endif
  5872. case 907: // M907 Set digital trimpot motor current using axis codes.
  5873. {
  5874. #ifdef TMC2130
  5875. for (int i = 0; i < NUM_AXIS; i++)
  5876. if(code_seen(axis_codes[i]))
  5877. {
  5878. long cur_mA = code_value_long();
  5879. uint8_t val = tmc2130_cur2val(cur_mA);
  5880. tmc2130_set_current_h(i, val);
  5881. tmc2130_set_current_r(i, val);
  5882. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  5883. }
  5884. #else //TMC2130
  5885. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5886. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5887. if(code_seen('B')) st_current_set(4,code_value());
  5888. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5889. #endif
  5890. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5891. if(code_seen('X')) st_current_set(0, code_value());
  5892. #endif
  5893. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5894. if(code_seen('Z')) st_current_set(1, code_value());
  5895. #endif
  5896. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5897. if(code_seen('E')) st_current_set(2, code_value());
  5898. #endif
  5899. #endif //TMC2130
  5900. }
  5901. break;
  5902. case 908: // M908 Control digital trimpot directly.
  5903. {
  5904. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5905. uint8_t channel,current;
  5906. if(code_seen('P')) channel=code_value();
  5907. if(code_seen('S')) current=code_value();
  5908. digitalPotWrite(channel, current);
  5909. #endif
  5910. }
  5911. break;
  5912. #ifdef TMC2130_SERVICE_CODES_M910_M918
  5913. case 910: //! M910 - TMC2130 init
  5914. {
  5915. tmc2130_init();
  5916. }
  5917. break;
  5918. case 911: //! M911 - Set TMC2130 holding currents
  5919. {
  5920. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5921. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5922. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5923. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5924. }
  5925. break;
  5926. case 912: //! M912 - Set TMC2130 running currents
  5927. {
  5928. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5929. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5930. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5931. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5932. }
  5933. break;
  5934. case 913: //! M913 - Print TMC2130 currents
  5935. {
  5936. tmc2130_print_currents();
  5937. }
  5938. break;
  5939. case 914: //! M914 - Set normal mode
  5940. {
  5941. tmc2130_mode = TMC2130_MODE_NORMAL;
  5942. update_mode_profile();
  5943. tmc2130_init();
  5944. }
  5945. break;
  5946. case 915: //! M915 - Set silent mode
  5947. {
  5948. tmc2130_mode = TMC2130_MODE_SILENT;
  5949. update_mode_profile();
  5950. tmc2130_init();
  5951. }
  5952. break;
  5953. case 916: //! M916 - Set sg_thrs
  5954. {
  5955. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5956. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5957. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5958. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5959. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5960. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5961. }
  5962. break;
  5963. case 917: //! M917 - Set TMC2130 pwm_ampl
  5964. {
  5965. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5966. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5967. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5968. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5969. }
  5970. break;
  5971. case 918: //! M918 - Set TMC2130 pwm_grad
  5972. {
  5973. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5974. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5975. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5976. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5977. }
  5978. break;
  5979. #endif //TMC2130_SERVICE_CODES_M910_M918
  5980. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5981. {
  5982. #ifdef TMC2130
  5983. if(code_seen('E'))
  5984. {
  5985. uint16_t res_new = code_value();
  5986. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5987. {
  5988. st_synchronize();
  5989. uint8_t axis = E_AXIS;
  5990. uint16_t res = tmc2130_get_res(axis);
  5991. tmc2130_set_res(axis, res_new);
  5992. if (res_new > res)
  5993. {
  5994. uint16_t fac = (res_new / res);
  5995. cs.axis_steps_per_unit[axis] *= fac;
  5996. position[E_AXIS] *= fac;
  5997. }
  5998. else
  5999. {
  6000. uint16_t fac = (res / res_new);
  6001. cs.axis_steps_per_unit[axis] /= fac;
  6002. position[E_AXIS] /= fac;
  6003. }
  6004. }
  6005. }
  6006. #else //TMC2130
  6007. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6008. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6009. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6010. if(code_seen('B')) microstep_mode(4,code_value());
  6011. microstep_readings();
  6012. #endif
  6013. #endif //TMC2130
  6014. }
  6015. break;
  6016. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6017. {
  6018. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6019. if(code_seen('S')) switch((int)code_value())
  6020. {
  6021. case 1:
  6022. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6023. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6024. break;
  6025. case 2:
  6026. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6027. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6028. break;
  6029. }
  6030. microstep_readings();
  6031. #endif
  6032. }
  6033. break;
  6034. case 701: //! M701 - load filament
  6035. {
  6036. if (mmu_enabled && code_seen('E'))
  6037. tmp_extruder = code_value();
  6038. gcode_M701();
  6039. }
  6040. break;
  6041. case 702: //! M702 [U C] -
  6042. {
  6043. #ifdef SNMM
  6044. if (code_seen('U'))
  6045. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6046. else if (code_seen('C'))
  6047. extr_unload(); //! if "C" unload just current filament
  6048. else
  6049. extr_unload_all(); //! otherwise unload all filaments
  6050. #else
  6051. if (code_seen('C')) {
  6052. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6053. }
  6054. else {
  6055. if(mmu_enabled) extr_unload(); //! unload current filament
  6056. else unload_filament();
  6057. }
  6058. #endif //SNMM
  6059. }
  6060. break;
  6061. case 999: // M999: Restart after being stopped
  6062. Stopped = false;
  6063. lcd_reset_alert_level();
  6064. gcode_LastN = Stopped_gcode_LastN;
  6065. FlushSerialRequestResend();
  6066. break;
  6067. default:
  6068. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6069. }
  6070. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6071. mcode_in_progress = 0;
  6072. }
  6073. }
  6074. // end if(code_seen('M')) (end of M codes)
  6075. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6076. //! select filament in case of MMU_V2
  6077. //! if extruder is "?", open menu to let the user select extruder/filament
  6078. //!
  6079. //! For MMU_V2:
  6080. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6081. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6082. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6083. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6084. else if(code_seen('T'))
  6085. {
  6086. int index;
  6087. bool load_to_nozzle = false;
  6088. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6089. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6090. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6091. SERIAL_ECHOLNPGM("Invalid T code.");
  6092. }
  6093. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6094. if (mmu_enabled)
  6095. {
  6096. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6097. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) {
  6098. printf_P(PSTR("Duplicit T-code ignored.\n"));
  6099. return; //dont execute the same T-code twice in a row
  6100. }
  6101. st_synchronize();
  6102. mmu_command(MmuCmd::T0 + tmp_extruder);
  6103. manage_response(true, true, MMU_TCODE_MOVE);
  6104. }
  6105. }
  6106. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6107. if (mmu_enabled)
  6108. {
  6109. st_synchronize();
  6110. mmu_continue_loading();
  6111. mmu_extruder = tmp_extruder; //filament change is finished
  6112. mmu_load_to_nozzle();
  6113. }
  6114. }
  6115. else {
  6116. if (*(strchr_pointer + index) == '?')
  6117. {
  6118. if(mmu_enabled)
  6119. {
  6120. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6121. load_to_nozzle = true;
  6122. } else
  6123. {
  6124. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6125. }
  6126. }
  6127. else {
  6128. tmp_extruder = code_value();
  6129. if (mmu_enabled && lcd_autoDepleteEnabled())
  6130. {
  6131. tmp_extruder = ad_getAlternative(tmp_extruder);
  6132. }
  6133. }
  6134. st_synchronize();
  6135. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6136. if (mmu_enabled)
  6137. {
  6138. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) {
  6139. printf_P(PSTR("Duplicit T-code ignored.\n"));
  6140. return; //dont execute the same T-code twice in a row
  6141. }
  6142. mmu_command(MmuCmd::T0 + tmp_extruder);
  6143. manage_response(true, true, MMU_TCODE_MOVE);
  6144. mmu_continue_loading();
  6145. mmu_extruder = tmp_extruder; //filament change is finished
  6146. if (load_to_nozzle)// for single material usage with mmu
  6147. {
  6148. mmu_load_to_nozzle();
  6149. }
  6150. }
  6151. else
  6152. {
  6153. #ifdef SNMM
  6154. #ifdef LIN_ADVANCE
  6155. if (mmu_extruder != tmp_extruder)
  6156. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6157. #endif
  6158. mmu_extruder = tmp_extruder;
  6159. _delay(100);
  6160. disable_e0();
  6161. disable_e1();
  6162. disable_e2();
  6163. pinMode(E_MUX0_PIN, OUTPUT);
  6164. pinMode(E_MUX1_PIN, OUTPUT);
  6165. _delay(100);
  6166. SERIAL_ECHO_START;
  6167. SERIAL_ECHO("T:");
  6168. SERIAL_ECHOLN((int)tmp_extruder);
  6169. switch (tmp_extruder) {
  6170. case 1:
  6171. WRITE(E_MUX0_PIN, HIGH);
  6172. WRITE(E_MUX1_PIN, LOW);
  6173. break;
  6174. case 2:
  6175. WRITE(E_MUX0_PIN, LOW);
  6176. WRITE(E_MUX1_PIN, HIGH);
  6177. break;
  6178. case 3:
  6179. WRITE(E_MUX0_PIN, HIGH);
  6180. WRITE(E_MUX1_PIN, HIGH);
  6181. break;
  6182. default:
  6183. WRITE(E_MUX0_PIN, LOW);
  6184. WRITE(E_MUX1_PIN, LOW);
  6185. break;
  6186. }
  6187. _delay(100);
  6188. #else //SNMM
  6189. if (tmp_extruder >= EXTRUDERS) {
  6190. SERIAL_ECHO_START;
  6191. SERIAL_ECHOPGM("T");
  6192. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6193. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6194. }
  6195. else {
  6196. #if EXTRUDERS > 1
  6197. boolean make_move = false;
  6198. #endif
  6199. if (code_seen('F')) {
  6200. #if EXTRUDERS > 1
  6201. make_move = true;
  6202. #endif
  6203. next_feedrate = code_value();
  6204. if (next_feedrate > 0.0) {
  6205. feedrate = next_feedrate;
  6206. }
  6207. }
  6208. #if EXTRUDERS > 1
  6209. if (tmp_extruder != active_extruder) {
  6210. // Save current position to return to after applying extruder offset
  6211. memcpy(destination, current_position, sizeof(destination));
  6212. // Offset extruder (only by XY)
  6213. int i;
  6214. for (i = 0; i < 2; i++) {
  6215. current_position[i] = current_position[i] -
  6216. extruder_offset[i][active_extruder] +
  6217. extruder_offset[i][tmp_extruder];
  6218. }
  6219. // Set the new active extruder and position
  6220. active_extruder = tmp_extruder;
  6221. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6222. // Move to the old position if 'F' was in the parameters
  6223. if (make_move && Stopped == false) {
  6224. prepare_move();
  6225. }
  6226. }
  6227. #endif
  6228. SERIAL_ECHO_START;
  6229. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6230. SERIAL_PROTOCOLLN((int)active_extruder);
  6231. }
  6232. #endif //SNMM
  6233. }
  6234. }
  6235. } // end if(code_seen('T')) (end of T codes)
  6236. else if (code_seen('D')) // D codes (debug)
  6237. {
  6238. switch((int)code_value())
  6239. {
  6240. #ifdef DEBUG_DCODES
  6241. case -1: //! D-1 - Endless loop
  6242. dcode__1(); break;
  6243. case 0: //! D0 - Reset
  6244. dcode_0(); break;
  6245. case 1: //! D1 - Clear EEPROM
  6246. dcode_1(); break;
  6247. case 2: //! D2 - Read/Write RAM
  6248. dcode_2(); break;
  6249. #endif //DEBUG_DCODES
  6250. #ifdef DEBUG_DCODE3
  6251. case 3: //! D3 - Read/Write EEPROM
  6252. dcode_3(); break;
  6253. #endif //DEBUG_DCODE3
  6254. #ifdef DEBUG_DCODES
  6255. case 4: //! D4 - Read/Write PIN
  6256. dcode_4(); break;
  6257. #endif //DEBUG_DCODES
  6258. #ifdef DEBUG_DCODE5
  6259. case 5: // D5 - Read/Write FLASH
  6260. dcode_5(); break;
  6261. break;
  6262. #endif //DEBUG_DCODE5
  6263. #ifdef DEBUG_DCODES
  6264. case 6: // D6 - Read/Write external FLASH
  6265. dcode_6(); break;
  6266. case 7: //! D7 - Read/Write Bootloader
  6267. dcode_7(); break;
  6268. case 8: //! D8 - Read/Write PINDA
  6269. dcode_8(); break;
  6270. case 9: //! D9 - Read/Write ADC
  6271. dcode_9(); break;
  6272. case 10: //! D10 - XYZ calibration = OK
  6273. dcode_10(); break;
  6274. #ifdef TMC2130
  6275. case 2130: //! D2130 - TMC2130
  6276. dcode_2130(); break;
  6277. #endif //TMC2130
  6278. #ifdef FILAMENT_SENSOR
  6279. case 9125: //! D9125 - FILAMENT_SENSOR
  6280. dcode_9125(); break;
  6281. #endif //FILAMENT_SENSOR
  6282. #endif //DEBUG_DCODES
  6283. }
  6284. }
  6285. else
  6286. {
  6287. SERIAL_ECHO_START;
  6288. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6289. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6290. SERIAL_ECHOLNPGM("\"(2)");
  6291. }
  6292. KEEPALIVE_STATE(NOT_BUSY);
  6293. ClearToSend();
  6294. }
  6295. void FlushSerialRequestResend()
  6296. {
  6297. //char cmdbuffer[bufindr][100]="Resend:";
  6298. MYSERIAL.flush();
  6299. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6300. }
  6301. // Confirm the execution of a command, if sent from a serial line.
  6302. // Execution of a command from a SD card will not be confirmed.
  6303. void ClearToSend()
  6304. {
  6305. previous_millis_cmd = _millis();
  6306. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6307. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6308. }
  6309. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6310. void update_currents() {
  6311. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6312. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6313. float tmp_motor[3];
  6314. //SERIAL_ECHOLNPGM("Currents updated: ");
  6315. if (destination[Z_AXIS] < Z_SILENT) {
  6316. //SERIAL_ECHOLNPGM("LOW");
  6317. for (uint8_t i = 0; i < 3; i++) {
  6318. st_current_set(i, current_low[i]);
  6319. /*MYSERIAL.print(int(i));
  6320. SERIAL_ECHOPGM(": ");
  6321. MYSERIAL.println(current_low[i]);*/
  6322. }
  6323. }
  6324. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6325. //SERIAL_ECHOLNPGM("HIGH");
  6326. for (uint8_t i = 0; i < 3; i++) {
  6327. st_current_set(i, current_high[i]);
  6328. /*MYSERIAL.print(int(i));
  6329. SERIAL_ECHOPGM(": ");
  6330. MYSERIAL.println(current_high[i]);*/
  6331. }
  6332. }
  6333. else {
  6334. for (uint8_t i = 0; i < 3; i++) {
  6335. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6336. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6337. st_current_set(i, tmp_motor[i]);
  6338. /*MYSERIAL.print(int(i));
  6339. SERIAL_ECHOPGM(": ");
  6340. MYSERIAL.println(tmp_motor[i]);*/
  6341. }
  6342. }
  6343. }
  6344. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6345. void get_coordinates()
  6346. {
  6347. bool seen[4]={false,false,false,false};
  6348. for(int8_t i=0; i < NUM_AXIS; i++) {
  6349. if(code_seen(axis_codes[i]))
  6350. {
  6351. bool relative = axis_relative_modes[i] || relative_mode;
  6352. destination[i] = (float)code_value();
  6353. if (i == E_AXIS) {
  6354. float emult = extruder_multiplier[active_extruder];
  6355. if (emult != 1.) {
  6356. if (! relative) {
  6357. destination[i] -= current_position[i];
  6358. relative = true;
  6359. }
  6360. destination[i] *= emult;
  6361. }
  6362. }
  6363. if (relative)
  6364. destination[i] += current_position[i];
  6365. seen[i]=true;
  6366. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6367. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6368. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6369. }
  6370. else destination[i] = current_position[i]; //Are these else lines really needed?
  6371. }
  6372. if(code_seen('F')) {
  6373. next_feedrate = code_value();
  6374. #ifdef MAX_SILENT_FEEDRATE
  6375. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6376. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6377. #endif //MAX_SILENT_FEEDRATE
  6378. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6379. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6380. {
  6381. // float e_max_speed =
  6382. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6383. }
  6384. }
  6385. }
  6386. void get_arc_coordinates()
  6387. {
  6388. #ifdef SF_ARC_FIX
  6389. bool relative_mode_backup = relative_mode;
  6390. relative_mode = true;
  6391. #endif
  6392. get_coordinates();
  6393. #ifdef SF_ARC_FIX
  6394. relative_mode=relative_mode_backup;
  6395. #endif
  6396. if(code_seen('I')) {
  6397. offset[0] = code_value();
  6398. }
  6399. else {
  6400. offset[0] = 0.0;
  6401. }
  6402. if(code_seen('J')) {
  6403. offset[1] = code_value();
  6404. }
  6405. else {
  6406. offset[1] = 0.0;
  6407. }
  6408. }
  6409. void clamp_to_software_endstops(float target[3])
  6410. {
  6411. #ifdef DEBUG_DISABLE_SWLIMITS
  6412. return;
  6413. #endif //DEBUG_DISABLE_SWLIMITS
  6414. world2machine_clamp(target[0], target[1]);
  6415. // Clamp the Z coordinate.
  6416. if (min_software_endstops) {
  6417. float negative_z_offset = 0;
  6418. #ifdef ENABLE_AUTO_BED_LEVELING
  6419. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6420. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6421. #endif
  6422. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6423. }
  6424. if (max_software_endstops) {
  6425. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6426. }
  6427. }
  6428. #ifdef MESH_BED_LEVELING
  6429. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6430. float dx = x - current_position[X_AXIS];
  6431. float dy = y - current_position[Y_AXIS];
  6432. float dz = z - current_position[Z_AXIS];
  6433. int n_segments = 0;
  6434. if (mbl.active) {
  6435. float len = abs(dx) + abs(dy);
  6436. if (len > 0)
  6437. // Split to 3cm segments or shorter.
  6438. n_segments = int(ceil(len / 30.f));
  6439. }
  6440. if (n_segments > 1) {
  6441. float de = e - current_position[E_AXIS];
  6442. for (int i = 1; i < n_segments; ++ i) {
  6443. float t = float(i) / float(n_segments);
  6444. if (saved_printing || (mbl.active == false)) return;
  6445. plan_buffer_line(
  6446. current_position[X_AXIS] + t * dx,
  6447. current_position[Y_AXIS] + t * dy,
  6448. current_position[Z_AXIS] + t * dz,
  6449. current_position[E_AXIS] + t * de,
  6450. feed_rate, extruder);
  6451. }
  6452. }
  6453. // The rest of the path.
  6454. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6455. current_position[X_AXIS] = x;
  6456. current_position[Y_AXIS] = y;
  6457. current_position[Z_AXIS] = z;
  6458. current_position[E_AXIS] = e;
  6459. }
  6460. #endif // MESH_BED_LEVELING
  6461. void prepare_move()
  6462. {
  6463. clamp_to_software_endstops(destination);
  6464. previous_millis_cmd = _millis();
  6465. // Do not use feedmultiply for E or Z only moves
  6466. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6467. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6468. }
  6469. else {
  6470. #ifdef MESH_BED_LEVELING
  6471. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6472. #else
  6473. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6474. #endif
  6475. }
  6476. for(int8_t i=0; i < NUM_AXIS; i++) {
  6477. current_position[i] = destination[i];
  6478. }
  6479. }
  6480. void prepare_arc_move(char isclockwise) {
  6481. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6482. // Trace the arc
  6483. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6484. // As far as the parser is concerned, the position is now == target. In reality the
  6485. // motion control system might still be processing the action and the real tool position
  6486. // in any intermediate location.
  6487. for(int8_t i=0; i < NUM_AXIS; i++) {
  6488. current_position[i] = destination[i];
  6489. }
  6490. previous_millis_cmd = _millis();
  6491. }
  6492. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6493. #if defined(FAN_PIN)
  6494. #if CONTROLLERFAN_PIN == FAN_PIN
  6495. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6496. #endif
  6497. #endif
  6498. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6499. unsigned long lastMotorCheck = 0;
  6500. void controllerFan()
  6501. {
  6502. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6503. {
  6504. lastMotorCheck = _millis();
  6505. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6506. #if EXTRUDERS > 2
  6507. || !READ(E2_ENABLE_PIN)
  6508. #endif
  6509. #if EXTRUDER > 1
  6510. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6511. || !READ(X2_ENABLE_PIN)
  6512. #endif
  6513. || !READ(E1_ENABLE_PIN)
  6514. #endif
  6515. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6516. {
  6517. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6518. }
  6519. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6520. {
  6521. digitalWrite(CONTROLLERFAN_PIN, 0);
  6522. analogWrite(CONTROLLERFAN_PIN, 0);
  6523. }
  6524. else
  6525. {
  6526. // allows digital or PWM fan output to be used (see M42 handling)
  6527. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6528. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6529. }
  6530. }
  6531. }
  6532. #endif
  6533. #ifdef TEMP_STAT_LEDS
  6534. static bool blue_led = false;
  6535. static bool red_led = false;
  6536. static uint32_t stat_update = 0;
  6537. void handle_status_leds(void) {
  6538. float max_temp = 0.0;
  6539. if(_millis() > stat_update) {
  6540. stat_update += 500; // Update every 0.5s
  6541. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6542. max_temp = max(max_temp, degHotend(cur_extruder));
  6543. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6544. }
  6545. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6546. max_temp = max(max_temp, degTargetBed());
  6547. max_temp = max(max_temp, degBed());
  6548. #endif
  6549. if((max_temp > 55.0) && (red_led == false)) {
  6550. digitalWrite(STAT_LED_RED, 1);
  6551. digitalWrite(STAT_LED_BLUE, 0);
  6552. red_led = true;
  6553. blue_led = false;
  6554. }
  6555. if((max_temp < 54.0) && (blue_led == false)) {
  6556. digitalWrite(STAT_LED_RED, 0);
  6557. digitalWrite(STAT_LED_BLUE, 1);
  6558. red_led = false;
  6559. blue_led = true;
  6560. }
  6561. }
  6562. }
  6563. #endif
  6564. #ifdef SAFETYTIMER
  6565. /**
  6566. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6567. *
  6568. * Full screen blocking notification message is shown after heater turning off.
  6569. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6570. * damage print.
  6571. *
  6572. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6573. */
  6574. static void handleSafetyTimer()
  6575. {
  6576. #if (EXTRUDERS > 1)
  6577. #error Implemented only for one extruder.
  6578. #endif //(EXTRUDERS > 1)
  6579. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6580. {
  6581. safetyTimer.stop();
  6582. }
  6583. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6584. {
  6585. safetyTimer.start();
  6586. }
  6587. else if (safetyTimer.expired(safetytimer_inactive_time))
  6588. {
  6589. setTargetBed(0);
  6590. setAllTargetHotends(0);
  6591. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6592. }
  6593. }
  6594. #endif //SAFETYTIMER
  6595. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6596. {
  6597. #ifdef FILAMENT_SENSOR
  6598. if (mmu_enabled == false)
  6599. {
  6600. //-// if (mcode_in_progress != 600) //M600 not in progress
  6601. if ((mcode_in_progress != 600) && (eFilamentAction != e_FILAMENT_ACTION_autoLoad)) //M600 not in progress, preHeat @ autoLoad menu not active
  6602. {
  6603. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6604. {
  6605. if (fsensor_check_autoload())
  6606. {
  6607. #ifdef PAT9125
  6608. fsensor_autoload_check_stop();
  6609. #endif //PAT9125
  6610. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6611. if(0)
  6612. {
  6613. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6614. _tone(BEEPER, 1000);
  6615. delay_keep_alive(50);
  6616. _noTone(BEEPER);
  6617. loading_flag = true;
  6618. enquecommand_front_P((PSTR("M701")));
  6619. }
  6620. else
  6621. {
  6622. /*
  6623. lcd_update_enable(false);
  6624. show_preheat_nozzle_warning();
  6625. lcd_update_enable(true);
  6626. */
  6627. eFilamentAction=e_FILAMENT_ACTION_autoLoad;
  6628. bFilamentFirstRun=false;
  6629. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6630. {
  6631. bFilamentPreheatState=true;
  6632. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6633. menu_submenu(mFilamentItemForce);
  6634. }
  6635. else
  6636. {
  6637. menu_submenu(mFilamentMenu);
  6638. lcd_timeoutToStatus.start();
  6639. }
  6640. }
  6641. }
  6642. }
  6643. else
  6644. {
  6645. #ifdef PAT9125
  6646. fsensor_autoload_check_stop();
  6647. #endif //PAT9125
  6648. fsensor_update();
  6649. }
  6650. }
  6651. }
  6652. #endif //FILAMENT_SENSOR
  6653. #ifdef SAFETYTIMER
  6654. handleSafetyTimer();
  6655. #endif //SAFETYTIMER
  6656. #if defined(KILL_PIN) && KILL_PIN > -1
  6657. static int killCount = 0; // make the inactivity button a bit less responsive
  6658. const int KILL_DELAY = 10000;
  6659. #endif
  6660. if(buflen < (BUFSIZE-1)){
  6661. get_command();
  6662. }
  6663. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6664. if(max_inactive_time)
  6665. kill(_n(""), 4);
  6666. if(stepper_inactive_time) {
  6667. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6668. {
  6669. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6670. disable_x();
  6671. disable_y();
  6672. disable_z();
  6673. disable_e0();
  6674. disable_e1();
  6675. disable_e2();
  6676. }
  6677. }
  6678. }
  6679. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6680. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6681. {
  6682. chdkActive = false;
  6683. WRITE(CHDK, LOW);
  6684. }
  6685. #endif
  6686. #if defined(KILL_PIN) && KILL_PIN > -1
  6687. // Check if the kill button was pressed and wait just in case it was an accidental
  6688. // key kill key press
  6689. // -------------------------------------------------------------------------------
  6690. if( 0 == READ(KILL_PIN) )
  6691. {
  6692. killCount++;
  6693. }
  6694. else if (killCount > 0)
  6695. {
  6696. killCount--;
  6697. }
  6698. // Exceeded threshold and we can confirm that it was not accidental
  6699. // KILL the machine
  6700. // ----------------------------------------------------------------
  6701. if ( killCount >= KILL_DELAY)
  6702. {
  6703. kill("", 5);
  6704. }
  6705. #endif
  6706. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6707. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6708. #endif
  6709. #ifdef EXTRUDER_RUNOUT_PREVENT
  6710. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6711. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6712. {
  6713. bool oldstatus=READ(E0_ENABLE_PIN);
  6714. enable_e0();
  6715. float oldepos=current_position[E_AXIS];
  6716. float oldedes=destination[E_AXIS];
  6717. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6718. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6719. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6720. current_position[E_AXIS]=oldepos;
  6721. destination[E_AXIS]=oldedes;
  6722. plan_set_e_position(oldepos);
  6723. previous_millis_cmd=_millis();
  6724. st_synchronize();
  6725. WRITE(E0_ENABLE_PIN,oldstatus);
  6726. }
  6727. #endif
  6728. #ifdef TEMP_STAT_LEDS
  6729. handle_status_leds();
  6730. #endif
  6731. check_axes_activity();
  6732. mmu_loop();
  6733. }
  6734. void kill(const char *full_screen_message, unsigned char id)
  6735. {
  6736. printf_P(_N("KILL: %d\n"), id);
  6737. //return;
  6738. cli(); // Stop interrupts
  6739. disable_heater();
  6740. disable_x();
  6741. // SERIAL_ECHOLNPGM("kill - disable Y");
  6742. disable_y();
  6743. disable_z();
  6744. disable_e0();
  6745. disable_e1();
  6746. disable_e2();
  6747. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6748. pinMode(PS_ON_PIN,INPUT);
  6749. #endif
  6750. SERIAL_ERROR_START;
  6751. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6752. if (full_screen_message != NULL) {
  6753. SERIAL_ERRORLNRPGM(full_screen_message);
  6754. lcd_display_message_fullscreen_P(full_screen_message);
  6755. } else {
  6756. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED c=0 r=0
  6757. }
  6758. // FMC small patch to update the LCD before ending
  6759. sei(); // enable interrupts
  6760. for ( int i=5; i--; lcd_update(0))
  6761. {
  6762. _delay(200);
  6763. }
  6764. cli(); // disable interrupts
  6765. suicide();
  6766. while(1)
  6767. {
  6768. #ifdef WATCHDOG
  6769. wdt_reset();
  6770. #endif //WATCHDOG
  6771. /* Intentionally left empty */
  6772. } // Wait for reset
  6773. }
  6774. void Stop()
  6775. {
  6776. disable_heater();
  6777. if(Stopped == false) {
  6778. Stopped = true;
  6779. lcd_print_stop();
  6780. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6781. SERIAL_ERROR_START;
  6782. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  6783. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6784. }
  6785. }
  6786. bool IsStopped() { return Stopped; };
  6787. #ifdef FAST_PWM_FAN
  6788. void setPwmFrequency(uint8_t pin, int val)
  6789. {
  6790. val &= 0x07;
  6791. switch(digitalPinToTimer(pin))
  6792. {
  6793. #if defined(TCCR0A)
  6794. case TIMER0A:
  6795. case TIMER0B:
  6796. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6797. // TCCR0B |= val;
  6798. break;
  6799. #endif
  6800. #if defined(TCCR1A)
  6801. case TIMER1A:
  6802. case TIMER1B:
  6803. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6804. // TCCR1B |= val;
  6805. break;
  6806. #endif
  6807. #if defined(TCCR2)
  6808. case TIMER2:
  6809. case TIMER2:
  6810. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6811. TCCR2 |= val;
  6812. break;
  6813. #endif
  6814. #if defined(TCCR2A)
  6815. case TIMER2A:
  6816. case TIMER2B:
  6817. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6818. TCCR2B |= val;
  6819. break;
  6820. #endif
  6821. #if defined(TCCR3A)
  6822. case TIMER3A:
  6823. case TIMER3B:
  6824. case TIMER3C:
  6825. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6826. TCCR3B |= val;
  6827. break;
  6828. #endif
  6829. #if defined(TCCR4A)
  6830. case TIMER4A:
  6831. case TIMER4B:
  6832. case TIMER4C:
  6833. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6834. TCCR4B |= val;
  6835. break;
  6836. #endif
  6837. #if defined(TCCR5A)
  6838. case TIMER5A:
  6839. case TIMER5B:
  6840. case TIMER5C:
  6841. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6842. TCCR5B |= val;
  6843. break;
  6844. #endif
  6845. }
  6846. }
  6847. #endif //FAST_PWM_FAN
  6848. //! @brief Get and validate extruder number
  6849. //!
  6850. //! If it is not specified, active_extruder is returned in parameter extruder.
  6851. //! @param [in] code M code number
  6852. //! @param [out] extruder
  6853. //! @return error
  6854. //! @retval true Invalid extruder specified in T code
  6855. //! @retval false Valid extruder specified in T code, or not specifiead
  6856. bool setTargetedHotend(int code, uint8_t &extruder)
  6857. {
  6858. extruder = active_extruder;
  6859. if(code_seen('T')) {
  6860. extruder = code_value();
  6861. if(extruder >= EXTRUDERS) {
  6862. SERIAL_ECHO_START;
  6863. switch(code){
  6864. case 104:
  6865. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6866. break;
  6867. case 105:
  6868. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6869. break;
  6870. case 109:
  6871. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6872. break;
  6873. case 218:
  6874. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6875. break;
  6876. case 221:
  6877. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6878. break;
  6879. }
  6880. SERIAL_PROTOCOLLN((int)extruder);
  6881. return true;
  6882. }
  6883. }
  6884. return false;
  6885. }
  6886. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6887. {
  6888. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6889. {
  6890. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6891. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6892. }
  6893. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6894. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6895. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6896. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6897. total_filament_used = 0;
  6898. }
  6899. float calculate_extruder_multiplier(float diameter) {
  6900. float out = 1.f;
  6901. if (cs.volumetric_enabled && diameter > 0.f) {
  6902. float area = M_PI * diameter * diameter * 0.25;
  6903. out = 1.f / area;
  6904. }
  6905. if (extrudemultiply != 100)
  6906. out *= float(extrudemultiply) * 0.01f;
  6907. return out;
  6908. }
  6909. void calculate_extruder_multipliers() {
  6910. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  6911. #if EXTRUDERS > 1
  6912. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  6913. #if EXTRUDERS > 2
  6914. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  6915. #endif
  6916. #endif
  6917. }
  6918. void delay_keep_alive(unsigned int ms)
  6919. {
  6920. for (;;) {
  6921. manage_heater();
  6922. // Manage inactivity, but don't disable steppers on timeout.
  6923. manage_inactivity(true);
  6924. lcd_update(0);
  6925. if (ms == 0)
  6926. break;
  6927. else if (ms >= 50) {
  6928. _delay(50);
  6929. ms -= 50;
  6930. } else {
  6931. _delay(ms);
  6932. ms = 0;
  6933. }
  6934. }
  6935. }
  6936. static void wait_for_heater(long codenum, uint8_t extruder) {
  6937. #ifdef TEMP_RESIDENCY_TIME
  6938. long residencyStart;
  6939. residencyStart = -1;
  6940. /* continue to loop until we have reached the target temp
  6941. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6942. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6943. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6944. #else
  6945. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6946. #endif //TEMP_RESIDENCY_TIME
  6947. if ((_millis() - codenum) > 1000UL)
  6948. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6949. if (!farm_mode) {
  6950. SERIAL_PROTOCOLPGM("T:");
  6951. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6952. SERIAL_PROTOCOLPGM(" E:");
  6953. SERIAL_PROTOCOL((int)extruder);
  6954. #ifdef TEMP_RESIDENCY_TIME
  6955. SERIAL_PROTOCOLPGM(" W:");
  6956. if (residencyStart > -1)
  6957. {
  6958. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  6959. SERIAL_PROTOCOLLN(codenum);
  6960. }
  6961. else
  6962. {
  6963. SERIAL_PROTOCOLLN("?");
  6964. }
  6965. }
  6966. #else
  6967. SERIAL_PROTOCOLLN("");
  6968. #endif
  6969. codenum = _millis();
  6970. }
  6971. manage_heater();
  6972. manage_inactivity(true); //do not disable steppers
  6973. lcd_update(0);
  6974. #ifdef TEMP_RESIDENCY_TIME
  6975. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6976. or when current temp falls outside the hysteresis after target temp was reached */
  6977. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6978. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6979. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6980. {
  6981. residencyStart = _millis();
  6982. }
  6983. #endif //TEMP_RESIDENCY_TIME
  6984. }
  6985. }
  6986. void check_babystep()
  6987. {
  6988. int babystep_z;
  6989. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6990. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6991. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6992. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6993. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6994. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6995. lcd_update_enable(true);
  6996. }
  6997. }
  6998. #ifdef DIS
  6999. void d_setup()
  7000. {
  7001. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7002. pinMode(D_DATA, INPUT_PULLUP);
  7003. pinMode(D_REQUIRE, OUTPUT);
  7004. digitalWrite(D_REQUIRE, HIGH);
  7005. }
  7006. float d_ReadData()
  7007. {
  7008. int digit[13];
  7009. String mergeOutput;
  7010. float output;
  7011. digitalWrite(D_REQUIRE, HIGH);
  7012. for (int i = 0; i<13; i++)
  7013. {
  7014. for (int j = 0; j < 4; j++)
  7015. {
  7016. while (digitalRead(D_DATACLOCK) == LOW) {}
  7017. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7018. bitWrite(digit[i], j, digitalRead(D_DATA));
  7019. }
  7020. }
  7021. digitalWrite(D_REQUIRE, LOW);
  7022. mergeOutput = "";
  7023. output = 0;
  7024. for (int r = 5; r <= 10; r++) //Merge digits
  7025. {
  7026. mergeOutput += digit[r];
  7027. }
  7028. output = mergeOutput.toFloat();
  7029. if (digit[4] == 8) //Handle sign
  7030. {
  7031. output *= -1;
  7032. }
  7033. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7034. {
  7035. output /= 10;
  7036. }
  7037. return output;
  7038. }
  7039. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7040. int t1 = 0;
  7041. int t_delay = 0;
  7042. int digit[13];
  7043. int m;
  7044. char str[3];
  7045. //String mergeOutput;
  7046. char mergeOutput[15];
  7047. float output;
  7048. int mesh_point = 0; //index number of calibration point
  7049. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7050. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7051. float mesh_home_z_search = 4;
  7052. float row[x_points_num];
  7053. int ix = 0;
  7054. int iy = 0;
  7055. const char* filename_wldsd = "wldsd.txt";
  7056. char data_wldsd[70];
  7057. char numb_wldsd[10];
  7058. d_setup();
  7059. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7060. // We don't know where we are! HOME!
  7061. // Push the commands to the front of the message queue in the reverse order!
  7062. // There shall be always enough space reserved for these commands.
  7063. repeatcommand_front(); // repeat G80 with all its parameters
  7064. enquecommand_front_P((PSTR("G28 W0")));
  7065. enquecommand_front_P((PSTR("G1 Z5")));
  7066. return;
  7067. }
  7068. unsigned int custom_message_type_old = custom_message_type;
  7069. unsigned int custom_message_state_old = custom_message_state;
  7070. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  7071. custom_message_state = (x_points_num * y_points_num) + 10;
  7072. lcd_update(1);
  7073. mbl.reset();
  7074. babystep_undo();
  7075. card.openFile(filename_wldsd, false);
  7076. current_position[Z_AXIS] = mesh_home_z_search;
  7077. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7078. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7079. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7080. int l_feedmultiply = setup_for_endstop_move(false);
  7081. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7082. SERIAL_PROTOCOL(x_points_num);
  7083. SERIAL_PROTOCOLPGM(",");
  7084. SERIAL_PROTOCOL(y_points_num);
  7085. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7086. SERIAL_PROTOCOL(mesh_home_z_search);
  7087. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7088. SERIAL_PROTOCOL(x_dimension);
  7089. SERIAL_PROTOCOLPGM(",");
  7090. SERIAL_PROTOCOL(y_dimension);
  7091. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7092. while (mesh_point != x_points_num * y_points_num) {
  7093. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7094. iy = mesh_point / x_points_num;
  7095. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7096. float z0 = 0.f;
  7097. current_position[Z_AXIS] = mesh_home_z_search;
  7098. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7099. st_synchronize();
  7100. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7101. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7103. st_synchronize();
  7104. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7105. break;
  7106. card.closefile();
  7107. }
  7108. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7109. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7110. //strcat(data_wldsd, numb_wldsd);
  7111. //MYSERIAL.println(data_wldsd);
  7112. //_delay(1000);
  7113. //_delay(3000);
  7114. //t1 = _millis();
  7115. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7116. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7117. memset(digit, 0, sizeof(digit));
  7118. //cli();
  7119. digitalWrite(D_REQUIRE, LOW);
  7120. for (int i = 0; i<13; i++)
  7121. {
  7122. //t1 = _millis();
  7123. for (int j = 0; j < 4; j++)
  7124. {
  7125. while (digitalRead(D_DATACLOCK) == LOW) {}
  7126. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7127. bitWrite(digit[i], j, digitalRead(D_DATA));
  7128. }
  7129. //t_delay = (_millis() - t1);
  7130. //SERIAL_PROTOCOLPGM(" ");
  7131. //SERIAL_PROTOCOL_F(t_delay, 5);
  7132. //SERIAL_PROTOCOLPGM(" ");
  7133. }
  7134. //sei();
  7135. digitalWrite(D_REQUIRE, HIGH);
  7136. mergeOutput[0] = '\0';
  7137. output = 0;
  7138. for (int r = 5; r <= 10; r++) //Merge digits
  7139. {
  7140. sprintf(str, "%d", digit[r]);
  7141. strcat(mergeOutput, str);
  7142. }
  7143. output = atof(mergeOutput);
  7144. if (digit[4] == 8) //Handle sign
  7145. {
  7146. output *= -1;
  7147. }
  7148. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7149. {
  7150. output *= 0.1;
  7151. }
  7152. //output = d_ReadData();
  7153. //row[ix] = current_position[Z_AXIS];
  7154. memset(data_wldsd, 0, sizeof(data_wldsd));
  7155. for (int i = 0; i <3; i++) {
  7156. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7157. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7158. strcat(data_wldsd, numb_wldsd);
  7159. strcat(data_wldsd, ";");
  7160. }
  7161. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7162. dtostrf(output, 8, 5, numb_wldsd);
  7163. strcat(data_wldsd, numb_wldsd);
  7164. //strcat(data_wldsd, ";");
  7165. card.write_command(data_wldsd);
  7166. //row[ix] = d_ReadData();
  7167. row[ix] = output; // current_position[Z_AXIS];
  7168. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7169. for (int i = 0; i < x_points_num; i++) {
  7170. SERIAL_PROTOCOLPGM(" ");
  7171. SERIAL_PROTOCOL_F(row[i], 5);
  7172. }
  7173. SERIAL_PROTOCOLPGM("\n");
  7174. }
  7175. custom_message_state--;
  7176. mesh_point++;
  7177. lcd_update(1);
  7178. }
  7179. card.closefile();
  7180. clean_up_after_endstop_move(l_feedmultiply);
  7181. }
  7182. #endif
  7183. void temp_compensation_start() {
  7184. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7185. custom_message_state = PINDA_HEAT_T + 1;
  7186. lcd_update(2);
  7187. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7188. current_position[E_AXIS] -= default_retraction;
  7189. }
  7190. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7191. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7192. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7193. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7194. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7195. st_synchronize();
  7196. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7197. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7198. delay_keep_alive(1000);
  7199. custom_message_state = PINDA_HEAT_T - i;
  7200. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7201. else lcd_update(1);
  7202. }
  7203. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7204. custom_message_state = 0;
  7205. }
  7206. void temp_compensation_apply() {
  7207. int i_add;
  7208. int z_shift = 0;
  7209. float z_shift_mm;
  7210. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7211. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7212. i_add = (target_temperature_bed - 60) / 10;
  7213. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7214. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7215. }else {
  7216. //interpolation
  7217. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7218. }
  7219. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7220. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7221. st_synchronize();
  7222. plan_set_z_position(current_position[Z_AXIS]);
  7223. }
  7224. else {
  7225. //we have no temp compensation data
  7226. }
  7227. }
  7228. float temp_comp_interpolation(float inp_temperature) {
  7229. //cubic spline interpolation
  7230. int n, i, j;
  7231. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7232. int shift[10];
  7233. int temp_C[10];
  7234. n = 6; //number of measured points
  7235. shift[0] = 0;
  7236. for (i = 0; i < n; i++) {
  7237. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7238. temp_C[i] = 50 + i * 10; //temperature in C
  7239. #ifdef PINDA_THERMISTOR
  7240. temp_C[i] = 35 + i * 5; //temperature in C
  7241. #else
  7242. temp_C[i] = 50 + i * 10; //temperature in C
  7243. #endif
  7244. x[i] = (float)temp_C[i];
  7245. f[i] = (float)shift[i];
  7246. }
  7247. if (inp_temperature < x[0]) return 0;
  7248. for (i = n - 1; i>0; i--) {
  7249. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7250. h[i - 1] = x[i] - x[i - 1];
  7251. }
  7252. //*********** formation of h, s , f matrix **************
  7253. for (i = 1; i<n - 1; i++) {
  7254. m[i][i] = 2 * (h[i - 1] + h[i]);
  7255. if (i != 1) {
  7256. m[i][i - 1] = h[i - 1];
  7257. m[i - 1][i] = h[i - 1];
  7258. }
  7259. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7260. }
  7261. //*********** forward elimination **************
  7262. for (i = 1; i<n - 2; i++) {
  7263. temp = (m[i + 1][i] / m[i][i]);
  7264. for (j = 1; j <= n - 1; j++)
  7265. m[i + 1][j] -= temp*m[i][j];
  7266. }
  7267. //*********** backward substitution *********
  7268. for (i = n - 2; i>0; i--) {
  7269. sum = 0;
  7270. for (j = i; j <= n - 2; j++)
  7271. sum += m[i][j] * s[j];
  7272. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7273. }
  7274. for (i = 0; i<n - 1; i++)
  7275. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7276. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7277. b = s[i] / 2;
  7278. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7279. d = f[i];
  7280. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7281. }
  7282. return sum;
  7283. }
  7284. #ifdef PINDA_THERMISTOR
  7285. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7286. {
  7287. if (!temp_cal_active) return 0;
  7288. if (!calibration_status_pinda()) return 0;
  7289. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7290. }
  7291. #endif //PINDA_THERMISTOR
  7292. void long_pause() //long pause print
  7293. {
  7294. st_synchronize();
  7295. start_pause_print = _millis();
  7296. //retract
  7297. current_position[E_AXIS] -= default_retraction;
  7298. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7299. //lift z
  7300. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7301. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7302. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7303. //Move XY to side
  7304. current_position[X_AXIS] = X_PAUSE_POS;
  7305. current_position[Y_AXIS] = Y_PAUSE_POS;
  7306. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7307. // Turn off the print fan
  7308. fanSpeed = 0;
  7309. st_synchronize();
  7310. }
  7311. void serialecho_temperatures() {
  7312. float tt = degHotend(active_extruder);
  7313. SERIAL_PROTOCOLPGM("T:");
  7314. SERIAL_PROTOCOL(tt);
  7315. SERIAL_PROTOCOLPGM(" E:");
  7316. SERIAL_PROTOCOL((int)active_extruder);
  7317. SERIAL_PROTOCOLPGM(" B:");
  7318. SERIAL_PROTOCOL_F(degBed(), 1);
  7319. SERIAL_PROTOCOLLN("");
  7320. }
  7321. extern uint32_t sdpos_atomic;
  7322. #ifdef UVLO_SUPPORT
  7323. void uvlo_()
  7324. {
  7325. unsigned long time_start = _millis();
  7326. bool sd_print = card.sdprinting;
  7327. // Conserve power as soon as possible.
  7328. disable_x();
  7329. disable_y();
  7330. #ifdef TMC2130
  7331. tmc2130_set_current_h(Z_AXIS, 20);
  7332. tmc2130_set_current_r(Z_AXIS, 20);
  7333. tmc2130_set_current_h(E_AXIS, 20);
  7334. tmc2130_set_current_r(E_AXIS, 20);
  7335. #endif //TMC2130
  7336. // Indicate that the interrupt has been triggered.
  7337. // SERIAL_ECHOLNPGM("UVLO");
  7338. // Read out the current Z motor microstep counter. This will be later used
  7339. // for reaching the zero full step before powering off.
  7340. uint16_t z_microsteps = 0;
  7341. #ifdef TMC2130
  7342. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7343. #endif //TMC2130
  7344. // Calculate the file position, from which to resume this print.
  7345. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7346. {
  7347. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7348. sd_position -= sdlen_planner;
  7349. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7350. sd_position -= sdlen_cmdqueue;
  7351. if (sd_position < 0) sd_position = 0;
  7352. }
  7353. // Backup the feedrate in mm/min.
  7354. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7355. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7356. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7357. // are in action.
  7358. planner_abort_hard();
  7359. // Store the current extruder position.
  7360. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7361. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7362. // Clean the input command queue.
  7363. cmdqueue_reset();
  7364. card.sdprinting = false;
  7365. // card.closefile();
  7366. // Enable stepper driver interrupt to move Z axis.
  7367. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7368. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7369. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7370. sei();
  7371. plan_buffer_line(
  7372. current_position[X_AXIS],
  7373. current_position[Y_AXIS],
  7374. current_position[Z_AXIS],
  7375. current_position[E_AXIS] - default_retraction,
  7376. 95, active_extruder);
  7377. st_synchronize();
  7378. disable_e0();
  7379. plan_buffer_line(
  7380. current_position[X_AXIS],
  7381. current_position[Y_AXIS],
  7382. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7383. current_position[E_AXIS] - default_retraction,
  7384. 40, active_extruder);
  7385. st_synchronize();
  7386. disable_e0();
  7387. plan_buffer_line(
  7388. current_position[X_AXIS],
  7389. current_position[Y_AXIS],
  7390. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7391. current_position[E_AXIS] - default_retraction,
  7392. 40, active_extruder);
  7393. st_synchronize();
  7394. disable_e0();
  7395. disable_z();
  7396. // Move Z up to the next 0th full step.
  7397. // Write the file position.
  7398. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7399. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7400. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7401. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7402. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7403. // Scale the z value to 1u resolution.
  7404. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7405. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7406. }
  7407. // Read out the current Z motor microstep counter. This will be later used
  7408. // for reaching the zero full step before powering off.
  7409. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7410. // Store the current position.
  7411. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7412. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7413. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7414. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7415. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7416. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7417. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7418. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7419. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7420. #if EXTRUDERS > 1
  7421. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7422. #if EXTRUDERS > 2
  7423. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7424. #endif
  7425. #endif
  7426. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7427. // Finaly store the "power outage" flag.
  7428. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7429. st_synchronize();
  7430. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7431. disable_z();
  7432. // Increment power failure counter
  7433. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7434. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7435. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7436. #if 0
  7437. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7438. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7439. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7440. st_synchronize();
  7441. #endif
  7442. wdt_enable(WDTO_500MS);
  7443. WRITE(BEEPER,HIGH);
  7444. while(1)
  7445. ;
  7446. }
  7447. void uvlo_tiny()
  7448. {
  7449. uint16_t z_microsteps=0;
  7450. // Conserve power as soon as possible.
  7451. disable_x();
  7452. disable_y();
  7453. disable_e0();
  7454. #ifdef TMC2130
  7455. tmc2130_set_current_h(Z_AXIS, 20);
  7456. tmc2130_set_current_r(Z_AXIS, 20);
  7457. #endif //TMC2130
  7458. // Read out the current Z motor microstep counter
  7459. #ifdef TMC2130
  7460. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7461. #endif //TMC2130
  7462. planner_abort_hard();
  7463. sei();
  7464. plan_buffer_line(
  7465. current_position[X_AXIS],
  7466. current_position[Y_AXIS],
  7467. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7468. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7469. current_position[E_AXIS],
  7470. 40, active_extruder);
  7471. st_synchronize();
  7472. disable_z();
  7473. // Finaly store the "power outage" flag.
  7474. //if(sd_print)
  7475. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7476. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7477. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7478. // Increment power failure counter
  7479. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7480. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7481. wdt_enable(WDTO_500MS);
  7482. WRITE(BEEPER,HIGH);
  7483. while(1)
  7484. ;
  7485. }
  7486. #endif //UVLO_SUPPORT
  7487. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7488. void setup_fan_interrupt() {
  7489. //INT7
  7490. DDRE &= ~(1 << 7); //input pin
  7491. PORTE &= ~(1 << 7); //no internal pull-up
  7492. //start with sensing rising edge
  7493. EICRB &= ~(1 << 6);
  7494. EICRB |= (1 << 7);
  7495. //enable INT7 interrupt
  7496. EIMSK |= (1 << 7);
  7497. }
  7498. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7499. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7500. ISR(INT7_vect) {
  7501. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7502. #ifdef FAN_SOFT_PWM
  7503. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7504. #else //FAN_SOFT_PWM
  7505. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7506. #endif //FAN_SOFT_PWM
  7507. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7508. t_fan_rising_edge = millis_nc();
  7509. }
  7510. else { //interrupt was triggered by falling edge
  7511. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7512. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7513. }
  7514. }
  7515. EICRB ^= (1 << 6); //change edge
  7516. }
  7517. #endif
  7518. #ifdef UVLO_SUPPORT
  7519. void setup_uvlo_interrupt() {
  7520. DDRE &= ~(1 << 4); //input pin
  7521. PORTE &= ~(1 << 4); //no internal pull-up
  7522. //sensing falling edge
  7523. EICRB |= (1 << 0);
  7524. EICRB &= ~(1 << 1);
  7525. //enable INT4 interrupt
  7526. EIMSK |= (1 << 4);
  7527. }
  7528. ISR(INT4_vect) {
  7529. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7530. SERIAL_ECHOLNPGM("INT4");
  7531. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7532. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7533. }
  7534. void recover_print(uint8_t automatic) {
  7535. char cmd[30];
  7536. lcd_update_enable(true);
  7537. lcd_update(2);
  7538. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7539. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7540. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7541. // Lift the print head, so one may remove the excess priming material.
  7542. if(!bTiny&&(current_position[Z_AXIS]<25))
  7543. enquecommand_P(PSTR("G1 Z25 F800"));
  7544. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7545. enquecommand_P(PSTR("G28 X Y"));
  7546. // Set the target bed and nozzle temperatures and wait.
  7547. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7548. enquecommand(cmd);
  7549. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7550. enquecommand(cmd);
  7551. enquecommand_P(PSTR("M83")); //E axis relative mode
  7552. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7553. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7554. if(automatic == 0){
  7555. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7556. }
  7557. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7558. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7559. // Restart the print.
  7560. restore_print_from_eeprom();
  7561. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7562. }
  7563. void recover_machine_state_after_power_panic(bool bTiny)
  7564. {
  7565. char cmd[30];
  7566. // 1) Recover the logical cordinates at the time of the power panic.
  7567. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7568. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7569. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7570. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7571. // The current position after power panic is moved to the next closest 0th full step.
  7572. if(bTiny)
  7573. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7574. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7575. else
  7576. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7577. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7578. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7579. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7580. sprintf_P(cmd, PSTR("G92 E"));
  7581. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7582. enquecommand(cmd);
  7583. }
  7584. memcpy(destination, current_position, sizeof(destination));
  7585. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7586. print_world_coordinates();
  7587. // 2) Initialize the logical to physical coordinate system transformation.
  7588. world2machine_initialize();
  7589. // 3) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7590. mbl.active = false;
  7591. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7592. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7593. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7594. // Scale the z value to 10u resolution.
  7595. int16_t v;
  7596. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  7597. if (v != 0)
  7598. mbl.active = true;
  7599. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7600. }
  7601. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7602. // print_mesh_bed_leveling_table();
  7603. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7604. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7605. babystep_load();
  7606. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7607. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7608. // 6) Power up the motors, mark their positions as known.
  7609. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7610. axis_known_position[X_AXIS] = true; enable_x();
  7611. axis_known_position[Y_AXIS] = true; enable_y();
  7612. axis_known_position[Z_AXIS] = true; enable_z();
  7613. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7614. print_physical_coordinates();
  7615. // 7) Recover the target temperatures.
  7616. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7617. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7618. // 8) Recover extruder multipilers
  7619. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7620. #if EXTRUDERS > 1
  7621. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7622. #if EXTRUDERS > 2
  7623. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7624. #endif
  7625. #endif
  7626. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7627. }
  7628. void restore_print_from_eeprom() {
  7629. int feedrate_rec;
  7630. uint8_t fan_speed_rec;
  7631. char cmd[30];
  7632. char filename[13];
  7633. uint8_t depth = 0;
  7634. char dir_name[9];
  7635. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7636. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7637. SERIAL_ECHOPGM("Feedrate:");
  7638. MYSERIAL.println(feedrate_rec);
  7639. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7640. MYSERIAL.println(int(depth));
  7641. for (int i = 0; i < depth; i++) {
  7642. for (int j = 0; j < 8; j++) {
  7643. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7644. }
  7645. dir_name[8] = '\0';
  7646. MYSERIAL.println(dir_name);
  7647. strcpy(dir_names[i], dir_name);
  7648. card.chdir(dir_name);
  7649. }
  7650. for (int i = 0; i < 8; i++) {
  7651. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7652. }
  7653. filename[8] = '\0';
  7654. MYSERIAL.print(filename);
  7655. strcat_P(filename, PSTR(".gco"));
  7656. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7657. enquecommand(cmd);
  7658. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7659. SERIAL_ECHOPGM("Position read from eeprom:");
  7660. MYSERIAL.println(position);
  7661. // E axis relative mode.
  7662. enquecommand_P(PSTR("M83"));
  7663. // Move to the XY print position in logical coordinates, where the print has been killed.
  7664. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7665. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7666. strcat_P(cmd, PSTR(" F2000"));
  7667. enquecommand(cmd);
  7668. // Move the Z axis down to the print, in logical coordinates.
  7669. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7670. enquecommand(cmd);
  7671. // Unretract.
  7672. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7673. // Set the feedrate saved at the power panic.
  7674. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7675. enquecommand(cmd);
  7676. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7677. {
  7678. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7679. }
  7680. // Set the fan speed saved at the power panic.
  7681. strcpy_P(cmd, PSTR("M106 S"));
  7682. strcat(cmd, itostr3(int(fan_speed_rec)));
  7683. enquecommand(cmd);
  7684. // Set a position in the file.
  7685. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7686. enquecommand(cmd);
  7687. enquecommand_P(PSTR("G4 S0"));
  7688. enquecommand_P(PSTR("PRUSA uvlo"));
  7689. }
  7690. #endif //UVLO_SUPPORT
  7691. //! @brief Immediately stop print moves
  7692. //!
  7693. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7694. //! If printing from sd card, position in file is saved.
  7695. //! If printing from USB, line number is saved.
  7696. //!
  7697. //! @param z_move
  7698. //! @param e_move
  7699. void stop_and_save_print_to_ram(float z_move, float e_move)
  7700. {
  7701. if (saved_printing) return;
  7702. #if 0
  7703. unsigned char nplanner_blocks;
  7704. #endif
  7705. unsigned char nlines;
  7706. uint16_t sdlen_planner;
  7707. uint16_t sdlen_cmdqueue;
  7708. cli();
  7709. if (card.sdprinting) {
  7710. #if 0
  7711. nplanner_blocks = number_of_blocks();
  7712. #endif
  7713. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7714. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7715. saved_sdpos -= sdlen_planner;
  7716. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7717. saved_sdpos -= sdlen_cmdqueue;
  7718. saved_printing_type = PRINTING_TYPE_SD;
  7719. }
  7720. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7721. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7722. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7723. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7724. saved_sdpos -= nlines;
  7725. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7726. saved_printing_type = PRINTING_TYPE_USB;
  7727. }
  7728. else {
  7729. saved_printing_type = PRINTING_TYPE_NONE;
  7730. //not sd printing nor usb printing
  7731. }
  7732. #if 0
  7733. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7734. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7735. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7736. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7737. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7738. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7739. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7740. {
  7741. card.setIndex(saved_sdpos);
  7742. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7743. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7744. MYSERIAL.print(char(card.get()));
  7745. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7746. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7747. MYSERIAL.print(char(card.get()));
  7748. SERIAL_ECHOLNPGM("End of command buffer");
  7749. }
  7750. {
  7751. // Print the content of the planner buffer, line by line:
  7752. card.setIndex(saved_sdpos);
  7753. int8_t iline = 0;
  7754. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7755. SERIAL_ECHOPGM("Planner line (from file): ");
  7756. MYSERIAL.print(int(iline), DEC);
  7757. SERIAL_ECHOPGM(", length: ");
  7758. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7759. SERIAL_ECHOPGM(", steps: (");
  7760. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7761. SERIAL_ECHOPGM(",");
  7762. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7763. SERIAL_ECHOPGM(",");
  7764. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7765. SERIAL_ECHOPGM(",");
  7766. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7767. SERIAL_ECHOPGM("), events: ");
  7768. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7769. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7770. MYSERIAL.print(char(card.get()));
  7771. }
  7772. }
  7773. {
  7774. // Print the content of the command buffer, line by line:
  7775. int8_t iline = 0;
  7776. union {
  7777. struct {
  7778. char lo;
  7779. char hi;
  7780. } lohi;
  7781. uint16_t value;
  7782. } sdlen_single;
  7783. int _bufindr = bufindr;
  7784. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7785. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7786. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7787. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7788. }
  7789. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7790. MYSERIAL.print(int(iline), DEC);
  7791. SERIAL_ECHOPGM(", type: ");
  7792. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7793. SERIAL_ECHOPGM(", len: ");
  7794. MYSERIAL.println(sdlen_single.value, DEC);
  7795. // Print the content of the buffer line.
  7796. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7797. SERIAL_ECHOPGM("Buffer line (from file): ");
  7798. MYSERIAL.println(int(iline), DEC);
  7799. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7800. MYSERIAL.print(char(card.get()));
  7801. if (-- _buflen == 0)
  7802. break;
  7803. // First skip the current command ID and iterate up to the end of the string.
  7804. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7805. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7806. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7807. // If the end of the buffer was empty,
  7808. if (_bufindr == sizeof(cmdbuffer)) {
  7809. // skip to the start and find the nonzero command.
  7810. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7811. }
  7812. }
  7813. }
  7814. #endif
  7815. #if 0
  7816. saved_feedrate2 = feedrate; //save feedrate
  7817. #else
  7818. // Try to deduce the feedrate from the first block of the planner.
  7819. // Speed is in mm/min.
  7820. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7821. #endif
  7822. planner_abort_hard(); //abort printing
  7823. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7824. saved_active_extruder = active_extruder; //save active_extruder
  7825. saved_extruder_temperature = degTargetHotend(active_extruder);
  7826. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7827. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7828. saved_fanSpeed = fanSpeed;
  7829. cmdqueue_reset(); //empty cmdqueue
  7830. card.sdprinting = false;
  7831. // card.closefile();
  7832. saved_printing = true;
  7833. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7834. st_reset_timer();
  7835. sei();
  7836. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7837. #if 1
  7838. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7839. char buf[48];
  7840. // First unretract (relative extrusion)
  7841. if(!saved_extruder_relative_mode){
  7842. strcpy_P(buf, PSTR("M83"));
  7843. enquecommand(buf, false);
  7844. }
  7845. //retract 45mm/s
  7846. strcpy_P(buf, PSTR("G1 E"));
  7847. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7848. strcat_P(buf, PSTR(" F"));
  7849. dtostrf(2700, 8, 3, buf + strlen(buf));
  7850. enquecommand(buf, false);
  7851. // Then lift Z axis
  7852. strcpy_P(buf, PSTR("G1 Z"));
  7853. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7854. strcat_P(buf, PSTR(" F"));
  7855. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7856. // At this point the command queue is empty.
  7857. enquecommand(buf, false);
  7858. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7859. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7860. repeatcommand_front();
  7861. #else
  7862. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7863. st_synchronize(); //wait moving
  7864. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7865. memcpy(destination, current_position, sizeof(destination));
  7866. #endif
  7867. }
  7868. }
  7869. //! @brief Restore print from ram
  7870. //!
  7871. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  7872. //! waits for extruder temperature restore, then restores position and continues
  7873. //! print moves.
  7874. //! Internaly lcd_update() is called by wait_for_heater().
  7875. //!
  7876. //! @param e_move
  7877. void restore_print_from_ram_and_continue(float e_move)
  7878. {
  7879. if (!saved_printing) return;
  7880. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7881. // current_position[axis] = st_get_position_mm(axis);
  7882. active_extruder = saved_active_extruder; //restore active_extruder
  7883. if (saved_extruder_temperature) {
  7884. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  7885. heating_status = 1;
  7886. wait_for_heater(_millis(), saved_active_extruder);
  7887. heating_status = 2;
  7888. }
  7889. feedrate = saved_feedrate2; //restore feedrate
  7890. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7891. fanSpeed = saved_fanSpeed;
  7892. float e = saved_pos[E_AXIS] - e_move;
  7893. plan_set_e_position(e);
  7894. //first move print head in XY to the saved position:
  7895. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7896. st_synchronize();
  7897. //then move Z
  7898. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7899. st_synchronize();
  7900. //and finaly unretract (35mm/s)
  7901. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7902. st_synchronize();
  7903. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7904. memcpy(destination, current_position, sizeof(destination));
  7905. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7906. card.setIndex(saved_sdpos);
  7907. sdpos_atomic = saved_sdpos;
  7908. card.sdprinting = true;
  7909. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7910. }
  7911. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7912. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7913. serial_count = 0;
  7914. FlushSerialRequestResend();
  7915. }
  7916. else {
  7917. //not sd printing nor usb printing
  7918. }
  7919. lcd_setstatuspgm(_T(WELCOME_MSG));
  7920. saved_printing = false;
  7921. }
  7922. void print_world_coordinates()
  7923. {
  7924. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7925. }
  7926. void print_physical_coordinates()
  7927. {
  7928. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7929. }
  7930. void print_mesh_bed_leveling_table()
  7931. {
  7932. SERIAL_ECHOPGM("mesh bed leveling: ");
  7933. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7934. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7935. MYSERIAL.print(mbl.z_values[y][x], 3);
  7936. SERIAL_ECHOPGM(" ");
  7937. }
  7938. SERIAL_ECHOLNPGM("");
  7939. }
  7940. uint16_t print_time_remaining() {
  7941. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7942. #ifdef TMC2130
  7943. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7944. else print_t = print_time_remaining_silent;
  7945. #else
  7946. print_t = print_time_remaining_normal;
  7947. #endif //TMC2130
  7948. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7949. return print_t;
  7950. }
  7951. uint8_t calc_percent_done()
  7952. {
  7953. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7954. uint8_t percent_done = 0;
  7955. #ifdef TMC2130
  7956. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7957. percent_done = print_percent_done_normal;
  7958. }
  7959. else if (print_percent_done_silent <= 100) {
  7960. percent_done = print_percent_done_silent;
  7961. }
  7962. #else
  7963. if (print_percent_done_normal <= 100) {
  7964. percent_done = print_percent_done_normal;
  7965. }
  7966. #endif //TMC2130
  7967. else {
  7968. percent_done = card.percentDone();
  7969. }
  7970. return percent_done;
  7971. }
  7972. static void print_time_remaining_init()
  7973. {
  7974. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7975. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7976. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7977. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7978. }
  7979. void load_filament_final_feed()
  7980. {
  7981. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  7982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  7983. }
  7984. void M600_check_state()
  7985. {
  7986. //Wait for user to check the state
  7987. lcd_change_fil_state = 0;
  7988. while (lcd_change_fil_state != 1){
  7989. lcd_change_fil_state = 0;
  7990. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7991. lcd_alright();
  7992. KEEPALIVE_STATE(IN_HANDLER);
  7993. switch(lcd_change_fil_state){
  7994. // Filament failed to load so load it again
  7995. case 2:
  7996. if (mmu_enabled)
  7997. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7998. else
  7999. M600_load_filament_movements();
  8000. break;
  8001. // Filament loaded properly but color is not clear
  8002. case 3:
  8003. st_synchronize();
  8004. load_filament_final_feed();
  8005. lcd_loading_color();
  8006. st_synchronize();
  8007. break;
  8008. // Everything good
  8009. default:
  8010. lcd_change_success();
  8011. break;
  8012. }
  8013. }
  8014. }
  8015. //! @brief Wait for user action
  8016. //!
  8017. //! Beep, manage nozzle heater and wait for user to start unload filament
  8018. //! If times out, active extruder temperature is set to 0.
  8019. //!
  8020. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8021. void M600_wait_for_user(float HotendTempBckp) {
  8022. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8023. int counterBeep = 0;
  8024. unsigned long waiting_start_time = _millis();
  8025. uint8_t wait_for_user_state = 0;
  8026. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8027. bool bFirst=true;
  8028. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8029. manage_heater();
  8030. manage_inactivity(true);
  8031. #if BEEPER > 0
  8032. if (counterBeep == 500) {
  8033. counterBeep = 0;
  8034. }
  8035. SET_OUTPUT(BEEPER);
  8036. if (counterBeep == 0) {
  8037. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8038. {
  8039. bFirst=false;
  8040. WRITE(BEEPER, HIGH);
  8041. }
  8042. }
  8043. if (counterBeep == 20) {
  8044. WRITE(BEEPER, LOW);
  8045. }
  8046. counterBeep++;
  8047. #endif //BEEPER > 0
  8048. switch (wait_for_user_state) {
  8049. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8050. delay_keep_alive(4);
  8051. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8052. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8053. wait_for_user_state = 1;
  8054. setAllTargetHotends(0);
  8055. st_synchronize();
  8056. disable_e0();
  8057. disable_e1();
  8058. disable_e2();
  8059. }
  8060. break;
  8061. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8062. delay_keep_alive(4);
  8063. if (lcd_clicked()) {
  8064. setTargetHotend(HotendTempBckp, active_extruder);
  8065. lcd_wait_for_heater();
  8066. wait_for_user_state = 2;
  8067. }
  8068. break;
  8069. case 2: //waiting for nozzle to reach target temperature
  8070. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8071. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8072. waiting_start_time = _millis();
  8073. wait_for_user_state = 0;
  8074. }
  8075. else {
  8076. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8077. lcd_set_cursor(1, 4);
  8078. lcd_print(ftostr3(degHotend(active_extruder)));
  8079. }
  8080. break;
  8081. }
  8082. }
  8083. WRITE(BEEPER, LOW);
  8084. }
  8085. void M600_load_filament_movements()
  8086. {
  8087. #ifdef SNMM
  8088. display_loading();
  8089. do
  8090. {
  8091. current_position[E_AXIS] += 0.002;
  8092. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8093. delay_keep_alive(2);
  8094. }
  8095. while (!lcd_clicked());
  8096. st_synchronize();
  8097. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8098. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8099. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8100. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8101. current_position[E_AXIS] += 40;
  8102. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8103. current_position[E_AXIS] += 10;
  8104. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8105. #else
  8106. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8107. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8108. #endif
  8109. load_filament_final_feed();
  8110. lcd_loading_filament();
  8111. st_synchronize();
  8112. }
  8113. void M600_load_filament() {
  8114. //load filament for single material and SNMM
  8115. lcd_wait_interact();
  8116. //load_filament_time = _millis();
  8117. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8118. #ifdef PAT9125
  8119. fsensor_autoload_check_start();
  8120. #endif //PAT9125
  8121. while(!lcd_clicked())
  8122. {
  8123. manage_heater();
  8124. manage_inactivity(true);
  8125. #ifdef FILAMENT_SENSOR
  8126. if (fsensor_check_autoload())
  8127. {
  8128. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8129. _tone(BEEPER, 1000);
  8130. delay_keep_alive(50);
  8131. _noTone(BEEPER);
  8132. break;
  8133. }
  8134. #endif //FILAMENT_SENSOR
  8135. }
  8136. #ifdef PAT9125
  8137. fsensor_autoload_check_stop();
  8138. #endif //PAT9125
  8139. KEEPALIVE_STATE(IN_HANDLER);
  8140. #ifdef FSENSOR_QUALITY
  8141. fsensor_oq_meassure_start(70);
  8142. #endif //FSENSOR_QUALITY
  8143. M600_load_filament_movements();
  8144. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8145. _tone(BEEPER, 500);
  8146. delay_keep_alive(50);
  8147. _noTone(BEEPER);
  8148. #ifdef FSENSOR_QUALITY
  8149. fsensor_oq_meassure_stop();
  8150. if (!fsensor_oq_result())
  8151. {
  8152. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8153. lcd_update_enable(true);
  8154. lcd_update(2);
  8155. if (disable)
  8156. fsensor_disable();
  8157. }
  8158. #endif //FSENSOR_QUALITY
  8159. lcd_update_enable(false);
  8160. }
  8161. #define FIL_LOAD_LENGTH 60