Marlin_main.cpp 311 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #include "spi.h"
  76. #ifdef SWI2C
  77. #include "swi2c.h"
  78. #endif //SWI2C
  79. #ifdef FILAMENT_SENSOR
  80. #include "fsensor.h"
  81. #endif //FILAMENT_SENSOR
  82. #ifdef TMC2130
  83. #include "tmc2130.h"
  84. #endif //TMC2130
  85. #ifdef W25X20CL
  86. #include "w25x20cl.h"
  87. #include "optiboot_w25x20cl.h"
  88. #endif //W25X20CL
  89. #ifdef BLINKM
  90. #include "BlinkM.h"
  91. #include "Wire.h"
  92. #endif
  93. #ifdef ULTRALCD
  94. #include "ultralcd.h"
  95. #endif
  96. #if NUM_SERVOS > 0
  97. #include "Servo.h"
  98. #endif
  99. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  100. #include <SPI.h>
  101. #endif
  102. #include "mmu.h"
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. //Stepper Movement Variables
  121. //===========================================================================
  122. //=============================imported variables============================
  123. //===========================================================================
  124. //===========================================================================
  125. //=============================public variables=============================
  126. //===========================================================================
  127. #ifdef SDSUPPORT
  128. CardReader card;
  129. #endif
  130. unsigned long PingTime = millis();
  131. unsigned long NcTime;
  132. //used for PINDA temp calibration and pause print
  133. #define DEFAULT_RETRACTION 1
  134. #define DEFAULT_RETRACTION_MM 4 //MM
  135. float default_retraction = DEFAULT_RETRACTION;
  136. float homing_feedrate[] = HOMING_FEEDRATE;
  137. // Currently only the extruder axis may be switched to a relative mode.
  138. // Other axes are always absolute or relative based on the common relative_mode flag.
  139. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  140. int feedmultiply=100; //100->1 200->2
  141. int extrudemultiply=100; //100->1 200->2
  142. int extruder_multiply[EXTRUDERS] = {100
  143. #if EXTRUDERS > 1
  144. , 100
  145. #if EXTRUDERS > 2
  146. , 100
  147. #endif
  148. #endif
  149. };
  150. int bowden_length[4] = {385, 385, 385, 385};
  151. bool is_usb_printing = false;
  152. bool homing_flag = false;
  153. bool temp_cal_active = false;
  154. unsigned long kicktime = millis()+100000;
  155. unsigned int usb_printing_counter;
  156. int8_t lcd_change_fil_state = 0;
  157. unsigned long pause_time = 0;
  158. unsigned long start_pause_print = millis();
  159. unsigned long t_fan_rising_edge = millis();
  160. LongTimer safetyTimer;
  161. static LongTimer crashDetTimer;
  162. //unsigned long load_filament_time;
  163. bool mesh_bed_leveling_flag = false;
  164. bool mesh_bed_run_from_menu = false;
  165. int8_t FarmMode = 0;
  166. bool prusa_sd_card_upload = false;
  167. unsigned int status_number = 0;
  168. unsigned long total_filament_used;
  169. unsigned int heating_status;
  170. unsigned int heating_status_counter;
  171. bool loading_flag = false;
  172. char snmm_filaments_used = 0;
  173. bool fan_state[2];
  174. int fan_edge_counter[2];
  175. int fan_speed[2];
  176. char dir_names[3][9];
  177. bool sortAlpha = false;
  178. float extruder_multiplier[EXTRUDERS] = {1.0
  179. #if EXTRUDERS > 1
  180. , 1.0
  181. #if EXTRUDERS > 2
  182. , 1.0
  183. #endif
  184. #endif
  185. };
  186. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  187. //shortcuts for more readable code
  188. #define _x current_position[X_AXIS]
  189. #define _y current_position[Y_AXIS]
  190. #define _z current_position[Z_AXIS]
  191. #define _e current_position[E_AXIS]
  192. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  193. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  194. bool axis_known_position[3] = {false, false, false};
  195. // Extruder offset
  196. #if EXTRUDERS > 1
  197. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  198. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  199. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  200. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  201. #endif
  202. };
  203. #endif
  204. uint8_t active_extruder = 0;
  205. int fanSpeed=0;
  206. #ifdef FWRETRACT
  207. bool retracted[EXTRUDERS]={false
  208. #if EXTRUDERS > 1
  209. , false
  210. #if EXTRUDERS > 2
  211. , false
  212. #endif
  213. #endif
  214. };
  215. bool retracted_swap[EXTRUDERS]={false
  216. #if EXTRUDERS > 1
  217. , false
  218. #if EXTRUDERS > 2
  219. , false
  220. #endif
  221. #endif
  222. };
  223. float retract_length_swap = RETRACT_LENGTH_SWAP;
  224. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  225. #endif
  226. #ifdef PS_DEFAULT_OFF
  227. bool powersupply = false;
  228. #else
  229. bool powersupply = true;
  230. #endif
  231. bool cancel_heatup = false ;
  232. #ifdef HOST_KEEPALIVE_FEATURE
  233. int busy_state = NOT_BUSY;
  234. static long prev_busy_signal_ms = -1;
  235. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  236. #else
  237. #define host_keepalive();
  238. #define KEEPALIVE_STATE(n);
  239. #endif
  240. const char errormagic[] PROGMEM = "Error:";
  241. const char echomagic[] PROGMEM = "echo:";
  242. bool no_response = false;
  243. uint8_t important_status;
  244. uint8_t saved_filament_type;
  245. // save/restore printing in case that mmu was not responding
  246. bool mmu_print_saved = false;
  247. // storing estimated time to end of print counted by slicer
  248. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  251. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  252. bool wizard_active = false; //autoload temporarily disabled during wizard
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  257. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  258. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  259. // For tracing an arc
  260. static float offset[3] = {0.0, 0.0, 0.0};
  261. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  262. // Determines Absolute or Relative Coordinates.
  263. // Also there is bool axis_relative_modes[] per axis flag.
  264. static bool relative_mode = false;
  265. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  266. //static float tt = 0;
  267. //static float bt = 0;
  268. //Inactivity shutdown variables
  269. static unsigned long previous_millis_cmd = 0;
  270. unsigned long max_inactive_time = 0;
  271. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  272. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  273. unsigned long starttime=0;
  274. unsigned long stoptime=0;
  275. unsigned long _usb_timer = 0;
  276. bool extruder_under_pressure = true;
  277. bool Stopped=false;
  278. #if NUM_SERVOS > 0
  279. Servo servos[NUM_SERVOS];
  280. #endif
  281. bool CooldownNoWait = true;
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  295. static float saved_feedrate2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_under_pressure = false;
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. //===========================================================================
  303. //=============================Routines======================================
  304. //===========================================================================
  305. static void get_arc_coordinates();
  306. static bool setTargetedHotend(int code, uint8_t &extruder);
  307. static void print_time_remaining_init();
  308. static void wait_for_heater(long codenum, uint8_t extruder);
  309. uint16_t gcode_in_progress = 0;
  310. uint16_t mcode_in_progress = 0;
  311. void serial_echopair_P(const char *s_P, float v)
  312. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  313. void serial_echopair_P(const char *s_P, double v)
  314. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  315. void serial_echopair_P(const char *s_P, unsigned long v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. #ifdef SDSUPPORT
  318. #include "SdFatUtil.h"
  319. int freeMemory() { return SdFatUtil::FreeRam(); }
  320. #else
  321. extern "C" {
  322. extern unsigned int __bss_end;
  323. extern unsigned int __heap_start;
  324. extern void *__brkval;
  325. int freeMemory() {
  326. int free_memory;
  327. if ((int)__brkval == 0)
  328. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  329. else
  330. free_memory = ((int)&free_memory) - ((int)__brkval);
  331. return free_memory;
  332. }
  333. }
  334. #endif //!SDSUPPORT
  335. void setup_killpin()
  336. {
  337. #if defined(KILL_PIN) && KILL_PIN > -1
  338. SET_INPUT(KILL_PIN);
  339. WRITE(KILL_PIN,HIGH);
  340. #endif
  341. }
  342. // Set home pin
  343. void setup_homepin(void)
  344. {
  345. #if defined(HOME_PIN) && HOME_PIN > -1
  346. SET_INPUT(HOME_PIN);
  347. WRITE(HOME_PIN,HIGH);
  348. #endif
  349. }
  350. void setup_photpin()
  351. {
  352. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  353. SET_OUTPUT(PHOTOGRAPH_PIN);
  354. WRITE(PHOTOGRAPH_PIN, LOW);
  355. #endif
  356. }
  357. void setup_powerhold()
  358. {
  359. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  360. SET_OUTPUT(SUICIDE_PIN);
  361. WRITE(SUICIDE_PIN, HIGH);
  362. #endif
  363. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  364. SET_OUTPUT(PS_ON_PIN);
  365. #if defined(PS_DEFAULT_OFF)
  366. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  367. #else
  368. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  369. #endif
  370. #endif
  371. }
  372. void suicide()
  373. {
  374. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  375. SET_OUTPUT(SUICIDE_PIN);
  376. WRITE(SUICIDE_PIN, LOW);
  377. #endif
  378. }
  379. void servo_init()
  380. {
  381. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  382. servos[0].attach(SERVO0_PIN);
  383. #endif
  384. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  385. servos[1].attach(SERVO1_PIN);
  386. #endif
  387. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  388. servos[2].attach(SERVO2_PIN);
  389. #endif
  390. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  391. servos[3].attach(SERVO3_PIN);
  392. #endif
  393. #if (NUM_SERVOS >= 5)
  394. #error "TODO: enter initalisation code for more servos"
  395. #endif
  396. }
  397. bool fans_check_enabled = true;
  398. #ifdef TMC2130
  399. extern int8_t CrashDetectMenu;
  400. void crashdet_enable()
  401. {
  402. tmc2130_sg_stop_on_crash = true;
  403. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  404. CrashDetectMenu = 1;
  405. }
  406. void crashdet_disable()
  407. {
  408. tmc2130_sg_stop_on_crash = false;
  409. tmc2130_sg_crash = 0;
  410. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  411. CrashDetectMenu = 0;
  412. }
  413. void crashdet_stop_and_save_print()
  414. {
  415. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  416. }
  417. void crashdet_restore_print_and_continue()
  418. {
  419. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  420. // babystep_apply();
  421. }
  422. void crashdet_stop_and_save_print2()
  423. {
  424. cli();
  425. planner_abort_hard(); //abort printing
  426. cmdqueue_reset(); //empty cmdqueue
  427. card.sdprinting = false;
  428. card.closefile();
  429. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  430. st_reset_timer();
  431. sei();
  432. }
  433. void crashdet_detected(uint8_t mask)
  434. {
  435. st_synchronize();
  436. static uint8_t crashDet_counter = 0;
  437. bool automatic_recovery_after_crash = true;
  438. if (crashDet_counter++ == 0) {
  439. crashDetTimer.start();
  440. }
  441. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  442. crashDetTimer.stop();
  443. crashDet_counter = 0;
  444. }
  445. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  446. automatic_recovery_after_crash = false;
  447. crashDetTimer.stop();
  448. crashDet_counter = 0;
  449. }
  450. else {
  451. crashDetTimer.start();
  452. }
  453. lcd_update_enable(true);
  454. lcd_clear();
  455. lcd_update(2);
  456. if (mask & X_AXIS_MASK)
  457. {
  458. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  459. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  460. }
  461. if (mask & Y_AXIS_MASK)
  462. {
  463. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  464. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  465. }
  466. lcd_update_enable(true);
  467. lcd_update(2);
  468. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  469. gcode_G28(true, true, false); //home X and Y
  470. st_synchronize();
  471. if (automatic_recovery_after_crash) {
  472. enquecommand_P(PSTR("CRASH_RECOVER"));
  473. }else{
  474. setTargetHotend(0, active_extruder);
  475. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  476. lcd_update_enable(true);
  477. if (yesno)
  478. {
  479. enquecommand_P(PSTR("CRASH_RECOVER"));
  480. }
  481. else
  482. {
  483. enquecommand_P(PSTR("CRASH_CANCEL"));
  484. }
  485. }
  486. }
  487. void crashdet_recover()
  488. {
  489. crashdet_restore_print_and_continue();
  490. tmc2130_sg_stop_on_crash = true;
  491. }
  492. void crashdet_cancel()
  493. {
  494. saved_printing = false;
  495. tmc2130_sg_stop_on_crash = true;
  496. if (saved_printing_type == PRINTING_TYPE_SD) {
  497. lcd_print_stop();
  498. }else if(saved_printing_type == PRINTING_TYPE_USB){
  499. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  500. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  501. }
  502. }
  503. #endif //TMC2130
  504. void failstats_reset_print()
  505. {
  506. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  510. }
  511. #ifdef MESH_BED_LEVELING
  512. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  513. #endif
  514. // Factory reset function
  515. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  516. // Level input parameter sets depth of reset
  517. int er_progress = 0;
  518. static void factory_reset(char level)
  519. {
  520. lcd_clear();
  521. switch (level) {
  522. // Level 0: Language reset
  523. case 0:
  524. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  525. WRITE(BEEPER, HIGH);
  526. _delay_ms(100);
  527. WRITE(BEEPER, LOW);
  528. lang_reset();
  529. break;
  530. //Level 1: Reset statistics
  531. case 1:
  532. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  533. WRITE(BEEPER, HIGH);
  534. _delay_ms(100);
  535. WRITE(BEEPER, LOW);
  536. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  537. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  540. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  546. lcd_menu_statistics();
  547. break;
  548. // Level 2: Prepare for shipping
  549. case 2:
  550. //lcd_puts_P(PSTR("Factory RESET"));
  551. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  552. // Force language selection at the next boot up.
  553. lang_reset();
  554. // Force the "Follow calibration flow" message at the next boot up.
  555. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  556. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  557. farm_no = 0;
  558. farm_mode = false;
  559. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  560. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  561. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  562. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  563. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  564. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  565. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  567. #ifdef FILAMENT_SENSOR
  568. fsensor_enable();
  569. fsensor_autoload_set(true);
  570. #endif //FILAMENT_SENSOR
  571. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  572. WRITE(BEEPER, HIGH);
  573. _delay_ms(100);
  574. WRITE(BEEPER, LOW);
  575. //_delay_ms(2000);
  576. break;
  577. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  578. case 3:
  579. lcd_puts_P(PSTR("Factory RESET"));
  580. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  581. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  582. WRITE(BEEPER, HIGH);
  583. _delay_ms(100);
  584. WRITE(BEEPER, LOW);
  585. er_progress = 0;
  586. lcd_puts_at_P(3, 3, PSTR(" "));
  587. lcd_set_cursor(3, 3);
  588. lcd_print(er_progress);
  589. // Erase EEPROM
  590. for (int i = 0; i < 4096; i++) {
  591. eeprom_update_byte((uint8_t*)i, 0xFF);
  592. if (i % 41 == 0) {
  593. er_progress++;
  594. lcd_puts_at_P(3, 3, PSTR(" "));
  595. lcd_set_cursor(3, 3);
  596. lcd_print(er_progress);
  597. lcd_puts_P(PSTR("%"));
  598. }
  599. }
  600. break;
  601. case 4:
  602. bowden_menu();
  603. break;
  604. default:
  605. break;
  606. }
  607. }
  608. extern "C" {
  609. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  610. }
  611. int uart_putchar(char c, FILE *)
  612. {
  613. MYSERIAL.write(c);
  614. return 0;
  615. }
  616. void lcd_splash()
  617. {
  618. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  619. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  620. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  621. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  622. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  623. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  624. }
  625. void factory_reset()
  626. {
  627. KEEPALIVE_STATE(PAUSED_FOR_USER);
  628. if (!READ(BTN_ENC))
  629. {
  630. _delay_ms(1000);
  631. if (!READ(BTN_ENC))
  632. {
  633. lcd_clear();
  634. lcd_puts_P(PSTR("Factory RESET"));
  635. SET_OUTPUT(BEEPER);
  636. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  637. WRITE(BEEPER, HIGH);
  638. while (!READ(BTN_ENC));
  639. WRITE(BEEPER, LOW);
  640. _delay_ms(2000);
  641. char level = reset_menu();
  642. factory_reset(level);
  643. switch (level) {
  644. case 0: _delay_ms(0); break;
  645. case 1: _delay_ms(0); break;
  646. case 2: _delay_ms(0); break;
  647. case 3: _delay_ms(0); break;
  648. }
  649. }
  650. }
  651. KEEPALIVE_STATE(IN_HANDLER);
  652. }
  653. void show_fw_version_warnings() {
  654. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  655. switch (FW_DEV_VERSION) {
  656. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  657. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  658. case(FW_VERSION_DEVEL):
  659. case(FW_VERSION_DEBUG):
  660. lcd_update_enable(false);
  661. lcd_clear();
  662. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  663. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  664. #else
  665. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  666. #endif
  667. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  668. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  669. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  670. lcd_wait_for_click();
  671. break;
  672. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  673. }
  674. lcd_update_enable(true);
  675. }
  676. uint8_t check_printer_version()
  677. {
  678. uint8_t version_changed = 0;
  679. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  680. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  681. if (printer_type != PRINTER_TYPE) {
  682. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  683. else version_changed |= 0b10;
  684. }
  685. if (motherboard != MOTHERBOARD) {
  686. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  687. else version_changed |= 0b01;
  688. }
  689. return version_changed;
  690. }
  691. #ifdef BOOTAPP
  692. #include "bootapp.h" //bootloader support
  693. #endif //BOOTAPP
  694. #if (LANG_MODE != 0) //secondary language support
  695. #ifdef W25X20CL
  696. // language update from external flash
  697. #define LANGBOOT_BLOCKSIZE 0x1000u
  698. #define LANGBOOT_RAMBUFFER 0x0800
  699. void update_sec_lang_from_external_flash()
  700. {
  701. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  702. {
  703. uint8_t lang = boot_reserved >> 4;
  704. uint8_t state = boot_reserved & 0xf;
  705. lang_table_header_t header;
  706. uint32_t src_addr;
  707. if (lang_get_header(lang, &header, &src_addr))
  708. {
  709. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  710. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  711. delay(100);
  712. boot_reserved = (state + 1) | (lang << 4);
  713. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  714. {
  715. cli();
  716. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  717. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  718. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  719. if (state == 0)
  720. {
  721. //TODO - check header integrity
  722. }
  723. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  724. }
  725. else
  726. {
  727. //TODO - check sec lang data integrity
  728. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  729. }
  730. }
  731. }
  732. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  733. }
  734. #ifdef DEBUG_W25X20CL
  735. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  736. {
  737. lang_table_header_t header;
  738. uint8_t count = 0;
  739. uint32_t addr = 0x00000;
  740. while (1)
  741. {
  742. printf_P(_n("LANGTABLE%d:"), count);
  743. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  744. if (header.magic != LANG_MAGIC)
  745. {
  746. printf_P(_n("NG!\n"));
  747. break;
  748. }
  749. printf_P(_n("OK\n"));
  750. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  751. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  752. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  753. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  754. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  755. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  756. addr += header.size;
  757. codes[count] = header.code;
  758. count ++;
  759. }
  760. return count;
  761. }
  762. void list_sec_lang_from_external_flash()
  763. {
  764. uint16_t codes[8];
  765. uint8_t count = lang_xflash_enum_codes(codes);
  766. printf_P(_n("XFlash lang count = %hhd\n"), count);
  767. }
  768. #endif //DEBUG_W25X20CL
  769. #endif //W25X20CL
  770. #endif //(LANG_MODE != 0)
  771. // "Setup" function is called by the Arduino framework on startup.
  772. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  773. // are initialized by the main() routine provided by the Arduino framework.
  774. void setup()
  775. {
  776. mmu_init();
  777. ultralcd_init();
  778. spi_init();
  779. lcd_splash();
  780. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  781. #ifdef W25X20CL
  782. if (!w25x20cl_init())
  783. kill(_i("External SPI flash W25X20CL not responding."));
  784. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  785. optiboot_w25x20cl_enter();
  786. #endif
  787. #if (LANG_MODE != 0) //secondary language support
  788. #ifdef W25X20CL
  789. if (w25x20cl_init())
  790. update_sec_lang_from_external_flash();
  791. #endif //W25X20CL
  792. #endif //(LANG_MODE != 0)
  793. setup_killpin();
  794. setup_powerhold();
  795. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  796. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  797. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  798. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  799. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  800. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  801. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  802. if (farm_mode)
  803. {
  804. no_response = true; //we need confirmation by recieving PRUSA thx
  805. important_status = 8;
  806. prusa_statistics(8);
  807. selectedSerialPort = 1;
  808. #ifdef TMC2130
  809. //increased extruder current (PFW363)
  810. tmc2130_current_h[E_AXIS] = 36;
  811. tmc2130_current_r[E_AXIS] = 36;
  812. #endif //TMC2130
  813. #ifdef FILAMENT_SENSOR
  814. //disabled filament autoload (PFW360)
  815. fsensor_autoload_set(false);
  816. #endif //FILAMENT_SENSOR
  817. }
  818. MYSERIAL.begin(BAUDRATE);
  819. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  820. #ifndef W25X20CL
  821. SERIAL_PROTOCOLLNPGM("start");
  822. #endif //W25X20CL
  823. stdout = uartout;
  824. SERIAL_ECHO_START;
  825. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  826. #ifdef DEBUG_SEC_LANG
  827. lang_table_header_t header;
  828. uint32_t src_addr = 0x00000;
  829. if (lang_get_header(1, &header, &src_addr))
  830. {
  831. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  832. #define LT_PRINT_TEST 2
  833. // flash usage
  834. // total p.test
  835. //0 252718 t+c text code
  836. //1 253142 424 170 254
  837. //2 253040 322 164 158
  838. //3 253248 530 135 395
  839. #if (LT_PRINT_TEST==1) //not optimized printf
  840. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  841. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  842. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  843. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  844. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  845. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  846. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  847. #elif (LT_PRINT_TEST==2) //optimized printf
  848. printf_P(
  849. _n(
  850. " _src_addr = 0x%08lx\n"
  851. " _lt_magic = 0x%08lx %S\n"
  852. " _lt_size = 0x%04x (%d)\n"
  853. " _lt_count = 0x%04x (%d)\n"
  854. " _lt_chsum = 0x%04x\n"
  855. " _lt_code = 0x%04x (%c%c)\n"
  856. " _lt_resv1 = 0x%08lx\n"
  857. ),
  858. src_addr,
  859. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  860. header.size, header.size,
  861. header.count, header.count,
  862. header.checksum,
  863. header.code, header.code >> 8, header.code & 0xff,
  864. header.signature
  865. );
  866. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  867. MYSERIAL.print(" _src_addr = 0x");
  868. MYSERIAL.println(src_addr, 16);
  869. MYSERIAL.print(" _lt_magic = 0x");
  870. MYSERIAL.print(header.magic, 16);
  871. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  872. MYSERIAL.print(" _lt_size = 0x");
  873. MYSERIAL.print(header.size, 16);
  874. MYSERIAL.print(" (");
  875. MYSERIAL.print(header.size, 10);
  876. MYSERIAL.println(")");
  877. MYSERIAL.print(" _lt_count = 0x");
  878. MYSERIAL.print(header.count, 16);
  879. MYSERIAL.print(" (");
  880. MYSERIAL.print(header.count, 10);
  881. MYSERIAL.println(")");
  882. MYSERIAL.print(" _lt_chsum = 0x");
  883. MYSERIAL.println(header.checksum, 16);
  884. MYSERIAL.print(" _lt_code = 0x");
  885. MYSERIAL.print(header.code, 16);
  886. MYSERIAL.print(" (");
  887. MYSERIAL.print((char)(header.code >> 8), 0);
  888. MYSERIAL.print((char)(header.code & 0xff), 0);
  889. MYSERIAL.println(")");
  890. MYSERIAL.print(" _lt_resv1 = 0x");
  891. MYSERIAL.println(header.signature, 16);
  892. #endif //(LT_PRINT_TEST==)
  893. #undef LT_PRINT_TEST
  894. #if 0
  895. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  896. for (uint16_t i = 0; i < 1024; i++)
  897. {
  898. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  899. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  900. if ((i % 16) == 15) putchar('\n');
  901. }
  902. #endif
  903. uint16_t sum = 0;
  904. for (uint16_t i = 0; i < header.size; i++)
  905. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  906. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  907. sum -= header.checksum; //subtract checksum
  908. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  909. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  910. if (sum == header.checksum)
  911. printf_P(_n("Checksum OK\n"), sum);
  912. else
  913. printf_P(_n("Checksum NG\n"), sum);
  914. }
  915. else
  916. printf_P(_n("lang_get_header failed!\n"));
  917. #if 0
  918. for (uint16_t i = 0; i < 1024*10; i++)
  919. {
  920. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  921. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  922. if ((i % 16) == 15) putchar('\n');
  923. }
  924. #endif
  925. #if 0
  926. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  927. for (int i = 0; i < 4096; ++i) {
  928. int b = eeprom_read_byte((unsigned char*)i);
  929. if (b != 255) {
  930. SERIAL_ECHO(i);
  931. SERIAL_ECHO(":");
  932. SERIAL_ECHO(b);
  933. SERIAL_ECHOLN("");
  934. }
  935. }
  936. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  937. #endif
  938. #endif //DEBUG_SEC_LANG
  939. // Check startup - does nothing if bootloader sets MCUSR to 0
  940. byte mcu = MCUSR;
  941. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  942. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  943. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  944. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  945. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  946. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  947. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  948. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  949. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  950. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  951. MCUSR = 0;
  952. //SERIAL_ECHORPGM(MSG_MARLIN);
  953. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  954. #ifdef STRING_VERSION_CONFIG_H
  955. #ifdef STRING_CONFIG_H_AUTHOR
  956. SERIAL_ECHO_START;
  957. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  958. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  959. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  960. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  961. SERIAL_ECHOPGM("Compiled: ");
  962. SERIAL_ECHOLNPGM(__DATE__);
  963. #endif
  964. #endif
  965. SERIAL_ECHO_START;
  966. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  967. SERIAL_ECHO(freeMemory());
  968. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  969. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  970. //lcd_update_enable(false); // why do we need this?? - andre
  971. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  972. bool previous_settings_retrieved = false;
  973. uint8_t hw_changed = check_printer_version();
  974. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  975. previous_settings_retrieved = Config_RetrieveSettings();
  976. }
  977. else { //printer version was changed so use default settings
  978. Config_ResetDefault();
  979. }
  980. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  981. tp_init(); // Initialize temperature loop
  982. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  983. plan_init(); // Initialize planner;
  984. factory_reset();
  985. lcd_encoder_diff=0;
  986. #ifdef TMC2130
  987. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  988. if (silentMode == 0xff) silentMode = 0;
  989. tmc2130_mode = TMC2130_MODE_NORMAL;
  990. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  991. if (crashdet && !farm_mode)
  992. {
  993. crashdet_enable();
  994. puts_P(_N("CrashDetect ENABLED!"));
  995. }
  996. else
  997. {
  998. crashdet_disable();
  999. puts_P(_N("CrashDetect DISABLED"));
  1000. }
  1001. #ifdef TMC2130_LINEARITY_CORRECTION
  1002. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1003. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1004. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1005. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1006. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1007. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1008. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1009. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1010. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1011. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1012. #endif //TMC2130_LINEARITY_CORRECTION
  1013. #ifdef TMC2130_VARIABLE_RESOLUTION
  1014. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1015. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1016. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1017. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1018. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1019. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1020. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1021. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1022. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1023. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1024. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1025. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1026. #else //TMC2130_VARIABLE_RESOLUTION
  1027. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1028. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1029. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1030. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1031. #endif //TMC2130_VARIABLE_RESOLUTION
  1032. #endif //TMC2130
  1033. st_init(); // Initialize stepper, this enables interrupts!
  1034. #ifdef TMC2130
  1035. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1036. update_mode_profile();
  1037. tmc2130_init();
  1038. #endif //TMC2130
  1039. setup_photpin();
  1040. servo_init();
  1041. // Reset the machine correction matrix.
  1042. // It does not make sense to load the correction matrix until the machine is homed.
  1043. world2machine_reset();
  1044. #ifdef FILAMENT_SENSOR
  1045. fsensor_init();
  1046. #endif //FILAMENT_SENSOR
  1047. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1048. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1049. #endif
  1050. setup_homepin();
  1051. #ifdef TMC2130
  1052. if (1) {
  1053. // try to run to zero phase before powering the Z motor.
  1054. // Move in negative direction
  1055. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1056. // Round the current micro-micro steps to micro steps.
  1057. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1058. // Until the phase counter is reset to zero.
  1059. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1060. delay(2);
  1061. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1062. delay(2);
  1063. }
  1064. }
  1065. #endif //TMC2130
  1066. #if defined(Z_AXIS_ALWAYS_ON)
  1067. enable_z();
  1068. #endif
  1069. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1070. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1071. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1072. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1073. if (farm_mode)
  1074. {
  1075. prusa_statistics(8);
  1076. }
  1077. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1078. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1079. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1080. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1081. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1082. // where all the EEPROM entries are set to 0x0ff.
  1083. // Once a firmware boots up, it forces at least a language selection, which changes
  1084. // EEPROM_LANG to number lower than 0x0ff.
  1085. // 1) Set a high power mode.
  1086. #ifdef TMC2130
  1087. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1088. tmc2130_mode = TMC2130_MODE_NORMAL;
  1089. #endif //TMC2130
  1090. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1091. }
  1092. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1093. // but this times out if a blocking dialog is shown in setup().
  1094. card.initsd();
  1095. #ifdef DEBUG_SD_SPEED_TEST
  1096. if (card.cardOK)
  1097. {
  1098. uint8_t* buff = (uint8_t*)block_buffer;
  1099. uint32_t block = 0;
  1100. uint32_t sumr = 0;
  1101. uint32_t sumw = 0;
  1102. for (int i = 0; i < 1024; i++)
  1103. {
  1104. uint32_t u = micros();
  1105. bool res = card.card.readBlock(i, buff);
  1106. u = micros() - u;
  1107. if (res)
  1108. {
  1109. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1110. sumr += u;
  1111. u = micros();
  1112. res = card.card.writeBlock(i, buff);
  1113. u = micros() - u;
  1114. if (res)
  1115. {
  1116. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1117. sumw += u;
  1118. }
  1119. else
  1120. {
  1121. printf_P(PSTR("writeBlock %4d error\n"), i);
  1122. break;
  1123. }
  1124. }
  1125. else
  1126. {
  1127. printf_P(PSTR("readBlock %4d error\n"), i);
  1128. break;
  1129. }
  1130. }
  1131. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1132. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1133. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1134. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1135. }
  1136. else
  1137. printf_P(PSTR("Card NG!\n"));
  1138. #endif //DEBUG_SD_SPEED_TEST
  1139. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1140. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1141. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1142. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1143. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1144. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1145. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1146. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1147. #ifdef SNMM
  1148. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1149. int _z = BOWDEN_LENGTH;
  1150. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1151. }
  1152. #endif
  1153. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1154. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1155. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1156. #if (LANG_MODE != 0) //secondary language support
  1157. #ifdef DEBUG_W25X20CL
  1158. W25X20CL_SPI_ENTER();
  1159. uint8_t uid[8]; // 64bit unique id
  1160. w25x20cl_rd_uid(uid);
  1161. puts_P(_n("W25X20CL UID="));
  1162. for (uint8_t i = 0; i < 8; i ++)
  1163. printf_P(PSTR("%02hhx"), uid[i]);
  1164. putchar('\n');
  1165. list_sec_lang_from_external_flash();
  1166. #endif //DEBUG_W25X20CL
  1167. // lang_reset();
  1168. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1169. lcd_language();
  1170. #ifdef DEBUG_SEC_LANG
  1171. uint16_t sec_lang_code = lang_get_code(1);
  1172. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1173. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1174. lang_print_sec_lang(uartout);
  1175. #endif //DEBUG_SEC_LANG
  1176. #endif //(LANG_MODE != 0)
  1177. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1178. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1179. temp_cal_active = false;
  1180. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1181. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1182. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1183. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1184. int16_t z_shift = 0;
  1185. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1186. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1187. temp_cal_active = false;
  1188. }
  1189. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1190. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1191. }
  1192. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1193. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1194. }
  1195. check_babystep(); //checking if Z babystep is in allowed range
  1196. #ifdef UVLO_SUPPORT
  1197. setup_uvlo_interrupt();
  1198. #endif //UVLO_SUPPORT
  1199. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1200. setup_fan_interrupt();
  1201. #endif //DEBUG_DISABLE_FANCHECK
  1202. #ifdef FILAMENT_SENSOR
  1203. fsensor_setup_interrupt();
  1204. #endif //FILAMENT_SENSOR
  1205. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1206. #ifndef DEBUG_DISABLE_STARTMSGS
  1207. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1208. show_fw_version_warnings();
  1209. switch (hw_changed) {
  1210. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1211. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1212. case(0b01):
  1213. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1214. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1215. break;
  1216. case(0b10):
  1217. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1218. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1219. break;
  1220. case(0b11):
  1221. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1222. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1223. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1224. break;
  1225. default: break; //no change, show no message
  1226. }
  1227. if (!previous_settings_retrieved) {
  1228. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1229. Config_StoreSettings();
  1230. }
  1231. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1232. lcd_wizard(WizState::Run);
  1233. }
  1234. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1235. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1236. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1237. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1238. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1239. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1240. // Show the message.
  1241. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1242. }
  1243. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1244. // Show the message.
  1245. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1246. lcd_update_enable(true);
  1247. }
  1248. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1249. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1250. lcd_update_enable(true);
  1251. }
  1252. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1253. // Show the message.
  1254. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1255. }
  1256. }
  1257. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1258. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1259. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1260. update_current_firmware_version_to_eeprom();
  1261. lcd_selftest();
  1262. }
  1263. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1264. KEEPALIVE_STATE(IN_PROCESS);
  1265. #endif //DEBUG_DISABLE_STARTMSGS
  1266. lcd_update_enable(true);
  1267. lcd_clear();
  1268. lcd_update(2);
  1269. // Store the currently running firmware into an eeprom,
  1270. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1271. update_current_firmware_version_to_eeprom();
  1272. #ifdef TMC2130
  1273. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1274. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1275. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1276. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1277. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1278. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1279. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1280. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1281. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1282. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1283. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1284. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1285. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1286. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1287. #endif //TMC2130
  1288. #ifdef UVLO_SUPPORT
  1289. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1290. /*
  1291. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1292. else {
  1293. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1294. lcd_update_enable(true);
  1295. lcd_update(2);
  1296. lcd_setstatuspgm(_T(WELCOME_MSG));
  1297. }
  1298. */
  1299. manage_heater(); // Update temperatures
  1300. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1301. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1302. #endif
  1303. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1304. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1305. puts_P(_N("Automatic recovery!"));
  1306. #endif
  1307. recover_print(1);
  1308. }
  1309. else{
  1310. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1311. puts_P(_N("Normal recovery!"));
  1312. #endif
  1313. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1314. else {
  1315. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1316. lcd_update_enable(true);
  1317. lcd_update(2);
  1318. lcd_setstatuspgm(_T(WELCOME_MSG));
  1319. }
  1320. }
  1321. }
  1322. #endif //UVLO_SUPPORT
  1323. KEEPALIVE_STATE(NOT_BUSY);
  1324. #ifdef WATCHDOG
  1325. wdt_enable(WDTO_4S);
  1326. #endif //WATCHDOG
  1327. }
  1328. void trace();
  1329. #define CHUNK_SIZE 64 // bytes
  1330. #define SAFETY_MARGIN 1
  1331. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1332. int chunkHead = 0;
  1333. void serial_read_stream() {
  1334. setAllTargetHotends(0);
  1335. setTargetBed(0);
  1336. lcd_clear();
  1337. lcd_puts_P(PSTR(" Upload in progress"));
  1338. // first wait for how many bytes we will receive
  1339. uint32_t bytesToReceive;
  1340. // receive the four bytes
  1341. char bytesToReceiveBuffer[4];
  1342. for (int i=0; i<4; i++) {
  1343. int data;
  1344. while ((data = MYSERIAL.read()) == -1) {};
  1345. bytesToReceiveBuffer[i] = data;
  1346. }
  1347. // make it a uint32
  1348. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1349. // we're ready, notify the sender
  1350. MYSERIAL.write('+');
  1351. // lock in the routine
  1352. uint32_t receivedBytes = 0;
  1353. while (prusa_sd_card_upload) {
  1354. int i;
  1355. for (i=0; i<CHUNK_SIZE; i++) {
  1356. int data;
  1357. // check if we're not done
  1358. if (receivedBytes == bytesToReceive) {
  1359. break;
  1360. }
  1361. // read the next byte
  1362. while ((data = MYSERIAL.read()) == -1) {};
  1363. receivedBytes++;
  1364. // save it to the chunk
  1365. chunk[i] = data;
  1366. }
  1367. // write the chunk to SD
  1368. card.write_command_no_newline(&chunk[0]);
  1369. // notify the sender we're ready for more data
  1370. MYSERIAL.write('+');
  1371. // for safety
  1372. manage_heater();
  1373. // check if we're done
  1374. if(receivedBytes == bytesToReceive) {
  1375. trace(); // beep
  1376. card.closefile();
  1377. prusa_sd_card_upload = false;
  1378. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1379. }
  1380. }
  1381. }
  1382. #ifdef HOST_KEEPALIVE_FEATURE
  1383. /**
  1384. * Output a "busy" message at regular intervals
  1385. * while the machine is not accepting commands.
  1386. */
  1387. void host_keepalive() {
  1388. if (farm_mode) return;
  1389. long ms = millis();
  1390. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1391. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1392. switch (busy_state) {
  1393. case IN_HANDLER:
  1394. case IN_PROCESS:
  1395. SERIAL_ECHO_START;
  1396. SERIAL_ECHOLNPGM("busy: processing");
  1397. break;
  1398. case PAUSED_FOR_USER:
  1399. SERIAL_ECHO_START;
  1400. SERIAL_ECHOLNPGM("busy: paused for user");
  1401. break;
  1402. case PAUSED_FOR_INPUT:
  1403. SERIAL_ECHO_START;
  1404. SERIAL_ECHOLNPGM("busy: paused for input");
  1405. break;
  1406. default:
  1407. break;
  1408. }
  1409. }
  1410. prev_busy_signal_ms = ms;
  1411. }
  1412. #endif
  1413. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1414. // Before loop(), the setup() function is called by the main() routine.
  1415. void loop()
  1416. {
  1417. KEEPALIVE_STATE(NOT_BUSY);
  1418. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1419. {
  1420. is_usb_printing = true;
  1421. usb_printing_counter--;
  1422. _usb_timer = millis();
  1423. }
  1424. if (usb_printing_counter == 0)
  1425. {
  1426. is_usb_printing = false;
  1427. }
  1428. if (prusa_sd_card_upload)
  1429. {
  1430. //we read byte-by byte
  1431. serial_read_stream();
  1432. } else
  1433. {
  1434. get_command();
  1435. #ifdef SDSUPPORT
  1436. card.checkautostart(false);
  1437. #endif
  1438. if(buflen)
  1439. {
  1440. cmdbuffer_front_already_processed = false;
  1441. #ifdef SDSUPPORT
  1442. if(card.saving)
  1443. {
  1444. // Saving a G-code file onto an SD-card is in progress.
  1445. // Saving starts with M28, saving until M29 is seen.
  1446. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1447. card.write_command(CMDBUFFER_CURRENT_STRING);
  1448. if(card.logging)
  1449. process_commands();
  1450. else
  1451. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1452. } else {
  1453. card.closefile();
  1454. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1455. }
  1456. } else {
  1457. process_commands();
  1458. }
  1459. #else
  1460. process_commands();
  1461. #endif //SDSUPPORT
  1462. if (! cmdbuffer_front_already_processed && buflen)
  1463. {
  1464. // ptr points to the start of the block currently being processed.
  1465. // The first character in the block is the block type.
  1466. char *ptr = cmdbuffer + bufindr;
  1467. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1468. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1469. union {
  1470. struct {
  1471. char lo;
  1472. char hi;
  1473. } lohi;
  1474. uint16_t value;
  1475. } sdlen;
  1476. sdlen.value = 0;
  1477. {
  1478. // This block locks the interrupts globally for 3.25 us,
  1479. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1480. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1481. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1482. cli();
  1483. // Reset the command to something, which will be ignored by the power panic routine,
  1484. // so this buffer length will not be counted twice.
  1485. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1486. // Extract the current buffer length.
  1487. sdlen.lohi.lo = *ptr ++;
  1488. sdlen.lohi.hi = *ptr;
  1489. // and pass it to the planner queue.
  1490. planner_add_sd_length(sdlen.value);
  1491. sei();
  1492. }
  1493. }
  1494. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1495. cli();
  1496. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1497. // and one for each command to previous block in the planner queue.
  1498. planner_add_sd_length(1);
  1499. sei();
  1500. }
  1501. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1502. // this block's SD card length will not be counted twice as its command type has been replaced
  1503. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1504. cmdqueue_pop_front();
  1505. }
  1506. host_keepalive();
  1507. }
  1508. }
  1509. //check heater every n milliseconds
  1510. manage_heater();
  1511. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1512. checkHitEndstops();
  1513. lcd_update(0);
  1514. #ifdef TMC2130
  1515. tmc2130_check_overtemp();
  1516. if (tmc2130_sg_crash)
  1517. {
  1518. uint8_t crash = tmc2130_sg_crash;
  1519. tmc2130_sg_crash = 0;
  1520. // crashdet_stop_and_save_print();
  1521. switch (crash)
  1522. {
  1523. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1524. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1525. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1526. }
  1527. }
  1528. #endif //TMC2130
  1529. mmu_loop();
  1530. }
  1531. #define DEFINE_PGM_READ_ANY(type, reader) \
  1532. static inline type pgm_read_any(const type *p) \
  1533. { return pgm_read_##reader##_near(p); }
  1534. DEFINE_PGM_READ_ANY(float, float);
  1535. DEFINE_PGM_READ_ANY(signed char, byte);
  1536. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1537. static const PROGMEM type array##_P[3] = \
  1538. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1539. static inline type array(int axis) \
  1540. { return pgm_read_any(&array##_P[axis]); } \
  1541. type array##_ext(int axis) \
  1542. { return pgm_read_any(&array##_P[axis]); }
  1543. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1544. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1545. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1546. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1547. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1548. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1549. static void axis_is_at_home(int axis) {
  1550. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1551. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1552. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1553. }
  1554. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1555. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1556. //! @return original feedmultiply
  1557. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1558. saved_feedrate = feedrate;
  1559. int l_feedmultiply = feedmultiply;
  1560. feedmultiply = 100;
  1561. previous_millis_cmd = millis();
  1562. enable_endstops(enable_endstops_now);
  1563. return l_feedmultiply;
  1564. }
  1565. //! @param original_feedmultiply feedmultiply to restore
  1566. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1567. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1568. enable_endstops(false);
  1569. #endif
  1570. feedrate = saved_feedrate;
  1571. feedmultiply = original_feedmultiply;
  1572. previous_millis_cmd = millis();
  1573. }
  1574. #ifdef ENABLE_AUTO_BED_LEVELING
  1575. #ifdef AUTO_BED_LEVELING_GRID
  1576. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1577. {
  1578. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1579. planeNormal.debug("planeNormal");
  1580. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1581. //bedLevel.debug("bedLevel");
  1582. //plan_bed_level_matrix.debug("bed level before");
  1583. //vector_3 uncorrected_position = plan_get_position_mm();
  1584. //uncorrected_position.debug("position before");
  1585. vector_3 corrected_position = plan_get_position();
  1586. // corrected_position.debug("position after");
  1587. current_position[X_AXIS] = corrected_position.x;
  1588. current_position[Y_AXIS] = corrected_position.y;
  1589. current_position[Z_AXIS] = corrected_position.z;
  1590. // put the bed at 0 so we don't go below it.
  1591. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1592. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1593. }
  1594. #else // not AUTO_BED_LEVELING_GRID
  1595. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1596. plan_bed_level_matrix.set_to_identity();
  1597. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1598. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1599. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1600. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1601. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1602. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1603. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1604. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1605. vector_3 corrected_position = plan_get_position();
  1606. current_position[X_AXIS] = corrected_position.x;
  1607. current_position[Y_AXIS] = corrected_position.y;
  1608. current_position[Z_AXIS] = corrected_position.z;
  1609. // put the bed at 0 so we don't go below it.
  1610. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1611. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1612. }
  1613. #endif // AUTO_BED_LEVELING_GRID
  1614. static void run_z_probe() {
  1615. plan_bed_level_matrix.set_to_identity();
  1616. feedrate = homing_feedrate[Z_AXIS];
  1617. // move down until you find the bed
  1618. float zPosition = -10;
  1619. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1620. st_synchronize();
  1621. // we have to let the planner know where we are right now as it is not where we said to go.
  1622. zPosition = st_get_position_mm(Z_AXIS);
  1623. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1624. // move up the retract distance
  1625. zPosition += home_retract_mm(Z_AXIS);
  1626. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1627. st_synchronize();
  1628. // move back down slowly to find bed
  1629. feedrate = homing_feedrate[Z_AXIS]/4;
  1630. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1631. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1632. st_synchronize();
  1633. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1634. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1635. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1636. }
  1637. static void do_blocking_move_to(float x, float y, float z) {
  1638. float oldFeedRate = feedrate;
  1639. feedrate = homing_feedrate[Z_AXIS];
  1640. current_position[Z_AXIS] = z;
  1641. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1642. st_synchronize();
  1643. feedrate = XY_TRAVEL_SPEED;
  1644. current_position[X_AXIS] = x;
  1645. current_position[Y_AXIS] = y;
  1646. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1647. st_synchronize();
  1648. feedrate = oldFeedRate;
  1649. }
  1650. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1651. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1652. }
  1653. /// Probe bed height at position (x,y), returns the measured z value
  1654. static float probe_pt(float x, float y, float z_before) {
  1655. // move to right place
  1656. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1657. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1658. run_z_probe();
  1659. float measured_z = current_position[Z_AXIS];
  1660. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1661. SERIAL_PROTOCOLPGM(" x: ");
  1662. SERIAL_PROTOCOL(x);
  1663. SERIAL_PROTOCOLPGM(" y: ");
  1664. SERIAL_PROTOCOL(y);
  1665. SERIAL_PROTOCOLPGM(" z: ");
  1666. SERIAL_PROTOCOL(measured_z);
  1667. SERIAL_PROTOCOLPGM("\n");
  1668. return measured_z;
  1669. }
  1670. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1671. #ifdef LIN_ADVANCE
  1672. /**
  1673. * M900: Set and/or Get advance K factor and WH/D ratio
  1674. *
  1675. * K<factor> Set advance K factor
  1676. * R<ratio> Set ratio directly (overrides WH/D)
  1677. * W<width> H<height> D<diam> Set ratio from WH/D
  1678. */
  1679. inline void gcode_M900() {
  1680. st_synchronize();
  1681. const float newK = code_seen('K') ? code_value_float() : -1;
  1682. if (newK >= 0) extruder_advance_k = newK;
  1683. float newR = code_seen('R') ? code_value_float() : -1;
  1684. if (newR < 0) {
  1685. const float newD = code_seen('D') ? code_value_float() : -1,
  1686. newW = code_seen('W') ? code_value_float() : -1,
  1687. newH = code_seen('H') ? code_value_float() : -1;
  1688. if (newD >= 0 && newW >= 0 && newH >= 0)
  1689. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1690. }
  1691. if (newR >= 0) advance_ed_ratio = newR;
  1692. SERIAL_ECHO_START;
  1693. SERIAL_ECHOPGM("Advance K=");
  1694. SERIAL_ECHOLN(extruder_advance_k);
  1695. SERIAL_ECHOPGM(" E/D=");
  1696. const float ratio = advance_ed_ratio;
  1697. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1698. }
  1699. #endif // LIN_ADVANCE
  1700. bool check_commands() {
  1701. bool end_command_found = false;
  1702. while (buflen)
  1703. {
  1704. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1705. if (!cmdbuffer_front_already_processed)
  1706. cmdqueue_pop_front();
  1707. cmdbuffer_front_already_processed = false;
  1708. }
  1709. return end_command_found;
  1710. }
  1711. #ifdef TMC2130
  1712. bool calibrate_z_auto()
  1713. {
  1714. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1715. lcd_clear();
  1716. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1717. bool endstops_enabled = enable_endstops(true);
  1718. int axis_up_dir = -home_dir(Z_AXIS);
  1719. tmc2130_home_enter(Z_AXIS_MASK);
  1720. current_position[Z_AXIS] = 0;
  1721. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1722. set_destination_to_current();
  1723. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1724. feedrate = homing_feedrate[Z_AXIS];
  1725. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1726. st_synchronize();
  1727. // current_position[axis] = 0;
  1728. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1729. tmc2130_home_exit();
  1730. enable_endstops(false);
  1731. current_position[Z_AXIS] = 0;
  1732. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1733. set_destination_to_current();
  1734. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1735. feedrate = homing_feedrate[Z_AXIS] / 2;
  1736. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1737. st_synchronize();
  1738. enable_endstops(endstops_enabled);
  1739. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1740. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1741. return true;
  1742. }
  1743. #endif //TMC2130
  1744. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1745. {
  1746. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1747. #define HOMEAXIS_DO(LETTER) \
  1748. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1749. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1750. {
  1751. int axis_home_dir = home_dir(axis);
  1752. feedrate = homing_feedrate[axis];
  1753. #ifdef TMC2130
  1754. tmc2130_home_enter(X_AXIS_MASK << axis);
  1755. #endif //TMC2130
  1756. // Move away a bit, so that the print head does not touch the end position,
  1757. // and the following movement to endstop has a chance to achieve the required velocity
  1758. // for the stall guard to work.
  1759. current_position[axis] = 0;
  1760. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1761. set_destination_to_current();
  1762. // destination[axis] = 11.f;
  1763. destination[axis] = -3.f * axis_home_dir;
  1764. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1765. st_synchronize();
  1766. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1767. endstops_hit_on_purpose();
  1768. enable_endstops(false);
  1769. current_position[axis] = 0;
  1770. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1771. destination[axis] = 1. * axis_home_dir;
  1772. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1773. st_synchronize();
  1774. // Now continue to move up to the left end stop with the collision detection enabled.
  1775. enable_endstops(true);
  1776. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1777. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1778. st_synchronize();
  1779. for (uint8_t i = 0; i < cnt; i++)
  1780. {
  1781. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1782. endstops_hit_on_purpose();
  1783. enable_endstops(false);
  1784. current_position[axis] = 0;
  1785. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1786. destination[axis] = -10.f * axis_home_dir;
  1787. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1788. st_synchronize();
  1789. endstops_hit_on_purpose();
  1790. // Now move left up to the collision, this time with a repeatable velocity.
  1791. enable_endstops(true);
  1792. destination[axis] = 11.f * axis_home_dir;
  1793. #ifdef TMC2130
  1794. feedrate = homing_feedrate[axis];
  1795. #else //TMC2130
  1796. feedrate = homing_feedrate[axis] / 2;
  1797. #endif //TMC2130
  1798. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1799. st_synchronize();
  1800. #ifdef TMC2130
  1801. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1802. if (pstep) pstep[i] = mscnt >> 4;
  1803. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1804. #endif //TMC2130
  1805. }
  1806. endstops_hit_on_purpose();
  1807. enable_endstops(false);
  1808. #ifdef TMC2130
  1809. uint8_t orig = tmc2130_home_origin[axis];
  1810. uint8_t back = tmc2130_home_bsteps[axis];
  1811. if (tmc2130_home_enabled && (orig <= 63))
  1812. {
  1813. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1814. if (back > 0)
  1815. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1816. }
  1817. else
  1818. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1819. tmc2130_home_exit();
  1820. #endif //TMC2130
  1821. axis_is_at_home(axis);
  1822. axis_known_position[axis] = true;
  1823. // Move from minimum
  1824. #ifdef TMC2130
  1825. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1826. #else //TMC2130
  1827. float dist = - axis_home_dir * 0.01f * 64;
  1828. #endif //TMC2130
  1829. current_position[axis] -= dist;
  1830. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1831. current_position[axis] += dist;
  1832. destination[axis] = current_position[axis];
  1833. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1834. st_synchronize();
  1835. feedrate = 0.0;
  1836. }
  1837. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1838. {
  1839. #ifdef TMC2130
  1840. FORCE_HIGH_POWER_START;
  1841. #endif
  1842. int axis_home_dir = home_dir(axis);
  1843. current_position[axis] = 0;
  1844. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1845. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1846. feedrate = homing_feedrate[axis];
  1847. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1848. st_synchronize();
  1849. #ifdef TMC2130
  1850. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1851. FORCE_HIGH_POWER_END;
  1852. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1853. return;
  1854. }
  1855. #endif //TMC2130
  1856. current_position[axis] = 0;
  1857. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1858. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1859. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1860. st_synchronize();
  1861. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1862. feedrate = homing_feedrate[axis]/2 ;
  1863. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1864. st_synchronize();
  1865. #ifdef TMC2130
  1866. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1867. FORCE_HIGH_POWER_END;
  1868. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1869. return;
  1870. }
  1871. #endif //TMC2130
  1872. axis_is_at_home(axis);
  1873. destination[axis] = current_position[axis];
  1874. feedrate = 0.0;
  1875. endstops_hit_on_purpose();
  1876. axis_known_position[axis] = true;
  1877. #ifdef TMC2130
  1878. FORCE_HIGH_POWER_END;
  1879. #endif
  1880. }
  1881. enable_endstops(endstops_enabled);
  1882. }
  1883. /**/
  1884. void home_xy()
  1885. {
  1886. set_destination_to_current();
  1887. homeaxis(X_AXIS);
  1888. homeaxis(Y_AXIS);
  1889. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1890. endstops_hit_on_purpose();
  1891. }
  1892. void refresh_cmd_timeout(void)
  1893. {
  1894. previous_millis_cmd = millis();
  1895. }
  1896. #ifdef FWRETRACT
  1897. void retract(bool retracting, bool swapretract = false) {
  1898. if(retracting && !retracted[active_extruder]) {
  1899. destination[X_AXIS]=current_position[X_AXIS];
  1900. destination[Y_AXIS]=current_position[Y_AXIS];
  1901. destination[Z_AXIS]=current_position[Z_AXIS];
  1902. destination[E_AXIS]=current_position[E_AXIS];
  1903. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1904. plan_set_e_position(current_position[E_AXIS]);
  1905. float oldFeedrate = feedrate;
  1906. feedrate=cs.retract_feedrate*60;
  1907. retracted[active_extruder]=true;
  1908. prepare_move();
  1909. current_position[Z_AXIS]-=cs.retract_zlift;
  1910. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1911. prepare_move();
  1912. feedrate = oldFeedrate;
  1913. } else if(!retracting && retracted[active_extruder]) {
  1914. destination[X_AXIS]=current_position[X_AXIS];
  1915. destination[Y_AXIS]=current_position[Y_AXIS];
  1916. destination[Z_AXIS]=current_position[Z_AXIS];
  1917. destination[E_AXIS]=current_position[E_AXIS];
  1918. current_position[Z_AXIS]+=cs.retract_zlift;
  1919. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1920. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1921. plan_set_e_position(current_position[E_AXIS]);
  1922. float oldFeedrate = feedrate;
  1923. feedrate=cs.retract_recover_feedrate*60;
  1924. retracted[active_extruder]=false;
  1925. prepare_move();
  1926. feedrate = oldFeedrate;
  1927. }
  1928. } //retract
  1929. #endif //FWRETRACT
  1930. void trace() {
  1931. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1932. tone(BEEPER, 440);
  1933. delay(25);
  1934. noTone(BEEPER);
  1935. delay(20);
  1936. }
  1937. /*
  1938. void ramming() {
  1939. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1940. if (current_temperature[0] < 230) {
  1941. //PLA
  1942. max_feedrate[E_AXIS] = 50;
  1943. //current_position[E_AXIS] -= 8;
  1944. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1945. //current_position[E_AXIS] += 8;
  1946. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1947. current_position[E_AXIS] += 5.4;
  1948. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1949. current_position[E_AXIS] += 3.2;
  1950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1951. current_position[E_AXIS] += 3;
  1952. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1953. st_synchronize();
  1954. max_feedrate[E_AXIS] = 80;
  1955. current_position[E_AXIS] -= 82;
  1956. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1957. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1958. current_position[E_AXIS] -= 20;
  1959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1960. current_position[E_AXIS] += 5;
  1961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1962. current_position[E_AXIS] += 5;
  1963. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1964. current_position[E_AXIS] -= 10;
  1965. st_synchronize();
  1966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1967. current_position[E_AXIS] += 10;
  1968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1969. current_position[E_AXIS] -= 10;
  1970. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1971. current_position[E_AXIS] += 10;
  1972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1973. current_position[E_AXIS] -= 10;
  1974. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1975. st_synchronize();
  1976. }
  1977. else {
  1978. //ABS
  1979. max_feedrate[E_AXIS] = 50;
  1980. //current_position[E_AXIS] -= 8;
  1981. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1982. //current_position[E_AXIS] += 8;
  1983. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1984. current_position[E_AXIS] += 3.1;
  1985. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1986. current_position[E_AXIS] += 3.1;
  1987. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1988. current_position[E_AXIS] += 4;
  1989. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1990. st_synchronize();
  1991. //current_position[X_AXIS] += 23; //delay
  1992. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1993. //current_position[X_AXIS] -= 23; //delay
  1994. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1995. delay(4700);
  1996. max_feedrate[E_AXIS] = 80;
  1997. current_position[E_AXIS] -= 92;
  1998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1999. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2000. current_position[E_AXIS] -= 5;
  2001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2002. current_position[E_AXIS] += 5;
  2003. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2004. current_position[E_AXIS] -= 5;
  2005. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2006. st_synchronize();
  2007. current_position[E_AXIS] += 5;
  2008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2009. current_position[E_AXIS] -= 5;
  2010. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2011. current_position[E_AXIS] += 5;
  2012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2013. current_position[E_AXIS] -= 5;
  2014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2015. st_synchronize();
  2016. }
  2017. }
  2018. */
  2019. #ifdef TMC2130
  2020. void force_high_power_mode(bool start_high_power_section) {
  2021. uint8_t silent;
  2022. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2023. if (silent == 1) {
  2024. //we are in silent mode, set to normal mode to enable crash detection
  2025. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2026. st_synchronize();
  2027. cli();
  2028. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2029. update_mode_profile();
  2030. tmc2130_init();
  2031. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2032. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2033. st_reset_timer();
  2034. sei();
  2035. }
  2036. }
  2037. #endif //TMC2130
  2038. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2039. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2040. }
  2041. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2042. st_synchronize();
  2043. #if 0
  2044. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2045. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2046. #endif
  2047. // Flag for the display update routine and to disable the print cancelation during homing.
  2048. homing_flag = true;
  2049. // Which axes should be homed?
  2050. bool home_x = home_x_axis;
  2051. bool home_y = home_y_axis;
  2052. bool home_z = home_z_axis;
  2053. // Either all X,Y,Z codes are present, or none of them.
  2054. bool home_all_axes = home_x == home_y && home_x == home_z;
  2055. if (home_all_axes)
  2056. // No X/Y/Z code provided means to home all axes.
  2057. home_x = home_y = home_z = true;
  2058. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2059. if (home_all_axes) {
  2060. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2061. feedrate = homing_feedrate[Z_AXIS];
  2062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2063. st_synchronize();
  2064. }
  2065. #ifdef ENABLE_AUTO_BED_LEVELING
  2066. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2067. #endif //ENABLE_AUTO_BED_LEVELING
  2068. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2069. // the planner will not perform any adjustments in the XY plane.
  2070. // Wait for the motors to stop and update the current position with the absolute values.
  2071. world2machine_revert_to_uncorrected();
  2072. // For mesh bed leveling deactivate the matrix temporarily.
  2073. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2074. // in a single axis only.
  2075. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2076. #ifdef MESH_BED_LEVELING
  2077. uint8_t mbl_was_active = mbl.active;
  2078. mbl.active = 0;
  2079. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2080. #endif
  2081. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2082. // consumed during the first movements following this statement.
  2083. if (home_z)
  2084. babystep_undo();
  2085. saved_feedrate = feedrate;
  2086. int l_feedmultiply = feedmultiply;
  2087. feedmultiply = 100;
  2088. previous_millis_cmd = millis();
  2089. enable_endstops(true);
  2090. memcpy(destination, current_position, sizeof(destination));
  2091. feedrate = 0.0;
  2092. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2093. if(home_z)
  2094. homeaxis(Z_AXIS);
  2095. #endif
  2096. #ifdef QUICK_HOME
  2097. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2098. if(home_x && home_y) //first diagonal move
  2099. {
  2100. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2101. int x_axis_home_dir = home_dir(X_AXIS);
  2102. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2103. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2104. feedrate = homing_feedrate[X_AXIS];
  2105. if(homing_feedrate[Y_AXIS]<feedrate)
  2106. feedrate = homing_feedrate[Y_AXIS];
  2107. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2108. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2109. } else {
  2110. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2111. }
  2112. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2113. st_synchronize();
  2114. axis_is_at_home(X_AXIS);
  2115. axis_is_at_home(Y_AXIS);
  2116. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2117. destination[X_AXIS] = current_position[X_AXIS];
  2118. destination[Y_AXIS] = current_position[Y_AXIS];
  2119. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2120. feedrate = 0.0;
  2121. st_synchronize();
  2122. endstops_hit_on_purpose();
  2123. current_position[X_AXIS] = destination[X_AXIS];
  2124. current_position[Y_AXIS] = destination[Y_AXIS];
  2125. current_position[Z_AXIS] = destination[Z_AXIS];
  2126. }
  2127. #endif /* QUICK_HOME */
  2128. #ifdef TMC2130
  2129. if(home_x)
  2130. {
  2131. if (!calib)
  2132. homeaxis(X_AXIS);
  2133. else
  2134. tmc2130_home_calibrate(X_AXIS);
  2135. }
  2136. if(home_y)
  2137. {
  2138. if (!calib)
  2139. homeaxis(Y_AXIS);
  2140. else
  2141. tmc2130_home_calibrate(Y_AXIS);
  2142. }
  2143. #else //TMC2130
  2144. if(home_x) homeaxis(X_AXIS);
  2145. if(home_y) homeaxis(Y_AXIS);
  2146. #endif //TMC2130
  2147. if(home_x_axis && home_x_value != 0)
  2148. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2149. if(home_y_axis && home_y_value != 0)
  2150. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2151. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2152. #ifndef Z_SAFE_HOMING
  2153. if(home_z) {
  2154. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2155. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2156. feedrate = max_feedrate[Z_AXIS];
  2157. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2158. st_synchronize();
  2159. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2160. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2161. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2162. {
  2163. homeaxis(X_AXIS);
  2164. homeaxis(Y_AXIS);
  2165. }
  2166. // 1st mesh bed leveling measurement point, corrected.
  2167. world2machine_initialize();
  2168. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2169. world2machine_reset();
  2170. if (destination[Y_AXIS] < Y_MIN_POS)
  2171. destination[Y_AXIS] = Y_MIN_POS;
  2172. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2173. feedrate = homing_feedrate[Z_AXIS]/10;
  2174. current_position[Z_AXIS] = 0;
  2175. enable_endstops(false);
  2176. #ifdef DEBUG_BUILD
  2177. SERIAL_ECHOLNPGM("plan_set_position()");
  2178. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2179. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2180. #endif
  2181. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2182. #ifdef DEBUG_BUILD
  2183. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2184. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2185. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2186. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2187. #endif
  2188. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2189. st_synchronize();
  2190. current_position[X_AXIS] = destination[X_AXIS];
  2191. current_position[Y_AXIS] = destination[Y_AXIS];
  2192. enable_endstops(true);
  2193. endstops_hit_on_purpose();
  2194. homeaxis(Z_AXIS);
  2195. #else // MESH_BED_LEVELING
  2196. homeaxis(Z_AXIS);
  2197. #endif // MESH_BED_LEVELING
  2198. }
  2199. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2200. if(home_all_axes) {
  2201. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2202. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2203. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2204. feedrate = XY_TRAVEL_SPEED/60;
  2205. current_position[Z_AXIS] = 0;
  2206. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2207. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2208. st_synchronize();
  2209. current_position[X_AXIS] = destination[X_AXIS];
  2210. current_position[Y_AXIS] = destination[Y_AXIS];
  2211. homeaxis(Z_AXIS);
  2212. }
  2213. // Let's see if X and Y are homed and probe is inside bed area.
  2214. if(home_z) {
  2215. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2216. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2217. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2218. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2219. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2220. current_position[Z_AXIS] = 0;
  2221. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2222. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2223. feedrate = max_feedrate[Z_AXIS];
  2224. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2225. st_synchronize();
  2226. homeaxis(Z_AXIS);
  2227. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2228. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2229. SERIAL_ECHO_START;
  2230. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2231. } else {
  2232. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2233. SERIAL_ECHO_START;
  2234. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2235. }
  2236. }
  2237. #endif // Z_SAFE_HOMING
  2238. #endif // Z_HOME_DIR < 0
  2239. if(home_z_axis && home_z_value != 0)
  2240. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2241. #ifdef ENABLE_AUTO_BED_LEVELING
  2242. if(home_z)
  2243. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2244. #endif
  2245. // Set the planner and stepper routine positions.
  2246. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2247. // contains the machine coordinates.
  2248. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2249. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2250. enable_endstops(false);
  2251. #endif
  2252. feedrate = saved_feedrate;
  2253. feedmultiply = l_feedmultiply;
  2254. previous_millis_cmd = millis();
  2255. endstops_hit_on_purpose();
  2256. #ifndef MESH_BED_LEVELING
  2257. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2258. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2259. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2260. lcd_adjust_z();
  2261. #endif
  2262. // Load the machine correction matrix
  2263. world2machine_initialize();
  2264. // and correct the current_position XY axes to match the transformed coordinate system.
  2265. world2machine_update_current();
  2266. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2267. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2268. {
  2269. if (! home_z && mbl_was_active) {
  2270. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2271. mbl.active = true;
  2272. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2273. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2274. }
  2275. }
  2276. else
  2277. {
  2278. st_synchronize();
  2279. homing_flag = false;
  2280. }
  2281. #endif
  2282. if (farm_mode) { prusa_statistics(20); };
  2283. homing_flag = false;
  2284. #if 0
  2285. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2286. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2287. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2288. #endif
  2289. }
  2290. void adjust_bed_reset()
  2291. {
  2292. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2293. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2294. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2295. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2296. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2297. }
  2298. //! @brief Calibrate XYZ
  2299. //! @param onlyZ if true, calibrate only Z axis
  2300. //! @param verbosity_level
  2301. //! @retval true Succeeded
  2302. //! @retval false Failed
  2303. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2304. {
  2305. bool final_result = false;
  2306. #ifdef TMC2130
  2307. FORCE_HIGH_POWER_START;
  2308. #endif // TMC2130
  2309. // Only Z calibration?
  2310. if (!onlyZ)
  2311. {
  2312. setTargetBed(0);
  2313. setAllTargetHotends(0);
  2314. adjust_bed_reset(); //reset bed level correction
  2315. }
  2316. // Disable the default update procedure of the display. We will do a modal dialog.
  2317. lcd_update_enable(false);
  2318. // Let the planner use the uncorrected coordinates.
  2319. mbl.reset();
  2320. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2321. // the planner will not perform any adjustments in the XY plane.
  2322. // Wait for the motors to stop and update the current position with the absolute values.
  2323. world2machine_revert_to_uncorrected();
  2324. // Reset the baby step value applied without moving the axes.
  2325. babystep_reset();
  2326. // Mark all axes as in a need for homing.
  2327. memset(axis_known_position, 0, sizeof(axis_known_position));
  2328. // Home in the XY plane.
  2329. //set_destination_to_current();
  2330. int l_feedmultiply = setup_for_endstop_move();
  2331. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2332. home_xy();
  2333. enable_endstops(false);
  2334. current_position[X_AXIS] += 5;
  2335. current_position[Y_AXIS] += 5;
  2336. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2337. st_synchronize();
  2338. // Let the user move the Z axes up to the end stoppers.
  2339. #ifdef TMC2130
  2340. if (calibrate_z_auto())
  2341. {
  2342. #else //TMC2130
  2343. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2344. {
  2345. #endif //TMC2130
  2346. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2347. if(onlyZ){
  2348. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2349. lcd_set_cursor(0, 3);
  2350. lcd_print(1);
  2351. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2352. }else{
  2353. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2354. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2355. lcd_set_cursor(0, 2);
  2356. lcd_print(1);
  2357. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2358. }
  2359. refresh_cmd_timeout();
  2360. #ifndef STEEL_SHEET
  2361. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2362. {
  2363. lcd_wait_for_cool_down();
  2364. }
  2365. #endif //STEEL_SHEET
  2366. if(!onlyZ)
  2367. {
  2368. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2369. #ifdef STEEL_SHEET
  2370. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2371. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2372. #endif //STEEL_SHEET
  2373. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2374. KEEPALIVE_STATE(IN_HANDLER);
  2375. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2376. lcd_set_cursor(0, 2);
  2377. lcd_print(1);
  2378. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2379. }
  2380. // Move the print head close to the bed.
  2381. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2382. bool endstops_enabled = enable_endstops(true);
  2383. #ifdef TMC2130
  2384. tmc2130_home_enter(Z_AXIS_MASK);
  2385. #endif //TMC2130
  2386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2387. st_synchronize();
  2388. #ifdef TMC2130
  2389. tmc2130_home_exit();
  2390. #endif //TMC2130
  2391. enable_endstops(endstops_enabled);
  2392. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2393. {
  2394. if (onlyZ)
  2395. {
  2396. clean_up_after_endstop_move(l_feedmultiply);
  2397. // Z only calibration.
  2398. // Load the machine correction matrix
  2399. world2machine_initialize();
  2400. // and correct the current_position to match the transformed coordinate system.
  2401. world2machine_update_current();
  2402. //FIXME
  2403. bool result = sample_mesh_and_store_reference();
  2404. if (result)
  2405. {
  2406. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2407. // Shipped, the nozzle height has been set already. The user can start printing now.
  2408. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2409. final_result = true;
  2410. // babystep_apply();
  2411. }
  2412. }
  2413. else
  2414. {
  2415. // Reset the baby step value and the baby step applied flag.
  2416. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2417. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2418. // Complete XYZ calibration.
  2419. uint8_t point_too_far_mask = 0;
  2420. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2421. clean_up_after_endstop_move(l_feedmultiply);
  2422. // Print head up.
  2423. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2424. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2425. st_synchronize();
  2426. //#ifndef NEW_XYZCAL
  2427. if (result >= 0)
  2428. {
  2429. #ifdef HEATBED_V2
  2430. sample_z();
  2431. #else //HEATBED_V2
  2432. point_too_far_mask = 0;
  2433. // Second half: The fine adjustment.
  2434. // Let the planner use the uncorrected coordinates.
  2435. mbl.reset();
  2436. world2machine_reset();
  2437. // Home in the XY plane.
  2438. int l_feedmultiply = setup_for_endstop_move();
  2439. home_xy();
  2440. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2441. clean_up_after_endstop_move(l_feedmultiply);
  2442. // Print head up.
  2443. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2444. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2445. st_synchronize();
  2446. // if (result >= 0) babystep_apply();
  2447. #endif //HEATBED_V2
  2448. }
  2449. //#endif //NEW_XYZCAL
  2450. lcd_update_enable(true);
  2451. lcd_update(2);
  2452. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2453. if (result >= 0)
  2454. {
  2455. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2456. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2457. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2458. final_result = true;
  2459. }
  2460. }
  2461. #ifdef TMC2130
  2462. tmc2130_home_exit();
  2463. #endif
  2464. }
  2465. else
  2466. {
  2467. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2468. final_result = false;
  2469. }
  2470. }
  2471. else
  2472. {
  2473. // Timeouted.
  2474. }
  2475. lcd_update_enable(true);
  2476. #ifdef TMC2130
  2477. FORCE_HIGH_POWER_END;
  2478. #endif // TMC2130
  2479. return final_result;
  2480. }
  2481. void gcode_M114()
  2482. {
  2483. SERIAL_PROTOCOLPGM("X:");
  2484. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2485. SERIAL_PROTOCOLPGM(" Y:");
  2486. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2487. SERIAL_PROTOCOLPGM(" Z:");
  2488. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2489. SERIAL_PROTOCOLPGM(" E:");
  2490. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2491. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2492. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2493. SERIAL_PROTOCOLPGM(" Y:");
  2494. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2495. SERIAL_PROTOCOLPGM(" Z:");
  2496. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2497. SERIAL_PROTOCOLPGM(" E:");
  2498. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2499. SERIAL_PROTOCOLLN("");
  2500. }
  2501. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2502. {
  2503. st_synchronize();
  2504. float lastpos[4];
  2505. if (farm_mode)
  2506. {
  2507. prusa_statistics(22);
  2508. }
  2509. //First backup current position and settings
  2510. int feedmultiplyBckp = feedmultiply;
  2511. float HotendTempBckp = degTargetHotend(active_extruder);
  2512. int fanSpeedBckp = fanSpeed;
  2513. lastpos[X_AXIS] = current_position[X_AXIS];
  2514. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2515. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2516. lastpos[E_AXIS] = current_position[E_AXIS];
  2517. //Retract E
  2518. current_position[E_AXIS] += e_shift;
  2519. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2520. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2521. st_synchronize();
  2522. //Lift Z
  2523. current_position[Z_AXIS] += z_shift;
  2524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2525. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2526. st_synchronize();
  2527. //Move XY to side
  2528. current_position[X_AXIS] = x_position;
  2529. current_position[Y_AXIS] = y_position;
  2530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2531. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2532. st_synchronize();
  2533. //Beep, manage nozzle heater and wait for user to start unload filament
  2534. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2535. lcd_change_fil_state = 0;
  2536. // Unload filament
  2537. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2538. else unload_filament(); //unload filament for single material (used also in M702)
  2539. //finish moves
  2540. st_synchronize();
  2541. if (!mmu_enabled)
  2542. {
  2543. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2544. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2545. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2546. if (lcd_change_fil_state == 0)
  2547. {
  2548. lcd_clear();
  2549. lcd_set_cursor(0, 2);
  2550. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2551. current_position[X_AXIS] -= 100;
  2552. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2553. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2554. st_synchronize();
  2555. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2556. }
  2557. }
  2558. if (mmu_enabled)
  2559. {
  2560. if (!automatic) {
  2561. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2562. mmu_M600_wait_and_beep();
  2563. if (saved_printing) {
  2564. lcd_clear();
  2565. lcd_set_cursor(0, 2);
  2566. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2567. mmu_command(MMU_CMD_R0);
  2568. manage_response(false, false);
  2569. }
  2570. }
  2571. mmu_M600_load_filament(automatic);
  2572. }
  2573. else
  2574. M600_load_filament();
  2575. if (!automatic) M600_check_state();
  2576. lcd_update_enable(true);
  2577. //Not let's go back to print
  2578. fanSpeed = fanSpeedBckp;
  2579. //Feed a little of filament to stabilize pressure
  2580. if (!automatic)
  2581. {
  2582. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2583. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2584. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2585. }
  2586. //Move XY back
  2587. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2588. FILAMENTCHANGE_XYFEED, active_extruder);
  2589. st_synchronize();
  2590. //Move Z back
  2591. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2592. FILAMENTCHANGE_ZFEED, active_extruder);
  2593. st_synchronize();
  2594. //Set E position to original
  2595. plan_set_e_position(lastpos[E_AXIS]);
  2596. memcpy(current_position, lastpos, sizeof(lastpos));
  2597. memcpy(destination, current_position, sizeof(current_position));
  2598. //Recover feed rate
  2599. feedmultiply = feedmultiplyBckp;
  2600. char cmd[9];
  2601. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2602. enquecommand(cmd);
  2603. lcd_setstatuspgm(_T(WELCOME_MSG));
  2604. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2605. }
  2606. void gcode_M701()
  2607. {
  2608. printf_P(PSTR("gcode_M701 begin\n"));
  2609. if (mmu_enabled)
  2610. {
  2611. extr_adj(tmp_extruder);//loads current extruder
  2612. mmu_extruder = tmp_extruder;
  2613. }
  2614. else
  2615. {
  2616. enable_z();
  2617. custom_message_type = CUSTOM_MSG_TYPE_F_LOAD;
  2618. #ifdef FSENSOR_QUALITY
  2619. fsensor_oq_meassure_start(40);
  2620. #endif //FSENSOR_QUALITY
  2621. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2622. current_position[E_AXIS] += 40;
  2623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2624. st_synchronize();
  2625. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2626. current_position[E_AXIS] += 30;
  2627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2628. load_filament_final_feed(); //slow sequence
  2629. st_synchronize();
  2630. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2631. delay_keep_alive(50);
  2632. noTone(BEEPER);
  2633. if (!farm_mode && loading_flag) {
  2634. lcd_load_filament_color_check();
  2635. }
  2636. lcd_update_enable(true);
  2637. lcd_update(2);
  2638. lcd_setstatuspgm(_T(WELCOME_MSG));
  2639. disable_z();
  2640. loading_flag = false;
  2641. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  2642. #ifdef FSENSOR_QUALITY
  2643. fsensor_oq_meassure_stop();
  2644. if (!fsensor_oq_result())
  2645. {
  2646. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2647. lcd_update_enable(true);
  2648. lcd_update(2);
  2649. if (disable)
  2650. fsensor_disable();
  2651. }
  2652. #endif //FSENSOR_QUALITY
  2653. }
  2654. }
  2655. /**
  2656. * @brief Get serial number from 32U2 processor
  2657. *
  2658. * Typical format of S/N is:CZPX0917X003XC13518
  2659. *
  2660. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2661. *
  2662. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2663. * reply is transmitted to serial port 1 character by character.
  2664. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2665. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2666. * in any case.
  2667. */
  2668. static void gcode_PRUSA_SN()
  2669. {
  2670. if (farm_mode) {
  2671. selectedSerialPort = 0;
  2672. putchar(';');
  2673. putchar('S');
  2674. int numbersRead = 0;
  2675. ShortTimer timeout;
  2676. timeout.start();
  2677. while (numbersRead < 19) {
  2678. while (MSerial.available() > 0) {
  2679. uint8_t serial_char = MSerial.read();
  2680. selectedSerialPort = 1;
  2681. putchar(serial_char);
  2682. numbersRead++;
  2683. selectedSerialPort = 0;
  2684. }
  2685. if (timeout.expired(100u)) break;
  2686. }
  2687. selectedSerialPort = 1;
  2688. putchar('\n');
  2689. #if 0
  2690. for (int b = 0; b < 3; b++) {
  2691. tone(BEEPER, 110);
  2692. delay(50);
  2693. noTone(BEEPER);
  2694. delay(50);
  2695. }
  2696. #endif
  2697. } else {
  2698. puts_P(_N("Not in farm mode."));
  2699. }
  2700. }
  2701. #ifdef BACKLASH_X
  2702. extern uint8_t st_backlash_x;
  2703. #endif //BACKLASH_X
  2704. #ifdef BACKLASH_Y
  2705. extern uint8_t st_backlash_y;
  2706. #endif //BACKLASH_Y
  2707. //! @brief Parse and process commands
  2708. //!
  2709. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2710. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2711. //!
  2712. //! Implemented Codes
  2713. //! -------------------
  2714. //!
  2715. //!@n PRUSA CODES
  2716. //!@n P F - Returns FW versions
  2717. //!@n P R - Returns revision of printer
  2718. //!
  2719. //!@n G0 -> G1
  2720. //!@n G1 - Coordinated Movement X Y Z E
  2721. //!@n G2 - CW ARC
  2722. //!@n G3 - CCW ARC
  2723. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2724. //!@n G10 - retract filament according to settings of M207
  2725. //!@n G11 - retract recover filament according to settings of M208
  2726. //!@n G28 - Home all Axis
  2727. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2728. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2729. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2730. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2731. //!@n G80 - Automatic mesh bed leveling
  2732. //!@n G81 - Print bed profile
  2733. //!@n G90 - Use Absolute Coordinates
  2734. //!@n G91 - Use Relative Coordinates
  2735. //!@n G92 - Set current position to coordinates given
  2736. //!
  2737. //!@n M Codes
  2738. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2739. //!@n M1 - Same as M0
  2740. //!@n M17 - Enable/Power all stepper motors
  2741. //!@n M18 - Disable all stepper motors; same as M84
  2742. //!@n M20 - List SD card
  2743. //!@n M21 - Init SD card
  2744. //!@n M22 - Release SD card
  2745. //!@n M23 - Select SD file (M23 filename.g)
  2746. //!@n M24 - Start/resume SD print
  2747. //!@n M25 - Pause SD print
  2748. //!@n M26 - Set SD position in bytes (M26 S12345)
  2749. //!@n M27 - Report SD print status
  2750. //!@n M28 - Start SD write (M28 filename.g)
  2751. //!@n M29 - Stop SD write
  2752. //!@n M30 - Delete file from SD (M30 filename.g)
  2753. //!@n M31 - Output time since last M109 or SD card start to serial
  2754. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2755. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2756. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2757. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2758. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2759. //!@n M73 - Show percent done and print time remaining
  2760. //!@n M80 - Turn on Power Supply
  2761. //!@n M81 - Turn off Power Supply
  2762. //!@n M82 - Set E codes absolute (default)
  2763. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2764. //!@n M84 - Disable steppers until next move,
  2765. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2766. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2767. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2768. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2769. //!@n M104 - Set extruder target temp
  2770. //!@n M105 - Read current temp
  2771. //!@n M106 - Fan on
  2772. //!@n M107 - Fan off
  2773. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2774. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2775. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2776. //!@n M112 - Emergency stop
  2777. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2778. //!@n M114 - Output current position to serial port
  2779. //!@n M115 - Capabilities string
  2780. //!@n M117 - display message
  2781. //!@n M119 - Output Endstop status to serial port
  2782. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2783. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2784. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2785. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2786. //!@n M140 - Set bed target temp
  2787. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2788. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2789. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2790. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2791. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2792. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2793. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2794. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2795. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2796. //!@n M206 - set additional homing offset
  2797. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2798. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2799. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2800. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2801. //!@n M220 S<factor in percent>- set speed factor override percentage
  2802. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2803. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2804. //!@n M240 - Trigger a camera to take a photograph
  2805. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2806. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2807. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2808. //!@n M301 - Set PID parameters P I and D
  2809. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2810. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2811. //!@n M304 - Set bed PID parameters P I and D
  2812. //!@n M400 - Finish all moves
  2813. //!@n M401 - Lower z-probe if present
  2814. //!@n M402 - Raise z-probe if present
  2815. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2816. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2817. //!@n M406 - Turn off Filament Sensor extrusion control
  2818. //!@n M407 - Displays measured filament diameter
  2819. //!@n M500 - stores parameters in EEPROM
  2820. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2821. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2822. //!@n M503 - print the current settings (from memory not from EEPROM)
  2823. //!@n M509 - force language selection on next restart
  2824. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2825. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2826. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2827. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2828. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2829. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2830. //!@n M907 - Set digital trimpot motor current using axis codes.
  2831. //!@n M908 - Control digital trimpot directly.
  2832. //!@n M350 - Set microstepping mode.
  2833. //!@n M351 - Toggle MS1 MS2 pins directly.
  2834. //!
  2835. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2836. //!@n M999 - Restart after being stopped by error
  2837. void process_commands()
  2838. {
  2839. if (!buflen) return; //empty command
  2840. #ifdef FILAMENT_RUNOUT_SUPPORT
  2841. SET_INPUT(FR_SENS);
  2842. #endif
  2843. #ifdef CMDBUFFER_DEBUG
  2844. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2845. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2846. SERIAL_ECHOLNPGM("");
  2847. SERIAL_ECHOPGM("In cmdqueue: ");
  2848. SERIAL_ECHO(buflen);
  2849. SERIAL_ECHOLNPGM("");
  2850. #endif /* CMDBUFFER_DEBUG */
  2851. unsigned long codenum; //throw away variable
  2852. char *starpos = NULL;
  2853. #ifdef ENABLE_AUTO_BED_LEVELING
  2854. float x_tmp, y_tmp, z_tmp, real_z;
  2855. #endif
  2856. // PRUSA GCODES
  2857. KEEPALIVE_STATE(IN_HANDLER);
  2858. #ifdef SNMM
  2859. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2860. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2861. int8_t SilentMode;
  2862. #endif
  2863. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2864. starpos = (strchr(strchr_pointer + 5, '*'));
  2865. if (starpos != NULL)
  2866. *(starpos) = '\0';
  2867. lcd_setstatus(strchr_pointer + 5);
  2868. }
  2869. #ifdef TMC2130
  2870. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2871. {
  2872. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  2873. {
  2874. uint8_t mask = 0;
  2875. if (code_seen('X')) mask |= X_AXIS_MASK;
  2876. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2877. crashdet_detected(mask);
  2878. }
  2879. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  2880. crashdet_recover();
  2881. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  2882. crashdet_cancel();
  2883. }
  2884. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2885. {
  2886. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  2887. {
  2888. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2889. axis = (axis == 'E')?3:(axis - 'X');
  2890. if (axis < 4)
  2891. {
  2892. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2893. tmc2130_set_wave(axis, 247, fac);
  2894. }
  2895. }
  2896. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  2897. {
  2898. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2899. axis = (axis == 'E')?3:(axis - 'X');
  2900. if (axis < 4)
  2901. {
  2902. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2903. uint16_t res = tmc2130_get_res(axis);
  2904. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2905. }
  2906. }
  2907. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  2908. {
  2909. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2910. axis = (axis == 'E')?3:(axis - 'X');
  2911. if (axis < 4)
  2912. {
  2913. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2914. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2915. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2916. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2917. char* str_end = 0;
  2918. if (CMDBUFFER_CURRENT_STRING[14])
  2919. {
  2920. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2921. if (str_end && *str_end)
  2922. {
  2923. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2924. if (str_end && *str_end)
  2925. {
  2926. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2927. if (str_end && *str_end)
  2928. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2929. }
  2930. }
  2931. }
  2932. tmc2130_chopper_config[axis].toff = chop0;
  2933. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2934. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2935. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2936. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2937. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2938. }
  2939. }
  2940. }
  2941. #ifdef BACKLASH_X
  2942. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2943. {
  2944. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2945. st_backlash_x = bl;
  2946. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2947. }
  2948. #endif //BACKLASH_X
  2949. #ifdef BACKLASH_Y
  2950. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2951. {
  2952. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2953. st_backlash_y = bl;
  2954. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2955. }
  2956. #endif //BACKLASH_Y
  2957. #endif //TMC2130
  2958. #ifdef PAT9125
  2959. else if (code_seen("FSENSOR_RECOVER")) { //! FSENSOR_RECOVER
  2960. fsensor_restore_print_and_continue();
  2961. }
  2962. #endif //PAT9125
  2963. else if(code_seen("PRUSA")){
  2964. if (code_seen("Ping")) { //! PRUSA Ping
  2965. if (farm_mode) {
  2966. PingTime = millis();
  2967. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2968. }
  2969. }
  2970. else if (code_seen("PRN")) { //! PRUSA PRN
  2971. printf_P(_N("%d"), status_number);
  2972. }else if (code_seen("FAN")) { //! PRUSA FAN
  2973. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2974. }else if (code_seen("fn")) { //! PRUSA fn
  2975. if (farm_mode) {
  2976. printf_P(_N("%d"), farm_no);
  2977. }
  2978. else {
  2979. puts_P(_N("Not in farm mode."));
  2980. }
  2981. }
  2982. else if (code_seen("thx")) //! PRUSA thx
  2983. {
  2984. no_response = false;
  2985. }
  2986. else if (code_seen("uvlo")) //! PRUSA uvlo
  2987. {
  2988. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2989. enquecommand_P(PSTR("M24"));
  2990. }
  2991. else if (code_seen("MMURES")) //! PRUSA MMURES
  2992. {
  2993. mmu_reset();
  2994. }
  2995. else if (code_seen("RESET")) { //! PRUSA RESET
  2996. // careful!
  2997. if (farm_mode) {
  2998. #ifdef WATCHDOG
  2999. boot_app_magic = BOOT_APP_MAGIC;
  3000. boot_app_flags = BOOT_APP_FLG_RUN;
  3001. wdt_enable(WDTO_15MS);
  3002. cli();
  3003. while(1);
  3004. #else //WATCHDOG
  3005. asm volatile("jmp 0x3E000");
  3006. #endif //WATCHDOG
  3007. }
  3008. else {
  3009. MYSERIAL.println("Not in farm mode.");
  3010. }
  3011. }else if (code_seen("fv")) { //! PRUSA fv
  3012. // get file version
  3013. #ifdef SDSUPPORT
  3014. card.openFile(strchr_pointer + 3,true);
  3015. while (true) {
  3016. uint16_t readByte = card.get();
  3017. MYSERIAL.write(readByte);
  3018. if (readByte=='\n') {
  3019. break;
  3020. }
  3021. }
  3022. card.closefile();
  3023. #endif // SDSUPPORT
  3024. } else if (code_seen("M28")) { //! PRUSA M28
  3025. trace();
  3026. prusa_sd_card_upload = true;
  3027. card.openFile(strchr_pointer+4,false);
  3028. } else if (code_seen("SN")) { //! PRUSA SN
  3029. gcode_PRUSA_SN();
  3030. } else if(code_seen("Fir")){ //! PRUSA Fir
  3031. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3032. } else if(code_seen("Rev")){ //! PRUSA Rev
  3033. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3034. } else if(code_seen("Lang")) { //! PRUSA Lang
  3035. lang_reset();
  3036. } else if(code_seen("Lz")) { //! PRUSA Lz
  3037. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3038. } else if(code_seen("Beat")) { //! PRUSA Beat
  3039. // Kick farm link timer
  3040. kicktime = millis();
  3041. } else if(code_seen("FR")) { //! PRUSA FR
  3042. // Factory full reset
  3043. factory_reset(0);
  3044. }
  3045. //else if (code_seen('Cal')) {
  3046. // lcd_calibration();
  3047. // }
  3048. }
  3049. else if (code_seen('^')) {
  3050. // nothing, this is a version line
  3051. } else if(code_seen('G'))
  3052. {
  3053. gcode_in_progress = (int)code_value();
  3054. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3055. switch (gcode_in_progress)
  3056. {
  3057. case 0: // G0 -> G1
  3058. case 1: // G1
  3059. if(Stopped == false) {
  3060. #ifdef FILAMENT_RUNOUT_SUPPORT
  3061. if(READ(FR_SENS)){
  3062. int feedmultiplyBckp=feedmultiply;
  3063. float target[4];
  3064. float lastpos[4];
  3065. target[X_AXIS]=current_position[X_AXIS];
  3066. target[Y_AXIS]=current_position[Y_AXIS];
  3067. target[Z_AXIS]=current_position[Z_AXIS];
  3068. target[E_AXIS]=current_position[E_AXIS];
  3069. lastpos[X_AXIS]=current_position[X_AXIS];
  3070. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3071. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3072. lastpos[E_AXIS]=current_position[E_AXIS];
  3073. //retract by E
  3074. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3075. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3076. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3077. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3078. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3079. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3080. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3081. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3082. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3083. //finish moves
  3084. st_synchronize();
  3085. //disable extruder steppers so filament can be removed
  3086. disable_e0();
  3087. disable_e1();
  3088. disable_e2();
  3089. delay(100);
  3090. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3091. uint8_t cnt=0;
  3092. int counterBeep = 0;
  3093. lcd_wait_interact();
  3094. while(!lcd_clicked()){
  3095. cnt++;
  3096. manage_heater();
  3097. manage_inactivity(true);
  3098. //lcd_update(0);
  3099. if(cnt==0)
  3100. {
  3101. #if BEEPER > 0
  3102. if (counterBeep== 500){
  3103. counterBeep = 0;
  3104. }
  3105. SET_OUTPUT(BEEPER);
  3106. if (counterBeep== 0){
  3107. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3108. WRITE(BEEPER,HIGH);
  3109. }
  3110. if (counterBeep== 20){
  3111. WRITE(BEEPER,LOW);
  3112. }
  3113. counterBeep++;
  3114. #else
  3115. #endif
  3116. }
  3117. }
  3118. WRITE(BEEPER,LOW);
  3119. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3120. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3121. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3122. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3123. lcd_change_fil_state = 0;
  3124. lcd_loading_filament();
  3125. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3126. lcd_change_fil_state = 0;
  3127. lcd_alright();
  3128. switch(lcd_change_fil_state){
  3129. case 2:
  3130. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3131. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3132. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3133. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3134. lcd_loading_filament();
  3135. break;
  3136. case 3:
  3137. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3138. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3139. lcd_loading_color();
  3140. break;
  3141. default:
  3142. lcd_change_success();
  3143. break;
  3144. }
  3145. }
  3146. target[E_AXIS]+= 5;
  3147. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3148. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3149. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3150. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3151. //plan_set_e_position(current_position[E_AXIS]);
  3152. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3153. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3154. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3155. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3156. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3157. plan_set_e_position(lastpos[E_AXIS]);
  3158. feedmultiply=feedmultiplyBckp;
  3159. char cmd[9];
  3160. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3161. enquecommand(cmd);
  3162. }
  3163. #endif
  3164. get_coordinates(); // For X Y Z E F
  3165. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3166. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3167. }
  3168. #ifdef FWRETRACT
  3169. if(cs.autoretract_enabled)
  3170. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3171. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3172. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3173. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3174. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3175. retract(!retracted[active_extruder]);
  3176. return;
  3177. }
  3178. }
  3179. #endif //FWRETRACT
  3180. prepare_move();
  3181. //ClearToSend();
  3182. }
  3183. break;
  3184. case 2: // G2 - CW ARC
  3185. if(Stopped == false) {
  3186. get_arc_coordinates();
  3187. prepare_arc_move(true);
  3188. }
  3189. break;
  3190. case 3: // G3 - CCW ARC
  3191. if(Stopped == false) {
  3192. get_arc_coordinates();
  3193. prepare_arc_move(false);
  3194. }
  3195. break;
  3196. case 4: // G4 dwell
  3197. codenum = 0;
  3198. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3199. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3200. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3201. st_synchronize();
  3202. codenum += millis(); // keep track of when we started waiting
  3203. previous_millis_cmd = millis();
  3204. while(millis() < codenum) {
  3205. manage_heater();
  3206. manage_inactivity();
  3207. lcd_update(0);
  3208. }
  3209. break;
  3210. #ifdef FWRETRACT
  3211. case 10: // G10 retract
  3212. #if EXTRUDERS > 1
  3213. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3214. retract(true,retracted_swap[active_extruder]);
  3215. #else
  3216. retract(true);
  3217. #endif
  3218. break;
  3219. case 11: // G11 retract_recover
  3220. #if EXTRUDERS > 1
  3221. retract(false,retracted_swap[active_extruder]);
  3222. #else
  3223. retract(false);
  3224. #endif
  3225. break;
  3226. #endif //FWRETRACT
  3227. case 28: //G28 Home all Axis one at a time
  3228. {
  3229. long home_x_value = 0;
  3230. long home_y_value = 0;
  3231. long home_z_value = 0;
  3232. // Which axes should be homed?
  3233. bool home_x = code_seen(axis_codes[X_AXIS]);
  3234. home_x_value = code_value_long();
  3235. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3236. home_y_value = code_value_long();
  3237. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3238. home_z_value = code_value_long();
  3239. bool without_mbl = code_seen('W');
  3240. // calibrate?
  3241. bool calib = code_seen('C');
  3242. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3243. if ((home_x || home_y || without_mbl || home_z) == false) {
  3244. // Push the commands to the front of the message queue in the reverse order!
  3245. // There shall be always enough space reserved for these commands.
  3246. goto case_G80;
  3247. }
  3248. break;
  3249. }
  3250. #ifdef ENABLE_AUTO_BED_LEVELING
  3251. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3252. {
  3253. #if Z_MIN_PIN == -1
  3254. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3255. #endif
  3256. // Prevent user from running a G29 without first homing in X and Y
  3257. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3258. {
  3259. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3260. SERIAL_ECHO_START;
  3261. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3262. break; // abort G29, since we don't know where we are
  3263. }
  3264. st_synchronize();
  3265. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3266. //vector_3 corrected_position = plan_get_position_mm();
  3267. //corrected_position.debug("position before G29");
  3268. plan_bed_level_matrix.set_to_identity();
  3269. vector_3 uncorrected_position = plan_get_position();
  3270. //uncorrected_position.debug("position durring G29");
  3271. current_position[X_AXIS] = uncorrected_position.x;
  3272. current_position[Y_AXIS] = uncorrected_position.y;
  3273. current_position[Z_AXIS] = uncorrected_position.z;
  3274. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3275. int l_feedmultiply = setup_for_endstop_move();
  3276. feedrate = homing_feedrate[Z_AXIS];
  3277. #ifdef AUTO_BED_LEVELING_GRID
  3278. // probe at the points of a lattice grid
  3279. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3280. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3281. // solve the plane equation ax + by + d = z
  3282. // A is the matrix with rows [x y 1] for all the probed points
  3283. // B is the vector of the Z positions
  3284. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3285. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3286. // "A" matrix of the linear system of equations
  3287. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3288. // "B" vector of Z points
  3289. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3290. int probePointCounter = 0;
  3291. bool zig = true;
  3292. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3293. {
  3294. int xProbe, xInc;
  3295. if (zig)
  3296. {
  3297. xProbe = LEFT_PROBE_BED_POSITION;
  3298. //xEnd = RIGHT_PROBE_BED_POSITION;
  3299. xInc = xGridSpacing;
  3300. zig = false;
  3301. } else // zag
  3302. {
  3303. xProbe = RIGHT_PROBE_BED_POSITION;
  3304. //xEnd = LEFT_PROBE_BED_POSITION;
  3305. xInc = -xGridSpacing;
  3306. zig = true;
  3307. }
  3308. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3309. {
  3310. float z_before;
  3311. if (probePointCounter == 0)
  3312. {
  3313. // raise before probing
  3314. z_before = Z_RAISE_BEFORE_PROBING;
  3315. } else
  3316. {
  3317. // raise extruder
  3318. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3319. }
  3320. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3321. eqnBVector[probePointCounter] = measured_z;
  3322. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3323. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3324. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3325. probePointCounter++;
  3326. xProbe += xInc;
  3327. }
  3328. }
  3329. clean_up_after_endstop_move(l_feedmultiply);
  3330. // solve lsq problem
  3331. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3332. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3333. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3334. SERIAL_PROTOCOLPGM(" b: ");
  3335. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3336. SERIAL_PROTOCOLPGM(" d: ");
  3337. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3338. set_bed_level_equation_lsq(plane_equation_coefficients);
  3339. free(plane_equation_coefficients);
  3340. #else // AUTO_BED_LEVELING_GRID not defined
  3341. // Probe at 3 arbitrary points
  3342. // probe 1
  3343. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3344. // probe 2
  3345. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3346. // probe 3
  3347. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3348. clean_up_after_endstop_move(l_feedmultiply);
  3349. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3350. #endif // AUTO_BED_LEVELING_GRID
  3351. st_synchronize();
  3352. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3353. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3354. // When the bed is uneven, this height must be corrected.
  3355. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3356. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3357. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3358. z_tmp = current_position[Z_AXIS];
  3359. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3360. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3361. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3362. }
  3363. break;
  3364. #ifndef Z_PROBE_SLED
  3365. case 30: // G30 Single Z Probe
  3366. {
  3367. st_synchronize();
  3368. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3369. int l_feedmultiply = setup_for_endstop_move();
  3370. feedrate = homing_feedrate[Z_AXIS];
  3371. run_z_probe();
  3372. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3373. SERIAL_PROTOCOLPGM(" X: ");
  3374. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3375. SERIAL_PROTOCOLPGM(" Y: ");
  3376. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3377. SERIAL_PROTOCOLPGM(" Z: ");
  3378. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3379. SERIAL_PROTOCOLPGM("\n");
  3380. clean_up_after_endstop_move(l_feedmultiply);
  3381. }
  3382. break;
  3383. #else
  3384. case 31: // dock the sled
  3385. dock_sled(true);
  3386. break;
  3387. case 32: // undock the sled
  3388. dock_sled(false);
  3389. break;
  3390. #endif // Z_PROBE_SLED
  3391. #endif // ENABLE_AUTO_BED_LEVELING
  3392. #ifdef MESH_BED_LEVELING
  3393. case 30: // G30 Single Z Probe
  3394. {
  3395. st_synchronize();
  3396. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3397. int l_feedmultiply = setup_for_endstop_move();
  3398. feedrate = homing_feedrate[Z_AXIS];
  3399. find_bed_induction_sensor_point_z(-10.f, 3);
  3400. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3401. clean_up_after_endstop_move(l_feedmultiply);
  3402. }
  3403. break;
  3404. case 75:
  3405. {
  3406. for (int i = 40; i <= 110; i++)
  3407. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3408. }
  3409. break;
  3410. case 76: //! G76 - PINDA probe temperature calibration
  3411. {
  3412. #ifdef PINDA_THERMISTOR
  3413. if (true)
  3414. {
  3415. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3416. //we need to know accurate position of first calibration point
  3417. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3418. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3419. break;
  3420. }
  3421. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3422. {
  3423. // We don't know where we are! HOME!
  3424. // Push the commands to the front of the message queue in the reverse order!
  3425. // There shall be always enough space reserved for these commands.
  3426. repeatcommand_front(); // repeat G76 with all its parameters
  3427. enquecommand_front_P((PSTR("G28 W0")));
  3428. break;
  3429. }
  3430. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3431. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3432. if (result)
  3433. {
  3434. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3436. current_position[Z_AXIS] = 50;
  3437. current_position[Y_AXIS] = 180;
  3438. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3439. st_synchronize();
  3440. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3441. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3442. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3444. st_synchronize();
  3445. gcode_G28(false, false, true);
  3446. }
  3447. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3448. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3449. current_position[Z_AXIS] = 100;
  3450. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3451. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3452. lcd_temp_cal_show_result(false);
  3453. break;
  3454. }
  3455. }
  3456. lcd_update_enable(true);
  3457. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3458. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3459. float zero_z;
  3460. int z_shift = 0; //unit: steps
  3461. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3462. if (start_temp < 35) start_temp = 35;
  3463. if (start_temp < current_temperature_pinda) start_temp += 5;
  3464. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3465. // setTargetHotend(200, 0);
  3466. setTargetBed(70 + (start_temp - 30));
  3467. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3468. custom_message_state = 1;
  3469. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3470. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3472. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3473. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3474. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3475. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3476. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3477. st_synchronize();
  3478. while (current_temperature_pinda < start_temp)
  3479. {
  3480. delay_keep_alive(1000);
  3481. serialecho_temperatures();
  3482. }
  3483. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3484. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3486. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3487. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3488. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3489. st_synchronize();
  3490. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3491. if (find_z_result == false) {
  3492. lcd_temp_cal_show_result(find_z_result);
  3493. break;
  3494. }
  3495. zero_z = current_position[Z_AXIS];
  3496. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3497. int i = -1; for (; i < 5; i++)
  3498. {
  3499. float temp = (40 + i * 5);
  3500. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3501. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3502. if (start_temp <= temp) break;
  3503. }
  3504. for (i++; i < 5; i++)
  3505. {
  3506. float temp = (40 + i * 5);
  3507. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3508. custom_message_state = i + 2;
  3509. setTargetBed(50 + 10 * (temp - 30) / 5);
  3510. // setTargetHotend(255, 0);
  3511. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3513. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3514. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3515. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3516. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3517. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3518. st_synchronize();
  3519. while (current_temperature_pinda < temp)
  3520. {
  3521. delay_keep_alive(1000);
  3522. serialecho_temperatures();
  3523. }
  3524. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3526. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3527. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3528. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3529. st_synchronize();
  3530. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3531. if (find_z_result == false) {
  3532. lcd_temp_cal_show_result(find_z_result);
  3533. break;
  3534. }
  3535. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3536. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3537. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3538. }
  3539. lcd_temp_cal_show_result(true);
  3540. break;
  3541. }
  3542. #endif //PINDA_THERMISTOR
  3543. setTargetBed(PINDA_MIN_T);
  3544. float zero_z;
  3545. int z_shift = 0; //unit: steps
  3546. int t_c; // temperature
  3547. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3548. // We don't know where we are! HOME!
  3549. // Push the commands to the front of the message queue in the reverse order!
  3550. // There shall be always enough space reserved for these commands.
  3551. repeatcommand_front(); // repeat G76 with all its parameters
  3552. enquecommand_front_P((PSTR("G28 W0")));
  3553. break;
  3554. }
  3555. puts_P(_N("PINDA probe calibration start"));
  3556. custom_message_type = CUSTOM_MSG_TYPE_TEMCAL;
  3557. custom_message_state = 1;
  3558. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3559. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3560. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3561. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3563. st_synchronize();
  3564. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3565. delay_keep_alive(1000);
  3566. serialecho_temperatures();
  3567. }
  3568. //enquecommand_P(PSTR("M190 S50"));
  3569. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3570. delay_keep_alive(1000);
  3571. serialecho_temperatures();
  3572. }
  3573. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3574. current_position[Z_AXIS] = 5;
  3575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3576. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3577. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3578. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3579. st_synchronize();
  3580. find_bed_induction_sensor_point_z(-1.f);
  3581. zero_z = current_position[Z_AXIS];
  3582. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3583. for (int i = 0; i<5; i++) {
  3584. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3585. custom_message_state = i + 2;
  3586. t_c = 60 + i * 10;
  3587. setTargetBed(t_c);
  3588. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3589. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3590. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3591. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3592. st_synchronize();
  3593. while (degBed() < t_c) {
  3594. delay_keep_alive(1000);
  3595. serialecho_temperatures();
  3596. }
  3597. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3598. delay_keep_alive(1000);
  3599. serialecho_temperatures();
  3600. }
  3601. current_position[Z_AXIS] = 5;
  3602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3603. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3604. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3606. st_synchronize();
  3607. find_bed_induction_sensor_point_z(-1.f);
  3608. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3609. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3610. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3611. }
  3612. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  3613. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3614. puts_P(_N("Temperature calibration done."));
  3615. disable_x();
  3616. disable_y();
  3617. disable_z();
  3618. disable_e0();
  3619. disable_e1();
  3620. disable_e2();
  3621. setTargetBed(0); //set bed target temperature back to 0
  3622. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3623. temp_cal_active = true;
  3624. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3625. lcd_update_enable(true);
  3626. lcd_update(2);
  3627. }
  3628. break;
  3629. #ifdef DIS
  3630. case 77:
  3631. {
  3632. //! G77 X200 Y150 XP100 YP15 XO10 Y015
  3633. //! for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3634. //! G77 X232 Y218 XP116 YP109 XO-11 YO0
  3635. float dimension_x = 40;
  3636. float dimension_y = 40;
  3637. int points_x = 40;
  3638. int points_y = 40;
  3639. float offset_x = 74;
  3640. float offset_y = 33;
  3641. if (code_seen('X')) dimension_x = code_value();
  3642. if (code_seen('Y')) dimension_y = code_value();
  3643. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3644. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3645. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3646. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3647. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3648. } break;
  3649. #endif
  3650. case 79: {
  3651. for (int i = 255; i > 0; i = i - 5) {
  3652. fanSpeed = i;
  3653. //delay_keep_alive(2000);
  3654. for (int j = 0; j < 100; j++) {
  3655. delay_keep_alive(100);
  3656. }
  3657. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3658. }
  3659. }break;
  3660. /**
  3661. * G80: Mesh-based Z probe, probes a grid and produces a
  3662. * mesh to compensate for variable bed height
  3663. *
  3664. * The S0 report the points as below
  3665. * @code{.unparsed}
  3666. * +----> X-axis
  3667. * |
  3668. * |
  3669. * v Y-axis
  3670. * @endcode
  3671. */
  3672. case 80:
  3673. #ifdef MK1BP
  3674. break;
  3675. #endif //MK1BP
  3676. case_G80:
  3677. {
  3678. mesh_bed_leveling_flag = true;
  3679. static bool run = false;
  3680. #ifdef SUPPORT_VERBOSITY
  3681. int8_t verbosity_level = 0;
  3682. if (code_seen('V')) {
  3683. // Just 'V' without a number counts as V1.
  3684. char c = strchr_pointer[1];
  3685. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3686. }
  3687. #endif //SUPPORT_VERBOSITY
  3688. // Firstly check if we know where we are
  3689. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3690. // We don't know where we are! HOME!
  3691. // Push the commands to the front of the message queue in the reverse order!
  3692. // There shall be always enough space reserved for these commands.
  3693. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3694. repeatcommand_front(); // repeat G80 with all its parameters
  3695. enquecommand_front_P((PSTR("G28 W0")));
  3696. }
  3697. else {
  3698. mesh_bed_leveling_flag = false;
  3699. }
  3700. break;
  3701. }
  3702. bool temp_comp_start = true;
  3703. #ifdef PINDA_THERMISTOR
  3704. temp_comp_start = false;
  3705. #endif //PINDA_THERMISTOR
  3706. if (temp_comp_start)
  3707. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3708. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3709. temp_compensation_start();
  3710. run = true;
  3711. repeatcommand_front(); // repeat G80 with all its parameters
  3712. enquecommand_front_P((PSTR("G28 W0")));
  3713. }
  3714. else {
  3715. mesh_bed_leveling_flag = false;
  3716. }
  3717. break;
  3718. }
  3719. run = false;
  3720. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3721. mesh_bed_leveling_flag = false;
  3722. break;
  3723. }
  3724. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3725. unsigned int custom_message_type_old = custom_message_type;
  3726. unsigned int custom_message_state_old = custom_message_state;
  3727. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  3728. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3729. lcd_update(1);
  3730. mbl.reset(); //reset mesh bed leveling
  3731. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3732. // consumed during the first movements following this statement.
  3733. babystep_undo();
  3734. // Cycle through all points and probe them
  3735. // First move up. During this first movement, the babystepping will be reverted.
  3736. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3737. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3738. // The move to the first calibration point.
  3739. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3740. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3741. #ifdef SUPPORT_VERBOSITY
  3742. if (verbosity_level >= 1)
  3743. {
  3744. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3745. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3746. }
  3747. #endif //SUPPORT_VERBOSITY
  3748. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3750. // Wait until the move is finished.
  3751. st_synchronize();
  3752. int mesh_point = 0; //index number of calibration point
  3753. int ix = 0;
  3754. int iy = 0;
  3755. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3756. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3757. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3758. #ifdef SUPPORT_VERBOSITY
  3759. if (verbosity_level >= 1) {
  3760. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3761. }
  3762. #endif // SUPPORT_VERBOSITY
  3763. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3764. const char *kill_message = NULL;
  3765. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3766. // Get coords of a measuring point.
  3767. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3768. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3769. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3770. float z0 = 0.f;
  3771. if (has_z && mesh_point > 0) {
  3772. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3773. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3774. //#if 0
  3775. #ifdef SUPPORT_VERBOSITY
  3776. if (verbosity_level >= 1) {
  3777. SERIAL_ECHOLNPGM("");
  3778. SERIAL_ECHOPGM("Bed leveling, point: ");
  3779. MYSERIAL.print(mesh_point);
  3780. SERIAL_ECHOPGM(", calibration z: ");
  3781. MYSERIAL.print(z0, 5);
  3782. SERIAL_ECHOLNPGM("");
  3783. }
  3784. #endif // SUPPORT_VERBOSITY
  3785. //#endif
  3786. }
  3787. // Move Z up to MESH_HOME_Z_SEARCH.
  3788. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3789. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3790. st_synchronize();
  3791. // Move to XY position of the sensor point.
  3792. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3793. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3794. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3795. #ifdef SUPPORT_VERBOSITY
  3796. if (verbosity_level >= 1) {
  3797. SERIAL_PROTOCOL(mesh_point);
  3798. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3799. }
  3800. #endif // SUPPORT_VERBOSITY
  3801. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3802. st_synchronize();
  3803. // Go down until endstop is hit
  3804. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3805. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3806. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3807. break;
  3808. }
  3809. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3810. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3811. break;
  3812. }
  3813. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3814. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3815. break;
  3816. }
  3817. #ifdef SUPPORT_VERBOSITY
  3818. if (verbosity_level >= 10) {
  3819. SERIAL_ECHOPGM("X: ");
  3820. MYSERIAL.print(current_position[X_AXIS], 5);
  3821. SERIAL_ECHOLNPGM("");
  3822. SERIAL_ECHOPGM("Y: ");
  3823. MYSERIAL.print(current_position[Y_AXIS], 5);
  3824. SERIAL_PROTOCOLPGM("\n");
  3825. }
  3826. #endif // SUPPORT_VERBOSITY
  3827. float offset_z = 0;
  3828. #ifdef PINDA_THERMISTOR
  3829. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3830. #endif //PINDA_THERMISTOR
  3831. // #ifdef SUPPORT_VERBOSITY
  3832. /* if (verbosity_level >= 1)
  3833. {
  3834. SERIAL_ECHOPGM("mesh bed leveling: ");
  3835. MYSERIAL.print(current_position[Z_AXIS], 5);
  3836. SERIAL_ECHOPGM(" offset: ");
  3837. MYSERIAL.print(offset_z, 5);
  3838. SERIAL_ECHOLNPGM("");
  3839. }*/
  3840. // #endif // SUPPORT_VERBOSITY
  3841. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3842. custom_message_state--;
  3843. mesh_point++;
  3844. lcd_update(1);
  3845. }
  3846. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3847. #ifdef SUPPORT_VERBOSITY
  3848. if (verbosity_level >= 20) {
  3849. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3850. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3851. MYSERIAL.print(current_position[Z_AXIS], 5);
  3852. }
  3853. #endif // SUPPORT_VERBOSITY
  3854. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3855. st_synchronize();
  3856. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3857. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  3858. bool bState;
  3859. do { // repeat until Z-leveling o.k.
  3860. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-levelling enforced ..."));
  3861. #ifdef TMC2130
  3862. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  3863. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  3864. #else // TMC2130
  3865. lcd_wait_for_click_delay(0); // ~ no timeout
  3866. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  3867. #endif // TMC2130
  3868. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  3869. bState=enable_z_endstop(true);
  3870. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3871. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  3872. st_synchronize();
  3873. enable_z_endstop(bState);
  3874. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  3875. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  3876. custom_message_type=CUSTOM_MSG_TYPE_STATUS; // display / status-line recovery
  3877. lcd_update_enable(true); // display / status-line recovery
  3878. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  3879. repeatcommand_front(); // re-run (i.e. of "G80")
  3880. break;
  3881. }
  3882. clean_up_after_endstop_move(l_feedmultiply);
  3883. // SERIAL_ECHOLNPGM("clean up finished ");
  3884. bool apply_temp_comp = true;
  3885. #ifdef PINDA_THERMISTOR
  3886. apply_temp_comp = false;
  3887. #endif
  3888. if (apply_temp_comp)
  3889. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3890. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3891. // SERIAL_ECHOLNPGM("babystep applied");
  3892. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3893. #ifdef SUPPORT_VERBOSITY
  3894. if (verbosity_level >= 1) {
  3895. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3896. }
  3897. #endif // SUPPORT_VERBOSITY
  3898. for (uint8_t i = 0; i < 4; ++i) {
  3899. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3900. long correction = 0;
  3901. if (code_seen(codes[i]))
  3902. correction = code_value_long();
  3903. else if (eeprom_bed_correction_valid) {
  3904. unsigned char *addr = (i < 2) ?
  3905. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3906. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3907. correction = eeprom_read_int8(addr);
  3908. }
  3909. if (correction == 0)
  3910. continue;
  3911. float offset = float(correction) * 0.001f;
  3912. if (fabs(offset) > 0.101f) {
  3913. SERIAL_ERROR_START;
  3914. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3915. SERIAL_ECHO(offset);
  3916. SERIAL_ECHOLNPGM(" microns");
  3917. }
  3918. else {
  3919. switch (i) {
  3920. case 0:
  3921. for (uint8_t row = 0; row < 3; ++row) {
  3922. mbl.z_values[row][1] += 0.5f * offset;
  3923. mbl.z_values[row][0] += offset;
  3924. }
  3925. break;
  3926. case 1:
  3927. for (uint8_t row = 0; row < 3; ++row) {
  3928. mbl.z_values[row][1] += 0.5f * offset;
  3929. mbl.z_values[row][2] += offset;
  3930. }
  3931. break;
  3932. case 2:
  3933. for (uint8_t col = 0; col < 3; ++col) {
  3934. mbl.z_values[1][col] += 0.5f * offset;
  3935. mbl.z_values[0][col] += offset;
  3936. }
  3937. break;
  3938. case 3:
  3939. for (uint8_t col = 0; col < 3; ++col) {
  3940. mbl.z_values[1][col] += 0.5f * offset;
  3941. mbl.z_values[2][col] += offset;
  3942. }
  3943. break;
  3944. }
  3945. }
  3946. }
  3947. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3948. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3949. // SERIAL_ECHOLNPGM("Upsample finished");
  3950. mbl.active = 1; //activate mesh bed leveling
  3951. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3952. go_home_with_z_lift();
  3953. // SERIAL_ECHOLNPGM("Go home finished");
  3954. //unretract (after PINDA preheat retraction)
  3955. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3956. current_position[E_AXIS] += default_retraction;
  3957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3958. }
  3959. KEEPALIVE_STATE(NOT_BUSY);
  3960. // Restore custom message state
  3961. lcd_setstatuspgm(_T(WELCOME_MSG));
  3962. custom_message_type = custom_message_type_old;
  3963. custom_message_state = custom_message_state_old;
  3964. mesh_bed_leveling_flag = false;
  3965. mesh_bed_run_from_menu = false;
  3966. lcd_update(2);
  3967. }
  3968. break;
  3969. /**
  3970. * G81: Print mesh bed leveling status and bed profile if activated
  3971. */
  3972. case 81:
  3973. if (mbl.active) {
  3974. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3975. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3976. SERIAL_PROTOCOLPGM(",");
  3977. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3978. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3979. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3980. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3981. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3982. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3983. SERIAL_PROTOCOLPGM(" ");
  3984. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3985. }
  3986. SERIAL_PROTOCOLPGM("\n");
  3987. }
  3988. }
  3989. else
  3990. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3991. break;
  3992. #if 0
  3993. /**
  3994. * G82: Single Z probe at current location
  3995. *
  3996. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3997. *
  3998. */
  3999. case 82:
  4000. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4001. int l_feedmultiply = setup_for_endstop_move();
  4002. find_bed_induction_sensor_point_z();
  4003. clean_up_after_endstop_move(l_feedmultiply);
  4004. SERIAL_PROTOCOLPGM("Bed found at: ");
  4005. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4006. SERIAL_PROTOCOLPGM("\n");
  4007. break;
  4008. /**
  4009. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4010. */
  4011. case 83:
  4012. {
  4013. int babystepz = code_seen('S') ? code_value() : 0;
  4014. int BabyPosition = code_seen('P') ? code_value() : 0;
  4015. if (babystepz != 0) {
  4016. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4017. // Is the axis indexed starting with zero or one?
  4018. if (BabyPosition > 4) {
  4019. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4020. }else{
  4021. // Save it to the eeprom
  4022. babystepLoadZ = babystepz;
  4023. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4024. // adjust the Z
  4025. babystepsTodoZadd(babystepLoadZ);
  4026. }
  4027. }
  4028. }
  4029. break;
  4030. /**
  4031. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4032. */
  4033. case 84:
  4034. babystepsTodoZsubtract(babystepLoadZ);
  4035. // babystepLoadZ = 0;
  4036. break;
  4037. /**
  4038. * G85: Prusa3D specific: Pick best babystep
  4039. */
  4040. case 85:
  4041. lcd_pick_babystep();
  4042. break;
  4043. #endif
  4044. /**
  4045. * G86: Prusa3D specific: Disable babystep correction after home.
  4046. * This G-code will be performed at the start of a calibration script.
  4047. */
  4048. case 86:
  4049. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4050. break;
  4051. /**
  4052. * G87: Prusa3D specific: Enable babystep correction after home
  4053. * This G-code will be performed at the end of a calibration script.
  4054. */
  4055. case 87:
  4056. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4057. break;
  4058. /**
  4059. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4060. */
  4061. case 88:
  4062. break;
  4063. #endif // ENABLE_MESH_BED_LEVELING
  4064. case 90: // G90
  4065. relative_mode = false;
  4066. break;
  4067. case 91: // G91
  4068. relative_mode = true;
  4069. break;
  4070. case 92: // G92
  4071. if(!code_seen(axis_codes[E_AXIS]))
  4072. st_synchronize();
  4073. for(int8_t i=0; i < NUM_AXIS; i++) {
  4074. if(code_seen(axis_codes[i])) {
  4075. if(i == E_AXIS) {
  4076. current_position[i] = code_value();
  4077. plan_set_e_position(current_position[E_AXIS]);
  4078. }
  4079. else {
  4080. current_position[i] = code_value()+cs.add_homing[i];
  4081. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4082. }
  4083. }
  4084. }
  4085. break;
  4086. case 98: //! G98 (activate farm mode)
  4087. farm_mode = 1;
  4088. PingTime = millis();
  4089. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4090. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4091. SilentModeMenu = SILENT_MODE_OFF;
  4092. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4093. break;
  4094. case 99: //! G99 (deactivate farm mode)
  4095. farm_mode = 0;
  4096. lcd_printer_connected();
  4097. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4098. lcd_update(2);
  4099. break;
  4100. default:
  4101. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4102. }
  4103. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4104. gcode_in_progress = 0;
  4105. } // end if(code_seen('G'))
  4106. else if(code_seen('M'))
  4107. {
  4108. int index;
  4109. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4110. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4111. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4112. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4113. } else
  4114. {
  4115. mcode_in_progress = (int)code_value();
  4116. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4117. switch(mcode_in_progress)
  4118. {
  4119. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4120. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4121. {
  4122. char *src = strchr_pointer + 2;
  4123. codenum = 0;
  4124. bool hasP = false, hasS = false;
  4125. if (code_seen('P')) {
  4126. codenum = code_value(); // milliseconds to wait
  4127. hasP = codenum > 0;
  4128. }
  4129. if (code_seen('S')) {
  4130. codenum = code_value() * 1000; // seconds to wait
  4131. hasS = codenum > 0;
  4132. }
  4133. starpos = strchr(src, '*');
  4134. if (starpos != NULL) *(starpos) = '\0';
  4135. while (*src == ' ') ++src;
  4136. if (!hasP && !hasS && *src != '\0') {
  4137. lcd_setstatus(src);
  4138. } else {
  4139. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4140. }
  4141. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4142. st_synchronize();
  4143. previous_millis_cmd = millis();
  4144. if (codenum > 0){
  4145. codenum += millis(); // keep track of when we started waiting
  4146. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4147. while(millis() < codenum && !lcd_clicked()){
  4148. manage_heater();
  4149. manage_inactivity(true);
  4150. lcd_update(0);
  4151. }
  4152. KEEPALIVE_STATE(IN_HANDLER);
  4153. lcd_ignore_click(false);
  4154. }else{
  4155. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4156. while(!lcd_clicked()){
  4157. manage_heater();
  4158. manage_inactivity(true);
  4159. lcd_update(0);
  4160. }
  4161. KEEPALIVE_STATE(IN_HANDLER);
  4162. }
  4163. if (IS_SD_PRINTING)
  4164. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4165. else
  4166. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4167. }
  4168. break;
  4169. case 17:
  4170. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4171. enable_x();
  4172. enable_y();
  4173. enable_z();
  4174. enable_e0();
  4175. enable_e1();
  4176. enable_e2();
  4177. break;
  4178. #ifdef SDSUPPORT
  4179. case 20: // M20 - list SD card
  4180. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4181. card.ls();
  4182. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4183. break;
  4184. case 21: // M21 - init SD card
  4185. card.initsd();
  4186. break;
  4187. case 22: //M22 - release SD card
  4188. card.release();
  4189. break;
  4190. case 23: //M23 - Select file
  4191. starpos = (strchr(strchr_pointer + 4,'*'));
  4192. if(starpos!=NULL)
  4193. *(starpos)='\0';
  4194. card.openFile(strchr_pointer + 4,true);
  4195. break;
  4196. case 24: //M24 - Start SD print
  4197. if (!card.paused)
  4198. failstats_reset_print();
  4199. card.startFileprint();
  4200. starttime=millis();
  4201. break;
  4202. case 25: //M25 - Pause SD print
  4203. card.pauseSDPrint();
  4204. break;
  4205. case 26: //M26 - Set SD index
  4206. if(card.cardOK && code_seen('S')) {
  4207. card.setIndex(code_value_long());
  4208. }
  4209. break;
  4210. case 27: //M27 - Get SD status
  4211. card.getStatus();
  4212. break;
  4213. case 28: //M28 - Start SD write
  4214. starpos = (strchr(strchr_pointer + 4,'*'));
  4215. if(starpos != NULL){
  4216. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4217. strchr_pointer = strchr(npos,' ') + 1;
  4218. *(starpos) = '\0';
  4219. }
  4220. card.openFile(strchr_pointer+4,false);
  4221. break;
  4222. case 29: //M29 - Stop SD write
  4223. //processed in write to file routine above
  4224. //card,saving = false;
  4225. break;
  4226. case 30: //M30 <filename> Delete File
  4227. if (card.cardOK){
  4228. card.closefile();
  4229. starpos = (strchr(strchr_pointer + 4,'*'));
  4230. if(starpos != NULL){
  4231. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4232. strchr_pointer = strchr(npos,' ') + 1;
  4233. *(starpos) = '\0';
  4234. }
  4235. card.removeFile(strchr_pointer + 4);
  4236. }
  4237. break;
  4238. case 32: //M32 - Select file and start SD print
  4239. {
  4240. if(card.sdprinting) {
  4241. st_synchronize();
  4242. }
  4243. starpos = (strchr(strchr_pointer + 4,'*'));
  4244. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4245. if(namestartpos==NULL)
  4246. {
  4247. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4248. }
  4249. else
  4250. namestartpos++; //to skip the '!'
  4251. if(starpos!=NULL)
  4252. *(starpos)='\0';
  4253. bool call_procedure=(code_seen('P'));
  4254. if(strchr_pointer>namestartpos)
  4255. call_procedure=false; //false alert, 'P' found within filename
  4256. if( card.cardOK )
  4257. {
  4258. card.openFile(namestartpos,true,!call_procedure);
  4259. if(code_seen('S'))
  4260. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4261. card.setIndex(code_value_long());
  4262. card.startFileprint();
  4263. if(!call_procedure)
  4264. starttime=millis(); //procedure calls count as normal print time.
  4265. }
  4266. } break;
  4267. case 928: //M928 - Start SD write
  4268. starpos = (strchr(strchr_pointer + 5,'*'));
  4269. if(starpos != NULL){
  4270. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4271. strchr_pointer = strchr(npos,' ') + 1;
  4272. *(starpos) = '\0';
  4273. }
  4274. card.openLogFile(strchr_pointer+5);
  4275. break;
  4276. #endif //SDSUPPORT
  4277. case 31: //M31 take time since the start of the SD print or an M109 command
  4278. {
  4279. stoptime=millis();
  4280. char time[30];
  4281. unsigned long t=(stoptime-starttime)/1000;
  4282. int sec,min;
  4283. min=t/60;
  4284. sec=t%60;
  4285. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4286. SERIAL_ECHO_START;
  4287. SERIAL_ECHOLN(time);
  4288. lcd_setstatus(time);
  4289. autotempShutdown();
  4290. }
  4291. break;
  4292. case 42: //M42 -Change pin status via gcode
  4293. if (code_seen('S'))
  4294. {
  4295. int pin_status = code_value();
  4296. int pin_number = LED_PIN;
  4297. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4298. pin_number = code_value();
  4299. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4300. {
  4301. if (sensitive_pins[i] == pin_number)
  4302. {
  4303. pin_number = -1;
  4304. break;
  4305. }
  4306. }
  4307. #if defined(FAN_PIN) && FAN_PIN > -1
  4308. if (pin_number == FAN_PIN)
  4309. fanSpeed = pin_status;
  4310. #endif
  4311. if (pin_number > -1)
  4312. {
  4313. pinMode(pin_number, OUTPUT);
  4314. digitalWrite(pin_number, pin_status);
  4315. analogWrite(pin_number, pin_status);
  4316. }
  4317. }
  4318. break;
  4319. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4320. // Reset the baby step value and the baby step applied flag.
  4321. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4322. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4323. // Reset the skew and offset in both RAM and EEPROM.
  4324. reset_bed_offset_and_skew();
  4325. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4326. // the planner will not perform any adjustments in the XY plane.
  4327. // Wait for the motors to stop and update the current position with the absolute values.
  4328. world2machine_revert_to_uncorrected();
  4329. break;
  4330. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4331. {
  4332. int8_t verbosity_level = 0;
  4333. bool only_Z = code_seen('Z');
  4334. #ifdef SUPPORT_VERBOSITY
  4335. if (code_seen('V'))
  4336. {
  4337. // Just 'V' without a number counts as V1.
  4338. char c = strchr_pointer[1];
  4339. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4340. }
  4341. #endif //SUPPORT_VERBOSITY
  4342. gcode_M45(only_Z, verbosity_level);
  4343. }
  4344. break;
  4345. /*
  4346. case 46:
  4347. {
  4348. // M46: Prusa3D: Show the assigned IP address.
  4349. uint8_t ip[4];
  4350. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4351. if (hasIP) {
  4352. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4353. SERIAL_ECHO(int(ip[0]));
  4354. SERIAL_ECHOPGM(".");
  4355. SERIAL_ECHO(int(ip[1]));
  4356. SERIAL_ECHOPGM(".");
  4357. SERIAL_ECHO(int(ip[2]));
  4358. SERIAL_ECHOPGM(".");
  4359. SERIAL_ECHO(int(ip[3]));
  4360. SERIAL_ECHOLNPGM("");
  4361. } else {
  4362. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4363. }
  4364. break;
  4365. }
  4366. */
  4367. case 47:
  4368. //! M47: Prusa3D: Show end stops dialog on the display.
  4369. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4370. lcd_diag_show_end_stops();
  4371. KEEPALIVE_STATE(IN_HANDLER);
  4372. break;
  4373. #if 0
  4374. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4375. {
  4376. // Disable the default update procedure of the display. We will do a modal dialog.
  4377. lcd_update_enable(false);
  4378. // Let the planner use the uncorrected coordinates.
  4379. mbl.reset();
  4380. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4381. // the planner will not perform any adjustments in the XY plane.
  4382. // Wait for the motors to stop and update the current position with the absolute values.
  4383. world2machine_revert_to_uncorrected();
  4384. // Move the print head close to the bed.
  4385. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4387. st_synchronize();
  4388. // Home in the XY plane.
  4389. set_destination_to_current();
  4390. int l_feedmultiply = setup_for_endstop_move();
  4391. home_xy();
  4392. int8_t verbosity_level = 0;
  4393. if (code_seen('V')) {
  4394. // Just 'V' without a number counts as V1.
  4395. char c = strchr_pointer[1];
  4396. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4397. }
  4398. bool success = scan_bed_induction_points(verbosity_level);
  4399. clean_up_after_endstop_move(l_feedmultiply);
  4400. // Print head up.
  4401. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4402. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4403. st_synchronize();
  4404. lcd_update_enable(true);
  4405. break;
  4406. }
  4407. #endif
  4408. #ifdef ENABLE_AUTO_BED_LEVELING
  4409. #ifdef Z_PROBE_REPEATABILITY_TEST
  4410. //! M48 Z-Probe repeatability measurement function.
  4411. //!
  4412. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4413. //!
  4414. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4415. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4416. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4417. //! regenerated.
  4418. //!
  4419. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4420. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4421. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4422. //!
  4423. case 48: // M48 Z-Probe repeatability
  4424. {
  4425. #if Z_MIN_PIN == -1
  4426. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4427. #endif
  4428. double sum=0.0;
  4429. double mean=0.0;
  4430. double sigma=0.0;
  4431. double sample_set[50];
  4432. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4433. double X_current, Y_current, Z_current;
  4434. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4435. if (code_seen('V') || code_seen('v')) {
  4436. verbose_level = code_value();
  4437. if (verbose_level<0 || verbose_level>4 ) {
  4438. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4439. goto Sigma_Exit;
  4440. }
  4441. }
  4442. if (verbose_level > 0) {
  4443. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4444. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4445. }
  4446. if (code_seen('n')) {
  4447. n_samples = code_value();
  4448. if (n_samples<4 || n_samples>50 ) {
  4449. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4450. goto Sigma_Exit;
  4451. }
  4452. }
  4453. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4454. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4455. Z_current = st_get_position_mm(Z_AXIS);
  4456. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4457. ext_position = st_get_position_mm(E_AXIS);
  4458. if (code_seen('X') || code_seen('x') ) {
  4459. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4460. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4461. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4462. goto Sigma_Exit;
  4463. }
  4464. }
  4465. if (code_seen('Y') || code_seen('y') ) {
  4466. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4467. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4468. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4469. goto Sigma_Exit;
  4470. }
  4471. }
  4472. if (code_seen('L') || code_seen('l') ) {
  4473. n_legs = code_value();
  4474. if ( n_legs==1 )
  4475. n_legs = 2;
  4476. if ( n_legs<0 || n_legs>15 ) {
  4477. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4478. goto Sigma_Exit;
  4479. }
  4480. }
  4481. //
  4482. // Do all the preliminary setup work. First raise the probe.
  4483. //
  4484. st_synchronize();
  4485. plan_bed_level_matrix.set_to_identity();
  4486. plan_buffer_line( X_current, Y_current, Z_start_location,
  4487. ext_position,
  4488. homing_feedrate[Z_AXIS]/60,
  4489. active_extruder);
  4490. st_synchronize();
  4491. //
  4492. // Now get everything to the specified probe point So we can safely do a probe to
  4493. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4494. // use that as a starting point for each probe.
  4495. //
  4496. if (verbose_level > 2)
  4497. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4498. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4499. ext_position,
  4500. homing_feedrate[X_AXIS]/60,
  4501. active_extruder);
  4502. st_synchronize();
  4503. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4504. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4505. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4506. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4507. //
  4508. // OK, do the inital probe to get us close to the bed.
  4509. // Then retrace the right amount and use that in subsequent probes
  4510. //
  4511. int l_feedmultiply = setup_for_endstop_move();
  4512. run_z_probe();
  4513. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4514. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4515. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4516. ext_position,
  4517. homing_feedrate[X_AXIS]/60,
  4518. active_extruder);
  4519. st_synchronize();
  4520. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4521. for( n=0; n<n_samples; n++) {
  4522. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4523. if ( n_legs) {
  4524. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4525. int rotational_direction, l;
  4526. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4527. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4528. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4529. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4530. //SERIAL_ECHOPAIR(" theta: ",theta);
  4531. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4532. //SERIAL_PROTOCOLLNPGM("");
  4533. for( l=0; l<n_legs-1; l++) {
  4534. if (rotational_direction==1)
  4535. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4536. else
  4537. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4538. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4539. if ( radius<0.0 )
  4540. radius = -radius;
  4541. X_current = X_probe_location + cos(theta) * radius;
  4542. Y_current = Y_probe_location + sin(theta) * radius;
  4543. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4544. X_current = X_MIN_POS;
  4545. if ( X_current>X_MAX_POS)
  4546. X_current = X_MAX_POS;
  4547. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4548. Y_current = Y_MIN_POS;
  4549. if ( Y_current>Y_MAX_POS)
  4550. Y_current = Y_MAX_POS;
  4551. if (verbose_level>3 ) {
  4552. SERIAL_ECHOPAIR("x: ", X_current);
  4553. SERIAL_ECHOPAIR("y: ", Y_current);
  4554. SERIAL_PROTOCOLLNPGM("");
  4555. }
  4556. do_blocking_move_to( X_current, Y_current, Z_current );
  4557. }
  4558. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4559. }
  4560. int l_feedmultiply = setup_for_endstop_move();
  4561. run_z_probe();
  4562. sample_set[n] = current_position[Z_AXIS];
  4563. //
  4564. // Get the current mean for the data points we have so far
  4565. //
  4566. sum=0.0;
  4567. for( j=0; j<=n; j++) {
  4568. sum = sum + sample_set[j];
  4569. }
  4570. mean = sum / (double (n+1));
  4571. //
  4572. // Now, use that mean to calculate the standard deviation for the
  4573. // data points we have so far
  4574. //
  4575. sum=0.0;
  4576. for( j=0; j<=n; j++) {
  4577. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4578. }
  4579. sigma = sqrt( sum / (double (n+1)) );
  4580. if (verbose_level > 1) {
  4581. SERIAL_PROTOCOL(n+1);
  4582. SERIAL_PROTOCOL(" of ");
  4583. SERIAL_PROTOCOL(n_samples);
  4584. SERIAL_PROTOCOLPGM(" z: ");
  4585. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4586. }
  4587. if (verbose_level > 2) {
  4588. SERIAL_PROTOCOL(" mean: ");
  4589. SERIAL_PROTOCOL_F(mean,6);
  4590. SERIAL_PROTOCOL(" sigma: ");
  4591. SERIAL_PROTOCOL_F(sigma,6);
  4592. }
  4593. if (verbose_level > 0)
  4594. SERIAL_PROTOCOLPGM("\n");
  4595. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4596. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4597. st_synchronize();
  4598. }
  4599. delay(1000);
  4600. clean_up_after_endstop_move(l_feedmultiply);
  4601. // enable_endstops(true);
  4602. if (verbose_level > 0) {
  4603. SERIAL_PROTOCOLPGM("Mean: ");
  4604. SERIAL_PROTOCOL_F(mean, 6);
  4605. SERIAL_PROTOCOLPGM("\n");
  4606. }
  4607. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4608. SERIAL_PROTOCOL_F(sigma, 6);
  4609. SERIAL_PROTOCOLPGM("\n\n");
  4610. Sigma_Exit:
  4611. break;
  4612. }
  4613. #endif // Z_PROBE_REPEATABILITY_TEST
  4614. #endif // ENABLE_AUTO_BED_LEVELING
  4615. case 73: //M73 show percent done and time remaining
  4616. if(code_seen('P')) print_percent_done_normal = code_value();
  4617. if(code_seen('R')) print_time_remaining_normal = code_value();
  4618. if(code_seen('Q')) print_percent_done_silent = code_value();
  4619. if(code_seen('S')) print_time_remaining_silent = code_value();
  4620. {
  4621. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4622. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4623. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4624. }
  4625. break;
  4626. case 104: // M104
  4627. {
  4628. uint8_t extruder;
  4629. if(setTargetedHotend(104,extruder)){
  4630. break;
  4631. }
  4632. if (code_seen('S'))
  4633. {
  4634. setTargetHotendSafe(code_value(), extruder);
  4635. }
  4636. setWatch();
  4637. break;
  4638. }
  4639. case 112: // M112 -Emergency Stop
  4640. kill(_n(""), 3);
  4641. break;
  4642. case 140: // M140 set bed temp
  4643. if (code_seen('S')) setTargetBed(code_value());
  4644. break;
  4645. case 105 : // M105
  4646. {
  4647. uint8_t extruder;
  4648. if(setTargetedHotend(105, extruder)){
  4649. break;
  4650. }
  4651. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4652. SERIAL_PROTOCOLPGM("ok T:");
  4653. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4654. SERIAL_PROTOCOLPGM(" /");
  4655. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4656. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4657. SERIAL_PROTOCOLPGM(" B:");
  4658. SERIAL_PROTOCOL_F(degBed(),1);
  4659. SERIAL_PROTOCOLPGM(" /");
  4660. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4661. #endif //TEMP_BED_PIN
  4662. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4663. SERIAL_PROTOCOLPGM(" T");
  4664. SERIAL_PROTOCOL(cur_extruder);
  4665. SERIAL_PROTOCOLPGM(":");
  4666. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4667. SERIAL_PROTOCOLPGM(" /");
  4668. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4669. }
  4670. #else
  4671. SERIAL_ERROR_START;
  4672. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4673. #endif
  4674. SERIAL_PROTOCOLPGM(" @:");
  4675. #ifdef EXTRUDER_WATTS
  4676. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4677. SERIAL_PROTOCOLPGM("W");
  4678. #else
  4679. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4680. #endif
  4681. SERIAL_PROTOCOLPGM(" B@:");
  4682. #ifdef BED_WATTS
  4683. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4684. SERIAL_PROTOCOLPGM("W");
  4685. #else
  4686. SERIAL_PROTOCOL(getHeaterPower(-1));
  4687. #endif
  4688. #ifdef PINDA_THERMISTOR
  4689. SERIAL_PROTOCOLPGM(" P:");
  4690. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4691. #endif //PINDA_THERMISTOR
  4692. #ifdef AMBIENT_THERMISTOR
  4693. SERIAL_PROTOCOLPGM(" A:");
  4694. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4695. #endif //AMBIENT_THERMISTOR
  4696. #ifdef SHOW_TEMP_ADC_VALUES
  4697. {float raw = 0.0;
  4698. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4699. SERIAL_PROTOCOLPGM(" ADC B:");
  4700. SERIAL_PROTOCOL_F(degBed(),1);
  4701. SERIAL_PROTOCOLPGM("C->");
  4702. raw = rawBedTemp();
  4703. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4704. SERIAL_PROTOCOLPGM(" Rb->");
  4705. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4706. SERIAL_PROTOCOLPGM(" Rxb->");
  4707. SERIAL_PROTOCOL_F(raw, 5);
  4708. #endif
  4709. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4710. SERIAL_PROTOCOLPGM(" T");
  4711. SERIAL_PROTOCOL(cur_extruder);
  4712. SERIAL_PROTOCOLPGM(":");
  4713. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4714. SERIAL_PROTOCOLPGM("C->");
  4715. raw = rawHotendTemp(cur_extruder);
  4716. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4717. SERIAL_PROTOCOLPGM(" Rt");
  4718. SERIAL_PROTOCOL(cur_extruder);
  4719. SERIAL_PROTOCOLPGM("->");
  4720. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4721. SERIAL_PROTOCOLPGM(" Rx");
  4722. SERIAL_PROTOCOL(cur_extruder);
  4723. SERIAL_PROTOCOLPGM("->");
  4724. SERIAL_PROTOCOL_F(raw, 5);
  4725. }}
  4726. #endif
  4727. SERIAL_PROTOCOLLN("");
  4728. KEEPALIVE_STATE(NOT_BUSY);
  4729. return;
  4730. break;
  4731. }
  4732. case 109:
  4733. {// M109 - Wait for extruder heater to reach target.
  4734. uint8_t extruder;
  4735. if(setTargetedHotend(109, extruder)){
  4736. break;
  4737. }
  4738. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4739. heating_status = 1;
  4740. if (farm_mode) { prusa_statistics(1); };
  4741. #ifdef AUTOTEMP
  4742. autotemp_enabled=false;
  4743. #endif
  4744. if (code_seen('S')) {
  4745. setTargetHotendSafe(code_value(), extruder);
  4746. CooldownNoWait = true;
  4747. } else if (code_seen('R')) {
  4748. setTargetHotendSafe(code_value(), extruder);
  4749. CooldownNoWait = false;
  4750. }
  4751. #ifdef AUTOTEMP
  4752. if (code_seen('S')) autotemp_min=code_value();
  4753. if (code_seen('B')) autotemp_max=code_value();
  4754. if (code_seen('F'))
  4755. {
  4756. autotemp_factor=code_value();
  4757. autotemp_enabled=true;
  4758. }
  4759. #endif
  4760. setWatch();
  4761. codenum = millis();
  4762. /* See if we are heating up or cooling down */
  4763. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4764. KEEPALIVE_STATE(NOT_BUSY);
  4765. cancel_heatup = false;
  4766. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4767. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4768. KEEPALIVE_STATE(IN_HANDLER);
  4769. heating_status = 2;
  4770. if (farm_mode) { prusa_statistics(2); };
  4771. //starttime=millis();
  4772. previous_millis_cmd = millis();
  4773. }
  4774. break;
  4775. case 190: // M190 - Wait for bed heater to reach target.
  4776. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4777. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4778. heating_status = 3;
  4779. if (farm_mode) { prusa_statistics(1); };
  4780. if (code_seen('S'))
  4781. {
  4782. setTargetBed(code_value());
  4783. CooldownNoWait = true;
  4784. }
  4785. else if (code_seen('R'))
  4786. {
  4787. setTargetBed(code_value());
  4788. CooldownNoWait = false;
  4789. }
  4790. codenum = millis();
  4791. cancel_heatup = false;
  4792. target_direction = isHeatingBed(); // true if heating, false if cooling
  4793. KEEPALIVE_STATE(NOT_BUSY);
  4794. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4795. {
  4796. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4797. {
  4798. if (!farm_mode) {
  4799. float tt = degHotend(active_extruder);
  4800. SERIAL_PROTOCOLPGM("T:");
  4801. SERIAL_PROTOCOL(tt);
  4802. SERIAL_PROTOCOLPGM(" E:");
  4803. SERIAL_PROTOCOL((int)active_extruder);
  4804. SERIAL_PROTOCOLPGM(" B:");
  4805. SERIAL_PROTOCOL_F(degBed(), 1);
  4806. SERIAL_PROTOCOLLN("");
  4807. }
  4808. codenum = millis();
  4809. }
  4810. manage_heater();
  4811. manage_inactivity();
  4812. lcd_update(0);
  4813. }
  4814. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4815. KEEPALIVE_STATE(IN_HANDLER);
  4816. heating_status = 4;
  4817. previous_millis_cmd = millis();
  4818. #endif
  4819. break;
  4820. #if defined(FAN_PIN) && FAN_PIN > -1
  4821. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  4822. if (code_seen('S')){
  4823. fanSpeed=constrain(code_value(),0,255);
  4824. }
  4825. else {
  4826. fanSpeed=255;
  4827. }
  4828. break;
  4829. case 107: //M107 Fan Off
  4830. fanSpeed = 0;
  4831. break;
  4832. #endif //FAN_PIN
  4833. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4834. case 80: // M80 - Turn on Power Supply
  4835. SET_OUTPUT(PS_ON_PIN); //GND
  4836. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4837. // If you have a switch on suicide pin, this is useful
  4838. // if you want to start another print with suicide feature after
  4839. // a print without suicide...
  4840. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4841. SET_OUTPUT(SUICIDE_PIN);
  4842. WRITE(SUICIDE_PIN, HIGH);
  4843. #endif
  4844. powersupply = true;
  4845. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4846. lcd_update(0);
  4847. break;
  4848. #endif
  4849. case 81: // M81 - Turn off Power Supply
  4850. disable_heater();
  4851. st_synchronize();
  4852. disable_e0();
  4853. disable_e1();
  4854. disable_e2();
  4855. finishAndDisableSteppers();
  4856. fanSpeed = 0;
  4857. delay(1000); // Wait a little before to switch off
  4858. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4859. st_synchronize();
  4860. suicide();
  4861. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4862. SET_OUTPUT(PS_ON_PIN);
  4863. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4864. #endif
  4865. powersupply = false;
  4866. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4867. lcd_update(0);
  4868. break;
  4869. case 82:
  4870. axis_relative_modes[3] = false;
  4871. break;
  4872. case 83:
  4873. axis_relative_modes[3] = true;
  4874. break;
  4875. case 18: //compatibility
  4876. case 84: // M84
  4877. if(code_seen('S')){
  4878. stepper_inactive_time = code_value() * 1000;
  4879. }
  4880. else
  4881. {
  4882. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4883. if(all_axis)
  4884. {
  4885. st_synchronize();
  4886. disable_e0();
  4887. disable_e1();
  4888. disable_e2();
  4889. finishAndDisableSteppers();
  4890. }
  4891. else
  4892. {
  4893. st_synchronize();
  4894. if (code_seen('X')) disable_x();
  4895. if (code_seen('Y')) disable_y();
  4896. if (code_seen('Z')) disable_z();
  4897. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4898. if (code_seen('E')) {
  4899. disable_e0();
  4900. disable_e1();
  4901. disable_e2();
  4902. }
  4903. #endif
  4904. }
  4905. }
  4906. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4907. print_time_remaining_init();
  4908. snmm_filaments_used = 0;
  4909. break;
  4910. case 85: // M85
  4911. if(code_seen('S')) {
  4912. max_inactive_time = code_value() * 1000;
  4913. }
  4914. break;
  4915. #ifdef SAFETYTIMER
  4916. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4917. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4918. if (code_seen('S')) {
  4919. safetytimer_inactive_time = code_value() * 1000;
  4920. safetyTimer.start();
  4921. }
  4922. break;
  4923. #endif
  4924. case 92: // M92
  4925. for(int8_t i=0; i < NUM_AXIS; i++)
  4926. {
  4927. if(code_seen(axis_codes[i]))
  4928. {
  4929. if(i == 3) { // E
  4930. float value = code_value();
  4931. if(value < 20.0) {
  4932. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4933. cs.max_jerk[E_AXIS] *= factor;
  4934. max_feedrate[i] *= factor;
  4935. axis_steps_per_sqr_second[i] *= factor;
  4936. }
  4937. cs.axis_steps_per_unit[i] = value;
  4938. }
  4939. else {
  4940. cs.axis_steps_per_unit[i] = code_value();
  4941. }
  4942. }
  4943. }
  4944. break;
  4945. case 110: //! M110 N<line number> - reset line pos
  4946. if (code_seen('N'))
  4947. gcode_LastN = code_value_long();
  4948. break;
  4949. #ifdef HOST_KEEPALIVE_FEATURE
  4950. case 113: // M113 - Get or set Host Keepalive interval
  4951. if (code_seen('S')) {
  4952. host_keepalive_interval = (uint8_t)code_value_short();
  4953. // NOMORE(host_keepalive_interval, 60);
  4954. }
  4955. else {
  4956. SERIAL_ECHO_START;
  4957. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4958. SERIAL_PROTOCOLLN("");
  4959. }
  4960. break;
  4961. #endif
  4962. case 115: // M115
  4963. if (code_seen('V')) {
  4964. // Report the Prusa version number.
  4965. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4966. } else if (code_seen('U')) {
  4967. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4968. // pause the print and ask the user to upgrade the firmware.
  4969. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4970. } else {
  4971. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4972. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4973. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4974. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4975. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4976. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4977. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4978. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4979. SERIAL_ECHOPGM(" UUID:");
  4980. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4981. }
  4982. break;
  4983. /* case 117: // M117 display message
  4984. starpos = (strchr(strchr_pointer + 5,'*'));
  4985. if(starpos!=NULL)
  4986. *(starpos)='\0';
  4987. lcd_setstatus(strchr_pointer + 5);
  4988. break;*/
  4989. case 114: // M114
  4990. gcode_M114();
  4991. break;
  4992. case 120: //! M120 - Disable endstops
  4993. enable_endstops(false) ;
  4994. break;
  4995. case 121: //! M121 - Enable endstops
  4996. enable_endstops(true) ;
  4997. break;
  4998. case 119: // M119
  4999. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  5000. SERIAL_PROTOCOLLN("");
  5001. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5002. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  5003. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5004. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5005. }else{
  5006. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5007. }
  5008. SERIAL_PROTOCOLLN("");
  5009. #endif
  5010. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5011. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  5012. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5013. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5014. }else{
  5015. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5016. }
  5017. SERIAL_PROTOCOLLN("");
  5018. #endif
  5019. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5020. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5021. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5022. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5023. }else{
  5024. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5025. }
  5026. SERIAL_PROTOCOLLN("");
  5027. #endif
  5028. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5029. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5030. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5031. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5032. }else{
  5033. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5034. }
  5035. SERIAL_PROTOCOLLN("");
  5036. #endif
  5037. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5038. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5039. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5040. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5041. }else{
  5042. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5043. }
  5044. SERIAL_PROTOCOLLN("");
  5045. #endif
  5046. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5047. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5048. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5049. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5050. }else{
  5051. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5052. }
  5053. SERIAL_PROTOCOLLN("");
  5054. #endif
  5055. break;
  5056. //TODO: update for all axis, use for loop
  5057. #ifdef BLINKM
  5058. case 150: // M150
  5059. {
  5060. byte red;
  5061. byte grn;
  5062. byte blu;
  5063. if(code_seen('R')) red = code_value();
  5064. if(code_seen('U')) grn = code_value();
  5065. if(code_seen('B')) blu = code_value();
  5066. SendColors(red,grn,blu);
  5067. }
  5068. break;
  5069. #endif //BLINKM
  5070. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5071. {
  5072. uint8_t extruder = active_extruder;
  5073. if(code_seen('T')) {
  5074. extruder = code_value();
  5075. if(extruder >= EXTRUDERS) {
  5076. SERIAL_ECHO_START;
  5077. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5078. break;
  5079. }
  5080. }
  5081. if(code_seen('D')) {
  5082. float diameter = (float)code_value();
  5083. if (diameter == 0.0) {
  5084. // setting any extruder filament size disables volumetric on the assumption that
  5085. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5086. // for all extruders
  5087. cs.volumetric_enabled = false;
  5088. } else {
  5089. cs.filament_size[extruder] = (float)code_value();
  5090. // make sure all extruders have some sane value for the filament size
  5091. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5092. #if EXTRUDERS > 1
  5093. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5094. #if EXTRUDERS > 2
  5095. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5096. #endif
  5097. #endif
  5098. cs.volumetric_enabled = true;
  5099. }
  5100. } else {
  5101. //reserved for setting filament diameter via UFID or filament measuring device
  5102. break;
  5103. }
  5104. calculate_extruder_multipliers();
  5105. }
  5106. break;
  5107. case 201: // M201
  5108. for (int8_t i = 0; i < NUM_AXIS; i++)
  5109. {
  5110. if (code_seen(axis_codes[i]))
  5111. {
  5112. unsigned long val = code_value();
  5113. #ifdef TMC2130
  5114. unsigned long val_silent = val;
  5115. if ((i == X_AXIS) || (i == Y_AXIS))
  5116. {
  5117. if (val > NORMAL_MAX_ACCEL_XY)
  5118. val = NORMAL_MAX_ACCEL_XY;
  5119. if (val_silent > SILENT_MAX_ACCEL_XY)
  5120. val_silent = SILENT_MAX_ACCEL_XY;
  5121. }
  5122. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5123. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5124. #else //TMC2130
  5125. max_acceleration_units_per_sq_second[i] = val;
  5126. #endif //TMC2130
  5127. }
  5128. }
  5129. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5130. reset_acceleration_rates();
  5131. break;
  5132. #if 0 // Not used for Sprinter/grbl gen6
  5133. case 202: // M202
  5134. for(int8_t i=0; i < NUM_AXIS; i++) {
  5135. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5136. }
  5137. break;
  5138. #endif
  5139. case 203: // M203 max feedrate mm/sec
  5140. for (int8_t i = 0; i < NUM_AXIS; i++)
  5141. {
  5142. if (code_seen(axis_codes[i]))
  5143. {
  5144. float val = code_value();
  5145. #ifdef TMC2130
  5146. float val_silent = val;
  5147. if ((i == X_AXIS) || (i == Y_AXIS))
  5148. {
  5149. if (val > NORMAL_MAX_FEEDRATE_XY)
  5150. val = NORMAL_MAX_FEEDRATE_XY;
  5151. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5152. val_silent = SILENT_MAX_FEEDRATE_XY;
  5153. }
  5154. cs.max_feedrate_normal[i] = val;
  5155. cs.max_feedrate_silent[i] = val_silent;
  5156. #else //TMC2130
  5157. max_feedrate[i] = val;
  5158. #endif //TMC2130
  5159. }
  5160. }
  5161. break;
  5162. case 204:
  5163. //! M204 acclereration settings.
  5164. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5165. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5166. {
  5167. if(code_seen('S')) {
  5168. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5169. // and it is also generated by Slic3r to control acceleration per extrusion type
  5170. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5171. cs.acceleration = code_value();
  5172. // Interpret the T value as retract acceleration in the old Marlin format.
  5173. if(code_seen('T'))
  5174. cs.retract_acceleration = code_value();
  5175. } else {
  5176. // New acceleration format, compatible with the upstream Marlin.
  5177. if(code_seen('P'))
  5178. cs.acceleration = code_value();
  5179. if(code_seen('R'))
  5180. cs.retract_acceleration = code_value();
  5181. if(code_seen('T')) {
  5182. // Interpret the T value as the travel acceleration in the new Marlin format.
  5183. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5184. // travel_acceleration = code_value();
  5185. }
  5186. }
  5187. }
  5188. break;
  5189. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5190. {
  5191. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5192. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5193. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5194. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5195. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5196. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5197. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5198. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5199. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5200. }
  5201. break;
  5202. case 206: // M206 additional homing offset
  5203. for(int8_t i=0; i < 3; i++)
  5204. {
  5205. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5206. }
  5207. break;
  5208. #ifdef FWRETRACT
  5209. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5210. {
  5211. if(code_seen('S'))
  5212. {
  5213. cs.retract_length = code_value() ;
  5214. }
  5215. if(code_seen('F'))
  5216. {
  5217. cs.retract_feedrate = code_value()/60 ;
  5218. }
  5219. if(code_seen('Z'))
  5220. {
  5221. cs.retract_zlift = code_value() ;
  5222. }
  5223. }break;
  5224. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5225. {
  5226. if(code_seen('S'))
  5227. {
  5228. cs.retract_recover_length = code_value() ;
  5229. }
  5230. if(code_seen('F'))
  5231. {
  5232. cs.retract_recover_feedrate = code_value()/60 ;
  5233. }
  5234. }break;
  5235. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5236. {
  5237. if(code_seen('S'))
  5238. {
  5239. int t= code_value() ;
  5240. switch(t)
  5241. {
  5242. case 0:
  5243. {
  5244. cs.autoretract_enabled=false;
  5245. retracted[0]=false;
  5246. #if EXTRUDERS > 1
  5247. retracted[1]=false;
  5248. #endif
  5249. #if EXTRUDERS > 2
  5250. retracted[2]=false;
  5251. #endif
  5252. }break;
  5253. case 1:
  5254. {
  5255. cs.autoretract_enabled=true;
  5256. retracted[0]=false;
  5257. #if EXTRUDERS > 1
  5258. retracted[1]=false;
  5259. #endif
  5260. #if EXTRUDERS > 2
  5261. retracted[2]=false;
  5262. #endif
  5263. }break;
  5264. default:
  5265. SERIAL_ECHO_START;
  5266. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5267. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5268. SERIAL_ECHOLNPGM("\"(1)");
  5269. }
  5270. }
  5271. }break;
  5272. #endif // FWRETRACT
  5273. #if EXTRUDERS > 1
  5274. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5275. {
  5276. uint8_t extruder;
  5277. if(setTargetedHotend(218, extruder)){
  5278. break;
  5279. }
  5280. if(code_seen('X'))
  5281. {
  5282. extruder_offset[X_AXIS][extruder] = code_value();
  5283. }
  5284. if(code_seen('Y'))
  5285. {
  5286. extruder_offset[Y_AXIS][extruder] = code_value();
  5287. }
  5288. SERIAL_ECHO_START;
  5289. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5290. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5291. {
  5292. SERIAL_ECHO(" ");
  5293. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5294. SERIAL_ECHO(",");
  5295. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5296. }
  5297. SERIAL_ECHOLN("");
  5298. }break;
  5299. #endif
  5300. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5301. {
  5302. if(code_seen('S'))
  5303. {
  5304. feedmultiply = code_value() ;
  5305. }
  5306. }
  5307. break;
  5308. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5309. {
  5310. if(code_seen('S'))
  5311. {
  5312. int tmp_code = code_value();
  5313. if (code_seen('T'))
  5314. {
  5315. uint8_t extruder;
  5316. if(setTargetedHotend(221, extruder)){
  5317. break;
  5318. }
  5319. extruder_multiply[extruder] = tmp_code;
  5320. }
  5321. else
  5322. {
  5323. extrudemultiply = tmp_code ;
  5324. }
  5325. }
  5326. calculate_extruder_multipliers();
  5327. }
  5328. break;
  5329. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5330. {
  5331. if(code_seen('P')){
  5332. int pin_number = code_value(); // pin number
  5333. int pin_state = -1; // required pin state - default is inverted
  5334. if(code_seen('S')) pin_state = code_value(); // required pin state
  5335. if(pin_state >= -1 && pin_state <= 1){
  5336. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5337. {
  5338. if (sensitive_pins[i] == pin_number)
  5339. {
  5340. pin_number = -1;
  5341. break;
  5342. }
  5343. }
  5344. if (pin_number > -1)
  5345. {
  5346. int target = LOW;
  5347. st_synchronize();
  5348. pinMode(pin_number, INPUT);
  5349. switch(pin_state){
  5350. case 1:
  5351. target = HIGH;
  5352. break;
  5353. case 0:
  5354. target = LOW;
  5355. break;
  5356. case -1:
  5357. target = !digitalRead(pin_number);
  5358. break;
  5359. }
  5360. while(digitalRead(pin_number) != target){
  5361. manage_heater();
  5362. manage_inactivity();
  5363. lcd_update(0);
  5364. }
  5365. }
  5366. }
  5367. }
  5368. }
  5369. break;
  5370. #if NUM_SERVOS > 0
  5371. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5372. {
  5373. int servo_index = -1;
  5374. int servo_position = 0;
  5375. if (code_seen('P'))
  5376. servo_index = code_value();
  5377. if (code_seen('S')) {
  5378. servo_position = code_value();
  5379. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5380. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5381. servos[servo_index].attach(0);
  5382. #endif
  5383. servos[servo_index].write(servo_position);
  5384. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5385. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5386. servos[servo_index].detach();
  5387. #endif
  5388. }
  5389. else {
  5390. SERIAL_ECHO_START;
  5391. SERIAL_ECHO("Servo ");
  5392. SERIAL_ECHO(servo_index);
  5393. SERIAL_ECHOLN(" out of range");
  5394. }
  5395. }
  5396. else if (servo_index >= 0) {
  5397. SERIAL_PROTOCOL(_T(MSG_OK));
  5398. SERIAL_PROTOCOL(" Servo ");
  5399. SERIAL_PROTOCOL(servo_index);
  5400. SERIAL_PROTOCOL(": ");
  5401. SERIAL_PROTOCOL(servos[servo_index].read());
  5402. SERIAL_PROTOCOLLN("");
  5403. }
  5404. }
  5405. break;
  5406. #endif // NUM_SERVOS > 0
  5407. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5408. case 300: // M300
  5409. {
  5410. int beepS = code_seen('S') ? code_value() : 110;
  5411. int beepP = code_seen('P') ? code_value() : 1000;
  5412. if (beepS > 0)
  5413. {
  5414. #if BEEPER > 0
  5415. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5416. tone(BEEPER, beepS);
  5417. delay(beepP);
  5418. noTone(BEEPER);
  5419. #endif
  5420. }
  5421. else
  5422. {
  5423. delay(beepP);
  5424. }
  5425. }
  5426. break;
  5427. #endif // M300
  5428. #ifdef PIDTEMP
  5429. case 301: // M301
  5430. {
  5431. if(code_seen('P')) cs.Kp = code_value();
  5432. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5433. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5434. #ifdef PID_ADD_EXTRUSION_RATE
  5435. if(code_seen('C')) Kc = code_value();
  5436. #endif
  5437. updatePID();
  5438. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5439. SERIAL_PROTOCOL(" p:");
  5440. SERIAL_PROTOCOL(cs.Kp);
  5441. SERIAL_PROTOCOL(" i:");
  5442. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5443. SERIAL_PROTOCOL(" d:");
  5444. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5445. #ifdef PID_ADD_EXTRUSION_RATE
  5446. SERIAL_PROTOCOL(" c:");
  5447. //Kc does not have scaling applied above, or in resetting defaults
  5448. SERIAL_PROTOCOL(Kc);
  5449. #endif
  5450. SERIAL_PROTOCOLLN("");
  5451. }
  5452. break;
  5453. #endif //PIDTEMP
  5454. #ifdef PIDTEMPBED
  5455. case 304: // M304
  5456. {
  5457. if(code_seen('P')) cs.bedKp = code_value();
  5458. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5459. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5460. updatePID();
  5461. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5462. SERIAL_PROTOCOL(" p:");
  5463. SERIAL_PROTOCOL(cs.bedKp);
  5464. SERIAL_PROTOCOL(" i:");
  5465. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5466. SERIAL_PROTOCOL(" d:");
  5467. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5468. SERIAL_PROTOCOLLN("");
  5469. }
  5470. break;
  5471. #endif //PIDTEMP
  5472. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5473. {
  5474. #ifdef CHDK
  5475. SET_OUTPUT(CHDK);
  5476. WRITE(CHDK, HIGH);
  5477. chdkHigh = millis();
  5478. chdkActive = true;
  5479. #else
  5480. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5481. const uint8_t NUM_PULSES=16;
  5482. const float PULSE_LENGTH=0.01524;
  5483. for(int i=0; i < NUM_PULSES; i++) {
  5484. WRITE(PHOTOGRAPH_PIN, HIGH);
  5485. _delay_ms(PULSE_LENGTH);
  5486. WRITE(PHOTOGRAPH_PIN, LOW);
  5487. _delay_ms(PULSE_LENGTH);
  5488. }
  5489. delay(7.33);
  5490. for(int i=0; i < NUM_PULSES; i++) {
  5491. WRITE(PHOTOGRAPH_PIN, HIGH);
  5492. _delay_ms(PULSE_LENGTH);
  5493. WRITE(PHOTOGRAPH_PIN, LOW);
  5494. _delay_ms(PULSE_LENGTH);
  5495. }
  5496. #endif
  5497. #endif //chdk end if
  5498. }
  5499. break;
  5500. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5501. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5502. {
  5503. float temp = .0;
  5504. if (code_seen('S')) temp=code_value();
  5505. set_extrude_min_temp(temp);
  5506. }
  5507. break;
  5508. #endif
  5509. case 303: // M303 PID autotune
  5510. {
  5511. float temp = 150.0;
  5512. int e=0;
  5513. int c=5;
  5514. if (code_seen('E')) e=code_value();
  5515. if (e<0)
  5516. temp=70;
  5517. if (code_seen('S')) temp=code_value();
  5518. if (code_seen('C')) c=code_value();
  5519. PID_autotune(temp, e, c);
  5520. }
  5521. break;
  5522. case 400: // M400 finish all moves
  5523. {
  5524. st_synchronize();
  5525. }
  5526. break;
  5527. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5528. {
  5529. //! currently three different materials are needed (default, flex and PVA)
  5530. //! add storing this information for different load/unload profiles etc. in the future
  5531. //!firmware does not wait for "ok" from mmu
  5532. if (mmu_enabled)
  5533. {
  5534. uint8_t extruder = 255;
  5535. uint8_t filament = FILAMENT_UNDEFINED;
  5536. if(code_seen('E')) extruder = code_value();
  5537. if(code_seen('F')) filament = code_value();
  5538. mmu_set_filament_type(extruder, filament);
  5539. }
  5540. }
  5541. break;
  5542. case 500: // M500 Store settings in EEPROM
  5543. {
  5544. Config_StoreSettings();
  5545. }
  5546. break;
  5547. case 501: // M501 Read settings from EEPROM
  5548. {
  5549. Config_RetrieveSettings();
  5550. }
  5551. break;
  5552. case 502: // M502 Revert to default settings
  5553. {
  5554. Config_ResetDefault();
  5555. }
  5556. break;
  5557. case 503: // M503 print settings currently in memory
  5558. {
  5559. Config_PrintSettings();
  5560. }
  5561. break;
  5562. case 509: //M509 Force language selection
  5563. {
  5564. lang_reset();
  5565. SERIAL_ECHO_START;
  5566. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5567. }
  5568. break;
  5569. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5570. case 540:
  5571. {
  5572. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5573. }
  5574. break;
  5575. #endif
  5576. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5577. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5578. {
  5579. float value;
  5580. if (code_seen('Z'))
  5581. {
  5582. value = code_value();
  5583. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5584. {
  5585. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5586. SERIAL_ECHO_START;
  5587. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5588. SERIAL_PROTOCOLLN("");
  5589. }
  5590. else
  5591. {
  5592. SERIAL_ECHO_START;
  5593. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5594. SERIAL_ECHORPGM(MSG_Z_MIN);
  5595. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5596. SERIAL_ECHORPGM(MSG_Z_MAX);
  5597. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5598. SERIAL_PROTOCOLLN("");
  5599. }
  5600. }
  5601. else
  5602. {
  5603. SERIAL_ECHO_START;
  5604. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5605. SERIAL_ECHO(-cs.zprobe_zoffset);
  5606. SERIAL_PROTOCOLLN("");
  5607. }
  5608. break;
  5609. }
  5610. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5611. #ifdef FILAMENTCHANGEENABLE
  5612. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5613. {
  5614. st_synchronize();
  5615. float x_position = current_position[X_AXIS];
  5616. float y_position = current_position[Y_AXIS];
  5617. float z_shift = 0;
  5618. float e_shift_init = 0;
  5619. float e_shift_late = 0;
  5620. bool automatic = false;
  5621. //Retract extruder
  5622. if(code_seen('E'))
  5623. {
  5624. e_shift_init = code_value();
  5625. }
  5626. else
  5627. {
  5628. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5629. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5630. #endif
  5631. }
  5632. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5633. if (code_seen('L'))
  5634. {
  5635. e_shift_late = code_value();
  5636. }
  5637. else
  5638. {
  5639. #ifdef FILAMENTCHANGE_FINALRETRACT
  5640. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5641. #endif
  5642. }
  5643. //Lift Z
  5644. if(code_seen('Z'))
  5645. {
  5646. z_shift = code_value();
  5647. }
  5648. else
  5649. {
  5650. #ifdef FILAMENTCHANGE_ZADD
  5651. z_shift= FILAMENTCHANGE_ZADD ;
  5652. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5653. #endif
  5654. }
  5655. //Move XY to side
  5656. if(code_seen('X'))
  5657. {
  5658. x_position = code_value();
  5659. }
  5660. else
  5661. {
  5662. #ifdef FILAMENTCHANGE_XPOS
  5663. x_position = FILAMENTCHANGE_XPOS;
  5664. #endif
  5665. }
  5666. if(code_seen('Y'))
  5667. {
  5668. y_position = code_value();
  5669. }
  5670. else
  5671. {
  5672. #ifdef FILAMENTCHANGE_YPOS
  5673. y_position = FILAMENTCHANGE_YPOS ;
  5674. #endif
  5675. }
  5676. if (mmu_enabled && code_seen("AUTO"))
  5677. automatic = true;
  5678. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5679. }
  5680. break;
  5681. #endif //FILAMENTCHANGEENABLE
  5682. case 601: //! M601 - Pause print
  5683. {
  5684. lcd_pause_print();
  5685. }
  5686. break;
  5687. case 602: { //! M602 - Resume print
  5688. lcd_resume_print();
  5689. }
  5690. break;
  5691. #ifdef PINDA_THERMISTOR
  5692. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5693. {
  5694. int set_target_pinda = 0;
  5695. if (code_seen('S')) {
  5696. set_target_pinda = code_value();
  5697. }
  5698. else {
  5699. break;
  5700. }
  5701. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5702. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5703. SERIAL_PROTOCOL(set_target_pinda);
  5704. SERIAL_PROTOCOLLN("");
  5705. codenum = millis();
  5706. cancel_heatup = false;
  5707. bool is_pinda_cooling = false;
  5708. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5709. is_pinda_cooling = true;
  5710. }
  5711. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5712. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5713. {
  5714. SERIAL_PROTOCOLPGM("P:");
  5715. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5716. SERIAL_PROTOCOLPGM("/");
  5717. SERIAL_PROTOCOL(set_target_pinda);
  5718. SERIAL_PROTOCOLLN("");
  5719. codenum = millis();
  5720. }
  5721. manage_heater();
  5722. manage_inactivity();
  5723. lcd_update(0);
  5724. }
  5725. LCD_MESSAGERPGM(_T(MSG_OK));
  5726. break;
  5727. }
  5728. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5729. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5730. uint8_t cal_status = calibration_status_pinda();
  5731. int16_t usteps = 0;
  5732. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5733. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5734. for (uint8_t i = 0; i < 6; i++)
  5735. {
  5736. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5737. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5738. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5739. SERIAL_PROTOCOLPGM(", ");
  5740. SERIAL_PROTOCOL(35 + (i * 5));
  5741. SERIAL_PROTOCOLPGM(", ");
  5742. SERIAL_PROTOCOL(usteps);
  5743. SERIAL_PROTOCOLPGM(", ");
  5744. SERIAL_PROTOCOL(mm * 1000);
  5745. SERIAL_PROTOCOLLN("");
  5746. }
  5747. }
  5748. else if (code_seen('!')) { // ! - Set factory default values
  5749. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5750. int16_t z_shift = 8; //40C - 20um - 8usteps
  5751. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5752. z_shift = 24; //45C - 60um - 24usteps
  5753. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5754. z_shift = 48; //50C - 120um - 48usteps
  5755. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5756. z_shift = 80; //55C - 200um - 80usteps
  5757. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5758. z_shift = 120; //60C - 300um - 120usteps
  5759. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5760. SERIAL_PROTOCOLLN("factory restored");
  5761. }
  5762. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5763. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5764. int16_t z_shift = 0;
  5765. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5766. SERIAL_PROTOCOLLN("zerorized");
  5767. }
  5768. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5769. int16_t usteps = code_value();
  5770. if (code_seen('I')) {
  5771. uint8_t index = code_value();
  5772. if (index < 5) {
  5773. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5774. SERIAL_PROTOCOLLN("OK");
  5775. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5776. for (uint8_t i = 0; i < 6; i++)
  5777. {
  5778. usteps = 0;
  5779. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5780. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5781. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5782. SERIAL_PROTOCOLPGM(", ");
  5783. SERIAL_PROTOCOL(35 + (i * 5));
  5784. SERIAL_PROTOCOLPGM(", ");
  5785. SERIAL_PROTOCOL(usteps);
  5786. SERIAL_PROTOCOLPGM(", ");
  5787. SERIAL_PROTOCOL(mm * 1000);
  5788. SERIAL_PROTOCOLLN("");
  5789. }
  5790. }
  5791. }
  5792. }
  5793. else {
  5794. SERIAL_PROTOCOLPGM("no valid command");
  5795. }
  5796. break;
  5797. #endif //PINDA_THERMISTOR
  5798. #ifdef LIN_ADVANCE
  5799. case 900: // M900: Set LIN_ADVANCE options.
  5800. gcode_M900();
  5801. break;
  5802. #endif
  5803. case 907: // M907 Set digital trimpot motor current using axis codes.
  5804. {
  5805. #ifdef TMC2130
  5806. for (int i = 0; i < NUM_AXIS; i++)
  5807. if(code_seen(axis_codes[i]))
  5808. {
  5809. long cur_mA = code_value_long();
  5810. uint8_t val = tmc2130_cur2val(cur_mA);
  5811. tmc2130_set_current_h(i, val);
  5812. tmc2130_set_current_r(i, val);
  5813. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  5814. }
  5815. #else //TMC2130
  5816. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5817. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5818. if(code_seen('B')) st_current_set(4,code_value());
  5819. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5820. #endif
  5821. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5822. if(code_seen('X')) st_current_set(0, code_value());
  5823. #endif
  5824. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5825. if(code_seen('Z')) st_current_set(1, code_value());
  5826. #endif
  5827. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5828. if(code_seen('E')) st_current_set(2, code_value());
  5829. #endif
  5830. #endif //TMC2130
  5831. }
  5832. break;
  5833. case 908: // M908 Control digital trimpot directly.
  5834. {
  5835. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5836. uint8_t channel,current;
  5837. if(code_seen('P')) channel=code_value();
  5838. if(code_seen('S')) current=code_value();
  5839. digitalPotWrite(channel, current);
  5840. #endif
  5841. }
  5842. break;
  5843. #ifdef TMC2130_SERVICE_CODES_M910_M918
  5844. case 910: //! M910 - TMC2130 init
  5845. {
  5846. tmc2130_init();
  5847. }
  5848. break;
  5849. case 911: //! M911 - Set TMC2130 holding currents
  5850. {
  5851. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5852. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5853. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5854. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5855. }
  5856. break;
  5857. case 912: //! M912 - Set TMC2130 running currents
  5858. {
  5859. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5860. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5861. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5862. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5863. }
  5864. break;
  5865. case 913: //! M913 - Print TMC2130 currents
  5866. {
  5867. tmc2130_print_currents();
  5868. }
  5869. break;
  5870. case 914: //! M914 - Set normal mode
  5871. {
  5872. tmc2130_mode = TMC2130_MODE_NORMAL;
  5873. update_mode_profile();
  5874. tmc2130_init();
  5875. }
  5876. break;
  5877. case 915: //! M915 - Set silent mode
  5878. {
  5879. tmc2130_mode = TMC2130_MODE_SILENT;
  5880. update_mode_profile();
  5881. tmc2130_init();
  5882. }
  5883. break;
  5884. case 916: //! M916 - Set sg_thrs
  5885. {
  5886. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5887. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5888. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5889. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5890. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5891. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5892. }
  5893. break;
  5894. case 917: //! M917 - Set TMC2130 pwm_ampl
  5895. {
  5896. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5897. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5898. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5899. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5900. }
  5901. break;
  5902. case 918: //! M918 - Set TMC2130 pwm_grad
  5903. {
  5904. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5905. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5906. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5907. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5908. }
  5909. break;
  5910. #endif //TMC2130_SERVICE_CODES_M910_M918
  5911. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5912. {
  5913. #ifdef TMC2130
  5914. if(code_seen('E'))
  5915. {
  5916. uint16_t res_new = code_value();
  5917. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5918. {
  5919. st_synchronize();
  5920. uint8_t axis = E_AXIS;
  5921. uint16_t res = tmc2130_get_res(axis);
  5922. tmc2130_set_res(axis, res_new);
  5923. if (res_new > res)
  5924. {
  5925. uint16_t fac = (res_new / res);
  5926. cs.axis_steps_per_unit[axis] *= fac;
  5927. position[E_AXIS] *= fac;
  5928. }
  5929. else
  5930. {
  5931. uint16_t fac = (res / res_new);
  5932. cs.axis_steps_per_unit[axis] /= fac;
  5933. position[E_AXIS] /= fac;
  5934. }
  5935. }
  5936. }
  5937. #else //TMC2130
  5938. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5939. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5940. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5941. if(code_seen('B')) microstep_mode(4,code_value());
  5942. microstep_readings();
  5943. #endif
  5944. #endif //TMC2130
  5945. }
  5946. break;
  5947. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5948. {
  5949. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5950. if(code_seen('S')) switch((int)code_value())
  5951. {
  5952. case 1:
  5953. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5954. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5955. break;
  5956. case 2:
  5957. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5958. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5959. break;
  5960. }
  5961. microstep_readings();
  5962. #endif
  5963. }
  5964. break;
  5965. case 701: //! M701 - load filament
  5966. {
  5967. if (mmu_enabled && code_seen('E'))
  5968. tmp_extruder = code_value();
  5969. gcode_M701();
  5970. }
  5971. break;
  5972. case 702: //! M702 [U C] -
  5973. {
  5974. #ifdef SNMM
  5975. if (code_seen('U'))
  5976. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  5977. else if (code_seen('C'))
  5978. extr_unload(); //! if "C" unload just current filament
  5979. else
  5980. extr_unload_all(); //! otherwise unload all filaments
  5981. #else
  5982. if (code_seen('C')) {
  5983. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  5984. }
  5985. else {
  5986. if(mmu_enabled) extr_unload(); //! unload current filament
  5987. else unload_filament();
  5988. }
  5989. #endif //SNMM
  5990. }
  5991. break;
  5992. case 999: // M999: Restart after being stopped
  5993. Stopped = false;
  5994. lcd_reset_alert_level();
  5995. gcode_LastN = Stopped_gcode_LastN;
  5996. FlushSerialRequestResend();
  5997. break;
  5998. default:
  5999. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6000. }
  6001. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6002. mcode_in_progress = 0;
  6003. }
  6004. }
  6005. // end if(code_seen('M')) (end of M codes)
  6006. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6007. //! select filament in case of MMU_V2
  6008. //! if extruder is "?", open menu to let the user select extruder/filament
  6009. //!
  6010. //! For MMU_V2:
  6011. //! @n T<n> Gcode to extrude must follow immediately to load to extruder wheels
  6012. //! @n T? Gcode to extrude doesn't have to follow, load to extruder wheels is done automatically
  6013. else if(code_seen('T'))
  6014. {
  6015. int index;
  6016. bool load_to_nozzle = false;
  6017. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6018. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6019. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6020. SERIAL_ECHOLNPGM("Invalid T code.");
  6021. }
  6022. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6023. if (mmu_enabled)
  6024. {
  6025. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6026. st_synchronize();
  6027. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6028. manage_response(true, true);
  6029. }
  6030. }
  6031. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6032. if (mmu_enabled)
  6033. {
  6034. st_synchronize();
  6035. mmu_command(MMU_CMD_C0);
  6036. mmu_extruder = tmp_extruder; //filament change is finished
  6037. mmu_load_to_nozzle();
  6038. }
  6039. }
  6040. else {
  6041. if (*(strchr_pointer + index) == '?')
  6042. {
  6043. if(mmu_enabled)
  6044. {
  6045. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6046. load_to_nozzle = true;
  6047. } else
  6048. {
  6049. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6050. }
  6051. }
  6052. else {
  6053. tmp_extruder = code_value();
  6054. }
  6055. st_synchronize();
  6056. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6057. if (mmu_enabled)
  6058. {
  6059. mmu_command(MMU_CMD_T0 + tmp_extruder);
  6060. manage_response(true, true);
  6061. mmu_command(MMU_CMD_C0);
  6062. mmu_extruder = tmp_extruder; //filament change is finished
  6063. if (load_to_nozzle)// for single material usage with mmu
  6064. {
  6065. mmu_load_to_nozzle();
  6066. }
  6067. }
  6068. else
  6069. {
  6070. #ifdef SNMM
  6071. #ifdef LIN_ADVANCE
  6072. if (mmu_extruder != tmp_extruder)
  6073. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6074. #endif
  6075. mmu_extruder = tmp_extruder;
  6076. delay(100);
  6077. disable_e0();
  6078. disable_e1();
  6079. disable_e2();
  6080. pinMode(E_MUX0_PIN, OUTPUT);
  6081. pinMode(E_MUX1_PIN, OUTPUT);
  6082. delay(100);
  6083. SERIAL_ECHO_START;
  6084. SERIAL_ECHO("T:");
  6085. SERIAL_ECHOLN((int)tmp_extruder);
  6086. switch (tmp_extruder) {
  6087. case 1:
  6088. WRITE(E_MUX0_PIN, HIGH);
  6089. WRITE(E_MUX1_PIN, LOW);
  6090. break;
  6091. case 2:
  6092. WRITE(E_MUX0_PIN, LOW);
  6093. WRITE(E_MUX1_PIN, HIGH);
  6094. break;
  6095. case 3:
  6096. WRITE(E_MUX0_PIN, HIGH);
  6097. WRITE(E_MUX1_PIN, HIGH);
  6098. break;
  6099. default:
  6100. WRITE(E_MUX0_PIN, LOW);
  6101. WRITE(E_MUX1_PIN, LOW);
  6102. break;
  6103. }
  6104. delay(100);
  6105. #else //SNMM
  6106. if (tmp_extruder >= EXTRUDERS) {
  6107. SERIAL_ECHO_START;
  6108. SERIAL_ECHOPGM("T");
  6109. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6110. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6111. }
  6112. else {
  6113. #if EXTRUDERS > 1
  6114. boolean make_move = false;
  6115. #endif
  6116. if (code_seen('F')) {
  6117. #if EXTRUDERS > 1
  6118. make_move = true;
  6119. #endif
  6120. next_feedrate = code_value();
  6121. if (next_feedrate > 0.0) {
  6122. feedrate = next_feedrate;
  6123. }
  6124. }
  6125. #if EXTRUDERS > 1
  6126. if (tmp_extruder != active_extruder) {
  6127. // Save current position to return to after applying extruder offset
  6128. memcpy(destination, current_position, sizeof(destination));
  6129. // Offset extruder (only by XY)
  6130. int i;
  6131. for (i = 0; i < 2; i++) {
  6132. current_position[i] = current_position[i] -
  6133. extruder_offset[i][active_extruder] +
  6134. extruder_offset[i][tmp_extruder];
  6135. }
  6136. // Set the new active extruder and position
  6137. active_extruder = tmp_extruder;
  6138. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6139. // Move to the old position if 'F' was in the parameters
  6140. if (make_move && Stopped == false) {
  6141. prepare_move();
  6142. }
  6143. }
  6144. #endif
  6145. SERIAL_ECHO_START;
  6146. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6147. SERIAL_PROTOCOLLN((int)active_extruder);
  6148. }
  6149. #endif //SNMM
  6150. }
  6151. }
  6152. } // end if(code_seen('T')) (end of T codes)
  6153. else if (code_seen('D')) // D codes (debug)
  6154. {
  6155. switch((int)code_value())
  6156. {
  6157. #ifdef DEBUG_DCODES
  6158. case -1: //! D-1 - Endless loop
  6159. dcode__1(); break;
  6160. case 0: //! D0 - Reset
  6161. dcode_0(); break;
  6162. case 1: //! D1 - Clear EEPROM
  6163. dcode_1(); break;
  6164. case 2: //! D2 - Read/Write RAM
  6165. dcode_2(); break;
  6166. #endif //DEBUG_DCODES
  6167. #ifdef DEBUG_DCODE3
  6168. case 3: //! D3 - Read/Write EEPROM
  6169. dcode_3(); break;
  6170. #endif //DEBUG_DCODE3
  6171. #ifdef DEBUG_DCODES
  6172. case 4: //! D4 - Read/Write PIN
  6173. dcode_4(); break;
  6174. #endif //DEBUG_DCODES
  6175. #ifdef DEBUG_DCODE5
  6176. case 5: // D5 - Read/Write FLASH
  6177. dcode_5(); break;
  6178. break;
  6179. #endif //DEBUG_DCODE5
  6180. #ifdef DEBUG_DCODES
  6181. case 6: // D6 - Read/Write external FLASH
  6182. dcode_6(); break;
  6183. case 7: //! D7 - Read/Write Bootloader
  6184. dcode_7(); break;
  6185. case 8: //! D8 - Read/Write PINDA
  6186. dcode_8(); break;
  6187. case 9: //! D9 - Read/Write ADC
  6188. dcode_9(); break;
  6189. case 10: //! D10 - XYZ calibration = OK
  6190. dcode_10(); break;
  6191. #ifdef TMC2130
  6192. case 2130: //! D2130 - TMC2130
  6193. dcode_2130(); break;
  6194. #endif //TMC2130
  6195. #ifdef FILAMENT_SENSOR
  6196. case 9125: //! D9125 - FILAMENT_SENSOR
  6197. dcode_9125(); break;
  6198. #endif //FILAMENT_SENSOR
  6199. #endif //DEBUG_DCODES
  6200. }
  6201. }
  6202. else
  6203. {
  6204. SERIAL_ECHO_START;
  6205. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6206. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6207. SERIAL_ECHOLNPGM("\"(2)");
  6208. }
  6209. KEEPALIVE_STATE(NOT_BUSY);
  6210. ClearToSend();
  6211. }
  6212. void FlushSerialRequestResend()
  6213. {
  6214. //char cmdbuffer[bufindr][100]="Resend:";
  6215. MYSERIAL.flush();
  6216. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6217. }
  6218. // Confirm the execution of a command, if sent from a serial line.
  6219. // Execution of a command from a SD card will not be confirmed.
  6220. void ClearToSend()
  6221. {
  6222. previous_millis_cmd = millis();
  6223. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6224. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6225. }
  6226. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6227. void update_currents() {
  6228. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6229. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6230. float tmp_motor[3];
  6231. //SERIAL_ECHOLNPGM("Currents updated: ");
  6232. if (destination[Z_AXIS] < Z_SILENT) {
  6233. //SERIAL_ECHOLNPGM("LOW");
  6234. for (uint8_t i = 0; i < 3; i++) {
  6235. st_current_set(i, current_low[i]);
  6236. /*MYSERIAL.print(int(i));
  6237. SERIAL_ECHOPGM(": ");
  6238. MYSERIAL.println(current_low[i]);*/
  6239. }
  6240. }
  6241. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6242. //SERIAL_ECHOLNPGM("HIGH");
  6243. for (uint8_t i = 0; i < 3; i++) {
  6244. st_current_set(i, current_high[i]);
  6245. /*MYSERIAL.print(int(i));
  6246. SERIAL_ECHOPGM(": ");
  6247. MYSERIAL.println(current_high[i]);*/
  6248. }
  6249. }
  6250. else {
  6251. for (uint8_t i = 0; i < 3; i++) {
  6252. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6253. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6254. st_current_set(i, tmp_motor[i]);
  6255. /*MYSERIAL.print(int(i));
  6256. SERIAL_ECHOPGM(": ");
  6257. MYSERIAL.println(tmp_motor[i]);*/
  6258. }
  6259. }
  6260. }
  6261. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6262. void get_coordinates()
  6263. {
  6264. bool seen[4]={false,false,false,false};
  6265. for(int8_t i=0; i < NUM_AXIS; i++) {
  6266. if(code_seen(axis_codes[i]))
  6267. {
  6268. bool relative = axis_relative_modes[i] || relative_mode;
  6269. destination[i] = (float)code_value();
  6270. if (i == E_AXIS) {
  6271. float emult = extruder_multiplier[active_extruder];
  6272. if (emult != 1.) {
  6273. if (! relative) {
  6274. destination[i] -= current_position[i];
  6275. relative = true;
  6276. }
  6277. destination[i] *= emult;
  6278. }
  6279. }
  6280. if (relative)
  6281. destination[i] += current_position[i];
  6282. seen[i]=true;
  6283. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6284. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6285. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6286. }
  6287. else destination[i] = current_position[i]; //Are these else lines really needed?
  6288. }
  6289. if(code_seen('F')) {
  6290. next_feedrate = code_value();
  6291. #ifdef MAX_SILENT_FEEDRATE
  6292. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6293. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6294. #endif //MAX_SILENT_FEEDRATE
  6295. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6296. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6297. {
  6298. // float e_max_speed =
  6299. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6300. }
  6301. }
  6302. }
  6303. void get_arc_coordinates()
  6304. {
  6305. #ifdef SF_ARC_FIX
  6306. bool relative_mode_backup = relative_mode;
  6307. relative_mode = true;
  6308. #endif
  6309. get_coordinates();
  6310. #ifdef SF_ARC_FIX
  6311. relative_mode=relative_mode_backup;
  6312. #endif
  6313. if(code_seen('I')) {
  6314. offset[0] = code_value();
  6315. }
  6316. else {
  6317. offset[0] = 0.0;
  6318. }
  6319. if(code_seen('J')) {
  6320. offset[1] = code_value();
  6321. }
  6322. else {
  6323. offset[1] = 0.0;
  6324. }
  6325. }
  6326. void clamp_to_software_endstops(float target[3])
  6327. {
  6328. #ifdef DEBUG_DISABLE_SWLIMITS
  6329. return;
  6330. #endif //DEBUG_DISABLE_SWLIMITS
  6331. world2machine_clamp(target[0], target[1]);
  6332. // Clamp the Z coordinate.
  6333. if (min_software_endstops) {
  6334. float negative_z_offset = 0;
  6335. #ifdef ENABLE_AUTO_BED_LEVELING
  6336. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6337. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6338. #endif
  6339. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6340. }
  6341. if (max_software_endstops) {
  6342. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6343. }
  6344. }
  6345. #ifdef MESH_BED_LEVELING
  6346. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6347. float dx = x - current_position[X_AXIS];
  6348. float dy = y - current_position[Y_AXIS];
  6349. float dz = z - current_position[Z_AXIS];
  6350. int n_segments = 0;
  6351. if (mbl.active) {
  6352. float len = abs(dx) + abs(dy);
  6353. if (len > 0)
  6354. // Split to 3cm segments or shorter.
  6355. n_segments = int(ceil(len / 30.f));
  6356. }
  6357. if (n_segments > 1) {
  6358. float de = e - current_position[E_AXIS];
  6359. for (int i = 1; i < n_segments; ++ i) {
  6360. float t = float(i) / float(n_segments);
  6361. if (saved_printing || (mbl.active == false)) return;
  6362. plan_buffer_line(
  6363. current_position[X_AXIS] + t * dx,
  6364. current_position[Y_AXIS] + t * dy,
  6365. current_position[Z_AXIS] + t * dz,
  6366. current_position[E_AXIS] + t * de,
  6367. feed_rate, extruder);
  6368. }
  6369. }
  6370. // The rest of the path.
  6371. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6372. current_position[X_AXIS] = x;
  6373. current_position[Y_AXIS] = y;
  6374. current_position[Z_AXIS] = z;
  6375. current_position[E_AXIS] = e;
  6376. }
  6377. #endif // MESH_BED_LEVELING
  6378. void prepare_move()
  6379. {
  6380. clamp_to_software_endstops(destination);
  6381. previous_millis_cmd = millis();
  6382. // Do not use feedmultiply for E or Z only moves
  6383. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6384. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6385. }
  6386. else {
  6387. #ifdef MESH_BED_LEVELING
  6388. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6389. #else
  6390. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6391. #endif
  6392. }
  6393. for(int8_t i=0; i < NUM_AXIS; i++) {
  6394. current_position[i] = destination[i];
  6395. }
  6396. }
  6397. void prepare_arc_move(char isclockwise) {
  6398. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6399. // Trace the arc
  6400. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6401. // As far as the parser is concerned, the position is now == target. In reality the
  6402. // motion control system might still be processing the action and the real tool position
  6403. // in any intermediate location.
  6404. for(int8_t i=0; i < NUM_AXIS; i++) {
  6405. current_position[i] = destination[i];
  6406. }
  6407. previous_millis_cmd = millis();
  6408. }
  6409. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6410. #if defined(FAN_PIN)
  6411. #if CONTROLLERFAN_PIN == FAN_PIN
  6412. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6413. #endif
  6414. #endif
  6415. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6416. unsigned long lastMotorCheck = 0;
  6417. void controllerFan()
  6418. {
  6419. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6420. {
  6421. lastMotorCheck = millis();
  6422. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6423. #if EXTRUDERS > 2
  6424. || !READ(E2_ENABLE_PIN)
  6425. #endif
  6426. #if EXTRUDER > 1
  6427. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6428. || !READ(X2_ENABLE_PIN)
  6429. #endif
  6430. || !READ(E1_ENABLE_PIN)
  6431. #endif
  6432. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6433. {
  6434. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6435. }
  6436. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6437. {
  6438. digitalWrite(CONTROLLERFAN_PIN, 0);
  6439. analogWrite(CONTROLLERFAN_PIN, 0);
  6440. }
  6441. else
  6442. {
  6443. // allows digital or PWM fan output to be used (see M42 handling)
  6444. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6445. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6446. }
  6447. }
  6448. }
  6449. #endif
  6450. #ifdef TEMP_STAT_LEDS
  6451. static bool blue_led = false;
  6452. static bool red_led = false;
  6453. static uint32_t stat_update = 0;
  6454. void handle_status_leds(void) {
  6455. float max_temp = 0.0;
  6456. if(millis() > stat_update) {
  6457. stat_update += 500; // Update every 0.5s
  6458. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6459. max_temp = max(max_temp, degHotend(cur_extruder));
  6460. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6461. }
  6462. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6463. max_temp = max(max_temp, degTargetBed());
  6464. max_temp = max(max_temp, degBed());
  6465. #endif
  6466. if((max_temp > 55.0) && (red_led == false)) {
  6467. digitalWrite(STAT_LED_RED, 1);
  6468. digitalWrite(STAT_LED_BLUE, 0);
  6469. red_led = true;
  6470. blue_led = false;
  6471. }
  6472. if((max_temp < 54.0) && (blue_led == false)) {
  6473. digitalWrite(STAT_LED_RED, 0);
  6474. digitalWrite(STAT_LED_BLUE, 1);
  6475. red_led = false;
  6476. blue_led = true;
  6477. }
  6478. }
  6479. }
  6480. #endif
  6481. #ifdef SAFETYTIMER
  6482. /**
  6483. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6484. *
  6485. * Full screen blocking notification message is shown after heater turning off.
  6486. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6487. * damage print.
  6488. *
  6489. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6490. */
  6491. static void handleSafetyTimer()
  6492. {
  6493. #if (EXTRUDERS > 1)
  6494. #error Implemented only for one extruder.
  6495. #endif //(EXTRUDERS > 1)
  6496. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6497. {
  6498. safetyTimer.stop();
  6499. }
  6500. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6501. {
  6502. safetyTimer.start();
  6503. }
  6504. else if (safetyTimer.expired(safetytimer_inactive_time))
  6505. {
  6506. setTargetBed(0);
  6507. setAllTargetHotends(0);
  6508. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6509. }
  6510. }
  6511. #endif //SAFETYTIMER
  6512. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6513. {
  6514. #ifdef FILAMENT_SENSOR
  6515. if (mmu_enabled == false)
  6516. {
  6517. if (mcode_in_progress != 600) //M600 not in progress
  6518. {
  6519. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL) && !wizard_active)
  6520. {
  6521. if (fsensor_check_autoload())
  6522. {
  6523. fsensor_autoload_check_stop();
  6524. if (degHotend0() > EXTRUDE_MINTEMP)
  6525. {
  6526. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6527. tone(BEEPER, 1000);
  6528. delay_keep_alive(50);
  6529. noTone(BEEPER);
  6530. loading_flag = true;
  6531. enquecommand_front_P((PSTR("M701")));
  6532. }
  6533. else
  6534. {
  6535. lcd_update_enable(false);
  6536. show_preheat_nozzle_warning();
  6537. lcd_update_enable(true);
  6538. }
  6539. }
  6540. }
  6541. else
  6542. {
  6543. fsensor_autoload_check_stop();
  6544. fsensor_update();
  6545. }
  6546. }
  6547. }
  6548. #endif //FILAMENT_SENSOR
  6549. #ifdef SAFETYTIMER
  6550. handleSafetyTimer();
  6551. #endif //SAFETYTIMER
  6552. #if defined(KILL_PIN) && KILL_PIN > -1
  6553. static int killCount = 0; // make the inactivity button a bit less responsive
  6554. const int KILL_DELAY = 10000;
  6555. #endif
  6556. if(buflen < (BUFSIZE-1)){
  6557. get_command();
  6558. }
  6559. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6560. if(max_inactive_time)
  6561. kill(_n(""), 4);
  6562. if(stepper_inactive_time) {
  6563. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6564. {
  6565. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6566. disable_x();
  6567. disable_y();
  6568. disable_z();
  6569. disable_e0();
  6570. disable_e1();
  6571. disable_e2();
  6572. }
  6573. }
  6574. }
  6575. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6576. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6577. {
  6578. chdkActive = false;
  6579. WRITE(CHDK, LOW);
  6580. }
  6581. #endif
  6582. #if defined(KILL_PIN) && KILL_PIN > -1
  6583. // Check if the kill button was pressed and wait just in case it was an accidental
  6584. // key kill key press
  6585. // -------------------------------------------------------------------------------
  6586. if( 0 == READ(KILL_PIN) )
  6587. {
  6588. killCount++;
  6589. }
  6590. else if (killCount > 0)
  6591. {
  6592. killCount--;
  6593. }
  6594. // Exceeded threshold and we can confirm that it was not accidental
  6595. // KILL the machine
  6596. // ----------------------------------------------------------------
  6597. if ( killCount >= KILL_DELAY)
  6598. {
  6599. kill("", 5);
  6600. }
  6601. #endif
  6602. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6603. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6604. #endif
  6605. #ifdef EXTRUDER_RUNOUT_PREVENT
  6606. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6607. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6608. {
  6609. bool oldstatus=READ(E0_ENABLE_PIN);
  6610. enable_e0();
  6611. float oldepos=current_position[E_AXIS];
  6612. float oldedes=destination[E_AXIS];
  6613. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6614. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6615. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6616. current_position[E_AXIS]=oldepos;
  6617. destination[E_AXIS]=oldedes;
  6618. plan_set_e_position(oldepos);
  6619. previous_millis_cmd=millis();
  6620. st_synchronize();
  6621. WRITE(E0_ENABLE_PIN,oldstatus);
  6622. }
  6623. #endif
  6624. #ifdef TEMP_STAT_LEDS
  6625. handle_status_leds();
  6626. #endif
  6627. check_axes_activity();
  6628. mmu_loop();
  6629. }
  6630. void kill(const char *full_screen_message, unsigned char id)
  6631. {
  6632. printf_P(_N("KILL: %d\n"), id);
  6633. //return;
  6634. cli(); // Stop interrupts
  6635. disable_heater();
  6636. disable_x();
  6637. // SERIAL_ECHOLNPGM("kill - disable Y");
  6638. disable_y();
  6639. disable_z();
  6640. disable_e0();
  6641. disable_e1();
  6642. disable_e2();
  6643. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6644. pinMode(PS_ON_PIN,INPUT);
  6645. #endif
  6646. SERIAL_ERROR_START;
  6647. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6648. if (full_screen_message != NULL) {
  6649. SERIAL_ERRORLNRPGM(full_screen_message);
  6650. lcd_display_message_fullscreen_P(full_screen_message);
  6651. } else {
  6652. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6653. }
  6654. // FMC small patch to update the LCD before ending
  6655. sei(); // enable interrupts
  6656. for ( int i=5; i--; lcd_update(0))
  6657. {
  6658. delay(200);
  6659. }
  6660. cli(); // disable interrupts
  6661. suicide();
  6662. while(1)
  6663. {
  6664. #ifdef WATCHDOG
  6665. wdt_reset();
  6666. #endif //WATCHDOG
  6667. /* Intentionally left empty */
  6668. } // Wait for reset
  6669. }
  6670. void Stop()
  6671. {
  6672. disable_heater();
  6673. if(Stopped == false) {
  6674. Stopped = true;
  6675. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6676. SERIAL_ERROR_START;
  6677. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6678. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6679. }
  6680. }
  6681. bool IsStopped() { return Stopped; };
  6682. #ifdef FAST_PWM_FAN
  6683. void setPwmFrequency(uint8_t pin, int val)
  6684. {
  6685. val &= 0x07;
  6686. switch(digitalPinToTimer(pin))
  6687. {
  6688. #if defined(TCCR0A)
  6689. case TIMER0A:
  6690. case TIMER0B:
  6691. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6692. // TCCR0B |= val;
  6693. break;
  6694. #endif
  6695. #if defined(TCCR1A)
  6696. case TIMER1A:
  6697. case TIMER1B:
  6698. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6699. // TCCR1B |= val;
  6700. break;
  6701. #endif
  6702. #if defined(TCCR2)
  6703. case TIMER2:
  6704. case TIMER2:
  6705. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6706. TCCR2 |= val;
  6707. break;
  6708. #endif
  6709. #if defined(TCCR2A)
  6710. case TIMER2A:
  6711. case TIMER2B:
  6712. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6713. TCCR2B |= val;
  6714. break;
  6715. #endif
  6716. #if defined(TCCR3A)
  6717. case TIMER3A:
  6718. case TIMER3B:
  6719. case TIMER3C:
  6720. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6721. TCCR3B |= val;
  6722. break;
  6723. #endif
  6724. #if defined(TCCR4A)
  6725. case TIMER4A:
  6726. case TIMER4B:
  6727. case TIMER4C:
  6728. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6729. TCCR4B |= val;
  6730. break;
  6731. #endif
  6732. #if defined(TCCR5A)
  6733. case TIMER5A:
  6734. case TIMER5B:
  6735. case TIMER5C:
  6736. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6737. TCCR5B |= val;
  6738. break;
  6739. #endif
  6740. }
  6741. }
  6742. #endif //FAST_PWM_FAN
  6743. //! @brief Get and validate extruder number
  6744. //!
  6745. //! If it is not specified, active_extruder is returned in parameter extruder.
  6746. //! @param [in] code M code number
  6747. //! @param [out] extruder
  6748. //! @return error
  6749. //! @retval true Invalid extruder specified in T code
  6750. //! @retval false Valid extruder specified in T code, or not specifiead
  6751. bool setTargetedHotend(int code, uint8_t &extruder)
  6752. {
  6753. extruder = active_extruder;
  6754. if(code_seen('T')) {
  6755. extruder = code_value();
  6756. if(extruder >= EXTRUDERS) {
  6757. SERIAL_ECHO_START;
  6758. switch(code){
  6759. case 104:
  6760. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6761. break;
  6762. case 105:
  6763. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6764. break;
  6765. case 109:
  6766. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6767. break;
  6768. case 218:
  6769. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6770. break;
  6771. case 221:
  6772. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6773. break;
  6774. }
  6775. SERIAL_PROTOCOLLN((int)extruder);
  6776. return true;
  6777. }
  6778. }
  6779. return false;
  6780. }
  6781. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6782. {
  6783. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6784. {
  6785. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6786. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6787. }
  6788. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6789. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6790. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6791. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6792. total_filament_used = 0;
  6793. }
  6794. float calculate_extruder_multiplier(float diameter) {
  6795. float out = 1.f;
  6796. if (cs.volumetric_enabled && diameter > 0.f) {
  6797. float area = M_PI * diameter * diameter * 0.25;
  6798. out = 1.f / area;
  6799. }
  6800. if (extrudemultiply != 100)
  6801. out *= float(extrudemultiply) * 0.01f;
  6802. return out;
  6803. }
  6804. void calculate_extruder_multipliers() {
  6805. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  6806. #if EXTRUDERS > 1
  6807. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  6808. #if EXTRUDERS > 2
  6809. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  6810. #endif
  6811. #endif
  6812. }
  6813. void delay_keep_alive(unsigned int ms)
  6814. {
  6815. for (;;) {
  6816. manage_heater();
  6817. // Manage inactivity, but don't disable steppers on timeout.
  6818. manage_inactivity(true);
  6819. lcd_update(0);
  6820. if (ms == 0)
  6821. break;
  6822. else if (ms >= 50) {
  6823. delay(50);
  6824. ms -= 50;
  6825. } else {
  6826. delay(ms);
  6827. ms = 0;
  6828. }
  6829. }
  6830. }
  6831. static void wait_for_heater(long codenum, uint8_t extruder) {
  6832. #ifdef TEMP_RESIDENCY_TIME
  6833. long residencyStart;
  6834. residencyStart = -1;
  6835. /* continue to loop until we have reached the target temp
  6836. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6837. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6838. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6839. #else
  6840. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6841. #endif //TEMP_RESIDENCY_TIME
  6842. if ((millis() - codenum) > 1000UL)
  6843. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6844. if (!farm_mode) {
  6845. SERIAL_PROTOCOLPGM("T:");
  6846. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  6847. SERIAL_PROTOCOLPGM(" E:");
  6848. SERIAL_PROTOCOL((int)extruder);
  6849. #ifdef TEMP_RESIDENCY_TIME
  6850. SERIAL_PROTOCOLPGM(" W:");
  6851. if (residencyStart > -1)
  6852. {
  6853. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6854. SERIAL_PROTOCOLLN(codenum);
  6855. }
  6856. else
  6857. {
  6858. SERIAL_PROTOCOLLN("?");
  6859. }
  6860. }
  6861. #else
  6862. SERIAL_PROTOCOLLN("");
  6863. #endif
  6864. codenum = millis();
  6865. }
  6866. manage_heater();
  6867. manage_inactivity(true); //do not disable steppers
  6868. lcd_update(0);
  6869. #ifdef TEMP_RESIDENCY_TIME
  6870. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6871. or when current temp falls outside the hysteresis after target temp was reached */
  6872. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  6873. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  6874. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  6875. {
  6876. residencyStart = millis();
  6877. }
  6878. #endif //TEMP_RESIDENCY_TIME
  6879. }
  6880. }
  6881. void check_babystep()
  6882. {
  6883. int babystep_z;
  6884. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6885. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6886. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6887. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6888. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6889. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6890. lcd_update_enable(true);
  6891. }
  6892. }
  6893. #ifdef DIS
  6894. void d_setup()
  6895. {
  6896. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6897. pinMode(D_DATA, INPUT_PULLUP);
  6898. pinMode(D_REQUIRE, OUTPUT);
  6899. digitalWrite(D_REQUIRE, HIGH);
  6900. }
  6901. float d_ReadData()
  6902. {
  6903. int digit[13];
  6904. String mergeOutput;
  6905. float output;
  6906. digitalWrite(D_REQUIRE, HIGH);
  6907. for (int i = 0; i<13; i++)
  6908. {
  6909. for (int j = 0; j < 4; j++)
  6910. {
  6911. while (digitalRead(D_DATACLOCK) == LOW) {}
  6912. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6913. bitWrite(digit[i], j, digitalRead(D_DATA));
  6914. }
  6915. }
  6916. digitalWrite(D_REQUIRE, LOW);
  6917. mergeOutput = "";
  6918. output = 0;
  6919. for (int r = 5; r <= 10; r++) //Merge digits
  6920. {
  6921. mergeOutput += digit[r];
  6922. }
  6923. output = mergeOutput.toFloat();
  6924. if (digit[4] == 8) //Handle sign
  6925. {
  6926. output *= -1;
  6927. }
  6928. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6929. {
  6930. output /= 10;
  6931. }
  6932. return output;
  6933. }
  6934. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6935. int t1 = 0;
  6936. int t_delay = 0;
  6937. int digit[13];
  6938. int m;
  6939. char str[3];
  6940. //String mergeOutput;
  6941. char mergeOutput[15];
  6942. float output;
  6943. int mesh_point = 0; //index number of calibration point
  6944. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6945. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6946. float mesh_home_z_search = 4;
  6947. float row[x_points_num];
  6948. int ix = 0;
  6949. int iy = 0;
  6950. const char* filename_wldsd = "wldsd.txt";
  6951. char data_wldsd[70];
  6952. char numb_wldsd[10];
  6953. d_setup();
  6954. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6955. // We don't know where we are! HOME!
  6956. // Push the commands to the front of the message queue in the reverse order!
  6957. // There shall be always enough space reserved for these commands.
  6958. repeatcommand_front(); // repeat G80 with all its parameters
  6959. enquecommand_front_P((PSTR("G28 W0")));
  6960. enquecommand_front_P((PSTR("G1 Z5")));
  6961. return;
  6962. }
  6963. unsigned int custom_message_type_old = custom_message_type;
  6964. unsigned int custom_message_state_old = custom_message_state;
  6965. custom_message_type = CUSTOM_MSG_TYPE_MESHBL;
  6966. custom_message_state = (x_points_num * y_points_num) + 10;
  6967. lcd_update(1);
  6968. mbl.reset();
  6969. babystep_undo();
  6970. card.openFile(filename_wldsd, false);
  6971. current_position[Z_AXIS] = mesh_home_z_search;
  6972. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6973. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6974. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6975. int l_feedmultiply = setup_for_endstop_move(false);
  6976. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6977. SERIAL_PROTOCOL(x_points_num);
  6978. SERIAL_PROTOCOLPGM(",");
  6979. SERIAL_PROTOCOL(y_points_num);
  6980. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6981. SERIAL_PROTOCOL(mesh_home_z_search);
  6982. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6983. SERIAL_PROTOCOL(x_dimension);
  6984. SERIAL_PROTOCOLPGM(",");
  6985. SERIAL_PROTOCOL(y_dimension);
  6986. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6987. while (mesh_point != x_points_num * y_points_num) {
  6988. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6989. iy = mesh_point / x_points_num;
  6990. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6991. float z0 = 0.f;
  6992. current_position[Z_AXIS] = mesh_home_z_search;
  6993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6994. st_synchronize();
  6995. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6996. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6998. st_synchronize();
  6999. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7000. break;
  7001. card.closefile();
  7002. }
  7003. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7004. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7005. //strcat(data_wldsd, numb_wldsd);
  7006. //MYSERIAL.println(data_wldsd);
  7007. //delay(1000);
  7008. //delay(3000);
  7009. //t1 = millis();
  7010. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7011. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7012. memset(digit, 0, sizeof(digit));
  7013. //cli();
  7014. digitalWrite(D_REQUIRE, LOW);
  7015. for (int i = 0; i<13; i++)
  7016. {
  7017. //t1 = millis();
  7018. for (int j = 0; j < 4; j++)
  7019. {
  7020. while (digitalRead(D_DATACLOCK) == LOW) {}
  7021. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7022. bitWrite(digit[i], j, digitalRead(D_DATA));
  7023. }
  7024. //t_delay = (millis() - t1);
  7025. //SERIAL_PROTOCOLPGM(" ");
  7026. //SERIAL_PROTOCOL_F(t_delay, 5);
  7027. //SERIAL_PROTOCOLPGM(" ");
  7028. }
  7029. //sei();
  7030. digitalWrite(D_REQUIRE, HIGH);
  7031. mergeOutput[0] = '\0';
  7032. output = 0;
  7033. for (int r = 5; r <= 10; r++) //Merge digits
  7034. {
  7035. sprintf(str, "%d", digit[r]);
  7036. strcat(mergeOutput, str);
  7037. }
  7038. output = atof(mergeOutput);
  7039. if (digit[4] == 8) //Handle sign
  7040. {
  7041. output *= -1;
  7042. }
  7043. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7044. {
  7045. output *= 0.1;
  7046. }
  7047. //output = d_ReadData();
  7048. //row[ix] = current_position[Z_AXIS];
  7049. memset(data_wldsd, 0, sizeof(data_wldsd));
  7050. for (int i = 0; i <3; i++) {
  7051. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7052. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7053. strcat(data_wldsd, numb_wldsd);
  7054. strcat(data_wldsd, ";");
  7055. }
  7056. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7057. dtostrf(output, 8, 5, numb_wldsd);
  7058. strcat(data_wldsd, numb_wldsd);
  7059. //strcat(data_wldsd, ";");
  7060. card.write_command(data_wldsd);
  7061. //row[ix] = d_ReadData();
  7062. row[ix] = output; // current_position[Z_AXIS];
  7063. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7064. for (int i = 0; i < x_points_num; i++) {
  7065. SERIAL_PROTOCOLPGM(" ");
  7066. SERIAL_PROTOCOL_F(row[i], 5);
  7067. }
  7068. SERIAL_PROTOCOLPGM("\n");
  7069. }
  7070. custom_message_state--;
  7071. mesh_point++;
  7072. lcd_update(1);
  7073. }
  7074. card.closefile();
  7075. clean_up_after_endstop_move(l_feedmultiply);
  7076. }
  7077. #endif
  7078. void temp_compensation_start() {
  7079. custom_message_type = CUSTOM_MSG_TYPE_TEMPRE;
  7080. custom_message_state = PINDA_HEAT_T + 1;
  7081. lcd_update(2);
  7082. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7083. current_position[E_AXIS] -= default_retraction;
  7084. }
  7085. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7086. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7087. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7088. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7089. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7090. st_synchronize();
  7091. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7092. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7093. delay_keep_alive(1000);
  7094. custom_message_state = PINDA_HEAT_T - i;
  7095. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7096. else lcd_update(1);
  7097. }
  7098. custom_message_type = CUSTOM_MSG_TYPE_STATUS;
  7099. custom_message_state = 0;
  7100. }
  7101. void temp_compensation_apply() {
  7102. int i_add;
  7103. int z_shift = 0;
  7104. float z_shift_mm;
  7105. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7106. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7107. i_add = (target_temperature_bed - 60) / 10;
  7108. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7109. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7110. }else {
  7111. //interpolation
  7112. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7113. }
  7114. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7115. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7116. st_synchronize();
  7117. plan_set_z_position(current_position[Z_AXIS]);
  7118. }
  7119. else {
  7120. //we have no temp compensation data
  7121. }
  7122. }
  7123. float temp_comp_interpolation(float inp_temperature) {
  7124. //cubic spline interpolation
  7125. int n, i, j;
  7126. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7127. int shift[10];
  7128. int temp_C[10];
  7129. n = 6; //number of measured points
  7130. shift[0] = 0;
  7131. for (i = 0; i < n; i++) {
  7132. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7133. temp_C[i] = 50 + i * 10; //temperature in C
  7134. #ifdef PINDA_THERMISTOR
  7135. temp_C[i] = 35 + i * 5; //temperature in C
  7136. #else
  7137. temp_C[i] = 50 + i * 10; //temperature in C
  7138. #endif
  7139. x[i] = (float)temp_C[i];
  7140. f[i] = (float)shift[i];
  7141. }
  7142. if (inp_temperature < x[0]) return 0;
  7143. for (i = n - 1; i>0; i--) {
  7144. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7145. h[i - 1] = x[i] - x[i - 1];
  7146. }
  7147. //*********** formation of h, s , f matrix **************
  7148. for (i = 1; i<n - 1; i++) {
  7149. m[i][i] = 2 * (h[i - 1] + h[i]);
  7150. if (i != 1) {
  7151. m[i][i - 1] = h[i - 1];
  7152. m[i - 1][i] = h[i - 1];
  7153. }
  7154. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7155. }
  7156. //*********** forward elimination **************
  7157. for (i = 1; i<n - 2; i++) {
  7158. temp = (m[i + 1][i] / m[i][i]);
  7159. for (j = 1; j <= n - 1; j++)
  7160. m[i + 1][j] -= temp*m[i][j];
  7161. }
  7162. //*********** backward substitution *********
  7163. for (i = n - 2; i>0; i--) {
  7164. sum = 0;
  7165. for (j = i; j <= n - 2; j++)
  7166. sum += m[i][j] * s[j];
  7167. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7168. }
  7169. for (i = 0; i<n - 1; i++)
  7170. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7171. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7172. b = s[i] / 2;
  7173. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7174. d = f[i];
  7175. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7176. }
  7177. return sum;
  7178. }
  7179. #ifdef PINDA_THERMISTOR
  7180. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7181. {
  7182. if (!temp_cal_active) return 0;
  7183. if (!calibration_status_pinda()) return 0;
  7184. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7185. }
  7186. #endif //PINDA_THERMISTOR
  7187. void long_pause() //long pause print
  7188. {
  7189. st_synchronize();
  7190. start_pause_print = millis();
  7191. //retract
  7192. current_position[E_AXIS] -= default_retraction;
  7193. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7194. //lift z
  7195. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7196. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7197. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7198. //Move XY to side
  7199. current_position[X_AXIS] = X_PAUSE_POS;
  7200. current_position[Y_AXIS] = Y_PAUSE_POS;
  7201. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7202. // Turn off the print fan
  7203. fanSpeed = 0;
  7204. st_synchronize();
  7205. }
  7206. void serialecho_temperatures() {
  7207. float tt = degHotend(active_extruder);
  7208. SERIAL_PROTOCOLPGM("T:");
  7209. SERIAL_PROTOCOL(tt);
  7210. SERIAL_PROTOCOLPGM(" E:");
  7211. SERIAL_PROTOCOL((int)active_extruder);
  7212. SERIAL_PROTOCOLPGM(" B:");
  7213. SERIAL_PROTOCOL_F(degBed(), 1);
  7214. SERIAL_PROTOCOLLN("");
  7215. }
  7216. extern uint32_t sdpos_atomic;
  7217. #ifdef UVLO_SUPPORT
  7218. void uvlo_()
  7219. {
  7220. unsigned long time_start = millis();
  7221. bool sd_print = card.sdprinting;
  7222. // Conserve power as soon as possible.
  7223. disable_x();
  7224. disable_y();
  7225. #ifdef TMC2130
  7226. tmc2130_set_current_h(Z_AXIS, 20);
  7227. tmc2130_set_current_r(Z_AXIS, 20);
  7228. tmc2130_set_current_h(E_AXIS, 20);
  7229. tmc2130_set_current_r(E_AXIS, 20);
  7230. #endif //TMC2130
  7231. // Indicate that the interrupt has been triggered.
  7232. // SERIAL_ECHOLNPGM("UVLO");
  7233. // Read out the current Z motor microstep counter. This will be later used
  7234. // for reaching the zero full step before powering off.
  7235. uint16_t z_microsteps = 0;
  7236. #ifdef TMC2130
  7237. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7238. #endif //TMC2130
  7239. // Calculate the file position, from which to resume this print.
  7240. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7241. {
  7242. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7243. sd_position -= sdlen_planner;
  7244. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7245. sd_position -= sdlen_cmdqueue;
  7246. if (sd_position < 0) sd_position = 0;
  7247. }
  7248. // Backup the feedrate in mm/min.
  7249. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7250. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7251. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7252. // are in action.
  7253. planner_abort_hard();
  7254. // Store the current extruder position.
  7255. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7256. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7257. // Clean the input command queue.
  7258. cmdqueue_reset();
  7259. card.sdprinting = false;
  7260. // card.closefile();
  7261. // Enable stepper driver interrupt to move Z axis.
  7262. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7263. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7264. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7265. sei();
  7266. plan_buffer_line(
  7267. current_position[X_AXIS],
  7268. current_position[Y_AXIS],
  7269. current_position[Z_AXIS],
  7270. current_position[E_AXIS] - default_retraction,
  7271. 95, active_extruder);
  7272. st_synchronize();
  7273. disable_e0();
  7274. plan_buffer_line(
  7275. current_position[X_AXIS],
  7276. current_position[Y_AXIS],
  7277. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7278. current_position[E_AXIS] - default_retraction,
  7279. 40, active_extruder);
  7280. st_synchronize();
  7281. disable_e0();
  7282. plan_buffer_line(
  7283. current_position[X_AXIS],
  7284. current_position[Y_AXIS],
  7285. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7286. current_position[E_AXIS] - default_retraction,
  7287. 40, active_extruder);
  7288. st_synchronize();
  7289. disable_e0();
  7290. disable_z();
  7291. // Move Z up to the next 0th full step.
  7292. // Write the file position.
  7293. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7294. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7295. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7296. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7297. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7298. // Scale the z value to 1u resolution.
  7299. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7300. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7301. }
  7302. // Read out the current Z motor microstep counter. This will be later used
  7303. // for reaching the zero full step before powering off.
  7304. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7305. // Store the current position.
  7306. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7307. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7308. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7309. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7310. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7311. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7312. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7313. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7314. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7315. #if EXTRUDERS > 1
  7316. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7317. #if EXTRUDERS > 2
  7318. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7319. #endif
  7320. #endif
  7321. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7322. // Finaly store the "power outage" flag.
  7323. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7324. st_synchronize();
  7325. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7326. disable_z();
  7327. // Increment power failure counter
  7328. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7329. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7330. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7331. #if 0
  7332. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7333. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7334. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7335. st_synchronize();
  7336. #endif
  7337. wdt_enable(WDTO_500MS);
  7338. WRITE(BEEPER,HIGH);
  7339. while(1)
  7340. ;
  7341. }
  7342. void uvlo_tiny()
  7343. {
  7344. uint16_t z_microsteps=0;
  7345. // Conserve power as soon as possible.
  7346. disable_x();
  7347. disable_y();
  7348. disable_e0();
  7349. #ifdef TMC2130
  7350. tmc2130_set_current_h(Z_AXIS, 20);
  7351. tmc2130_set_current_r(Z_AXIS, 20);
  7352. #endif //TMC2130
  7353. // Read out the current Z motor microstep counter
  7354. #ifdef TMC2130
  7355. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7356. #endif //TMC2130
  7357. planner_abort_hard();
  7358. sei();
  7359. plan_buffer_line(
  7360. current_position[X_AXIS],
  7361. current_position[Y_AXIS],
  7362. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7363. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/cs.axis_steps_per_unit[Z_AXIS],
  7364. current_position[E_AXIS],
  7365. 40, active_extruder);
  7366. st_synchronize();
  7367. disable_z();
  7368. // Finaly store the "power outage" flag.
  7369. //if(sd_print)
  7370. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7371. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7372. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7373. // Increment power failure counter
  7374. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7375. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7376. wdt_enable(WDTO_500MS);
  7377. WRITE(BEEPER,HIGH);
  7378. while(1)
  7379. ;
  7380. }
  7381. #endif //UVLO_SUPPORT
  7382. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7383. void setup_fan_interrupt() {
  7384. //INT7
  7385. DDRE &= ~(1 << 7); //input pin
  7386. PORTE &= ~(1 << 7); //no internal pull-up
  7387. //start with sensing rising edge
  7388. EICRB &= ~(1 << 6);
  7389. EICRB |= (1 << 7);
  7390. //enable INT7 interrupt
  7391. EIMSK |= (1 << 7);
  7392. }
  7393. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7394. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7395. ISR(INT7_vect) {
  7396. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7397. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7398. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7399. t_fan_rising_edge = millis_nc();
  7400. }
  7401. else { //interrupt was triggered by falling edge
  7402. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7403. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7404. }
  7405. }
  7406. EICRB ^= (1 << 6); //change edge
  7407. }
  7408. #endif
  7409. #ifdef UVLO_SUPPORT
  7410. void setup_uvlo_interrupt() {
  7411. DDRE &= ~(1 << 4); //input pin
  7412. PORTE &= ~(1 << 4); //no internal pull-up
  7413. //sensing falling edge
  7414. EICRB |= (1 << 0);
  7415. EICRB &= ~(1 << 1);
  7416. //enable INT4 interrupt
  7417. EIMSK |= (1 << 4);
  7418. }
  7419. ISR(INT4_vect) {
  7420. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7421. SERIAL_ECHOLNPGM("INT4");
  7422. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7423. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7424. }
  7425. void recover_print(uint8_t automatic) {
  7426. char cmd[30];
  7427. lcd_update_enable(true);
  7428. lcd_update(2);
  7429. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7430. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7431. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7432. // Lift the print head, so one may remove the excess priming material.
  7433. if(!bTiny&&(current_position[Z_AXIS]<25))
  7434. enquecommand_P(PSTR("G1 Z25 F800"));
  7435. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7436. enquecommand_P(PSTR("G28 X Y"));
  7437. // Set the target bed and nozzle temperatures and wait.
  7438. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7439. enquecommand(cmd);
  7440. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7441. enquecommand(cmd);
  7442. enquecommand_P(PSTR("M83")); //E axis relative mode
  7443. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7444. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7445. if(automatic == 0){
  7446. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7447. }
  7448. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7449. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7450. // Restart the print.
  7451. restore_print_from_eeprom();
  7452. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7453. }
  7454. void recover_machine_state_after_power_panic(bool bTiny)
  7455. {
  7456. char cmd[30];
  7457. // 1) Recover the logical cordinates at the time of the power panic.
  7458. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7459. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7460. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7461. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7462. // The current position after power panic is moved to the next closest 0th full step.
  7463. if(bTiny)
  7464. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7465. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7466. else
  7467. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7468. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7469. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7470. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7471. sprintf_P(cmd, PSTR("G92 E"));
  7472. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7473. enquecommand(cmd);
  7474. }
  7475. memcpy(destination, current_position, sizeof(destination));
  7476. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7477. print_world_coordinates();
  7478. // 2) Initialize the logical to physical coordinate system transformation.
  7479. world2machine_initialize();
  7480. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7481. mbl.active = false;
  7482. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7483. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7484. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7485. // Scale the z value to 10u resolution.
  7486. int16_t v;
  7487. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7488. if (v != 0)
  7489. mbl.active = true;
  7490. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7491. }
  7492. if (mbl.active)
  7493. mbl.upsample_3x3();
  7494. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7495. // print_mesh_bed_leveling_table();
  7496. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7497. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7498. babystep_load();
  7499. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7500. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7501. // 6) Power up the motors, mark their positions as known.
  7502. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7503. axis_known_position[X_AXIS] = true; enable_x();
  7504. axis_known_position[Y_AXIS] = true; enable_y();
  7505. axis_known_position[Z_AXIS] = true; enable_z();
  7506. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7507. print_physical_coordinates();
  7508. // 7) Recover the target temperatures.
  7509. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7510. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7511. // 8) Recover extruder multipilers
  7512. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7513. #if EXTRUDERS > 1
  7514. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7515. #if EXTRUDERS > 2
  7516. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7517. #endif
  7518. #endif
  7519. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7520. }
  7521. void restore_print_from_eeprom() {
  7522. int feedrate_rec;
  7523. uint8_t fan_speed_rec;
  7524. char cmd[30];
  7525. char filename[13];
  7526. uint8_t depth = 0;
  7527. char dir_name[9];
  7528. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7529. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7530. SERIAL_ECHOPGM("Feedrate:");
  7531. MYSERIAL.println(feedrate_rec);
  7532. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7533. MYSERIAL.println(int(depth));
  7534. for (int i = 0; i < depth; i++) {
  7535. for (int j = 0; j < 8; j++) {
  7536. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7537. }
  7538. dir_name[8] = '\0';
  7539. MYSERIAL.println(dir_name);
  7540. strcpy(dir_names[i], dir_name);
  7541. card.chdir(dir_name);
  7542. }
  7543. for (int i = 0; i < 8; i++) {
  7544. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7545. }
  7546. filename[8] = '\0';
  7547. MYSERIAL.print(filename);
  7548. strcat_P(filename, PSTR(".gco"));
  7549. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7550. enquecommand(cmd);
  7551. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7552. SERIAL_ECHOPGM("Position read from eeprom:");
  7553. MYSERIAL.println(position);
  7554. // E axis relative mode.
  7555. enquecommand_P(PSTR("M83"));
  7556. // Move to the XY print position in logical coordinates, where the print has been killed.
  7557. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7558. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7559. strcat_P(cmd, PSTR(" F2000"));
  7560. enquecommand(cmd);
  7561. // Move the Z axis down to the print, in logical coordinates.
  7562. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7563. enquecommand(cmd);
  7564. // Unretract.
  7565. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7566. // Set the feedrate saved at the power panic.
  7567. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7568. enquecommand(cmd);
  7569. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7570. {
  7571. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7572. }
  7573. // Set the fan speed saved at the power panic.
  7574. strcpy_P(cmd, PSTR("M106 S"));
  7575. strcat(cmd, itostr3(int(fan_speed_rec)));
  7576. enquecommand(cmd);
  7577. // Set a position in the file.
  7578. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7579. enquecommand(cmd);
  7580. enquecommand_P(PSTR("G4 S0"));
  7581. enquecommand_P(PSTR("PRUSA uvlo"));
  7582. }
  7583. #endif //UVLO_SUPPORT
  7584. //! @brief Immediately stop print moves
  7585. //!
  7586. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  7587. //! If printing from sd card, position in file is saved.
  7588. //! If printing from USB, line number is saved.
  7589. //!
  7590. //! @param z_move
  7591. //! @param e_move
  7592. void stop_and_save_print_to_ram(float z_move, float e_move)
  7593. {
  7594. if (saved_printing) return;
  7595. #if 0
  7596. unsigned char nplanner_blocks;
  7597. #endif
  7598. unsigned char nlines;
  7599. uint16_t sdlen_planner;
  7600. uint16_t sdlen_cmdqueue;
  7601. cli();
  7602. if (card.sdprinting) {
  7603. #if 0
  7604. nplanner_blocks = number_of_blocks();
  7605. #endif
  7606. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7607. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7608. saved_sdpos -= sdlen_planner;
  7609. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7610. saved_sdpos -= sdlen_cmdqueue;
  7611. saved_printing_type = PRINTING_TYPE_SD;
  7612. }
  7613. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7614. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7615. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7616. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7617. saved_sdpos -= nlines;
  7618. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7619. saved_printing_type = PRINTING_TYPE_USB;
  7620. }
  7621. else {
  7622. //not sd printing nor usb printing
  7623. }
  7624. #if 0
  7625. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7626. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7627. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7628. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7629. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7630. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7631. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7632. {
  7633. card.setIndex(saved_sdpos);
  7634. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7635. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7636. MYSERIAL.print(char(card.get()));
  7637. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7638. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7639. MYSERIAL.print(char(card.get()));
  7640. SERIAL_ECHOLNPGM("End of command buffer");
  7641. }
  7642. {
  7643. // Print the content of the planner buffer, line by line:
  7644. card.setIndex(saved_sdpos);
  7645. int8_t iline = 0;
  7646. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7647. SERIAL_ECHOPGM("Planner line (from file): ");
  7648. MYSERIAL.print(int(iline), DEC);
  7649. SERIAL_ECHOPGM(", length: ");
  7650. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7651. SERIAL_ECHOPGM(", steps: (");
  7652. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7653. SERIAL_ECHOPGM(",");
  7654. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7655. SERIAL_ECHOPGM(",");
  7656. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7657. SERIAL_ECHOPGM(",");
  7658. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7659. SERIAL_ECHOPGM("), events: ");
  7660. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7661. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7662. MYSERIAL.print(char(card.get()));
  7663. }
  7664. }
  7665. {
  7666. // Print the content of the command buffer, line by line:
  7667. int8_t iline = 0;
  7668. union {
  7669. struct {
  7670. char lo;
  7671. char hi;
  7672. } lohi;
  7673. uint16_t value;
  7674. } sdlen_single;
  7675. int _bufindr = bufindr;
  7676. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7677. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7678. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7679. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7680. }
  7681. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7682. MYSERIAL.print(int(iline), DEC);
  7683. SERIAL_ECHOPGM(", type: ");
  7684. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7685. SERIAL_ECHOPGM(", len: ");
  7686. MYSERIAL.println(sdlen_single.value, DEC);
  7687. // Print the content of the buffer line.
  7688. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7689. SERIAL_ECHOPGM("Buffer line (from file): ");
  7690. MYSERIAL.println(int(iline), DEC);
  7691. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7692. MYSERIAL.print(char(card.get()));
  7693. if (-- _buflen == 0)
  7694. break;
  7695. // First skip the current command ID and iterate up to the end of the string.
  7696. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7697. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7698. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7699. // If the end of the buffer was empty,
  7700. if (_bufindr == sizeof(cmdbuffer)) {
  7701. // skip to the start and find the nonzero command.
  7702. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7703. }
  7704. }
  7705. }
  7706. #endif
  7707. #if 0
  7708. saved_feedrate2 = feedrate; //save feedrate
  7709. #else
  7710. // Try to deduce the feedrate from the first block of the planner.
  7711. // Speed is in mm/min.
  7712. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7713. #endif
  7714. planner_abort_hard(); //abort printing
  7715. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7716. saved_active_extruder = active_extruder; //save active_extruder
  7717. saved_extruder_temperature = degTargetHotend(active_extruder);
  7718. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7719. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7720. saved_fanSpeed = fanSpeed;
  7721. cmdqueue_reset(); //empty cmdqueue
  7722. card.sdprinting = false;
  7723. // card.closefile();
  7724. saved_printing = true;
  7725. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7726. st_reset_timer();
  7727. sei();
  7728. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7729. #if 1
  7730. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7731. char buf[48];
  7732. // First unretract (relative extrusion)
  7733. if(!saved_extruder_relative_mode){
  7734. strcpy_P(buf, PSTR("M83"));
  7735. enquecommand(buf, false);
  7736. }
  7737. //retract 45mm/s
  7738. strcpy_P(buf, PSTR("G1 E"));
  7739. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7740. strcat_P(buf, PSTR(" F"));
  7741. dtostrf(2700, 8, 3, buf + strlen(buf));
  7742. enquecommand(buf, false);
  7743. // Then lift Z axis
  7744. strcpy_P(buf, PSTR("G1 Z"));
  7745. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7746. strcat_P(buf, PSTR(" F"));
  7747. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7748. // At this point the command queue is empty.
  7749. enquecommand(buf, false);
  7750. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7751. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7752. repeatcommand_front();
  7753. #else
  7754. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7755. st_synchronize(); //wait moving
  7756. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7757. memcpy(destination, current_position, sizeof(destination));
  7758. #endif
  7759. }
  7760. }
  7761. //! @brief Restore print from ram
  7762. //!
  7763. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  7764. //! waits for extruder temperature restore, then restores position and continues
  7765. //! print moves.
  7766. //! Internaly lcd_update() is called by wait_for_heater().
  7767. //!
  7768. //! @param e_move
  7769. void restore_print_from_ram_and_continue(float e_move)
  7770. {
  7771. if (!saved_printing) return;
  7772. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7773. // current_position[axis] = st_get_position_mm(axis);
  7774. active_extruder = saved_active_extruder; //restore active_extruder
  7775. setTargetHotendSafe(saved_extruder_temperature,saved_active_extruder);
  7776. heating_status = 1;
  7777. wait_for_heater(millis(),saved_active_extruder);
  7778. heating_status = 2;
  7779. feedrate = saved_feedrate2; //restore feedrate
  7780. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7781. fanSpeed = saved_fanSpeed;
  7782. float e = saved_pos[E_AXIS] - e_move;
  7783. plan_set_e_position(e);
  7784. //first move print head in XY to the saved position:
  7785. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7786. st_synchronize();
  7787. //then move Z
  7788. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7789. st_synchronize();
  7790. //and finaly unretract (35mm/s)
  7791. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7792. st_synchronize();
  7793. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7794. memcpy(destination, current_position, sizeof(destination));
  7795. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7796. card.setIndex(saved_sdpos);
  7797. sdpos_atomic = saved_sdpos;
  7798. card.sdprinting = true;
  7799. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7800. }
  7801. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7802. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7803. serial_count = 0;
  7804. FlushSerialRequestResend();
  7805. }
  7806. else {
  7807. //not sd printing nor usb printing
  7808. }
  7809. lcd_setstatuspgm(_T(WELCOME_MSG));
  7810. saved_printing = false;
  7811. }
  7812. void print_world_coordinates()
  7813. {
  7814. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7815. }
  7816. void print_physical_coordinates()
  7817. {
  7818. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7819. }
  7820. void print_mesh_bed_leveling_table()
  7821. {
  7822. SERIAL_ECHOPGM("mesh bed leveling: ");
  7823. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7824. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7825. MYSERIAL.print(mbl.z_values[y][x], 3);
  7826. SERIAL_ECHOPGM(" ");
  7827. }
  7828. SERIAL_ECHOLNPGM("");
  7829. }
  7830. uint16_t print_time_remaining() {
  7831. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7832. #ifdef TMC2130
  7833. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7834. else print_t = print_time_remaining_silent;
  7835. #else
  7836. print_t = print_time_remaining_normal;
  7837. #endif //TMC2130
  7838. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  7839. return print_t;
  7840. }
  7841. uint8_t calc_percent_done()
  7842. {
  7843. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7844. uint8_t percent_done = 0;
  7845. #ifdef TMC2130
  7846. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7847. percent_done = print_percent_done_normal;
  7848. }
  7849. else if (print_percent_done_silent <= 100) {
  7850. percent_done = print_percent_done_silent;
  7851. }
  7852. #else
  7853. if (print_percent_done_normal <= 100) {
  7854. percent_done = print_percent_done_normal;
  7855. }
  7856. #endif //TMC2130
  7857. else {
  7858. percent_done = card.percentDone();
  7859. }
  7860. return percent_done;
  7861. }
  7862. static void print_time_remaining_init()
  7863. {
  7864. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7865. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7866. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7867. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7868. }
  7869. void load_filament_final_feed()
  7870. {
  7871. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  7872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  7873. }
  7874. void M600_check_state()
  7875. {
  7876. //Wait for user to check the state
  7877. lcd_change_fil_state = 0;
  7878. while (lcd_change_fil_state != 1){
  7879. lcd_change_fil_state = 0;
  7880. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7881. lcd_alright();
  7882. KEEPALIVE_STATE(IN_HANDLER);
  7883. switch(lcd_change_fil_state){
  7884. // Filament failed to load so load it again
  7885. case 2:
  7886. if (mmu_enabled)
  7887. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7888. else
  7889. M600_load_filament_movements();
  7890. break;
  7891. // Filament loaded properly but color is not clear
  7892. case 3:
  7893. st_synchronize();
  7894. load_filament_final_feed();
  7895. lcd_loading_color();
  7896. st_synchronize();
  7897. break;
  7898. // Everything good
  7899. default:
  7900. lcd_change_success();
  7901. break;
  7902. }
  7903. }
  7904. }
  7905. //! @brief Wait for user action
  7906. //!
  7907. //! Beep, manage nozzle heater and wait for user to start unload filament
  7908. //! If times out, active extruder temperature is set to 0.
  7909. //!
  7910. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  7911. void M600_wait_for_user(float HotendTempBckp) {
  7912. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7913. int counterBeep = 0;
  7914. unsigned long waiting_start_time = millis();
  7915. uint8_t wait_for_user_state = 0;
  7916. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7917. bool bFirst=true;
  7918. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7919. manage_heater();
  7920. manage_inactivity(true);
  7921. #if BEEPER > 0
  7922. if (counterBeep == 500) {
  7923. counterBeep = 0;
  7924. }
  7925. SET_OUTPUT(BEEPER);
  7926. if (counterBeep == 0) {
  7927. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7928. {
  7929. bFirst=false;
  7930. WRITE(BEEPER, HIGH);
  7931. }
  7932. }
  7933. if (counterBeep == 20) {
  7934. WRITE(BEEPER, LOW);
  7935. }
  7936. counterBeep++;
  7937. #endif //BEEPER > 0
  7938. switch (wait_for_user_state) {
  7939. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7940. delay_keep_alive(4);
  7941. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7942. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7943. wait_for_user_state = 1;
  7944. setAllTargetHotends(0);
  7945. st_synchronize();
  7946. disable_e0();
  7947. disable_e1();
  7948. disable_e2();
  7949. }
  7950. break;
  7951. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7952. delay_keep_alive(4);
  7953. if (lcd_clicked()) {
  7954. setTargetHotend(HotendTempBckp, active_extruder);
  7955. lcd_wait_for_heater();
  7956. wait_for_user_state = 2;
  7957. }
  7958. break;
  7959. case 2: //waiting for nozzle to reach target temperature
  7960. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7961. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7962. waiting_start_time = millis();
  7963. wait_for_user_state = 0;
  7964. }
  7965. else {
  7966. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7967. lcd_set_cursor(1, 4);
  7968. lcd_print(ftostr3(degHotend(active_extruder)));
  7969. }
  7970. break;
  7971. }
  7972. }
  7973. WRITE(BEEPER, LOW);
  7974. }
  7975. void M600_load_filament_movements()
  7976. {
  7977. #ifdef SNMM
  7978. display_loading();
  7979. do
  7980. {
  7981. current_position[E_AXIS] += 0.002;
  7982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7983. delay_keep_alive(2);
  7984. }
  7985. while (!lcd_clicked());
  7986. st_synchronize();
  7987. current_position[E_AXIS] += bowden_length[mmu_extruder];
  7988. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7989. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7990. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7991. current_position[E_AXIS] += 40;
  7992. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7993. current_position[E_AXIS] += 10;
  7994. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7995. #else
  7996. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7997. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  7998. #endif
  7999. load_filament_final_feed();
  8000. lcd_loading_filament();
  8001. st_synchronize();
  8002. }
  8003. void M600_load_filament() {
  8004. //load filament for single material and SNMM
  8005. lcd_wait_interact();
  8006. //load_filament_time = millis();
  8007. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8008. #ifdef FILAMENT_SENSOR
  8009. fsensor_autoload_check_start();
  8010. #endif //FILAMENT_SENSOR
  8011. while(!lcd_clicked())
  8012. {
  8013. manage_heater();
  8014. manage_inactivity(true);
  8015. #ifdef FILAMENT_SENSOR
  8016. if (fsensor_check_autoload())
  8017. {
  8018. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8019. tone(BEEPER, 1000);
  8020. delay_keep_alive(50);
  8021. noTone(BEEPER);
  8022. break;
  8023. }
  8024. #endif //FILAMENT_SENSOR
  8025. }
  8026. #ifdef FILAMENT_SENSOR
  8027. fsensor_autoload_check_stop();
  8028. #endif //FILAMENT_SENSOR
  8029. KEEPALIVE_STATE(IN_HANDLER);
  8030. #ifdef FSENSOR_QUALITY
  8031. fsensor_oq_meassure_start(70);
  8032. #endif //FSENSOR_QUALITY
  8033. M600_load_filament_movements();
  8034. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8035. tone(BEEPER, 500);
  8036. delay_keep_alive(50);
  8037. noTone(BEEPER);
  8038. #ifdef FSENSOR_QUALITY
  8039. fsensor_oq_meassure_stop();
  8040. if (!fsensor_oq_result())
  8041. {
  8042. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8043. lcd_update_enable(true);
  8044. lcd_update(2);
  8045. if (disable)
  8046. fsensor_disable();
  8047. }
  8048. #endif //FSENSOR_QUALITY
  8049. lcd_update_enable(false);
  8050. }
  8051. #define FIL_LOAD_LENGTH 60