Marlin_main.cpp 305 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef PAT9125
  81. #include "pat9125.h"
  82. #include "fsensor.h"
  83. #endif //PAT9125
  84. #ifdef TMC2130
  85. #include "tmc2130.h"
  86. #endif //TMC2130
  87. #ifdef W25X20CL
  88. #include "w25x20cl.h"
  89. #include "optiboot_w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M73 - Show percent done and print time remaining
  162. // M80 - Turn on Power Supply
  163. // M81 - Turn off Power Supply
  164. // M82 - Set E codes absolute (default)
  165. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  166. // M84 - Disable steppers until next move,
  167. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  168. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  169. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  170. // M92 - Set axis_steps_per_unit - same syntax as G92
  171. // M104 - Set extruder target temp
  172. // M105 - Read current temp
  173. // M106 - Fan on
  174. // M107 - Fan off
  175. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  176. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  177. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  178. // M112 - Emergency stop
  179. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  180. // M114 - Output current position to serial port
  181. // M115 - Capabilities string
  182. // M117 - display message
  183. // M119 - Output Endstop status to serial port
  184. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  185. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  186. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  188. // M140 - Set bed target temp
  189. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  190. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  191. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  192. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  193. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  194. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  195. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  196. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  197. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  198. // M206 - set additional homing offset
  199. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  200. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  201. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  202. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  203. // M220 S<factor in percent>- set speed factor override percentage
  204. // M221 S<factor in percent>- set extrude factor override percentage
  205. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  206. // M240 - Trigger a camera to take a photograph
  207. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  208. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  209. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  210. // M301 - Set PID parameters P I and D
  211. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  212. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  213. // M304 - Set bed PID parameters P I and D
  214. // M400 - Finish all moves
  215. // M401 - Lower z-probe if present
  216. // M402 - Raise z-probe if present
  217. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  218. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  219. // M406 - Turn off Filament Sensor extrusion control
  220. // M407 - Displays measured filament diameter
  221. // M500 - stores parameters in EEPROM
  222. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  223. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  224. // M503 - print the current settings (from memory not from EEPROM)
  225. // M509 - force language selection on next restart
  226. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  227. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  228. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. // M860 - Wait for PINDA thermistor to reach target temperature.
  230. // M861 - Set / Read PINDA temperature compensation offsets
  231. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  232. // M907 - Set digital trimpot motor current using axis codes.
  233. // M908 - Control digital trimpot directly.
  234. // M350 - Set microstepping mode.
  235. // M351 - Toggle MS1 MS2 pins directly.
  236. // M928 - Start SD logging (M928 filename.g) - ended by M29
  237. // M999 - Restart after being stopped by error
  238. //Stepper Movement Variables
  239. //===========================================================================
  240. //=============================imported variables============================
  241. //===========================================================================
  242. //===========================================================================
  243. //=============================public variables=============================
  244. //===========================================================================
  245. #ifdef SDSUPPORT
  246. CardReader card;
  247. #endif
  248. unsigned long PingTime = millis();
  249. unsigned long NcTime;
  250. union Data
  251. {
  252. byte b[2];
  253. int value;
  254. };
  255. float homing_feedrate[] = HOMING_FEEDRATE;
  256. // Currently only the extruder axis may be switched to a relative mode.
  257. // Other axes are always absolute or relative based on the common relative_mode flag.
  258. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  259. int feedmultiply=100; //100->1 200->2
  260. int saved_feedmultiply;
  261. int extrudemultiply=100; //100->1 200->2
  262. int extruder_multiply[EXTRUDERS] = {100
  263. #if EXTRUDERS > 1
  264. , 100
  265. #if EXTRUDERS > 2
  266. , 100
  267. #endif
  268. #endif
  269. };
  270. int bowden_length[4] = {385, 385, 385, 385};
  271. bool is_usb_printing = false;
  272. bool homing_flag = false;
  273. bool temp_cal_active = false;
  274. unsigned long kicktime = millis()+100000;
  275. unsigned int usb_printing_counter;
  276. int lcd_change_fil_state = 0;
  277. int feedmultiplyBckp = 100;
  278. float HotendTempBckp = 0;
  279. int fanSpeedBckp = 0;
  280. float pause_lastpos[4];
  281. unsigned long pause_time = 0;
  282. unsigned long start_pause_print = millis();
  283. unsigned long t_fan_rising_edge = millis();
  284. static LongTimer safetyTimer;
  285. static LongTimer crashDetTimer;
  286. //unsigned long load_filament_time;
  287. bool mesh_bed_leveling_flag = false;
  288. bool mesh_bed_run_from_menu = false;
  289. int8_t FarmMode = 0;
  290. bool prusa_sd_card_upload = false;
  291. unsigned int status_number = 0;
  292. unsigned long total_filament_used;
  293. unsigned int heating_status;
  294. unsigned int heating_status_counter;
  295. bool custom_message;
  296. bool loading_flag = false;
  297. unsigned int custom_message_type;
  298. unsigned int custom_message_state;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. //shortcuts for more readable code
  324. #define _x current_position[X_AXIS]
  325. #define _y current_position[Y_AXIS]
  326. #define _z current_position[Z_AXIS]
  327. #define _e current_position[E_AXIS]
  328. float add_homing[3]={0,0,0};
  329. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  330. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  331. bool axis_known_position[3] = {false, false, false};
  332. float zprobe_zoffset;
  333. // Extruder offset
  334. #if EXTRUDERS > 1
  335. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  336. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  337. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  338. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  339. #endif
  340. };
  341. #endif
  342. uint8_t active_extruder = 0;
  343. int fanSpeed=0;
  344. #ifdef FWRETRACT
  345. bool autoretract_enabled=false;
  346. bool retracted[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. bool retracted_swap[EXTRUDERS]={false
  355. #if EXTRUDERS > 1
  356. , false
  357. #if EXTRUDERS > 2
  358. , false
  359. #endif
  360. #endif
  361. };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif
  370. #ifdef ULTIPANEL
  371. #ifdef PS_DEFAULT_OFF
  372. bool powersupply = false;
  373. #else
  374. bool powersupply = true;
  375. #endif
  376. #endif
  377. bool cancel_heatup = false ;
  378. #ifdef HOST_KEEPALIVE_FEATURE
  379. int busy_state = NOT_BUSY;
  380. static long prev_busy_signal_ms = -1;
  381. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  382. #else
  383. #define host_keepalive();
  384. #define KEEPALIVE_STATE(n);
  385. #endif
  386. const char errormagic[] PROGMEM = "Error:";
  387. const char echomagic[] PROGMEM = "echo:";
  388. bool no_response = false;
  389. uint8_t important_status;
  390. uint8_t saved_filament_type;
  391. // save/restore printing
  392. bool saved_printing = false;
  393. // storing estimated time to end of print counted by slicer
  394. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  397. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  398. //===========================================================================
  399. //=============================Private Variables=============================
  400. //===========================================================================
  401. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  402. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  403. static float delta[3] = {0.0, 0.0, 0.0};
  404. // For tracing an arc
  405. static float offset[3] = {0.0, 0.0, 0.0};
  406. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  407. // Determines Absolute or Relative Coordinates.
  408. // Also there is bool axis_relative_modes[] per axis flag.
  409. static bool relative_mode = false;
  410. #ifndef _DISABLE_M42_M226
  411. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  412. #endif //_DISABLE_M42_M226
  413. //static float tt = 0;
  414. //static float bt = 0;
  415. //Inactivity shutdown variables
  416. static unsigned long previous_millis_cmd = 0;
  417. unsigned long max_inactive_time = 0;
  418. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  419. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  420. unsigned long starttime=0;
  421. unsigned long stoptime=0;
  422. unsigned long _usb_timer = 0;
  423. static uint8_t tmp_extruder;
  424. bool extruder_under_pressure = true;
  425. bool Stopped=false;
  426. #if NUM_SERVOS > 0
  427. Servo servos[NUM_SERVOS];
  428. #endif
  429. bool CooldownNoWait = true;
  430. bool target_direction;
  431. //Insert variables if CHDK is defined
  432. #ifdef CHDK
  433. unsigned long chdkHigh = 0;
  434. boolean chdkActive = false;
  435. #endif
  436. // save/restore printing
  437. static uint32_t saved_sdpos = 0;
  438. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  439. static float saved_pos[4] = { 0, 0, 0, 0 };
  440. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  441. static float saved_feedrate2 = 0;
  442. static uint8_t saved_active_extruder = 0;
  443. static bool saved_extruder_under_pressure = false;
  444. static bool saved_extruder_relative_mode = false;
  445. //===========================================================================
  446. //=============================Routines======================================
  447. //===========================================================================
  448. void get_arc_coordinates();
  449. bool setTargetedHotend(int code);
  450. void serial_echopair_P(const char *s_P, float v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. void serial_echopair_P(const char *s_P, double v)
  453. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  454. void serial_echopair_P(const char *s_P, unsigned long v)
  455. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  456. #ifdef SDSUPPORT
  457. #include "SdFatUtil.h"
  458. int freeMemory() { return SdFatUtil::FreeRam(); }
  459. #else
  460. extern "C" {
  461. extern unsigned int __bss_end;
  462. extern unsigned int __heap_start;
  463. extern void *__brkval;
  464. int freeMemory() {
  465. int free_memory;
  466. if ((int)__brkval == 0)
  467. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  468. else
  469. free_memory = ((int)&free_memory) - ((int)__brkval);
  470. return free_memory;
  471. }
  472. }
  473. #endif //!SDSUPPORT
  474. void setup_killpin()
  475. {
  476. #if defined(KILL_PIN) && KILL_PIN > -1
  477. SET_INPUT(KILL_PIN);
  478. WRITE(KILL_PIN,HIGH);
  479. #endif
  480. }
  481. // Set home pin
  482. void setup_homepin(void)
  483. {
  484. #if defined(HOME_PIN) && HOME_PIN > -1
  485. SET_INPUT(HOME_PIN);
  486. WRITE(HOME_PIN,HIGH);
  487. #endif
  488. }
  489. void setup_photpin()
  490. {
  491. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  492. SET_OUTPUT(PHOTOGRAPH_PIN);
  493. WRITE(PHOTOGRAPH_PIN, LOW);
  494. #endif
  495. }
  496. void setup_powerhold()
  497. {
  498. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  499. SET_OUTPUT(SUICIDE_PIN);
  500. WRITE(SUICIDE_PIN, HIGH);
  501. #endif
  502. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  503. SET_OUTPUT(PS_ON_PIN);
  504. #if defined(PS_DEFAULT_OFF)
  505. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  506. #else
  507. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  508. #endif
  509. #endif
  510. }
  511. void suicide()
  512. {
  513. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  514. SET_OUTPUT(SUICIDE_PIN);
  515. WRITE(SUICIDE_PIN, LOW);
  516. #endif
  517. }
  518. void servo_init()
  519. {
  520. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  521. servos[0].attach(SERVO0_PIN);
  522. #endif
  523. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  524. servos[1].attach(SERVO1_PIN);
  525. #endif
  526. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  527. servos[2].attach(SERVO2_PIN);
  528. #endif
  529. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  530. servos[3].attach(SERVO3_PIN);
  531. #endif
  532. #if (NUM_SERVOS >= 5)
  533. #error "TODO: enter initalisation code for more servos"
  534. #endif
  535. }
  536. void stop_and_save_print_to_ram(float z_move, float e_move);
  537. void restore_print_from_ram_and_continue(float e_move);
  538. bool fans_check_enabled = true;
  539. bool filament_autoload_enabled = true;
  540. #ifdef TMC2130
  541. extern int8_t CrashDetectMenu;
  542. void crashdet_enable()
  543. {
  544. tmc2130_sg_stop_on_crash = true;
  545. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  546. CrashDetectMenu = 1;
  547. }
  548. void crashdet_disable()
  549. {
  550. tmc2130_sg_stop_on_crash = false;
  551. tmc2130_sg_crash = 0;
  552. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  553. CrashDetectMenu = 0;
  554. }
  555. void crashdet_stop_and_save_print()
  556. {
  557. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  558. }
  559. void crashdet_restore_print_and_continue()
  560. {
  561. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  562. // babystep_apply();
  563. }
  564. void crashdet_stop_and_save_print2()
  565. {
  566. cli();
  567. planner_abort_hard(); //abort printing
  568. cmdqueue_reset(); //empty cmdqueue
  569. card.sdprinting = false;
  570. card.closefile();
  571. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  572. st_reset_timer();
  573. sei();
  574. }
  575. void crashdet_detected(uint8_t mask)
  576. {
  577. // printf("CRASH_DETECTED");
  578. /* while (!is_buffer_empty())
  579. {
  580. process_commands();
  581. cmdqueue_pop_front();
  582. }*/
  583. st_synchronize();
  584. static uint8_t crashDet_counter = 0;
  585. bool automatic_recovery_after_crash = true;
  586. if (crashDet_counter++ == 0) {
  587. crashDetTimer.start();
  588. }
  589. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  590. crashDetTimer.stop();
  591. crashDet_counter = 0;
  592. }
  593. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  594. automatic_recovery_after_crash = false;
  595. crashDetTimer.stop();
  596. crashDet_counter = 0;
  597. }
  598. else {
  599. crashDetTimer.start();
  600. }
  601. lcd_update_enable(true);
  602. lcd_implementation_clear();
  603. lcd_update(2);
  604. if (mask & X_AXIS_MASK)
  605. {
  606. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  607. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  608. }
  609. if (mask & Y_AXIS_MASK)
  610. {
  611. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  612. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  613. }
  614. lcd_update_enable(true);
  615. lcd_update(2);
  616. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  617. gcode_G28(true, true, false, false); //home X and Y
  618. st_synchronize();
  619. if (automatic_recovery_after_crash) {
  620. enquecommand_P(PSTR("CRASH_RECOVER"));
  621. }else{
  622. HotendTempBckp = degTargetHotend(active_extruder);
  623. setTargetHotend(0, active_extruder);
  624. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  625. lcd_update_enable(true);
  626. if (yesno)
  627. {
  628. char cmd1[10];
  629. strcpy(cmd1, "M109 S");
  630. strcat(cmd1, ftostr3(HotendTempBckp));
  631. enquecommand(cmd1);
  632. enquecommand_P(PSTR("CRASH_RECOVER"));
  633. }
  634. else
  635. {
  636. enquecommand_P(PSTR("CRASH_CANCEL"));
  637. }
  638. }
  639. }
  640. void crashdet_recover()
  641. {
  642. crashdet_restore_print_and_continue();
  643. tmc2130_sg_stop_on_crash = true;
  644. }
  645. void crashdet_cancel()
  646. {
  647. tmc2130_sg_stop_on_crash = true;
  648. if (saved_printing_type == PRINTING_TYPE_SD) {
  649. lcd_print_stop();
  650. }else if(saved_printing_type == PRINTING_TYPE_USB){
  651. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  652. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  653. }
  654. }
  655. #endif //TMC2130
  656. void failstats_reset_print()
  657. {
  658. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  659. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  660. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  661. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  662. }
  663. #ifdef MESH_BED_LEVELING
  664. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  665. #endif
  666. // Factory reset function
  667. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  668. // Level input parameter sets depth of reset
  669. // Quiet parameter masks all waitings for user interact.
  670. int er_progress = 0;
  671. void factory_reset(char level, bool quiet)
  672. {
  673. lcd_implementation_clear();
  674. int cursor_pos = 0;
  675. switch (level) {
  676. // Level 0: Language reset
  677. case 0:
  678. WRITE(BEEPER, HIGH);
  679. _delay_ms(100);
  680. WRITE(BEEPER, LOW);
  681. lang_reset();
  682. break;
  683. //Level 1: Reset statistics
  684. case 1:
  685. WRITE(BEEPER, HIGH);
  686. _delay_ms(100);
  687. WRITE(BEEPER, LOW);
  688. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  689. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  690. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  691. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  692. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  693. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  694. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  696. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  697. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  698. lcd_menu_statistics();
  699. break;
  700. // Level 2: Prepare for shipping
  701. case 2:
  702. //lcd_printPGM(PSTR("Factory RESET"));
  703. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  704. // Force language selection at the next boot up.
  705. lang_reset();
  706. // Force the "Follow calibration flow" message at the next boot up.
  707. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  708. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  709. farm_no = 0;
  710. farm_mode = false;
  711. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  712. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  713. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  714. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  715. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  716. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  717. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  718. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  719. fsensor_enable();
  720. fautoload_set(true);
  721. WRITE(BEEPER, HIGH);
  722. _delay_ms(100);
  723. WRITE(BEEPER, LOW);
  724. //_delay_ms(2000);
  725. break;
  726. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  727. case 3:
  728. lcd_printPGM(PSTR("Factory RESET"));
  729. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  730. WRITE(BEEPER, HIGH);
  731. _delay_ms(100);
  732. WRITE(BEEPER, LOW);
  733. er_progress = 0;
  734. lcd_print_at_PGM(3, 3, PSTR(" "));
  735. lcd_implementation_print_at(3, 3, er_progress);
  736. // Erase EEPROM
  737. for (int i = 0; i < 4096; i++) {
  738. eeprom_write_byte((uint8_t*)i, 0xFF);
  739. if (i % 41 == 0) {
  740. er_progress++;
  741. lcd_print_at_PGM(3, 3, PSTR(" "));
  742. lcd_implementation_print_at(3, 3, er_progress);
  743. lcd_printPGM(PSTR("%"));
  744. }
  745. }
  746. break;
  747. case 4:
  748. bowden_menu();
  749. break;
  750. default:
  751. break;
  752. }
  753. }
  754. #include "LiquidCrystal_Prusa.h"
  755. extern LiquidCrystal_Prusa lcd;
  756. FILE _lcdout = {0};
  757. int lcd_putchar(char c, FILE *stream)
  758. {
  759. lcd.write(c);
  760. return 0;
  761. }
  762. FILE _uartout = {0};
  763. int uart_putchar(char c, FILE *stream)
  764. {
  765. MYSERIAL.write(c);
  766. return 0;
  767. }
  768. void lcd_splash()
  769. {
  770. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  771. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  772. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  773. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  774. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  775. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  776. }
  777. void factory_reset()
  778. {
  779. KEEPALIVE_STATE(PAUSED_FOR_USER);
  780. if (!READ(BTN_ENC))
  781. {
  782. _delay_ms(1000);
  783. if (!READ(BTN_ENC))
  784. {
  785. lcd_implementation_clear();
  786. lcd_printPGM(PSTR("Factory RESET"));
  787. SET_OUTPUT(BEEPER);
  788. WRITE(BEEPER, HIGH);
  789. while (!READ(BTN_ENC));
  790. WRITE(BEEPER, LOW);
  791. _delay_ms(2000);
  792. char level = reset_menu();
  793. factory_reset(level, false);
  794. switch (level) {
  795. case 0: _delay_ms(0); break;
  796. case 1: _delay_ms(0); break;
  797. case 2: _delay_ms(0); break;
  798. case 3: _delay_ms(0); break;
  799. }
  800. // _delay_ms(100);
  801. /*
  802. #ifdef MESH_BED_LEVELING
  803. _delay_ms(2000);
  804. if (!READ(BTN_ENC))
  805. {
  806. WRITE(BEEPER, HIGH);
  807. _delay_ms(100);
  808. WRITE(BEEPER, LOW);
  809. _delay_ms(200);
  810. WRITE(BEEPER, HIGH);
  811. _delay_ms(100);
  812. WRITE(BEEPER, LOW);
  813. int _z = 0;
  814. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  815. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  816. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  817. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  818. }
  819. else
  820. {
  821. WRITE(BEEPER, HIGH);
  822. _delay_ms(100);
  823. WRITE(BEEPER, LOW);
  824. }
  825. #endif // mesh */
  826. }
  827. }
  828. else
  829. {
  830. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  831. }
  832. KEEPALIVE_STATE(IN_HANDLER);
  833. }
  834. void show_fw_version_warnings() {
  835. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  836. switch (FW_DEV_VERSION) {
  837. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  838. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  839. case(FW_VERSION_DEVEL):
  840. case(FW_VERSION_DEBUG):
  841. lcd_update_enable(false);
  842. lcd_implementation_clear();
  843. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  844. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  845. #else
  846. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  847. #endif
  848. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  849. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  850. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  851. lcd_wait_for_click();
  852. break;
  853. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  854. }
  855. lcd_update_enable(true);
  856. }
  857. uint8_t check_printer_version()
  858. {
  859. uint8_t version_changed = 0;
  860. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  861. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  862. if (printer_type != PRINTER_TYPE) {
  863. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  864. else version_changed |= 0b10;
  865. }
  866. if (motherboard != MOTHERBOARD) {
  867. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  868. else version_changed |= 0b01;
  869. }
  870. return version_changed;
  871. }
  872. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  873. {
  874. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  875. }
  876. #if (LANG_MODE != 0) //secondary language support
  877. #ifdef W25X20CL
  878. #include "bootapp.h" //bootloader support
  879. // language update from external flash
  880. #define LANGBOOT_BLOCKSIZE 0x1000
  881. #define LANGBOOT_RAMBUFFER 0x0800
  882. void update_sec_lang_from_external_flash()
  883. {
  884. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  885. {
  886. uint8_t lang = boot_reserved >> 4;
  887. uint8_t state = boot_reserved & 0xf;
  888. lang_table_header_t header;
  889. uint32_t src_addr;
  890. if (lang_get_header(lang, &header, &src_addr))
  891. {
  892. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  893. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  894. delay(100);
  895. boot_reserved = (state + 1) | (lang << 4);
  896. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  897. {
  898. cli();
  899. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  900. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  901. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  902. if (state == 0)
  903. {
  904. //TODO - check header integrity
  905. }
  906. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  907. }
  908. else
  909. {
  910. //TODO - check sec lang data integrity
  911. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  912. }
  913. }
  914. }
  915. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  916. }
  917. #ifdef DEBUG_W25X20CL
  918. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  919. {
  920. lang_table_header_t header;
  921. uint8_t count = 0;
  922. uint32_t addr = 0x00000;
  923. while (1)
  924. {
  925. printf_P(_n("LANGTABLE%d:"), count);
  926. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  927. if (header.magic != LANG_MAGIC)
  928. {
  929. printf_P(_n("NG!\n"));
  930. break;
  931. }
  932. printf_P(_n("OK\n"));
  933. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  934. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  935. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  936. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  937. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  938. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  939. addr += header.size;
  940. codes[count] = header.code;
  941. count ++;
  942. }
  943. return count;
  944. }
  945. void list_sec_lang_from_external_flash()
  946. {
  947. uint16_t codes[8];
  948. uint8_t count = lang_xflash_enum_codes(codes);
  949. printf_P(_n("XFlash lang count = %hhd\n"), count);
  950. }
  951. #endif //DEBUG_W25X20CL
  952. #endif //W25X20CL
  953. #endif //(LANG_MODE != 0)
  954. // "Setup" function is called by the Arduino framework on startup.
  955. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  956. // are initialized by the main() routine provided by the Arduino framework.
  957. void setup()
  958. {
  959. #ifdef W25X20CL
  960. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  961. optiboot_w25x20cl_enter();
  962. #endif
  963. lcd_init();
  964. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  965. spi_init();
  966. lcd_splash();
  967. #if (LANG_MODE != 0) //secondary language support
  968. #ifdef W25X20CL
  969. if (w25x20cl_init())
  970. update_sec_lang_from_external_flash();
  971. else
  972. kill(_i("External SPI flash W25X20CL not responding."));
  973. #endif //W25X20CL
  974. #endif //(LANG_MODE != 0)
  975. setup_killpin();
  976. setup_powerhold();
  977. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  978. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  979. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  980. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  981. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  982. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  983. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  984. if (farm_mode)
  985. {
  986. no_response = true; //we need confirmation by recieving PRUSA thx
  987. important_status = 8;
  988. prusa_statistics(8);
  989. selectedSerialPort = 1;
  990. #ifdef TMC2130
  991. //increased extruder current (PFW363)
  992. tmc2130_current_h[E_AXIS] = 36;
  993. tmc2130_current_r[E_AXIS] = 36;
  994. #endif //TMC2130
  995. //disabled filament autoload (PFW360)
  996. filament_autoload_enabled = false;
  997. eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0);
  998. }
  999. MYSERIAL.begin(BAUDRATE);
  1000. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  1001. stdout = uartout;
  1002. SERIAL_PROTOCOLLNPGM("start");
  1003. SERIAL_ECHO_START;
  1004. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  1005. uart2_init();
  1006. #ifdef DEBUG_SEC_LANG
  1007. lang_table_header_t header;
  1008. uint32_t src_addr = 0x00000;
  1009. if (lang_get_header(1, &header, &src_addr))
  1010. {
  1011. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1012. #define LT_PRINT_TEST 2
  1013. // flash usage
  1014. // total p.test
  1015. //0 252718 t+c text code
  1016. //1 253142 424 170 254
  1017. //2 253040 322 164 158
  1018. //3 253248 530 135 395
  1019. #if (LT_PRINT_TEST==1) //not optimized printf
  1020. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1021. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1022. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1023. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1024. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1025. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1026. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1027. #elif (LT_PRINT_TEST==2) //optimized printf
  1028. printf_P(
  1029. _n(
  1030. " _src_addr = 0x%08lx\n"
  1031. " _lt_magic = 0x%08lx %S\n"
  1032. " _lt_size = 0x%04x (%d)\n"
  1033. " _lt_count = 0x%04x (%d)\n"
  1034. " _lt_chsum = 0x%04x\n"
  1035. " _lt_code = 0x%04x (%c%c)\n"
  1036. " _lt_resv1 = 0x%08lx\n"
  1037. ),
  1038. src_addr,
  1039. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1040. header.size, header.size,
  1041. header.count, header.count,
  1042. header.checksum,
  1043. header.code, header.code >> 8, header.code & 0xff,
  1044. header.signature
  1045. );
  1046. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1047. MYSERIAL.print(" _src_addr = 0x");
  1048. MYSERIAL.println(src_addr, 16);
  1049. MYSERIAL.print(" _lt_magic = 0x");
  1050. MYSERIAL.print(header.magic, 16);
  1051. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1052. MYSERIAL.print(" _lt_size = 0x");
  1053. MYSERIAL.print(header.size, 16);
  1054. MYSERIAL.print(" (");
  1055. MYSERIAL.print(header.size, 10);
  1056. MYSERIAL.println(")");
  1057. MYSERIAL.print(" _lt_count = 0x");
  1058. MYSERIAL.print(header.count, 16);
  1059. MYSERIAL.print(" (");
  1060. MYSERIAL.print(header.count, 10);
  1061. MYSERIAL.println(")");
  1062. MYSERIAL.print(" _lt_chsum = 0x");
  1063. MYSERIAL.println(header.checksum, 16);
  1064. MYSERIAL.print(" _lt_code = 0x");
  1065. MYSERIAL.print(header.code, 16);
  1066. MYSERIAL.print(" (");
  1067. MYSERIAL.print((char)(header.code >> 8), 0);
  1068. MYSERIAL.print((char)(header.code & 0xff), 0);
  1069. MYSERIAL.println(")");
  1070. MYSERIAL.print(" _lt_resv1 = 0x");
  1071. MYSERIAL.println(header.signature, 16);
  1072. #endif //(LT_PRINT_TEST==)
  1073. #undef LT_PRINT_TEST
  1074. #if 0
  1075. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1076. for (uint16_t i = 0; i < 1024; i++)
  1077. {
  1078. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1079. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1080. if ((i % 16) == 15) putchar('\n');
  1081. }
  1082. #endif
  1083. uint16_t sum = 0;
  1084. for (uint16_t i = 0; i < header.size; i++)
  1085. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1086. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1087. sum -= header.checksum; //subtract checksum
  1088. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1089. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1090. if (sum == header.checksum)
  1091. printf_P(_n("Checksum OK\n"), sum);
  1092. else
  1093. printf_P(_n("Checksum NG\n"), sum);
  1094. }
  1095. else
  1096. printf_P(_n("lang_get_header failed!\n"));
  1097. #if 0
  1098. for (uint16_t i = 0; i < 1024*10; i++)
  1099. {
  1100. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1101. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1102. if ((i % 16) == 15) putchar('\n');
  1103. }
  1104. #endif
  1105. #if 0
  1106. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1107. for (int i = 0; i < 4096; ++i) {
  1108. int b = eeprom_read_byte((unsigned char*)i);
  1109. if (b != 255) {
  1110. SERIAL_ECHO(i);
  1111. SERIAL_ECHO(":");
  1112. SERIAL_ECHO(b);
  1113. SERIAL_ECHOLN("");
  1114. }
  1115. }
  1116. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1117. #endif
  1118. #endif //DEBUG_SEC_LANG
  1119. // Check startup - does nothing if bootloader sets MCUSR to 0
  1120. byte mcu = MCUSR;
  1121. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1122. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1123. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1124. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1125. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1126. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1127. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1128. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1129. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1130. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1131. MCUSR = 0;
  1132. //SERIAL_ECHORPGM(MSG_MARLIN);
  1133. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1134. #ifdef STRING_VERSION_CONFIG_H
  1135. #ifdef STRING_CONFIG_H_AUTHOR
  1136. SERIAL_ECHO_START;
  1137. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1138. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1139. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1140. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1141. SERIAL_ECHOPGM("Compiled: ");
  1142. SERIAL_ECHOLNPGM(__DATE__);
  1143. #endif
  1144. #endif
  1145. SERIAL_ECHO_START;
  1146. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1147. SERIAL_ECHO(freeMemory());
  1148. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1149. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1150. //lcd_update_enable(false); // why do we need this?? - andre
  1151. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1152. bool previous_settings_retrieved = false;
  1153. uint8_t hw_changed = check_printer_version();
  1154. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1155. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1156. }
  1157. else { //printer version was changed so use default settings
  1158. Config_ResetDefault();
  1159. }
  1160. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1161. tp_init(); // Initialize temperature loop
  1162. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1163. plan_init(); // Initialize planner;
  1164. factory_reset();
  1165. #ifdef TMC2130
  1166. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1167. if (silentMode == 0xff) silentMode = 0;
  1168. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1169. tmc2130_mode = TMC2130_MODE_NORMAL;
  1170. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1171. if (crashdet && !farm_mode)
  1172. {
  1173. crashdet_enable();
  1174. puts_P(_N("CrashDetect ENABLED!"));
  1175. }
  1176. else
  1177. {
  1178. crashdet_disable();
  1179. puts_P(_N("CrashDetect DISABLED"));
  1180. }
  1181. #ifdef TMC2130_LINEARITY_CORRECTION
  1182. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1183. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1184. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1185. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1186. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1187. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1188. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1189. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1190. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1191. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1192. #endif //TMC2130_LINEARITY_CORRECTION
  1193. #ifdef TMC2130_VARIABLE_RESOLUTION
  1194. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1195. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1196. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1197. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1198. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1199. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1200. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1201. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1202. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1203. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1204. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1205. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1206. #else //TMC2130_VARIABLE_RESOLUTION
  1207. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1208. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1209. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1210. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1211. #endif //TMC2130_VARIABLE_RESOLUTION
  1212. #endif //TMC2130
  1213. st_init(); // Initialize stepper, this enables interrupts!
  1214. #ifdef TMC2130
  1215. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1216. tmc2130_init();
  1217. #endif //TMC2130
  1218. setup_photpin();
  1219. servo_init();
  1220. // Reset the machine correction matrix.
  1221. // It does not make sense to load the correction matrix until the machine is homed.
  1222. world2machine_reset();
  1223. #ifdef PAT9125
  1224. fsensor_init();
  1225. #endif //PAT9125
  1226. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1227. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1228. #endif
  1229. setup_homepin();
  1230. #ifdef TMC2130
  1231. if (1) {
  1232. // try to run to zero phase before powering the Z motor.
  1233. // Move in negative direction
  1234. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1235. // Round the current micro-micro steps to micro steps.
  1236. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1237. // Until the phase counter is reset to zero.
  1238. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1239. delay(2);
  1240. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1241. delay(2);
  1242. }
  1243. }
  1244. #endif //TMC2130
  1245. #if defined(Z_AXIS_ALWAYS_ON)
  1246. enable_z();
  1247. #endif
  1248. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1249. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1250. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1251. if (farm_no == 0xFFFF) farm_no = 0;
  1252. if (farm_mode)
  1253. {
  1254. prusa_statistics(8);
  1255. }
  1256. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1257. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1258. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1259. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1260. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1261. // where all the EEPROM entries are set to 0x0ff.
  1262. // Once a firmware boots up, it forces at least a language selection, which changes
  1263. // EEPROM_LANG to number lower than 0x0ff.
  1264. // 1) Set a high power mode.
  1265. #ifdef TMC2130
  1266. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1267. tmc2130_mode = TMC2130_MODE_NORMAL;
  1268. #endif //TMC2130
  1269. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1270. }
  1271. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1272. // but this times out if a blocking dialog is shown in setup().
  1273. card.initsd();
  1274. #ifdef DEBUG_SD_SPEED_TEST
  1275. if (card.cardOK)
  1276. {
  1277. uint8_t* buff = (uint8_t*)block_buffer;
  1278. uint32_t block = 0;
  1279. uint32_t sumr = 0;
  1280. uint32_t sumw = 0;
  1281. for (int i = 0; i < 1024; i++)
  1282. {
  1283. uint32_t u = micros();
  1284. bool res = card.card.readBlock(i, buff);
  1285. u = micros() - u;
  1286. if (res)
  1287. {
  1288. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1289. sumr += u;
  1290. u = micros();
  1291. res = card.card.writeBlock(i, buff);
  1292. u = micros() - u;
  1293. if (res)
  1294. {
  1295. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1296. sumw += u;
  1297. }
  1298. else
  1299. {
  1300. printf_P(PSTR("writeBlock %4d error\n"), i);
  1301. break;
  1302. }
  1303. }
  1304. else
  1305. {
  1306. printf_P(PSTR("readBlock %4d error\n"), i);
  1307. break;
  1308. }
  1309. }
  1310. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1311. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1312. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1313. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1314. }
  1315. else
  1316. printf_P(PSTR("Card NG!\n"));
  1317. #endif //DEBUG_SD_SPEED_TEST
  1318. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1319. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1320. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1321. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1322. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1323. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1324. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1325. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1326. #ifdef SNMM
  1327. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1328. int _z = BOWDEN_LENGTH;
  1329. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1330. }
  1331. #endif
  1332. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1333. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1334. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1335. #if (LANG_MODE != 0) //secondary language support
  1336. #ifdef DEBUG_W25X20CL
  1337. W25X20CL_SPI_ENTER();
  1338. uint8_t uid[8]; // 64bit unique id
  1339. w25x20cl_rd_uid(uid);
  1340. puts_P(_n("W25X20CL UID="));
  1341. for (uint8_t i = 0; i < 8; i ++)
  1342. printf_P(PSTR("%02hhx"), uid[i]);
  1343. putchar('\n');
  1344. list_sec_lang_from_external_flash();
  1345. #endif //DEBUG_W25X20CL
  1346. // lang_reset();
  1347. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1348. lcd_language();
  1349. #ifdef DEBUG_SEC_LANG
  1350. uint16_t sec_lang_code = lang_get_code(1);
  1351. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1352. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1353. // lang_print_sec_lang(uartout);
  1354. #endif //DEBUG_SEC_LANG
  1355. #endif //(LANG_MODE != 0)
  1356. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1357. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1358. temp_cal_active = false;
  1359. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1360. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1361. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1362. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1363. int16_t z_shift = 0;
  1364. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1365. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1366. temp_cal_active = false;
  1367. }
  1368. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1369. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1370. }
  1371. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1372. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1373. }
  1374. check_babystep(); //checking if Z babystep is in allowed range
  1375. #ifdef UVLO_SUPPORT
  1376. setup_uvlo_interrupt();
  1377. #endif //UVLO_SUPPORT
  1378. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1379. setup_fan_interrupt();
  1380. #endif //DEBUG_DISABLE_FANCHECK
  1381. #ifdef PAT9125
  1382. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1383. fsensor_setup_interrupt();
  1384. #endif //DEBUG_DISABLE_FSENSORCHECK
  1385. #endif //PAT9125
  1386. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1387. #ifndef DEBUG_DISABLE_STARTMSGS
  1388. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1389. show_fw_version_warnings();
  1390. switch (hw_changed) {
  1391. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1392. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1393. case(0b01):
  1394. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1395. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1396. break;
  1397. case(0b10):
  1398. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1399. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1400. break;
  1401. case(0b11):
  1402. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1403. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1404. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1405. break;
  1406. default: break; //no change, show no message
  1407. }
  1408. if (!previous_settings_retrieved) {
  1409. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1410. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1411. }
  1412. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1413. lcd_wizard(0);
  1414. }
  1415. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1416. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1417. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1418. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1419. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1420. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1421. // Show the message.
  1422. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1423. }
  1424. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1425. // Show the message.
  1426. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1427. lcd_update_enable(true);
  1428. }
  1429. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1430. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1431. lcd_update_enable(true);
  1432. }
  1433. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1434. // Show the message.
  1435. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1436. }
  1437. }
  1438. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1439. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1440. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1441. update_current_firmware_version_to_eeprom();
  1442. lcd_selftest();
  1443. }
  1444. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1445. KEEPALIVE_STATE(IN_PROCESS);
  1446. #endif //DEBUG_DISABLE_STARTMSGS
  1447. lcd_update_enable(true);
  1448. lcd_implementation_clear();
  1449. lcd_update(2);
  1450. // Store the currently running firmware into an eeprom,
  1451. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1452. update_current_firmware_version_to_eeprom();
  1453. #ifdef TMC2130
  1454. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1455. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1456. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1457. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1458. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1459. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1460. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1461. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1462. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1463. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1464. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1465. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1466. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1467. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1468. #endif //TMC2130
  1469. #ifdef UVLO_SUPPORT
  1470. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1471. /*
  1472. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1473. else {
  1474. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1475. lcd_update_enable(true);
  1476. lcd_update(2);
  1477. lcd_setstatuspgm(_T(WELCOME_MSG));
  1478. }
  1479. */
  1480. manage_heater(); // Update temperatures
  1481. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1482. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1483. #endif
  1484. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1485. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1486. puts_P(_N("Automatic recovery!"));
  1487. #endif
  1488. recover_print(1);
  1489. }
  1490. else{
  1491. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1492. puts_P(_N("Normal recovery!"));
  1493. #endif
  1494. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1495. else {
  1496. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1497. lcd_update_enable(true);
  1498. lcd_update(2);
  1499. lcd_setstatuspgm(_T(WELCOME_MSG));
  1500. }
  1501. }
  1502. }
  1503. #endif //UVLO_SUPPORT
  1504. KEEPALIVE_STATE(NOT_BUSY);
  1505. #ifdef WATCHDOG
  1506. wdt_enable(WDTO_4S);
  1507. #endif //WATCHDOG
  1508. }
  1509. #ifdef PAT9125
  1510. void fsensor_init() {
  1511. int pat9125 = pat9125_init();
  1512. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1513. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1514. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1515. if (!pat9125)
  1516. {
  1517. fsensor = 0; //disable sensor
  1518. fsensor_not_responding = true;
  1519. }
  1520. else {
  1521. fsensor_not_responding = false;
  1522. }
  1523. puts_P(PSTR("FSensor "));
  1524. if (fsensor)
  1525. {
  1526. puts_P(PSTR("ENABLED\n"));
  1527. fsensor_enable();
  1528. }
  1529. else
  1530. {
  1531. puts_P(PSTR("DISABLED\n"));
  1532. fsensor_disable();
  1533. }
  1534. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1535. filament_autoload_enabled = false;
  1536. fsensor_disable();
  1537. #endif //DEBUG_DISABLE_FSENSORCHECK
  1538. }
  1539. #endif //PAT9125
  1540. void trace();
  1541. #define CHUNK_SIZE 64 // bytes
  1542. #define SAFETY_MARGIN 1
  1543. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1544. int chunkHead = 0;
  1545. int serial_read_stream() {
  1546. setTargetHotend(0, 0);
  1547. setTargetBed(0);
  1548. lcd_implementation_clear();
  1549. lcd_printPGM(PSTR(" Upload in progress"));
  1550. // first wait for how many bytes we will receive
  1551. uint32_t bytesToReceive;
  1552. // receive the four bytes
  1553. char bytesToReceiveBuffer[4];
  1554. for (int i=0; i<4; i++) {
  1555. int data;
  1556. while ((data = MYSERIAL.read()) == -1) {};
  1557. bytesToReceiveBuffer[i] = data;
  1558. }
  1559. // make it a uint32
  1560. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1561. // we're ready, notify the sender
  1562. MYSERIAL.write('+');
  1563. // lock in the routine
  1564. uint32_t receivedBytes = 0;
  1565. while (prusa_sd_card_upload) {
  1566. int i;
  1567. for (i=0; i<CHUNK_SIZE; i++) {
  1568. int data;
  1569. // check if we're not done
  1570. if (receivedBytes == bytesToReceive) {
  1571. break;
  1572. }
  1573. // read the next byte
  1574. while ((data = MYSERIAL.read()) == -1) {};
  1575. receivedBytes++;
  1576. // save it to the chunk
  1577. chunk[i] = data;
  1578. }
  1579. // write the chunk to SD
  1580. card.write_command_no_newline(&chunk[0]);
  1581. // notify the sender we're ready for more data
  1582. MYSERIAL.write('+');
  1583. // for safety
  1584. manage_heater();
  1585. // check if we're done
  1586. if(receivedBytes == bytesToReceive) {
  1587. trace(); // beep
  1588. card.closefile();
  1589. prusa_sd_card_upload = false;
  1590. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1591. return 0;
  1592. }
  1593. }
  1594. }
  1595. #ifdef HOST_KEEPALIVE_FEATURE
  1596. /**
  1597. * Output a "busy" message at regular intervals
  1598. * while the machine is not accepting commands.
  1599. */
  1600. void host_keepalive() {
  1601. if (farm_mode) return;
  1602. long ms = millis();
  1603. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1604. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1605. switch (busy_state) {
  1606. case IN_HANDLER:
  1607. case IN_PROCESS:
  1608. SERIAL_ECHO_START;
  1609. SERIAL_ECHOLNPGM("busy: processing");
  1610. break;
  1611. case PAUSED_FOR_USER:
  1612. SERIAL_ECHO_START;
  1613. SERIAL_ECHOLNPGM("busy: paused for user");
  1614. break;
  1615. case PAUSED_FOR_INPUT:
  1616. SERIAL_ECHO_START;
  1617. SERIAL_ECHOLNPGM("busy: paused for input");
  1618. break;
  1619. default:
  1620. break;
  1621. }
  1622. }
  1623. prev_busy_signal_ms = ms;
  1624. }
  1625. #endif
  1626. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1627. // Before loop(), the setup() function is called by the main() routine.
  1628. void loop()
  1629. {
  1630. KEEPALIVE_STATE(NOT_BUSY);
  1631. bool stack_integrity = true;
  1632. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1633. {
  1634. is_usb_printing = true;
  1635. usb_printing_counter--;
  1636. _usb_timer = millis();
  1637. }
  1638. if (usb_printing_counter == 0)
  1639. {
  1640. is_usb_printing = false;
  1641. }
  1642. if (prusa_sd_card_upload)
  1643. {
  1644. //we read byte-by byte
  1645. serial_read_stream();
  1646. } else
  1647. {
  1648. get_command();
  1649. #ifdef SDSUPPORT
  1650. card.checkautostart(false);
  1651. #endif
  1652. if(buflen)
  1653. {
  1654. cmdbuffer_front_already_processed = false;
  1655. #ifdef SDSUPPORT
  1656. if(card.saving)
  1657. {
  1658. // Saving a G-code file onto an SD-card is in progress.
  1659. // Saving starts with M28, saving until M29 is seen.
  1660. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1661. card.write_command(CMDBUFFER_CURRENT_STRING);
  1662. if(card.logging)
  1663. process_commands();
  1664. else
  1665. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1666. } else {
  1667. card.closefile();
  1668. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1669. }
  1670. } else {
  1671. process_commands();
  1672. }
  1673. #else
  1674. process_commands();
  1675. #endif //SDSUPPORT
  1676. if (! cmdbuffer_front_already_processed && buflen)
  1677. {
  1678. // ptr points to the start of the block currently being processed.
  1679. // The first character in the block is the block type.
  1680. char *ptr = cmdbuffer + bufindr;
  1681. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1682. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1683. union {
  1684. struct {
  1685. char lo;
  1686. char hi;
  1687. } lohi;
  1688. uint16_t value;
  1689. } sdlen;
  1690. sdlen.value = 0;
  1691. {
  1692. // This block locks the interrupts globally for 3.25 us,
  1693. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1694. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1695. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1696. cli();
  1697. // Reset the command to something, which will be ignored by the power panic routine,
  1698. // so this buffer length will not be counted twice.
  1699. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1700. // Extract the current buffer length.
  1701. sdlen.lohi.lo = *ptr ++;
  1702. sdlen.lohi.hi = *ptr;
  1703. // and pass it to the planner queue.
  1704. planner_add_sd_length(sdlen.value);
  1705. sei();
  1706. }
  1707. }
  1708. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1709. cli();
  1710. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1711. // and one for each command to previous block in the planner queue.
  1712. planner_add_sd_length(1);
  1713. sei();
  1714. }
  1715. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1716. // this block's SD card length will not be counted twice as its command type has been replaced
  1717. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1718. cmdqueue_pop_front();
  1719. }
  1720. host_keepalive();
  1721. }
  1722. }
  1723. //check heater every n milliseconds
  1724. manage_heater();
  1725. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1726. checkHitEndstops();
  1727. lcd_update();
  1728. #ifdef PAT9125
  1729. fsensor_update();
  1730. #endif //PAT9125
  1731. #ifdef TMC2130
  1732. tmc2130_check_overtemp();
  1733. if (tmc2130_sg_crash)
  1734. {
  1735. uint8_t crash = tmc2130_sg_crash;
  1736. tmc2130_sg_crash = 0;
  1737. // crashdet_stop_and_save_print();
  1738. switch (crash)
  1739. {
  1740. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1741. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1742. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1743. }
  1744. }
  1745. #endif //TMC2130
  1746. }
  1747. #define DEFINE_PGM_READ_ANY(type, reader) \
  1748. static inline type pgm_read_any(const type *p) \
  1749. { return pgm_read_##reader##_near(p); }
  1750. DEFINE_PGM_READ_ANY(float, float);
  1751. DEFINE_PGM_READ_ANY(signed char, byte);
  1752. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1753. static const PROGMEM type array##_P[3] = \
  1754. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1755. static inline type array(int axis) \
  1756. { return pgm_read_any(&array##_P[axis]); } \
  1757. type array##_ext(int axis) \
  1758. { return pgm_read_any(&array##_P[axis]); }
  1759. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1760. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1761. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1762. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1763. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1764. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1765. static void axis_is_at_home(int axis) {
  1766. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1767. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1768. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1769. }
  1770. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1771. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1772. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1773. saved_feedrate = feedrate;
  1774. saved_feedmultiply = feedmultiply;
  1775. feedmultiply = 100;
  1776. previous_millis_cmd = millis();
  1777. enable_endstops(enable_endstops_now);
  1778. }
  1779. static void clean_up_after_endstop_move() {
  1780. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1781. enable_endstops(false);
  1782. #endif
  1783. feedrate = saved_feedrate;
  1784. feedmultiply = saved_feedmultiply;
  1785. previous_millis_cmd = millis();
  1786. }
  1787. #ifdef ENABLE_AUTO_BED_LEVELING
  1788. #ifdef AUTO_BED_LEVELING_GRID
  1789. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1790. {
  1791. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1792. planeNormal.debug("planeNormal");
  1793. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1794. //bedLevel.debug("bedLevel");
  1795. //plan_bed_level_matrix.debug("bed level before");
  1796. //vector_3 uncorrected_position = plan_get_position_mm();
  1797. //uncorrected_position.debug("position before");
  1798. vector_3 corrected_position = plan_get_position();
  1799. // corrected_position.debug("position after");
  1800. current_position[X_AXIS] = corrected_position.x;
  1801. current_position[Y_AXIS] = corrected_position.y;
  1802. current_position[Z_AXIS] = corrected_position.z;
  1803. // put the bed at 0 so we don't go below it.
  1804. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1805. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1806. }
  1807. #else // not AUTO_BED_LEVELING_GRID
  1808. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1809. plan_bed_level_matrix.set_to_identity();
  1810. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1811. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1812. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1813. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1814. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1815. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1816. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1817. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1818. vector_3 corrected_position = plan_get_position();
  1819. current_position[X_AXIS] = corrected_position.x;
  1820. current_position[Y_AXIS] = corrected_position.y;
  1821. current_position[Z_AXIS] = corrected_position.z;
  1822. // put the bed at 0 so we don't go below it.
  1823. current_position[Z_AXIS] = zprobe_zoffset;
  1824. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1825. }
  1826. #endif // AUTO_BED_LEVELING_GRID
  1827. static void run_z_probe() {
  1828. plan_bed_level_matrix.set_to_identity();
  1829. feedrate = homing_feedrate[Z_AXIS];
  1830. // move down until you find the bed
  1831. float zPosition = -10;
  1832. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1833. st_synchronize();
  1834. // we have to let the planner know where we are right now as it is not where we said to go.
  1835. zPosition = st_get_position_mm(Z_AXIS);
  1836. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1837. // move up the retract distance
  1838. zPosition += home_retract_mm(Z_AXIS);
  1839. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1840. st_synchronize();
  1841. // move back down slowly to find bed
  1842. feedrate = homing_feedrate[Z_AXIS]/4;
  1843. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1845. st_synchronize();
  1846. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1847. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1848. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1849. }
  1850. static void do_blocking_move_to(float x, float y, float z) {
  1851. float oldFeedRate = feedrate;
  1852. feedrate = homing_feedrate[Z_AXIS];
  1853. current_position[Z_AXIS] = z;
  1854. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1855. st_synchronize();
  1856. feedrate = XY_TRAVEL_SPEED;
  1857. current_position[X_AXIS] = x;
  1858. current_position[Y_AXIS] = y;
  1859. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1860. st_synchronize();
  1861. feedrate = oldFeedRate;
  1862. }
  1863. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1864. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1865. }
  1866. /// Probe bed height at position (x,y), returns the measured z value
  1867. static float probe_pt(float x, float y, float z_before) {
  1868. // move to right place
  1869. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1870. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1871. run_z_probe();
  1872. float measured_z = current_position[Z_AXIS];
  1873. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1874. SERIAL_PROTOCOLPGM(" x: ");
  1875. SERIAL_PROTOCOL(x);
  1876. SERIAL_PROTOCOLPGM(" y: ");
  1877. SERIAL_PROTOCOL(y);
  1878. SERIAL_PROTOCOLPGM(" z: ");
  1879. SERIAL_PROTOCOL(measured_z);
  1880. SERIAL_PROTOCOLPGM("\n");
  1881. return measured_z;
  1882. }
  1883. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1884. #ifdef LIN_ADVANCE
  1885. /**
  1886. * M900: Set and/or Get advance K factor and WH/D ratio
  1887. *
  1888. * K<factor> Set advance K factor
  1889. * R<ratio> Set ratio directly (overrides WH/D)
  1890. * W<width> H<height> D<diam> Set ratio from WH/D
  1891. */
  1892. inline void gcode_M900() {
  1893. st_synchronize();
  1894. const float newK = code_seen('K') ? code_value_float() : -1;
  1895. if (newK >= 0) extruder_advance_k = newK;
  1896. float newR = code_seen('R') ? code_value_float() : -1;
  1897. if (newR < 0) {
  1898. const float newD = code_seen('D') ? code_value_float() : -1,
  1899. newW = code_seen('W') ? code_value_float() : -1,
  1900. newH = code_seen('H') ? code_value_float() : -1;
  1901. if (newD >= 0 && newW >= 0 && newH >= 0)
  1902. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1903. }
  1904. if (newR >= 0) advance_ed_ratio = newR;
  1905. SERIAL_ECHO_START;
  1906. SERIAL_ECHOPGM("Advance K=");
  1907. SERIAL_ECHOLN(extruder_advance_k);
  1908. SERIAL_ECHOPGM(" E/D=");
  1909. const float ratio = advance_ed_ratio;
  1910. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1911. }
  1912. #endif // LIN_ADVANCE
  1913. bool check_commands() {
  1914. bool end_command_found = false;
  1915. while (buflen)
  1916. {
  1917. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1918. if (!cmdbuffer_front_already_processed)
  1919. cmdqueue_pop_front();
  1920. cmdbuffer_front_already_processed = false;
  1921. }
  1922. return end_command_found;
  1923. }
  1924. #ifdef TMC2130
  1925. bool calibrate_z_auto()
  1926. {
  1927. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1928. lcd_implementation_clear();
  1929. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1930. bool endstops_enabled = enable_endstops(true);
  1931. int axis_up_dir = -home_dir(Z_AXIS);
  1932. tmc2130_home_enter(Z_AXIS_MASK);
  1933. current_position[Z_AXIS] = 0;
  1934. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1935. set_destination_to_current();
  1936. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1937. feedrate = homing_feedrate[Z_AXIS];
  1938. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1939. st_synchronize();
  1940. // current_position[axis] = 0;
  1941. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1942. tmc2130_home_exit();
  1943. enable_endstops(false);
  1944. current_position[Z_AXIS] = 0;
  1945. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1946. set_destination_to_current();
  1947. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1948. feedrate = homing_feedrate[Z_AXIS] / 2;
  1949. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1950. st_synchronize();
  1951. enable_endstops(endstops_enabled);
  1952. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1953. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1954. return true;
  1955. }
  1956. #endif //TMC2130
  1957. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1958. {
  1959. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1960. #define HOMEAXIS_DO(LETTER) \
  1961. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1962. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1963. {
  1964. int axis_home_dir = home_dir(axis);
  1965. feedrate = homing_feedrate[axis];
  1966. #ifdef TMC2130
  1967. tmc2130_home_enter(X_AXIS_MASK << axis);
  1968. #endif //TMC2130
  1969. // Move right a bit, so that the print head does not touch the left end position,
  1970. // and the following left movement has a chance to achieve the required velocity
  1971. // for the stall guard to work.
  1972. current_position[axis] = 0;
  1973. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1974. set_destination_to_current();
  1975. // destination[axis] = 11.f;
  1976. destination[axis] = 3.f;
  1977. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1978. st_synchronize();
  1979. // Move left away from the possible collision with the collision detection disabled.
  1980. endstops_hit_on_purpose();
  1981. enable_endstops(false);
  1982. current_position[axis] = 0;
  1983. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1984. destination[axis] = - 1.;
  1985. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1986. st_synchronize();
  1987. // Now continue to move up to the left end stop with the collision detection enabled.
  1988. enable_endstops(true);
  1989. destination[axis] = - 1.1 * max_length(axis);
  1990. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1991. st_synchronize();
  1992. for (uint8_t i = 0; i < cnt; i++)
  1993. {
  1994. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1995. endstops_hit_on_purpose();
  1996. enable_endstops(false);
  1997. current_position[axis] = 0;
  1998. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1999. destination[axis] = 10.f;
  2000. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2001. st_synchronize();
  2002. endstops_hit_on_purpose();
  2003. // Now move left up to the collision, this time with a repeatable velocity.
  2004. enable_endstops(true);
  2005. destination[axis] = - 11.f;
  2006. #ifdef TMC2130
  2007. feedrate = homing_feedrate[axis];
  2008. #else //TMC2130
  2009. feedrate = homing_feedrate[axis] / 2;
  2010. #endif //TMC2130
  2011. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2012. st_synchronize();
  2013. #ifdef TMC2130
  2014. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  2015. if (pstep) pstep[i] = mscnt >> 4;
  2016. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  2017. #endif //TMC2130
  2018. }
  2019. endstops_hit_on_purpose();
  2020. enable_endstops(false);
  2021. #ifdef TMC2130
  2022. uint8_t orig = tmc2130_home_origin[axis];
  2023. uint8_t back = tmc2130_home_bsteps[axis];
  2024. if (tmc2130_home_enabled && (orig <= 63))
  2025. {
  2026. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2027. if (back > 0)
  2028. tmc2130_do_steps(axis, back, 1, 1000);
  2029. }
  2030. else
  2031. tmc2130_do_steps(axis, 8, 2, 1000);
  2032. tmc2130_home_exit();
  2033. #endif //TMC2130
  2034. axis_is_at_home(axis);
  2035. axis_known_position[axis] = true;
  2036. // Move from minimum
  2037. #ifdef TMC2130
  2038. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2039. #else //TMC2130
  2040. float dist = 0.01f * 64;
  2041. #endif //TMC2130
  2042. current_position[axis] -= dist;
  2043. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2044. current_position[axis] += dist;
  2045. destination[axis] = current_position[axis];
  2046. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2047. st_synchronize();
  2048. feedrate = 0.0;
  2049. }
  2050. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2051. {
  2052. #ifdef TMC2130
  2053. FORCE_HIGH_POWER_START;
  2054. #endif
  2055. int axis_home_dir = home_dir(axis);
  2056. current_position[axis] = 0;
  2057. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2058. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2059. feedrate = homing_feedrate[axis];
  2060. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2061. st_synchronize();
  2062. #ifdef TMC2130
  2063. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2064. FORCE_HIGH_POWER_END;
  2065. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2066. return;
  2067. }
  2068. #endif //TMC2130
  2069. current_position[axis] = 0;
  2070. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2071. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2072. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2073. st_synchronize();
  2074. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2075. feedrate = homing_feedrate[axis]/2 ;
  2076. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2077. st_synchronize();
  2078. #ifdef TMC2130
  2079. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2080. FORCE_HIGH_POWER_END;
  2081. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2082. return;
  2083. }
  2084. #endif //TMC2130
  2085. axis_is_at_home(axis);
  2086. destination[axis] = current_position[axis];
  2087. feedrate = 0.0;
  2088. endstops_hit_on_purpose();
  2089. axis_known_position[axis] = true;
  2090. #ifdef TMC2130
  2091. FORCE_HIGH_POWER_END;
  2092. #endif
  2093. }
  2094. enable_endstops(endstops_enabled);
  2095. }
  2096. /**/
  2097. void home_xy()
  2098. {
  2099. set_destination_to_current();
  2100. homeaxis(X_AXIS);
  2101. homeaxis(Y_AXIS);
  2102. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2103. endstops_hit_on_purpose();
  2104. }
  2105. void refresh_cmd_timeout(void)
  2106. {
  2107. previous_millis_cmd = millis();
  2108. }
  2109. #ifdef FWRETRACT
  2110. void retract(bool retracting, bool swapretract = false) {
  2111. if(retracting && !retracted[active_extruder]) {
  2112. destination[X_AXIS]=current_position[X_AXIS];
  2113. destination[Y_AXIS]=current_position[Y_AXIS];
  2114. destination[Z_AXIS]=current_position[Z_AXIS];
  2115. destination[E_AXIS]=current_position[E_AXIS];
  2116. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2117. plan_set_e_position(current_position[E_AXIS]);
  2118. float oldFeedrate = feedrate;
  2119. feedrate=retract_feedrate*60;
  2120. retracted[active_extruder]=true;
  2121. prepare_move();
  2122. current_position[Z_AXIS]-=retract_zlift;
  2123. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2124. prepare_move();
  2125. feedrate = oldFeedrate;
  2126. } else if(!retracting && retracted[active_extruder]) {
  2127. destination[X_AXIS]=current_position[X_AXIS];
  2128. destination[Y_AXIS]=current_position[Y_AXIS];
  2129. destination[Z_AXIS]=current_position[Z_AXIS];
  2130. destination[E_AXIS]=current_position[E_AXIS];
  2131. current_position[Z_AXIS]+=retract_zlift;
  2132. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2133. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2134. plan_set_e_position(current_position[E_AXIS]);
  2135. float oldFeedrate = feedrate;
  2136. feedrate=retract_recover_feedrate*60;
  2137. retracted[active_extruder]=false;
  2138. prepare_move();
  2139. feedrate = oldFeedrate;
  2140. }
  2141. } //retract
  2142. #endif //FWRETRACT
  2143. void trace() {
  2144. tone(BEEPER, 440);
  2145. delay(25);
  2146. noTone(BEEPER);
  2147. delay(20);
  2148. }
  2149. /*
  2150. void ramming() {
  2151. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2152. if (current_temperature[0] < 230) {
  2153. //PLA
  2154. max_feedrate[E_AXIS] = 50;
  2155. //current_position[E_AXIS] -= 8;
  2156. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2157. //current_position[E_AXIS] += 8;
  2158. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2159. current_position[E_AXIS] += 5.4;
  2160. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2161. current_position[E_AXIS] += 3.2;
  2162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2163. current_position[E_AXIS] += 3;
  2164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2165. st_synchronize();
  2166. max_feedrate[E_AXIS] = 80;
  2167. current_position[E_AXIS] -= 82;
  2168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2169. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2170. current_position[E_AXIS] -= 20;
  2171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2172. current_position[E_AXIS] += 5;
  2173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2174. current_position[E_AXIS] += 5;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2176. current_position[E_AXIS] -= 10;
  2177. st_synchronize();
  2178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2179. current_position[E_AXIS] += 10;
  2180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2181. current_position[E_AXIS] -= 10;
  2182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2183. current_position[E_AXIS] += 10;
  2184. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2185. current_position[E_AXIS] -= 10;
  2186. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2187. st_synchronize();
  2188. }
  2189. else {
  2190. //ABS
  2191. max_feedrate[E_AXIS] = 50;
  2192. //current_position[E_AXIS] -= 8;
  2193. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2194. //current_position[E_AXIS] += 8;
  2195. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2196. current_position[E_AXIS] += 3.1;
  2197. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2198. current_position[E_AXIS] += 3.1;
  2199. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2200. current_position[E_AXIS] += 4;
  2201. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2202. st_synchronize();
  2203. //current_position[X_AXIS] += 23; //delay
  2204. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2205. //current_position[X_AXIS] -= 23; //delay
  2206. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2207. delay(4700);
  2208. max_feedrate[E_AXIS] = 80;
  2209. current_position[E_AXIS] -= 92;
  2210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2211. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2212. current_position[E_AXIS] -= 5;
  2213. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2214. current_position[E_AXIS] += 5;
  2215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2216. current_position[E_AXIS] -= 5;
  2217. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2218. st_synchronize();
  2219. current_position[E_AXIS] += 5;
  2220. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2221. current_position[E_AXIS] -= 5;
  2222. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2223. current_position[E_AXIS] += 5;
  2224. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2225. current_position[E_AXIS] -= 5;
  2226. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2227. st_synchronize();
  2228. }
  2229. }
  2230. */
  2231. #ifdef TMC2130
  2232. void force_high_power_mode(bool start_high_power_section) {
  2233. uint8_t silent;
  2234. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2235. if (silent == 1) {
  2236. //we are in silent mode, set to normal mode to enable crash detection
  2237. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2238. st_synchronize();
  2239. cli();
  2240. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2241. tmc2130_init();
  2242. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2243. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2244. st_reset_timer();
  2245. sei();
  2246. }
  2247. }
  2248. #endif //TMC2130
  2249. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib) {
  2250. st_synchronize();
  2251. #if 0
  2252. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2253. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2254. #endif
  2255. // Flag for the display update routine and to disable the print cancelation during homing.
  2256. homing_flag = true;
  2257. // Either all X,Y,Z codes are present, or none of them.
  2258. bool home_all_axes = home_x == home_y && home_x == home_z;
  2259. if (home_all_axes)
  2260. // No X/Y/Z code provided means to home all axes.
  2261. home_x = home_y = home_z = true;
  2262. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2263. if (home_all_axes) {
  2264. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2265. feedrate = homing_feedrate[Z_AXIS];
  2266. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2267. st_synchronize();
  2268. }
  2269. #ifdef ENABLE_AUTO_BED_LEVELING
  2270. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2271. #endif //ENABLE_AUTO_BED_LEVELING
  2272. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2273. // the planner will not perform any adjustments in the XY plane.
  2274. // Wait for the motors to stop and update the current position with the absolute values.
  2275. world2machine_revert_to_uncorrected();
  2276. // For mesh bed leveling deactivate the matrix temporarily.
  2277. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2278. // in a single axis only.
  2279. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2280. #ifdef MESH_BED_LEVELING
  2281. uint8_t mbl_was_active = mbl.active;
  2282. mbl.active = 0;
  2283. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2284. #endif
  2285. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2286. // consumed during the first movements following this statement.
  2287. if (home_z)
  2288. babystep_undo();
  2289. saved_feedrate = feedrate;
  2290. saved_feedmultiply = feedmultiply;
  2291. feedmultiply = 100;
  2292. previous_millis_cmd = millis();
  2293. enable_endstops(true);
  2294. memcpy(destination, current_position, sizeof(destination));
  2295. feedrate = 0.0;
  2296. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2297. if(home_z)
  2298. homeaxis(Z_AXIS);
  2299. #endif
  2300. #ifdef QUICK_HOME
  2301. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2302. if(home_x && home_y) //first diagonal move
  2303. {
  2304. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2305. int x_axis_home_dir = home_dir(X_AXIS);
  2306. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2307. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2308. feedrate = homing_feedrate[X_AXIS];
  2309. if(homing_feedrate[Y_AXIS]<feedrate)
  2310. feedrate = homing_feedrate[Y_AXIS];
  2311. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2312. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2313. } else {
  2314. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2315. }
  2316. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2317. st_synchronize();
  2318. axis_is_at_home(X_AXIS);
  2319. axis_is_at_home(Y_AXIS);
  2320. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2321. destination[X_AXIS] = current_position[X_AXIS];
  2322. destination[Y_AXIS] = current_position[Y_AXIS];
  2323. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2324. feedrate = 0.0;
  2325. st_synchronize();
  2326. endstops_hit_on_purpose();
  2327. current_position[X_AXIS] = destination[X_AXIS];
  2328. current_position[Y_AXIS] = destination[Y_AXIS];
  2329. current_position[Z_AXIS] = destination[Z_AXIS];
  2330. }
  2331. #endif /* QUICK_HOME */
  2332. #ifdef TMC2130
  2333. if(home_x)
  2334. {
  2335. if (!calib)
  2336. homeaxis(X_AXIS);
  2337. else
  2338. tmc2130_home_calibrate(X_AXIS);
  2339. }
  2340. if(home_y)
  2341. {
  2342. if (!calib)
  2343. homeaxis(Y_AXIS);
  2344. else
  2345. tmc2130_home_calibrate(Y_AXIS);
  2346. }
  2347. #endif //TMC2130
  2348. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2349. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2350. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2351. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2352. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2353. #ifndef Z_SAFE_HOMING
  2354. if(home_z) {
  2355. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2356. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2357. feedrate = max_feedrate[Z_AXIS];
  2358. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2359. st_synchronize();
  2360. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2361. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2362. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2363. {
  2364. homeaxis(X_AXIS);
  2365. homeaxis(Y_AXIS);
  2366. }
  2367. // 1st mesh bed leveling measurement point, corrected.
  2368. world2machine_initialize();
  2369. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2370. world2machine_reset();
  2371. if (destination[Y_AXIS] < Y_MIN_POS)
  2372. destination[Y_AXIS] = Y_MIN_POS;
  2373. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2374. feedrate = homing_feedrate[Z_AXIS]/10;
  2375. current_position[Z_AXIS] = 0;
  2376. enable_endstops(false);
  2377. #ifdef DEBUG_BUILD
  2378. SERIAL_ECHOLNPGM("plan_set_position()");
  2379. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2380. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2381. #endif
  2382. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2383. #ifdef DEBUG_BUILD
  2384. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2385. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2386. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2387. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2388. #endif
  2389. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2390. st_synchronize();
  2391. current_position[X_AXIS] = destination[X_AXIS];
  2392. current_position[Y_AXIS] = destination[Y_AXIS];
  2393. enable_endstops(true);
  2394. endstops_hit_on_purpose();
  2395. homeaxis(Z_AXIS);
  2396. #else // MESH_BED_LEVELING
  2397. homeaxis(Z_AXIS);
  2398. #endif // MESH_BED_LEVELING
  2399. }
  2400. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2401. if(home_all_axes) {
  2402. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2403. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2404. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2405. feedrate = XY_TRAVEL_SPEED/60;
  2406. current_position[Z_AXIS] = 0;
  2407. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2408. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2409. st_synchronize();
  2410. current_position[X_AXIS] = destination[X_AXIS];
  2411. current_position[Y_AXIS] = destination[Y_AXIS];
  2412. homeaxis(Z_AXIS);
  2413. }
  2414. // Let's see if X and Y are homed and probe is inside bed area.
  2415. if(home_z) {
  2416. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2417. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2418. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2419. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2420. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2421. current_position[Z_AXIS] = 0;
  2422. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2423. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2424. feedrate = max_feedrate[Z_AXIS];
  2425. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2426. st_synchronize();
  2427. homeaxis(Z_AXIS);
  2428. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2429. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2430. SERIAL_ECHO_START;
  2431. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2432. } else {
  2433. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2434. SERIAL_ECHO_START;
  2435. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2436. }
  2437. }
  2438. #endif // Z_SAFE_HOMING
  2439. #endif // Z_HOME_DIR < 0
  2440. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2441. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2442. #ifdef ENABLE_AUTO_BED_LEVELING
  2443. if(home_z)
  2444. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2445. #endif
  2446. // Set the planner and stepper routine positions.
  2447. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2448. // contains the machine coordinates.
  2449. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2450. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2451. enable_endstops(false);
  2452. #endif
  2453. feedrate = saved_feedrate;
  2454. feedmultiply = saved_feedmultiply;
  2455. previous_millis_cmd = millis();
  2456. endstops_hit_on_purpose();
  2457. #ifndef MESH_BED_LEVELING
  2458. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2459. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2460. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2461. lcd_adjust_z();
  2462. #endif
  2463. // Load the machine correction matrix
  2464. world2machine_initialize();
  2465. // and correct the current_position XY axes to match the transformed coordinate system.
  2466. world2machine_update_current();
  2467. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2468. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2469. {
  2470. if (! home_z && mbl_was_active) {
  2471. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2472. mbl.active = true;
  2473. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2474. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2475. }
  2476. }
  2477. else
  2478. {
  2479. st_synchronize();
  2480. homing_flag = false;
  2481. // Push the commands to the front of the message queue in the reverse order!
  2482. // There shall be always enough space reserved for these commands.
  2483. enquecommand_front_P((PSTR("G80")));
  2484. //goto case_G80;
  2485. }
  2486. #endif
  2487. if (farm_mode) { prusa_statistics(20); };
  2488. homing_flag = false;
  2489. #if 0
  2490. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2491. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2492. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2493. #endif
  2494. }
  2495. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2496. {
  2497. bool final_result = false;
  2498. #ifdef TMC2130
  2499. FORCE_HIGH_POWER_START;
  2500. #endif // TMC2130
  2501. // Only Z calibration?
  2502. if (!onlyZ)
  2503. {
  2504. setTargetBed(0);
  2505. setTargetHotend(0, 0);
  2506. setTargetHotend(0, 1);
  2507. setTargetHotend(0, 2);
  2508. adjust_bed_reset(); //reset bed level correction
  2509. }
  2510. // Disable the default update procedure of the display. We will do a modal dialog.
  2511. lcd_update_enable(false);
  2512. // Let the planner use the uncorrected coordinates.
  2513. mbl.reset();
  2514. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2515. // the planner will not perform any adjustments in the XY plane.
  2516. // Wait for the motors to stop and update the current position with the absolute values.
  2517. world2machine_revert_to_uncorrected();
  2518. // Reset the baby step value applied without moving the axes.
  2519. babystep_reset();
  2520. // Mark all axes as in a need for homing.
  2521. memset(axis_known_position, 0, sizeof(axis_known_position));
  2522. // Home in the XY plane.
  2523. //set_destination_to_current();
  2524. setup_for_endstop_move();
  2525. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2526. home_xy();
  2527. enable_endstops(false);
  2528. current_position[X_AXIS] += 5;
  2529. current_position[Y_AXIS] += 5;
  2530. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2531. st_synchronize();
  2532. // Let the user move the Z axes up to the end stoppers.
  2533. #ifdef TMC2130
  2534. if (calibrate_z_auto())
  2535. {
  2536. #else //TMC2130
  2537. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2538. {
  2539. #endif //TMC2130
  2540. refresh_cmd_timeout();
  2541. #ifndef STEEL_SHEET
  2542. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2543. {
  2544. lcd_wait_for_cool_down();
  2545. }
  2546. #endif //STEEL_SHEET
  2547. if(!onlyZ)
  2548. {
  2549. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2550. #ifdef STEEL_SHEET
  2551. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2552. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2553. #endif //STEEL_SHEET
  2554. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2555. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2556. KEEPALIVE_STATE(IN_HANDLER);
  2557. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2558. lcd_implementation_print_at(0, 2, 1);
  2559. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2560. }
  2561. // Move the print head close to the bed.
  2562. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2563. bool endstops_enabled = enable_endstops(true);
  2564. #ifdef TMC2130
  2565. tmc2130_home_enter(Z_AXIS_MASK);
  2566. #endif //TMC2130
  2567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2568. st_synchronize();
  2569. #ifdef TMC2130
  2570. tmc2130_home_exit();
  2571. #endif //TMC2130
  2572. enable_endstops(endstops_enabled);
  2573. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2574. {
  2575. int8_t verbosity_level = 0;
  2576. if (code_seen('V'))
  2577. {
  2578. // Just 'V' without a number counts as V1.
  2579. char c = strchr_pointer[1];
  2580. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2581. }
  2582. if (onlyZ)
  2583. {
  2584. clean_up_after_endstop_move();
  2585. // Z only calibration.
  2586. // Load the machine correction matrix
  2587. world2machine_initialize();
  2588. // and correct the current_position to match the transformed coordinate system.
  2589. world2machine_update_current();
  2590. //FIXME
  2591. bool result = sample_mesh_and_store_reference();
  2592. if (result)
  2593. {
  2594. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2595. // Shipped, the nozzle height has been set already. The user can start printing now.
  2596. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2597. final_result = true;
  2598. // babystep_apply();
  2599. }
  2600. }
  2601. else
  2602. {
  2603. // Reset the baby step value and the baby step applied flag.
  2604. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2605. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2606. // Complete XYZ calibration.
  2607. uint8_t point_too_far_mask = 0;
  2608. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2609. clean_up_after_endstop_move();
  2610. // Print head up.
  2611. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2613. st_synchronize();
  2614. //#ifndef NEW_XYZCAL
  2615. if (result >= 0)
  2616. {
  2617. #ifdef HEATBED_V2
  2618. sample_z();
  2619. #else //HEATBED_V2
  2620. point_too_far_mask = 0;
  2621. // Second half: The fine adjustment.
  2622. // Let the planner use the uncorrected coordinates.
  2623. mbl.reset();
  2624. world2machine_reset();
  2625. // Home in the XY plane.
  2626. setup_for_endstop_move();
  2627. home_xy();
  2628. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2629. clean_up_after_endstop_move();
  2630. // Print head up.
  2631. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2633. st_synchronize();
  2634. // if (result >= 0) babystep_apply();
  2635. #endif //HEATBED_V2
  2636. }
  2637. //#endif //NEW_XYZCAL
  2638. lcd_update_enable(true);
  2639. lcd_update(2);
  2640. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2641. if (result >= 0)
  2642. {
  2643. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2644. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2645. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2646. final_result = true;
  2647. }
  2648. }
  2649. #ifdef TMC2130
  2650. tmc2130_home_exit();
  2651. #endif
  2652. }
  2653. else
  2654. {
  2655. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2656. final_result = false;
  2657. }
  2658. }
  2659. else
  2660. {
  2661. // Timeouted.
  2662. }
  2663. lcd_update_enable(true);
  2664. #ifdef TMC2130
  2665. FORCE_HIGH_POWER_END;
  2666. #endif // TMC2130
  2667. return final_result;
  2668. }
  2669. void gcode_M114()
  2670. {
  2671. SERIAL_PROTOCOLPGM("X:");
  2672. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2673. SERIAL_PROTOCOLPGM(" Y:");
  2674. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2675. SERIAL_PROTOCOLPGM(" Z:");
  2676. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2677. SERIAL_PROTOCOLPGM(" E:");
  2678. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2679. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2680. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2681. SERIAL_PROTOCOLPGM(" Y:");
  2682. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2683. SERIAL_PROTOCOLPGM(" Z:");
  2684. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2685. SERIAL_PROTOCOLPGM(" E:");
  2686. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2687. SERIAL_PROTOCOLLN("");
  2688. }
  2689. void gcode_M701()
  2690. {
  2691. #ifdef SNMM
  2692. extr_adj(snmm_extruder);//loads current extruder
  2693. #else
  2694. enable_z();
  2695. custom_message = true;
  2696. custom_message_type = 2;
  2697. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2698. current_position[E_AXIS] += 70;
  2699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2700. current_position[E_AXIS] += 25;
  2701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2702. st_synchronize();
  2703. tone(BEEPER, 500);
  2704. delay_keep_alive(50);
  2705. noTone(BEEPER);
  2706. if (!farm_mode && loading_flag) {
  2707. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2708. while (!clean) {
  2709. lcd_update_enable(true);
  2710. lcd_update(2);
  2711. current_position[E_AXIS] += 25;
  2712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2713. st_synchronize();
  2714. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2715. }
  2716. }
  2717. lcd_update_enable(true);
  2718. lcd_update(2);
  2719. lcd_setstatuspgm(_T(WELCOME_MSG));
  2720. disable_z();
  2721. loading_flag = false;
  2722. custom_message = false;
  2723. custom_message_type = 0;
  2724. #endif
  2725. }
  2726. /**
  2727. * @brief Get serial number from 32U2 processor
  2728. *
  2729. * Typical format of S/N is:CZPX0917X003XC13518
  2730. *
  2731. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2732. *
  2733. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2734. * reply is transmitted to serial port 1 character by character.
  2735. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2736. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2737. * in any case.
  2738. */
  2739. static void gcode_PRUSA_SN()
  2740. {
  2741. if (farm_mode) {
  2742. selectedSerialPort = 0;
  2743. putchar(';');
  2744. putchar('S');
  2745. int numbersRead = 0;
  2746. ShortTimer timeout;
  2747. timeout.start();
  2748. while (numbersRead < 19) {
  2749. while (MSerial.available() > 0) {
  2750. uint8_t serial_char = MSerial.read();
  2751. selectedSerialPort = 1;
  2752. putchar(serial_char);
  2753. numbersRead++;
  2754. selectedSerialPort = 0;
  2755. }
  2756. if (timeout.expired(100u)) break;
  2757. }
  2758. selectedSerialPort = 1;
  2759. putchar('\n');
  2760. #if 0
  2761. for (int b = 0; b < 3; b++) {
  2762. tone(BEEPER, 110);
  2763. delay(50);
  2764. noTone(BEEPER);
  2765. delay(50);
  2766. }
  2767. #endif
  2768. } else {
  2769. puts_P(_N("Not in farm mode."));
  2770. }
  2771. }
  2772. void process_commands()
  2773. {
  2774. if (!buflen) return; //empty command
  2775. #ifdef FILAMENT_RUNOUT_SUPPORT
  2776. SET_INPUT(FR_SENS);
  2777. #endif
  2778. #ifdef CMDBUFFER_DEBUG
  2779. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2780. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2781. SERIAL_ECHOLNPGM("");
  2782. SERIAL_ECHOPGM("In cmdqueue: ");
  2783. SERIAL_ECHO(buflen);
  2784. SERIAL_ECHOLNPGM("");
  2785. #endif /* CMDBUFFER_DEBUG */
  2786. unsigned long codenum; //throw away variable
  2787. char *starpos = NULL;
  2788. #ifdef ENABLE_AUTO_BED_LEVELING
  2789. float x_tmp, y_tmp, z_tmp, real_z;
  2790. #endif
  2791. // PRUSA GCODES
  2792. KEEPALIVE_STATE(IN_HANDLER);
  2793. #ifdef SNMM
  2794. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2795. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2796. int8_t SilentMode;
  2797. #endif
  2798. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2799. starpos = (strchr(strchr_pointer + 5, '*'));
  2800. if (starpos != NULL)
  2801. *(starpos) = '\0';
  2802. lcd_setstatus(strchr_pointer + 5);
  2803. }
  2804. #ifdef TMC2130
  2805. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2806. {
  2807. if(code_seen("CRASH_DETECTED"))
  2808. {
  2809. uint8_t mask = 0;
  2810. if (code_seen("X")) mask |= X_AXIS_MASK;
  2811. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2812. crashdet_detected(mask);
  2813. }
  2814. else if(code_seen("CRASH_RECOVER"))
  2815. crashdet_recover();
  2816. else if(code_seen("CRASH_CANCEL"))
  2817. crashdet_cancel();
  2818. }
  2819. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2820. {
  2821. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2822. {
  2823. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2824. axis = (axis == 'E')?3:(axis - 'X');
  2825. if (axis < 4)
  2826. {
  2827. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2828. tmc2130_set_wave(axis, 247, fac);
  2829. }
  2830. }
  2831. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2832. {
  2833. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2834. axis = (axis == 'E')?3:(axis - 'X');
  2835. if (axis < 4)
  2836. {
  2837. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2838. uint16_t res = tmc2130_get_res(axis);
  2839. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2840. }
  2841. }
  2842. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2843. {
  2844. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2845. axis = (axis == 'E')?3:(axis - 'X');
  2846. if (axis < 4)
  2847. {
  2848. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2849. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2850. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2851. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2852. char* str_end = 0;
  2853. if (CMDBUFFER_CURRENT_STRING[14])
  2854. {
  2855. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2856. if (str_end && *str_end)
  2857. {
  2858. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2859. if (str_end && *str_end)
  2860. {
  2861. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2862. if (str_end && *str_end)
  2863. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2864. }
  2865. }
  2866. }
  2867. tmc2130_chopper_config[axis].toff = chop0;
  2868. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2869. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2870. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2871. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2872. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2873. }
  2874. }
  2875. }
  2876. #endif //TMC2130
  2877. else if(code_seen("PRUSA")){
  2878. if (code_seen("Ping")) { //PRUSA Ping
  2879. if (farm_mode) {
  2880. PingTime = millis();
  2881. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2882. }
  2883. }
  2884. else if (code_seen("PRN")) {
  2885. printf_P(_N("%d"), status_number);
  2886. }else if (code_seen("FAN")) {
  2887. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2888. }else if (code_seen("fn")) {
  2889. if (farm_mode) {
  2890. printf_P(_N("%d"), farm_no);
  2891. }
  2892. else {
  2893. puts_P(_N("Not in farm mode."));
  2894. }
  2895. }
  2896. else if (code_seen("thx")) {
  2897. no_response = false;
  2898. } else if (code_seen("RESET")) {
  2899. // careful!
  2900. if (farm_mode) {
  2901. #ifdef WATCHDOG
  2902. wdt_enable(WDTO_15MS);
  2903. cli();
  2904. while(1);
  2905. #else //WATCHDOG
  2906. asm volatile("jmp 0x3E000");
  2907. #endif //WATCHDOG
  2908. }
  2909. else {
  2910. MYSERIAL.println("Not in farm mode.");
  2911. }
  2912. }else if (code_seen("fv")) {
  2913. // get file version
  2914. #ifdef SDSUPPORT
  2915. card.openFile(strchr_pointer + 3,true);
  2916. while (true) {
  2917. uint16_t readByte = card.get();
  2918. MYSERIAL.write(readByte);
  2919. if (readByte=='\n') {
  2920. break;
  2921. }
  2922. }
  2923. card.closefile();
  2924. #endif // SDSUPPORT
  2925. } else if (code_seen("M28")) {
  2926. trace();
  2927. prusa_sd_card_upload = true;
  2928. card.openFile(strchr_pointer+4,false);
  2929. } else if (code_seen("SN")) {
  2930. gcode_PRUSA_SN();
  2931. } else if(code_seen("Fir")){
  2932. SERIAL_PROTOCOLLN(FW_VERSION);
  2933. } else if(code_seen("Rev")){
  2934. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2935. } else if(code_seen("Lang")) {
  2936. lang_reset();
  2937. } else if(code_seen("Lz")) {
  2938. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2939. } else if(code_seen("Beat")) {
  2940. // Kick farm link timer
  2941. kicktime = millis();
  2942. } else if(code_seen("FR")) {
  2943. // Factory full reset
  2944. factory_reset(0,true);
  2945. }
  2946. //else if (code_seen('Cal')) {
  2947. // lcd_calibration();
  2948. // }
  2949. }
  2950. else if (code_seen('^')) {
  2951. // nothing, this is a version line
  2952. } else if(code_seen('G'))
  2953. {
  2954. switch((int)code_value())
  2955. {
  2956. case 0: // G0 -> G1
  2957. case 1: // G1
  2958. if(Stopped == false) {
  2959. #ifdef FILAMENT_RUNOUT_SUPPORT
  2960. if(READ(FR_SENS)){
  2961. feedmultiplyBckp=feedmultiply;
  2962. float target[4];
  2963. float lastpos[4];
  2964. target[X_AXIS]=current_position[X_AXIS];
  2965. target[Y_AXIS]=current_position[Y_AXIS];
  2966. target[Z_AXIS]=current_position[Z_AXIS];
  2967. target[E_AXIS]=current_position[E_AXIS];
  2968. lastpos[X_AXIS]=current_position[X_AXIS];
  2969. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2970. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2971. lastpos[E_AXIS]=current_position[E_AXIS];
  2972. //retract by E
  2973. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2974. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2975. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2976. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2977. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2978. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2979. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2980. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2981. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2982. //finish moves
  2983. st_synchronize();
  2984. //disable extruder steppers so filament can be removed
  2985. disable_e0();
  2986. disable_e1();
  2987. disable_e2();
  2988. delay(100);
  2989. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2990. uint8_t cnt=0;
  2991. int counterBeep = 0;
  2992. lcd_wait_interact();
  2993. while(!lcd_clicked()){
  2994. cnt++;
  2995. manage_heater();
  2996. manage_inactivity(true);
  2997. //lcd_update();
  2998. if(cnt==0)
  2999. {
  3000. #if BEEPER > 0
  3001. if (counterBeep== 500){
  3002. counterBeep = 0;
  3003. }
  3004. SET_OUTPUT(BEEPER);
  3005. if (counterBeep== 0){
  3006. WRITE(BEEPER,HIGH);
  3007. }
  3008. if (counterBeep== 20){
  3009. WRITE(BEEPER,LOW);
  3010. }
  3011. counterBeep++;
  3012. #else
  3013. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3014. lcd_buzz(1000/6,100);
  3015. #else
  3016. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3017. #endif
  3018. #endif
  3019. }
  3020. }
  3021. WRITE(BEEPER,LOW);
  3022. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3023. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3024. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3025. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3026. lcd_change_fil_state = 0;
  3027. lcd_loading_filament();
  3028. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3029. lcd_change_fil_state = 0;
  3030. lcd_alright();
  3031. switch(lcd_change_fil_state){
  3032. case 2:
  3033. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3034. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3035. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3036. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3037. lcd_loading_filament();
  3038. break;
  3039. case 3:
  3040. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3041. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3042. lcd_loading_color();
  3043. break;
  3044. default:
  3045. lcd_change_success();
  3046. break;
  3047. }
  3048. }
  3049. target[E_AXIS]+= 5;
  3050. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3051. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3052. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3053. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3054. //plan_set_e_position(current_position[E_AXIS]);
  3055. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3056. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3057. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3058. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3059. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3060. plan_set_e_position(lastpos[E_AXIS]);
  3061. feedmultiply=feedmultiplyBckp;
  3062. char cmd[9];
  3063. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3064. enquecommand(cmd);
  3065. }
  3066. #endif
  3067. get_coordinates(); // For X Y Z E F
  3068. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3069. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3070. }
  3071. #ifdef FWRETRACT
  3072. if(autoretract_enabled)
  3073. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3074. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3075. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3076. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3077. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3078. retract(!retracted[active_extruder]);
  3079. return;
  3080. }
  3081. }
  3082. #endif //FWRETRACT
  3083. prepare_move();
  3084. //ClearToSend();
  3085. }
  3086. break;
  3087. case 2: // G2 - CW ARC
  3088. if(Stopped == false) {
  3089. get_arc_coordinates();
  3090. prepare_arc_move(true);
  3091. }
  3092. break;
  3093. case 3: // G3 - CCW ARC
  3094. if(Stopped == false) {
  3095. get_arc_coordinates();
  3096. prepare_arc_move(false);
  3097. }
  3098. break;
  3099. case 4: // G4 dwell
  3100. codenum = 0;
  3101. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3102. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3103. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3104. st_synchronize();
  3105. codenum += millis(); // keep track of when we started waiting
  3106. previous_millis_cmd = millis();
  3107. while(millis() < codenum) {
  3108. manage_heater();
  3109. manage_inactivity();
  3110. lcd_update();
  3111. }
  3112. break;
  3113. #ifdef FWRETRACT
  3114. case 10: // G10 retract
  3115. #if EXTRUDERS > 1
  3116. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3117. retract(true,retracted_swap[active_extruder]);
  3118. #else
  3119. retract(true);
  3120. #endif
  3121. break;
  3122. case 11: // G11 retract_recover
  3123. #if EXTRUDERS > 1
  3124. retract(false,retracted_swap[active_extruder]);
  3125. #else
  3126. retract(false);
  3127. #endif
  3128. break;
  3129. #endif //FWRETRACT
  3130. case 28: //G28 Home all Axis one at a time
  3131. {
  3132. // Which axes should be homed?
  3133. bool home_x = code_seen(axis_codes[X_AXIS]);
  3134. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3135. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3136. // calibrate?
  3137. bool calib = code_seen('C');
  3138. gcode_G28(home_x, home_y, home_z, calib);
  3139. break;
  3140. }
  3141. #ifdef ENABLE_AUTO_BED_LEVELING
  3142. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3143. {
  3144. #if Z_MIN_PIN == -1
  3145. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3146. #endif
  3147. // Prevent user from running a G29 without first homing in X and Y
  3148. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3149. {
  3150. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3151. SERIAL_ECHO_START;
  3152. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3153. break; // abort G29, since we don't know where we are
  3154. }
  3155. st_synchronize();
  3156. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3157. //vector_3 corrected_position = plan_get_position_mm();
  3158. //corrected_position.debug("position before G29");
  3159. plan_bed_level_matrix.set_to_identity();
  3160. vector_3 uncorrected_position = plan_get_position();
  3161. //uncorrected_position.debug("position durring G29");
  3162. current_position[X_AXIS] = uncorrected_position.x;
  3163. current_position[Y_AXIS] = uncorrected_position.y;
  3164. current_position[Z_AXIS] = uncorrected_position.z;
  3165. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3166. setup_for_endstop_move();
  3167. feedrate = homing_feedrate[Z_AXIS];
  3168. #ifdef AUTO_BED_LEVELING_GRID
  3169. // probe at the points of a lattice grid
  3170. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3171. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3172. // solve the plane equation ax + by + d = z
  3173. // A is the matrix with rows [x y 1] for all the probed points
  3174. // B is the vector of the Z positions
  3175. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3176. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3177. // "A" matrix of the linear system of equations
  3178. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3179. // "B" vector of Z points
  3180. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3181. int probePointCounter = 0;
  3182. bool zig = true;
  3183. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3184. {
  3185. int xProbe, xInc;
  3186. if (zig)
  3187. {
  3188. xProbe = LEFT_PROBE_BED_POSITION;
  3189. //xEnd = RIGHT_PROBE_BED_POSITION;
  3190. xInc = xGridSpacing;
  3191. zig = false;
  3192. } else // zag
  3193. {
  3194. xProbe = RIGHT_PROBE_BED_POSITION;
  3195. //xEnd = LEFT_PROBE_BED_POSITION;
  3196. xInc = -xGridSpacing;
  3197. zig = true;
  3198. }
  3199. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3200. {
  3201. float z_before;
  3202. if (probePointCounter == 0)
  3203. {
  3204. // raise before probing
  3205. z_before = Z_RAISE_BEFORE_PROBING;
  3206. } else
  3207. {
  3208. // raise extruder
  3209. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3210. }
  3211. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3212. eqnBVector[probePointCounter] = measured_z;
  3213. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3214. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3215. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3216. probePointCounter++;
  3217. xProbe += xInc;
  3218. }
  3219. }
  3220. clean_up_after_endstop_move();
  3221. // solve lsq problem
  3222. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3223. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3224. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3225. SERIAL_PROTOCOLPGM(" b: ");
  3226. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3227. SERIAL_PROTOCOLPGM(" d: ");
  3228. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3229. set_bed_level_equation_lsq(plane_equation_coefficients);
  3230. free(plane_equation_coefficients);
  3231. #else // AUTO_BED_LEVELING_GRID not defined
  3232. // Probe at 3 arbitrary points
  3233. // probe 1
  3234. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3235. // probe 2
  3236. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3237. // probe 3
  3238. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3239. clean_up_after_endstop_move();
  3240. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3241. #endif // AUTO_BED_LEVELING_GRID
  3242. st_synchronize();
  3243. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3244. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3245. // When the bed is uneven, this height must be corrected.
  3246. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3247. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3248. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3249. z_tmp = current_position[Z_AXIS];
  3250. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3251. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3252. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3253. }
  3254. break;
  3255. #ifndef Z_PROBE_SLED
  3256. case 30: // G30 Single Z Probe
  3257. {
  3258. st_synchronize();
  3259. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3260. setup_for_endstop_move();
  3261. feedrate = homing_feedrate[Z_AXIS];
  3262. run_z_probe();
  3263. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3264. SERIAL_PROTOCOLPGM(" X: ");
  3265. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3266. SERIAL_PROTOCOLPGM(" Y: ");
  3267. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3268. SERIAL_PROTOCOLPGM(" Z: ");
  3269. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3270. SERIAL_PROTOCOLPGM("\n");
  3271. clean_up_after_endstop_move();
  3272. }
  3273. break;
  3274. #else
  3275. case 31: // dock the sled
  3276. dock_sled(true);
  3277. break;
  3278. case 32: // undock the sled
  3279. dock_sled(false);
  3280. break;
  3281. #endif // Z_PROBE_SLED
  3282. #endif // ENABLE_AUTO_BED_LEVELING
  3283. #ifdef MESH_BED_LEVELING
  3284. case 30: // G30 Single Z Probe
  3285. {
  3286. st_synchronize();
  3287. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3288. setup_for_endstop_move();
  3289. feedrate = homing_feedrate[Z_AXIS];
  3290. find_bed_induction_sensor_point_z(-10.f, 3);
  3291. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3292. clean_up_after_endstop_move();
  3293. }
  3294. break;
  3295. case 75:
  3296. {
  3297. for (int i = 40; i <= 110; i++)
  3298. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3299. }
  3300. break;
  3301. case 76: //PINDA probe temperature calibration
  3302. {
  3303. #ifdef PINDA_THERMISTOR
  3304. if (true)
  3305. {
  3306. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3307. //we need to know accurate position of first calibration point
  3308. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3309. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3310. break;
  3311. }
  3312. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3313. {
  3314. // We don't know where we are! HOME!
  3315. // Push the commands to the front of the message queue in the reverse order!
  3316. // There shall be always enough space reserved for these commands.
  3317. repeatcommand_front(); // repeat G76 with all its parameters
  3318. enquecommand_front_P((PSTR("G28 W0")));
  3319. break;
  3320. }
  3321. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3322. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3323. if (result)
  3324. {
  3325. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3327. current_position[Z_AXIS] = 50;
  3328. current_position[Y_AXIS] = 180;
  3329. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3330. st_synchronize();
  3331. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3332. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3333. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3334. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3335. st_synchronize();
  3336. gcode_G28(false, false, true, false);
  3337. }
  3338. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3339. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3340. current_position[Z_AXIS] = 100;
  3341. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3342. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3343. lcd_temp_cal_show_result(false);
  3344. break;
  3345. }
  3346. }
  3347. lcd_update_enable(true);
  3348. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3349. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3350. float zero_z;
  3351. int z_shift = 0; //unit: steps
  3352. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3353. if (start_temp < 35) start_temp = 35;
  3354. if (start_temp < current_temperature_pinda) start_temp += 5;
  3355. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3356. // setTargetHotend(200, 0);
  3357. setTargetBed(70 + (start_temp - 30));
  3358. custom_message = true;
  3359. custom_message_type = 4;
  3360. custom_message_state = 1;
  3361. custom_message = _T(MSG_TEMP_CALIBRATION);
  3362. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3363. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3364. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3365. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3367. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3368. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3369. st_synchronize();
  3370. while (current_temperature_pinda < start_temp)
  3371. {
  3372. delay_keep_alive(1000);
  3373. serialecho_temperatures();
  3374. }
  3375. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3376. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3377. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3378. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3379. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3381. st_synchronize();
  3382. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3383. if (find_z_result == false) {
  3384. lcd_temp_cal_show_result(find_z_result);
  3385. break;
  3386. }
  3387. zero_z = current_position[Z_AXIS];
  3388. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3389. int i = -1; for (; i < 5; i++)
  3390. {
  3391. float temp = (40 + i * 5);
  3392. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3393. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3394. if (start_temp <= temp) break;
  3395. }
  3396. for (i++; i < 5; i++)
  3397. {
  3398. float temp = (40 + i * 5);
  3399. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3400. custom_message_state = i + 2;
  3401. setTargetBed(50 + 10 * (temp - 30) / 5);
  3402. // setTargetHotend(255, 0);
  3403. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3404. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3405. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3406. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3407. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3408. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3409. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3410. st_synchronize();
  3411. while (current_temperature_pinda < temp)
  3412. {
  3413. delay_keep_alive(1000);
  3414. serialecho_temperatures();
  3415. }
  3416. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3417. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3418. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3419. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3420. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3421. st_synchronize();
  3422. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3423. if (find_z_result == false) {
  3424. lcd_temp_cal_show_result(find_z_result);
  3425. break;
  3426. }
  3427. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3428. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3429. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3430. }
  3431. lcd_temp_cal_show_result(true);
  3432. break;
  3433. }
  3434. #endif //PINDA_THERMISTOR
  3435. setTargetBed(PINDA_MIN_T);
  3436. float zero_z;
  3437. int z_shift = 0; //unit: steps
  3438. int t_c; // temperature
  3439. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3440. // We don't know where we are! HOME!
  3441. // Push the commands to the front of the message queue in the reverse order!
  3442. // There shall be always enough space reserved for these commands.
  3443. repeatcommand_front(); // repeat G76 with all its parameters
  3444. enquecommand_front_P((PSTR("G28 W0")));
  3445. break;
  3446. }
  3447. puts_P(_N("PINDA probe calibration start"));
  3448. custom_message = true;
  3449. custom_message_type = 4;
  3450. custom_message_state = 1;
  3451. custom_message = _T(MSG_TEMP_CALIBRATION);
  3452. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3453. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3454. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3456. st_synchronize();
  3457. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3458. delay_keep_alive(1000);
  3459. serialecho_temperatures();
  3460. }
  3461. //enquecommand_P(PSTR("M190 S50"));
  3462. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3463. delay_keep_alive(1000);
  3464. serialecho_temperatures();
  3465. }
  3466. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3467. current_position[Z_AXIS] = 5;
  3468. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3469. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3470. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3471. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3472. st_synchronize();
  3473. find_bed_induction_sensor_point_z(-1.f);
  3474. zero_z = current_position[Z_AXIS];
  3475. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3476. for (int i = 0; i<5; i++) {
  3477. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3478. custom_message_state = i + 2;
  3479. t_c = 60 + i * 10;
  3480. setTargetBed(t_c);
  3481. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3482. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3483. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3485. st_synchronize();
  3486. while (degBed() < t_c) {
  3487. delay_keep_alive(1000);
  3488. serialecho_temperatures();
  3489. }
  3490. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3491. delay_keep_alive(1000);
  3492. serialecho_temperatures();
  3493. }
  3494. current_position[Z_AXIS] = 5;
  3495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3496. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3497. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3498. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3499. st_synchronize();
  3500. find_bed_induction_sensor_point_z(-1.f);
  3501. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3502. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3503. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3504. }
  3505. custom_message_type = 0;
  3506. custom_message = false;
  3507. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3508. puts_P(_N("Temperature calibration done."));
  3509. disable_x();
  3510. disable_y();
  3511. disable_z();
  3512. disable_e0();
  3513. disable_e1();
  3514. disable_e2();
  3515. setTargetBed(0); //set bed target temperature back to 0
  3516. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3517. temp_cal_active = true;
  3518. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3519. lcd_update_enable(true);
  3520. lcd_update(2);
  3521. }
  3522. break;
  3523. #ifdef DIS
  3524. case 77:
  3525. {
  3526. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3527. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3528. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3529. float dimension_x = 40;
  3530. float dimension_y = 40;
  3531. int points_x = 40;
  3532. int points_y = 40;
  3533. float offset_x = 74;
  3534. float offset_y = 33;
  3535. if (code_seen('X')) dimension_x = code_value();
  3536. if (code_seen('Y')) dimension_y = code_value();
  3537. if (code_seen('XP')) points_x = code_value();
  3538. if (code_seen('YP')) points_y = code_value();
  3539. if (code_seen('XO')) offset_x = code_value();
  3540. if (code_seen('YO')) offset_y = code_value();
  3541. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3542. } break;
  3543. #endif
  3544. case 79: {
  3545. for (int i = 255; i > 0; i = i - 5) {
  3546. fanSpeed = i;
  3547. //delay_keep_alive(2000);
  3548. for (int j = 0; j < 100; j++) {
  3549. delay_keep_alive(100);
  3550. }
  3551. fan_speed[1];
  3552. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3553. }
  3554. }break;
  3555. /**
  3556. * G80: Mesh-based Z probe, probes a grid and produces a
  3557. * mesh to compensate for variable bed height
  3558. *
  3559. * The S0 report the points as below
  3560. *
  3561. * +----> X-axis
  3562. * |
  3563. * |
  3564. * v Y-axis
  3565. *
  3566. */
  3567. case 80:
  3568. #ifdef MK1BP
  3569. break;
  3570. #endif //MK1BP
  3571. case_G80:
  3572. {
  3573. mesh_bed_leveling_flag = true;
  3574. int8_t verbosity_level = 0;
  3575. static bool run = false;
  3576. if (code_seen('V')) {
  3577. // Just 'V' without a number counts as V1.
  3578. char c = strchr_pointer[1];
  3579. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3580. }
  3581. // Firstly check if we know where we are
  3582. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3583. // We don't know where we are! HOME!
  3584. // Push the commands to the front of the message queue in the reverse order!
  3585. // There shall be always enough space reserved for these commands.
  3586. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3587. repeatcommand_front(); // repeat G80 with all its parameters
  3588. enquecommand_front_P((PSTR("G28 W0")));
  3589. }
  3590. else {
  3591. mesh_bed_leveling_flag = false;
  3592. }
  3593. break;
  3594. }
  3595. bool temp_comp_start = true;
  3596. #ifdef PINDA_THERMISTOR
  3597. temp_comp_start = false;
  3598. #endif //PINDA_THERMISTOR
  3599. if (temp_comp_start)
  3600. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3601. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3602. temp_compensation_start();
  3603. run = true;
  3604. repeatcommand_front(); // repeat G80 with all its parameters
  3605. enquecommand_front_P((PSTR("G28 W0")));
  3606. }
  3607. else {
  3608. mesh_bed_leveling_flag = false;
  3609. }
  3610. break;
  3611. }
  3612. run = false;
  3613. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3614. mesh_bed_leveling_flag = false;
  3615. break;
  3616. }
  3617. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3618. bool custom_message_old = custom_message;
  3619. unsigned int custom_message_type_old = custom_message_type;
  3620. unsigned int custom_message_state_old = custom_message_state;
  3621. custom_message = true;
  3622. custom_message_type = 1;
  3623. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3624. lcd_update(1);
  3625. mbl.reset(); //reset mesh bed leveling
  3626. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3627. // consumed during the first movements following this statement.
  3628. babystep_undo();
  3629. // Cycle through all points and probe them
  3630. // First move up. During this first movement, the babystepping will be reverted.
  3631. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3633. // The move to the first calibration point.
  3634. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3635. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3636. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3637. #ifdef SUPPORT_VERBOSITY
  3638. if (verbosity_level >= 1) {
  3639. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3640. }
  3641. #endif //SUPPORT_VERBOSITY
  3642. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3643. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3644. // Wait until the move is finished.
  3645. st_synchronize();
  3646. int mesh_point = 0; //index number of calibration point
  3647. int ix = 0;
  3648. int iy = 0;
  3649. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3650. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3651. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3652. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3653. #ifdef SUPPORT_VERBOSITY
  3654. if (verbosity_level >= 1) {
  3655. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3656. }
  3657. #endif // SUPPORT_VERBOSITY
  3658. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3659. const char *kill_message = NULL;
  3660. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3661. // Get coords of a measuring point.
  3662. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3663. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3664. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3665. float z0 = 0.f;
  3666. if (has_z && mesh_point > 0) {
  3667. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3668. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3669. //#if 0
  3670. #ifdef SUPPORT_VERBOSITY
  3671. if (verbosity_level >= 1) {
  3672. SERIAL_ECHOLNPGM("");
  3673. SERIAL_ECHOPGM("Bed leveling, point: ");
  3674. MYSERIAL.print(mesh_point);
  3675. SERIAL_ECHOPGM(", calibration z: ");
  3676. MYSERIAL.print(z0, 5);
  3677. SERIAL_ECHOLNPGM("");
  3678. }
  3679. #endif // SUPPORT_VERBOSITY
  3680. //#endif
  3681. }
  3682. // Move Z up to MESH_HOME_Z_SEARCH.
  3683. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3685. st_synchronize();
  3686. // Move to XY position of the sensor point.
  3687. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3688. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3689. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3690. #ifdef SUPPORT_VERBOSITY
  3691. if (verbosity_level >= 1) {
  3692. SERIAL_PROTOCOL(mesh_point);
  3693. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3694. }
  3695. #endif // SUPPORT_VERBOSITY
  3696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3697. st_synchronize();
  3698. // Go down until endstop is hit
  3699. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3700. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3701. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3702. break;
  3703. }
  3704. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3705. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3706. break;
  3707. }
  3708. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3709. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3710. break;
  3711. }
  3712. #ifdef SUPPORT_VERBOSITY
  3713. if (verbosity_level >= 10) {
  3714. SERIAL_ECHOPGM("X: ");
  3715. MYSERIAL.print(current_position[X_AXIS], 5);
  3716. SERIAL_ECHOLNPGM("");
  3717. SERIAL_ECHOPGM("Y: ");
  3718. MYSERIAL.print(current_position[Y_AXIS], 5);
  3719. SERIAL_PROTOCOLPGM("\n");
  3720. }
  3721. #endif // SUPPORT_VERBOSITY
  3722. float offset_z = 0;
  3723. #ifdef PINDA_THERMISTOR
  3724. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3725. #endif //PINDA_THERMISTOR
  3726. // #ifdef SUPPORT_VERBOSITY
  3727. /* if (verbosity_level >= 1)
  3728. {
  3729. SERIAL_ECHOPGM("mesh bed leveling: ");
  3730. MYSERIAL.print(current_position[Z_AXIS], 5);
  3731. SERIAL_ECHOPGM(" offset: ");
  3732. MYSERIAL.print(offset_z, 5);
  3733. SERIAL_ECHOLNPGM("");
  3734. }*/
  3735. // #endif // SUPPORT_VERBOSITY
  3736. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3737. custom_message_state--;
  3738. mesh_point++;
  3739. lcd_update(1);
  3740. }
  3741. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3742. #ifdef SUPPORT_VERBOSITY
  3743. if (verbosity_level >= 20) {
  3744. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3745. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3746. MYSERIAL.print(current_position[Z_AXIS], 5);
  3747. }
  3748. #endif // SUPPORT_VERBOSITY
  3749. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3750. st_synchronize();
  3751. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3752. kill(kill_message);
  3753. SERIAL_ECHOLNPGM("killed");
  3754. }
  3755. clean_up_after_endstop_move();
  3756. // SERIAL_ECHOLNPGM("clean up finished ");
  3757. bool apply_temp_comp = true;
  3758. #ifdef PINDA_THERMISTOR
  3759. apply_temp_comp = false;
  3760. #endif
  3761. if (apply_temp_comp)
  3762. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3763. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3764. // SERIAL_ECHOLNPGM("babystep applied");
  3765. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3766. #ifdef SUPPORT_VERBOSITY
  3767. if (verbosity_level >= 1) {
  3768. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3769. }
  3770. #endif // SUPPORT_VERBOSITY
  3771. for (uint8_t i = 0; i < 4; ++i) {
  3772. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3773. long correction = 0;
  3774. if (code_seen(codes[i]))
  3775. correction = code_value_long();
  3776. else if (eeprom_bed_correction_valid) {
  3777. unsigned char *addr = (i < 2) ?
  3778. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3779. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3780. correction = eeprom_read_int8(addr);
  3781. }
  3782. if (correction == 0)
  3783. continue;
  3784. float offset = float(correction) * 0.001f;
  3785. if (fabs(offset) > 0.101f) {
  3786. SERIAL_ERROR_START;
  3787. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3788. SERIAL_ECHO(offset);
  3789. SERIAL_ECHOLNPGM(" microns");
  3790. }
  3791. else {
  3792. switch (i) {
  3793. case 0:
  3794. for (uint8_t row = 0; row < 3; ++row) {
  3795. mbl.z_values[row][1] += 0.5f * offset;
  3796. mbl.z_values[row][0] += offset;
  3797. }
  3798. break;
  3799. case 1:
  3800. for (uint8_t row = 0; row < 3; ++row) {
  3801. mbl.z_values[row][1] += 0.5f * offset;
  3802. mbl.z_values[row][2] += offset;
  3803. }
  3804. break;
  3805. case 2:
  3806. for (uint8_t col = 0; col < 3; ++col) {
  3807. mbl.z_values[1][col] += 0.5f * offset;
  3808. mbl.z_values[0][col] += offset;
  3809. }
  3810. break;
  3811. case 3:
  3812. for (uint8_t col = 0; col < 3; ++col) {
  3813. mbl.z_values[1][col] += 0.5f * offset;
  3814. mbl.z_values[2][col] += offset;
  3815. }
  3816. break;
  3817. }
  3818. }
  3819. }
  3820. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3821. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3822. // SERIAL_ECHOLNPGM("Upsample finished");
  3823. mbl.active = 1; //activate mesh bed leveling
  3824. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3825. go_home_with_z_lift();
  3826. // SERIAL_ECHOLNPGM("Go home finished");
  3827. //unretract (after PINDA preheat retraction)
  3828. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3829. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3830. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3831. }
  3832. KEEPALIVE_STATE(NOT_BUSY);
  3833. // Restore custom message state
  3834. lcd_setstatuspgm(_T(WELCOME_MSG));
  3835. custom_message = custom_message_old;
  3836. custom_message_type = custom_message_type_old;
  3837. custom_message_state = custom_message_state_old;
  3838. mesh_bed_leveling_flag = false;
  3839. mesh_bed_run_from_menu = false;
  3840. lcd_update(2);
  3841. }
  3842. break;
  3843. /**
  3844. * G81: Print mesh bed leveling status and bed profile if activated
  3845. */
  3846. case 81:
  3847. if (mbl.active) {
  3848. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3849. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3850. SERIAL_PROTOCOLPGM(",");
  3851. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3852. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3853. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3854. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3855. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3856. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3857. SERIAL_PROTOCOLPGM(" ");
  3858. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3859. }
  3860. SERIAL_PROTOCOLPGM("\n");
  3861. }
  3862. }
  3863. else
  3864. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3865. break;
  3866. #if 0
  3867. /**
  3868. * G82: Single Z probe at current location
  3869. *
  3870. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3871. *
  3872. */
  3873. case 82:
  3874. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3875. setup_for_endstop_move();
  3876. find_bed_induction_sensor_point_z();
  3877. clean_up_after_endstop_move();
  3878. SERIAL_PROTOCOLPGM("Bed found at: ");
  3879. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3880. SERIAL_PROTOCOLPGM("\n");
  3881. break;
  3882. /**
  3883. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3884. */
  3885. case 83:
  3886. {
  3887. int babystepz = code_seen('S') ? code_value() : 0;
  3888. int BabyPosition = code_seen('P') ? code_value() : 0;
  3889. if (babystepz != 0) {
  3890. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3891. // Is the axis indexed starting with zero or one?
  3892. if (BabyPosition > 4) {
  3893. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3894. }else{
  3895. // Save it to the eeprom
  3896. babystepLoadZ = babystepz;
  3897. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3898. // adjust the Z
  3899. babystepsTodoZadd(babystepLoadZ);
  3900. }
  3901. }
  3902. }
  3903. break;
  3904. /**
  3905. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3906. */
  3907. case 84:
  3908. babystepsTodoZsubtract(babystepLoadZ);
  3909. // babystepLoadZ = 0;
  3910. break;
  3911. /**
  3912. * G85: Prusa3D specific: Pick best babystep
  3913. */
  3914. case 85:
  3915. lcd_pick_babystep();
  3916. break;
  3917. #endif
  3918. /**
  3919. * G86: Prusa3D specific: Disable babystep correction after home.
  3920. * This G-code will be performed at the start of a calibration script.
  3921. */
  3922. case 86:
  3923. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3924. break;
  3925. /**
  3926. * G87: Prusa3D specific: Enable babystep correction after home
  3927. * This G-code will be performed at the end of a calibration script.
  3928. */
  3929. case 87:
  3930. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3931. break;
  3932. /**
  3933. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3934. */
  3935. case 88:
  3936. break;
  3937. #endif // ENABLE_MESH_BED_LEVELING
  3938. case 90: // G90
  3939. relative_mode = false;
  3940. break;
  3941. case 91: // G91
  3942. relative_mode = true;
  3943. break;
  3944. case 92: // G92
  3945. if(!code_seen(axis_codes[E_AXIS]))
  3946. st_synchronize();
  3947. for(int8_t i=0; i < NUM_AXIS; i++) {
  3948. if(code_seen(axis_codes[i])) {
  3949. if(i == E_AXIS) {
  3950. current_position[i] = code_value();
  3951. plan_set_e_position(current_position[E_AXIS]);
  3952. }
  3953. else {
  3954. current_position[i] = code_value()+add_homing[i];
  3955. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3956. }
  3957. }
  3958. }
  3959. break;
  3960. case 98: // G98 (activate farm mode)
  3961. farm_mode = 1;
  3962. PingTime = millis();
  3963. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3964. SilentModeMenu = SILENT_MODE_OFF;
  3965. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3966. break;
  3967. case 99: // G99 (deactivate farm mode)
  3968. farm_mode = 0;
  3969. lcd_printer_connected();
  3970. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3971. lcd_update(2);
  3972. break;
  3973. default:
  3974. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3975. }
  3976. } // end if(code_seen('G'))
  3977. else if(code_seen('M'))
  3978. {
  3979. int index;
  3980. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3981. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3982. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3983. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3984. } else
  3985. switch((int)code_value())
  3986. {
  3987. #ifdef ULTIPANEL
  3988. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3989. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3990. {
  3991. char *src = strchr_pointer + 2;
  3992. codenum = 0;
  3993. bool hasP = false, hasS = false;
  3994. if (code_seen('P')) {
  3995. codenum = code_value(); // milliseconds to wait
  3996. hasP = codenum > 0;
  3997. }
  3998. if (code_seen('S')) {
  3999. codenum = code_value() * 1000; // seconds to wait
  4000. hasS = codenum > 0;
  4001. }
  4002. starpos = strchr(src, '*');
  4003. if (starpos != NULL) *(starpos) = '\0';
  4004. while (*src == ' ') ++src;
  4005. if (!hasP && !hasS && *src != '\0') {
  4006. lcd_setstatus(src);
  4007. } else {
  4008. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4009. }
  4010. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4011. st_synchronize();
  4012. previous_millis_cmd = millis();
  4013. if (codenum > 0){
  4014. codenum += millis(); // keep track of when we started waiting
  4015. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4016. while(millis() < codenum && !lcd_clicked()){
  4017. manage_heater();
  4018. manage_inactivity(true);
  4019. lcd_update();
  4020. }
  4021. KEEPALIVE_STATE(IN_HANDLER);
  4022. lcd_ignore_click(false);
  4023. }else{
  4024. if (!lcd_detected())
  4025. break;
  4026. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4027. while(!lcd_clicked()){
  4028. manage_heater();
  4029. manage_inactivity(true);
  4030. lcd_update();
  4031. }
  4032. KEEPALIVE_STATE(IN_HANDLER);
  4033. }
  4034. if (IS_SD_PRINTING)
  4035. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4036. else
  4037. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4038. }
  4039. break;
  4040. #endif
  4041. case 17:
  4042. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4043. enable_x();
  4044. enable_y();
  4045. enable_z();
  4046. enable_e0();
  4047. enable_e1();
  4048. enable_e2();
  4049. break;
  4050. #ifdef SDSUPPORT
  4051. case 20: // M20 - list SD card
  4052. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4053. card.ls();
  4054. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4055. break;
  4056. case 21: // M21 - init SD card
  4057. card.initsd();
  4058. break;
  4059. case 22: //M22 - release SD card
  4060. card.release();
  4061. break;
  4062. case 23: //M23 - Select file
  4063. starpos = (strchr(strchr_pointer + 4,'*'));
  4064. if(starpos!=NULL)
  4065. *(starpos)='\0';
  4066. card.openFile(strchr_pointer + 4,true);
  4067. break;
  4068. case 24: //M24 - Start SD print
  4069. if (!card.paused)
  4070. failstats_reset_print();
  4071. card.startFileprint();
  4072. starttime=millis();
  4073. break;
  4074. case 25: //M25 - Pause SD print
  4075. card.pauseSDPrint();
  4076. break;
  4077. case 26: //M26 - Set SD index
  4078. if(card.cardOK && code_seen('S')) {
  4079. card.setIndex(code_value_long());
  4080. }
  4081. break;
  4082. case 27: //M27 - Get SD status
  4083. card.getStatus();
  4084. break;
  4085. case 28: //M28 - Start SD write
  4086. starpos = (strchr(strchr_pointer + 4,'*'));
  4087. if(starpos != NULL){
  4088. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4089. strchr_pointer = strchr(npos,' ') + 1;
  4090. *(starpos) = '\0';
  4091. }
  4092. card.openFile(strchr_pointer+4,false);
  4093. break;
  4094. case 29: //M29 - Stop SD write
  4095. //processed in write to file routine above
  4096. //card,saving = false;
  4097. break;
  4098. case 30: //M30 <filename> Delete File
  4099. if (card.cardOK){
  4100. card.closefile();
  4101. starpos = (strchr(strchr_pointer + 4,'*'));
  4102. if(starpos != NULL){
  4103. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4104. strchr_pointer = strchr(npos,' ') + 1;
  4105. *(starpos) = '\0';
  4106. }
  4107. card.removeFile(strchr_pointer + 4);
  4108. }
  4109. break;
  4110. case 32: //M32 - Select file and start SD print
  4111. {
  4112. if(card.sdprinting) {
  4113. st_synchronize();
  4114. }
  4115. starpos = (strchr(strchr_pointer + 4,'*'));
  4116. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4117. if(namestartpos==NULL)
  4118. {
  4119. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4120. }
  4121. else
  4122. namestartpos++; //to skip the '!'
  4123. if(starpos!=NULL)
  4124. *(starpos)='\0';
  4125. bool call_procedure=(code_seen('P'));
  4126. if(strchr_pointer>namestartpos)
  4127. call_procedure=false; //false alert, 'P' found within filename
  4128. if( card.cardOK )
  4129. {
  4130. card.openFile(namestartpos,true,!call_procedure);
  4131. if(code_seen('S'))
  4132. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4133. card.setIndex(code_value_long());
  4134. card.startFileprint();
  4135. if(!call_procedure)
  4136. starttime=millis(); //procedure calls count as normal print time.
  4137. }
  4138. } break;
  4139. case 928: //M928 - Start SD write
  4140. starpos = (strchr(strchr_pointer + 5,'*'));
  4141. if(starpos != NULL){
  4142. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4143. strchr_pointer = strchr(npos,' ') + 1;
  4144. *(starpos) = '\0';
  4145. }
  4146. card.openLogFile(strchr_pointer+5);
  4147. break;
  4148. #endif //SDSUPPORT
  4149. case 31: //M31 take time since the start of the SD print or an M109 command
  4150. {
  4151. stoptime=millis();
  4152. char time[30];
  4153. unsigned long t=(stoptime-starttime)/1000;
  4154. int sec,min;
  4155. min=t/60;
  4156. sec=t%60;
  4157. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4158. SERIAL_ECHO_START;
  4159. SERIAL_ECHOLN(time);
  4160. lcd_setstatus(time);
  4161. autotempShutdown();
  4162. }
  4163. break;
  4164. #ifndef _DISABLE_M42_M226
  4165. case 42: //M42 -Change pin status via gcode
  4166. if (code_seen('S'))
  4167. {
  4168. int pin_status = code_value();
  4169. int pin_number = LED_PIN;
  4170. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4171. pin_number = code_value();
  4172. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4173. {
  4174. if (sensitive_pins[i] == pin_number)
  4175. {
  4176. pin_number = -1;
  4177. break;
  4178. }
  4179. }
  4180. #if defined(FAN_PIN) && FAN_PIN > -1
  4181. if (pin_number == FAN_PIN)
  4182. fanSpeed = pin_status;
  4183. #endif
  4184. if (pin_number > -1)
  4185. {
  4186. pinMode(pin_number, OUTPUT);
  4187. digitalWrite(pin_number, pin_status);
  4188. analogWrite(pin_number, pin_status);
  4189. }
  4190. }
  4191. break;
  4192. #endif //_DISABLE_M42_M226
  4193. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4194. // Reset the baby step value and the baby step applied flag.
  4195. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4196. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4197. // Reset the skew and offset in both RAM and EEPROM.
  4198. reset_bed_offset_and_skew();
  4199. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4200. // the planner will not perform any adjustments in the XY plane.
  4201. // Wait for the motors to stop and update the current position with the absolute values.
  4202. world2machine_revert_to_uncorrected();
  4203. break;
  4204. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4205. {
  4206. int8_t verbosity_level = 0;
  4207. bool only_Z = code_seen('Z');
  4208. #ifdef SUPPORT_VERBOSITY
  4209. if (code_seen('V'))
  4210. {
  4211. // Just 'V' without a number counts as V1.
  4212. char c = strchr_pointer[1];
  4213. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4214. }
  4215. #endif //SUPPORT_VERBOSITY
  4216. gcode_M45(only_Z, verbosity_level);
  4217. }
  4218. break;
  4219. /*
  4220. case 46:
  4221. {
  4222. // M46: Prusa3D: Show the assigned IP address.
  4223. uint8_t ip[4];
  4224. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4225. if (hasIP) {
  4226. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4227. SERIAL_ECHO(int(ip[0]));
  4228. SERIAL_ECHOPGM(".");
  4229. SERIAL_ECHO(int(ip[1]));
  4230. SERIAL_ECHOPGM(".");
  4231. SERIAL_ECHO(int(ip[2]));
  4232. SERIAL_ECHOPGM(".");
  4233. SERIAL_ECHO(int(ip[3]));
  4234. SERIAL_ECHOLNPGM("");
  4235. } else {
  4236. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4237. }
  4238. break;
  4239. }
  4240. */
  4241. case 47:
  4242. // M47: Prusa3D: Show end stops dialog on the display.
  4243. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4244. lcd_diag_show_end_stops();
  4245. KEEPALIVE_STATE(IN_HANDLER);
  4246. break;
  4247. #if 0
  4248. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4249. {
  4250. // Disable the default update procedure of the display. We will do a modal dialog.
  4251. lcd_update_enable(false);
  4252. // Let the planner use the uncorrected coordinates.
  4253. mbl.reset();
  4254. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4255. // the planner will not perform any adjustments in the XY plane.
  4256. // Wait for the motors to stop and update the current position with the absolute values.
  4257. world2machine_revert_to_uncorrected();
  4258. // Move the print head close to the bed.
  4259. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4260. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4261. st_synchronize();
  4262. // Home in the XY plane.
  4263. set_destination_to_current();
  4264. setup_for_endstop_move();
  4265. home_xy();
  4266. int8_t verbosity_level = 0;
  4267. if (code_seen('V')) {
  4268. // Just 'V' without a number counts as V1.
  4269. char c = strchr_pointer[1];
  4270. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4271. }
  4272. bool success = scan_bed_induction_points(verbosity_level);
  4273. clean_up_after_endstop_move();
  4274. // Print head up.
  4275. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4276. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4277. st_synchronize();
  4278. lcd_update_enable(true);
  4279. break;
  4280. }
  4281. #endif
  4282. // M48 Z-Probe repeatability measurement function.
  4283. //
  4284. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4285. //
  4286. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4287. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4288. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4289. // regenerated.
  4290. //
  4291. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4292. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4293. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4294. //
  4295. #ifdef ENABLE_AUTO_BED_LEVELING
  4296. #ifdef Z_PROBE_REPEATABILITY_TEST
  4297. case 48: // M48 Z-Probe repeatability
  4298. {
  4299. #if Z_MIN_PIN == -1
  4300. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4301. #endif
  4302. double sum=0.0;
  4303. double mean=0.0;
  4304. double sigma=0.0;
  4305. double sample_set[50];
  4306. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4307. double X_current, Y_current, Z_current;
  4308. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4309. if (code_seen('V') || code_seen('v')) {
  4310. verbose_level = code_value();
  4311. if (verbose_level<0 || verbose_level>4 ) {
  4312. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4313. goto Sigma_Exit;
  4314. }
  4315. }
  4316. if (verbose_level > 0) {
  4317. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4318. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4319. }
  4320. if (code_seen('n')) {
  4321. n_samples = code_value();
  4322. if (n_samples<4 || n_samples>50 ) {
  4323. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4324. goto Sigma_Exit;
  4325. }
  4326. }
  4327. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4328. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4329. Z_current = st_get_position_mm(Z_AXIS);
  4330. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4331. ext_position = st_get_position_mm(E_AXIS);
  4332. if (code_seen('X') || code_seen('x') ) {
  4333. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4334. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4335. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4336. goto Sigma_Exit;
  4337. }
  4338. }
  4339. if (code_seen('Y') || code_seen('y') ) {
  4340. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4341. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4342. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4343. goto Sigma_Exit;
  4344. }
  4345. }
  4346. if (code_seen('L') || code_seen('l') ) {
  4347. n_legs = code_value();
  4348. if ( n_legs==1 )
  4349. n_legs = 2;
  4350. if ( n_legs<0 || n_legs>15 ) {
  4351. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4352. goto Sigma_Exit;
  4353. }
  4354. }
  4355. //
  4356. // Do all the preliminary setup work. First raise the probe.
  4357. //
  4358. st_synchronize();
  4359. plan_bed_level_matrix.set_to_identity();
  4360. plan_buffer_line( X_current, Y_current, Z_start_location,
  4361. ext_position,
  4362. homing_feedrate[Z_AXIS]/60,
  4363. active_extruder);
  4364. st_synchronize();
  4365. //
  4366. // Now get everything to the specified probe point So we can safely do a probe to
  4367. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4368. // use that as a starting point for each probe.
  4369. //
  4370. if (verbose_level > 2)
  4371. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4372. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4373. ext_position,
  4374. homing_feedrate[X_AXIS]/60,
  4375. active_extruder);
  4376. st_synchronize();
  4377. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4378. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4379. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4380. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4381. //
  4382. // OK, do the inital probe to get us close to the bed.
  4383. // Then retrace the right amount and use that in subsequent probes
  4384. //
  4385. setup_for_endstop_move();
  4386. run_z_probe();
  4387. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4388. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4389. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4390. ext_position,
  4391. homing_feedrate[X_AXIS]/60,
  4392. active_extruder);
  4393. st_synchronize();
  4394. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4395. for( n=0; n<n_samples; n++) {
  4396. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4397. if ( n_legs) {
  4398. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4399. int rotational_direction, l;
  4400. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4401. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4402. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4403. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4404. //SERIAL_ECHOPAIR(" theta: ",theta);
  4405. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4406. //SERIAL_PROTOCOLLNPGM("");
  4407. for( l=0; l<n_legs-1; l++) {
  4408. if (rotational_direction==1)
  4409. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4410. else
  4411. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4412. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4413. if ( radius<0.0 )
  4414. radius = -radius;
  4415. X_current = X_probe_location + cos(theta) * radius;
  4416. Y_current = Y_probe_location + sin(theta) * radius;
  4417. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4418. X_current = X_MIN_POS;
  4419. if ( X_current>X_MAX_POS)
  4420. X_current = X_MAX_POS;
  4421. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4422. Y_current = Y_MIN_POS;
  4423. if ( Y_current>Y_MAX_POS)
  4424. Y_current = Y_MAX_POS;
  4425. if (verbose_level>3 ) {
  4426. SERIAL_ECHOPAIR("x: ", X_current);
  4427. SERIAL_ECHOPAIR("y: ", Y_current);
  4428. SERIAL_PROTOCOLLNPGM("");
  4429. }
  4430. do_blocking_move_to( X_current, Y_current, Z_current );
  4431. }
  4432. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4433. }
  4434. setup_for_endstop_move();
  4435. run_z_probe();
  4436. sample_set[n] = current_position[Z_AXIS];
  4437. //
  4438. // Get the current mean for the data points we have so far
  4439. //
  4440. sum=0.0;
  4441. for( j=0; j<=n; j++) {
  4442. sum = sum + sample_set[j];
  4443. }
  4444. mean = sum / (double (n+1));
  4445. //
  4446. // Now, use that mean to calculate the standard deviation for the
  4447. // data points we have so far
  4448. //
  4449. sum=0.0;
  4450. for( j=0; j<=n; j++) {
  4451. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4452. }
  4453. sigma = sqrt( sum / (double (n+1)) );
  4454. if (verbose_level > 1) {
  4455. SERIAL_PROTOCOL(n+1);
  4456. SERIAL_PROTOCOL(" of ");
  4457. SERIAL_PROTOCOL(n_samples);
  4458. SERIAL_PROTOCOLPGM(" z: ");
  4459. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4460. }
  4461. if (verbose_level > 2) {
  4462. SERIAL_PROTOCOL(" mean: ");
  4463. SERIAL_PROTOCOL_F(mean,6);
  4464. SERIAL_PROTOCOL(" sigma: ");
  4465. SERIAL_PROTOCOL_F(sigma,6);
  4466. }
  4467. if (verbose_level > 0)
  4468. SERIAL_PROTOCOLPGM("\n");
  4469. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4470. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4471. st_synchronize();
  4472. }
  4473. delay(1000);
  4474. clean_up_after_endstop_move();
  4475. // enable_endstops(true);
  4476. if (verbose_level > 0) {
  4477. SERIAL_PROTOCOLPGM("Mean: ");
  4478. SERIAL_PROTOCOL_F(mean, 6);
  4479. SERIAL_PROTOCOLPGM("\n");
  4480. }
  4481. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4482. SERIAL_PROTOCOL_F(sigma, 6);
  4483. SERIAL_PROTOCOLPGM("\n\n");
  4484. Sigma_Exit:
  4485. break;
  4486. }
  4487. #endif // Z_PROBE_REPEATABILITY_TEST
  4488. #endif // ENABLE_AUTO_BED_LEVELING
  4489. case 73: //M73 show percent done and time remaining
  4490. if(code_seen('P')) print_percent_done_normal = code_value();
  4491. if(code_seen('R')) print_time_remaining_normal = code_value();
  4492. if(code_seen('Q')) print_percent_done_silent = code_value();
  4493. if(code_seen('S')) print_time_remaining_silent = code_value();
  4494. {
  4495. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4496. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4497. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4498. }
  4499. break;
  4500. case 104: // M104
  4501. if(setTargetedHotend(104)){
  4502. break;
  4503. }
  4504. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4505. setWatch();
  4506. break;
  4507. case 112: // M112 -Emergency Stop
  4508. kill(_n(""), 3);
  4509. break;
  4510. case 140: // M140 set bed temp
  4511. if (code_seen('S')) setTargetBed(code_value());
  4512. break;
  4513. case 105 : // M105
  4514. if(setTargetedHotend(105)){
  4515. break;
  4516. }
  4517. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4518. SERIAL_PROTOCOLPGM("ok T:");
  4519. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4520. SERIAL_PROTOCOLPGM(" /");
  4521. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4522. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4523. SERIAL_PROTOCOLPGM(" B:");
  4524. SERIAL_PROTOCOL_F(degBed(),1);
  4525. SERIAL_PROTOCOLPGM(" /");
  4526. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4527. #endif //TEMP_BED_PIN
  4528. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4529. SERIAL_PROTOCOLPGM(" T");
  4530. SERIAL_PROTOCOL(cur_extruder);
  4531. SERIAL_PROTOCOLPGM(":");
  4532. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4533. SERIAL_PROTOCOLPGM(" /");
  4534. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4535. }
  4536. #else
  4537. SERIAL_ERROR_START;
  4538. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4539. #endif
  4540. SERIAL_PROTOCOLPGM(" @:");
  4541. #ifdef EXTRUDER_WATTS
  4542. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4543. SERIAL_PROTOCOLPGM("W");
  4544. #else
  4545. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4546. #endif
  4547. SERIAL_PROTOCOLPGM(" B@:");
  4548. #ifdef BED_WATTS
  4549. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4550. SERIAL_PROTOCOLPGM("W");
  4551. #else
  4552. SERIAL_PROTOCOL(getHeaterPower(-1));
  4553. #endif
  4554. #ifdef PINDA_THERMISTOR
  4555. SERIAL_PROTOCOLPGM(" P:");
  4556. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4557. #endif //PINDA_THERMISTOR
  4558. #ifdef AMBIENT_THERMISTOR
  4559. SERIAL_PROTOCOLPGM(" A:");
  4560. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4561. #endif //AMBIENT_THERMISTOR
  4562. #ifdef SHOW_TEMP_ADC_VALUES
  4563. {float raw = 0.0;
  4564. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4565. SERIAL_PROTOCOLPGM(" ADC B:");
  4566. SERIAL_PROTOCOL_F(degBed(),1);
  4567. SERIAL_PROTOCOLPGM("C->");
  4568. raw = rawBedTemp();
  4569. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4570. SERIAL_PROTOCOLPGM(" Rb->");
  4571. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4572. SERIAL_PROTOCOLPGM(" Rxb->");
  4573. SERIAL_PROTOCOL_F(raw, 5);
  4574. #endif
  4575. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4576. SERIAL_PROTOCOLPGM(" T");
  4577. SERIAL_PROTOCOL(cur_extruder);
  4578. SERIAL_PROTOCOLPGM(":");
  4579. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4580. SERIAL_PROTOCOLPGM("C->");
  4581. raw = rawHotendTemp(cur_extruder);
  4582. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4583. SERIAL_PROTOCOLPGM(" Rt");
  4584. SERIAL_PROTOCOL(cur_extruder);
  4585. SERIAL_PROTOCOLPGM("->");
  4586. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4587. SERIAL_PROTOCOLPGM(" Rx");
  4588. SERIAL_PROTOCOL(cur_extruder);
  4589. SERIAL_PROTOCOLPGM("->");
  4590. SERIAL_PROTOCOL_F(raw, 5);
  4591. }}
  4592. #endif
  4593. SERIAL_PROTOCOLLN("");
  4594. KEEPALIVE_STATE(NOT_BUSY);
  4595. return;
  4596. break;
  4597. case 109:
  4598. {// M109 - Wait for extruder heater to reach target.
  4599. if(setTargetedHotend(109)){
  4600. break;
  4601. }
  4602. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4603. heating_status = 1;
  4604. if (farm_mode) { prusa_statistics(1); };
  4605. #ifdef AUTOTEMP
  4606. autotemp_enabled=false;
  4607. #endif
  4608. if (code_seen('S')) {
  4609. setTargetHotend(code_value(), tmp_extruder);
  4610. CooldownNoWait = true;
  4611. } else if (code_seen('R')) {
  4612. setTargetHotend(code_value(), tmp_extruder);
  4613. CooldownNoWait = false;
  4614. }
  4615. #ifdef AUTOTEMP
  4616. if (code_seen('S')) autotemp_min=code_value();
  4617. if (code_seen('B')) autotemp_max=code_value();
  4618. if (code_seen('F'))
  4619. {
  4620. autotemp_factor=code_value();
  4621. autotemp_enabled=true;
  4622. }
  4623. #endif
  4624. setWatch();
  4625. codenum = millis();
  4626. /* See if we are heating up or cooling down */
  4627. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4628. KEEPALIVE_STATE(NOT_BUSY);
  4629. cancel_heatup = false;
  4630. wait_for_heater(codenum); //loops until target temperature is reached
  4631. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4632. KEEPALIVE_STATE(IN_HANDLER);
  4633. heating_status = 2;
  4634. if (farm_mode) { prusa_statistics(2); };
  4635. //starttime=millis();
  4636. previous_millis_cmd = millis();
  4637. }
  4638. break;
  4639. case 190: // M190 - Wait for bed heater to reach target.
  4640. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4641. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4642. heating_status = 3;
  4643. if (farm_mode) { prusa_statistics(1); };
  4644. if (code_seen('S'))
  4645. {
  4646. setTargetBed(code_value());
  4647. CooldownNoWait = true;
  4648. }
  4649. else if (code_seen('R'))
  4650. {
  4651. setTargetBed(code_value());
  4652. CooldownNoWait = false;
  4653. }
  4654. codenum = millis();
  4655. cancel_heatup = false;
  4656. target_direction = isHeatingBed(); // true if heating, false if cooling
  4657. KEEPALIVE_STATE(NOT_BUSY);
  4658. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4659. {
  4660. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4661. {
  4662. if (!farm_mode) {
  4663. float tt = degHotend(active_extruder);
  4664. SERIAL_PROTOCOLPGM("T:");
  4665. SERIAL_PROTOCOL(tt);
  4666. SERIAL_PROTOCOLPGM(" E:");
  4667. SERIAL_PROTOCOL((int)active_extruder);
  4668. SERIAL_PROTOCOLPGM(" B:");
  4669. SERIAL_PROTOCOL_F(degBed(), 1);
  4670. SERIAL_PROTOCOLLN("");
  4671. }
  4672. codenum = millis();
  4673. }
  4674. manage_heater();
  4675. manage_inactivity();
  4676. lcd_update();
  4677. }
  4678. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4679. KEEPALIVE_STATE(IN_HANDLER);
  4680. heating_status = 4;
  4681. previous_millis_cmd = millis();
  4682. #endif
  4683. break;
  4684. #if defined(FAN_PIN) && FAN_PIN > -1
  4685. case 106: //M106 Fan On
  4686. if (code_seen('S')){
  4687. fanSpeed=constrain(code_value(),0,255);
  4688. }
  4689. else {
  4690. fanSpeed=255;
  4691. }
  4692. break;
  4693. case 107: //M107 Fan Off
  4694. fanSpeed = 0;
  4695. break;
  4696. #endif //FAN_PIN
  4697. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4698. case 80: // M80 - Turn on Power Supply
  4699. SET_OUTPUT(PS_ON_PIN); //GND
  4700. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4701. // If you have a switch on suicide pin, this is useful
  4702. // if you want to start another print with suicide feature after
  4703. // a print without suicide...
  4704. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4705. SET_OUTPUT(SUICIDE_PIN);
  4706. WRITE(SUICIDE_PIN, HIGH);
  4707. #endif
  4708. #ifdef ULTIPANEL
  4709. powersupply = true;
  4710. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4711. lcd_update();
  4712. #endif
  4713. break;
  4714. #endif
  4715. case 81: // M81 - Turn off Power Supply
  4716. disable_heater();
  4717. st_synchronize();
  4718. disable_e0();
  4719. disable_e1();
  4720. disable_e2();
  4721. finishAndDisableSteppers();
  4722. fanSpeed = 0;
  4723. delay(1000); // Wait a little before to switch off
  4724. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4725. st_synchronize();
  4726. suicide();
  4727. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4728. SET_OUTPUT(PS_ON_PIN);
  4729. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4730. #endif
  4731. #ifdef ULTIPANEL
  4732. powersupply = false;
  4733. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4734. lcd_update();
  4735. #endif
  4736. break;
  4737. case 82:
  4738. axis_relative_modes[3] = false;
  4739. break;
  4740. case 83:
  4741. axis_relative_modes[3] = true;
  4742. break;
  4743. case 18: //compatibility
  4744. case 84: // M84
  4745. if(code_seen('S')){
  4746. stepper_inactive_time = code_value() * 1000;
  4747. }
  4748. else
  4749. {
  4750. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4751. if(all_axis)
  4752. {
  4753. st_synchronize();
  4754. disable_e0();
  4755. disable_e1();
  4756. disable_e2();
  4757. finishAndDisableSteppers();
  4758. }
  4759. else
  4760. {
  4761. st_synchronize();
  4762. if (code_seen('X')) disable_x();
  4763. if (code_seen('Y')) disable_y();
  4764. if (code_seen('Z')) disable_z();
  4765. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4766. if (code_seen('E')) {
  4767. disable_e0();
  4768. disable_e1();
  4769. disable_e2();
  4770. }
  4771. #endif
  4772. }
  4773. }
  4774. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4775. print_time_remaining_init();
  4776. snmm_filaments_used = 0;
  4777. break;
  4778. case 85: // M85
  4779. if(code_seen('S')) {
  4780. max_inactive_time = code_value() * 1000;
  4781. }
  4782. break;
  4783. #ifdef SAFETYTIMER
  4784. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4785. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4786. if (code_seen('S')) {
  4787. safetytimer_inactive_time = code_value() * 1000;
  4788. safetyTimer.start();
  4789. }
  4790. break;
  4791. #endif
  4792. case 92: // M92
  4793. for(int8_t i=0; i < NUM_AXIS; i++)
  4794. {
  4795. if(code_seen(axis_codes[i]))
  4796. {
  4797. if(i == 3) { // E
  4798. float value = code_value();
  4799. if(value < 20.0) {
  4800. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4801. max_jerk[E_AXIS] *= factor;
  4802. max_feedrate[i] *= factor;
  4803. axis_steps_per_sqr_second[i] *= factor;
  4804. }
  4805. axis_steps_per_unit[i] = value;
  4806. }
  4807. else {
  4808. axis_steps_per_unit[i] = code_value();
  4809. }
  4810. }
  4811. }
  4812. break;
  4813. case 110: // M110 - reset line pos
  4814. if (code_seen('N'))
  4815. gcode_LastN = code_value_long();
  4816. break;
  4817. #ifdef HOST_KEEPALIVE_FEATURE
  4818. case 113: // M113 - Get or set Host Keepalive interval
  4819. if (code_seen('S')) {
  4820. host_keepalive_interval = (uint8_t)code_value_short();
  4821. // NOMORE(host_keepalive_interval, 60);
  4822. }
  4823. else {
  4824. SERIAL_ECHO_START;
  4825. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4826. SERIAL_PROTOCOLLN("");
  4827. }
  4828. break;
  4829. #endif
  4830. case 115: // M115
  4831. if (code_seen('V')) {
  4832. // Report the Prusa version number.
  4833. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4834. } else if (code_seen('U')) {
  4835. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4836. // pause the print and ask the user to upgrade the firmware.
  4837. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4838. } else {
  4839. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4840. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4841. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4842. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4843. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4844. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4845. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4846. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4847. SERIAL_ECHOPGM(" UUID:");
  4848. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4849. }
  4850. break;
  4851. /* case 117: // M117 display message
  4852. starpos = (strchr(strchr_pointer + 5,'*'));
  4853. if(starpos!=NULL)
  4854. *(starpos)='\0';
  4855. lcd_setstatus(strchr_pointer + 5);
  4856. break;*/
  4857. case 114: // M114
  4858. gcode_M114();
  4859. break;
  4860. case 120: // M120
  4861. enable_endstops(false) ;
  4862. break;
  4863. case 121: // M121
  4864. enable_endstops(true) ;
  4865. break;
  4866. case 119: // M119
  4867. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4868. SERIAL_PROTOCOLLN("");
  4869. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4870. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4871. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4872. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4873. }else{
  4874. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4875. }
  4876. SERIAL_PROTOCOLLN("");
  4877. #endif
  4878. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4879. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4880. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4881. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4882. }else{
  4883. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4884. }
  4885. SERIAL_PROTOCOLLN("");
  4886. #endif
  4887. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4888. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4889. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4890. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4891. }else{
  4892. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4893. }
  4894. SERIAL_PROTOCOLLN("");
  4895. #endif
  4896. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4897. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4898. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4899. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4900. }else{
  4901. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4902. }
  4903. SERIAL_PROTOCOLLN("");
  4904. #endif
  4905. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4906. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4907. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4908. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4909. }else{
  4910. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4911. }
  4912. SERIAL_PROTOCOLLN("");
  4913. #endif
  4914. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4915. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4916. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4917. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4918. }else{
  4919. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4920. }
  4921. SERIAL_PROTOCOLLN("");
  4922. #endif
  4923. break;
  4924. //TODO: update for all axis, use for loop
  4925. #ifdef BLINKM
  4926. case 150: // M150
  4927. {
  4928. byte red;
  4929. byte grn;
  4930. byte blu;
  4931. if(code_seen('R')) red = code_value();
  4932. if(code_seen('U')) grn = code_value();
  4933. if(code_seen('B')) blu = code_value();
  4934. SendColors(red,grn,blu);
  4935. }
  4936. break;
  4937. #endif //BLINKM
  4938. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4939. {
  4940. tmp_extruder = active_extruder;
  4941. if(code_seen('T')) {
  4942. tmp_extruder = code_value();
  4943. if(tmp_extruder >= EXTRUDERS) {
  4944. SERIAL_ECHO_START;
  4945. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4946. break;
  4947. }
  4948. }
  4949. float area = .0;
  4950. if(code_seen('D')) {
  4951. float diameter = (float)code_value();
  4952. if (diameter == 0.0) {
  4953. // setting any extruder filament size disables volumetric on the assumption that
  4954. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4955. // for all extruders
  4956. volumetric_enabled = false;
  4957. } else {
  4958. filament_size[tmp_extruder] = (float)code_value();
  4959. // make sure all extruders have some sane value for the filament size
  4960. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4961. #if EXTRUDERS > 1
  4962. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4963. #if EXTRUDERS > 2
  4964. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4965. #endif
  4966. #endif
  4967. volumetric_enabled = true;
  4968. }
  4969. } else {
  4970. //reserved for setting filament diameter via UFID or filament measuring device
  4971. break;
  4972. }
  4973. calculate_extruder_multipliers();
  4974. }
  4975. break;
  4976. case 201: // M201
  4977. for(int8_t i=0; i < NUM_AXIS; i++)
  4978. {
  4979. if(code_seen(axis_codes[i]))
  4980. {
  4981. max_acceleration_units_per_sq_second[i] = code_value();
  4982. }
  4983. }
  4984. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4985. reset_acceleration_rates();
  4986. break;
  4987. #if 0 // Not used for Sprinter/grbl gen6
  4988. case 202: // M202
  4989. for(int8_t i=0; i < NUM_AXIS; i++) {
  4990. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4991. }
  4992. break;
  4993. #endif
  4994. case 203: // M203 max feedrate mm/sec
  4995. for(int8_t i=0; i < NUM_AXIS; i++) {
  4996. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4997. }
  4998. break;
  4999. case 204: // M204 acclereration S normal moves T filmanent only moves
  5000. {
  5001. if(code_seen('S')) acceleration = code_value() ;
  5002. if(code_seen('T')) retract_acceleration = code_value() ;
  5003. }
  5004. break;
  5005. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5006. {
  5007. if(code_seen('S')) minimumfeedrate = code_value();
  5008. if(code_seen('T')) mintravelfeedrate = code_value();
  5009. if(code_seen('B')) minsegmenttime = code_value() ;
  5010. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5011. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5012. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5013. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5014. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5015. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5016. }
  5017. break;
  5018. case 206: // M206 additional homing offset
  5019. for(int8_t i=0; i < 3; i++)
  5020. {
  5021. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5022. }
  5023. break;
  5024. #ifdef FWRETRACT
  5025. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5026. {
  5027. if(code_seen('S'))
  5028. {
  5029. retract_length = code_value() ;
  5030. }
  5031. if(code_seen('F'))
  5032. {
  5033. retract_feedrate = code_value()/60 ;
  5034. }
  5035. if(code_seen('Z'))
  5036. {
  5037. retract_zlift = code_value() ;
  5038. }
  5039. }break;
  5040. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5041. {
  5042. if(code_seen('S'))
  5043. {
  5044. retract_recover_length = code_value() ;
  5045. }
  5046. if(code_seen('F'))
  5047. {
  5048. retract_recover_feedrate = code_value()/60 ;
  5049. }
  5050. }break;
  5051. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5052. {
  5053. if(code_seen('S'))
  5054. {
  5055. int t= code_value() ;
  5056. switch(t)
  5057. {
  5058. case 0:
  5059. {
  5060. autoretract_enabled=false;
  5061. retracted[0]=false;
  5062. #if EXTRUDERS > 1
  5063. retracted[1]=false;
  5064. #endif
  5065. #if EXTRUDERS > 2
  5066. retracted[2]=false;
  5067. #endif
  5068. }break;
  5069. case 1:
  5070. {
  5071. autoretract_enabled=true;
  5072. retracted[0]=false;
  5073. #if EXTRUDERS > 1
  5074. retracted[1]=false;
  5075. #endif
  5076. #if EXTRUDERS > 2
  5077. retracted[2]=false;
  5078. #endif
  5079. }break;
  5080. default:
  5081. SERIAL_ECHO_START;
  5082. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5083. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5084. SERIAL_ECHOLNPGM("\"(1)");
  5085. }
  5086. }
  5087. }break;
  5088. #endif // FWRETRACT
  5089. #if EXTRUDERS > 1
  5090. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5091. {
  5092. if(setTargetedHotend(218)){
  5093. break;
  5094. }
  5095. if(code_seen('X'))
  5096. {
  5097. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5098. }
  5099. if(code_seen('Y'))
  5100. {
  5101. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5102. }
  5103. SERIAL_ECHO_START;
  5104. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5105. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5106. {
  5107. SERIAL_ECHO(" ");
  5108. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5109. SERIAL_ECHO(",");
  5110. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5111. }
  5112. SERIAL_ECHOLN("");
  5113. }break;
  5114. #endif
  5115. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5116. {
  5117. if(code_seen('S'))
  5118. {
  5119. feedmultiply = code_value() ;
  5120. }
  5121. }
  5122. break;
  5123. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5124. {
  5125. if(code_seen('S'))
  5126. {
  5127. int tmp_code = code_value();
  5128. if (code_seen('T'))
  5129. {
  5130. if(setTargetedHotend(221)){
  5131. break;
  5132. }
  5133. extruder_multiply[tmp_extruder] = tmp_code;
  5134. }
  5135. else
  5136. {
  5137. extrudemultiply = tmp_code ;
  5138. }
  5139. }
  5140. calculate_extruder_multipliers();
  5141. }
  5142. break;
  5143. #ifndef _DISABLE_M42_M226
  5144. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5145. {
  5146. if(code_seen('P')){
  5147. int pin_number = code_value(); // pin number
  5148. int pin_state = -1; // required pin state - default is inverted
  5149. if(code_seen('S')) pin_state = code_value(); // required pin state
  5150. if(pin_state >= -1 && pin_state <= 1){
  5151. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5152. {
  5153. if (sensitive_pins[i] == pin_number)
  5154. {
  5155. pin_number = -1;
  5156. break;
  5157. }
  5158. }
  5159. if (pin_number > -1)
  5160. {
  5161. int target = LOW;
  5162. st_synchronize();
  5163. pinMode(pin_number, INPUT);
  5164. switch(pin_state){
  5165. case 1:
  5166. target = HIGH;
  5167. break;
  5168. case 0:
  5169. target = LOW;
  5170. break;
  5171. case -1:
  5172. target = !digitalRead(pin_number);
  5173. break;
  5174. }
  5175. while(digitalRead(pin_number) != target){
  5176. manage_heater();
  5177. manage_inactivity();
  5178. lcd_update();
  5179. }
  5180. }
  5181. }
  5182. }
  5183. }
  5184. break;
  5185. #endif //_DISABLE_M42_M226
  5186. #if NUM_SERVOS > 0
  5187. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5188. {
  5189. int servo_index = -1;
  5190. int servo_position = 0;
  5191. if (code_seen('P'))
  5192. servo_index = code_value();
  5193. if (code_seen('S')) {
  5194. servo_position = code_value();
  5195. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5196. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5197. servos[servo_index].attach(0);
  5198. #endif
  5199. servos[servo_index].write(servo_position);
  5200. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5201. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5202. servos[servo_index].detach();
  5203. #endif
  5204. }
  5205. else {
  5206. SERIAL_ECHO_START;
  5207. SERIAL_ECHO("Servo ");
  5208. SERIAL_ECHO(servo_index);
  5209. SERIAL_ECHOLN(" out of range");
  5210. }
  5211. }
  5212. else if (servo_index >= 0) {
  5213. SERIAL_PROTOCOL(_T(MSG_OK));
  5214. SERIAL_PROTOCOL(" Servo ");
  5215. SERIAL_PROTOCOL(servo_index);
  5216. SERIAL_PROTOCOL(": ");
  5217. SERIAL_PROTOCOL(servos[servo_index].read());
  5218. SERIAL_PROTOCOLLN("");
  5219. }
  5220. }
  5221. break;
  5222. #endif // NUM_SERVOS > 0
  5223. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5224. case 300: // M300
  5225. {
  5226. int beepS = code_seen('S') ? code_value() : 110;
  5227. int beepP = code_seen('P') ? code_value() : 1000;
  5228. if (beepS > 0)
  5229. {
  5230. #if BEEPER > 0
  5231. tone(BEEPER, beepS);
  5232. delay(beepP);
  5233. noTone(BEEPER);
  5234. #elif defined(ULTRALCD)
  5235. lcd_buzz(beepS, beepP);
  5236. #elif defined(LCD_USE_I2C_BUZZER)
  5237. lcd_buzz(beepP, beepS);
  5238. #endif
  5239. }
  5240. else
  5241. {
  5242. delay(beepP);
  5243. }
  5244. }
  5245. break;
  5246. #endif // M300
  5247. #ifdef PIDTEMP
  5248. case 301: // M301
  5249. {
  5250. if(code_seen('P')) Kp = code_value();
  5251. if(code_seen('I')) Ki = scalePID_i(code_value());
  5252. if(code_seen('D')) Kd = scalePID_d(code_value());
  5253. #ifdef PID_ADD_EXTRUSION_RATE
  5254. if(code_seen('C')) Kc = code_value();
  5255. #endif
  5256. updatePID();
  5257. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5258. SERIAL_PROTOCOL(" p:");
  5259. SERIAL_PROTOCOL(Kp);
  5260. SERIAL_PROTOCOL(" i:");
  5261. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5262. SERIAL_PROTOCOL(" d:");
  5263. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5264. #ifdef PID_ADD_EXTRUSION_RATE
  5265. SERIAL_PROTOCOL(" c:");
  5266. //Kc does not have scaling applied above, or in resetting defaults
  5267. SERIAL_PROTOCOL(Kc);
  5268. #endif
  5269. SERIAL_PROTOCOLLN("");
  5270. }
  5271. break;
  5272. #endif //PIDTEMP
  5273. #ifdef PIDTEMPBED
  5274. case 304: // M304
  5275. {
  5276. if(code_seen('P')) bedKp = code_value();
  5277. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5278. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5279. updatePID();
  5280. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5281. SERIAL_PROTOCOL(" p:");
  5282. SERIAL_PROTOCOL(bedKp);
  5283. SERIAL_PROTOCOL(" i:");
  5284. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5285. SERIAL_PROTOCOL(" d:");
  5286. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5287. SERIAL_PROTOCOLLN("");
  5288. }
  5289. break;
  5290. #endif //PIDTEMP
  5291. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5292. {
  5293. #ifdef CHDK
  5294. SET_OUTPUT(CHDK);
  5295. WRITE(CHDK, HIGH);
  5296. chdkHigh = millis();
  5297. chdkActive = true;
  5298. #else
  5299. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5300. const uint8_t NUM_PULSES=16;
  5301. const float PULSE_LENGTH=0.01524;
  5302. for(int i=0; i < NUM_PULSES; i++) {
  5303. WRITE(PHOTOGRAPH_PIN, HIGH);
  5304. _delay_ms(PULSE_LENGTH);
  5305. WRITE(PHOTOGRAPH_PIN, LOW);
  5306. _delay_ms(PULSE_LENGTH);
  5307. }
  5308. delay(7.33);
  5309. for(int i=0; i < NUM_PULSES; i++) {
  5310. WRITE(PHOTOGRAPH_PIN, HIGH);
  5311. _delay_ms(PULSE_LENGTH);
  5312. WRITE(PHOTOGRAPH_PIN, LOW);
  5313. _delay_ms(PULSE_LENGTH);
  5314. }
  5315. #endif
  5316. #endif //chdk end if
  5317. }
  5318. break;
  5319. #ifdef DOGLCD
  5320. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5321. {
  5322. if (code_seen('C')) {
  5323. lcd_setcontrast( ((int)code_value())&63 );
  5324. }
  5325. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5326. SERIAL_PROTOCOL(lcd_contrast);
  5327. SERIAL_PROTOCOLLN("");
  5328. }
  5329. break;
  5330. #endif
  5331. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5332. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5333. {
  5334. float temp = .0;
  5335. if (code_seen('S')) temp=code_value();
  5336. set_extrude_min_temp(temp);
  5337. }
  5338. break;
  5339. #endif
  5340. case 303: // M303 PID autotune
  5341. {
  5342. float temp = 150.0;
  5343. int e=0;
  5344. int c=5;
  5345. if (code_seen('E')) e=code_value();
  5346. if (e<0)
  5347. temp=70;
  5348. if (code_seen('S')) temp=code_value();
  5349. if (code_seen('C')) c=code_value();
  5350. PID_autotune(temp, e, c);
  5351. }
  5352. break;
  5353. case 400: // M400 finish all moves
  5354. {
  5355. st_synchronize();
  5356. }
  5357. break;
  5358. case 500: // M500 Store settings in EEPROM
  5359. {
  5360. Config_StoreSettings(EEPROM_OFFSET);
  5361. }
  5362. break;
  5363. case 501: // M501 Read settings from EEPROM
  5364. {
  5365. Config_RetrieveSettings(EEPROM_OFFSET);
  5366. }
  5367. break;
  5368. case 502: // M502 Revert to default settings
  5369. {
  5370. Config_ResetDefault();
  5371. }
  5372. break;
  5373. case 503: // M503 print settings currently in memory
  5374. {
  5375. Config_PrintSettings();
  5376. }
  5377. break;
  5378. case 509: //M509 Force language selection
  5379. {
  5380. lang_reset();
  5381. SERIAL_ECHO_START;
  5382. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5383. }
  5384. break;
  5385. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5386. case 540:
  5387. {
  5388. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5389. }
  5390. break;
  5391. #endif
  5392. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5393. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5394. {
  5395. float value;
  5396. if (code_seen('Z'))
  5397. {
  5398. value = code_value();
  5399. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5400. {
  5401. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5402. SERIAL_ECHO_START;
  5403. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5404. SERIAL_PROTOCOLLN("");
  5405. }
  5406. else
  5407. {
  5408. SERIAL_ECHO_START;
  5409. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5410. SERIAL_ECHORPGM(MSG_Z_MIN);
  5411. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5412. SERIAL_ECHORPGM(MSG_Z_MAX);
  5413. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5414. SERIAL_PROTOCOLLN("");
  5415. }
  5416. }
  5417. else
  5418. {
  5419. SERIAL_ECHO_START;
  5420. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5421. SERIAL_ECHO(-zprobe_zoffset);
  5422. SERIAL_PROTOCOLLN("");
  5423. }
  5424. break;
  5425. }
  5426. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5427. #ifdef FILAMENTCHANGEENABLE
  5428. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5429. {
  5430. #ifdef PAT9125
  5431. bool old_fsensor_enabled = fsensor_enabled;
  5432. fsensor_enabled = false; //temporary solution for unexpected restarting
  5433. #endif //PAT9125
  5434. st_synchronize();
  5435. float target[4];
  5436. float lastpos[4];
  5437. if (farm_mode)
  5438. {
  5439. prusa_statistics(22);
  5440. }
  5441. feedmultiplyBckp=feedmultiply;
  5442. int8_t TooLowZ = 0;
  5443. float HotendTempBckp = degTargetHotend(active_extruder);
  5444. int fanSpeedBckp = fanSpeed;
  5445. target[X_AXIS]=current_position[X_AXIS];
  5446. target[Y_AXIS]=current_position[Y_AXIS];
  5447. target[Z_AXIS]=current_position[Z_AXIS];
  5448. target[E_AXIS]=current_position[E_AXIS];
  5449. lastpos[X_AXIS]=current_position[X_AXIS];
  5450. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5451. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5452. lastpos[E_AXIS]=current_position[E_AXIS];
  5453. //Restract extruder
  5454. if(code_seen('E'))
  5455. {
  5456. target[E_AXIS]+= code_value();
  5457. }
  5458. else
  5459. {
  5460. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5461. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5462. #endif
  5463. }
  5464. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5465. //Lift Z
  5466. if(code_seen('Z'))
  5467. {
  5468. target[Z_AXIS]+= code_value();
  5469. }
  5470. else
  5471. {
  5472. #ifdef FILAMENTCHANGE_ZADD
  5473. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5474. if(target[Z_AXIS] < 10){
  5475. target[Z_AXIS]+= 10 ;
  5476. TooLowZ = 1;
  5477. }else{
  5478. TooLowZ = 0;
  5479. }
  5480. #endif
  5481. }
  5482. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5483. //Move XY to side
  5484. if(code_seen('X'))
  5485. {
  5486. target[X_AXIS]+= code_value();
  5487. }
  5488. else
  5489. {
  5490. #ifdef FILAMENTCHANGE_XPOS
  5491. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5492. #endif
  5493. }
  5494. if(code_seen('Y'))
  5495. {
  5496. target[Y_AXIS]= code_value();
  5497. }
  5498. else
  5499. {
  5500. #ifdef FILAMENTCHANGE_YPOS
  5501. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5502. #endif
  5503. }
  5504. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5505. st_synchronize();
  5506. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5507. uint8_t cnt = 0;
  5508. int counterBeep = 0;
  5509. fanSpeed = 0;
  5510. unsigned long waiting_start_time = millis();
  5511. uint8_t wait_for_user_state = 0;
  5512. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5513. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5514. //cnt++;
  5515. manage_heater();
  5516. manage_inactivity(true);
  5517. /*#ifdef SNMM
  5518. target[E_AXIS] += 0.002;
  5519. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5520. #endif // SNMM*/
  5521. //if (cnt == 0)
  5522. {
  5523. #if BEEPER > 0
  5524. if (counterBeep == 500) {
  5525. counterBeep = 0;
  5526. }
  5527. SET_OUTPUT(BEEPER);
  5528. if (counterBeep == 0) {
  5529. WRITE(BEEPER, HIGH);
  5530. }
  5531. if (counterBeep == 20) {
  5532. WRITE(BEEPER, LOW);
  5533. }
  5534. counterBeep++;
  5535. #else
  5536. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5537. lcd_buzz(1000 / 6, 100);
  5538. #else
  5539. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5540. #endif
  5541. #endif
  5542. }
  5543. switch (wait_for_user_state) {
  5544. case 0:
  5545. delay_keep_alive(4);
  5546. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5547. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5548. wait_for_user_state = 1;
  5549. setTargetHotend(0, 0);
  5550. setTargetHotend(0, 1);
  5551. setTargetHotend(0, 2);
  5552. st_synchronize();
  5553. disable_e0();
  5554. disable_e1();
  5555. disable_e2();
  5556. }
  5557. break;
  5558. case 1:
  5559. delay_keep_alive(4);
  5560. if (lcd_clicked()) {
  5561. setTargetHotend(HotendTempBckp, active_extruder);
  5562. lcd_wait_for_heater();
  5563. wait_for_user_state = 2;
  5564. }
  5565. break;
  5566. case 2:
  5567. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5568. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5569. waiting_start_time = millis();
  5570. wait_for_user_state = 0;
  5571. }
  5572. else {
  5573. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5574. lcd.setCursor(1, 4);
  5575. lcd.print(ftostr3(degHotend(active_extruder)));
  5576. }
  5577. break;
  5578. }
  5579. }
  5580. WRITE(BEEPER, LOW);
  5581. lcd_change_fil_state = 0;
  5582. // Unload filament
  5583. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5584. KEEPALIVE_STATE(IN_HANDLER);
  5585. custom_message = true;
  5586. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5587. if (code_seen('L'))
  5588. {
  5589. target[E_AXIS] += code_value();
  5590. }
  5591. else
  5592. {
  5593. #ifdef SNMM
  5594. #else
  5595. #ifdef FILAMENTCHANGE_FINALRETRACT
  5596. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5597. #endif
  5598. #endif // SNMM
  5599. }
  5600. #ifdef SNMM
  5601. target[E_AXIS] += 12;
  5602. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5603. target[E_AXIS] += 6;
  5604. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5605. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5606. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5607. st_synchronize();
  5608. target[E_AXIS] += (FIL_COOLING);
  5609. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5610. target[E_AXIS] += (FIL_COOLING*-1);
  5611. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5612. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5613. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5614. st_synchronize();
  5615. #else
  5616. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5617. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5618. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5619. st_synchronize();
  5620. #ifdef TMC2130
  5621. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5622. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5623. #else
  5624. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5625. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5626. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5627. #endif //TMC2130
  5628. target[E_AXIS] -= 45;
  5629. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5630. st_synchronize();
  5631. target[E_AXIS] -= 15;
  5632. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5633. st_synchronize();
  5634. target[E_AXIS] -= 20;
  5635. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5636. st_synchronize();
  5637. #ifdef TMC2130
  5638. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5639. #else
  5640. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5641. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5642. else st_current_set(2, tmp_motor_loud[2]);
  5643. #endif //TMC2130
  5644. #endif // SNMM
  5645. //finish moves
  5646. st_synchronize();
  5647. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5648. //disable extruder steppers so filament can be removed
  5649. disable_e0();
  5650. disable_e1();
  5651. disable_e2();
  5652. delay(100);
  5653. WRITE(BEEPER, HIGH);
  5654. counterBeep = 0;
  5655. while(!lcd_clicked() && (counterBeep < 50)) {
  5656. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5657. delay_keep_alive(100);
  5658. counterBeep++;
  5659. }
  5660. WRITE(BEEPER, LOW);
  5661. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5662. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5663. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5664. //lcd_return_to_status();
  5665. lcd_update_enable(true);
  5666. //Wait for user to insert filament
  5667. lcd_wait_interact();
  5668. //load_filament_time = millis();
  5669. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5670. #ifdef PAT9125
  5671. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5672. #endif //PAT9125
  5673. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5674. while(!lcd_clicked())
  5675. {
  5676. manage_heater();
  5677. manage_inactivity(true);
  5678. #ifdef PAT9125
  5679. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5680. {
  5681. tone(BEEPER, 1000);
  5682. delay_keep_alive(50);
  5683. noTone(BEEPER);
  5684. break;
  5685. }
  5686. #endif //PAT9125
  5687. /*#ifdef SNMM
  5688. target[E_AXIS] += 0.002;
  5689. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5690. #endif // SNMM*/
  5691. }
  5692. #ifdef PAT9125
  5693. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5694. #endif //PAT9125
  5695. //WRITE(BEEPER, LOW);
  5696. KEEPALIVE_STATE(IN_HANDLER);
  5697. #ifdef SNMM
  5698. display_loading();
  5699. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5700. do {
  5701. target[E_AXIS] += 0.002;
  5702. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5703. delay_keep_alive(2);
  5704. } while (!lcd_clicked());
  5705. KEEPALIVE_STATE(IN_HANDLER);
  5706. /*if (millis() - load_filament_time > 2) {
  5707. load_filament_time = millis();
  5708. target[E_AXIS] += 0.001;
  5709. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5710. }*/
  5711. //Filament inserted
  5712. //Feed the filament to the end of nozzle quickly
  5713. st_synchronize();
  5714. target[E_AXIS] += bowden_length[snmm_extruder];
  5715. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5716. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5717. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5718. target[E_AXIS] += 40;
  5719. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5720. target[E_AXIS] += 10;
  5721. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5722. #else
  5723. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5724. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5725. #endif // SNMM
  5726. //Extrude some filament
  5727. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5728. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5729. //Wait for user to check the state
  5730. lcd_change_fil_state = 0;
  5731. lcd_loading_filament();
  5732. tone(BEEPER, 500);
  5733. delay_keep_alive(50);
  5734. noTone(BEEPER);
  5735. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5736. lcd_change_fil_state = 0;
  5737. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5738. lcd_alright();
  5739. KEEPALIVE_STATE(IN_HANDLER);
  5740. switch(lcd_change_fil_state){
  5741. // Filament failed to load so load it again
  5742. case 2:
  5743. #ifdef SNMM
  5744. display_loading();
  5745. do {
  5746. target[E_AXIS] += 0.002;
  5747. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5748. delay_keep_alive(2);
  5749. } while (!lcd_clicked());
  5750. st_synchronize();
  5751. target[E_AXIS] += bowden_length[snmm_extruder];
  5752. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5753. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5754. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5755. target[E_AXIS] += 40;
  5756. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5757. target[E_AXIS] += 10;
  5758. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5759. #else
  5760. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5761. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5762. #endif
  5763. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5764. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5765. lcd_loading_filament();
  5766. break;
  5767. // Filament loaded properly but color is not clear
  5768. case 3:
  5769. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5770. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5771. lcd_loading_color();
  5772. break;
  5773. // Everything good
  5774. default:
  5775. lcd_change_success();
  5776. lcd_update_enable(true);
  5777. break;
  5778. }
  5779. }
  5780. //Not let's go back to print
  5781. fanSpeed = fanSpeedBckp;
  5782. //Feed a little of filament to stabilize pressure
  5783. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5784. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5785. //Retract
  5786. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5787. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5788. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5789. //Move XY back
  5790. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5791. //Move Z back
  5792. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5793. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5794. //Unretract
  5795. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5796. //Set E position to original
  5797. plan_set_e_position(lastpos[E_AXIS]);
  5798. //Recover feed rate
  5799. feedmultiply=feedmultiplyBckp;
  5800. char cmd[9];
  5801. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5802. enquecommand(cmd);
  5803. lcd_setstatuspgm(_T(WELCOME_MSG));
  5804. custom_message = false;
  5805. custom_message_type = 0;
  5806. #ifdef PAT9125
  5807. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5808. if (fsensor_M600)
  5809. {
  5810. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5811. st_synchronize();
  5812. while (!is_buffer_empty())
  5813. {
  5814. process_commands();
  5815. cmdqueue_pop_front();
  5816. }
  5817. KEEPALIVE_STATE(IN_HANDLER);
  5818. fsensor_enable();
  5819. fsensor_restore_print_and_continue();
  5820. }
  5821. #endif //PAT9125
  5822. }
  5823. break;
  5824. #endif //FILAMENTCHANGEENABLE
  5825. case 601: {
  5826. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5827. }
  5828. break;
  5829. case 602: {
  5830. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5831. }
  5832. break;
  5833. #ifdef PINDA_THERMISTOR
  5834. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5835. {
  5836. int set_target_pinda = 0;
  5837. if (code_seen('S')) {
  5838. set_target_pinda = code_value();
  5839. }
  5840. else {
  5841. break;
  5842. }
  5843. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5844. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5845. SERIAL_PROTOCOL(set_target_pinda);
  5846. SERIAL_PROTOCOLLN("");
  5847. codenum = millis();
  5848. cancel_heatup = false;
  5849. bool is_pinda_cooling = false;
  5850. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5851. is_pinda_cooling = true;
  5852. }
  5853. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5854. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5855. {
  5856. SERIAL_PROTOCOLPGM("P:");
  5857. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5858. SERIAL_PROTOCOLPGM("/");
  5859. SERIAL_PROTOCOL(set_target_pinda);
  5860. SERIAL_PROTOCOLLN("");
  5861. codenum = millis();
  5862. }
  5863. manage_heater();
  5864. manage_inactivity();
  5865. lcd_update();
  5866. }
  5867. LCD_MESSAGERPGM(_T(MSG_OK));
  5868. break;
  5869. }
  5870. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5871. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5872. uint8_t cal_status = calibration_status_pinda();
  5873. int16_t usteps = 0;
  5874. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5875. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5876. for (uint8_t i = 0; i < 6; i++)
  5877. {
  5878. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5879. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5880. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5881. SERIAL_PROTOCOLPGM(", ");
  5882. SERIAL_PROTOCOL(35 + (i * 5));
  5883. SERIAL_PROTOCOLPGM(", ");
  5884. SERIAL_PROTOCOL(usteps);
  5885. SERIAL_PROTOCOLPGM(", ");
  5886. SERIAL_PROTOCOL(mm * 1000);
  5887. SERIAL_PROTOCOLLN("");
  5888. }
  5889. }
  5890. else if (code_seen('!')) { // ! - Set factory default values
  5891. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5892. int16_t z_shift = 8; //40C - 20um - 8usteps
  5893. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5894. z_shift = 24; //45C - 60um - 24usteps
  5895. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5896. z_shift = 48; //50C - 120um - 48usteps
  5897. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5898. z_shift = 80; //55C - 200um - 80usteps
  5899. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5900. z_shift = 120; //60C - 300um - 120usteps
  5901. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5902. SERIAL_PROTOCOLLN("factory restored");
  5903. }
  5904. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5905. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5906. int16_t z_shift = 0;
  5907. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5908. SERIAL_PROTOCOLLN("zerorized");
  5909. }
  5910. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5911. int16_t usteps = code_value();
  5912. if (code_seen('I')) {
  5913. byte index = code_value();
  5914. if ((index >= 0) && (index < 5)) {
  5915. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5916. SERIAL_PROTOCOLLN("OK");
  5917. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5918. for (uint8_t i = 0; i < 6; i++)
  5919. {
  5920. usteps = 0;
  5921. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5922. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5923. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5924. SERIAL_PROTOCOLPGM(", ");
  5925. SERIAL_PROTOCOL(35 + (i * 5));
  5926. SERIAL_PROTOCOLPGM(", ");
  5927. SERIAL_PROTOCOL(usteps);
  5928. SERIAL_PROTOCOLPGM(", ");
  5929. SERIAL_PROTOCOL(mm * 1000);
  5930. SERIAL_PROTOCOLLN("");
  5931. }
  5932. }
  5933. }
  5934. }
  5935. else {
  5936. SERIAL_PROTOCOLPGM("no valid command");
  5937. }
  5938. break;
  5939. #endif //PINDA_THERMISTOR
  5940. #ifdef LIN_ADVANCE
  5941. case 900: // M900: Set LIN_ADVANCE options.
  5942. gcode_M900();
  5943. break;
  5944. #endif
  5945. case 907: // M907 Set digital trimpot motor current using axis codes.
  5946. {
  5947. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5948. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5949. if(code_seen('B')) st_current_set(4,code_value());
  5950. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5951. #endif
  5952. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5953. if(code_seen('X')) st_current_set(0, code_value());
  5954. #endif
  5955. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5956. if(code_seen('Z')) st_current_set(1, code_value());
  5957. #endif
  5958. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5959. if(code_seen('E')) st_current_set(2, code_value());
  5960. #endif
  5961. }
  5962. break;
  5963. case 908: // M908 Control digital trimpot directly.
  5964. {
  5965. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5966. uint8_t channel,current;
  5967. if(code_seen('P')) channel=code_value();
  5968. if(code_seen('S')) current=code_value();
  5969. digitalPotWrite(channel, current);
  5970. #endif
  5971. }
  5972. break;
  5973. #ifdef TMC2130
  5974. case 910: // M910 TMC2130 init
  5975. {
  5976. tmc2130_init();
  5977. }
  5978. break;
  5979. case 911: // M911 Set TMC2130 holding currents
  5980. {
  5981. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5982. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5983. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5984. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5985. }
  5986. break;
  5987. case 912: // M912 Set TMC2130 running currents
  5988. {
  5989. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5990. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5991. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5992. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5993. }
  5994. break;
  5995. case 913: // M913 Print TMC2130 currents
  5996. {
  5997. tmc2130_print_currents();
  5998. }
  5999. break;
  6000. case 914: // M914 Set normal mode
  6001. {
  6002. tmc2130_mode = TMC2130_MODE_NORMAL;
  6003. tmc2130_init();
  6004. }
  6005. break;
  6006. case 915: // M915 Set silent mode
  6007. {
  6008. tmc2130_mode = TMC2130_MODE_SILENT;
  6009. tmc2130_init();
  6010. }
  6011. break;
  6012. case 916: // M916 Set sg_thrs
  6013. {
  6014. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6015. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6016. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6017. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6018. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6019. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6020. }
  6021. break;
  6022. case 917: // M917 Set TMC2130 pwm_ampl
  6023. {
  6024. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6025. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6026. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6027. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6028. }
  6029. break;
  6030. case 918: // M918 Set TMC2130 pwm_grad
  6031. {
  6032. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6033. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6034. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6035. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6036. }
  6037. break;
  6038. #endif //TMC2130
  6039. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6040. {
  6041. #ifdef TMC2130
  6042. if(code_seen('E'))
  6043. {
  6044. uint16_t res_new = code_value();
  6045. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6046. {
  6047. st_synchronize();
  6048. uint8_t axis = E_AXIS;
  6049. uint16_t res = tmc2130_get_res(axis);
  6050. tmc2130_set_res(axis, res_new);
  6051. if (res_new > res)
  6052. {
  6053. uint16_t fac = (res_new / res);
  6054. axis_steps_per_unit[axis] *= fac;
  6055. position[E_AXIS] *= fac;
  6056. }
  6057. else
  6058. {
  6059. uint16_t fac = (res / res_new);
  6060. axis_steps_per_unit[axis] /= fac;
  6061. position[E_AXIS] /= fac;
  6062. }
  6063. }
  6064. }
  6065. #else //TMC2130
  6066. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6067. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6068. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6069. if(code_seen('B')) microstep_mode(4,code_value());
  6070. microstep_readings();
  6071. #endif
  6072. #endif //TMC2130
  6073. }
  6074. break;
  6075. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6076. {
  6077. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6078. if(code_seen('S')) switch((int)code_value())
  6079. {
  6080. case 1:
  6081. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6082. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6083. break;
  6084. case 2:
  6085. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6086. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6087. break;
  6088. }
  6089. microstep_readings();
  6090. #endif
  6091. }
  6092. break;
  6093. case 701: //M701: load filament
  6094. {
  6095. gcode_M701();
  6096. }
  6097. break;
  6098. case 702:
  6099. {
  6100. #ifdef SNMM
  6101. if (code_seen('U')) {
  6102. extr_unload_used(); //unload all filaments which were used in current print
  6103. }
  6104. else if (code_seen('C')) {
  6105. extr_unload(); //unload just current filament
  6106. }
  6107. else {
  6108. extr_unload_all(); //unload all filaments
  6109. }
  6110. #else
  6111. #ifdef PAT9125
  6112. bool old_fsensor_enabled = fsensor_enabled;
  6113. fsensor_enabled = false;
  6114. #endif //PAT9125
  6115. custom_message = true;
  6116. custom_message_type = 2;
  6117. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6118. // extr_unload2();
  6119. current_position[E_AXIS] -= 45;
  6120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6121. st_synchronize();
  6122. current_position[E_AXIS] -= 15;
  6123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6124. st_synchronize();
  6125. current_position[E_AXIS] -= 20;
  6126. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6127. st_synchronize();
  6128. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6129. //disable extruder steppers so filament can be removed
  6130. disable_e0();
  6131. disable_e1();
  6132. disable_e2();
  6133. delay(100);
  6134. WRITE(BEEPER, HIGH);
  6135. uint8_t counterBeep = 0;
  6136. while (!lcd_clicked() && (counterBeep < 50)) {
  6137. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6138. delay_keep_alive(100);
  6139. counterBeep++;
  6140. }
  6141. WRITE(BEEPER, LOW);
  6142. st_synchronize();
  6143. while (lcd_clicked()) delay_keep_alive(100);
  6144. lcd_update_enable(true);
  6145. lcd_setstatuspgm(_T(WELCOME_MSG));
  6146. custom_message = false;
  6147. custom_message_type = 0;
  6148. #ifdef PAT9125
  6149. fsensor_enabled = old_fsensor_enabled;
  6150. #endif //PAT9125
  6151. #endif
  6152. }
  6153. break;
  6154. case 999: // M999: Restart after being stopped
  6155. Stopped = false;
  6156. lcd_reset_alert_level();
  6157. gcode_LastN = Stopped_gcode_LastN;
  6158. FlushSerialRequestResend();
  6159. break;
  6160. default:
  6161. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6162. }
  6163. } // end if(code_seen('M')) (end of M codes)
  6164. else if(code_seen('T'))
  6165. {
  6166. int index;
  6167. st_synchronize();
  6168. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6169. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6170. SERIAL_ECHOLNPGM("Invalid T code.");
  6171. }
  6172. else {
  6173. if (*(strchr_pointer + index) == '?') {
  6174. tmp_extruder = choose_extruder_menu();
  6175. }
  6176. else {
  6177. tmp_extruder = code_value();
  6178. }
  6179. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6180. #ifdef SNMM_V2
  6181. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6182. switch (tmp_extruder)
  6183. {
  6184. case 1:
  6185. fprintf_P(uart2io, PSTR("T1\n"));
  6186. break;
  6187. case 2:
  6188. fprintf_P(uart2io, PSTR("T2\n"));
  6189. break;
  6190. case 3:
  6191. fprintf_P(uart2io, PSTR("T3\n"));
  6192. break;
  6193. case 4:
  6194. fprintf_P(uart2io, PSTR("T4\n"));
  6195. break;
  6196. default:
  6197. fprintf_P(uart2io, PSTR("T0\n"));
  6198. break;
  6199. }
  6200. // get response
  6201. uart2_rx_clr();
  6202. while (!uart2_rx_ok())
  6203. {
  6204. //printf_P(PSTR("waiting..\n"));
  6205. delay_keep_alive(100);
  6206. }
  6207. #endif
  6208. #ifdef SNMM
  6209. #ifdef LIN_ADVANCE
  6210. if (snmm_extruder != tmp_extruder)
  6211. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6212. #endif
  6213. snmm_extruder = tmp_extruder;
  6214. delay(100);
  6215. disable_e0();
  6216. disable_e1();
  6217. disable_e2();
  6218. pinMode(E_MUX0_PIN, OUTPUT);
  6219. pinMode(E_MUX1_PIN, OUTPUT);
  6220. delay(100);
  6221. SERIAL_ECHO_START;
  6222. SERIAL_ECHO("T:");
  6223. SERIAL_ECHOLN((int)tmp_extruder);
  6224. switch (tmp_extruder) {
  6225. case 1:
  6226. WRITE(E_MUX0_PIN, HIGH);
  6227. WRITE(E_MUX1_PIN, LOW);
  6228. break;
  6229. case 2:
  6230. WRITE(E_MUX0_PIN, LOW);
  6231. WRITE(E_MUX1_PIN, HIGH);
  6232. break;
  6233. case 3:
  6234. WRITE(E_MUX0_PIN, HIGH);
  6235. WRITE(E_MUX1_PIN, HIGH);
  6236. break;
  6237. default:
  6238. WRITE(E_MUX0_PIN, LOW);
  6239. WRITE(E_MUX1_PIN, LOW);
  6240. break;
  6241. }
  6242. delay(100);
  6243. #else
  6244. if (tmp_extruder >= EXTRUDERS) {
  6245. SERIAL_ECHO_START;
  6246. SERIAL_ECHOPGM("T");
  6247. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6248. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6249. }
  6250. else {
  6251. boolean make_move = false;
  6252. if (code_seen('F')) {
  6253. make_move = true;
  6254. next_feedrate = code_value();
  6255. if (next_feedrate > 0.0) {
  6256. feedrate = next_feedrate;
  6257. }
  6258. }
  6259. #if EXTRUDERS > 1
  6260. if (tmp_extruder != active_extruder) {
  6261. // Save current position to return to after applying extruder offset
  6262. memcpy(destination, current_position, sizeof(destination));
  6263. // Offset extruder (only by XY)
  6264. int i;
  6265. for (i = 0; i < 2; i++) {
  6266. current_position[i] = current_position[i] -
  6267. extruder_offset[i][active_extruder] +
  6268. extruder_offset[i][tmp_extruder];
  6269. }
  6270. // Set the new active extruder and position
  6271. active_extruder = tmp_extruder;
  6272. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6273. // Move to the old position if 'F' was in the parameters
  6274. if (make_move && Stopped == false) {
  6275. prepare_move();
  6276. }
  6277. }
  6278. #endif
  6279. SERIAL_ECHO_START;
  6280. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6281. SERIAL_PROTOCOLLN((int)active_extruder);
  6282. }
  6283. #endif
  6284. }
  6285. } // end if(code_seen('T')) (end of T codes)
  6286. #ifdef DEBUG_DCODES
  6287. else if (code_seen('D')) // D codes (debug)
  6288. {
  6289. switch((int)code_value())
  6290. {
  6291. case -1: // D-1 - Endless loop
  6292. dcode__1(); break;
  6293. case 0: // D0 - Reset
  6294. dcode_0(); break;
  6295. case 1: // D1 - Clear EEPROM
  6296. dcode_1(); break;
  6297. case 2: // D2 - Read/Write RAM
  6298. dcode_2(); break;
  6299. case 3: // D3 - Read/Write EEPROM
  6300. dcode_3(); break;
  6301. case 4: // D4 - Read/Write PIN
  6302. dcode_4(); break;
  6303. case 5: // D5 - Read/Write FLASH
  6304. // dcode_5(); break;
  6305. break;
  6306. case 6: // D6 - Read/Write external FLASH
  6307. dcode_6(); break;
  6308. case 7: // D7 - Read/Write Bootloader
  6309. dcode_7(); break;
  6310. case 8: // D8 - Read/Write PINDA
  6311. dcode_8(); break;
  6312. case 9: // D9 - Read/Write ADC
  6313. dcode_9(); break;
  6314. case 10: // D10 - XYZ calibration = OK
  6315. dcode_10(); break;
  6316. #ifdef TMC2130
  6317. case 2130: // D9125 - TMC2130
  6318. dcode_2130(); break;
  6319. #endif //TMC2130
  6320. #ifdef PAT9125
  6321. case 9125: // D9125 - PAT9125
  6322. dcode_9125(); break;
  6323. #endif //PAT9125
  6324. }
  6325. }
  6326. #endif //DEBUG_DCODES
  6327. else
  6328. {
  6329. SERIAL_ECHO_START;
  6330. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6331. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6332. SERIAL_ECHOLNPGM("\"(2)");
  6333. }
  6334. KEEPALIVE_STATE(NOT_BUSY);
  6335. ClearToSend();
  6336. }
  6337. void FlushSerialRequestResend()
  6338. {
  6339. //char cmdbuffer[bufindr][100]="Resend:";
  6340. MYSERIAL.flush();
  6341. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6342. }
  6343. // Confirm the execution of a command, if sent from a serial line.
  6344. // Execution of a command from a SD card will not be confirmed.
  6345. void ClearToSend()
  6346. {
  6347. previous_millis_cmd = millis();
  6348. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6349. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6350. }
  6351. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6352. void update_currents() {
  6353. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6354. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6355. float tmp_motor[3];
  6356. //SERIAL_ECHOLNPGM("Currents updated: ");
  6357. if (destination[Z_AXIS] < Z_SILENT) {
  6358. //SERIAL_ECHOLNPGM("LOW");
  6359. for (uint8_t i = 0; i < 3; i++) {
  6360. st_current_set(i, current_low[i]);
  6361. /*MYSERIAL.print(int(i));
  6362. SERIAL_ECHOPGM(": ");
  6363. MYSERIAL.println(current_low[i]);*/
  6364. }
  6365. }
  6366. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6367. //SERIAL_ECHOLNPGM("HIGH");
  6368. for (uint8_t i = 0; i < 3; i++) {
  6369. st_current_set(i, current_high[i]);
  6370. /*MYSERIAL.print(int(i));
  6371. SERIAL_ECHOPGM(": ");
  6372. MYSERIAL.println(current_high[i]);*/
  6373. }
  6374. }
  6375. else {
  6376. for (uint8_t i = 0; i < 3; i++) {
  6377. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6378. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6379. st_current_set(i, tmp_motor[i]);
  6380. /*MYSERIAL.print(int(i));
  6381. SERIAL_ECHOPGM(": ");
  6382. MYSERIAL.println(tmp_motor[i]);*/
  6383. }
  6384. }
  6385. }
  6386. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6387. void get_coordinates()
  6388. {
  6389. bool seen[4]={false,false,false,false};
  6390. for(int8_t i=0; i < NUM_AXIS; i++) {
  6391. if(code_seen(axis_codes[i]))
  6392. {
  6393. bool relative = axis_relative_modes[i] || relative_mode;
  6394. destination[i] = (float)code_value();
  6395. if (i == E_AXIS) {
  6396. float emult = extruder_multiplier[active_extruder];
  6397. if (emult != 1.) {
  6398. if (! relative) {
  6399. destination[i] -= current_position[i];
  6400. relative = true;
  6401. }
  6402. destination[i] *= emult;
  6403. }
  6404. }
  6405. if (relative)
  6406. destination[i] += current_position[i];
  6407. seen[i]=true;
  6408. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6409. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6410. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6411. }
  6412. else destination[i] = current_position[i]; //Are these else lines really needed?
  6413. }
  6414. if(code_seen('F')) {
  6415. next_feedrate = code_value();
  6416. #ifdef MAX_SILENT_FEEDRATE
  6417. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6418. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6419. #endif //MAX_SILENT_FEEDRATE
  6420. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6421. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6422. {
  6423. // float e_max_speed =
  6424. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6425. }
  6426. }
  6427. }
  6428. void get_arc_coordinates()
  6429. {
  6430. #ifdef SF_ARC_FIX
  6431. bool relative_mode_backup = relative_mode;
  6432. relative_mode = true;
  6433. #endif
  6434. get_coordinates();
  6435. #ifdef SF_ARC_FIX
  6436. relative_mode=relative_mode_backup;
  6437. #endif
  6438. if(code_seen('I')) {
  6439. offset[0] = code_value();
  6440. }
  6441. else {
  6442. offset[0] = 0.0;
  6443. }
  6444. if(code_seen('J')) {
  6445. offset[1] = code_value();
  6446. }
  6447. else {
  6448. offset[1] = 0.0;
  6449. }
  6450. }
  6451. void clamp_to_software_endstops(float target[3])
  6452. {
  6453. #ifdef DEBUG_DISABLE_SWLIMITS
  6454. return;
  6455. #endif //DEBUG_DISABLE_SWLIMITS
  6456. world2machine_clamp(target[0], target[1]);
  6457. // Clamp the Z coordinate.
  6458. if (min_software_endstops) {
  6459. float negative_z_offset = 0;
  6460. #ifdef ENABLE_AUTO_BED_LEVELING
  6461. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6462. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6463. #endif
  6464. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6465. }
  6466. if (max_software_endstops) {
  6467. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6468. }
  6469. }
  6470. #ifdef MESH_BED_LEVELING
  6471. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6472. float dx = x - current_position[X_AXIS];
  6473. float dy = y - current_position[Y_AXIS];
  6474. float dz = z - current_position[Z_AXIS];
  6475. int n_segments = 0;
  6476. if (mbl.active) {
  6477. float len = abs(dx) + abs(dy);
  6478. if (len > 0)
  6479. // Split to 3cm segments or shorter.
  6480. n_segments = int(ceil(len / 30.f));
  6481. }
  6482. if (n_segments > 1) {
  6483. float de = e - current_position[E_AXIS];
  6484. for (int i = 1; i < n_segments; ++ i) {
  6485. float t = float(i) / float(n_segments);
  6486. if (saved_printing || (mbl.active == false)) return;
  6487. plan_buffer_line(
  6488. current_position[X_AXIS] + t * dx,
  6489. current_position[Y_AXIS] + t * dy,
  6490. current_position[Z_AXIS] + t * dz,
  6491. current_position[E_AXIS] + t * de,
  6492. feed_rate, extruder);
  6493. }
  6494. }
  6495. // The rest of the path.
  6496. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6497. current_position[X_AXIS] = x;
  6498. current_position[Y_AXIS] = y;
  6499. current_position[Z_AXIS] = z;
  6500. current_position[E_AXIS] = e;
  6501. }
  6502. #endif // MESH_BED_LEVELING
  6503. void prepare_move()
  6504. {
  6505. clamp_to_software_endstops(destination);
  6506. previous_millis_cmd = millis();
  6507. // Do not use feedmultiply for E or Z only moves
  6508. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6509. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6510. }
  6511. else {
  6512. #ifdef MESH_BED_LEVELING
  6513. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6514. #else
  6515. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6516. #endif
  6517. }
  6518. for(int8_t i=0; i < NUM_AXIS; i++) {
  6519. current_position[i] = destination[i];
  6520. }
  6521. }
  6522. void prepare_arc_move(char isclockwise) {
  6523. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6524. // Trace the arc
  6525. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6526. // As far as the parser is concerned, the position is now == target. In reality the
  6527. // motion control system might still be processing the action and the real tool position
  6528. // in any intermediate location.
  6529. for(int8_t i=0; i < NUM_AXIS; i++) {
  6530. current_position[i] = destination[i];
  6531. }
  6532. previous_millis_cmd = millis();
  6533. }
  6534. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6535. #if defined(FAN_PIN)
  6536. #if CONTROLLERFAN_PIN == FAN_PIN
  6537. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6538. #endif
  6539. #endif
  6540. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6541. unsigned long lastMotorCheck = 0;
  6542. void controllerFan()
  6543. {
  6544. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6545. {
  6546. lastMotorCheck = millis();
  6547. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6548. #if EXTRUDERS > 2
  6549. || !READ(E2_ENABLE_PIN)
  6550. #endif
  6551. #if EXTRUDER > 1
  6552. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6553. || !READ(X2_ENABLE_PIN)
  6554. #endif
  6555. || !READ(E1_ENABLE_PIN)
  6556. #endif
  6557. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6558. {
  6559. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6560. }
  6561. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6562. {
  6563. digitalWrite(CONTROLLERFAN_PIN, 0);
  6564. analogWrite(CONTROLLERFAN_PIN, 0);
  6565. }
  6566. else
  6567. {
  6568. // allows digital or PWM fan output to be used (see M42 handling)
  6569. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6570. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6571. }
  6572. }
  6573. }
  6574. #endif
  6575. #ifdef TEMP_STAT_LEDS
  6576. static bool blue_led = false;
  6577. static bool red_led = false;
  6578. static uint32_t stat_update = 0;
  6579. void handle_status_leds(void) {
  6580. float max_temp = 0.0;
  6581. if(millis() > stat_update) {
  6582. stat_update += 500; // Update every 0.5s
  6583. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6584. max_temp = max(max_temp, degHotend(cur_extruder));
  6585. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6586. }
  6587. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6588. max_temp = max(max_temp, degTargetBed());
  6589. max_temp = max(max_temp, degBed());
  6590. #endif
  6591. if((max_temp > 55.0) && (red_led == false)) {
  6592. digitalWrite(STAT_LED_RED, 1);
  6593. digitalWrite(STAT_LED_BLUE, 0);
  6594. red_led = true;
  6595. blue_led = false;
  6596. }
  6597. if((max_temp < 54.0) && (blue_led == false)) {
  6598. digitalWrite(STAT_LED_RED, 0);
  6599. digitalWrite(STAT_LED_BLUE, 1);
  6600. red_led = false;
  6601. blue_led = true;
  6602. }
  6603. }
  6604. }
  6605. #endif
  6606. #ifdef SAFETYTIMER
  6607. /**
  6608. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6609. *
  6610. * Full screen blocking notification message is shown after heater turning off.
  6611. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6612. * damage print.
  6613. *
  6614. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6615. */
  6616. static void handleSafetyTimer()
  6617. {
  6618. #if (EXTRUDERS > 1)
  6619. #error Implemented only for one extruder.
  6620. #endif //(EXTRUDERS > 1)
  6621. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6622. {
  6623. safetyTimer.stop();
  6624. }
  6625. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6626. {
  6627. safetyTimer.start();
  6628. }
  6629. else if (safetyTimer.expired(safetytimer_inactive_time))
  6630. {
  6631. setTargetBed(0);
  6632. setTargetHotend(0, 0);
  6633. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6634. }
  6635. }
  6636. #endif //SAFETYTIMER
  6637. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6638. {
  6639. #ifdef PAT9125
  6640. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6641. {
  6642. if (fsensor_autoload_enabled)
  6643. {
  6644. if (fsensor_check_autoload())
  6645. {
  6646. if (degHotend0() > EXTRUDE_MINTEMP)
  6647. {
  6648. fsensor_autoload_check_stop();
  6649. tone(BEEPER, 1000);
  6650. delay_keep_alive(50);
  6651. noTone(BEEPER);
  6652. loading_flag = true;
  6653. enquecommand_front_P((PSTR("M701")));
  6654. }
  6655. else
  6656. {
  6657. lcd_update_enable(false);
  6658. lcd_implementation_clear();
  6659. lcd.setCursor(0, 0);
  6660. lcd_printPGM(_T(MSG_ERROR));
  6661. lcd.setCursor(0, 2);
  6662. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6663. delay(2000);
  6664. lcd_implementation_clear();
  6665. lcd_update_enable(true);
  6666. }
  6667. }
  6668. }
  6669. else
  6670. fsensor_autoload_check_start();
  6671. }
  6672. else
  6673. if (fsensor_autoload_enabled)
  6674. fsensor_autoload_check_stop();
  6675. #endif //PAT9125
  6676. #ifdef SAFETYTIMER
  6677. handleSafetyTimer();
  6678. #endif //SAFETYTIMER
  6679. #if defined(KILL_PIN) && KILL_PIN > -1
  6680. static int killCount = 0; // make the inactivity button a bit less responsive
  6681. const int KILL_DELAY = 10000;
  6682. #endif
  6683. if(buflen < (BUFSIZE-1)){
  6684. get_command();
  6685. }
  6686. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6687. if(max_inactive_time)
  6688. kill(_n(""), 4);
  6689. if(stepper_inactive_time) {
  6690. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6691. {
  6692. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6693. disable_x();
  6694. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6695. disable_y();
  6696. disable_z();
  6697. disable_e0();
  6698. disable_e1();
  6699. disable_e2();
  6700. }
  6701. }
  6702. }
  6703. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6704. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6705. {
  6706. chdkActive = false;
  6707. WRITE(CHDK, LOW);
  6708. }
  6709. #endif
  6710. #if defined(KILL_PIN) && KILL_PIN > -1
  6711. // Check if the kill button was pressed and wait just in case it was an accidental
  6712. // key kill key press
  6713. // -------------------------------------------------------------------------------
  6714. if( 0 == READ(KILL_PIN) )
  6715. {
  6716. killCount++;
  6717. }
  6718. else if (killCount > 0)
  6719. {
  6720. killCount--;
  6721. }
  6722. // Exceeded threshold and we can confirm that it was not accidental
  6723. // KILL the machine
  6724. // ----------------------------------------------------------------
  6725. if ( killCount >= KILL_DELAY)
  6726. {
  6727. kill("", 5);
  6728. }
  6729. #endif
  6730. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6731. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6732. #endif
  6733. #ifdef EXTRUDER_RUNOUT_PREVENT
  6734. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6735. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6736. {
  6737. bool oldstatus=READ(E0_ENABLE_PIN);
  6738. enable_e0();
  6739. float oldepos=current_position[E_AXIS];
  6740. float oldedes=destination[E_AXIS];
  6741. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6742. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6743. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6744. current_position[E_AXIS]=oldepos;
  6745. destination[E_AXIS]=oldedes;
  6746. plan_set_e_position(oldepos);
  6747. previous_millis_cmd=millis();
  6748. st_synchronize();
  6749. WRITE(E0_ENABLE_PIN,oldstatus);
  6750. }
  6751. #endif
  6752. #ifdef TEMP_STAT_LEDS
  6753. handle_status_leds();
  6754. #endif
  6755. check_axes_activity();
  6756. }
  6757. void kill(const char *full_screen_message, unsigned char id)
  6758. {
  6759. printf_P(_N("KILL: %d\n"), id);
  6760. //return;
  6761. cli(); // Stop interrupts
  6762. disable_heater();
  6763. disable_x();
  6764. // SERIAL_ECHOLNPGM("kill - disable Y");
  6765. disable_y();
  6766. disable_z();
  6767. disable_e0();
  6768. disable_e1();
  6769. disable_e2();
  6770. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6771. pinMode(PS_ON_PIN,INPUT);
  6772. #endif
  6773. SERIAL_ERROR_START;
  6774. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6775. if (full_screen_message != NULL) {
  6776. SERIAL_ERRORLNRPGM(full_screen_message);
  6777. lcd_display_message_fullscreen_P(full_screen_message);
  6778. } else {
  6779. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6780. }
  6781. // FMC small patch to update the LCD before ending
  6782. sei(); // enable interrupts
  6783. for ( int i=5; i--; lcd_update())
  6784. {
  6785. delay(200);
  6786. }
  6787. cli(); // disable interrupts
  6788. suicide();
  6789. while(1)
  6790. {
  6791. #ifdef WATCHDOG
  6792. wdt_reset();
  6793. #endif //WATCHDOG
  6794. /* Intentionally left empty */
  6795. } // Wait for reset
  6796. }
  6797. void Stop()
  6798. {
  6799. disable_heater();
  6800. if(Stopped == false) {
  6801. Stopped = true;
  6802. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6803. SERIAL_ERROR_START;
  6804. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6805. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6806. }
  6807. }
  6808. bool IsStopped() { return Stopped; };
  6809. #ifdef FAST_PWM_FAN
  6810. void setPwmFrequency(uint8_t pin, int val)
  6811. {
  6812. val &= 0x07;
  6813. switch(digitalPinToTimer(pin))
  6814. {
  6815. #if defined(TCCR0A)
  6816. case TIMER0A:
  6817. case TIMER0B:
  6818. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6819. // TCCR0B |= val;
  6820. break;
  6821. #endif
  6822. #if defined(TCCR1A)
  6823. case TIMER1A:
  6824. case TIMER1B:
  6825. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6826. // TCCR1B |= val;
  6827. break;
  6828. #endif
  6829. #if defined(TCCR2)
  6830. case TIMER2:
  6831. case TIMER2:
  6832. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6833. TCCR2 |= val;
  6834. break;
  6835. #endif
  6836. #if defined(TCCR2A)
  6837. case TIMER2A:
  6838. case TIMER2B:
  6839. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6840. TCCR2B |= val;
  6841. break;
  6842. #endif
  6843. #if defined(TCCR3A)
  6844. case TIMER3A:
  6845. case TIMER3B:
  6846. case TIMER3C:
  6847. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6848. TCCR3B |= val;
  6849. break;
  6850. #endif
  6851. #if defined(TCCR4A)
  6852. case TIMER4A:
  6853. case TIMER4B:
  6854. case TIMER4C:
  6855. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6856. TCCR4B |= val;
  6857. break;
  6858. #endif
  6859. #if defined(TCCR5A)
  6860. case TIMER5A:
  6861. case TIMER5B:
  6862. case TIMER5C:
  6863. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6864. TCCR5B |= val;
  6865. break;
  6866. #endif
  6867. }
  6868. }
  6869. #endif //FAST_PWM_FAN
  6870. bool setTargetedHotend(int code){
  6871. tmp_extruder = active_extruder;
  6872. if(code_seen('T')) {
  6873. tmp_extruder = code_value();
  6874. if(tmp_extruder >= EXTRUDERS) {
  6875. SERIAL_ECHO_START;
  6876. switch(code){
  6877. case 104:
  6878. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6879. break;
  6880. case 105:
  6881. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6882. break;
  6883. case 109:
  6884. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6885. break;
  6886. case 218:
  6887. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6888. break;
  6889. case 221:
  6890. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6891. break;
  6892. }
  6893. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6894. return true;
  6895. }
  6896. }
  6897. return false;
  6898. }
  6899. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6900. {
  6901. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6902. {
  6903. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6904. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6905. }
  6906. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6907. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6908. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6909. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6910. total_filament_used = 0;
  6911. }
  6912. float calculate_extruder_multiplier(float diameter) {
  6913. float out = 1.f;
  6914. if (volumetric_enabled && diameter > 0.f) {
  6915. float area = M_PI * diameter * diameter * 0.25;
  6916. out = 1.f / area;
  6917. }
  6918. if (extrudemultiply != 100)
  6919. out *= float(extrudemultiply) * 0.01f;
  6920. return out;
  6921. }
  6922. void calculate_extruder_multipliers() {
  6923. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6924. #if EXTRUDERS > 1
  6925. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6926. #if EXTRUDERS > 2
  6927. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6928. #endif
  6929. #endif
  6930. }
  6931. void delay_keep_alive(unsigned int ms)
  6932. {
  6933. for (;;) {
  6934. manage_heater();
  6935. // Manage inactivity, but don't disable steppers on timeout.
  6936. manage_inactivity(true);
  6937. lcd_update();
  6938. if (ms == 0)
  6939. break;
  6940. else if (ms >= 50) {
  6941. delay(50);
  6942. ms -= 50;
  6943. } else {
  6944. delay(ms);
  6945. ms = 0;
  6946. }
  6947. }
  6948. }
  6949. void wait_for_heater(long codenum) {
  6950. #ifdef TEMP_RESIDENCY_TIME
  6951. long residencyStart;
  6952. residencyStart = -1;
  6953. /* continue to loop until we have reached the target temp
  6954. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6955. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6956. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6957. #else
  6958. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6959. #endif //TEMP_RESIDENCY_TIME
  6960. if ((millis() - codenum) > 1000UL)
  6961. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6962. if (!farm_mode) {
  6963. SERIAL_PROTOCOLPGM("T:");
  6964. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6965. SERIAL_PROTOCOLPGM(" E:");
  6966. SERIAL_PROTOCOL((int)tmp_extruder);
  6967. #ifdef TEMP_RESIDENCY_TIME
  6968. SERIAL_PROTOCOLPGM(" W:");
  6969. if (residencyStart > -1)
  6970. {
  6971. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6972. SERIAL_PROTOCOLLN(codenum);
  6973. }
  6974. else
  6975. {
  6976. SERIAL_PROTOCOLLN("?");
  6977. }
  6978. }
  6979. #else
  6980. SERIAL_PROTOCOLLN("");
  6981. #endif
  6982. codenum = millis();
  6983. }
  6984. manage_heater();
  6985. manage_inactivity();
  6986. lcd_update();
  6987. #ifdef TEMP_RESIDENCY_TIME
  6988. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6989. or when current temp falls outside the hysteresis after target temp was reached */
  6990. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6991. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6992. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6993. {
  6994. residencyStart = millis();
  6995. }
  6996. #endif //TEMP_RESIDENCY_TIME
  6997. }
  6998. }
  6999. void check_babystep() {
  7000. int babystep_z;
  7001. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7002. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7003. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7004. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7005. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7006. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7007. lcd_update_enable(true);
  7008. }
  7009. }
  7010. #ifdef DIS
  7011. void d_setup()
  7012. {
  7013. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7014. pinMode(D_DATA, INPUT_PULLUP);
  7015. pinMode(D_REQUIRE, OUTPUT);
  7016. digitalWrite(D_REQUIRE, HIGH);
  7017. }
  7018. float d_ReadData()
  7019. {
  7020. int digit[13];
  7021. String mergeOutput;
  7022. float output;
  7023. digitalWrite(D_REQUIRE, HIGH);
  7024. for (int i = 0; i<13; i++)
  7025. {
  7026. for (int j = 0; j < 4; j++)
  7027. {
  7028. while (digitalRead(D_DATACLOCK) == LOW) {}
  7029. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7030. bitWrite(digit[i], j, digitalRead(D_DATA));
  7031. }
  7032. }
  7033. digitalWrite(D_REQUIRE, LOW);
  7034. mergeOutput = "";
  7035. output = 0;
  7036. for (int r = 5; r <= 10; r++) //Merge digits
  7037. {
  7038. mergeOutput += digit[r];
  7039. }
  7040. output = mergeOutput.toFloat();
  7041. if (digit[4] == 8) //Handle sign
  7042. {
  7043. output *= -1;
  7044. }
  7045. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7046. {
  7047. output /= 10;
  7048. }
  7049. return output;
  7050. }
  7051. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7052. int t1 = 0;
  7053. int t_delay = 0;
  7054. int digit[13];
  7055. int m;
  7056. char str[3];
  7057. //String mergeOutput;
  7058. char mergeOutput[15];
  7059. float output;
  7060. int mesh_point = 0; //index number of calibration point
  7061. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7062. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7063. float mesh_home_z_search = 4;
  7064. float row[x_points_num];
  7065. int ix = 0;
  7066. int iy = 0;
  7067. char* filename_wldsd = "wldsd.txt";
  7068. char data_wldsd[70];
  7069. char numb_wldsd[10];
  7070. d_setup();
  7071. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7072. // We don't know where we are! HOME!
  7073. // Push the commands to the front of the message queue in the reverse order!
  7074. // There shall be always enough space reserved for these commands.
  7075. repeatcommand_front(); // repeat G80 with all its parameters
  7076. enquecommand_front_P((PSTR("G28 W0")));
  7077. enquecommand_front_P((PSTR("G1 Z5")));
  7078. return;
  7079. }
  7080. bool custom_message_old = custom_message;
  7081. unsigned int custom_message_type_old = custom_message_type;
  7082. unsigned int custom_message_state_old = custom_message_state;
  7083. custom_message = true;
  7084. custom_message_type = 1;
  7085. custom_message_state = (x_points_num * y_points_num) + 10;
  7086. lcd_update(1);
  7087. mbl.reset();
  7088. babystep_undo();
  7089. card.openFile(filename_wldsd, false);
  7090. current_position[Z_AXIS] = mesh_home_z_search;
  7091. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7092. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7093. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7094. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7095. setup_for_endstop_move(false);
  7096. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7097. SERIAL_PROTOCOL(x_points_num);
  7098. SERIAL_PROTOCOLPGM(",");
  7099. SERIAL_PROTOCOL(y_points_num);
  7100. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7101. SERIAL_PROTOCOL(mesh_home_z_search);
  7102. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7103. SERIAL_PROTOCOL(x_dimension);
  7104. SERIAL_PROTOCOLPGM(",");
  7105. SERIAL_PROTOCOL(y_dimension);
  7106. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7107. while (mesh_point != x_points_num * y_points_num) {
  7108. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7109. iy = mesh_point / x_points_num;
  7110. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7111. float z0 = 0.f;
  7112. current_position[Z_AXIS] = mesh_home_z_search;
  7113. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7114. st_synchronize();
  7115. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7116. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7117. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7118. st_synchronize();
  7119. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7120. break;
  7121. card.closefile();
  7122. }
  7123. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7124. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7125. //strcat(data_wldsd, numb_wldsd);
  7126. //MYSERIAL.println(data_wldsd);
  7127. //delay(1000);
  7128. //delay(3000);
  7129. //t1 = millis();
  7130. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7131. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7132. memset(digit, 0, sizeof(digit));
  7133. //cli();
  7134. digitalWrite(D_REQUIRE, LOW);
  7135. for (int i = 0; i<13; i++)
  7136. {
  7137. //t1 = millis();
  7138. for (int j = 0; j < 4; j++)
  7139. {
  7140. while (digitalRead(D_DATACLOCK) == LOW) {}
  7141. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7142. bitWrite(digit[i], j, digitalRead(D_DATA));
  7143. }
  7144. //t_delay = (millis() - t1);
  7145. //SERIAL_PROTOCOLPGM(" ");
  7146. //SERIAL_PROTOCOL_F(t_delay, 5);
  7147. //SERIAL_PROTOCOLPGM(" ");
  7148. }
  7149. //sei();
  7150. digitalWrite(D_REQUIRE, HIGH);
  7151. mergeOutput[0] = '\0';
  7152. output = 0;
  7153. for (int r = 5; r <= 10; r++) //Merge digits
  7154. {
  7155. sprintf(str, "%d", digit[r]);
  7156. strcat(mergeOutput, str);
  7157. }
  7158. output = atof(mergeOutput);
  7159. if (digit[4] == 8) //Handle sign
  7160. {
  7161. output *= -1;
  7162. }
  7163. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7164. {
  7165. output *= 0.1;
  7166. }
  7167. //output = d_ReadData();
  7168. //row[ix] = current_position[Z_AXIS];
  7169. memset(data_wldsd, 0, sizeof(data_wldsd));
  7170. for (int i = 0; i <3; i++) {
  7171. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7172. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7173. strcat(data_wldsd, numb_wldsd);
  7174. strcat(data_wldsd, ";");
  7175. }
  7176. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7177. dtostrf(output, 8, 5, numb_wldsd);
  7178. strcat(data_wldsd, numb_wldsd);
  7179. //strcat(data_wldsd, ";");
  7180. card.write_command(data_wldsd);
  7181. //row[ix] = d_ReadData();
  7182. row[ix] = output; // current_position[Z_AXIS];
  7183. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7184. for (int i = 0; i < x_points_num; i++) {
  7185. SERIAL_PROTOCOLPGM(" ");
  7186. SERIAL_PROTOCOL_F(row[i], 5);
  7187. }
  7188. SERIAL_PROTOCOLPGM("\n");
  7189. }
  7190. custom_message_state--;
  7191. mesh_point++;
  7192. lcd_update(1);
  7193. }
  7194. card.closefile();
  7195. }
  7196. #endif
  7197. void temp_compensation_start() {
  7198. custom_message = true;
  7199. custom_message_type = 5;
  7200. custom_message_state = PINDA_HEAT_T + 1;
  7201. lcd_update(2);
  7202. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7203. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7204. }
  7205. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7206. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7207. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7208. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7209. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7210. st_synchronize();
  7211. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7212. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7213. delay_keep_alive(1000);
  7214. custom_message_state = PINDA_HEAT_T - i;
  7215. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7216. else lcd_update(1);
  7217. }
  7218. custom_message_type = 0;
  7219. custom_message_state = 0;
  7220. custom_message = false;
  7221. }
  7222. void temp_compensation_apply() {
  7223. int i_add;
  7224. int compensation_value;
  7225. int z_shift = 0;
  7226. float z_shift_mm;
  7227. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7228. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7229. i_add = (target_temperature_bed - 60) / 10;
  7230. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7231. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7232. }else {
  7233. //interpolation
  7234. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7235. }
  7236. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7237. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7238. st_synchronize();
  7239. plan_set_z_position(current_position[Z_AXIS]);
  7240. }
  7241. else {
  7242. //we have no temp compensation data
  7243. }
  7244. }
  7245. float temp_comp_interpolation(float inp_temperature) {
  7246. //cubic spline interpolation
  7247. int n, i, j, k;
  7248. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7249. int shift[10];
  7250. int temp_C[10];
  7251. n = 6; //number of measured points
  7252. shift[0] = 0;
  7253. for (i = 0; i < n; i++) {
  7254. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7255. temp_C[i] = 50 + i * 10; //temperature in C
  7256. #ifdef PINDA_THERMISTOR
  7257. temp_C[i] = 35 + i * 5; //temperature in C
  7258. #else
  7259. temp_C[i] = 50 + i * 10; //temperature in C
  7260. #endif
  7261. x[i] = (float)temp_C[i];
  7262. f[i] = (float)shift[i];
  7263. }
  7264. if (inp_temperature < x[0]) return 0;
  7265. for (i = n - 1; i>0; i--) {
  7266. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7267. h[i - 1] = x[i] - x[i - 1];
  7268. }
  7269. //*********** formation of h, s , f matrix **************
  7270. for (i = 1; i<n - 1; i++) {
  7271. m[i][i] = 2 * (h[i - 1] + h[i]);
  7272. if (i != 1) {
  7273. m[i][i - 1] = h[i - 1];
  7274. m[i - 1][i] = h[i - 1];
  7275. }
  7276. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7277. }
  7278. //*********** forward elimination **************
  7279. for (i = 1; i<n - 2; i++) {
  7280. temp = (m[i + 1][i] / m[i][i]);
  7281. for (j = 1; j <= n - 1; j++)
  7282. m[i + 1][j] -= temp*m[i][j];
  7283. }
  7284. //*********** backward substitution *********
  7285. for (i = n - 2; i>0; i--) {
  7286. sum = 0;
  7287. for (j = i; j <= n - 2; j++)
  7288. sum += m[i][j] * s[j];
  7289. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7290. }
  7291. for (i = 0; i<n - 1; i++)
  7292. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7293. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7294. b = s[i] / 2;
  7295. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7296. d = f[i];
  7297. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7298. }
  7299. return sum;
  7300. }
  7301. #ifdef PINDA_THERMISTOR
  7302. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7303. {
  7304. if (!temp_cal_active) return 0;
  7305. if (!calibration_status_pinda()) return 0;
  7306. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7307. }
  7308. #endif //PINDA_THERMISTOR
  7309. void long_pause() //long pause print
  7310. {
  7311. st_synchronize();
  7312. //save currently set parameters to global variables
  7313. saved_feedmultiply = feedmultiply;
  7314. HotendTempBckp = degTargetHotend(active_extruder);
  7315. fanSpeedBckp = fanSpeed;
  7316. start_pause_print = millis();
  7317. //save position
  7318. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7319. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7320. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7321. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7322. //retract
  7323. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7324. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7325. //lift z
  7326. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7327. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7328. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7329. //set nozzle target temperature to 0
  7330. setTargetHotend(0, 0);
  7331. setTargetHotend(0, 1);
  7332. setTargetHotend(0, 2);
  7333. //Move XY to side
  7334. current_position[X_AXIS] = X_PAUSE_POS;
  7335. current_position[Y_AXIS] = Y_PAUSE_POS;
  7336. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7337. // Turn off the print fan
  7338. fanSpeed = 0;
  7339. st_synchronize();
  7340. }
  7341. void serialecho_temperatures() {
  7342. float tt = degHotend(active_extruder);
  7343. SERIAL_PROTOCOLPGM("T:");
  7344. SERIAL_PROTOCOL(tt);
  7345. SERIAL_PROTOCOLPGM(" E:");
  7346. SERIAL_PROTOCOL((int)active_extruder);
  7347. SERIAL_PROTOCOLPGM(" B:");
  7348. SERIAL_PROTOCOL_F(degBed(), 1);
  7349. SERIAL_PROTOCOLLN("");
  7350. }
  7351. extern uint32_t sdpos_atomic;
  7352. #ifdef UVLO_SUPPORT
  7353. void uvlo_()
  7354. {
  7355. unsigned long time_start = millis();
  7356. bool sd_print = card.sdprinting;
  7357. // Conserve power as soon as possible.
  7358. disable_x();
  7359. disable_y();
  7360. #ifdef TMC2130
  7361. tmc2130_set_current_h(Z_AXIS, 20);
  7362. tmc2130_set_current_r(Z_AXIS, 20);
  7363. tmc2130_set_current_h(E_AXIS, 20);
  7364. tmc2130_set_current_r(E_AXIS, 20);
  7365. #endif //TMC2130
  7366. // Indicate that the interrupt has been triggered.
  7367. // SERIAL_ECHOLNPGM("UVLO");
  7368. // Read out the current Z motor microstep counter. This will be later used
  7369. // for reaching the zero full step before powering off.
  7370. uint16_t z_microsteps = 0;
  7371. #ifdef TMC2130
  7372. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7373. #endif //TMC2130
  7374. // Calculate the file position, from which to resume this print.
  7375. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7376. {
  7377. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7378. sd_position -= sdlen_planner;
  7379. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7380. sd_position -= sdlen_cmdqueue;
  7381. if (sd_position < 0) sd_position = 0;
  7382. }
  7383. // Backup the feedrate in mm/min.
  7384. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7385. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7386. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7387. // are in action.
  7388. planner_abort_hard();
  7389. // Store the current extruder position.
  7390. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7391. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7392. // Clean the input command queue.
  7393. cmdqueue_reset();
  7394. card.sdprinting = false;
  7395. // card.closefile();
  7396. // Enable stepper driver interrupt to move Z axis.
  7397. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7398. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7399. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7400. sei();
  7401. plan_buffer_line(
  7402. current_position[X_AXIS],
  7403. current_position[Y_AXIS],
  7404. current_position[Z_AXIS],
  7405. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7406. 95, active_extruder);
  7407. st_synchronize();
  7408. disable_e0();
  7409. plan_buffer_line(
  7410. current_position[X_AXIS],
  7411. current_position[Y_AXIS],
  7412. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7413. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7414. 40, active_extruder);
  7415. st_synchronize();
  7416. disable_e0();
  7417. plan_buffer_line(
  7418. current_position[X_AXIS],
  7419. current_position[Y_AXIS],
  7420. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7421. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7422. 40, active_extruder);
  7423. st_synchronize();
  7424. disable_e0();
  7425. disable_z();
  7426. // Move Z up to the next 0th full step.
  7427. // Write the file position.
  7428. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7429. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7430. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7431. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7432. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7433. // Scale the z value to 1u resolution.
  7434. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7435. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7436. }
  7437. // Read out the current Z motor microstep counter. This will be later used
  7438. // for reaching the zero full step before powering off.
  7439. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7440. // Store the current position.
  7441. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7442. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7443. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7444. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7445. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7446. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7447. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7448. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7449. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7450. #if EXTRUDERS > 1
  7451. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7452. #if EXTRUDERS > 2
  7453. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7454. #endif
  7455. #endif
  7456. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7457. // Finaly store the "power outage" flag.
  7458. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7459. st_synchronize();
  7460. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7461. disable_z();
  7462. // Increment power failure counter
  7463. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7464. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7465. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7466. #if 0
  7467. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7468. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7469. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7470. st_synchronize();
  7471. #endif
  7472. cli();
  7473. volatile unsigned int ppcount = 0;
  7474. SET_OUTPUT(BEEPER);
  7475. WRITE(BEEPER, HIGH);
  7476. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7477. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7478. }
  7479. WRITE(BEEPER, LOW);
  7480. while(1){
  7481. #if 1
  7482. WRITE(BEEPER, LOW);
  7483. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7484. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7485. }
  7486. #endif
  7487. };
  7488. }
  7489. #endif //UVLO_SUPPORT
  7490. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7491. void setup_fan_interrupt() {
  7492. //INT7
  7493. DDRE &= ~(1 << 7); //input pin
  7494. PORTE &= ~(1 << 7); //no internal pull-up
  7495. //start with sensing rising edge
  7496. EICRB &= ~(1 << 6);
  7497. EICRB |= (1 << 7);
  7498. //enable INT7 interrupt
  7499. EIMSK |= (1 << 7);
  7500. }
  7501. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7502. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7503. ISR(INT7_vect) {
  7504. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7505. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7506. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7507. t_fan_rising_edge = millis_nc();
  7508. }
  7509. else { //interrupt was triggered by falling edge
  7510. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7511. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7512. }
  7513. }
  7514. EICRB ^= (1 << 6); //change edge
  7515. }
  7516. #endif
  7517. #ifdef UVLO_SUPPORT
  7518. void setup_uvlo_interrupt() {
  7519. DDRE &= ~(1 << 4); //input pin
  7520. PORTE &= ~(1 << 4); //no internal pull-up
  7521. //sensing falling edge
  7522. EICRB |= (1 << 0);
  7523. EICRB &= ~(1 << 1);
  7524. //enable INT4 interrupt
  7525. EIMSK |= (1 << 4);
  7526. }
  7527. ISR(INT4_vect) {
  7528. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7529. SERIAL_ECHOLNPGM("INT4");
  7530. if (IS_SD_PRINTING) uvlo_();
  7531. }
  7532. void recover_print(uint8_t automatic) {
  7533. char cmd[30];
  7534. lcd_update_enable(true);
  7535. lcd_update(2);
  7536. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7537. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7538. // Lift the print head, so one may remove the excess priming material.
  7539. if (current_position[Z_AXIS] < 25)
  7540. enquecommand_P(PSTR("G1 Z25 F800"));
  7541. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7542. enquecommand_P(PSTR("G28 X Y"));
  7543. // Set the target bed and nozzle temperatures and wait.
  7544. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7545. enquecommand(cmd);
  7546. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7547. enquecommand(cmd);
  7548. enquecommand_P(PSTR("M83")); //E axis relative mode
  7549. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7550. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7551. if(automatic == 0){
  7552. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7553. }
  7554. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7555. // Mark the power panic status as inactive.
  7556. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7557. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7558. delay_keep_alive(1000);
  7559. }*/
  7560. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7561. // Restart the print.
  7562. restore_print_from_eeprom();
  7563. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7564. }
  7565. void recover_machine_state_after_power_panic()
  7566. {
  7567. char cmd[30];
  7568. // 1) Recover the logical cordinates at the time of the power panic.
  7569. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7570. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7571. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7572. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7573. // The current position after power panic is moved to the next closest 0th full step.
  7574. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7575. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7576. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7577. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7578. sprintf_P(cmd, PSTR("G92 E"));
  7579. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7580. enquecommand(cmd);
  7581. }
  7582. memcpy(destination, current_position, sizeof(destination));
  7583. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7584. print_world_coordinates();
  7585. // 2) Initialize the logical to physical coordinate system transformation.
  7586. world2machine_initialize();
  7587. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7588. mbl.active = false;
  7589. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7590. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7591. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7592. // Scale the z value to 10u resolution.
  7593. int16_t v;
  7594. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7595. if (v != 0)
  7596. mbl.active = true;
  7597. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7598. }
  7599. if (mbl.active)
  7600. mbl.upsample_3x3();
  7601. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7602. // print_mesh_bed_leveling_table();
  7603. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7604. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7605. babystep_load();
  7606. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7607. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7608. // 6) Power up the motors, mark their positions as known.
  7609. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7610. axis_known_position[X_AXIS] = true; enable_x();
  7611. axis_known_position[Y_AXIS] = true; enable_y();
  7612. axis_known_position[Z_AXIS] = true; enable_z();
  7613. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7614. print_physical_coordinates();
  7615. // 7) Recover the target temperatures.
  7616. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7617. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7618. // 8) Recover extruder multipilers
  7619. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7620. #if EXTRUDERS > 1
  7621. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7622. #if EXTRUDERS > 2
  7623. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7624. #endif
  7625. #endif
  7626. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7627. }
  7628. void restore_print_from_eeprom() {
  7629. float x_rec, y_rec, z_pos;
  7630. int feedrate_rec;
  7631. uint8_t fan_speed_rec;
  7632. char cmd[30];
  7633. char* c;
  7634. char filename[13];
  7635. uint8_t depth = 0;
  7636. char dir_name[9];
  7637. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7638. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7639. SERIAL_ECHOPGM("Feedrate:");
  7640. MYSERIAL.println(feedrate_rec);
  7641. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7642. MYSERIAL.println(int(depth));
  7643. for (int i = 0; i < depth; i++) {
  7644. for (int j = 0; j < 8; j++) {
  7645. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7646. }
  7647. dir_name[8] = '\0';
  7648. MYSERIAL.println(dir_name);
  7649. strcpy(dir_names[i], dir_name);
  7650. card.chdir(dir_name);
  7651. }
  7652. for (int i = 0; i < 8; i++) {
  7653. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7654. }
  7655. filename[8] = '\0';
  7656. MYSERIAL.print(filename);
  7657. strcat_P(filename, PSTR(".gco"));
  7658. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7659. enquecommand(cmd);
  7660. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7661. SERIAL_ECHOPGM("Position read from eeprom:");
  7662. MYSERIAL.println(position);
  7663. // E axis relative mode.
  7664. enquecommand_P(PSTR("M83"));
  7665. // Move to the XY print position in logical coordinates, where the print has been killed.
  7666. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7667. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7668. strcat_P(cmd, PSTR(" F2000"));
  7669. enquecommand(cmd);
  7670. // Move the Z axis down to the print, in logical coordinates.
  7671. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7672. enquecommand(cmd);
  7673. // Unretract.
  7674. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7675. // Set the feedrate saved at the power panic.
  7676. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7677. enquecommand(cmd);
  7678. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7679. {
  7680. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7681. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7682. }
  7683. // Set the fan speed saved at the power panic.
  7684. strcpy_P(cmd, PSTR("M106 S"));
  7685. strcat(cmd, itostr3(int(fan_speed_rec)));
  7686. enquecommand(cmd);
  7687. // Set a position in the file.
  7688. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7689. enquecommand(cmd);
  7690. // Start SD print.
  7691. enquecommand_P(PSTR("M24"));
  7692. }
  7693. #endif //UVLO_SUPPORT
  7694. ////////////////////////////////////////////////////////////////////////////////
  7695. // save/restore printing
  7696. void stop_and_save_print_to_ram(float z_move, float e_move)
  7697. {
  7698. if (saved_printing) return;
  7699. unsigned char nplanner_blocks;
  7700. unsigned char nlines;
  7701. uint16_t sdlen_planner;
  7702. uint16_t sdlen_cmdqueue;
  7703. cli();
  7704. if (card.sdprinting) {
  7705. nplanner_blocks = number_of_blocks();
  7706. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7707. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7708. saved_sdpos -= sdlen_planner;
  7709. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7710. saved_sdpos -= sdlen_cmdqueue;
  7711. saved_printing_type = PRINTING_TYPE_SD;
  7712. }
  7713. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7714. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7715. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7716. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7717. saved_sdpos -= nlines;
  7718. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7719. saved_printing_type = PRINTING_TYPE_USB;
  7720. }
  7721. else {
  7722. //not sd printing nor usb printing
  7723. }
  7724. #if 0
  7725. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7726. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7727. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7728. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7729. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7730. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7731. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7732. {
  7733. card.setIndex(saved_sdpos);
  7734. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7735. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7736. MYSERIAL.print(char(card.get()));
  7737. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7738. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7739. MYSERIAL.print(char(card.get()));
  7740. SERIAL_ECHOLNPGM("End of command buffer");
  7741. }
  7742. {
  7743. // Print the content of the planner buffer, line by line:
  7744. card.setIndex(saved_sdpos);
  7745. int8_t iline = 0;
  7746. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7747. SERIAL_ECHOPGM("Planner line (from file): ");
  7748. MYSERIAL.print(int(iline), DEC);
  7749. SERIAL_ECHOPGM(", length: ");
  7750. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7751. SERIAL_ECHOPGM(", steps: (");
  7752. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7753. SERIAL_ECHOPGM(",");
  7754. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7755. SERIAL_ECHOPGM(",");
  7756. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7757. SERIAL_ECHOPGM(",");
  7758. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7759. SERIAL_ECHOPGM("), events: ");
  7760. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7761. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7762. MYSERIAL.print(char(card.get()));
  7763. }
  7764. }
  7765. {
  7766. // Print the content of the command buffer, line by line:
  7767. int8_t iline = 0;
  7768. union {
  7769. struct {
  7770. char lo;
  7771. char hi;
  7772. } lohi;
  7773. uint16_t value;
  7774. } sdlen_single;
  7775. int _bufindr = bufindr;
  7776. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7777. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7778. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7779. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7780. }
  7781. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7782. MYSERIAL.print(int(iline), DEC);
  7783. SERIAL_ECHOPGM(", type: ");
  7784. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7785. SERIAL_ECHOPGM(", len: ");
  7786. MYSERIAL.println(sdlen_single.value, DEC);
  7787. // Print the content of the buffer line.
  7788. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7789. SERIAL_ECHOPGM("Buffer line (from file): ");
  7790. MYSERIAL.println(int(iline), DEC);
  7791. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7792. MYSERIAL.print(char(card.get()));
  7793. if (-- _buflen == 0)
  7794. break;
  7795. // First skip the current command ID and iterate up to the end of the string.
  7796. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7797. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7798. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7799. // If the end of the buffer was empty,
  7800. if (_bufindr == sizeof(cmdbuffer)) {
  7801. // skip to the start and find the nonzero command.
  7802. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7803. }
  7804. }
  7805. }
  7806. #endif
  7807. #if 0
  7808. saved_feedrate2 = feedrate; //save feedrate
  7809. #else
  7810. // Try to deduce the feedrate from the first block of the planner.
  7811. // Speed is in mm/min.
  7812. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7813. #endif
  7814. planner_abort_hard(); //abort printing
  7815. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7816. saved_active_extruder = active_extruder; //save active_extruder
  7817. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7818. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7819. cmdqueue_reset(); //empty cmdqueue
  7820. card.sdprinting = false;
  7821. // card.closefile();
  7822. saved_printing = true;
  7823. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7824. st_reset_timer();
  7825. sei();
  7826. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7827. #if 1
  7828. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7829. char buf[48];
  7830. // First unretract (relative extrusion)
  7831. if(!saved_extruder_relative_mode){
  7832. strcpy_P(buf, PSTR("M83"));
  7833. enquecommand(buf, false);
  7834. }
  7835. //retract 45mm/s
  7836. strcpy_P(buf, PSTR("G1 E"));
  7837. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7838. strcat_P(buf, PSTR(" F"));
  7839. dtostrf(2700, 8, 3, buf + strlen(buf));
  7840. enquecommand(buf, false);
  7841. // Then lift Z axis
  7842. strcpy_P(buf, PSTR("G1 Z"));
  7843. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7844. strcat_P(buf, PSTR(" F"));
  7845. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7846. // At this point the command queue is empty.
  7847. enquecommand(buf, false);
  7848. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7849. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7850. repeatcommand_front();
  7851. #else
  7852. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7853. st_synchronize(); //wait moving
  7854. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7855. memcpy(destination, current_position, sizeof(destination));
  7856. #endif
  7857. }
  7858. }
  7859. void restore_print_from_ram_and_continue(float e_move)
  7860. {
  7861. if (!saved_printing) return;
  7862. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7863. // current_position[axis] = st_get_position_mm(axis);
  7864. active_extruder = saved_active_extruder; //restore active_extruder
  7865. feedrate = saved_feedrate2; //restore feedrate
  7866. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7867. float e = saved_pos[E_AXIS] - e_move;
  7868. plan_set_e_position(e);
  7869. //first move print head in XY to the saved position:
  7870. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7871. st_synchronize();
  7872. //then move Z
  7873. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7874. st_synchronize();
  7875. //and finaly unretract (35mm/s)
  7876. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7877. st_synchronize();
  7878. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7879. memcpy(destination, current_position, sizeof(destination));
  7880. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7881. card.setIndex(saved_sdpos);
  7882. sdpos_atomic = saved_sdpos;
  7883. card.sdprinting = true;
  7884. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7885. }
  7886. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7887. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7888. serial_count = 0;
  7889. FlushSerialRequestResend();
  7890. }
  7891. else {
  7892. //not sd printing nor usb printing
  7893. }
  7894. lcd_setstatuspgm(_T(WELCOME_MSG));
  7895. saved_printing = false;
  7896. }
  7897. void print_world_coordinates()
  7898. {
  7899. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7900. }
  7901. void print_physical_coordinates()
  7902. {
  7903. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7904. }
  7905. void print_mesh_bed_leveling_table()
  7906. {
  7907. SERIAL_ECHOPGM("mesh bed leveling: ");
  7908. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7909. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7910. MYSERIAL.print(mbl.z_values[y][x], 3);
  7911. SERIAL_ECHOPGM(" ");
  7912. }
  7913. SERIAL_ECHOLNPGM("");
  7914. }
  7915. uint16_t print_time_remaining() {
  7916. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7917. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7918. else print_t = print_time_remaining_silent;
  7919. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7920. return print_t;
  7921. }
  7922. uint8_t print_percent_done() {
  7923. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7924. uint8_t percent_done = 0;
  7925. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7926. percent_done = print_percent_done_normal;
  7927. }
  7928. else if (print_percent_done_silent <= 100) {
  7929. percent_done = print_percent_done_silent;
  7930. }
  7931. else {
  7932. percent_done = card.percentDone();
  7933. }
  7934. return percent_done;
  7935. }
  7936. static void print_time_remaining_init() {
  7937. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7938. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7939. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7940. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7941. }
  7942. #define FIL_LOAD_LENGTH 60