temperature.cpp 66 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "messages.h"
  33. #include "Timer.h"
  34. #include "Configuration_prusa.h"
  35. //===========================================================================
  36. //=============================public variables============================
  37. //===========================================================================
  38. int target_temperature[EXTRUDERS] = { 0 };
  39. int target_temperature_bed = 0;
  40. int current_temperature_raw[EXTRUDERS] = { 0 };
  41. float current_temperature[EXTRUDERS] = { 0.0 };
  42. #ifdef PINDA_THERMISTOR
  43. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  44. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  45. float current_temperature_pinda = 0.0;
  46. #endif //PINDA_THERMISTOR
  47. #ifdef AMBIENT_THERMISTOR
  48. int current_temperature_raw_ambient = 0 ;
  49. float current_temperature_ambient = 0.0;
  50. #endif //AMBIENT_THERMISTOR
  51. #ifdef VOLT_PWR_PIN
  52. int current_voltage_raw_pwr = 0;
  53. #endif
  54. #ifdef VOLT_BED_PIN
  55. int current_voltage_raw_bed = 0;
  56. #endif
  57. int current_temperature_bed_raw = 0;
  58. float current_temperature_bed = 0.0;
  59. #ifdef PIDTEMP
  60. float _Kp, _Ki, _Kd;
  61. int pid_cycle, pid_number_of_cycles;
  62. bool pid_tuning_finished = false;
  63. #ifdef PID_ADD_EXTRUSION_RATE
  64. float Kc=DEFAULT_Kc;
  65. #endif
  66. #endif //PIDTEMP
  67. #ifdef FAN_SOFT_PWM
  68. unsigned char fanSpeedSoftPwm;
  69. #endif
  70. #ifdef FANCHECK
  71. volatile uint8_t fan_check_error = EFCE_OK;
  72. #endif
  73. unsigned char soft_pwm_bed;
  74. #ifdef BABYSTEPPING
  75. volatile int babystepsTodo[3]={0,0,0};
  76. #endif
  77. //===========================================================================
  78. //=============================private variables============================
  79. //===========================================================================
  80. static volatile bool temp_meas_ready = false;
  81. #ifdef PIDTEMP
  82. //static cannot be external:
  83. static float iState_sum[EXTRUDERS] = { 0 };
  84. static float dState_last[EXTRUDERS] = { 0 };
  85. static float pTerm[EXTRUDERS];
  86. static float iTerm[EXTRUDERS];
  87. static float dTerm[EXTRUDERS];
  88. //int output;
  89. static float pid_error[EXTRUDERS];
  90. static float iState_sum_min[EXTRUDERS];
  91. static float iState_sum_max[EXTRUDERS];
  92. // static float pid_input[EXTRUDERS];
  93. // static float pid_output[EXTRUDERS];
  94. static bool pid_reset[EXTRUDERS];
  95. #endif //PIDTEMP
  96. #ifdef PIDTEMPBED
  97. //static cannot be external:
  98. static float temp_iState_bed = { 0 };
  99. static float temp_dState_bed = { 0 };
  100. static float pTerm_bed;
  101. static float iTerm_bed;
  102. static float dTerm_bed;
  103. //int output;
  104. static float pid_error_bed;
  105. static float temp_iState_min_bed;
  106. static float temp_iState_max_bed;
  107. #else //PIDTEMPBED
  108. static unsigned long previous_millis_bed_heater;
  109. #endif //PIDTEMPBED
  110. static unsigned char soft_pwm[EXTRUDERS];
  111. #ifdef FAN_SOFT_PWM
  112. static unsigned char soft_pwm_fan;
  113. #endif
  114. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  115. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  116. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  117. unsigned long extruder_autofan_last_check = _millis();
  118. uint8_t fanSpeedBckp = 255;
  119. bool fan_measuring = false;
  120. #endif
  121. #if EXTRUDERS > 3
  122. # error Unsupported number of extruders
  123. #elif EXTRUDERS > 2
  124. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  125. #elif EXTRUDERS > 1
  126. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  127. #else
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  129. #endif
  130. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  131. // Init min and max temp with extreme values to prevent false errors during startup
  132. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  133. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  134. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  135. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  136. #ifdef BED_MINTEMP
  137. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  138. #endif
  139. #ifdef BED_MAXTEMP
  140. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  141. #endif
  142. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  143. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  144. static float analog2temp(int raw, uint8_t e);
  145. static float analog2tempBed(int raw);
  146. static float analog2tempAmbient(int raw);
  147. static void updateTemperaturesFromRawValues();
  148. enum TempRunawayStates
  149. {
  150. TempRunaway_INACTIVE = 0,
  151. TempRunaway_PREHEAT = 1,
  152. TempRunaway_ACTIVE = 2,
  153. };
  154. #ifndef SOFT_PWM_SCALE
  155. #define SOFT_PWM_SCALE 0
  156. #endif
  157. //===========================================================================
  158. //============================= functions ============================
  159. //===========================================================================
  160. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  161. static float temp_runaway_status[4];
  162. static float temp_runaway_target[4];
  163. static float temp_runaway_timer[4];
  164. static int temp_runaway_error_counter[4];
  165. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  166. static void temp_runaway_stop(bool isPreheat, bool isBed);
  167. #endif
  168. void PID_autotune(float temp, int extruder, int ncycles)
  169. {
  170. pid_number_of_cycles = ncycles;
  171. pid_tuning_finished = false;
  172. float input = 0.0;
  173. pid_cycle=0;
  174. bool heating = true;
  175. unsigned long temp_millis = _millis();
  176. unsigned long t1=temp_millis;
  177. unsigned long t2=temp_millis;
  178. long t_high = 0;
  179. long t_low = 0;
  180. long bias, d;
  181. float Ku, Tu;
  182. float max = 0, min = 10000;
  183. uint8_t safety_check_cycles = 0;
  184. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  185. float temp_ambient;
  186. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  187. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  188. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  189. unsigned long extruder_autofan_last_check = _millis();
  190. #endif
  191. if ((extruder >= EXTRUDERS)
  192. #if (TEMP_BED_PIN <= -1)
  193. ||(extruder < 0)
  194. #endif
  195. ){
  196. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  197. pid_tuning_finished = true;
  198. pid_cycle = 0;
  199. return;
  200. }
  201. SERIAL_ECHOLN("PID Autotune start");
  202. disable_heater(); // switch off all heaters.
  203. if (extruder<0)
  204. {
  205. soft_pwm_bed = (MAX_BED_POWER)/2;
  206. timer02_set_pwm0(soft_pwm_bed << 1);
  207. bias = d = (MAX_BED_POWER)/2;
  208. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  209. }
  210. else
  211. {
  212. soft_pwm[extruder] = (PID_MAX)/2;
  213. bias = d = (PID_MAX)/2;
  214. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  215. }
  216. for(;;) {
  217. #ifdef WATCHDOG
  218. wdt_reset();
  219. #endif //WATCHDOG
  220. if(temp_meas_ready == true) { // temp sample ready
  221. updateTemperaturesFromRawValues();
  222. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  223. max=max(max,input);
  224. min=min(min,input);
  225. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  226. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  227. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  228. if(_millis() - extruder_autofan_last_check > 2500) {
  229. checkExtruderAutoFans();
  230. extruder_autofan_last_check = _millis();
  231. }
  232. #endif
  233. if(heating == true && input > temp) {
  234. if(_millis() - t2 > 5000) {
  235. heating=false;
  236. if (extruder<0)
  237. {
  238. soft_pwm_bed = (bias - d) >> 1;
  239. timer02_set_pwm0(soft_pwm_bed << 1);
  240. }
  241. else
  242. soft_pwm[extruder] = (bias - d) >> 1;
  243. t1=_millis();
  244. t_high=t1 - t2;
  245. max=temp;
  246. }
  247. }
  248. if(heating == false && input < temp) {
  249. if(_millis() - t1 > 5000) {
  250. heating=true;
  251. t2=_millis();
  252. t_low=t2 - t1;
  253. if(pid_cycle > 0) {
  254. bias += (d*(t_high - t_low))/(t_low + t_high);
  255. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  256. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  257. else d = bias;
  258. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  259. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  260. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  261. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  262. if(pid_cycle > 2) {
  263. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  264. Tu = ((float)(t_low + t_high)/1000.0);
  265. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  266. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  267. _Kp = 0.6*Ku;
  268. _Ki = 2*_Kp/Tu;
  269. _Kd = _Kp*Tu/8;
  270. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  271. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  272. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  273. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  274. /*
  275. _Kp = 0.33*Ku;
  276. _Ki = _Kp/Tu;
  277. _Kd = _Kp*Tu/3;
  278. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  279. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  280. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  281. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  282. _Kp = 0.2*Ku;
  283. _Ki = 2*_Kp/Tu;
  284. _Kd = _Kp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  286. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  287. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  288. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  289. */
  290. }
  291. }
  292. if (extruder<0)
  293. {
  294. soft_pwm_bed = (bias + d) >> 1;
  295. timer02_set_pwm0(soft_pwm_bed << 1);
  296. }
  297. else
  298. soft_pwm[extruder] = (bias + d) >> 1;
  299. pid_cycle++;
  300. min=temp;
  301. }
  302. }
  303. }
  304. if(input > (temp + 20)) {
  305. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  306. pid_tuning_finished = true;
  307. pid_cycle = 0;
  308. return;
  309. }
  310. if(_millis() - temp_millis > 2000) {
  311. int p;
  312. if (extruder<0){
  313. p=soft_pwm_bed;
  314. SERIAL_PROTOCOLPGM("B:");
  315. }else{
  316. p=soft_pwm[extruder];
  317. SERIAL_PROTOCOLPGM("T:");
  318. }
  319. SERIAL_PROTOCOL(input);
  320. SERIAL_PROTOCOLPGM(" @:");
  321. SERIAL_PROTOCOLLN(p);
  322. if (safety_check_cycles == 0) { //save ambient temp
  323. temp_ambient = input;
  324. //SERIAL_ECHOPGM("Ambient T: ");
  325. //MYSERIAL.println(temp_ambient);
  326. safety_check_cycles++;
  327. }
  328. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  329. safety_check_cycles++;
  330. }
  331. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  332. safety_check_cycles++;
  333. //SERIAL_ECHOPGM("Time from beginning: ");
  334. //MYSERIAL.print(safety_check_cycles_count * 2);
  335. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  336. //MYSERIAL.println(input - temp_ambient);
  337. if (abs(input - temp_ambient) < 5.0) {
  338. temp_runaway_stop(false, (extruder<0));
  339. pid_tuning_finished = true;
  340. return;
  341. }
  342. }
  343. temp_millis = _millis();
  344. }
  345. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  346. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  347. pid_tuning_finished = true;
  348. pid_cycle = 0;
  349. return;
  350. }
  351. if(pid_cycle > ncycles) {
  352. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  353. pid_tuning_finished = true;
  354. pid_cycle = 0;
  355. return;
  356. }
  357. lcd_update(0);
  358. }
  359. }
  360. void updatePID()
  361. {
  362. #ifdef PIDTEMP
  363. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  364. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  365. }
  366. #endif
  367. #ifdef PIDTEMPBED
  368. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  369. #endif
  370. }
  371. int getHeaterPower(int heater) {
  372. if (heater<0)
  373. return soft_pwm_bed;
  374. return soft_pwm[heater];
  375. }
  376. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  377. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  378. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  379. #if defined(FAN_PIN) && FAN_PIN > -1
  380. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  381. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  382. #endif
  383. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  384. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  385. #endif
  386. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  387. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  388. #endif
  389. #endif
  390. void setExtruderAutoFanState(int pin, bool state)
  391. {
  392. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  393. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  394. pinMode(pin, OUTPUT);
  395. digitalWrite(pin, newFanSpeed);
  396. //analogWrite(pin, newFanSpeed);
  397. }
  398. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  399. void countFanSpeed()
  400. {
  401. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  402. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  403. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  404. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  405. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  406. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  407. SERIAL_ECHOLNPGM(" ");*/
  408. fan_edge_counter[0] = 0;
  409. fan_edge_counter[1] = 0;
  410. }
  411. void checkFanSpeed()
  412. {
  413. uint8_t max_print_fan_errors = 0;
  414. uint8_t max_extruder_fan_errors = 0;
  415. #ifdef FAN_SOFT_PWM
  416. max_print_fan_errors = 3; //15 seconds
  417. max_extruder_fan_errors = 2; //10seconds
  418. #else //FAN_SOFT_PWM
  419. max_print_fan_errors = 15; //15 seconds
  420. max_extruder_fan_errors = 5; //5 seconds
  421. #endif //FAN_SOFT_PWM
  422. if(fans_check_enabled != false)
  423. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  424. static unsigned char fan_speed_errors[2] = { 0,0 };
  425. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  426. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)){ fan_speed_errors[0]++;}
  427. else{
  428. fan_speed_errors[0] = 0;
  429. host_keepalive();
  430. }
  431. #endif
  432. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  433. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  434. else fan_speed_errors[1] = 0;
  435. #endif
  436. // drop the fan_check_error flag when both fans are ok
  437. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  438. // we may even send some info to the LCD from here
  439. fan_check_error = EFCE_FIXED;
  440. }
  441. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  442. fan_speed_errors[0] = 0;
  443. fanSpeedError(0); //extruder fan
  444. }
  445. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled && (fan_check_error == EFCE_OK)) {
  446. fan_speed_errors[1] = 0;
  447. fanSpeedError(1); //print fan
  448. }
  449. }
  450. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  451. //! Extracted from fanSpeedError to save some space.
  452. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  453. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  454. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  455. SERIAL_ECHOLNRPGM(serialMsg);
  456. if (get_message_level() == 0) {
  457. Sound_MakeCustom(200,0,true);
  458. LCD_ALERTMESSAGERPGM(lcdMsg);
  459. }
  460. }
  461. void fanSpeedError(unsigned char _fan) {
  462. if (get_message_level() != 0 && isPrintPaused) return;
  463. //to ensure that target temp. is not set to zero in case that we are resuming print
  464. if (card.sdprinting || is_usb_printing) {
  465. if (heating_status != 0) {
  466. lcd_print_stop();
  467. }
  468. else {
  469. fan_check_error = EFCE_DETECTED; //plans error for next processed command
  470. }
  471. }
  472. else {
  473. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED); //Why pause octoprint? is_usb_printing would be true in that case, so there is no need for this.
  474. setTargetHotend0(0);
  475. heating_status = 0;
  476. fan_check_error = EFCE_REPORTED;
  477. }
  478. switch (_fan) {
  479. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  480. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), MSG_FANCHECK_EXTRUDER);
  481. break;
  482. case 1:
  483. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), MSG_FANCHECK_PRINT);
  484. break;
  485. }
  486. // SERIAL_PROTOCOLLNRPGM(MSG_OK); //This ok messes things up with octoprint.
  487. }
  488. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  489. void checkExtruderAutoFans()
  490. {
  491. uint8_t fanState = 0;
  492. // which fan pins need to be turned on?
  493. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  494. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  495. fanState |= 1;
  496. #endif
  497. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  498. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  499. {
  500. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  501. fanState |= 1;
  502. else
  503. fanState |= 2;
  504. }
  505. #endif
  506. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  507. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  508. {
  509. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  510. fanState |= 1;
  511. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  512. fanState |= 2;
  513. else
  514. fanState |= 4;
  515. }
  516. #endif
  517. // update extruder auto fan states
  518. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  519. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  520. #endif
  521. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  522. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  523. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  524. #endif
  525. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  526. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  527. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  528. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  529. #endif
  530. }
  531. #endif // any extruder auto fan pins set
  532. // ready for eventually parameters adjusting
  533. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  534. //void resetPID(uint8_t extruder)
  535. {
  536. }
  537. void manage_heater()
  538. {
  539. #ifdef WATCHDOG
  540. wdt_reset();
  541. #endif //WATCHDOG
  542. float pid_input;
  543. float pid_output;
  544. if(temp_meas_ready != true) //better readability
  545. return;
  546. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  547. updateTemperaturesFromRawValues();
  548. check_max_temp();
  549. check_min_temp();
  550. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  551. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  552. #endif
  553. for(int e = 0; e < EXTRUDERS; e++)
  554. {
  555. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  556. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  557. #endif
  558. #ifdef PIDTEMP
  559. pid_input = current_temperature[e];
  560. #ifndef PID_OPENLOOP
  561. if(target_temperature[e] == 0) {
  562. pid_output = 0;
  563. pid_reset[e] = true;
  564. } else {
  565. pid_error[e] = target_temperature[e] - pid_input;
  566. if(pid_reset[e]) {
  567. iState_sum[e] = 0.0;
  568. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  569. pid_reset[e] = false;
  570. }
  571. #ifndef PonM
  572. pTerm[e] = cs.Kp * pid_error[e];
  573. iState_sum[e] += pid_error[e];
  574. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  575. iTerm[e] = cs.Ki * iState_sum[e];
  576. // PID_K1 defined in Configuration.h in the PID settings
  577. #define K2 (1.0-PID_K1)
  578. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  579. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  580. if (pid_output > PID_MAX) {
  581. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  582. pid_output=PID_MAX;
  583. } else if (pid_output < 0) {
  584. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  585. pid_output=0;
  586. }
  587. #else // PonM ("Proportional on Measurement" method)
  588. iState_sum[e] += cs.Ki * pid_error[e];
  589. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  590. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  591. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  592. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  593. pid_output = constrain(pid_output, 0, PID_MAX);
  594. #endif // PonM
  595. }
  596. dState_last[e] = pid_input;
  597. #else
  598. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  599. #endif //PID_OPENLOOP
  600. #ifdef PID_DEBUG
  601. SERIAL_ECHO_START;
  602. SERIAL_ECHO(" PID_DEBUG ");
  603. SERIAL_ECHO(e);
  604. SERIAL_ECHO(": Input ");
  605. SERIAL_ECHO(pid_input);
  606. SERIAL_ECHO(" Output ");
  607. SERIAL_ECHO(pid_output);
  608. SERIAL_ECHO(" pTerm ");
  609. SERIAL_ECHO(pTerm[e]);
  610. SERIAL_ECHO(" iTerm ");
  611. SERIAL_ECHO(iTerm[e]);
  612. SERIAL_ECHO(" dTerm ");
  613. SERIAL_ECHOLN(-dTerm[e]);
  614. #endif //PID_DEBUG
  615. #else /* PID off */
  616. pid_output = 0;
  617. if(current_temperature[e] < target_temperature[e]) {
  618. pid_output = PID_MAX;
  619. }
  620. #endif
  621. // Check if temperature is within the correct range
  622. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  623. {
  624. soft_pwm[e] = (int)pid_output >> 1;
  625. }
  626. else
  627. {
  628. soft_pwm[e] = 0;
  629. }
  630. } // End extruder for loop
  631. #define FAN_CHECK_PERIOD 5000 //5s
  632. #define FAN_CHECK_DURATION 100 //100ms
  633. #ifndef DEBUG_DISABLE_FANCHECK
  634. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  635. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  636. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  637. #ifdef FAN_SOFT_PWM
  638. #ifdef FANCHECK
  639. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  640. extruder_autofan_last_check = _millis();
  641. fanSpeedBckp = fanSpeedSoftPwm;
  642. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  643. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  644. fanSpeedSoftPwm = 255;
  645. }
  646. fan_measuring = true;
  647. }
  648. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  649. countFanSpeed();
  650. checkFanSpeed();
  651. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  652. fanSpeedSoftPwm = fanSpeedBckp;
  653. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  654. extruder_autofan_last_check = _millis();
  655. fan_measuring = false;
  656. }
  657. #endif //FANCHECK
  658. checkExtruderAutoFans();
  659. #else //FAN_SOFT_PWM
  660. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  661. {
  662. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  663. countFanSpeed();
  664. checkFanSpeed();
  665. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  666. checkExtruderAutoFans();
  667. extruder_autofan_last_check = _millis();
  668. }
  669. #endif //FAN_SOFT_PWM
  670. #endif
  671. #endif //DEBUG_DISABLE_FANCHECK
  672. #ifndef PIDTEMPBED
  673. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  674. return;
  675. previous_millis_bed_heater = _millis();
  676. #endif
  677. #if TEMP_SENSOR_BED != 0
  678. #ifdef PIDTEMPBED
  679. pid_input = current_temperature_bed;
  680. #ifndef PID_OPENLOOP
  681. pid_error_bed = target_temperature_bed - pid_input;
  682. pTerm_bed = cs.bedKp * pid_error_bed;
  683. temp_iState_bed += pid_error_bed;
  684. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  685. iTerm_bed = cs.bedKi * temp_iState_bed;
  686. //PID_K1 defined in Configuration.h in the PID settings
  687. #define K2 (1.0-PID_K1)
  688. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  689. temp_dState_bed = pid_input;
  690. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  691. if (pid_output > MAX_BED_POWER) {
  692. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  693. pid_output=MAX_BED_POWER;
  694. } else if (pid_output < 0){
  695. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  696. pid_output=0;
  697. }
  698. #else
  699. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  700. #endif //PID_OPENLOOP
  701. if(current_temperature_bed < BED_MAXTEMP)
  702. {
  703. soft_pwm_bed = (int)pid_output >> 1;
  704. timer02_set_pwm0(soft_pwm_bed << 1);
  705. }
  706. else {
  707. soft_pwm_bed = 0;
  708. timer02_set_pwm0(soft_pwm_bed << 1);
  709. }
  710. #elif !defined(BED_LIMIT_SWITCHING)
  711. // Check if temperature is within the correct range
  712. if(current_temperature_bed < BED_MAXTEMP)
  713. {
  714. if(current_temperature_bed >= target_temperature_bed)
  715. {
  716. soft_pwm_bed = 0;
  717. timer02_set_pwm0(soft_pwm_bed << 1);
  718. }
  719. else
  720. {
  721. soft_pwm_bed = MAX_BED_POWER>>1;
  722. timer02_set_pwm0(soft_pwm_bed << 1);
  723. }
  724. }
  725. else
  726. {
  727. soft_pwm_bed = 0;
  728. timer02_set_pwm0(soft_pwm_bed << 1);
  729. WRITE(HEATER_BED_PIN,LOW);
  730. }
  731. #else //#ifdef BED_LIMIT_SWITCHING
  732. // Check if temperature is within the correct band
  733. if(current_temperature_bed < BED_MAXTEMP)
  734. {
  735. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  736. {
  737. soft_pwm_bed = 0;
  738. timer02_set_pwm0(soft_pwm_bed << 1);
  739. }
  740. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  741. {
  742. soft_pwm_bed = MAX_BED_POWER>>1;
  743. timer02_set_pwm0(soft_pwm_bed << 1);
  744. }
  745. }
  746. else
  747. {
  748. soft_pwm_bed = 0;
  749. timer02_set_pwm0(soft_pwm_bed << 1);
  750. WRITE(HEATER_BED_PIN,LOW);
  751. }
  752. #endif
  753. if(target_temperature_bed==0)
  754. {
  755. soft_pwm_bed = 0;
  756. timer02_set_pwm0(soft_pwm_bed << 1);
  757. }
  758. #endif
  759. host_keepalive();
  760. }
  761. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  762. // Derived from RepRap FiveD extruder::getTemperature()
  763. // For hot end temperature measurement.
  764. static float analog2temp(int raw, uint8_t e) {
  765. if(e >= EXTRUDERS)
  766. {
  767. SERIAL_ERROR_START;
  768. SERIAL_ERROR((int)e);
  769. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  770. kill(PSTR(""), 6);
  771. return 0.0;
  772. }
  773. #ifdef HEATER_0_USES_MAX6675
  774. if (e == 0)
  775. {
  776. return 0.25 * raw;
  777. }
  778. #endif
  779. if(heater_ttbl_map[e] != NULL)
  780. {
  781. float celsius = 0;
  782. uint8_t i;
  783. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  784. for (i=1; i<heater_ttbllen_map[e]; i++)
  785. {
  786. if (PGM_RD_W((*tt)[i][0]) > raw)
  787. {
  788. celsius = PGM_RD_W((*tt)[i-1][1]) +
  789. (raw - PGM_RD_W((*tt)[i-1][0])) *
  790. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  791. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  792. break;
  793. }
  794. }
  795. // Overflow: Set to last value in the table
  796. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  797. return celsius;
  798. }
  799. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  800. }
  801. // Derived from RepRap FiveD extruder::getTemperature()
  802. // For bed temperature measurement.
  803. static float analog2tempBed(int raw) {
  804. #ifdef BED_USES_THERMISTOR
  805. float celsius = 0;
  806. byte i;
  807. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  808. {
  809. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  810. {
  811. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  812. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  813. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  814. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  815. break;
  816. }
  817. }
  818. // Overflow: Set to last value in the table
  819. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  820. // temperature offset adjustment
  821. #ifdef BED_OFFSET
  822. float _offset = BED_OFFSET;
  823. float _offset_center = BED_OFFSET_CENTER;
  824. float _offset_start = BED_OFFSET_START;
  825. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  826. float _second_koef = (_offset / 2) / (100 - _offset_center);
  827. if (celsius >= _offset_start && celsius <= _offset_center)
  828. {
  829. celsius = celsius + (_first_koef * (celsius - _offset_start));
  830. }
  831. else if (celsius > _offset_center && celsius <= 100)
  832. {
  833. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  834. }
  835. else if (celsius > 100)
  836. {
  837. celsius = celsius + _offset;
  838. }
  839. #endif
  840. return celsius;
  841. #elif defined BED_USES_AD595
  842. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  843. #else
  844. return 0;
  845. #endif
  846. }
  847. #ifdef AMBIENT_THERMISTOR
  848. static float analog2tempAmbient(int raw)
  849. {
  850. float celsius = 0;
  851. byte i;
  852. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  853. {
  854. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  855. {
  856. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  857. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  858. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  859. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  860. break;
  861. }
  862. }
  863. // Overflow: Set to last value in the table
  864. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  865. return celsius;
  866. }
  867. #endif //AMBIENT_THERMISTOR
  868. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  869. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  870. static void updateTemperaturesFromRawValues()
  871. {
  872. for(uint8_t e=0;e<EXTRUDERS;e++)
  873. {
  874. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  875. }
  876. #ifdef PINDA_THERMISTOR
  877. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  878. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  879. #endif
  880. #ifdef AMBIENT_THERMISTOR
  881. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  882. #endif
  883. #ifdef DEBUG_HEATER_BED_SIM
  884. current_temperature_bed = target_temperature_bed;
  885. #else //DEBUG_HEATER_BED_SIM
  886. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  887. #endif //DEBUG_HEATER_BED_SIM
  888. CRITICAL_SECTION_START;
  889. temp_meas_ready = false;
  890. CRITICAL_SECTION_END;
  891. }
  892. void tp_init()
  893. {
  894. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  895. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  896. MCUCR=(1<<JTD);
  897. MCUCR=(1<<JTD);
  898. #endif
  899. // Finish init of mult extruder arrays
  900. for(int e = 0; e < EXTRUDERS; e++) {
  901. // populate with the first value
  902. maxttemp[e] = maxttemp[0];
  903. #ifdef PIDTEMP
  904. iState_sum_min[e] = 0.0;
  905. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  906. #endif //PIDTEMP
  907. #ifdef PIDTEMPBED
  908. temp_iState_min_bed = 0.0;
  909. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  910. #endif //PIDTEMPBED
  911. }
  912. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  913. SET_OUTPUT(HEATER_0_PIN);
  914. #endif
  915. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  916. SET_OUTPUT(HEATER_1_PIN);
  917. #endif
  918. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  919. SET_OUTPUT(HEATER_2_PIN);
  920. #endif
  921. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  922. SET_OUTPUT(HEATER_BED_PIN);
  923. #endif
  924. #if defined(FAN_PIN) && (FAN_PIN > -1)
  925. SET_OUTPUT(FAN_PIN);
  926. #ifdef FAST_PWM_FAN
  927. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  928. #endif
  929. #ifdef FAN_SOFT_PWM
  930. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  931. #endif
  932. #endif
  933. #ifdef HEATER_0_USES_MAX6675
  934. #ifndef SDSUPPORT
  935. SET_OUTPUT(SCK_PIN);
  936. WRITE(SCK_PIN,0);
  937. SET_OUTPUT(MOSI_PIN);
  938. WRITE(MOSI_PIN,1);
  939. SET_INPUT(MISO_PIN);
  940. WRITE(MISO_PIN,1);
  941. #endif
  942. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  943. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  944. pinMode(SS_PIN, OUTPUT);
  945. digitalWrite(SS_PIN,0);
  946. pinMode(MAX6675_SS, OUTPUT);
  947. digitalWrite(MAX6675_SS,1);
  948. #endif
  949. adc_init();
  950. timer0_init();
  951. OCR2B = 128;
  952. TIMSK2 |= (1<<OCIE2B);
  953. // Wait for temperature measurement to settle
  954. _delay(250);
  955. #ifdef HEATER_0_MINTEMP
  956. minttemp[0] = HEATER_0_MINTEMP;
  957. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  958. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  959. minttemp_raw[0] += OVERSAMPLENR;
  960. #else
  961. minttemp_raw[0] -= OVERSAMPLENR;
  962. #endif
  963. }
  964. #endif //MINTEMP
  965. #ifdef HEATER_0_MAXTEMP
  966. maxttemp[0] = HEATER_0_MAXTEMP;
  967. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  968. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  969. maxttemp_raw[0] -= OVERSAMPLENR;
  970. #else
  971. maxttemp_raw[0] += OVERSAMPLENR;
  972. #endif
  973. }
  974. #endif //MAXTEMP
  975. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  976. minttemp[1] = HEATER_1_MINTEMP;
  977. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  978. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  979. minttemp_raw[1] += OVERSAMPLENR;
  980. #else
  981. minttemp_raw[1] -= OVERSAMPLENR;
  982. #endif
  983. }
  984. #endif // MINTEMP 1
  985. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  986. maxttemp[1] = HEATER_1_MAXTEMP;
  987. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  988. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  989. maxttemp_raw[1] -= OVERSAMPLENR;
  990. #else
  991. maxttemp_raw[1] += OVERSAMPLENR;
  992. #endif
  993. }
  994. #endif //MAXTEMP 1
  995. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  996. minttemp[2] = HEATER_2_MINTEMP;
  997. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  998. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  999. minttemp_raw[2] += OVERSAMPLENR;
  1000. #else
  1001. minttemp_raw[2] -= OVERSAMPLENR;
  1002. #endif
  1003. }
  1004. #endif //MINTEMP 2
  1005. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1006. maxttemp[2] = HEATER_2_MAXTEMP;
  1007. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1008. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1009. maxttemp_raw[2] -= OVERSAMPLENR;
  1010. #else
  1011. maxttemp_raw[2] += OVERSAMPLENR;
  1012. #endif
  1013. }
  1014. #endif //MAXTEMP 2
  1015. #ifdef BED_MINTEMP
  1016. /* No bed MINTEMP error implemented?!? */
  1017. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1018. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1019. bed_minttemp_raw += OVERSAMPLENR;
  1020. #else
  1021. bed_minttemp_raw -= OVERSAMPLENR;
  1022. #endif
  1023. }
  1024. #endif //BED_MINTEMP
  1025. #ifdef BED_MAXTEMP
  1026. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1027. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1028. bed_maxttemp_raw -= OVERSAMPLENR;
  1029. #else
  1030. bed_maxttemp_raw += OVERSAMPLENR;
  1031. #endif
  1032. }
  1033. #endif //BED_MAXTEMP
  1034. }
  1035. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1036. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1037. {
  1038. float __delta;
  1039. float __hysteresis = 0;
  1040. int __timeout = 0;
  1041. bool temp_runaway_check_active = false;
  1042. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1043. static int __preheat_counter[2] = { 0,0};
  1044. static int __preheat_errors[2] = { 0,0};
  1045. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1046. {
  1047. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1048. if (_isbed)
  1049. {
  1050. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1051. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1052. }
  1053. #endif
  1054. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1055. if (!_isbed)
  1056. {
  1057. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1058. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1059. }
  1060. #endif
  1061. temp_runaway_timer[_heater_id] = _millis();
  1062. if (_output == 0)
  1063. {
  1064. temp_runaway_check_active = false;
  1065. temp_runaway_error_counter[_heater_id] = 0;
  1066. }
  1067. if (temp_runaway_target[_heater_id] != _target_temperature)
  1068. {
  1069. if (_target_temperature > 0)
  1070. {
  1071. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1072. temp_runaway_target[_heater_id] = _target_temperature;
  1073. __preheat_start[_heater_id] = _current_temperature;
  1074. __preheat_counter[_heater_id] = 0;
  1075. }
  1076. else
  1077. {
  1078. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1079. temp_runaway_target[_heater_id] = _target_temperature;
  1080. }
  1081. }
  1082. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1083. {
  1084. __preheat_counter[_heater_id]++;
  1085. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1086. {
  1087. /*SERIAL_ECHOPGM("Heater:");
  1088. MYSERIAL.print(_heater_id);
  1089. SERIAL_ECHOPGM(" T:");
  1090. MYSERIAL.print(_current_temperature);
  1091. SERIAL_ECHOPGM(" Tstart:");
  1092. MYSERIAL.print(__preheat_start[_heater_id]);
  1093. SERIAL_ECHOPGM(" delta:");
  1094. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1095. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1096. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1097. __delta=2.0;
  1098. if(_isbed)
  1099. {
  1100. __delta=3.0;
  1101. if(_current_temperature>90.0) __delta=2.0;
  1102. if(_current_temperature>105.0) __delta=0.6;
  1103. }
  1104. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1105. __preheat_errors[_heater_id]++;
  1106. /*SERIAL_ECHOPGM(" Preheat errors:");
  1107. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1108. }
  1109. else {
  1110. //SERIAL_ECHOLNPGM("");
  1111. __preheat_errors[_heater_id] = 0;
  1112. }
  1113. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1114. {
  1115. if (farm_mode) { prusa_statistics(0); }
  1116. temp_runaway_stop(true, _isbed);
  1117. if (farm_mode) { prusa_statistics(91); }
  1118. }
  1119. __preheat_start[_heater_id] = _current_temperature;
  1120. __preheat_counter[_heater_id] = 0;
  1121. }
  1122. }
  1123. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1124. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1125. {
  1126. /*SERIAL_ECHOPGM("Heater:");
  1127. MYSERIAL.print(_heater_id);
  1128. MYSERIAL.println(" ->tempRunaway");*/
  1129. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1130. temp_runaway_check_active = false;
  1131. temp_runaway_error_counter[_heater_id] = 0;
  1132. }
  1133. if (_output > 0)
  1134. {
  1135. temp_runaway_check_active = true;
  1136. }
  1137. if (temp_runaway_check_active)
  1138. {
  1139. // we are in range
  1140. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1141. {
  1142. temp_runaway_check_active = false;
  1143. temp_runaway_error_counter[_heater_id] = 0;
  1144. }
  1145. else
  1146. {
  1147. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1148. {
  1149. temp_runaway_error_counter[_heater_id]++;
  1150. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1151. {
  1152. if (farm_mode) { prusa_statistics(0); }
  1153. temp_runaway_stop(false, _isbed);
  1154. if (farm_mode) { prusa_statistics(90); }
  1155. }
  1156. }
  1157. }
  1158. }
  1159. }
  1160. }
  1161. void temp_runaway_stop(bool isPreheat, bool isBed)
  1162. {
  1163. cancel_heatup = true;
  1164. quickStop();
  1165. if (card.sdprinting)
  1166. {
  1167. card.sdprinting = false;
  1168. card.closefile();
  1169. }
  1170. // Clean the input command queue
  1171. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1172. cmdqueue_reset();
  1173. disable_heater();
  1174. disable_x();
  1175. disable_y();
  1176. disable_e0();
  1177. disable_e1();
  1178. disable_e2();
  1179. manage_heater();
  1180. lcd_update(0);
  1181. Sound_MakeCustom(200,0,true);
  1182. if (isPreheat)
  1183. {
  1184. Stop();
  1185. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1186. SERIAL_ERROR_START;
  1187. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1188. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1189. SET_OUTPUT(FAN_PIN);
  1190. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1191. #ifdef FAN_SOFT_PWM
  1192. fanSpeedSoftPwm = 255;
  1193. #else //FAN_SOFT_PWM
  1194. analogWrite(FAN_PIN, 255);
  1195. #endif //FAN_SOFT_PWM
  1196. fanSpeed = 255;
  1197. delayMicroseconds(2000);
  1198. }
  1199. else
  1200. {
  1201. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1202. SERIAL_ERROR_START;
  1203. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1204. }
  1205. }
  1206. #endif
  1207. void disable_heater()
  1208. {
  1209. setAllTargetHotends(0);
  1210. setTargetBed(0);
  1211. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1212. target_temperature[0]=0;
  1213. soft_pwm[0]=0;
  1214. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1215. WRITE(HEATER_0_PIN,LOW);
  1216. #endif
  1217. #endif
  1218. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1219. target_temperature[1]=0;
  1220. soft_pwm[1]=0;
  1221. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1222. WRITE(HEATER_1_PIN,LOW);
  1223. #endif
  1224. #endif
  1225. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1226. target_temperature[2]=0;
  1227. soft_pwm[2]=0;
  1228. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1229. WRITE(HEATER_2_PIN,LOW);
  1230. #endif
  1231. #endif
  1232. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1233. target_temperature_bed=0;
  1234. soft_pwm_bed=0;
  1235. timer02_set_pwm0(soft_pwm_bed << 1);
  1236. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1237. //WRITE(HEATER_BED_PIN,LOW);
  1238. #endif
  1239. #endif
  1240. }
  1241. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1242. //! than raw const char * of the messages themselves.
  1243. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1244. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1245. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1246. //! remember the last alert message sent to the LCD
  1247. //! to prevent flicker and improve speed
  1248. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1249. void max_temp_error(uint8_t e) {
  1250. disable_heater();
  1251. if(IsStopped() == false) {
  1252. SERIAL_ERROR_START;
  1253. SERIAL_ERRORLN((int)e);
  1254. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1255. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1256. }
  1257. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1258. Stop();
  1259. #endif
  1260. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1261. SET_OUTPUT(FAN_PIN);
  1262. SET_OUTPUT(BEEPER);
  1263. WRITE(FAN_PIN, 1);
  1264. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1265. WRITE(BEEPER, 1);
  1266. // fanSpeed will consumed by the check_axes_activity() routine.
  1267. fanSpeed=255;
  1268. if (farm_mode) { prusa_statistics(93); }
  1269. }
  1270. void min_temp_error(uint8_t e) {
  1271. #ifdef DEBUG_DISABLE_MINTEMP
  1272. return;
  1273. #endif
  1274. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1275. disable_heater();
  1276. static const char err[] PROGMEM = "Err: MINTEMP";
  1277. if(IsStopped() == false) {
  1278. SERIAL_ERROR_START;
  1279. SERIAL_ERRORLN((int)e);
  1280. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1281. lcd_setalertstatuspgm(err);
  1282. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1283. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1284. // we are already stopped due to some error, only update the status message without flickering
  1285. lcd_updatestatuspgm(err);
  1286. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1287. }
  1288. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1289. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1290. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1291. // lcd_print_stop();
  1292. // }
  1293. Stop();
  1294. #endif
  1295. if (farm_mode) { prusa_statistics(92); }
  1296. }
  1297. void bed_max_temp_error(void) {
  1298. #if HEATER_BED_PIN > -1
  1299. //WRITE(HEATER_BED_PIN, 0);
  1300. #endif
  1301. if(IsStopped() == false) {
  1302. SERIAL_ERROR_START;
  1303. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1304. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1305. }
  1306. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1307. Stop();
  1308. #endif
  1309. }
  1310. void bed_min_temp_error(void) {
  1311. #ifdef DEBUG_DISABLE_MINTEMP
  1312. return;
  1313. #endif
  1314. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1315. #if HEATER_BED_PIN > -1
  1316. //WRITE(HEATER_BED_PIN, 0);
  1317. #endif
  1318. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1319. if(IsStopped() == false) {
  1320. SERIAL_ERROR_START;
  1321. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1322. lcd_setalertstatuspgm(err);
  1323. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1324. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1325. // we are already stopped due to some error, only update the status message without flickering
  1326. lcd_updatestatuspgm(err);
  1327. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1328. }
  1329. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1330. Stop();
  1331. #endif
  1332. }
  1333. #ifdef HEATER_0_USES_MAX6675
  1334. #define MAX6675_HEAT_INTERVAL 250
  1335. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1336. int max6675_temp = 2000;
  1337. int read_max6675()
  1338. {
  1339. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1340. return max6675_temp;
  1341. max6675_previous_millis = _millis();
  1342. max6675_temp = 0;
  1343. #ifdef PRR
  1344. PRR &= ~(1<<PRSPI);
  1345. #elif defined PRR0
  1346. PRR0 &= ~(1<<PRSPI);
  1347. #endif
  1348. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1349. // enable TT_MAX6675
  1350. WRITE(MAX6675_SS, 0);
  1351. // ensure 100ns delay - a bit extra is fine
  1352. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1353. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1354. // read MSB
  1355. SPDR = 0;
  1356. for (;(SPSR & (1<<SPIF)) == 0;);
  1357. max6675_temp = SPDR;
  1358. max6675_temp <<= 8;
  1359. // read LSB
  1360. SPDR = 0;
  1361. for (;(SPSR & (1<<SPIF)) == 0;);
  1362. max6675_temp |= SPDR;
  1363. // disable TT_MAX6675
  1364. WRITE(MAX6675_SS, 1);
  1365. if (max6675_temp & 4)
  1366. {
  1367. // thermocouple open
  1368. max6675_temp = 2000;
  1369. }
  1370. else
  1371. {
  1372. max6675_temp = max6675_temp >> 3;
  1373. }
  1374. return max6675_temp;
  1375. }
  1376. #endif
  1377. extern "C" {
  1378. void adc_ready(void) //callback from adc when sampling finished
  1379. {
  1380. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1381. #ifdef PINDA_THERMISTOR
  1382. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1383. #endif //PINDA_THERMISTOR
  1384. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1385. #ifdef VOLT_PWR_PIN
  1386. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1387. #endif
  1388. #ifdef AMBIENT_THERMISTOR
  1389. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1390. #endif //AMBIENT_THERMISTOR
  1391. #ifdef VOLT_BED_PIN
  1392. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1393. #endif
  1394. temp_meas_ready = true;
  1395. }
  1396. } // extern "C"
  1397. // Timer2 (originaly timer0) is shared with millies
  1398. #ifdef SYSTEM_TIMER_2
  1399. ISR(TIMER2_COMPB_vect)
  1400. #else //SYSTEM_TIMER_2
  1401. ISR(TIMER0_COMPB_vect)
  1402. #endif //SYSTEM_TIMER_2
  1403. {
  1404. static bool _lock = false;
  1405. if (_lock) return;
  1406. _lock = true;
  1407. asm("sei");
  1408. if (!temp_meas_ready) adc_cycle();
  1409. lcd_buttons_update();
  1410. static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);
  1411. static uint8_t soft_pwm_0;
  1412. #ifdef SLOW_PWM_HEATERS
  1413. static unsigned char slow_pwm_count = 0;
  1414. static unsigned char state_heater_0 = 0;
  1415. static unsigned char state_timer_heater_0 = 0;
  1416. #endif
  1417. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1418. static unsigned char soft_pwm_1;
  1419. #ifdef SLOW_PWM_HEATERS
  1420. static unsigned char state_heater_1 = 0;
  1421. static unsigned char state_timer_heater_1 = 0;
  1422. #endif
  1423. #endif
  1424. #if EXTRUDERS > 2
  1425. static unsigned char soft_pwm_2;
  1426. #ifdef SLOW_PWM_HEATERS
  1427. static unsigned char state_heater_2 = 0;
  1428. static unsigned char state_timer_heater_2 = 0;
  1429. #endif
  1430. #endif
  1431. #if HEATER_BED_PIN > -1
  1432. // @@DR static unsigned char soft_pwm_b;
  1433. #ifdef SLOW_PWM_HEATERS
  1434. static unsigned char state_heater_b = 0;
  1435. static unsigned char state_timer_heater_b = 0;
  1436. #endif
  1437. #endif
  1438. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1439. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1440. #endif
  1441. #ifndef SLOW_PWM_HEATERS
  1442. /*
  1443. * standard PWM modulation
  1444. */
  1445. if (pwm_count == 0)
  1446. {
  1447. soft_pwm_0 = soft_pwm[0];
  1448. if(soft_pwm_0 > 0)
  1449. {
  1450. WRITE(HEATER_0_PIN,1);
  1451. #ifdef HEATERS_PARALLEL
  1452. WRITE(HEATER_1_PIN,1);
  1453. #endif
  1454. } else WRITE(HEATER_0_PIN,0);
  1455. #if EXTRUDERS > 1
  1456. soft_pwm_1 = soft_pwm[1];
  1457. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1458. #endif
  1459. #if EXTRUDERS > 2
  1460. soft_pwm_2 = soft_pwm[2];
  1461. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1462. #endif
  1463. }
  1464. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1465. #if 0 // @@DR vypnuto pro hw pwm bedu
  1466. // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat
  1467. // teoreticky by se tato cast uz vubec nemusela poustet
  1468. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1469. {
  1470. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1471. # ifndef SYSTEM_TIMER_2
  1472. // tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani
  1473. // jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz
  1474. // 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)
  1475. // Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji
  1476. // to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM
  1477. //if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1478. # endif //SYSTEM_TIMER_2
  1479. }
  1480. #endif
  1481. #endif
  1482. #ifdef FAN_SOFT_PWM
  1483. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1484. {
  1485. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1486. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1487. }
  1488. #endif
  1489. if(soft_pwm_0 < pwm_count)
  1490. {
  1491. WRITE(HEATER_0_PIN,0);
  1492. #ifdef HEATERS_PARALLEL
  1493. WRITE(HEATER_1_PIN,0);
  1494. #endif
  1495. }
  1496. #if EXTRUDERS > 1
  1497. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1498. #endif
  1499. #if EXTRUDERS > 2
  1500. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1501. #endif
  1502. #if 0 // @@DR
  1503. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1504. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){
  1505. //WRITE(HEATER_BED_PIN,0);
  1506. }
  1507. //WRITE(HEATER_BED_PIN, pwm_count & 1 );
  1508. #endif
  1509. #endif
  1510. #ifdef FAN_SOFT_PWM
  1511. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1512. #endif
  1513. pwm_count += (1 << SOFT_PWM_SCALE);
  1514. pwm_count &= 0x7f;
  1515. #else //ifndef SLOW_PWM_HEATERS
  1516. /*
  1517. * SLOW PWM HEATERS
  1518. *
  1519. * for heaters drived by relay
  1520. */
  1521. #ifndef MIN_STATE_TIME
  1522. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1523. #endif
  1524. if (slow_pwm_count == 0) {
  1525. // EXTRUDER 0
  1526. soft_pwm_0 = soft_pwm[0];
  1527. if (soft_pwm_0 > 0) {
  1528. // turn ON heather only if the minimum time is up
  1529. if (state_timer_heater_0 == 0) {
  1530. // if change state set timer
  1531. if (state_heater_0 == 0) {
  1532. state_timer_heater_0 = MIN_STATE_TIME;
  1533. }
  1534. state_heater_0 = 1;
  1535. WRITE(HEATER_0_PIN, 1);
  1536. #ifdef HEATERS_PARALLEL
  1537. WRITE(HEATER_1_PIN, 1);
  1538. #endif
  1539. }
  1540. } else {
  1541. // turn OFF heather only if the minimum time is up
  1542. if (state_timer_heater_0 == 0) {
  1543. // if change state set timer
  1544. if (state_heater_0 == 1) {
  1545. state_timer_heater_0 = MIN_STATE_TIME;
  1546. }
  1547. state_heater_0 = 0;
  1548. WRITE(HEATER_0_PIN, 0);
  1549. #ifdef HEATERS_PARALLEL
  1550. WRITE(HEATER_1_PIN, 0);
  1551. #endif
  1552. }
  1553. }
  1554. #if EXTRUDERS > 1
  1555. // EXTRUDER 1
  1556. soft_pwm_1 = soft_pwm[1];
  1557. if (soft_pwm_1 > 0) {
  1558. // turn ON heather only if the minimum time is up
  1559. if (state_timer_heater_1 == 0) {
  1560. // if change state set timer
  1561. if (state_heater_1 == 0) {
  1562. state_timer_heater_1 = MIN_STATE_TIME;
  1563. }
  1564. state_heater_1 = 1;
  1565. WRITE(HEATER_1_PIN, 1);
  1566. }
  1567. } else {
  1568. // turn OFF heather only if the minimum time is up
  1569. if (state_timer_heater_1 == 0) {
  1570. // if change state set timer
  1571. if (state_heater_1 == 1) {
  1572. state_timer_heater_1 = MIN_STATE_TIME;
  1573. }
  1574. state_heater_1 = 0;
  1575. WRITE(HEATER_1_PIN, 0);
  1576. }
  1577. }
  1578. #endif
  1579. #if EXTRUDERS > 2
  1580. // EXTRUDER 2
  1581. soft_pwm_2 = soft_pwm[2];
  1582. if (soft_pwm_2 > 0) {
  1583. // turn ON heather only if the minimum time is up
  1584. if (state_timer_heater_2 == 0) {
  1585. // if change state set timer
  1586. if (state_heater_2 == 0) {
  1587. state_timer_heater_2 = MIN_STATE_TIME;
  1588. }
  1589. state_heater_2 = 1;
  1590. WRITE(HEATER_2_PIN, 1);
  1591. }
  1592. } else {
  1593. // turn OFF heather only if the minimum time is up
  1594. if (state_timer_heater_2 == 0) {
  1595. // if change state set timer
  1596. if (state_heater_2 == 1) {
  1597. state_timer_heater_2 = MIN_STATE_TIME;
  1598. }
  1599. state_heater_2 = 0;
  1600. WRITE(HEATER_2_PIN, 0);
  1601. }
  1602. }
  1603. #endif
  1604. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1605. // BED
  1606. soft_pwm_b = soft_pwm_bed;
  1607. if (soft_pwm_b > 0) {
  1608. // turn ON heather only if the minimum time is up
  1609. if (state_timer_heater_b == 0) {
  1610. // if change state set timer
  1611. if (state_heater_b == 0) {
  1612. state_timer_heater_b = MIN_STATE_TIME;
  1613. }
  1614. state_heater_b = 1;
  1615. //WRITE(HEATER_BED_PIN, 1);
  1616. }
  1617. } else {
  1618. // turn OFF heather only if the minimum time is up
  1619. if (state_timer_heater_b == 0) {
  1620. // if change state set timer
  1621. if (state_heater_b == 1) {
  1622. state_timer_heater_b = MIN_STATE_TIME;
  1623. }
  1624. state_heater_b = 0;
  1625. WRITE(HEATER_BED_PIN, 0);
  1626. }
  1627. }
  1628. #endif
  1629. } // if (slow_pwm_count == 0)
  1630. // EXTRUDER 0
  1631. if (soft_pwm_0 < slow_pwm_count) {
  1632. // turn OFF heather only if the minimum time is up
  1633. if (state_timer_heater_0 == 0) {
  1634. // if change state set timer
  1635. if (state_heater_0 == 1) {
  1636. state_timer_heater_0 = MIN_STATE_TIME;
  1637. }
  1638. state_heater_0 = 0;
  1639. WRITE(HEATER_0_PIN, 0);
  1640. #ifdef HEATERS_PARALLEL
  1641. WRITE(HEATER_1_PIN, 0);
  1642. #endif
  1643. }
  1644. }
  1645. #if EXTRUDERS > 1
  1646. // EXTRUDER 1
  1647. if (soft_pwm_1 < slow_pwm_count) {
  1648. // turn OFF heather only if the minimum time is up
  1649. if (state_timer_heater_1 == 0) {
  1650. // if change state set timer
  1651. if (state_heater_1 == 1) {
  1652. state_timer_heater_1 = MIN_STATE_TIME;
  1653. }
  1654. state_heater_1 = 0;
  1655. WRITE(HEATER_1_PIN, 0);
  1656. }
  1657. }
  1658. #endif
  1659. #if EXTRUDERS > 2
  1660. // EXTRUDER 2
  1661. if (soft_pwm_2 < slow_pwm_count) {
  1662. // turn OFF heather only if the minimum time is up
  1663. if (state_timer_heater_2 == 0) {
  1664. // if change state set timer
  1665. if (state_heater_2 == 1) {
  1666. state_timer_heater_2 = MIN_STATE_TIME;
  1667. }
  1668. state_heater_2 = 0;
  1669. WRITE(HEATER_2_PIN, 0);
  1670. }
  1671. }
  1672. #endif
  1673. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1674. // BED
  1675. if (soft_pwm_b < slow_pwm_count) {
  1676. // turn OFF heather only if the minimum time is up
  1677. if (state_timer_heater_b == 0) {
  1678. // if change state set timer
  1679. if (state_heater_b == 1) {
  1680. state_timer_heater_b = MIN_STATE_TIME;
  1681. }
  1682. state_heater_b = 0;
  1683. WRITE(HEATER_BED_PIN, 0);
  1684. }
  1685. }
  1686. #endif
  1687. #ifdef FAN_SOFT_PWM
  1688. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1689. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1690. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1691. }
  1692. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1693. #endif
  1694. pwm_count += (1 << SOFT_PWM_SCALE);
  1695. pwm_count &= 0x7f;
  1696. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1697. if ((pwm_count % 64) == 0) {
  1698. slow_pwm_count++;
  1699. slow_pwm_count &= 0x7f;
  1700. // Extruder 0
  1701. if (state_timer_heater_0 > 0) {
  1702. state_timer_heater_0--;
  1703. }
  1704. #if EXTRUDERS > 1
  1705. // Extruder 1
  1706. if (state_timer_heater_1 > 0)
  1707. state_timer_heater_1--;
  1708. #endif
  1709. #if EXTRUDERS > 2
  1710. // Extruder 2
  1711. if (state_timer_heater_2 > 0)
  1712. state_timer_heater_2--;
  1713. #endif
  1714. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1715. // Bed
  1716. if (state_timer_heater_b > 0)
  1717. state_timer_heater_b--;
  1718. #endif
  1719. } //if ((pwm_count % 64) == 0) {
  1720. #endif //ifndef SLOW_PWM_HEATERS
  1721. #ifdef BABYSTEPPING
  1722. for(uint8_t axis=0;axis<3;axis++)
  1723. {
  1724. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1725. if(curTodo>0)
  1726. {
  1727. asm("cli");
  1728. babystep(axis,/*fwd*/true);
  1729. babystepsTodo[axis]--; //less to do next time
  1730. asm("sei");
  1731. }
  1732. else
  1733. if(curTodo<0)
  1734. {
  1735. asm("cli");
  1736. babystep(axis,/*fwd*/false);
  1737. babystepsTodo[axis]++; //less to do next time
  1738. asm("sei");
  1739. }
  1740. }
  1741. #endif //BABYSTEPPING
  1742. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1743. check_fans();
  1744. #endif //(defined(TACH_0))
  1745. _lock = false;
  1746. }
  1747. void check_max_temp()
  1748. {
  1749. //heater
  1750. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1751. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1752. #else
  1753. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1754. #endif
  1755. max_temp_error(0);
  1756. }
  1757. //bed
  1758. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1759. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1760. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1761. #else
  1762. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1763. #endif
  1764. target_temperature_bed = 0;
  1765. bed_max_temp_error();
  1766. }
  1767. #endif
  1768. }
  1769. //! number of repeating the same state with consecutive step() calls
  1770. //! used to slow down text switching
  1771. struct alert_automaton_mintemp {
  1772. private:
  1773. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1774. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1775. States state = States::Init;
  1776. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1777. void substep(States next_state){
  1778. if( repeat == 0 ){
  1779. state = next_state; // advance to the next state
  1780. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1781. } else {
  1782. --repeat;
  1783. }
  1784. }
  1785. public:
  1786. //! brief state automaton step routine
  1787. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1788. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1789. void step(float current_temp, float mintemp){
  1790. static const char m2[] PROGMEM = "MINTEMP fixed";
  1791. static const char m1[] PROGMEM = "Please restart";
  1792. switch(state){
  1793. case States::Init: // initial state - check hysteresis
  1794. if( current_temp > mintemp ){
  1795. state = States::TempAboveMintemp;
  1796. }
  1797. // otherwise keep the Err MINTEMP alert message on the display,
  1798. // i.e. do not transfer to state 1
  1799. break;
  1800. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1801. lcd_setalertstatuspgm(m2);
  1802. substep(States::ShowMintemp);
  1803. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1804. break;
  1805. case States::ShowPleaseRestart: // displaying "Please restart"
  1806. lcd_updatestatuspgm(m1);
  1807. substep(States::ShowMintemp);
  1808. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1809. break;
  1810. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1811. lcd_updatestatuspgm(m2);
  1812. substep(States::ShowPleaseRestart);
  1813. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1814. break;
  1815. }
  1816. }
  1817. };
  1818. static alert_automaton_mintemp alert_automaton_hotend, alert_automaton_bed;
  1819. void check_min_temp_heater0()
  1820. {
  1821. //heater
  1822. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1823. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1824. #else
  1825. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1826. #endif
  1827. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1828. min_temp_error(0);
  1829. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1830. // no recovery, just force the user to restart the printer
  1831. // which is a safer variant than just continuing printing
  1832. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1833. // we shall signalize, that MINTEMP has been fixed
  1834. // Code notice: normally the alert_automaton instance would have been placed here
  1835. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1836. // due to stupid compiler that takes 16 more bytes.
  1837. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1838. }
  1839. }
  1840. void check_min_temp_bed()
  1841. {
  1842. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1843. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1844. #else
  1845. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1846. #endif
  1847. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1848. bed_min_temp_error();
  1849. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1850. // no recovery, just force the user to restart the printer
  1851. // which is a safer variant than just continuing printing
  1852. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1853. }
  1854. }
  1855. void check_min_temp()
  1856. {
  1857. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1858. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1859. #ifdef AMBIENT_THERMISTOR
  1860. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1861. { // ambient temperature is low
  1862. #endif //AMBIENT_THERMISTOR
  1863. // *** 'common' part of code for MK2.5 & MK3
  1864. // * nozzle checking
  1865. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1866. { // ~ nozzle heating is on
  1867. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1868. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1869. {
  1870. bCheckingOnHeater=true; // not necessary
  1871. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1872. }
  1873. }
  1874. else { // ~ nozzle heating is off
  1875. oTimer4minTempHeater.start();
  1876. bCheckingOnHeater=false;
  1877. }
  1878. // * bed checking
  1879. if(target_temperature_bed>BED_MINTEMP)
  1880. { // ~ bed heating is on
  1881. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1882. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1883. {
  1884. bCheckingOnBed=true; // not necessary
  1885. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1886. }
  1887. }
  1888. else { // ~ bed heating is off
  1889. oTimer4minTempBed.start();
  1890. bCheckingOnBed=false;
  1891. }
  1892. // *** end of 'common' part
  1893. #ifdef AMBIENT_THERMISTOR
  1894. }
  1895. else { // ambient temperature is standard
  1896. check_min_temp_heater0();
  1897. check_min_temp_bed();
  1898. }
  1899. #endif //AMBIENT_THERMISTOR
  1900. }
  1901. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1902. void check_fans() {
  1903. #ifdef FAN_SOFT_PWM
  1904. if (READ(TACH_0) != fan_state[0]) {
  1905. if(fan_measuring) fan_edge_counter[0] ++;
  1906. fan_state[0] = !fan_state[0];
  1907. }
  1908. #else //FAN_SOFT_PWM
  1909. if (READ(TACH_0) != fan_state[0]) {
  1910. fan_edge_counter[0] ++;
  1911. fan_state[0] = !fan_state[0];
  1912. }
  1913. #endif
  1914. //if (READ(TACH_1) != fan_state[1]) {
  1915. // fan_edge_counter[1] ++;
  1916. // fan_state[1] = !fan_state[1];
  1917. //}
  1918. }
  1919. #endif //TACH_0
  1920. #ifdef PIDTEMP
  1921. // Apply the scale factors to the PID values
  1922. float scalePID_i(float i)
  1923. {
  1924. return i*PID_dT;
  1925. }
  1926. float unscalePID_i(float i)
  1927. {
  1928. return i/PID_dT;
  1929. }
  1930. float scalePID_d(float d)
  1931. {
  1932. return d/PID_dT;
  1933. }
  1934. float unscalePID_d(float d)
  1935. {
  1936. return d*PID_dT;
  1937. }
  1938. #endif //PIDTEMP