fsensor.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "planner.h"
  8. #include "fastio.h"
  9. #include "io_atmega2560.h"
  10. #include "cmdqueue.h"
  11. #include "ultralcd.h"
  12. #include "ConfigurationStore.h"
  13. #include "mmu.h"
  14. //! @name Basic parameters
  15. //! @{
  16. #define FSENSOR_CHUNK_LEN 0.64F //!< filament sensor chunk length 0.64mm
  17. #define FSENSOR_ERR_MAX 17 //!< filament sensor maximum error count for runout detection
  18. //! @}
  19. //! @name Optical quality measurement parameters
  20. //! @{
  21. #define FSENSOR_OQ_MAX_ES 6 //!< maximum error sum while loading (length ~64mm = 100chunks)
  22. #define FSENSOR_OQ_MAX_EM 2 //!< maximum error counter value while loading
  23. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd per chunk (applied to avg value)
  24. #define FSENSOR_OQ_MAX_YD 200 //!< maximum yd per chunk (applied to avg value)
  25. #define FSENSOR_OQ_MAX_PD 4 //!< maximum positive deviation (= yd_max/yd_avg)
  26. #define FSENSOR_OQ_MAX_ND 5 //!< maximum negative deviation (= yd_avg/yd_min)
  27. #define FSENSOR_OQ_MAX_SH 13 //!< maximum shutter value
  28. //! @}
  29. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  30. #define FSENSOR_INT_PIN 75 //!< filament sensor interrupt pin PJ4
  31. #define FSENSOR_INT_PIN_MASK 0x10 //!< filament sensor interrupt pin mask (bit4)
  32. #define FSENSOR_INT_PIN_VECT PCINT1_vect
  33. #define FSENSOR_INT_PIN_PIN_REG PINJ
  34. #define FSENSOR_INT_PIN_PCMSK_REG PCMSK1
  35. #define FSENSOR_INT_PIN_PCMSK_BIT PCINT13
  36. #define FSENSOR_INT_PIN_PCICR_BIT PCIE1
  37. //uint8_t fsensor_int_pin = FSENSOR_INT_PIN;
  38. uint8_t fsensor_int_pin_old = 0;
  39. int16_t fsensor_chunk_len = 0;
  40. //! enabled = initialized and sampled every chunk event
  41. bool fsensor_enabled = true;
  42. //! runout watching is done in fsensor_update (called from main loop)
  43. bool fsensor_watch_runout = true;
  44. //! not responding - is set if any communication error occurred during initialization or readout
  45. bool fsensor_not_responding = false;
  46. //! printing saved
  47. bool fsensor_printing_saved = false;
  48. //! enable/disable quality meassurement
  49. bool fsensor_oq_meassure_enabled = false;
  50. //! number of errors, updated in ISR
  51. uint8_t fsensor_err_cnt = 0;
  52. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  53. int16_t fsensor_st_cnt = 0;
  54. //! last dy value from pat9125 sensor (used in ISR)
  55. int16_t fsensor_dy_old = 0;
  56. //! log flag: 0=log disabled, 1=log enabled
  57. uint8_t fsensor_log = 1;
  58. //! @name filament autoload variables
  59. //! @{
  60. //! autoload feature enabled
  61. bool fsensor_autoload_enabled = true;
  62. //! autoload watching enable/disable flag
  63. bool fsensor_watch_autoload = false;
  64. //
  65. uint16_t fsensor_autoload_y;
  66. //
  67. uint8_t fsensor_autoload_c;
  68. //
  69. uint32_t fsensor_autoload_last_millis;
  70. //
  71. uint8_t fsensor_autoload_sum;
  72. //! @}
  73. //! @name filament optical quality measurement variables
  74. //! @{
  75. //! Measurement enable/disable flag
  76. bool fsensor_oq_meassure = false;
  77. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  78. uint8_t fsensor_oq_skipchunk;
  79. //! number of samples from start of measurement
  80. uint8_t fsensor_oq_samples;
  81. //! sum of steps in positive direction movements
  82. uint16_t fsensor_oq_st_sum;
  83. //! sum of deltas in positive direction movements
  84. uint16_t fsensor_oq_yd_sum;
  85. //! sum of errors during measurement
  86. uint16_t fsensor_oq_er_sum;
  87. //! max error counter value during measurement
  88. uint8_t fsensor_oq_er_max;
  89. //! minimum delta value
  90. int16_t fsensor_oq_yd_min;
  91. //! maximum delta value
  92. int16_t fsensor_oq_yd_max;
  93. //! sum of shutter value
  94. uint16_t fsensor_oq_sh_sum;
  95. //! @}
  96. void fsensor_stop_and_save_print(void)
  97. {
  98. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  99. stop_and_save_print_to_ram(0, 0); //XYZE - no change
  100. }
  101. void fsensor_restore_print_and_continue(void)
  102. {
  103. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  104. fsensor_watch_runout = true;
  105. fsensor_err_cnt = 0;
  106. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  107. }
  108. void fsensor_init(void)
  109. {
  110. uint8_t pat9125 = pat9125_init();
  111. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  112. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  113. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  114. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  115. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  116. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * cs.axis_steps_per_unit[E_AXIS]);
  117. if (!pat9125)
  118. {
  119. fsensor = 0; //disable sensor
  120. fsensor_not_responding = true;
  121. }
  122. else
  123. fsensor_not_responding = false;
  124. if (fsensor)
  125. fsensor_enable();
  126. else
  127. fsensor_disable();
  128. printf_P(PSTR("FSensor %S\n"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED\n")));
  129. }
  130. bool fsensor_enable(void)
  131. {
  132. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  133. uint8_t pat9125 = pat9125_init();
  134. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  135. if (pat9125)
  136. fsensor_not_responding = false;
  137. else
  138. fsensor_not_responding = true;
  139. fsensor_enabled = pat9125 ? true : false;
  140. fsensor_watch_runout = true;
  141. fsensor_oq_meassure = false;
  142. fsensor_err_cnt = 0;
  143. fsensor_dy_old = 0;
  144. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  145. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  146. }
  147. else //filament sensor is FINDA, always enable
  148. {
  149. fsensor_enabled = true;
  150. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  151. FSensorStateMenu = 1;
  152. }
  153. return fsensor_enabled;
  154. }
  155. void fsensor_disable(void)
  156. {
  157. fsensor_enabled = false;
  158. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  159. FSensorStateMenu = 0;
  160. }
  161. void fsensor_autoload_set(bool State)
  162. {
  163. fsensor_autoload_enabled = State;
  164. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  165. }
  166. void pciSetup(byte pin)
  167. {
  168. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  169. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  170. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  171. }
  172. void fsensor_autoload_check_start(void)
  173. {
  174. // puts_P(_N("fsensor_autoload_check_start\n"));
  175. if (!fsensor_enabled) return;
  176. if (!fsensor_autoload_enabled) return;
  177. if (fsensor_watch_autoload) return;
  178. if (!pat9125_update_y()) //update sensor
  179. {
  180. fsensor_disable();
  181. fsensor_not_responding = true;
  182. fsensor_watch_autoload = false;
  183. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  184. return;
  185. }
  186. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  187. fsensor_autoload_y = pat9125_y; //save current y value
  188. fsensor_autoload_c = 0; //reset number of changes counter
  189. fsensor_autoload_sum = 0;
  190. fsensor_autoload_last_millis = millis();
  191. fsensor_watch_runout = false;
  192. fsensor_watch_autoload = true;
  193. fsensor_err_cnt = 0;
  194. }
  195. void fsensor_autoload_check_stop(void)
  196. {
  197. // puts_P(_N("fsensor_autoload_check_stop\n"));
  198. if (!fsensor_enabled) return;
  199. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  200. if (!fsensor_autoload_enabled) return;
  201. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  202. if (!fsensor_watch_autoload) return;
  203. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  204. fsensor_autoload_sum = 0;
  205. fsensor_watch_autoload = false;
  206. fsensor_watch_runout = true;
  207. fsensor_err_cnt = 0;
  208. }
  209. bool fsensor_check_autoload(void)
  210. {
  211. if (!fsensor_enabled) return false;
  212. if (!fsensor_autoload_enabled) return false;
  213. if (!fsensor_watch_autoload)
  214. {
  215. fsensor_autoload_check_start();
  216. return false;
  217. }
  218. #if 0
  219. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  220. #endif
  221. if ((millis() - fsensor_autoload_last_millis) < 25) return false;
  222. fsensor_autoload_last_millis = millis();
  223. if (!pat9125_update_y()) //update sensor
  224. {
  225. fsensor_disable();
  226. fsensor_not_responding = true;
  227. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  228. return false;
  229. }
  230. int16_t dy = pat9125_y - fsensor_autoload_y;
  231. if (dy) //? dy value is nonzero
  232. {
  233. if (dy > 0) //? delta-y value is positive (inserting)
  234. {
  235. fsensor_autoload_sum += dy;
  236. fsensor_autoload_c += 3; //increment change counter by 3
  237. }
  238. else if (fsensor_autoload_c > 1)
  239. fsensor_autoload_c -= 2; //decrement change counter by 2
  240. fsensor_autoload_y = pat9125_y; //save current value
  241. }
  242. else if (fsensor_autoload_c > 0)
  243. fsensor_autoload_c--;
  244. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  245. #if 0
  246. puts_P(_N("fsensor_check_autoload\n"));
  247. if (fsensor_autoload_c != fsensor_autoload_c_old)
  248. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  249. #endif
  250. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  251. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  252. {
  253. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  254. return true;
  255. }
  256. return false;
  257. }
  258. void fsensor_oq_meassure_set(bool State)
  259. {
  260. fsensor_oq_meassure_enabled = State;
  261. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  262. }
  263. void fsensor_oq_meassure_start(uint8_t skip)
  264. {
  265. if (!fsensor_enabled) return;
  266. if (!fsensor_oq_meassure_enabled) return;
  267. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  268. fsensor_oq_skipchunk = skip;
  269. fsensor_oq_samples = 0;
  270. fsensor_oq_st_sum = 0;
  271. fsensor_oq_yd_sum = 0;
  272. fsensor_oq_er_sum = 0;
  273. fsensor_oq_er_max = 0;
  274. fsensor_oq_yd_min = FSENSOR_OQ_MAX_YD;
  275. fsensor_oq_yd_max = 0;
  276. fsensor_oq_sh_sum = 0;
  277. pat9125_update();
  278. pat9125_y = 0;
  279. fsensor_watch_runout = false;
  280. fsensor_oq_meassure = true;
  281. }
  282. void fsensor_oq_meassure_stop(void)
  283. {
  284. if (!fsensor_enabled) return;
  285. if (!fsensor_oq_meassure_enabled) return;
  286. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  287. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  288. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  289. fsensor_oq_meassure = false;
  290. fsensor_watch_runout = true;
  291. fsensor_err_cnt = 0;
  292. }
  293. const char _OK[] PROGMEM = "OK";
  294. const char _NG[] PROGMEM = "NG!";
  295. bool fsensor_oq_result(void)
  296. {
  297. if (!fsensor_enabled) return true;
  298. if (!fsensor_oq_meassure_enabled) return true;
  299. printf_P(_N("fsensor_oq_result\n"));
  300. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  301. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  302. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  303. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  304. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  305. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  306. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  307. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  308. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  309. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  310. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  311. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  312. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  313. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  314. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  315. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  316. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  317. if (yd_qua >= 8) res_sh_avg = true;
  318. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  319. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  320. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  321. return res;
  322. }
  323. ISR(FSENSOR_INT_PIN_VECT)
  324. {
  325. if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
  326. fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
  327. static bool _lock = false;
  328. if (_lock) return;
  329. _lock = true;
  330. int st_cnt = fsensor_st_cnt;
  331. fsensor_st_cnt = 0;
  332. sei();
  333. uint8_t old_err_cnt = fsensor_err_cnt;
  334. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  335. if (!pat9125_res)
  336. {
  337. fsensor_disable();
  338. fsensor_not_responding = true;
  339. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  340. }
  341. if (st_cnt != 0)
  342. { //movement
  343. if (st_cnt > 0) //positive movement
  344. {
  345. if (pat9125_y < 0)
  346. {
  347. if (fsensor_err_cnt)
  348. fsensor_err_cnt += 2;
  349. else
  350. fsensor_err_cnt++;
  351. }
  352. else if (pat9125_y > 0)
  353. {
  354. if (fsensor_err_cnt)
  355. fsensor_err_cnt--;
  356. }
  357. else //(pat9125_y == 0)
  358. if (((fsensor_dy_old <= 0) || (fsensor_err_cnt)) && (st_cnt > (fsensor_chunk_len >> 1)))
  359. fsensor_err_cnt++;
  360. if (fsensor_oq_meassure)
  361. {
  362. if (fsensor_oq_skipchunk)
  363. {
  364. fsensor_oq_skipchunk--;
  365. fsensor_err_cnt = 0;
  366. }
  367. else
  368. {
  369. if (st_cnt == fsensor_chunk_len)
  370. {
  371. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  372. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  373. }
  374. fsensor_oq_samples++;
  375. fsensor_oq_st_sum += st_cnt;
  376. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  377. if (fsensor_err_cnt > old_err_cnt)
  378. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  379. if (fsensor_oq_er_max < fsensor_err_cnt)
  380. fsensor_oq_er_max = fsensor_err_cnt;
  381. fsensor_oq_sh_sum += pat9125_s;
  382. }
  383. }
  384. }
  385. else //negative movement
  386. {
  387. }
  388. }
  389. else
  390. { //no movement
  391. }
  392. #ifdef DEBUG_FSENSOR_LOG
  393. if (fsensor_log)
  394. {
  395. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  396. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  397. }
  398. #endif //DEBUG_FSENSOR_LOG
  399. fsensor_dy_old = pat9125_y;
  400. pat9125_y = 0;
  401. _lock = false;
  402. return;
  403. }
  404. void fsensor_st_block_begin(block_t* bl)
  405. {
  406. if (!fsensor_enabled) return;
  407. if (((fsensor_st_cnt > 0) && (bl->direction_bits & 0x8)) ||
  408. ((fsensor_st_cnt < 0) && !(bl->direction_bits & 0x8)))
  409. {
  410. if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
  411. else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
  412. }
  413. }
  414. void fsensor_st_block_chunk(block_t* bl, int cnt)
  415. {
  416. if (!fsensor_enabled) return;
  417. fsensor_st_cnt += (bl->direction_bits & 0x8)?-cnt:cnt;
  418. if ((fsensor_st_cnt >= fsensor_chunk_len) || (fsensor_st_cnt <= -fsensor_chunk_len))
  419. {
  420. if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
  421. else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
  422. }
  423. }
  424. //! @brief filament sensor update (perform M600 on filament runout)
  425. //!
  426. //! Works only if filament sensor is enabled.
  427. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  428. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  429. void fsensor_update(void)
  430. {
  431. if (fsensor_enabled && fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  432. {
  433. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  434. fsensor_autoload_enabled = false;
  435. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  436. fsensor_oq_meassure_enabled = true;
  437. fsensor_stop_and_save_print();
  438. fsensor_err_cnt = 0;
  439. fsensor_oq_meassure_start(0);
  440. enquecommand_front_P((PSTR("G1 E-3 F200")));
  441. process_commands();
  442. KEEPALIVE_STATE(IN_HANDLER);
  443. cmdqueue_pop_front();
  444. st_synchronize();
  445. enquecommand_front_P((PSTR("G1 E3 F200")));
  446. process_commands();
  447. KEEPALIVE_STATE(IN_HANDLER);
  448. cmdqueue_pop_front();
  449. st_synchronize();
  450. uint8_t err_cnt = fsensor_err_cnt;
  451. fsensor_oq_meassure_stop();
  452. bool err = false;
  453. err |= (err_cnt > 1);
  454. err |= (fsensor_oq_er_sum > 2);
  455. err |= (fsensor_oq_yd_sum < (4 * FSENSOR_OQ_MIN_YD));
  456. if (!err)
  457. {
  458. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  459. fsensor_restore_print_and_continue();
  460. }
  461. else
  462. {
  463. printf_P(PSTR("fsensor_update - M600\n"));
  464. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  465. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  466. enquecommand_front_P(PSTR("FSENSOR_RECOVER"));
  467. enquecommand_front_P((PSTR("M600")));
  468. fsensor_watch_runout = false;
  469. }
  470. fsensor_autoload_enabled = autoload_enabled_tmp;
  471. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  472. }
  473. }
  474. void fsensor_setup_interrupt(void)
  475. {
  476. pinMode(FSENSOR_INT_PIN, OUTPUT);
  477. digitalWrite(FSENSOR_INT_PIN, LOW);
  478. fsensor_int_pin_old = 0;
  479. //pciSetup(FSENSOR_INT_PIN);
  480. // interrupt registers settings
  481. FSENSOR_INT_PIN_PCMSK_REG|=bit(FSENSOR_INT_PIN_PCMSK_BIT);
  482. PCIFR|=bit(FSENSOR_INT_PIN_PCICR_BIT);
  483. PCICR|=bit(FSENSOR_INT_PIN_PCICR_BIT);
  484. }