temperature.cpp 56 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "watchdog.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. //===========================================================================
  32. //=============================public variables============================
  33. //===========================================================================
  34. int target_temperature[EXTRUDERS] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[EXTRUDERS] = { 0 };
  37. float current_temperature[EXTRUDERS] = { 0.0 };
  38. #ifdef PINDA_THERMISTOR
  39. int current_temperature_raw_pinda = 0 ;
  40. float current_temperature_pinda = 0.0;
  41. #endif //PINDA_THERMISTOR
  42. #ifdef AMBIENT_THERMISTOR
  43. int current_temperature_raw_ambient = 0 ;
  44. float current_temperature_ambient = 0.0;
  45. #endif //AMBIENT_THERMISTOR
  46. #ifdef VOLT_PWR_PIN
  47. int current_voltage_raw_pwr = 0;
  48. #endif
  49. #ifdef VOLT_BED_PIN
  50. int current_voltage_raw_bed = 0;
  51. #endif
  52. int current_temperature_bed_raw = 0;
  53. float current_temperature_bed = 0.0;
  54. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  55. int redundant_temperature_raw = 0;
  56. float redundant_temperature = 0.0;
  57. #endif
  58. #ifdef PIDTEMP
  59. float _Kp, _Ki, _Kd;
  60. int pid_cycle, pid_number_of_cycles;
  61. bool pid_tuning_finished = false;
  62. float Kp=DEFAULT_Kp;
  63. float Ki=(DEFAULT_Ki*PID_dT);
  64. float Kd=(DEFAULT_Kd/PID_dT);
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef PIDTEMPBED
  70. float bedKp=DEFAULT_bedKp;
  71. float bedKi=(DEFAULT_bedKi*PID_dT);
  72. float bedKd=(DEFAULT_bedKd/PID_dT);
  73. #endif //PIDTEMPBED
  74. #ifdef FAN_SOFT_PWM
  75. unsigned char fanSpeedSoftPwm;
  76. #endif
  77. unsigned char soft_pwm_bed;
  78. #ifdef BABYSTEPPING
  79. volatile int babystepsTodo[3]={0,0,0};
  80. #endif
  81. #ifdef FILAMENT_SENSOR
  82. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  83. #endif
  84. //===========================================================================
  85. //=============================private variables============================
  86. //===========================================================================
  87. static volatile bool temp_meas_ready = false;
  88. #ifdef PIDTEMP
  89. //static cannot be external:
  90. static float temp_iState[EXTRUDERS] = { 0 };
  91. static float temp_dState[EXTRUDERS] = { 0 };
  92. static float pTerm[EXTRUDERS];
  93. static float iTerm[EXTRUDERS];
  94. static float dTerm[EXTRUDERS];
  95. //int output;
  96. static float pid_error[EXTRUDERS];
  97. static float temp_iState_min[EXTRUDERS];
  98. static float temp_iState_max[EXTRUDERS];
  99. // static float pid_input[EXTRUDERS];
  100. // static float pid_output[EXTRUDERS];
  101. static bool pid_reset[EXTRUDERS];
  102. #endif //PIDTEMP
  103. #ifdef PIDTEMPBED
  104. //static cannot be external:
  105. static float temp_iState_bed = { 0 };
  106. static float temp_dState_bed = { 0 };
  107. static float pTerm_bed;
  108. static float iTerm_bed;
  109. static float dTerm_bed;
  110. //int output;
  111. static float pid_error_bed;
  112. static float temp_iState_min_bed;
  113. static float temp_iState_max_bed;
  114. #else //PIDTEMPBED
  115. static unsigned long previous_millis_bed_heater;
  116. #endif //PIDTEMPBED
  117. static unsigned char soft_pwm[EXTRUDERS];
  118. #ifdef FAN_SOFT_PWM
  119. static unsigned char soft_pwm_fan;
  120. #endif
  121. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  122. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  123. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  124. static unsigned long extruder_autofan_last_check;
  125. #endif
  126. #if EXTRUDERS > 3
  127. # error Unsupported number of extruders
  128. #elif EXTRUDERS > 2
  129. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  130. #elif EXTRUDERS > 1
  131. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  132. #else
  133. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  134. #endif
  135. // Init min and max temp with extreme values to prevent false errors during startup
  136. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  137. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  138. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  139. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  140. #ifdef BED_MINTEMP
  141. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  142. #endif
  143. #ifdef BED_MAXTEMP
  144. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  145. #endif
  146. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  147. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  148. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  149. #else
  150. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  151. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  152. #endif
  153. static float analog2temp(int raw, uint8_t e);
  154. static float analog2tempBed(int raw);
  155. static float analog2tempAmbient(int raw);
  156. static void updateTemperaturesFromRawValues();
  157. enum TempRunawayStates
  158. {
  159. TempRunaway_INACTIVE = 0,
  160. TempRunaway_PREHEAT = 1,
  161. TempRunaway_ACTIVE = 2,
  162. };
  163. #ifdef WATCH_TEMP_PERIOD
  164. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  165. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  166. #endif //WATCH_TEMP_PERIOD
  167. #ifndef SOFT_PWM_SCALE
  168. #define SOFT_PWM_SCALE 0
  169. #endif
  170. #ifdef FILAMENT_SENSOR
  171. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  172. #endif
  173. //===========================================================================
  174. //============================= functions ============================
  175. //===========================================================================
  176. void PID_autotune(float temp, int extruder, int ncycles)
  177. {
  178. pid_number_of_cycles = ncycles;
  179. pid_tuning_finished = false;
  180. float input = 0.0;
  181. pid_cycle=0;
  182. bool heating = true;
  183. unsigned long temp_millis = millis();
  184. unsigned long t1=temp_millis;
  185. unsigned long t2=temp_millis;
  186. long t_high = 0;
  187. long t_low = 0;
  188. long bias, d;
  189. float Ku, Tu;
  190. float max = 0, min = 10000;
  191. uint8_t safety_check_cycles = 0;
  192. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  193. float temp_ambient;
  194. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  195. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  196. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  197. unsigned long extruder_autofan_last_check = millis();
  198. #endif
  199. if ((extruder >= EXTRUDERS)
  200. #if (TEMP_BED_PIN <= -1)
  201. ||(extruder < 0)
  202. #endif
  203. ){
  204. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  205. pid_tuning_finished = true;
  206. pid_cycle = 0;
  207. return;
  208. }
  209. SERIAL_ECHOLN("PID Autotune start");
  210. disable_heater(); // switch off all heaters.
  211. if (extruder<0)
  212. {
  213. soft_pwm_bed = (MAX_BED_POWER)/2;
  214. bias = d = (MAX_BED_POWER)/2;
  215. }
  216. else
  217. {
  218. soft_pwm[extruder] = (PID_MAX)/2;
  219. bias = d = (PID_MAX)/2;
  220. }
  221. for(;;) {
  222. wdt_reset();
  223. if(temp_meas_ready == true) { // temp sample ready
  224. updateTemperaturesFromRawValues();
  225. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  226. max=max(max,input);
  227. min=min(min,input);
  228. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  229. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  230. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  231. if(millis() - extruder_autofan_last_check > 2500) {
  232. checkExtruderAutoFans();
  233. extruder_autofan_last_check = millis();
  234. }
  235. #endif
  236. if(heating == true && input > temp) {
  237. if(millis() - t2 > 5000) {
  238. heating=false;
  239. if (extruder<0)
  240. soft_pwm_bed = (bias - d) >> 1;
  241. else
  242. soft_pwm[extruder] = (bias - d) >> 1;
  243. t1=millis();
  244. t_high=t1 - t2;
  245. max=temp;
  246. }
  247. }
  248. if(heating == false && input < temp) {
  249. if(millis() - t1 > 5000) {
  250. heating=true;
  251. t2=millis();
  252. t_low=t2 - t1;
  253. if(pid_cycle > 0) {
  254. bias += (d*(t_high - t_low))/(t_low + t_high);
  255. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  256. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  257. else d = bias;
  258. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  259. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  260. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  261. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  262. if(pid_cycle > 2) {
  263. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  264. Tu = ((float)(t_low + t_high)/1000.0);
  265. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  266. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  267. _Kp = 0.6*Ku;
  268. _Ki = 2*_Kp/Tu;
  269. _Kd = _Kp*Tu/8;
  270. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  271. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  272. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  273. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  274. /*
  275. _Kp = 0.33*Ku;
  276. _Ki = _Kp/Tu;
  277. _Kd = _Kp*Tu/3;
  278. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  279. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  280. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  281. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  282. _Kp = 0.2*Ku;
  283. _Ki = 2*_Kp/Tu;
  284. _Kd = _Kp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  286. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  287. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  288. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  289. */
  290. }
  291. }
  292. if (extruder<0)
  293. soft_pwm_bed = (bias + d) >> 1;
  294. else
  295. soft_pwm[extruder] = (bias + d) >> 1;
  296. pid_cycle++;
  297. min=temp;
  298. }
  299. }
  300. }
  301. if(input > (temp + 20)) {
  302. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  303. pid_tuning_finished = true;
  304. pid_cycle = 0;
  305. return;
  306. }
  307. if(millis() - temp_millis > 2000) {
  308. int p;
  309. if (extruder<0){
  310. p=soft_pwm_bed;
  311. SERIAL_PROTOCOLPGM("B:");
  312. }else{
  313. p=soft_pwm[extruder];
  314. SERIAL_PROTOCOLPGM("T:");
  315. }
  316. SERIAL_PROTOCOL(input);
  317. SERIAL_PROTOCOLPGM(" @:");
  318. SERIAL_PROTOCOLLN(p);
  319. if (safety_check_cycles == 0) { //save ambient temp
  320. temp_ambient = input;
  321. //SERIAL_ECHOPGM("Ambient T: ");
  322. //MYSERIAL.println(temp_ambient);
  323. safety_check_cycles++;
  324. }
  325. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  326. safety_check_cycles++;
  327. }
  328. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  329. safety_check_cycles++;
  330. //SERIAL_ECHOPGM("Time from beginning: ");
  331. //MYSERIAL.print(safety_check_cycles_count * 2);
  332. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  333. //MYSERIAL.println(input - temp_ambient);
  334. if (abs(input - temp_ambient) < 5.0) {
  335. temp_runaway_stop(false, (extruder<0));
  336. pid_tuning_finished = true;
  337. return;
  338. }
  339. }
  340. temp_millis = millis();
  341. }
  342. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  343. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  344. pid_tuning_finished = true;
  345. pid_cycle = 0;
  346. return;
  347. }
  348. if(pid_cycle > ncycles) {
  349. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  350. pid_tuning_finished = true;
  351. pid_cycle = 0;
  352. return;
  353. }
  354. lcd_update();
  355. }
  356. }
  357. void updatePID()
  358. {
  359. #ifdef PIDTEMP
  360. for(int e = 0; e < EXTRUDERS; e++) {
  361. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  362. }
  363. #endif
  364. #ifdef PIDTEMPBED
  365. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  366. #endif
  367. }
  368. int getHeaterPower(int heater) {
  369. if (heater<0)
  370. return soft_pwm_bed;
  371. return soft_pwm[heater];
  372. }
  373. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  374. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  375. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  376. #if defined(FAN_PIN) && FAN_PIN > -1
  377. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  378. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  379. #endif
  380. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  381. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  382. #endif
  383. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  384. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  385. #endif
  386. #endif
  387. void setExtruderAutoFanState(int pin, bool state)
  388. {
  389. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  390. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  391. pinMode(pin, OUTPUT);
  392. digitalWrite(pin, newFanSpeed);
  393. analogWrite(pin, newFanSpeed);
  394. }
  395. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  396. void countFanSpeed()
  397. {
  398. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  399. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  400. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  401. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  402. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  403. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  404. SERIAL_ECHOLNPGM(" ");*/
  405. fan_edge_counter[0] = 0;
  406. fan_edge_counter[1] = 0;
  407. }
  408. extern bool fans_check_enabled;
  409. void checkFanSpeed()
  410. {
  411. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  412. static unsigned char fan_speed_errors[2] = { 0,0 };
  413. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  414. if (fan_speed[0] == 0 && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  415. else fan_speed_errors[0] = 0;
  416. #endif
  417. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  418. if ((fan_speed[1] == 0)&& (fanSpeed > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  419. else fan_speed_errors[1] = 0;
  420. #endif
  421. if ((fan_speed_errors[0] > 5) && fans_check_enabled) fanSpeedError(0); //extruder fan
  422. if ((fan_speed_errors[1] > 15) && fans_check_enabled) fanSpeedError(1); //print fan
  423. }
  424. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  425. extern void restore_print_from_ram_and_continue(float e_move);
  426. void fanSpeedError(unsigned char _fan) {
  427. if (get_message_level() != 0 && isPrintPaused) return;
  428. //to ensure that target temp. is not set to zero in case taht we are resuming print
  429. if (card.sdprinting) {
  430. if (heating_status != 0) {
  431. lcd_print_stop();
  432. }
  433. else {
  434. isPrintPaused = true;
  435. lcd_sdcard_pause();
  436. }
  437. }
  438. else {
  439. setTargetHotend0(0);
  440. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  441. }
  442. switch (_fan) {
  443. case 0:
  444. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  445. if (get_message_level() == 0) {
  446. WRITE(BEEPER, HIGH);
  447. delayMicroseconds(200);
  448. WRITE(BEEPER, LOW);
  449. delayMicroseconds(100);
  450. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  451. }
  452. break;
  453. case 1:
  454. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  455. if (get_message_level() == 0) {
  456. WRITE(BEEPER, HIGH);
  457. delayMicroseconds(200);
  458. WRITE(BEEPER, LOW);
  459. delayMicroseconds(100);
  460. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  461. }
  462. break;
  463. }
  464. }
  465. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  466. void checkExtruderAutoFans()
  467. {
  468. uint8_t fanState = 0;
  469. // which fan pins need to be turned on?
  470. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  471. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  472. fanState |= 1;
  473. #endif
  474. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  475. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  476. {
  477. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  478. fanState |= 1;
  479. else
  480. fanState |= 2;
  481. }
  482. #endif
  483. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  484. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  485. {
  486. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  487. fanState |= 1;
  488. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  489. fanState |= 2;
  490. else
  491. fanState |= 4;
  492. }
  493. #endif
  494. // update extruder auto fan states
  495. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  496. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  497. #endif
  498. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  499. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  500. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  501. #endif
  502. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  503. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  504. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  505. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  506. #endif
  507. }
  508. #endif // any extruder auto fan pins set
  509. void manage_heater()
  510. {
  511. wdt_reset();
  512. float pid_input;
  513. float pid_output;
  514. if(temp_meas_ready != true) //better readability
  515. return;
  516. updateTemperaturesFromRawValues();
  517. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  518. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  519. #endif
  520. for(int e = 0; e < EXTRUDERS; e++)
  521. {
  522. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  523. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  524. #endif
  525. #ifdef PIDTEMP
  526. pid_input = current_temperature[e];
  527. #ifndef PID_OPENLOOP
  528. pid_error[e] = target_temperature[e] - pid_input;
  529. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  530. pid_output = BANG_MAX;
  531. pid_reset[e] = true;
  532. }
  533. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  534. pid_output = 0;
  535. pid_reset[e] = true;
  536. }
  537. else {
  538. if(pid_reset[e] == true) {
  539. temp_iState[e] = 0.0;
  540. pid_reset[e] = false;
  541. }
  542. pTerm[e] = Kp * pid_error[e];
  543. temp_iState[e] += pid_error[e];
  544. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  545. iTerm[e] = Ki * temp_iState[e];
  546. //K1 defined in Configuration.h in the PID settings
  547. #define K2 (1.0-K1)
  548. dTerm[e] = (Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  549. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  550. if (pid_output > PID_MAX) {
  551. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  552. pid_output=PID_MAX;
  553. } else if (pid_output < 0){
  554. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  555. pid_output=0;
  556. }
  557. }
  558. temp_dState[e] = pid_input;
  559. #else
  560. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  561. #endif //PID_OPENLOOP
  562. #ifdef PID_DEBUG
  563. SERIAL_ECHO_START;
  564. SERIAL_ECHO(" PID_DEBUG ");
  565. SERIAL_ECHO(e);
  566. SERIAL_ECHO(": Input ");
  567. SERIAL_ECHO(pid_input);
  568. SERIAL_ECHO(" Output ");
  569. SERIAL_ECHO(pid_output);
  570. SERIAL_ECHO(" pTerm ");
  571. SERIAL_ECHO(pTerm[e]);
  572. SERIAL_ECHO(" iTerm ");
  573. SERIAL_ECHO(iTerm[e]);
  574. SERIAL_ECHO(" dTerm ");
  575. SERIAL_ECHOLN(dTerm[e]);
  576. #endif //PID_DEBUG
  577. #else /* PID off */
  578. pid_output = 0;
  579. if(current_temperature[e] < target_temperature[e]) {
  580. pid_output = PID_MAX;
  581. }
  582. #endif
  583. // Check if temperature is within the correct range
  584. #ifdef AMBIENT_THERMISTOR
  585. if(((current_temperature_ambient < MINTEMP_MINAMBIENT) || (current_temperature[e] > minttemp[e])) && (current_temperature[e] < maxttemp[e]))
  586. #else //AMBIENT_THERMISTOR
  587. if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
  588. #endif //AMBIENT_THERMISTOR
  589. {
  590. soft_pwm[e] = (int)pid_output >> 1;
  591. }
  592. else
  593. {
  594. soft_pwm[e] = 0;
  595. }
  596. #ifdef WATCH_TEMP_PERIOD
  597. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  598. {
  599. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  600. {
  601. setTargetHotend(0, e);
  602. LCD_MESSAGEPGM("Heating failed");
  603. SERIAL_ECHO_START;
  604. SERIAL_ECHOLN("Heating failed");
  605. }else{
  606. watchmillis[e] = 0;
  607. }
  608. }
  609. #endif
  610. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  611. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  612. disable_heater();
  613. if(IsStopped() == false) {
  614. SERIAL_ERROR_START;
  615. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  616. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  617. }
  618. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  619. Stop();
  620. #endif
  621. }
  622. #endif
  623. } // End extruder for loop
  624. #ifndef DEBUG_DISABLE_FANCHECK
  625. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  626. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  627. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  628. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  629. {
  630. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  631. countFanSpeed();
  632. checkFanSpeed();
  633. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  634. checkExtruderAutoFans();
  635. extruder_autofan_last_check = millis();
  636. }
  637. #endif
  638. #endif //DEBUG_DISABLE_FANCHECK
  639. #ifndef PIDTEMPBED
  640. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  641. return;
  642. previous_millis_bed_heater = millis();
  643. #endif
  644. #if TEMP_SENSOR_BED != 0
  645. #ifdef PIDTEMPBED
  646. pid_input = current_temperature_bed;
  647. #ifndef PID_OPENLOOP
  648. pid_error_bed = target_temperature_bed - pid_input;
  649. pTerm_bed = bedKp * pid_error_bed;
  650. temp_iState_bed += pid_error_bed;
  651. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  652. iTerm_bed = bedKi * temp_iState_bed;
  653. //K1 defined in Configuration.h in the PID settings
  654. #define K2 (1.0-K1)
  655. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  656. temp_dState_bed = pid_input;
  657. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  658. if (pid_output > MAX_BED_POWER) {
  659. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  660. pid_output=MAX_BED_POWER;
  661. } else if (pid_output < 0){
  662. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  663. pid_output=0;
  664. }
  665. #else
  666. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  667. #endif //PID_OPENLOOP
  668. #ifdef AMBIENT_THERMISTOR
  669. if(((current_temperature_bed > BED_MINTEMP) || (current_temperature_ambient < MINTEMP_MINAMBIENT)) && (current_temperature_bed < BED_MAXTEMP))
  670. #else //AMBIENT_THERMISTOR
  671. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  672. #endif //AMBIENT_THERMISTOR
  673. {
  674. soft_pwm_bed = (int)pid_output >> 1;
  675. }
  676. else {
  677. soft_pwm_bed = 0;
  678. }
  679. #elif !defined(BED_LIMIT_SWITCHING)
  680. // Check if temperature is within the correct range
  681. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  682. {
  683. if(current_temperature_bed >= target_temperature_bed)
  684. {
  685. soft_pwm_bed = 0;
  686. }
  687. else
  688. {
  689. soft_pwm_bed = MAX_BED_POWER>>1;
  690. }
  691. }
  692. else
  693. {
  694. soft_pwm_bed = 0;
  695. WRITE(HEATER_BED_PIN,LOW);
  696. }
  697. #else //#ifdef BED_LIMIT_SWITCHING
  698. // Check if temperature is within the correct band
  699. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  700. {
  701. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  702. {
  703. soft_pwm_bed = 0;
  704. }
  705. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  706. {
  707. soft_pwm_bed = MAX_BED_POWER>>1;
  708. }
  709. }
  710. else
  711. {
  712. soft_pwm_bed = 0;
  713. WRITE(HEATER_BED_PIN,LOW);
  714. }
  715. #endif
  716. #endif
  717. //code for controlling the extruder rate based on the width sensor
  718. #ifdef FILAMENT_SENSOR
  719. if(filament_sensor)
  720. {
  721. meas_shift_index=delay_index1-meas_delay_cm;
  722. if(meas_shift_index<0)
  723. meas_shift_index = meas_shift_index + (MAX_MEASUREMENT_DELAY+1); //loop around buffer if needed
  724. //get the delayed info and add 100 to reconstitute to a percent of the nominal filament diameter
  725. //then square it to get an area
  726. if(meas_shift_index<0)
  727. meas_shift_index=0;
  728. else if (meas_shift_index>MAX_MEASUREMENT_DELAY)
  729. meas_shift_index=MAX_MEASUREMENT_DELAY;
  730. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = pow((float)(100+measurement_delay[meas_shift_index])/100.0,2);
  731. if (volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] <0.01)
  732. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]=0.01;
  733. }
  734. #endif
  735. #ifdef HOST_KEEPALIVE_FEATURE
  736. host_keepalive();
  737. #endif
  738. }
  739. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  740. // Derived from RepRap FiveD extruder::getTemperature()
  741. // For hot end temperature measurement.
  742. static float analog2temp(int raw, uint8_t e) {
  743. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  744. if(e > EXTRUDERS)
  745. #else
  746. if(e >= EXTRUDERS)
  747. #endif
  748. {
  749. SERIAL_ERROR_START;
  750. SERIAL_ERROR((int)e);
  751. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  752. kill("", 6);
  753. return 0.0;
  754. }
  755. #ifdef HEATER_0_USES_MAX6675
  756. if (e == 0)
  757. {
  758. return 0.25 * raw;
  759. }
  760. #endif
  761. if(heater_ttbl_map[e] != NULL)
  762. {
  763. float celsius = 0;
  764. uint8_t i;
  765. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  766. for (i=1; i<heater_ttbllen_map[e]; i++)
  767. {
  768. if (PGM_RD_W((*tt)[i][0]) > raw)
  769. {
  770. celsius = PGM_RD_W((*tt)[i-1][1]) +
  771. (raw - PGM_RD_W((*tt)[i-1][0])) *
  772. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  773. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  774. break;
  775. }
  776. }
  777. // Overflow: Set to last value in the table
  778. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  779. return celsius;
  780. }
  781. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  782. }
  783. // Derived from RepRap FiveD extruder::getTemperature()
  784. // For bed temperature measurement.
  785. static float analog2tempBed(int raw) {
  786. #ifdef BED_USES_THERMISTOR
  787. float celsius = 0;
  788. byte i;
  789. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  790. {
  791. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  792. {
  793. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  794. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  795. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  796. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  797. break;
  798. }
  799. }
  800. // Overflow: Set to last value in the table
  801. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  802. // temperature offset adjustment
  803. #ifdef BED_OFFSET
  804. float _offset = BED_OFFSET;
  805. float _offset_center = BED_OFFSET_CENTER;
  806. float _offset_start = BED_OFFSET_START;
  807. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  808. float _second_koef = (_offset / 2) / (100 - _offset_center);
  809. if (celsius >= _offset_start && celsius <= _offset_center)
  810. {
  811. celsius = celsius + (_first_koef * (celsius - _offset_start));
  812. }
  813. else if (celsius > _offset_center && celsius <= 100)
  814. {
  815. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  816. }
  817. else if (celsius > 100)
  818. {
  819. celsius = celsius + _offset;
  820. }
  821. #endif
  822. return celsius;
  823. #elif defined BED_USES_AD595
  824. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  825. #else
  826. return 0;
  827. #endif
  828. }
  829. #ifdef AMBIENT_THERMISTOR
  830. static float analog2tempAmbient(int raw)
  831. {
  832. float celsius = 0;
  833. byte i;
  834. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  835. {
  836. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  837. {
  838. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  839. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  840. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  841. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  842. break;
  843. }
  844. }
  845. // Overflow: Set to last value in the table
  846. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  847. return celsius;
  848. }
  849. #endif //AMBIENT_THERMISTOR
  850. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  851. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  852. static void updateTemperaturesFromRawValues()
  853. {
  854. for(uint8_t e=0;e<EXTRUDERS;e++)
  855. {
  856. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  857. }
  858. #ifdef PINDA_THERMISTOR
  859. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda); //thermistor for pinda is the same as for bed
  860. #endif
  861. #ifdef AMBIENT_THERMISTOR
  862. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  863. #endif
  864. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  865. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  866. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  867. #endif
  868. #if defined (FILAMENT_SENSOR) && (FILWIDTH_PIN > -1) //check if a sensor is supported
  869. filament_width_meas = analog2widthFil();
  870. #endif
  871. //Reset the watchdog after we know we have a temperature measurement.
  872. watchdog_reset();
  873. CRITICAL_SECTION_START;
  874. temp_meas_ready = false;
  875. CRITICAL_SECTION_END;
  876. }
  877. // For converting raw Filament Width to milimeters
  878. #ifdef FILAMENT_SENSOR
  879. float analog2widthFil() {
  880. return current_raw_filwidth/16383.0*5.0;
  881. //return current_raw_filwidth;
  882. }
  883. // For converting raw Filament Width to a ratio
  884. int widthFil_to_size_ratio() {
  885. float temp;
  886. temp=filament_width_meas;
  887. if(filament_width_meas<MEASURED_LOWER_LIMIT)
  888. temp=filament_width_nominal; //assume sensor cut out
  889. else if (filament_width_meas>MEASURED_UPPER_LIMIT)
  890. temp= MEASURED_UPPER_LIMIT;
  891. return(filament_width_nominal/temp*100);
  892. }
  893. #endif
  894. void tp_init()
  895. {
  896. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  897. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  898. MCUCR=(1<<JTD);
  899. MCUCR=(1<<JTD);
  900. #endif
  901. // Finish init of mult extruder arrays
  902. for(int e = 0; e < EXTRUDERS; e++) {
  903. // populate with the first value
  904. maxttemp[e] = maxttemp[0];
  905. #ifdef PIDTEMP
  906. temp_iState_min[e] = 0.0;
  907. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / Ki;
  908. #endif //PIDTEMP
  909. #ifdef PIDTEMPBED
  910. temp_iState_min_bed = 0.0;
  911. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  912. #endif //PIDTEMPBED
  913. }
  914. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  915. SET_OUTPUT(HEATER_0_PIN);
  916. #endif
  917. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  918. SET_OUTPUT(HEATER_1_PIN);
  919. #endif
  920. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  921. SET_OUTPUT(HEATER_2_PIN);
  922. #endif
  923. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  924. SET_OUTPUT(HEATER_BED_PIN);
  925. #endif
  926. #if defined(FAN_PIN) && (FAN_PIN > -1)
  927. SET_OUTPUT(FAN_PIN);
  928. #ifdef FAST_PWM_FAN
  929. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  930. #endif
  931. #ifdef FAN_SOFT_PWM
  932. soft_pwm_fan = fanSpeedSoftPwm / 2;
  933. #endif
  934. #endif
  935. #ifdef HEATER_0_USES_MAX6675
  936. #ifndef SDSUPPORT
  937. SET_OUTPUT(SCK_PIN);
  938. WRITE(SCK_PIN,0);
  939. SET_OUTPUT(MOSI_PIN);
  940. WRITE(MOSI_PIN,1);
  941. SET_INPUT(MISO_PIN);
  942. WRITE(MISO_PIN,1);
  943. #endif
  944. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  945. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  946. pinMode(SS_PIN, OUTPUT);
  947. digitalWrite(SS_PIN,0);
  948. pinMode(MAX6675_SS, OUTPUT);
  949. digitalWrite(MAX6675_SS,1);
  950. #endif
  951. adc_init();
  952. // Use timer0 for temperature measurement
  953. // Interleave temperature interrupt with millies interrupt
  954. OCR0B = 128;
  955. TIMSK0 |= (1<<OCIE0B);
  956. // Wait for temperature measurement to settle
  957. delay(250);
  958. #ifdef HEATER_0_MINTEMP
  959. minttemp[0] = HEATER_0_MINTEMP;
  960. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  961. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  962. minttemp_raw[0] += OVERSAMPLENR;
  963. #else
  964. minttemp_raw[0] -= OVERSAMPLENR;
  965. #endif
  966. }
  967. #endif //MINTEMP
  968. #ifdef HEATER_0_MAXTEMP
  969. maxttemp[0] = HEATER_0_MAXTEMP;
  970. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  971. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  972. maxttemp_raw[0] -= OVERSAMPLENR;
  973. #else
  974. maxttemp_raw[0] += OVERSAMPLENR;
  975. #endif
  976. }
  977. #endif //MAXTEMP
  978. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  979. minttemp[1] = HEATER_1_MINTEMP;
  980. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  981. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  982. minttemp_raw[1] += OVERSAMPLENR;
  983. #else
  984. minttemp_raw[1] -= OVERSAMPLENR;
  985. #endif
  986. }
  987. #endif // MINTEMP 1
  988. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  989. maxttemp[1] = HEATER_1_MAXTEMP;
  990. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  991. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  992. maxttemp_raw[1] -= OVERSAMPLENR;
  993. #else
  994. maxttemp_raw[1] += OVERSAMPLENR;
  995. #endif
  996. }
  997. #endif //MAXTEMP 1
  998. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  999. minttemp[2] = HEATER_2_MINTEMP;
  1000. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1001. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1002. minttemp_raw[2] += OVERSAMPLENR;
  1003. #else
  1004. minttemp_raw[2] -= OVERSAMPLENR;
  1005. #endif
  1006. }
  1007. #endif //MINTEMP 2
  1008. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1009. maxttemp[2] = HEATER_2_MAXTEMP;
  1010. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1011. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1012. maxttemp_raw[2] -= OVERSAMPLENR;
  1013. #else
  1014. maxttemp_raw[2] += OVERSAMPLENR;
  1015. #endif
  1016. }
  1017. #endif //MAXTEMP 2
  1018. #ifdef BED_MINTEMP
  1019. /* No bed MINTEMP error implemented?!? */
  1020. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1021. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1022. bed_minttemp_raw += OVERSAMPLENR;
  1023. #else
  1024. bed_minttemp_raw -= OVERSAMPLENR;
  1025. #endif
  1026. }
  1027. #endif //BED_MINTEMP
  1028. #ifdef BED_MAXTEMP
  1029. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1030. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1031. bed_maxttemp_raw -= OVERSAMPLENR;
  1032. #else
  1033. bed_maxttemp_raw += OVERSAMPLENR;
  1034. #endif
  1035. }
  1036. #endif //BED_MAXTEMP
  1037. }
  1038. void setWatch()
  1039. {
  1040. #ifdef WATCH_TEMP_PERIOD
  1041. for (int e = 0; e < EXTRUDERS; e++)
  1042. {
  1043. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1044. {
  1045. watch_start_temp[e] = degHotend(e);
  1046. watchmillis[e] = millis();
  1047. }
  1048. }
  1049. #endif
  1050. }
  1051. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1052. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1053. {
  1054. float __hysteresis = 0;
  1055. int __timeout = 0;
  1056. bool temp_runaway_check_active = false;
  1057. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1058. static int __preheat_counter[2] = { 0,0};
  1059. static int __preheat_errors[2] = { 0,0};
  1060. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1061. if (_isbed)
  1062. {
  1063. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1064. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1065. }
  1066. #endif
  1067. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1068. if (!_isbed)
  1069. {
  1070. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1071. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1072. }
  1073. #endif
  1074. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1075. {
  1076. temp_runaway_timer[_heater_id] = millis();
  1077. if (_output == 0)
  1078. {
  1079. temp_runaway_check_active = false;
  1080. temp_runaway_error_counter[_heater_id] = 0;
  1081. }
  1082. if (temp_runaway_target[_heater_id] != _target_temperature)
  1083. {
  1084. if (_target_temperature > 0)
  1085. {
  1086. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1087. temp_runaway_target[_heater_id] = _target_temperature;
  1088. __preheat_start[_heater_id] = _current_temperature;
  1089. __preheat_counter[_heater_id] = 0;
  1090. }
  1091. else
  1092. {
  1093. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1094. temp_runaway_target[_heater_id] = _target_temperature;
  1095. }
  1096. }
  1097. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1098. {
  1099. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1100. {
  1101. __preheat_counter[_heater_id]++;
  1102. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1103. {
  1104. /*SERIAL_ECHOPGM("Heater:");
  1105. MYSERIAL.print(_heater_id);
  1106. SERIAL_ECHOPGM(" T:");
  1107. MYSERIAL.print(_current_temperature);
  1108. SERIAL_ECHOPGM(" Tstart:");
  1109. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1110. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1111. __preheat_errors[_heater_id]++;
  1112. /*SERIAL_ECHOPGM(" Preheat errors:");
  1113. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1114. }
  1115. else {
  1116. //SERIAL_ECHOLNPGM("");
  1117. __preheat_errors[_heater_id] = 0;
  1118. }
  1119. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1120. {
  1121. if (farm_mode) { prusa_statistics(0); }
  1122. temp_runaway_stop(true, _isbed);
  1123. if (farm_mode) { prusa_statistics(91); }
  1124. }
  1125. __preheat_start[_heater_id] = _current_temperature;
  1126. __preheat_counter[_heater_id] = 0;
  1127. }
  1128. }
  1129. }
  1130. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1131. {
  1132. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1133. temp_runaway_check_active = false;
  1134. }
  1135. if (!temp_runaway_check_active && _output > 0)
  1136. {
  1137. temp_runaway_check_active = true;
  1138. }
  1139. if (temp_runaway_check_active)
  1140. {
  1141. // we are in range
  1142. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1143. {
  1144. temp_runaway_check_active = false;
  1145. temp_runaway_error_counter[_heater_id] = 0;
  1146. }
  1147. else
  1148. {
  1149. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1150. {
  1151. temp_runaway_error_counter[_heater_id]++;
  1152. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1153. {
  1154. if (farm_mode) { prusa_statistics(0); }
  1155. temp_runaway_stop(false, _isbed);
  1156. if (farm_mode) { prusa_statistics(90); }
  1157. }
  1158. }
  1159. }
  1160. }
  1161. }
  1162. }
  1163. void temp_runaway_stop(bool isPreheat, bool isBed)
  1164. {
  1165. cancel_heatup = true;
  1166. quickStop();
  1167. if (card.sdprinting)
  1168. {
  1169. card.sdprinting = false;
  1170. card.closefile();
  1171. }
  1172. // Clean the input command queue
  1173. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1174. cmdqueue_reset();
  1175. disable_heater();
  1176. disable_x();
  1177. disable_y();
  1178. disable_e0();
  1179. disable_e1();
  1180. disable_e2();
  1181. manage_heater();
  1182. lcd_update();
  1183. WRITE(BEEPER, HIGH);
  1184. delayMicroseconds(500);
  1185. WRITE(BEEPER, LOW);
  1186. delayMicroseconds(100);
  1187. if (isPreheat)
  1188. {
  1189. Stop();
  1190. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1191. SERIAL_ERROR_START;
  1192. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1193. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1194. SET_OUTPUT(FAN_PIN);
  1195. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1196. analogWrite(FAN_PIN, 255);
  1197. fanSpeed = 255;
  1198. delayMicroseconds(2000);
  1199. }
  1200. else
  1201. {
  1202. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1203. SERIAL_ERROR_START;
  1204. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1205. }
  1206. }
  1207. #endif
  1208. void disable_heater()
  1209. {
  1210. for(int i=0;i<EXTRUDERS;i++)
  1211. setTargetHotend(0,i);
  1212. setTargetBed(0);
  1213. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1214. target_temperature[0]=0;
  1215. soft_pwm[0]=0;
  1216. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1217. WRITE(HEATER_0_PIN,LOW);
  1218. #endif
  1219. #endif
  1220. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1221. target_temperature[1]=0;
  1222. soft_pwm[1]=0;
  1223. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1224. WRITE(HEATER_1_PIN,LOW);
  1225. #endif
  1226. #endif
  1227. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1228. target_temperature[2]=0;
  1229. soft_pwm[2]=0;
  1230. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1231. WRITE(HEATER_2_PIN,LOW);
  1232. #endif
  1233. #endif
  1234. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1235. target_temperature_bed=0;
  1236. soft_pwm_bed=0;
  1237. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1238. WRITE(HEATER_BED_PIN,LOW);
  1239. #endif
  1240. #endif
  1241. }
  1242. void max_temp_error(uint8_t e) {
  1243. disable_heater();
  1244. if(IsStopped() == false) {
  1245. SERIAL_ERROR_START;
  1246. SERIAL_ERRORLN((int)e);
  1247. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1248. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1249. }
  1250. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1251. Stop();
  1252. #endif
  1253. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1254. SET_OUTPUT(FAN_PIN);
  1255. SET_OUTPUT(BEEPER);
  1256. WRITE(FAN_PIN, 1);
  1257. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1258. WRITE(BEEPER, 1);
  1259. // fanSpeed will consumed by the check_axes_activity() routine.
  1260. fanSpeed=255;
  1261. if (farm_mode) { prusa_statistics(93); }
  1262. }
  1263. void min_temp_error(uint8_t e) {
  1264. #ifdef DEBUG_DISABLE_MINTEMP
  1265. return;
  1266. #endif
  1267. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1268. disable_heater();
  1269. if(IsStopped() == false) {
  1270. SERIAL_ERROR_START;
  1271. SERIAL_ERRORLN((int)e);
  1272. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1273. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1274. }
  1275. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1276. Stop();
  1277. #endif
  1278. if (farm_mode) { prusa_statistics(92); }
  1279. }
  1280. void bed_max_temp_error(void) {
  1281. #if HEATER_BED_PIN > -1
  1282. WRITE(HEATER_BED_PIN, 0);
  1283. #endif
  1284. if(IsStopped() == false) {
  1285. SERIAL_ERROR_START;
  1286. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1287. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1288. }
  1289. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1290. Stop();
  1291. #endif
  1292. }
  1293. void bed_min_temp_error(void) {
  1294. #ifdef DEBUG_DISABLE_MINTEMP
  1295. return;
  1296. #endif
  1297. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1298. #if HEATER_BED_PIN > -1
  1299. WRITE(HEATER_BED_PIN, 0);
  1300. #endif
  1301. if(IsStopped() == false) {
  1302. SERIAL_ERROR_START;
  1303. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1304. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1305. }
  1306. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1307. Stop();
  1308. #endif*/
  1309. }
  1310. #ifdef HEATER_0_USES_MAX6675
  1311. #define MAX6675_HEAT_INTERVAL 250
  1312. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1313. int max6675_temp = 2000;
  1314. int read_max6675()
  1315. {
  1316. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1317. return max6675_temp;
  1318. max6675_previous_millis = millis();
  1319. max6675_temp = 0;
  1320. #ifdef PRR
  1321. PRR &= ~(1<<PRSPI);
  1322. #elif defined PRR0
  1323. PRR0 &= ~(1<<PRSPI);
  1324. #endif
  1325. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1326. // enable TT_MAX6675
  1327. WRITE(MAX6675_SS, 0);
  1328. // ensure 100ns delay - a bit extra is fine
  1329. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1330. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1331. // read MSB
  1332. SPDR = 0;
  1333. for (;(SPSR & (1<<SPIF)) == 0;);
  1334. max6675_temp = SPDR;
  1335. max6675_temp <<= 8;
  1336. // read LSB
  1337. SPDR = 0;
  1338. for (;(SPSR & (1<<SPIF)) == 0;);
  1339. max6675_temp |= SPDR;
  1340. // disable TT_MAX6675
  1341. WRITE(MAX6675_SS, 1);
  1342. if (max6675_temp & 4)
  1343. {
  1344. // thermocouple open
  1345. max6675_temp = 2000;
  1346. }
  1347. else
  1348. {
  1349. max6675_temp = max6675_temp >> 3;
  1350. }
  1351. return max6675_temp;
  1352. }
  1353. #endif
  1354. extern "C" {
  1355. void adc_ready(void) //callback from adc when sampling finished
  1356. {
  1357. current_temperature_raw[0] = adc_values[0];
  1358. current_temperature_bed_raw = adc_values[2];
  1359. current_temperature_raw_pinda = adc_values[3];
  1360. #ifdef VOLT_PWR_PIN
  1361. current_voltage_raw_pwr = adc_values[4];
  1362. #endif
  1363. #ifdef AMBIENT_THERMISTOR
  1364. current_temperature_raw_ambient = adc_values[5];
  1365. #endif //AMBIENT_THERMISTOR
  1366. #ifdef VOLT_BED_PIN
  1367. current_voltage_raw_bed = adc_values[6];
  1368. #endif
  1369. temp_meas_ready = true;
  1370. }
  1371. } // extern "C"
  1372. // Timer 0 is shared with millies
  1373. ISR(TIMER0_COMPB_vect)
  1374. {
  1375. static bool _lock = false;
  1376. if (_lock) return;
  1377. _lock = true;
  1378. asm("sei");
  1379. if (!temp_meas_ready) adc_cycle();
  1380. else
  1381. {
  1382. check_max_temp();
  1383. check_min_temp();
  1384. }
  1385. lcd_buttons_update();
  1386. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1387. static unsigned char soft_pwm_0;
  1388. #ifdef SLOW_PWM_HEATERS
  1389. static unsigned char slow_pwm_count = 0;
  1390. static unsigned char state_heater_0 = 0;
  1391. static unsigned char state_timer_heater_0 = 0;
  1392. #endif
  1393. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1394. static unsigned char soft_pwm_1;
  1395. #ifdef SLOW_PWM_HEATERS
  1396. static unsigned char state_heater_1 = 0;
  1397. static unsigned char state_timer_heater_1 = 0;
  1398. #endif
  1399. #endif
  1400. #if EXTRUDERS > 2
  1401. static unsigned char soft_pwm_2;
  1402. #ifdef SLOW_PWM_HEATERS
  1403. static unsigned char state_heater_2 = 0;
  1404. static unsigned char state_timer_heater_2 = 0;
  1405. #endif
  1406. #endif
  1407. #if HEATER_BED_PIN > -1
  1408. static unsigned char soft_pwm_b;
  1409. #ifdef SLOW_PWM_HEATERS
  1410. static unsigned char state_heater_b = 0;
  1411. static unsigned char state_timer_heater_b = 0;
  1412. #endif
  1413. #endif
  1414. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1415. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1416. #endif
  1417. #ifndef SLOW_PWM_HEATERS
  1418. /*
  1419. * standard PWM modulation
  1420. */
  1421. if (pwm_count == 0)
  1422. {
  1423. soft_pwm_0 = soft_pwm[0];
  1424. if(soft_pwm_0 > 0)
  1425. {
  1426. WRITE(HEATER_0_PIN,1);
  1427. #ifdef HEATERS_PARALLEL
  1428. WRITE(HEATER_1_PIN,1);
  1429. #endif
  1430. } else WRITE(HEATER_0_PIN,0);
  1431. #if EXTRUDERS > 1
  1432. soft_pwm_1 = soft_pwm[1];
  1433. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1434. #endif
  1435. #if EXTRUDERS > 2
  1436. soft_pwm_2 = soft_pwm[2];
  1437. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1438. #endif
  1439. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1440. soft_pwm_b = soft_pwm_bed;
  1441. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1442. #endif
  1443. #ifdef FAN_SOFT_PWM
  1444. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1445. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1446. #endif
  1447. }
  1448. if(soft_pwm_0 < pwm_count)
  1449. {
  1450. WRITE(HEATER_0_PIN,0);
  1451. #ifdef HEATERS_PARALLEL
  1452. WRITE(HEATER_1_PIN,0);
  1453. #endif
  1454. }
  1455. #if EXTRUDERS > 1
  1456. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1457. #endif
  1458. #if EXTRUDERS > 2
  1459. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1460. #endif
  1461. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1462. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1463. #endif
  1464. #ifdef FAN_SOFT_PWM
  1465. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1466. #endif
  1467. pwm_count += (1 << SOFT_PWM_SCALE);
  1468. pwm_count &= 0x7f;
  1469. #else //ifndef SLOW_PWM_HEATERS
  1470. /*
  1471. * SLOW PWM HEATERS
  1472. *
  1473. * for heaters drived by relay
  1474. */
  1475. #ifndef MIN_STATE_TIME
  1476. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1477. #endif
  1478. if (slow_pwm_count == 0) {
  1479. // EXTRUDER 0
  1480. soft_pwm_0 = soft_pwm[0];
  1481. if (soft_pwm_0 > 0) {
  1482. // turn ON heather only if the minimum time is up
  1483. if (state_timer_heater_0 == 0) {
  1484. // if change state set timer
  1485. if (state_heater_0 == 0) {
  1486. state_timer_heater_0 = MIN_STATE_TIME;
  1487. }
  1488. state_heater_0 = 1;
  1489. WRITE(HEATER_0_PIN, 1);
  1490. #ifdef HEATERS_PARALLEL
  1491. WRITE(HEATER_1_PIN, 1);
  1492. #endif
  1493. }
  1494. } else {
  1495. // turn OFF heather only if the minimum time is up
  1496. if (state_timer_heater_0 == 0) {
  1497. // if change state set timer
  1498. if (state_heater_0 == 1) {
  1499. state_timer_heater_0 = MIN_STATE_TIME;
  1500. }
  1501. state_heater_0 = 0;
  1502. WRITE(HEATER_0_PIN, 0);
  1503. #ifdef HEATERS_PARALLEL
  1504. WRITE(HEATER_1_PIN, 0);
  1505. #endif
  1506. }
  1507. }
  1508. #if EXTRUDERS > 1
  1509. // EXTRUDER 1
  1510. soft_pwm_1 = soft_pwm[1];
  1511. if (soft_pwm_1 > 0) {
  1512. // turn ON heather only if the minimum time is up
  1513. if (state_timer_heater_1 == 0) {
  1514. // if change state set timer
  1515. if (state_heater_1 == 0) {
  1516. state_timer_heater_1 = MIN_STATE_TIME;
  1517. }
  1518. state_heater_1 = 1;
  1519. WRITE(HEATER_1_PIN, 1);
  1520. }
  1521. } else {
  1522. // turn OFF heather only if the minimum time is up
  1523. if (state_timer_heater_1 == 0) {
  1524. // if change state set timer
  1525. if (state_heater_1 == 1) {
  1526. state_timer_heater_1 = MIN_STATE_TIME;
  1527. }
  1528. state_heater_1 = 0;
  1529. WRITE(HEATER_1_PIN, 0);
  1530. }
  1531. }
  1532. #endif
  1533. #if EXTRUDERS > 2
  1534. // EXTRUDER 2
  1535. soft_pwm_2 = soft_pwm[2];
  1536. if (soft_pwm_2 > 0) {
  1537. // turn ON heather only if the minimum time is up
  1538. if (state_timer_heater_2 == 0) {
  1539. // if change state set timer
  1540. if (state_heater_2 == 0) {
  1541. state_timer_heater_2 = MIN_STATE_TIME;
  1542. }
  1543. state_heater_2 = 1;
  1544. WRITE(HEATER_2_PIN, 1);
  1545. }
  1546. } else {
  1547. // turn OFF heather only if the minimum time is up
  1548. if (state_timer_heater_2 == 0) {
  1549. // if change state set timer
  1550. if (state_heater_2 == 1) {
  1551. state_timer_heater_2 = MIN_STATE_TIME;
  1552. }
  1553. state_heater_2 = 0;
  1554. WRITE(HEATER_2_PIN, 0);
  1555. }
  1556. }
  1557. #endif
  1558. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1559. // BED
  1560. soft_pwm_b = soft_pwm_bed;
  1561. if (soft_pwm_b > 0) {
  1562. // turn ON heather only if the minimum time is up
  1563. if (state_timer_heater_b == 0) {
  1564. // if change state set timer
  1565. if (state_heater_b == 0) {
  1566. state_timer_heater_b = MIN_STATE_TIME;
  1567. }
  1568. state_heater_b = 1;
  1569. WRITE(HEATER_BED_PIN, 1);
  1570. }
  1571. } else {
  1572. // turn OFF heather only if the minimum time is up
  1573. if (state_timer_heater_b == 0) {
  1574. // if change state set timer
  1575. if (state_heater_b == 1) {
  1576. state_timer_heater_b = MIN_STATE_TIME;
  1577. }
  1578. state_heater_b = 0;
  1579. WRITE(HEATER_BED_PIN, 0);
  1580. }
  1581. }
  1582. #endif
  1583. } // if (slow_pwm_count == 0)
  1584. // EXTRUDER 0
  1585. if (soft_pwm_0 < slow_pwm_count) {
  1586. // turn OFF heather only if the minimum time is up
  1587. if (state_timer_heater_0 == 0) {
  1588. // if change state set timer
  1589. if (state_heater_0 == 1) {
  1590. state_timer_heater_0 = MIN_STATE_TIME;
  1591. }
  1592. state_heater_0 = 0;
  1593. WRITE(HEATER_0_PIN, 0);
  1594. #ifdef HEATERS_PARALLEL
  1595. WRITE(HEATER_1_PIN, 0);
  1596. #endif
  1597. }
  1598. }
  1599. #if EXTRUDERS > 1
  1600. // EXTRUDER 1
  1601. if (soft_pwm_1 < slow_pwm_count) {
  1602. // turn OFF heather only if the minimum time is up
  1603. if (state_timer_heater_1 == 0) {
  1604. // if change state set timer
  1605. if (state_heater_1 == 1) {
  1606. state_timer_heater_1 = MIN_STATE_TIME;
  1607. }
  1608. state_heater_1 = 0;
  1609. WRITE(HEATER_1_PIN, 0);
  1610. }
  1611. }
  1612. #endif
  1613. #if EXTRUDERS > 2
  1614. // EXTRUDER 2
  1615. if (soft_pwm_2 < slow_pwm_count) {
  1616. // turn OFF heather only if the minimum time is up
  1617. if (state_timer_heater_2 == 0) {
  1618. // if change state set timer
  1619. if (state_heater_2 == 1) {
  1620. state_timer_heater_2 = MIN_STATE_TIME;
  1621. }
  1622. state_heater_2 = 0;
  1623. WRITE(HEATER_2_PIN, 0);
  1624. }
  1625. }
  1626. #endif
  1627. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1628. // BED
  1629. if (soft_pwm_b < slow_pwm_count) {
  1630. // turn OFF heather only if the minimum time is up
  1631. if (state_timer_heater_b == 0) {
  1632. // if change state set timer
  1633. if (state_heater_b == 1) {
  1634. state_timer_heater_b = MIN_STATE_TIME;
  1635. }
  1636. state_heater_b = 0;
  1637. WRITE(HEATER_BED_PIN, 0);
  1638. }
  1639. }
  1640. #endif
  1641. #ifdef FAN_SOFT_PWM
  1642. if (pwm_count == 0){
  1643. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1644. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1645. }
  1646. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1647. #endif
  1648. pwm_count += (1 << SOFT_PWM_SCALE);
  1649. pwm_count &= 0x7f;
  1650. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1651. if ((pwm_count % 64) == 0) {
  1652. slow_pwm_count++;
  1653. slow_pwm_count &= 0x7f;
  1654. // Extruder 0
  1655. if (state_timer_heater_0 > 0) {
  1656. state_timer_heater_0--;
  1657. }
  1658. #if EXTRUDERS > 1
  1659. // Extruder 1
  1660. if (state_timer_heater_1 > 0)
  1661. state_timer_heater_1--;
  1662. #endif
  1663. #if EXTRUDERS > 2
  1664. // Extruder 2
  1665. if (state_timer_heater_2 > 0)
  1666. state_timer_heater_2--;
  1667. #endif
  1668. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1669. // Bed
  1670. if (state_timer_heater_b > 0)
  1671. state_timer_heater_b--;
  1672. #endif
  1673. } //if ((pwm_count % 64) == 0) {
  1674. #endif //ifndef SLOW_PWM_HEATERS
  1675. #ifdef BABYSTEPPING
  1676. for(uint8_t axis=0;axis<3;axis++)
  1677. {
  1678. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1679. if(curTodo>0)
  1680. {
  1681. asm("cli");
  1682. babystep(axis,/*fwd*/true);
  1683. babystepsTodo[axis]--; //less to do next time
  1684. asm("sei");
  1685. }
  1686. else
  1687. if(curTodo<0)
  1688. {
  1689. asm("cli");
  1690. babystep(axis,/*fwd*/false);
  1691. babystepsTodo[axis]++; //less to do next time
  1692. asm("sei");
  1693. }
  1694. }
  1695. #endif //BABYSTEPPING
  1696. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1697. check_fans();
  1698. #endif //(defined(TACH_0))
  1699. _lock = false;
  1700. }
  1701. void check_max_temp()
  1702. {
  1703. //heater
  1704. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1705. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1706. #else
  1707. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1708. #endif
  1709. max_temp_error(0);
  1710. }
  1711. //bed
  1712. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1713. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1714. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1715. #else
  1716. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1717. #endif
  1718. target_temperature_bed = 0;
  1719. bed_max_temp_error();
  1720. }
  1721. #endif
  1722. }
  1723. void check_min_temp_heater0()
  1724. {
  1725. //heater
  1726. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1727. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1728. #else
  1729. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1730. #endif
  1731. min_temp_error(0);
  1732. }
  1733. }
  1734. void check_min_temp_bed()
  1735. {
  1736. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1737. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1738. #else
  1739. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1740. #endif
  1741. bed_min_temp_error();
  1742. }
  1743. }
  1744. void check_min_temp()
  1745. {
  1746. #ifdef AMBIENT_THERMISTOR
  1747. static uint8_t heat_cycles = 0;
  1748. if (current_temperature_raw_ambient > OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)
  1749. {
  1750. if (READ(HEATER_0_PIN) == HIGH)
  1751. {
  1752. // if ((heat_cycles % 10) == 0)
  1753. // printf_P(PSTR("X%d\n"), heat_cycles);
  1754. if (heat_cycles > 50) //reaction time 5-10s
  1755. check_min_temp_heater0();
  1756. else
  1757. heat_cycles++;
  1758. }
  1759. else
  1760. heat_cycles = 0;
  1761. return;
  1762. }
  1763. #endif //AMBIENT_THERMISTOR
  1764. check_min_temp_heater0();
  1765. check_min_temp_bed();
  1766. }
  1767. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1768. void check_fans() {
  1769. if (READ(TACH_0) != fan_state[0]) {
  1770. fan_edge_counter[0] ++;
  1771. fan_state[0] = !fan_state[0];
  1772. }
  1773. //if (READ(TACH_1) != fan_state[1]) {
  1774. // fan_edge_counter[1] ++;
  1775. // fan_state[1] = !fan_state[1];
  1776. //}
  1777. }
  1778. #endif //TACH_0
  1779. #ifdef PIDTEMP
  1780. // Apply the scale factors to the PID values
  1781. float scalePID_i(float i)
  1782. {
  1783. return i*PID_dT;
  1784. }
  1785. float unscalePID_i(float i)
  1786. {
  1787. return i/PID_dT;
  1788. }
  1789. float scalePID_d(float d)
  1790. {
  1791. return d/PID_dT;
  1792. }
  1793. float unscalePID_d(float d)
  1794. {
  1795. return d*PID_dT;
  1796. }
  1797. #endif //PIDTEMP