Marlin_main.cpp 398 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #include "config.h"
  48. #include "macros.h"
  49. #ifdef ENABLE_AUTO_BED_LEVELING
  50. #include "vector_3.h"
  51. #ifdef AUTO_BED_LEVELING_GRID
  52. #include "qr_solve.h"
  53. #endif
  54. #endif // ENABLE_AUTO_BED_LEVELING
  55. #ifdef MESH_BED_LEVELING
  56. #include "mesh_bed_leveling.h"
  57. #include "mesh_bed_calibration.h"
  58. #endif
  59. #include "printers.h"
  60. #include "menu.h"
  61. #include "ultralcd.h"
  62. #include "backlight.h"
  63. #include "planner.h"
  64. #include "stepper.h"
  65. #include "temperature.h"
  66. #include "motion_control.h"
  67. #include "cardreader.h"
  68. #include "ConfigurationStore.h"
  69. #include "language.h"
  70. #include "pins_arduino.h"
  71. #include "math.h"
  72. #include "util.h"
  73. #include "Timer.h"
  74. #include <avr/wdt.h>
  75. #include <avr/pgmspace.h>
  76. #include "Dcodes.h"
  77. #include "AutoDeplete.h"
  78. #ifndef LA_NOCOMPAT
  79. #include "la10compat.h"
  80. #endif
  81. #include "spi.h"
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #ifdef IR_SENSOR
  85. #include "pat9125.h" // for pat9125_probe
  86. #endif
  87. #endif //FILAMENT_SENSOR
  88. #ifdef TMC2130
  89. #include "tmc2130.h"
  90. #endif //TMC2130
  91. #ifdef W25X20CL
  92. #include "w25x20cl.h"
  93. #include "optiboot_w25x20cl.h"
  94. #endif //W25X20CL
  95. #ifdef BLINKM
  96. #include "BlinkM.h"
  97. #include "Wire.h"
  98. #endif
  99. #ifdef ULTRALCD
  100. #include "ultralcd.h"
  101. #endif
  102. #if NUM_SERVOS > 0
  103. #include "Servo.h"
  104. #endif
  105. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  106. #include <SPI.h>
  107. #endif
  108. #include "mmu.h"
  109. #define VERSION_STRING "1.0.2"
  110. #include "ultralcd.h"
  111. #include "sound.h"
  112. #include "cmdqueue.h"
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. //filament types
  116. #define FILAMENT_DEFAULT 0
  117. #define FILAMENT_FLEX 1
  118. #define FILAMENT_PVA 2
  119. #define FILAMENT_UNDEFINED 255
  120. //Stepper Movement Variables
  121. //===========================================================================
  122. //=============================imported variables============================
  123. //===========================================================================
  124. //===========================================================================
  125. //=============================public variables=============================
  126. //===========================================================================
  127. #ifdef SDSUPPORT
  128. CardReader card;
  129. #endif
  130. unsigned long PingTime = _millis();
  131. unsigned long NcTime;
  132. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  133. //used for PINDA temp calibration and pause print
  134. #define DEFAULT_RETRACTION 1
  135. #define DEFAULT_RETRACTION_MM 4 //MM
  136. float default_retraction = DEFAULT_RETRACTION;
  137. float homing_feedrate[] = HOMING_FEEDRATE;
  138. //Although this flag and many others like this could be represented with a struct/bitfield for each axis (more readable and efficient code), the implementation
  139. //would not be standard across all platforms. That being said, the code will continue to use bitmasks for independent axis.
  140. //Moreover, according to C/C++ standard, the ordering of bits is platform/compiler dependent and the compiler is allowed to align the bits arbitrarily,
  141. //thus bit operations like shifting and masking may stop working and will be very hard to fix.
  142. uint8_t axis_relative_modes = 0;
  143. int feedmultiply=100; //100->1 200->2
  144. int extrudemultiply=100; //100->1 200->2
  145. int extruder_multiply[EXTRUDERS] = {100
  146. #if EXTRUDERS > 1
  147. , 100
  148. #if EXTRUDERS > 2
  149. , 100
  150. #endif
  151. #endif
  152. };
  153. int bowden_length[4] = {385, 385, 385, 385};
  154. bool is_usb_printing = false;
  155. bool homing_flag = false;
  156. unsigned long kicktime = _millis()+100000;
  157. unsigned int usb_printing_counter;
  158. int8_t lcd_change_fil_state = 0;
  159. unsigned long pause_time = 0;
  160. unsigned long start_pause_print = _millis();
  161. unsigned long t_fan_rising_edge = _millis();
  162. LongTimer safetyTimer;
  163. static LongTimer crashDetTimer;
  164. //unsigned long load_filament_time;
  165. bool mesh_bed_leveling_flag = false;
  166. bool mesh_bed_run_from_menu = false;
  167. bool prusa_sd_card_upload = false;
  168. unsigned int status_number = 0;
  169. unsigned long total_filament_used;
  170. unsigned int heating_status;
  171. unsigned int heating_status_counter;
  172. bool loading_flag = false;
  173. char snmm_filaments_used = 0;
  174. bool fan_state[2];
  175. int fan_edge_counter[2];
  176. int fan_speed[2];
  177. float extruder_multiplier[EXTRUDERS] = {1.0
  178. #if EXTRUDERS > 1
  179. , 1.0
  180. #if EXTRUDERS > 2
  181. , 1.0
  182. #endif
  183. #endif
  184. };
  185. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  186. //shortcuts for more readable code
  187. #define _x current_position[X_AXIS]
  188. #define _y current_position[Y_AXIS]
  189. #define _z current_position[Z_AXIS]
  190. #define _e current_position[E_AXIS]
  191. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  192. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  193. bool axis_known_position[3] = {false, false, false};
  194. // Extruder offset
  195. #if EXTRUDERS > 1
  196. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  197. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  198. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  199. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  200. #endif
  201. };
  202. #endif
  203. uint8_t active_extruder = 0;
  204. int fanSpeed=0;
  205. uint8_t newFanSpeed = 0;
  206. #ifdef FWRETRACT
  207. bool retracted[EXTRUDERS]={false
  208. #if EXTRUDERS > 1
  209. , false
  210. #if EXTRUDERS > 2
  211. , false
  212. #endif
  213. #endif
  214. };
  215. bool retracted_swap[EXTRUDERS]={false
  216. #if EXTRUDERS > 1
  217. , false
  218. #if EXTRUDERS > 2
  219. , false
  220. #endif
  221. #endif
  222. };
  223. float retract_length_swap = RETRACT_LENGTH_SWAP;
  224. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  225. #endif
  226. #ifdef PS_DEFAULT_OFF
  227. bool powersupply = false;
  228. #else
  229. bool powersupply = true;
  230. #endif
  231. bool cancel_heatup = false ;
  232. int8_t busy_state = NOT_BUSY;
  233. static long prev_busy_signal_ms = -1;
  234. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  235. const char errormagic[] PROGMEM = "Error:";
  236. const char echomagic[] PROGMEM = "echo:";
  237. const char G28W0[] PROGMEM = "G28 W0";
  238. bool no_response = false;
  239. uint8_t important_status;
  240. uint8_t saved_filament_type;
  241. #define SAVED_TARGET_UNSET (X_MIN_POS-1)
  242. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  243. // save/restore printing in case that mmu was not responding
  244. bool mmu_print_saved = false;
  245. // storing estimated time to end of print counted by slicer
  246. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  247. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  248. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. uint16_t print_time_to_change_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  251. uint16_t print_time_to_change_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining time to next change in minutes
  252. uint32_t IP_address = 0;
  253. //===========================================================================
  254. //=============================Private Variables=============================
  255. //===========================================================================
  256. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  257. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  258. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  259. // For tracing an arc
  260. static float offset[3] = {0.0, 0.0, 0.0};
  261. // Current feedrate
  262. float feedrate = 1500.0;
  263. // Feedrate for the next move
  264. static float next_feedrate;
  265. // Original feedrate saved during homing moves
  266. static float saved_feedrate;
  267. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  268. //static float tt = 0;
  269. //static float bt = 0;
  270. //Inactivity shutdown variables
  271. static unsigned long previous_millis_cmd = 0;
  272. unsigned long max_inactive_time = 0;
  273. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  274. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  275. unsigned long starttime=0;
  276. unsigned long stoptime=0;
  277. unsigned long _usb_timer = 0;
  278. bool Stopped=false;
  279. #if NUM_SERVOS > 0
  280. Servo servos[NUM_SERVOS];
  281. #endif
  282. bool target_direction;
  283. //Insert variables if CHDK is defined
  284. #ifdef CHDK
  285. unsigned long chdkHigh = 0;
  286. boolean chdkActive = false;
  287. #endif
  288. //! @name RAM save/restore printing
  289. //! @{
  290. bool saved_printing = false; //!< Print is paused and saved in RAM
  291. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  292. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  293. static float saved_pos[4] = { 0, 0, 0, 0 };
  294. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  295. static int saved_feedmultiply2 = 0;
  296. static uint8_t saved_active_extruder = 0;
  297. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  298. static bool saved_extruder_relative_mode = false;
  299. static int saved_fanSpeed = 0; //!< Print fan speed
  300. //! @}
  301. static int saved_feedmultiply_mm = 100;
  302. class AutoReportFeatures {
  303. union {
  304. struct {
  305. uint8_t temp : 1; //Temperature flag
  306. uint8_t fans : 1; //Fans flag
  307. uint8_t pos: 1; //Position flag
  308. uint8_t ar4 : 1; //Unused
  309. uint8_t ar5 : 1; //Unused
  310. uint8_t ar6 : 1; //Unused
  311. uint8_t ar7 : 1; //Unused
  312. } __attribute__((packed)) bits;
  313. uint8_t byte;
  314. } arFunctionsActive;
  315. uint8_t auto_report_period;
  316. public:
  317. LongTimer auto_report_timer;
  318. AutoReportFeatures():auto_report_period(0){
  319. #if defined(AUTO_REPORT)
  320. arFunctionsActive.byte = 0xff;
  321. #else
  322. arFunctionsActive.byte = 0;
  323. #endif //AUTO_REPORT
  324. }
  325. inline bool Temp()const { return arFunctionsActive.bits.temp != 0; }
  326. inline void SetTemp(uint8_t v){ arFunctionsActive.bits.temp = v; }
  327. inline bool Fans()const { return arFunctionsActive.bits.fans != 0; }
  328. inline void SetFans(uint8_t v){ arFunctionsActive.bits.fans = v; }
  329. inline bool Pos()const { return arFunctionsActive.bits.pos != 0; }
  330. inline void SetPos(uint8_t v){ arFunctionsActive.bits.pos = v; }
  331. inline void SetMask(uint8_t mask){ arFunctionsActive.byte = mask; }
  332. /// sets the autoreporting timer's period
  333. /// setting it to zero stops the timer
  334. void SetPeriod(uint8_t p){
  335. auto_report_period = p;
  336. if (auto_report_period != 0){
  337. auto_report_timer.start();
  338. } else{
  339. auto_report_timer.stop();
  340. }
  341. }
  342. inline void TimerStart() { auto_report_timer.start(); }
  343. inline bool TimerRunning()const { return auto_report_timer.running(); }
  344. inline bool TimerExpired() { return auto_report_timer.expired(auto_report_period * 1000ul); }
  345. };
  346. AutoReportFeatures autoReportFeatures;
  347. //===========================================================================
  348. //=============================Routines======================================
  349. //===========================================================================
  350. static void get_arc_coordinates();
  351. static bool setTargetedHotend(int code, uint8_t &extruder);
  352. static void print_time_remaining_init();
  353. static void wait_for_heater(long codenum, uint8_t extruder);
  354. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  355. static void gcode_M105(uint8_t extruder);
  356. static void temp_compensation_start();
  357. static void temp_compensation_apply();
  358. static bool get_PRUSA_SN(char* SN);
  359. uint16_t gcode_in_progress = 0;
  360. uint16_t mcode_in_progress = 0;
  361. void serial_echopair_P(const char *s_P, float v)
  362. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  363. void serial_echopair_P(const char *s_P, double v)
  364. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  365. void serial_echopair_P(const char *s_P, unsigned long v)
  366. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  367. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  368. {
  369. #if 0
  370. char ch=pgm_read_byte(str);
  371. while(ch)
  372. {
  373. MYSERIAL.write(ch);
  374. ch=pgm_read_byte(++str);
  375. }
  376. #else
  377. // hmm, same size as the above version, the compiler did a good job optimizing the above
  378. while( uint8_t ch = pgm_read_byte(str) ){
  379. MYSERIAL.write((char)ch);
  380. ++str;
  381. }
  382. #endif
  383. }
  384. #ifdef SDSUPPORT
  385. #include "SdFatUtil.h"
  386. int freeMemory() { return SdFatUtil::FreeRam(); }
  387. #else
  388. extern "C" {
  389. extern unsigned int __bss_end;
  390. extern unsigned int __heap_start;
  391. extern void *__brkval;
  392. int freeMemory() {
  393. int free_memory;
  394. if ((int)__brkval == 0)
  395. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  396. else
  397. free_memory = ((int)&free_memory) - ((int)__brkval);
  398. return free_memory;
  399. }
  400. }
  401. #endif //!SDSUPPORT
  402. void setup_killpin()
  403. {
  404. #if defined(KILL_PIN) && KILL_PIN > -1
  405. SET_INPUT(KILL_PIN);
  406. WRITE(KILL_PIN,HIGH);
  407. #endif
  408. }
  409. // Set home pin
  410. void setup_homepin(void)
  411. {
  412. #if defined(HOME_PIN) && HOME_PIN > -1
  413. SET_INPUT(HOME_PIN);
  414. WRITE(HOME_PIN,HIGH);
  415. #endif
  416. }
  417. void setup_photpin()
  418. {
  419. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  420. SET_OUTPUT(PHOTOGRAPH_PIN);
  421. WRITE(PHOTOGRAPH_PIN, LOW);
  422. #endif
  423. }
  424. void setup_powerhold()
  425. {
  426. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  427. SET_OUTPUT(SUICIDE_PIN);
  428. WRITE(SUICIDE_PIN, HIGH);
  429. #endif
  430. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  431. SET_OUTPUT(PS_ON_PIN);
  432. #if defined(PS_DEFAULT_OFF)
  433. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  434. #else
  435. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  436. #endif
  437. #endif
  438. }
  439. void suicide()
  440. {
  441. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  442. SET_OUTPUT(SUICIDE_PIN);
  443. WRITE(SUICIDE_PIN, LOW);
  444. #endif
  445. }
  446. void servo_init()
  447. {
  448. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  449. servos[0].attach(SERVO0_PIN);
  450. #endif
  451. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  452. servos[1].attach(SERVO1_PIN);
  453. #endif
  454. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  455. servos[2].attach(SERVO2_PIN);
  456. #endif
  457. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  458. servos[3].attach(SERVO3_PIN);
  459. #endif
  460. #if (NUM_SERVOS >= 5)
  461. #error "TODO: enter initalisation code for more servos"
  462. #endif
  463. }
  464. bool fans_check_enabled = true;
  465. #ifdef TMC2130
  466. void crashdet_stop_and_save_print()
  467. {
  468. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  469. }
  470. void crashdet_restore_print_and_continue()
  471. {
  472. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  473. // babystep_apply();
  474. }
  475. void crashdet_stop_and_save_print2()
  476. {
  477. cli();
  478. planner_abort_hard(); //abort printing
  479. cmdqueue_reset(); //empty cmdqueue
  480. card.sdprinting = false;
  481. card.closefile();
  482. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  483. st_reset_timer();
  484. sei();
  485. }
  486. void crashdet_detected(uint8_t mask)
  487. {
  488. st_synchronize();
  489. static uint8_t crashDet_counter = 0;
  490. bool automatic_recovery_after_crash = true;
  491. if (crashDet_counter++ == 0) {
  492. crashDetTimer.start();
  493. }
  494. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  495. crashDetTimer.stop();
  496. crashDet_counter = 0;
  497. }
  498. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  499. automatic_recovery_after_crash = false;
  500. crashDetTimer.stop();
  501. crashDet_counter = 0;
  502. }
  503. else {
  504. crashDetTimer.start();
  505. }
  506. lcd_update_enable(true);
  507. lcd_clear();
  508. lcd_update(2);
  509. if (mask & X_AXIS_MASK)
  510. {
  511. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  512. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  513. }
  514. if (mask & Y_AXIS_MASK)
  515. {
  516. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  517. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  518. }
  519. lcd_update_enable(true);
  520. lcd_update(2);
  521. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  522. gcode_G28(true, true, false); //home X and Y
  523. st_synchronize();
  524. if (automatic_recovery_after_crash) {
  525. enquecommand_P(PSTR("CRASH_RECOVER"));
  526. }else{
  527. setTargetHotend(0, active_extruder);
  528. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  529. lcd_update_enable(true);
  530. if (yesno)
  531. {
  532. enquecommand_P(PSTR("CRASH_RECOVER"));
  533. }
  534. else
  535. {
  536. enquecommand_P(PSTR("CRASH_CANCEL"));
  537. }
  538. }
  539. }
  540. void crashdet_recover()
  541. {
  542. crashdet_restore_print_and_continue();
  543. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  544. }
  545. void crashdet_cancel()
  546. {
  547. saved_printing = false;
  548. tmc2130_sg_stop_on_crash = true;
  549. if (saved_printing_type == PRINTING_TYPE_SD) {
  550. lcd_print_stop();
  551. }else if(saved_printing_type == PRINTING_TYPE_USB){
  552. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  553. cmdqueue_reset();
  554. }
  555. }
  556. #endif //TMC2130
  557. void failstats_reset_print()
  558. {
  559. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  560. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  561. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  562. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  563. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  564. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  565. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  566. fsensor_softfail = 0;
  567. #endif
  568. }
  569. void softReset()
  570. {
  571. cli();
  572. wdt_enable(WDTO_15MS);
  573. while(1);
  574. }
  575. #ifdef MESH_BED_LEVELING
  576. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  577. #endif
  578. static void factory_reset_stats(){
  579. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  580. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  581. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  582. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  584. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  585. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  586. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  587. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  588. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  589. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  590. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  591. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  592. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  593. }
  594. // Factory reset function
  595. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  596. // Level input parameter sets depth of reset
  597. static void factory_reset(char level)
  598. {
  599. lcd_clear();
  600. Sound_MakeCustom(100,0,false);
  601. switch (level) {
  602. case 0: // Level 0: Language reset
  603. lang_reset();
  604. break;
  605. case 1: //Level 1: Reset statistics
  606. factory_reset_stats();
  607. lcd_menu_statistics();
  608. break;
  609. case 2: // Level 2: Prepare for shipping
  610. factory_reset_stats();
  611. // [[fallthrough]] // there is no break intentionally
  612. case 4: // Level 4: Preparation after being serviced
  613. // Force language selection at the next boot up.
  614. lang_reset();
  615. // Force the "Follow calibration flow" message at the next boot up.
  616. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  617. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  618. farm_mode = false;
  619. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  620. #ifdef FILAMENT_SENSOR
  621. fsensor_enable();
  622. fsensor_autoload_set(true);
  623. #endif //FILAMENT_SENSOR
  624. break;
  625. case 3:{ // Level 3: erase everything, whole EEPROM will be set to 0xFF
  626. lcd_puts_P(PSTR("Factory RESET"));
  627. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  628. uint16_t er_progress = 0;
  629. lcd_set_cursor(3, 3);
  630. lcd_space(6);
  631. lcd_set_cursor(3, 3);
  632. lcd_print(er_progress);
  633. // Erase EEPROM
  634. for (uint16_t i = 0; i < 4096; i++) {
  635. eeprom_update_byte((uint8_t*)i, 0xFF);
  636. if (i % 41 == 0) {
  637. er_progress++;
  638. lcd_set_cursor(3, 3);
  639. lcd_space(6);
  640. lcd_set_cursor(3, 3);
  641. lcd_print(er_progress);
  642. lcd_puts_P(PSTR("%"));
  643. }
  644. }
  645. softReset();
  646. }break;
  647. #ifdef SNMM
  648. case 5:
  649. bowden_menu();
  650. break;
  651. #endif
  652. default:
  653. break;
  654. }
  655. }
  656. extern "C" {
  657. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  658. }
  659. int uart_putchar(char c, FILE *)
  660. {
  661. MYSERIAL.write(c);
  662. return 0;
  663. }
  664. void lcd_splash()
  665. {
  666. lcd_clear(); // clears display and homes screen
  667. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  668. }
  669. void factory_reset()
  670. {
  671. KEEPALIVE_STATE(PAUSED_FOR_USER);
  672. if (!READ(BTN_ENC))
  673. {
  674. _delay_ms(1000);
  675. if (!READ(BTN_ENC))
  676. {
  677. lcd_clear();
  678. lcd_puts_P(PSTR("Factory RESET"));
  679. SET_OUTPUT(BEEPER);
  680. if(eSoundMode!=e_SOUND_MODE_SILENT)
  681. WRITE(BEEPER, HIGH);
  682. while (!READ(BTN_ENC));
  683. WRITE(BEEPER, LOW);
  684. _delay_ms(2000);
  685. char level = reset_menu();
  686. factory_reset(level);
  687. switch (level) {
  688. case 0:
  689. case 1:
  690. case 2:
  691. case 3:
  692. case 4: _delay_ms(0); break;
  693. }
  694. }
  695. }
  696. KEEPALIVE_STATE(IN_HANDLER);
  697. }
  698. void show_fw_version_warnings() {
  699. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  700. switch (FW_DEV_VERSION) {
  701. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  702. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  703. case(FW_VERSION_DEVEL):
  704. case(FW_VERSION_DEBUG):
  705. lcd_update_enable(false);
  706. lcd_clear();
  707. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  708. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  709. #else
  710. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  711. #endif
  712. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  713. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  714. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  715. lcd_wait_for_click();
  716. break;
  717. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  718. }
  719. lcd_update_enable(true);
  720. }
  721. //! @brief try to check if firmware is on right type of printer
  722. static void check_if_fw_is_on_right_printer(){
  723. #ifdef FILAMENT_SENSOR
  724. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  725. #ifdef IR_SENSOR
  726. if (pat9125_probe()){
  727. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}////c=20 r=3
  728. #endif //IR_SENSOR
  729. #ifdef PAT9125
  730. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  731. const uint8_t ir_detected = !READ(IR_SENSOR_PIN);
  732. if (ir_detected){
  733. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}////c=20 r=3
  734. #endif //PAT9125
  735. }
  736. #endif //FILAMENT_SENSOR
  737. }
  738. uint8_t check_printer_version()
  739. {
  740. uint8_t version_changed = 0;
  741. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  742. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  743. if (printer_type != PRINTER_TYPE) {
  744. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  745. else version_changed |= 0b10;
  746. }
  747. if (motherboard != MOTHERBOARD) {
  748. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  749. else version_changed |= 0b01;
  750. }
  751. return version_changed;
  752. }
  753. #ifdef BOOTAPP
  754. #include "bootapp.h" //bootloader support
  755. #endif //BOOTAPP
  756. #if (LANG_MODE != 0) //secondary language support
  757. #ifdef W25X20CL
  758. // language update from external flash
  759. #define LANGBOOT_BLOCKSIZE 0x1000u
  760. #define LANGBOOT_RAMBUFFER 0x0800
  761. void update_sec_lang_from_external_flash()
  762. {
  763. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  764. {
  765. uint8_t lang = boot_reserved >> 4;
  766. uint8_t state = boot_reserved & 0xf;
  767. lang_table_header_t header;
  768. uint32_t src_addr;
  769. if (lang_get_header(lang, &header, &src_addr))
  770. {
  771. lcd_puts_at_P(1,3,PSTR("Language update."));
  772. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  773. _delay(100);
  774. boot_reserved = (state + 1) | (lang << 4);
  775. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  776. {
  777. cli();
  778. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  779. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  780. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  781. if (state == 0)
  782. {
  783. //TODO - check header integrity
  784. }
  785. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  786. }
  787. else
  788. {
  789. //TODO - check sec lang data integrity
  790. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  791. }
  792. }
  793. }
  794. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  795. }
  796. #ifdef DEBUG_W25X20CL
  797. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  798. {
  799. lang_table_header_t header;
  800. uint8_t count = 0;
  801. uint32_t addr = 0x00000;
  802. while (1)
  803. {
  804. printf_P(_n("LANGTABLE%d:"), count);
  805. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  806. if (header.magic != LANG_MAGIC)
  807. {
  808. puts_P(_n("NG!"));
  809. break;
  810. }
  811. puts_P(_n("OK"));
  812. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  813. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  814. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  815. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  816. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  817. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  818. addr += header.size;
  819. codes[count] = header.code;
  820. count ++;
  821. }
  822. return count;
  823. }
  824. void list_sec_lang_from_external_flash()
  825. {
  826. uint16_t codes[8];
  827. uint8_t count = lang_xflash_enum_codes(codes);
  828. printf_P(_n("XFlash lang count = %hhd\n"), count);
  829. }
  830. #endif //DEBUG_W25X20CL
  831. #endif //W25X20CL
  832. #endif //(LANG_MODE != 0)
  833. static void w25x20cl_err_msg()
  834. {
  835. lcd_clear();
  836. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  837. }
  838. // "Setup" function is called by the Arduino framework on startup.
  839. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  840. // are initialized by the main() routine provided by the Arduino framework.
  841. void setup()
  842. {
  843. timer2_init(); // enables functional millis
  844. mmu_init();
  845. ultralcd_init();
  846. spi_init();
  847. lcd_splash();
  848. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  849. selectedSerialPort = eeprom_read_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE);
  850. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  851. eeprom_update_byte((uint8_t *)EEPROM_SECOND_SERIAL_ACTIVE, selectedSerialPort);
  852. MYSERIAL.begin(BAUDRATE);
  853. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  854. stdout = uartout;
  855. #ifdef W25X20CL
  856. bool w25x20cl_success = w25x20cl_init();
  857. uint8_t optiboot_status = 1;
  858. if (w25x20cl_success)
  859. {
  860. optiboot_status = optiboot_w25x20cl_enter();
  861. #if (LANG_MODE != 0) //secondary language support
  862. update_sec_lang_from_external_flash();
  863. #endif //(LANG_MODE != 0)
  864. }
  865. else
  866. {
  867. w25x20cl_err_msg();
  868. }
  869. #else
  870. const bool w25x20cl_success = true;
  871. #endif //W25X20CL
  872. setup_killpin();
  873. setup_powerhold();
  874. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  875. if (farm_mode == 0xFF)
  876. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  877. if (farm_mode)
  878. {
  879. no_response = true; //we need confirmation by recieving PRUSA thx
  880. important_status = 8;
  881. prusa_statistics(8);
  882. #ifdef HAS_SECOND_SERIAL_PORT
  883. selectedSerialPort = 1;
  884. #endif //HAS_SECOND_SERIAL_PORT
  885. MYSERIAL.begin(BAUDRATE);
  886. #ifdef TMC2130
  887. //increased extruder current (PFW363)
  888. tmc2130_current_h[E_AXIS] = 36;
  889. tmc2130_current_r[E_AXIS] = 36;
  890. #endif //TMC2130
  891. #ifdef FILAMENT_SENSOR
  892. //disabled filament autoload (PFW360)
  893. fsensor_autoload_set(false);
  894. #endif //FILAMENT_SENSOR
  895. // ~ FanCheck -> on
  896. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  897. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  898. }
  899. //saved EEPROM SN is not valid. Try to retrieve it.
  900. //SN is valid only if it is NULL terminated. Any other character means either uninitialized or corrupted
  901. if (eeprom_read_byte((uint8_t*)EEPROM_PRUSA_SN + 19))
  902. {
  903. char SN[20];
  904. if (get_PRUSA_SN(SN))
  905. {
  906. eeprom_update_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  907. puts_P(PSTR("SN updated"));
  908. }
  909. else
  910. puts_P(PSTR("SN update failed"));
  911. }
  912. #ifndef W25X20CL
  913. SERIAL_PROTOCOLLNPGM("start");
  914. #else
  915. if ((optiboot_status != 0) || (selectedSerialPort != 0))
  916. SERIAL_PROTOCOLLNPGM("start");
  917. #endif
  918. SERIAL_ECHO_START;
  919. puts_P(PSTR(" " FW_VERSION_FULL));
  920. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  921. #ifdef DEBUG_SEC_LANG
  922. lang_table_header_t header;
  923. uint32_t src_addr = 0x00000;
  924. if (lang_get_header(1, &header, &src_addr))
  925. {
  926. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  927. #define LT_PRINT_TEST 2
  928. // flash usage
  929. // total p.test
  930. //0 252718 t+c text code
  931. //1 253142 424 170 254
  932. //2 253040 322 164 158
  933. //3 253248 530 135 395
  934. #if (LT_PRINT_TEST==1) //not optimized printf
  935. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  936. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  937. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  938. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  939. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  940. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  941. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  942. #elif (LT_PRINT_TEST==2) //optimized printf
  943. printf_P(
  944. _n(
  945. " _src_addr = 0x%08lx\n"
  946. " _lt_magic = 0x%08lx %S\n"
  947. " _lt_size = 0x%04x (%d)\n"
  948. " _lt_count = 0x%04x (%d)\n"
  949. " _lt_chsum = 0x%04x\n"
  950. " _lt_code = 0x%04x (%c%c)\n"
  951. " _lt_resv1 = 0x%08lx\n"
  952. ),
  953. src_addr,
  954. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  955. header.size, header.size,
  956. header.count, header.count,
  957. header.checksum,
  958. header.code, header.code >> 8, header.code & 0xff,
  959. header.signature
  960. );
  961. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  962. MYSERIAL.print(" _src_addr = 0x");
  963. MYSERIAL.println(src_addr, 16);
  964. MYSERIAL.print(" _lt_magic = 0x");
  965. MYSERIAL.print(header.magic, 16);
  966. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  967. MYSERIAL.print(" _lt_size = 0x");
  968. MYSERIAL.print(header.size, 16);
  969. MYSERIAL.print(" (");
  970. MYSERIAL.print(header.size, 10);
  971. MYSERIAL.println(")");
  972. MYSERIAL.print(" _lt_count = 0x");
  973. MYSERIAL.print(header.count, 16);
  974. MYSERIAL.print(" (");
  975. MYSERIAL.print(header.count, 10);
  976. MYSERIAL.println(")");
  977. MYSERIAL.print(" _lt_chsum = 0x");
  978. MYSERIAL.println(header.checksum, 16);
  979. MYSERIAL.print(" _lt_code = 0x");
  980. MYSERIAL.print(header.code, 16);
  981. MYSERIAL.print(" (");
  982. MYSERIAL.print((char)(header.code >> 8), 0);
  983. MYSERIAL.print((char)(header.code & 0xff), 0);
  984. MYSERIAL.println(")");
  985. MYSERIAL.print(" _lt_resv1 = 0x");
  986. MYSERIAL.println(header.signature, 16);
  987. #endif //(LT_PRINT_TEST==)
  988. #undef LT_PRINT_TEST
  989. #if 0
  990. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  991. for (uint16_t i = 0; i < 1024; i++)
  992. {
  993. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  994. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  995. if ((i % 16) == 15) putchar('\n');
  996. }
  997. #endif
  998. uint16_t sum = 0;
  999. for (uint16_t i = 0; i < header.size; i++)
  1000. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1001. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1002. sum -= header.checksum; //subtract checksum
  1003. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1004. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1005. if (sum == header.checksum)
  1006. puts_P(_n("Checksum OK"), sum);
  1007. else
  1008. puts_P(_n("Checksum NG"), sum);
  1009. }
  1010. else
  1011. puts_P(_n("lang_get_header failed!"));
  1012. #if 0
  1013. for (uint16_t i = 0; i < 1024*10; i++)
  1014. {
  1015. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1016. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1017. if ((i % 16) == 15) putchar('\n');
  1018. }
  1019. #endif
  1020. #if 0
  1021. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1022. for (int i = 0; i < 4096; ++i) {
  1023. int b = eeprom_read_byte((unsigned char*)i);
  1024. if (b != 255) {
  1025. SERIAL_ECHO(i);
  1026. SERIAL_ECHO(":");
  1027. SERIAL_ECHO(b);
  1028. SERIAL_ECHOLN("");
  1029. }
  1030. }
  1031. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1032. #endif
  1033. #endif //DEBUG_SEC_LANG
  1034. // Check startup - does nothing if bootloader sets MCUSR to 0
  1035. byte mcu = MCUSR;
  1036. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  1037. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1038. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1039. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1040. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1041. if (mcu & 1) puts_P(MSG_POWERUP);
  1042. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1043. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1044. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1045. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1046. MCUSR = 0;
  1047. //SERIAL_ECHORPGM(MSG_MARLIN);
  1048. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1049. #ifdef STRING_VERSION_CONFIG_H
  1050. #ifdef STRING_CONFIG_H_AUTHOR
  1051. SERIAL_ECHO_START;
  1052. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1053. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1054. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1055. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1056. SERIAL_ECHOPGM("Compiled: ");
  1057. SERIAL_ECHOLNPGM(__DATE__);
  1058. #endif
  1059. #endif
  1060. SERIAL_ECHO_START;
  1061. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1062. SERIAL_ECHO(freeMemory());
  1063. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1064. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1065. //lcd_update_enable(false); // why do we need this?? - andre
  1066. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1067. bool previous_settings_retrieved = false;
  1068. uint8_t hw_changed = check_printer_version();
  1069. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1070. previous_settings_retrieved = Config_RetrieveSettings();
  1071. }
  1072. else { //printer version was changed so use default settings
  1073. Config_ResetDefault();
  1074. }
  1075. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1076. tp_init(); // Initialize temperature loop
  1077. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1078. else
  1079. {
  1080. w25x20cl_err_msg();
  1081. puts_P(_n("W25X20CL not responding."));
  1082. }
  1083. #ifdef EXTRUDER_ALTFAN_DETECT
  1084. SERIAL_ECHORPGM(_n("Extruder fan type: "));
  1085. if (extruder_altfan_detect())
  1086. SERIAL_ECHOLNRPGM(PSTR("ALTFAN"));
  1087. else
  1088. SERIAL_ECHOLNRPGM(PSTR("NOCTUA"));
  1089. #endif //EXTRUDER_ALTFAN_DETECT
  1090. plan_init(); // Initialize planner;
  1091. factory_reset();
  1092. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1093. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1094. {
  1095. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1096. // where all the EEPROM entries are set to 0x0ff.
  1097. // Once a firmware boots up, it forces at least a language selection, which changes
  1098. // EEPROM_LANG to number lower than 0x0ff.
  1099. // 1) Set a high power mode.
  1100. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1101. #ifdef TMC2130
  1102. tmc2130_mode = TMC2130_MODE_NORMAL;
  1103. #endif //TMC2130
  1104. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1105. }
  1106. lcd_encoder_diff=0;
  1107. #ifdef TMC2130
  1108. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1109. if (silentMode == 0xff) silentMode = 0;
  1110. tmc2130_mode = TMC2130_MODE_NORMAL;
  1111. if (lcd_crash_detect_enabled() && !farm_mode)
  1112. {
  1113. lcd_crash_detect_enable();
  1114. puts_P(_N("CrashDetect ENABLED!"));
  1115. }
  1116. else
  1117. {
  1118. lcd_crash_detect_disable();
  1119. puts_P(_N("CrashDetect DISABLED"));
  1120. }
  1121. #ifdef TMC2130_LINEARITY_CORRECTION
  1122. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1123. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1124. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1125. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1126. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1127. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1128. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1129. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1130. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1131. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1132. #endif //TMC2130_LINEARITY_CORRECTION
  1133. #ifdef TMC2130_VARIABLE_RESOLUTION
  1134. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1135. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1136. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1137. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1138. #else //TMC2130_VARIABLE_RESOLUTION
  1139. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1140. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1141. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1142. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1143. #endif //TMC2130_VARIABLE_RESOLUTION
  1144. #endif //TMC2130
  1145. st_init(); // Initialize stepper, this enables interrupts!
  1146. #ifdef TMC2130
  1147. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1148. update_mode_profile();
  1149. tmc2130_init();
  1150. #endif //TMC2130
  1151. #ifdef PSU_Delta
  1152. init_force_z(); // ! important for correct Z-axis initialization
  1153. #endif // PSU_Delta
  1154. setup_photpin();
  1155. servo_init();
  1156. // Reset the machine correction matrix.
  1157. // It does not make sense to load the correction matrix until the machine is homed.
  1158. world2machine_reset();
  1159. // Initialize current_position accounting for software endstops to
  1160. // avoid unexpected initial shifts on the first move
  1161. clamp_to_software_endstops(current_position);
  1162. plan_set_position_curposXYZE();
  1163. #ifdef FILAMENT_SENSOR
  1164. fsensor_init();
  1165. #endif //FILAMENT_SENSOR
  1166. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1167. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1168. #endif
  1169. setup_homepin();
  1170. #if defined(Z_AXIS_ALWAYS_ON)
  1171. enable_z();
  1172. #endif
  1173. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1174. if (farm_mode == 0xFF) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1175. if (farm_mode)
  1176. {
  1177. prusa_statistics(8);
  1178. }
  1179. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1180. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1181. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1182. // but this times out if a blocking dialog is shown in setup().
  1183. card.initsd();
  1184. #ifdef DEBUG_SD_SPEED_TEST
  1185. if (card.cardOK)
  1186. {
  1187. uint8_t* buff = (uint8_t*)block_buffer;
  1188. uint32_t block = 0;
  1189. uint32_t sumr = 0;
  1190. uint32_t sumw = 0;
  1191. for (int i = 0; i < 1024; i++)
  1192. {
  1193. uint32_t u = _micros();
  1194. bool res = card.card.readBlock(i, buff);
  1195. u = _micros() - u;
  1196. if (res)
  1197. {
  1198. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1199. sumr += u;
  1200. u = _micros();
  1201. res = card.card.writeBlock(i, buff);
  1202. u = _micros() - u;
  1203. if (res)
  1204. {
  1205. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1206. sumw += u;
  1207. }
  1208. else
  1209. {
  1210. printf_P(PSTR("writeBlock %4d error\n"), i);
  1211. break;
  1212. }
  1213. }
  1214. else
  1215. {
  1216. printf_P(PSTR("readBlock %4d error\n"), i);
  1217. break;
  1218. }
  1219. }
  1220. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1221. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1222. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1223. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1224. }
  1225. else
  1226. printf_P(PSTR("Card NG!\n"));
  1227. #endif //DEBUG_SD_SPEED_TEST
  1228. eeprom_init();
  1229. #ifdef SNMM
  1230. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1231. int _z = BOWDEN_LENGTH;
  1232. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1233. }
  1234. #endif
  1235. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1236. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1237. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1238. #if (LANG_MODE != 0) //secondary language support
  1239. #ifdef DEBUG_W25X20CL
  1240. W25X20CL_SPI_ENTER();
  1241. uint8_t uid[8]; // 64bit unique id
  1242. w25x20cl_rd_uid(uid);
  1243. puts_P(_n("W25X20CL UID="));
  1244. for (uint8_t i = 0; i < 8; i ++)
  1245. printf_P(PSTR("%02hhx"), uid[i]);
  1246. putchar('\n');
  1247. list_sec_lang_from_external_flash();
  1248. #endif //DEBUG_W25X20CL
  1249. // lang_reset();
  1250. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1251. lcd_language();
  1252. #ifdef DEBUG_SEC_LANG
  1253. uint16_t sec_lang_code = lang_get_code(1);
  1254. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1255. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1256. lang_print_sec_lang(uartout);
  1257. #endif //DEBUG_SEC_LANG
  1258. #endif //(LANG_MODE != 0)
  1259. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1260. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1261. }
  1262. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1263. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1264. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1265. int16_t z_shift = 0;
  1266. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1267. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1268. }
  1269. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1270. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1271. }
  1272. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1273. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1274. }
  1275. //mbl_mode_init();
  1276. mbl_settings_init();
  1277. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1278. if (SilentModeMenu_MMU == 255) {
  1279. SilentModeMenu_MMU = 1;
  1280. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1281. }
  1282. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1283. setup_fan_interrupt();
  1284. #endif //DEBUG_DISABLE_FANCHECK
  1285. #ifdef PAT9125
  1286. fsensor_setup_interrupt();
  1287. #endif //PAT9125
  1288. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1289. #ifndef DEBUG_DISABLE_STARTMSGS
  1290. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1291. if (!farm_mode) {
  1292. check_if_fw_is_on_right_printer();
  1293. show_fw_version_warnings();
  1294. }
  1295. switch (hw_changed) {
  1296. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1297. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1298. case(0b01):
  1299. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1300. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1301. break;
  1302. case(0b10):
  1303. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1304. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1305. break;
  1306. case(0b11):
  1307. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1308. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1309. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1310. break;
  1311. default: break; //no change, show no message
  1312. }
  1313. if (!previous_settings_retrieved) {
  1314. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=5
  1315. Config_StoreSettings();
  1316. }
  1317. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1318. lcd_wizard(WizState::Run);
  1319. }
  1320. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1321. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1322. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1323. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1324. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1325. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1326. // Show the message.
  1327. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1328. }
  1329. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1330. // Show the message.
  1331. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1332. lcd_update_enable(true);
  1333. }
  1334. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() == false) {
  1335. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1336. lcd_update_enable(true);
  1337. }
  1338. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1339. // Show the message.
  1340. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1341. }
  1342. }
  1343. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1344. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1345. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1346. update_current_firmware_version_to_eeprom();
  1347. lcd_selftest();
  1348. }
  1349. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1350. KEEPALIVE_STATE(IN_PROCESS);
  1351. #endif //DEBUG_DISABLE_STARTMSGS
  1352. lcd_update_enable(true);
  1353. lcd_clear();
  1354. lcd_update(2);
  1355. // Store the currently running firmware into an eeprom,
  1356. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1357. update_current_firmware_version_to_eeprom();
  1358. #ifdef TMC2130
  1359. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1360. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1361. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1362. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1363. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1364. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1365. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1366. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1367. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1368. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1369. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1370. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1371. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1372. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1373. #endif //TMC2130
  1374. #ifdef UVLO_SUPPORT
  1375. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1376. /*
  1377. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1378. else {
  1379. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1380. lcd_update_enable(true);
  1381. lcd_update(2);
  1382. lcd_setstatuspgm(_T(WELCOME_MSG));
  1383. }
  1384. */
  1385. manage_heater(); // Update temperatures
  1386. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1387. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1388. #endif
  1389. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1390. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1391. puts_P(_N("Automatic recovery!"));
  1392. #endif
  1393. recover_print(1);
  1394. }
  1395. else{
  1396. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1397. puts_P(_N("Normal recovery!"));
  1398. #endif
  1399. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1400. else {
  1401. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1402. lcd_update_enable(true);
  1403. lcd_update(2);
  1404. lcd_setstatuspgm(_T(WELCOME_MSG));
  1405. }
  1406. }
  1407. }
  1408. // Only arm the uvlo interrupt _after_ a recovering print has been initialized and
  1409. // the entire state machine initialized.
  1410. setup_uvlo_interrupt();
  1411. #endif //UVLO_SUPPORT
  1412. fCheckModeInit();
  1413. fSetMmuMode(mmu_enabled);
  1414. KEEPALIVE_STATE(NOT_BUSY);
  1415. #ifdef WATCHDOG
  1416. wdt_enable(WDTO_4S);
  1417. #endif //WATCHDOG
  1418. }
  1419. void trace();
  1420. #define CHUNK_SIZE 64 // bytes
  1421. #define SAFETY_MARGIN 1
  1422. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1423. int chunkHead = 0;
  1424. void serial_read_stream() {
  1425. setAllTargetHotends(0);
  1426. setTargetBed(0);
  1427. lcd_clear();
  1428. lcd_puts_P(PSTR(" Upload in progress"));
  1429. // first wait for how many bytes we will receive
  1430. uint32_t bytesToReceive;
  1431. // receive the four bytes
  1432. char bytesToReceiveBuffer[4];
  1433. for (int i=0; i<4; i++) {
  1434. int data;
  1435. while ((data = MYSERIAL.read()) == -1) {};
  1436. bytesToReceiveBuffer[i] = data;
  1437. }
  1438. // make it a uint32
  1439. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1440. // we're ready, notify the sender
  1441. MYSERIAL.write('+');
  1442. // lock in the routine
  1443. uint32_t receivedBytes = 0;
  1444. while (prusa_sd_card_upload) {
  1445. int i;
  1446. for (i=0; i<CHUNK_SIZE; i++) {
  1447. int data;
  1448. // check if we're not done
  1449. if (receivedBytes == bytesToReceive) {
  1450. break;
  1451. }
  1452. // read the next byte
  1453. while ((data = MYSERIAL.read()) == -1) {};
  1454. receivedBytes++;
  1455. // save it to the chunk
  1456. chunk[i] = data;
  1457. }
  1458. // write the chunk to SD
  1459. card.write_command_no_newline(&chunk[0]);
  1460. // notify the sender we're ready for more data
  1461. MYSERIAL.write('+');
  1462. // for safety
  1463. manage_heater();
  1464. // check if we're done
  1465. if(receivedBytes == bytesToReceive) {
  1466. trace(); // beep
  1467. card.closefile();
  1468. prusa_sd_card_upload = false;
  1469. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1470. }
  1471. }
  1472. }
  1473. /**
  1474. * Output a "busy" message at regular intervals
  1475. * while the machine is not accepting commands.
  1476. */
  1477. void host_keepalive() {
  1478. #ifndef HOST_KEEPALIVE_FEATURE
  1479. return;
  1480. #endif //HOST_KEEPALIVE_FEATURE
  1481. if (farm_mode) return;
  1482. long ms = _millis();
  1483. #if defined(AUTO_REPORT)
  1484. {
  1485. if (autoReportFeatures.TimerExpired())
  1486. {
  1487. if(autoReportFeatures.Temp()){
  1488. gcode_M105(active_extruder);
  1489. }
  1490. if(autoReportFeatures.Pos()){
  1491. gcode_M114();
  1492. }
  1493. #if defined(AUTO_REPORT) && (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  1494. if(autoReportFeatures.Fans()){
  1495. gcode_M123();
  1496. }
  1497. #endif //AUTO_REPORT and (FANCHECK and TACH_0 or TACH_1)
  1498. autoReportFeatures.TimerStart();
  1499. }
  1500. }
  1501. #endif //AUTO_REPORT
  1502. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1503. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1504. switch (busy_state) {
  1505. case IN_HANDLER:
  1506. case IN_PROCESS:
  1507. SERIAL_ECHO_START;
  1508. SERIAL_ECHOLNPGM("busy: processing");
  1509. break;
  1510. case PAUSED_FOR_USER:
  1511. SERIAL_ECHO_START;
  1512. SERIAL_ECHOLNPGM("busy: paused for user");
  1513. break;
  1514. case PAUSED_FOR_INPUT:
  1515. SERIAL_ECHO_START;
  1516. SERIAL_ECHOLNPGM("busy: paused for input");
  1517. break;
  1518. default:
  1519. break;
  1520. }
  1521. }
  1522. prev_busy_signal_ms = ms;
  1523. }
  1524. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1525. // Before loop(), the setup() function is called by the main() routine.
  1526. void loop()
  1527. {
  1528. KEEPALIVE_STATE(NOT_BUSY);
  1529. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1530. {
  1531. is_usb_printing = true;
  1532. usb_printing_counter--;
  1533. _usb_timer = _millis();
  1534. }
  1535. if (usb_printing_counter == 0)
  1536. {
  1537. is_usb_printing = false;
  1538. }
  1539. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1540. {
  1541. is_usb_printing = true;
  1542. }
  1543. #ifdef FANCHECK
  1544. if (fan_check_error && isPrintPaused)
  1545. {
  1546. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1547. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1548. }
  1549. #endif
  1550. if (prusa_sd_card_upload)
  1551. {
  1552. //we read byte-by byte
  1553. serial_read_stream();
  1554. }
  1555. else
  1556. {
  1557. get_command();
  1558. #ifdef SDSUPPORT
  1559. card.checkautostart(false);
  1560. #endif
  1561. if(buflen)
  1562. {
  1563. cmdbuffer_front_already_processed = false;
  1564. #ifdef SDSUPPORT
  1565. if(card.saving)
  1566. {
  1567. // Saving a G-code file onto an SD-card is in progress.
  1568. // Saving starts with M28, saving until M29 is seen.
  1569. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1570. card.write_command(CMDBUFFER_CURRENT_STRING);
  1571. if(card.logging)
  1572. process_commands();
  1573. else
  1574. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1575. } else {
  1576. card.closefile();
  1577. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1578. }
  1579. } else {
  1580. process_commands();
  1581. }
  1582. #else
  1583. process_commands();
  1584. #endif //SDSUPPORT
  1585. if (! cmdbuffer_front_already_processed && buflen)
  1586. {
  1587. // ptr points to the start of the block currently being processed.
  1588. // The first character in the block is the block type.
  1589. char *ptr = cmdbuffer + bufindr;
  1590. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1591. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1592. union {
  1593. struct {
  1594. char lo;
  1595. char hi;
  1596. } lohi;
  1597. uint16_t value;
  1598. } sdlen;
  1599. sdlen.value = 0;
  1600. {
  1601. // This block locks the interrupts globally for 3.25 us,
  1602. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1603. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1604. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1605. cli();
  1606. // Reset the command to something, which will be ignored by the power panic routine,
  1607. // so this buffer length will not be counted twice.
  1608. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1609. // Extract the current buffer length.
  1610. sdlen.lohi.lo = *ptr ++;
  1611. sdlen.lohi.hi = *ptr;
  1612. // and pass it to the planner queue.
  1613. planner_add_sd_length(sdlen.value);
  1614. sei();
  1615. }
  1616. }
  1617. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1618. cli();
  1619. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1620. // and one for each command to previous block in the planner queue.
  1621. planner_add_sd_length(1);
  1622. sei();
  1623. }
  1624. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1625. // this block's SD card length will not be counted twice as its command type has been replaced
  1626. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1627. cmdqueue_pop_front();
  1628. }
  1629. host_keepalive();
  1630. }
  1631. }
  1632. //check heater every n milliseconds
  1633. manage_heater();
  1634. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1635. checkHitEndstops();
  1636. lcd_update(0);
  1637. #ifdef TMC2130
  1638. tmc2130_check_overtemp();
  1639. if (tmc2130_sg_crash)
  1640. {
  1641. uint8_t crash = tmc2130_sg_crash;
  1642. tmc2130_sg_crash = 0;
  1643. // crashdet_stop_and_save_print();
  1644. switch (crash)
  1645. {
  1646. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1647. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1648. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1649. }
  1650. }
  1651. #endif //TMC2130
  1652. mmu_loop();
  1653. }
  1654. #define DEFINE_PGM_READ_ANY(type, reader) \
  1655. static inline type pgm_read_any(const type *p) \
  1656. { return pgm_read_##reader##_near(p); }
  1657. DEFINE_PGM_READ_ANY(float, float);
  1658. DEFINE_PGM_READ_ANY(signed char, byte);
  1659. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1660. static const PROGMEM type array##_P[3] = \
  1661. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1662. static inline type array(int axis) \
  1663. { return pgm_read_any(&array##_P[axis]); } \
  1664. type array##_ext(int axis) \
  1665. { return pgm_read_any(&array##_P[axis]); }
  1666. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1667. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1668. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1669. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1670. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1671. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1672. static void axis_is_at_home(int axis) {
  1673. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1674. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1675. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1676. }
  1677. //! @return original feedmultiply
  1678. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1679. saved_feedrate = feedrate;
  1680. int l_feedmultiply = feedmultiply;
  1681. feedmultiply = 100;
  1682. previous_millis_cmd = _millis();
  1683. enable_endstops(enable_endstops_now);
  1684. return l_feedmultiply;
  1685. }
  1686. //! @param original_feedmultiply feedmultiply to restore
  1687. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1688. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1689. enable_endstops(false);
  1690. #endif
  1691. feedrate = saved_feedrate;
  1692. feedmultiply = original_feedmultiply;
  1693. previous_millis_cmd = _millis();
  1694. }
  1695. #ifdef ENABLE_AUTO_BED_LEVELING
  1696. #ifdef AUTO_BED_LEVELING_GRID
  1697. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1698. {
  1699. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1700. planeNormal.debug("planeNormal");
  1701. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1702. //bedLevel.debug("bedLevel");
  1703. //plan_bed_level_matrix.debug("bed level before");
  1704. //vector_3 uncorrected_position = plan_get_position_mm();
  1705. //uncorrected_position.debug("position before");
  1706. vector_3 corrected_position = plan_get_position();
  1707. // corrected_position.debug("position after");
  1708. current_position[X_AXIS] = corrected_position.x;
  1709. current_position[Y_AXIS] = corrected_position.y;
  1710. current_position[Z_AXIS] = corrected_position.z;
  1711. // put the bed at 0 so we don't go below it.
  1712. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1713. plan_set_position_curposXYZE();
  1714. }
  1715. #else // not AUTO_BED_LEVELING_GRID
  1716. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1717. plan_bed_level_matrix.set_to_identity();
  1718. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1719. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1720. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1721. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1722. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1723. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1724. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1725. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1726. vector_3 corrected_position = plan_get_position();
  1727. current_position[X_AXIS] = corrected_position.x;
  1728. current_position[Y_AXIS] = corrected_position.y;
  1729. current_position[Z_AXIS] = corrected_position.z;
  1730. // put the bed at 0 so we don't go below it.
  1731. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1732. plan_set_position_curposXYZE();
  1733. }
  1734. #endif // AUTO_BED_LEVELING_GRID
  1735. static void run_z_probe() {
  1736. plan_bed_level_matrix.set_to_identity();
  1737. feedrate = homing_feedrate[Z_AXIS];
  1738. // move down until you find the bed
  1739. float zPosition = -10;
  1740. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1741. st_synchronize();
  1742. // we have to let the planner know where we are right now as it is not where we said to go.
  1743. zPosition = st_get_position_mm(Z_AXIS);
  1744. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1745. // move up the retract distance
  1746. zPosition += home_retract_mm(Z_AXIS);
  1747. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1748. st_synchronize();
  1749. // move back down slowly to find bed
  1750. feedrate = homing_feedrate[Z_AXIS]/4;
  1751. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1752. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1753. st_synchronize();
  1754. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1755. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1756. plan_set_position_curposXYZE();
  1757. }
  1758. static void do_blocking_move_to(float x, float y, float z) {
  1759. float oldFeedRate = feedrate;
  1760. feedrate = homing_feedrate[Z_AXIS];
  1761. current_position[Z_AXIS] = z;
  1762. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1763. st_synchronize();
  1764. feedrate = XY_TRAVEL_SPEED;
  1765. current_position[X_AXIS] = x;
  1766. current_position[Y_AXIS] = y;
  1767. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1768. st_synchronize();
  1769. feedrate = oldFeedRate;
  1770. }
  1771. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1772. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1773. }
  1774. /// Probe bed height at position (x,y), returns the measured z value
  1775. static float probe_pt(float x, float y, float z_before) {
  1776. // move to right place
  1777. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1778. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1779. run_z_probe();
  1780. float measured_z = current_position[Z_AXIS];
  1781. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1782. SERIAL_PROTOCOLPGM(" x: ");
  1783. SERIAL_PROTOCOL(x);
  1784. SERIAL_PROTOCOLPGM(" y: ");
  1785. SERIAL_PROTOCOL(y);
  1786. SERIAL_PROTOCOLPGM(" z: ");
  1787. SERIAL_PROTOCOL(measured_z);
  1788. SERIAL_PROTOCOLPGM("\n");
  1789. return measured_z;
  1790. }
  1791. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1792. #ifdef LIN_ADVANCE
  1793. /**
  1794. * M900: Set and/or Get advance K factor
  1795. *
  1796. * K<factor> Set advance K factor
  1797. */
  1798. inline void gcode_M900() {
  1799. float newK = code_seen('K') ? code_value_float() : -2;
  1800. #ifdef LA_NOCOMPAT
  1801. if (newK >= 0 && newK < LA_K_MAX)
  1802. extruder_advance_K = newK;
  1803. else
  1804. SERIAL_ECHOLNPGM("K out of allowed range!");
  1805. #else
  1806. if (newK == 0)
  1807. {
  1808. extruder_advance_K = 0;
  1809. la10c_reset();
  1810. }
  1811. else
  1812. {
  1813. newK = la10c_value(newK);
  1814. if (newK < 0)
  1815. SERIAL_ECHOLNPGM("K out of allowed range!");
  1816. else
  1817. extruder_advance_K = newK;
  1818. }
  1819. #endif
  1820. SERIAL_ECHO_START;
  1821. SERIAL_ECHOPGM("Advance K=");
  1822. SERIAL_ECHOLN(extruder_advance_K);
  1823. }
  1824. #endif // LIN_ADVANCE
  1825. bool check_commands() {
  1826. bool end_command_found = false;
  1827. while (buflen)
  1828. {
  1829. if ((code_seen_P(PSTR("M84"))) || (code_seen_P(PSTR("M 84")))) end_command_found = true;
  1830. if (!cmdbuffer_front_already_processed)
  1831. cmdqueue_pop_front();
  1832. cmdbuffer_front_already_processed = false;
  1833. }
  1834. return end_command_found;
  1835. }
  1836. // raise_z_above: slowly raise Z to the requested height
  1837. //
  1838. // contrarily to a simple move, this function will carefully plan a move
  1839. // when the current Z position is unknown. In such cases, stallguard is
  1840. // enabled and will prevent prolonged pushing against the Z tops
  1841. void raise_z_above(float target, bool plan)
  1842. {
  1843. if (current_position[Z_AXIS] >= target)
  1844. return;
  1845. // Z needs raising
  1846. current_position[Z_AXIS] = target;
  1847. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1848. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1849. #else
  1850. bool z_min_endstop = false;
  1851. #endif
  1852. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1853. {
  1854. // current position is known or very low, it's safe to raise Z
  1855. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1856. return;
  1857. }
  1858. // ensure Z is powered in normal mode to overcome initial load
  1859. enable_z();
  1860. st_synchronize();
  1861. // rely on crashguard to limit damage
  1862. bool z_endstop_enabled = enable_z_endstop(true);
  1863. #ifdef TMC2130
  1864. tmc2130_home_enter(Z_AXIS_MASK);
  1865. #endif //TMC2130
  1866. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  1867. st_synchronize();
  1868. #ifdef TMC2130
  1869. if (endstop_z_hit_on_purpose())
  1870. {
  1871. // not necessarily exact, but will avoid further vertical moves
  1872. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1873. plan_set_position_curposXYZE();
  1874. }
  1875. tmc2130_home_exit();
  1876. #endif //TMC2130
  1877. enable_z_endstop(z_endstop_enabled);
  1878. }
  1879. #ifdef TMC2130
  1880. bool calibrate_z_auto()
  1881. {
  1882. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1883. lcd_clear();
  1884. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1885. bool endstops_enabled = enable_endstops(true);
  1886. int axis_up_dir = -home_dir(Z_AXIS);
  1887. tmc2130_home_enter(Z_AXIS_MASK);
  1888. current_position[Z_AXIS] = 0;
  1889. plan_set_position_curposXYZE();
  1890. set_destination_to_current();
  1891. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1892. feedrate = homing_feedrate[Z_AXIS];
  1893. plan_buffer_line_destinationXYZE(feedrate / 60);
  1894. st_synchronize();
  1895. // current_position[axis] = 0;
  1896. // plan_set_position_curposXYZE();
  1897. tmc2130_home_exit();
  1898. enable_endstops(false);
  1899. current_position[Z_AXIS] = 0;
  1900. plan_set_position_curposXYZE();
  1901. set_destination_to_current();
  1902. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1903. feedrate = homing_feedrate[Z_AXIS] / 2;
  1904. plan_buffer_line_destinationXYZE(feedrate / 60);
  1905. st_synchronize();
  1906. enable_endstops(endstops_enabled);
  1907. if (PRINTER_TYPE == PRINTER_MK3) {
  1908. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1909. }
  1910. else {
  1911. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1912. }
  1913. plan_set_position_curposXYZE();
  1914. return true;
  1915. }
  1916. #endif //TMC2130
  1917. #ifdef TMC2130
  1918. static void check_Z_crash(void)
  1919. {
  1920. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1921. FORCE_HIGH_POWER_END;
  1922. current_position[Z_AXIS] = 0;
  1923. plan_set_position_curposXYZE();
  1924. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  1925. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS]);
  1926. st_synchronize();
  1927. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1928. }
  1929. }
  1930. #endif //TMC2130
  1931. #ifdef TMC2130
  1932. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1933. #else
  1934. void homeaxis(int axis, uint8_t cnt)
  1935. #endif //TMC2130
  1936. {
  1937. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1938. #define HOMEAXIS_DO(LETTER) \
  1939. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1940. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1941. {
  1942. int axis_home_dir = home_dir(axis);
  1943. feedrate = homing_feedrate[axis];
  1944. #ifdef TMC2130
  1945. tmc2130_home_enter(X_AXIS_MASK << axis);
  1946. #endif //TMC2130
  1947. // Move away a bit, so that the print head does not touch the end position,
  1948. // and the following movement to endstop has a chance to achieve the required velocity
  1949. // for the stall guard to work.
  1950. current_position[axis] = 0;
  1951. plan_set_position_curposXYZE();
  1952. set_destination_to_current();
  1953. // destination[axis] = 11.f;
  1954. destination[axis] = -3.f * axis_home_dir;
  1955. plan_buffer_line_destinationXYZE(feedrate/60);
  1956. st_synchronize();
  1957. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1958. endstops_hit_on_purpose();
  1959. enable_endstops(false);
  1960. current_position[axis] = 0;
  1961. plan_set_position_curposXYZE();
  1962. destination[axis] = 1. * axis_home_dir;
  1963. plan_buffer_line_destinationXYZE(feedrate/60);
  1964. st_synchronize();
  1965. // Now continue to move up to the left end stop with the collision detection enabled.
  1966. enable_endstops(true);
  1967. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1968. plan_buffer_line_destinationXYZE(feedrate/60);
  1969. st_synchronize();
  1970. for (uint8_t i = 0; i < cnt; i++)
  1971. {
  1972. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1973. endstops_hit_on_purpose();
  1974. enable_endstops(false);
  1975. current_position[axis] = 0;
  1976. plan_set_position_curposXYZE();
  1977. destination[axis] = -10.f * axis_home_dir;
  1978. plan_buffer_line_destinationXYZE(feedrate/60);
  1979. st_synchronize();
  1980. endstops_hit_on_purpose();
  1981. // Now move left up to the collision, this time with a repeatable velocity.
  1982. enable_endstops(true);
  1983. destination[axis] = 11.f * axis_home_dir;
  1984. #ifdef TMC2130
  1985. feedrate = homing_feedrate[axis];
  1986. #else //TMC2130
  1987. feedrate = homing_feedrate[axis] / 2;
  1988. #endif //TMC2130
  1989. plan_buffer_line_destinationXYZE(feedrate/60);
  1990. st_synchronize();
  1991. #ifdef TMC2130
  1992. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1993. if (pstep) pstep[i] = mscnt >> 4;
  1994. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1995. #endif //TMC2130
  1996. }
  1997. endstops_hit_on_purpose();
  1998. enable_endstops(false);
  1999. #ifdef TMC2130
  2000. uint8_t orig = tmc2130_home_origin[axis];
  2001. uint8_t back = tmc2130_home_bsteps[axis];
  2002. if (tmc2130_home_enabled && (orig <= 63))
  2003. {
  2004. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2005. if (back > 0)
  2006. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  2007. }
  2008. else
  2009. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  2010. tmc2130_home_exit();
  2011. #endif //TMC2130
  2012. axis_is_at_home(axis);
  2013. axis_known_position[axis] = true;
  2014. // Move from minimum
  2015. #ifdef TMC2130
  2016. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  2017. #else //TMC2130
  2018. float dist = - axis_home_dir * 0.01f * 64;
  2019. #endif //TMC2130
  2020. current_position[axis] -= dist;
  2021. plan_set_position_curposXYZE();
  2022. current_position[axis] += dist;
  2023. destination[axis] = current_position[axis];
  2024. plan_buffer_line_destinationXYZE(0.5f*feedrate/60);
  2025. st_synchronize();
  2026. feedrate = 0.0;
  2027. }
  2028. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2029. {
  2030. #ifdef TMC2130
  2031. FORCE_HIGH_POWER_START;
  2032. #endif
  2033. int axis_home_dir = home_dir(axis);
  2034. current_position[axis] = 0;
  2035. plan_set_position_curposXYZE();
  2036. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2037. feedrate = homing_feedrate[axis];
  2038. plan_buffer_line_destinationXYZE(feedrate/60);
  2039. st_synchronize();
  2040. #ifdef TMC2130
  2041. check_Z_crash();
  2042. #endif //TMC2130
  2043. current_position[axis] = 0;
  2044. plan_set_position_curposXYZE();
  2045. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2046. plan_buffer_line_destinationXYZE(feedrate/60);
  2047. st_synchronize();
  2048. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2049. feedrate = homing_feedrate[axis]/2 ;
  2050. plan_buffer_line_destinationXYZE(feedrate/60);
  2051. st_synchronize();
  2052. #ifdef TMC2130
  2053. check_Z_crash();
  2054. #endif //TMC2130
  2055. axis_is_at_home(axis);
  2056. destination[axis] = current_position[axis];
  2057. feedrate = 0.0;
  2058. endstops_hit_on_purpose();
  2059. axis_known_position[axis] = true;
  2060. #ifdef TMC2130
  2061. FORCE_HIGH_POWER_END;
  2062. #endif
  2063. }
  2064. enable_endstops(endstops_enabled);
  2065. }
  2066. /**/
  2067. void home_xy()
  2068. {
  2069. set_destination_to_current();
  2070. homeaxis(X_AXIS);
  2071. homeaxis(Y_AXIS);
  2072. plan_set_position_curposXYZE();
  2073. endstops_hit_on_purpose();
  2074. }
  2075. void refresh_cmd_timeout(void)
  2076. {
  2077. previous_millis_cmd = _millis();
  2078. }
  2079. #ifdef FWRETRACT
  2080. void retract(bool retracting, bool swapretract = false) {
  2081. if(retracting && !retracted[active_extruder]) {
  2082. destination[X_AXIS]=current_position[X_AXIS];
  2083. destination[Y_AXIS]=current_position[Y_AXIS];
  2084. destination[Z_AXIS]=current_position[Z_AXIS];
  2085. destination[E_AXIS]=current_position[E_AXIS];
  2086. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2087. plan_set_e_position(current_position[E_AXIS]);
  2088. float oldFeedrate = feedrate;
  2089. feedrate=cs.retract_feedrate*60;
  2090. retracted[active_extruder]=true;
  2091. prepare_move();
  2092. current_position[Z_AXIS]-=cs.retract_zlift;
  2093. plan_set_position_curposXYZE();
  2094. prepare_move();
  2095. feedrate = oldFeedrate;
  2096. } else if(!retracting && retracted[active_extruder]) {
  2097. destination[X_AXIS]=current_position[X_AXIS];
  2098. destination[Y_AXIS]=current_position[Y_AXIS];
  2099. destination[Z_AXIS]=current_position[Z_AXIS];
  2100. destination[E_AXIS]=current_position[E_AXIS];
  2101. current_position[Z_AXIS]+=cs.retract_zlift;
  2102. plan_set_position_curposXYZE();
  2103. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2104. plan_set_e_position(current_position[E_AXIS]);
  2105. float oldFeedrate = feedrate;
  2106. feedrate=cs.retract_recover_feedrate*60;
  2107. retracted[active_extruder]=false;
  2108. prepare_move();
  2109. feedrate = oldFeedrate;
  2110. }
  2111. } //retract
  2112. #endif //FWRETRACT
  2113. void trace() {
  2114. Sound_MakeCustom(25,440,true);
  2115. }
  2116. /*
  2117. void ramming() {
  2118. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2119. if (current_temperature[0] < 230) {
  2120. //PLA
  2121. max_feedrate[E_AXIS] = 50;
  2122. //current_position[E_AXIS] -= 8;
  2123. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2124. //current_position[E_AXIS] += 8;
  2125. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2126. current_position[E_AXIS] += 5.4;
  2127. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2128. current_position[E_AXIS] += 3.2;
  2129. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2130. current_position[E_AXIS] += 3;
  2131. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2132. st_synchronize();
  2133. max_feedrate[E_AXIS] = 80;
  2134. current_position[E_AXIS] -= 82;
  2135. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2136. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2137. current_position[E_AXIS] -= 20;
  2138. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2139. current_position[E_AXIS] += 5;
  2140. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2141. current_position[E_AXIS] += 5;
  2142. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2143. current_position[E_AXIS] -= 10;
  2144. st_synchronize();
  2145. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2146. current_position[E_AXIS] += 10;
  2147. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2148. current_position[E_AXIS] -= 10;
  2149. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2150. current_position[E_AXIS] += 10;
  2151. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2152. current_position[E_AXIS] -= 10;
  2153. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2154. st_synchronize();
  2155. }
  2156. else {
  2157. //ABS
  2158. max_feedrate[E_AXIS] = 50;
  2159. //current_position[E_AXIS] -= 8;
  2160. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2161. //current_position[E_AXIS] += 8;
  2162. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2163. current_position[E_AXIS] += 3.1;
  2164. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2165. current_position[E_AXIS] += 3.1;
  2166. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2167. current_position[E_AXIS] += 4;
  2168. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2169. st_synchronize();
  2170. //current_position[X_AXIS] += 23; //delay
  2171. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2172. //current_position[X_AXIS] -= 23; //delay
  2173. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2174. _delay(4700);
  2175. max_feedrate[E_AXIS] = 80;
  2176. current_position[E_AXIS] -= 92;
  2177. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2178. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2179. current_position[E_AXIS] -= 5;
  2180. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2181. current_position[E_AXIS] += 5;
  2182. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2183. current_position[E_AXIS] -= 5;
  2184. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2185. st_synchronize();
  2186. current_position[E_AXIS] += 5;
  2187. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2188. current_position[E_AXIS] -= 5;
  2189. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2190. current_position[E_AXIS] += 5;
  2191. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2192. current_position[E_AXIS] -= 5;
  2193. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2194. st_synchronize();
  2195. }
  2196. }
  2197. */
  2198. #ifdef TMC2130
  2199. void force_high_power_mode(bool start_high_power_section) {
  2200. #ifdef PSU_Delta
  2201. if (start_high_power_section == true) enable_force_z();
  2202. #endif //PSU_Delta
  2203. uint8_t silent;
  2204. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2205. if (silent == 1) {
  2206. //we are in silent mode, set to normal mode to enable crash detection
  2207. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2208. st_synchronize();
  2209. cli();
  2210. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2211. update_mode_profile();
  2212. tmc2130_init();
  2213. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2214. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2215. st_reset_timer();
  2216. sei();
  2217. }
  2218. }
  2219. #endif //TMC2130
  2220. void gcode_M105(uint8_t extruder)
  2221. {
  2222. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2223. SERIAL_PROTOCOLPGM("T:");
  2224. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  2225. SERIAL_PROTOCOLPGM(" /");
  2226. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  2227. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2228. SERIAL_PROTOCOLPGM(" B:");
  2229. SERIAL_PROTOCOL_F(degBed(),1);
  2230. SERIAL_PROTOCOLPGM(" /");
  2231. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2232. #endif //TEMP_BED_PIN
  2233. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2234. SERIAL_PROTOCOLPGM(" T");
  2235. SERIAL_PROTOCOL(cur_extruder);
  2236. SERIAL_PROTOCOL(':');
  2237. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2238. SERIAL_PROTOCOLPGM(" /");
  2239. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2240. }
  2241. #else
  2242. SERIAL_ERROR_START;
  2243. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  2244. #endif
  2245. SERIAL_PROTOCOLPGM(" @:");
  2246. #ifdef EXTRUDER_WATTS
  2247. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2248. SERIAL_PROTOCOLPGM("W");
  2249. #else
  2250. SERIAL_PROTOCOL(getHeaterPower(extruder));
  2251. #endif
  2252. SERIAL_PROTOCOLPGM(" B@:");
  2253. #ifdef BED_WATTS
  2254. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2255. SERIAL_PROTOCOLPGM("W");
  2256. #else
  2257. SERIAL_PROTOCOL(getHeaterPower(-1));
  2258. #endif
  2259. #ifdef PINDA_THERMISTOR
  2260. SERIAL_PROTOCOLPGM(" P:");
  2261. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  2262. #endif //PINDA_THERMISTOR
  2263. #ifdef AMBIENT_THERMISTOR
  2264. SERIAL_PROTOCOLPGM(" A:");
  2265. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  2266. #endif //AMBIENT_THERMISTOR
  2267. #ifdef SHOW_TEMP_ADC_VALUES
  2268. {
  2269. float raw = 0.0;
  2270. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2271. SERIAL_PROTOCOLPGM(" ADC B:");
  2272. SERIAL_PROTOCOL_F(degBed(),1);
  2273. SERIAL_PROTOCOLPGM("C->");
  2274. raw = rawBedTemp();
  2275. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2276. SERIAL_PROTOCOLPGM(" Rb->");
  2277. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2278. SERIAL_PROTOCOLPGM(" Rxb->");
  2279. SERIAL_PROTOCOL_F(raw, 5);
  2280. #endif
  2281. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2282. SERIAL_PROTOCOLPGM(" T");
  2283. SERIAL_PROTOCOL(cur_extruder);
  2284. SERIAL_PROTOCOLPGM(":");
  2285. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2286. SERIAL_PROTOCOLPGM("C->");
  2287. raw = rawHotendTemp(cur_extruder);
  2288. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  2289. SERIAL_PROTOCOLPGM(" Rt");
  2290. SERIAL_PROTOCOL(cur_extruder);
  2291. SERIAL_PROTOCOLPGM("->");
  2292. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  2293. SERIAL_PROTOCOLPGM(" Rx");
  2294. SERIAL_PROTOCOL(cur_extruder);
  2295. SERIAL_PROTOCOLPGM("->");
  2296. SERIAL_PROTOCOL_F(raw, 5);
  2297. }
  2298. }
  2299. #endif
  2300. SERIAL_PROTOCOLLN();
  2301. }
  2302. #ifdef TMC2130
  2303. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2304. #else
  2305. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2306. #endif //TMC2130
  2307. {
  2308. st_synchronize();
  2309. #if 0
  2310. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2311. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2312. #endif
  2313. // Flag for the display update routine and to disable the print cancelation during homing.
  2314. homing_flag = true;
  2315. // Which axes should be homed?
  2316. bool home_x = home_x_axis;
  2317. bool home_y = home_y_axis;
  2318. bool home_z = home_z_axis;
  2319. // Either all X,Y,Z codes are present, or none of them.
  2320. bool home_all_axes = home_x == home_y && home_x == home_z;
  2321. if (home_all_axes)
  2322. // No X/Y/Z code provided means to home all axes.
  2323. home_x = home_y = home_z = true;
  2324. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2325. if (home_all_axes) {
  2326. raise_z_above(MESH_HOME_Z_SEARCH);
  2327. st_synchronize();
  2328. }
  2329. #ifdef ENABLE_AUTO_BED_LEVELING
  2330. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2331. #endif //ENABLE_AUTO_BED_LEVELING
  2332. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2333. // the planner will not perform any adjustments in the XY plane.
  2334. // Wait for the motors to stop and update the current position with the absolute values.
  2335. world2machine_revert_to_uncorrected();
  2336. // For mesh bed leveling deactivate the matrix temporarily.
  2337. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2338. // in a single axis only.
  2339. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2340. #ifdef MESH_BED_LEVELING
  2341. uint8_t mbl_was_active = mbl.active;
  2342. mbl.active = 0;
  2343. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2344. #endif
  2345. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2346. // consumed during the first movements following this statement.
  2347. if (home_z)
  2348. babystep_undo();
  2349. saved_feedrate = feedrate;
  2350. int l_feedmultiply = feedmultiply;
  2351. feedmultiply = 100;
  2352. previous_millis_cmd = _millis();
  2353. enable_endstops(true);
  2354. memcpy(destination, current_position, sizeof(destination));
  2355. feedrate = 0.0;
  2356. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2357. if(home_z)
  2358. homeaxis(Z_AXIS);
  2359. #endif
  2360. #ifdef QUICK_HOME
  2361. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2362. if(home_x && home_y) //first diagonal move
  2363. {
  2364. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2365. int x_axis_home_dir = home_dir(X_AXIS);
  2366. plan_set_position_curposXYZE();
  2367. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2368. feedrate = homing_feedrate[X_AXIS];
  2369. if(homing_feedrate[Y_AXIS]<feedrate)
  2370. feedrate = homing_feedrate[Y_AXIS];
  2371. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2372. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2373. } else {
  2374. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2375. }
  2376. plan_buffer_line_destinationXYZE(feedrate/60);
  2377. st_synchronize();
  2378. axis_is_at_home(X_AXIS);
  2379. axis_is_at_home(Y_AXIS);
  2380. plan_set_position_curposXYZE();
  2381. destination[X_AXIS] = current_position[X_AXIS];
  2382. destination[Y_AXIS] = current_position[Y_AXIS];
  2383. plan_buffer_line_destinationXYZE(feedrate/60);
  2384. feedrate = 0.0;
  2385. st_synchronize();
  2386. endstops_hit_on_purpose();
  2387. current_position[X_AXIS] = destination[X_AXIS];
  2388. current_position[Y_AXIS] = destination[Y_AXIS];
  2389. current_position[Z_AXIS] = destination[Z_AXIS];
  2390. }
  2391. #endif /* QUICK_HOME */
  2392. #ifdef TMC2130
  2393. if(home_x)
  2394. {
  2395. if (!calib)
  2396. homeaxis(X_AXIS);
  2397. else
  2398. tmc2130_home_calibrate(X_AXIS);
  2399. }
  2400. if(home_y)
  2401. {
  2402. if (!calib)
  2403. homeaxis(Y_AXIS);
  2404. else
  2405. tmc2130_home_calibrate(Y_AXIS);
  2406. }
  2407. #else //TMC2130
  2408. if(home_x) homeaxis(X_AXIS);
  2409. if(home_y) homeaxis(Y_AXIS);
  2410. #endif //TMC2130
  2411. if(home_x_axis && home_x_value != 0)
  2412. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2413. if(home_y_axis && home_y_value != 0)
  2414. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2415. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2416. #ifndef Z_SAFE_HOMING
  2417. if(home_z) {
  2418. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2419. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2420. st_synchronize();
  2421. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2422. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2423. raise_z_above(MESH_HOME_Z_SEARCH);
  2424. st_synchronize();
  2425. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2426. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2427. // 1st mesh bed leveling measurement point, corrected.
  2428. world2machine_initialize();
  2429. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2430. world2machine_reset();
  2431. if (destination[Y_AXIS] < Y_MIN_POS)
  2432. destination[Y_AXIS] = Y_MIN_POS;
  2433. feedrate = homing_feedrate[X_AXIS] / 20;
  2434. enable_endstops(false);
  2435. #ifdef DEBUG_BUILD
  2436. SERIAL_ECHOLNPGM("plan_set_position()");
  2437. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2438. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2439. #endif
  2440. plan_set_position_curposXYZE();
  2441. #ifdef DEBUG_BUILD
  2442. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2443. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2444. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2445. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2446. #endif
  2447. plan_buffer_line_destinationXYZE(feedrate);
  2448. st_synchronize();
  2449. current_position[X_AXIS] = destination[X_AXIS];
  2450. current_position[Y_AXIS] = destination[Y_AXIS];
  2451. enable_endstops(true);
  2452. endstops_hit_on_purpose();
  2453. homeaxis(Z_AXIS);
  2454. #else // MESH_BED_LEVELING
  2455. homeaxis(Z_AXIS);
  2456. #endif // MESH_BED_LEVELING
  2457. }
  2458. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2459. if(home_all_axes) {
  2460. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2461. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2462. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2463. feedrate = XY_TRAVEL_SPEED/60;
  2464. current_position[Z_AXIS] = 0;
  2465. plan_set_position_curposXYZE();
  2466. plan_buffer_line_destinationXYZE(feedrate);
  2467. st_synchronize();
  2468. current_position[X_AXIS] = destination[X_AXIS];
  2469. current_position[Y_AXIS] = destination[Y_AXIS];
  2470. homeaxis(Z_AXIS);
  2471. }
  2472. // Let's see if X and Y are homed and probe is inside bed area.
  2473. if(home_z) {
  2474. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2475. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2476. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2477. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2478. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2479. current_position[Z_AXIS] = 0;
  2480. plan_set_position_curposXYZE();
  2481. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2482. feedrate = max_feedrate[Z_AXIS];
  2483. plan_buffer_line_destinationXYZE(feedrate);
  2484. st_synchronize();
  2485. homeaxis(Z_AXIS);
  2486. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2487. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2488. SERIAL_ECHO_START;
  2489. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2490. } else {
  2491. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2492. SERIAL_ECHO_START;
  2493. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2494. }
  2495. }
  2496. #endif // Z_SAFE_HOMING
  2497. #endif // Z_HOME_DIR < 0
  2498. if(home_z_axis && home_z_value != 0)
  2499. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2500. #ifdef ENABLE_AUTO_BED_LEVELING
  2501. if(home_z)
  2502. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2503. #endif
  2504. // Set the planner and stepper routine positions.
  2505. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2506. // contains the machine coordinates.
  2507. plan_set_position_curposXYZE();
  2508. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2509. enable_endstops(false);
  2510. #endif
  2511. feedrate = saved_feedrate;
  2512. feedmultiply = l_feedmultiply;
  2513. previous_millis_cmd = _millis();
  2514. endstops_hit_on_purpose();
  2515. #ifndef MESH_BED_LEVELING
  2516. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2517. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2518. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2519. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2520. lcd_adjust_z();
  2521. #endif
  2522. // Load the machine correction matrix
  2523. world2machine_initialize();
  2524. // and correct the current_position XY axes to match the transformed coordinate system.
  2525. world2machine_update_current();
  2526. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2527. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2528. {
  2529. if (! home_z && mbl_was_active) {
  2530. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2531. mbl.active = true;
  2532. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2533. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2534. }
  2535. }
  2536. else
  2537. {
  2538. st_synchronize();
  2539. homing_flag = false;
  2540. }
  2541. #endif
  2542. if (farm_mode) { prusa_statistics(20); };
  2543. homing_flag = false;
  2544. #if 0
  2545. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2546. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2547. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2548. #endif
  2549. }
  2550. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2551. {
  2552. #ifdef TMC2130
  2553. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2554. #else
  2555. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2556. #endif //TMC2130
  2557. }
  2558. void adjust_bed_reset()
  2559. {
  2560. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2561. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2562. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2563. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2564. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2565. }
  2566. //! @brief Calibrate XYZ
  2567. //! @param onlyZ if true, calibrate only Z axis
  2568. //! @param verbosity_level
  2569. //! @retval true Succeeded
  2570. //! @retval false Failed
  2571. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2572. {
  2573. bool final_result = false;
  2574. #ifdef TMC2130
  2575. FORCE_HIGH_POWER_START;
  2576. #endif // TMC2130
  2577. FORCE_BL_ON_START;
  2578. // Only Z calibration?
  2579. if (!onlyZ)
  2580. {
  2581. setTargetBed(0);
  2582. setAllTargetHotends(0);
  2583. adjust_bed_reset(); //reset bed level correction
  2584. }
  2585. // Disable the default update procedure of the display. We will do a modal dialog.
  2586. lcd_update_enable(false);
  2587. // Let the planner use the uncorrected coordinates.
  2588. mbl.reset();
  2589. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2590. // the planner will not perform any adjustments in the XY plane.
  2591. // Wait for the motors to stop and update the current position with the absolute values.
  2592. world2machine_revert_to_uncorrected();
  2593. // Reset the baby step value applied without moving the axes.
  2594. babystep_reset();
  2595. // Mark all axes as in a need for homing.
  2596. memset(axis_known_position, 0, sizeof(axis_known_position));
  2597. // Home in the XY plane.
  2598. //set_destination_to_current();
  2599. int l_feedmultiply = setup_for_endstop_move();
  2600. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2601. raise_z_above(MESH_HOME_Z_SEARCH);
  2602. st_synchronize();
  2603. home_xy();
  2604. enable_endstops(false);
  2605. current_position[X_AXIS] += 5;
  2606. current_position[Y_AXIS] += 5;
  2607. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2608. st_synchronize();
  2609. // Let the user move the Z axes up to the end stoppers.
  2610. #ifdef TMC2130
  2611. if (calibrate_z_auto())
  2612. {
  2613. #else //TMC2130
  2614. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2615. {
  2616. #endif //TMC2130
  2617. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2618. if(onlyZ){
  2619. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2620. lcd_set_cursor(0, 3);
  2621. lcd_print(1);
  2622. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2623. }else{
  2624. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2625. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2626. lcd_set_cursor(0, 2);
  2627. lcd_print(1);
  2628. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2629. }
  2630. refresh_cmd_timeout();
  2631. #ifndef STEEL_SHEET
  2632. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2633. {
  2634. lcd_wait_for_cool_down();
  2635. }
  2636. #endif //STEEL_SHEET
  2637. if(!onlyZ)
  2638. {
  2639. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2640. #ifdef STEEL_SHEET
  2641. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2642. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2643. #endif //STEEL_SHEET
  2644. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2645. KEEPALIVE_STATE(IN_HANDLER);
  2646. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2647. lcd_set_cursor(0, 2);
  2648. lcd_print(1);
  2649. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2650. }
  2651. bool endstops_enabled = enable_endstops(false);
  2652. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2653. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2654. st_synchronize();
  2655. // Move the print head close to the bed.
  2656. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2657. enable_endstops(true);
  2658. #ifdef TMC2130
  2659. tmc2130_home_enter(Z_AXIS_MASK);
  2660. #endif //TMC2130
  2661. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2662. st_synchronize();
  2663. #ifdef TMC2130
  2664. tmc2130_home_exit();
  2665. #endif //TMC2130
  2666. enable_endstops(endstops_enabled);
  2667. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2668. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2669. {
  2670. if (onlyZ)
  2671. {
  2672. clean_up_after_endstop_move(l_feedmultiply);
  2673. // Z only calibration.
  2674. // Load the machine correction matrix
  2675. world2machine_initialize();
  2676. // and correct the current_position to match the transformed coordinate system.
  2677. world2machine_update_current();
  2678. //FIXME
  2679. bool result = sample_mesh_and_store_reference();
  2680. if (result)
  2681. {
  2682. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2683. // Shipped, the nozzle height has been set already. The user can start printing now.
  2684. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2685. final_result = true;
  2686. // babystep_apply();
  2687. }
  2688. }
  2689. else
  2690. {
  2691. // Reset the baby step value and the baby step applied flag.
  2692. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2693. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2694. // Complete XYZ calibration.
  2695. uint8_t point_too_far_mask = 0;
  2696. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2697. clean_up_after_endstop_move(l_feedmultiply);
  2698. // Print head up.
  2699. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2700. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2701. st_synchronize();
  2702. //#ifndef NEW_XYZCAL
  2703. if (result >= 0)
  2704. {
  2705. #ifdef HEATBED_V2
  2706. sample_z();
  2707. #else //HEATBED_V2
  2708. point_too_far_mask = 0;
  2709. // Second half: The fine adjustment.
  2710. // Let the planner use the uncorrected coordinates.
  2711. mbl.reset();
  2712. world2machine_reset();
  2713. // Home in the XY plane.
  2714. int l_feedmultiply = setup_for_endstop_move();
  2715. home_xy();
  2716. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2717. clean_up_after_endstop_move(l_feedmultiply);
  2718. // Print head up.
  2719. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2720. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  2721. st_synchronize();
  2722. // if (result >= 0) babystep_apply();
  2723. #endif //HEATBED_V2
  2724. }
  2725. //#endif //NEW_XYZCAL
  2726. lcd_update_enable(true);
  2727. lcd_update(2);
  2728. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2729. if (result >= 0)
  2730. {
  2731. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2732. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2733. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2734. final_result = true;
  2735. }
  2736. }
  2737. #ifdef TMC2130
  2738. tmc2130_home_exit();
  2739. #endif
  2740. }
  2741. else
  2742. {
  2743. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2744. final_result = false;
  2745. }
  2746. }
  2747. else
  2748. {
  2749. // Timeouted.
  2750. }
  2751. lcd_update_enable(true);
  2752. #ifdef TMC2130
  2753. FORCE_HIGH_POWER_END;
  2754. #endif // TMC2130
  2755. FORCE_BL_ON_END;
  2756. return final_result;
  2757. }
  2758. void gcode_M114()
  2759. {
  2760. SERIAL_PROTOCOLPGM("X:");
  2761. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2762. SERIAL_PROTOCOLPGM(" Y:");
  2763. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2764. SERIAL_PROTOCOLPGM(" Z:");
  2765. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2766. SERIAL_PROTOCOLPGM(" E:");
  2767. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2768. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2769. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2770. SERIAL_PROTOCOLPGM(" Y:");
  2771. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2772. SERIAL_PROTOCOLPGM(" Z:");
  2773. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2774. SERIAL_PROTOCOLPGM(" E:");
  2775. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2776. SERIAL_PROTOCOLLN();
  2777. }
  2778. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  2779. void gcode_M123()
  2780. {
  2781. printf_P(_N("E0:%d RPM PRN1:%d RPM E0@:%u PRN1@:%d\n"), 60*fan_speed[active_extruder], 60*fan_speed[1], newFanSpeed, fanSpeed);
  2782. }
  2783. #endif //FANCHECK and TACH_0 or TACH_1
  2784. //! extracted code to compute z_shift for M600 in case of filament change operation
  2785. //! requested from fsensors.
  2786. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2787. //! unlike the previous implementation, which was adding 25mm even when the head was
  2788. //! printing at e.g. 24mm height.
  2789. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2790. //! the printout.
  2791. //! This function is templated to enable fast change of computation data type.
  2792. //! @return new z_shift value
  2793. template<typename T>
  2794. static T gcode_M600_filament_change_z_shift()
  2795. {
  2796. #ifdef FILAMENTCHANGE_ZADD
  2797. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2798. // avoid floating point arithmetics when not necessary - results in shorter code
  2799. T ztmp = T( current_position[Z_AXIS] );
  2800. T z_shift = 0;
  2801. if(ztmp < T(25)){
  2802. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2803. }
  2804. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2805. #else
  2806. return T(0);
  2807. #endif
  2808. }
  2809. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2810. {
  2811. st_synchronize();
  2812. float lastpos[4];
  2813. if (farm_mode)
  2814. {
  2815. prusa_statistics(22);
  2816. }
  2817. //First backup current position and settings
  2818. int feedmultiplyBckp = feedmultiply;
  2819. float HotendTempBckp = degTargetHotend(active_extruder);
  2820. int fanSpeedBckp = fanSpeed;
  2821. lastpos[X_AXIS] = current_position[X_AXIS];
  2822. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2823. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2824. lastpos[E_AXIS] = current_position[E_AXIS];
  2825. //Retract E
  2826. current_position[E_AXIS] += e_shift;
  2827. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED);
  2828. st_synchronize();
  2829. //Lift Z
  2830. current_position[Z_AXIS] += z_shift;
  2831. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED);
  2832. st_synchronize();
  2833. //Move XY to side
  2834. current_position[X_AXIS] = x_position;
  2835. current_position[Y_AXIS] = y_position;
  2836. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  2837. st_synchronize();
  2838. //Beep, manage nozzle heater and wait for user to start unload filament
  2839. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2840. lcd_change_fil_state = 0;
  2841. // Unload filament
  2842. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2843. else unload_filament(); //unload filament for single material (used also in M702)
  2844. //finish moves
  2845. st_synchronize();
  2846. if (!mmu_enabled)
  2847. {
  2848. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2849. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2850. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2851. if (lcd_change_fil_state == 0)
  2852. {
  2853. lcd_clear();
  2854. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  2855. current_position[X_AXIS] -= 100;
  2856. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED);
  2857. st_synchronize();
  2858. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2859. }
  2860. }
  2861. if (mmu_enabled)
  2862. {
  2863. if (!automatic) {
  2864. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2865. mmu_M600_wait_and_beep();
  2866. if (saved_printing) {
  2867. lcd_clear();
  2868. lcd_puts_at_P(0, 2, _T(MSG_PLEASE_WAIT));
  2869. mmu_command(MmuCmd::R0);
  2870. manage_response(false, false);
  2871. }
  2872. }
  2873. mmu_M600_load_filament(automatic, HotendTempBckp);
  2874. }
  2875. else
  2876. M600_load_filament();
  2877. if (!automatic) M600_check_state(HotendTempBckp);
  2878. lcd_update_enable(true);
  2879. //Not let's go back to print
  2880. fanSpeed = fanSpeedBckp;
  2881. //Feed a little of filament to stabilize pressure
  2882. if (!automatic)
  2883. {
  2884. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2885. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED);
  2886. }
  2887. //Move XY back
  2888. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2889. FILAMENTCHANGE_XYFEED, active_extruder);
  2890. st_synchronize();
  2891. //Move Z back
  2892. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2893. FILAMENTCHANGE_ZFEED, active_extruder);
  2894. st_synchronize();
  2895. //Set E position to original
  2896. plan_set_e_position(lastpos[E_AXIS]);
  2897. memcpy(current_position, lastpos, sizeof(lastpos));
  2898. memcpy(destination, current_position, sizeof(current_position));
  2899. //Recover feed rate
  2900. feedmultiply = feedmultiplyBckp;
  2901. char cmd[9];
  2902. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2903. enquecommand(cmd);
  2904. #ifdef IR_SENSOR
  2905. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2906. fsensor_check_autoload();
  2907. #endif //IR_SENSOR
  2908. lcd_setstatuspgm(_T(WELCOME_MSG));
  2909. custom_message_type = CustomMsg::Status;
  2910. }
  2911. void gcode_M701()
  2912. {
  2913. printf_P(PSTR("gcode_M701 begin\n"));
  2914. if (farm_mode)
  2915. {
  2916. prusa_statistics(22);
  2917. }
  2918. if (mmu_enabled)
  2919. {
  2920. extr_adj(tmp_extruder);//loads current extruder
  2921. mmu_extruder = tmp_extruder;
  2922. }
  2923. else
  2924. {
  2925. enable_z();
  2926. custom_message_type = CustomMsg::FilamentLoading;
  2927. #ifdef FSENSOR_QUALITY
  2928. fsensor_oq_meassure_start(40);
  2929. #endif //FSENSOR_QUALITY
  2930. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2931. current_position[E_AXIS] += 40;
  2932. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  2933. st_synchronize();
  2934. raise_z_above(MIN_Z_FOR_LOAD, false);
  2935. current_position[E_AXIS] += 30;
  2936. plan_buffer_line_curposXYZE(400 / 60); //fast sequence
  2937. load_filament_final_feed(); //slow sequence
  2938. st_synchronize();
  2939. Sound_MakeCustom(50,500,false);
  2940. if (!farm_mode && loading_flag) {
  2941. lcd_load_filament_color_check();
  2942. }
  2943. lcd_update_enable(true);
  2944. lcd_update(2);
  2945. lcd_setstatuspgm(_T(WELCOME_MSG));
  2946. disable_z();
  2947. loading_flag = false;
  2948. custom_message_type = CustomMsg::Status;
  2949. #ifdef FSENSOR_QUALITY
  2950. fsensor_oq_meassure_stop();
  2951. if (!fsensor_oq_result())
  2952. {
  2953. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2954. lcd_update_enable(true);
  2955. lcd_update(2);
  2956. if (disable)
  2957. fsensor_disable();
  2958. }
  2959. #endif //FSENSOR_QUALITY
  2960. }
  2961. }
  2962. /**
  2963. * @brief Get serial number from 32U2 processor
  2964. *
  2965. * Typical format of S/N is:CZPX0917X003XC13518
  2966. *
  2967. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2968. * reply is stored in *SN.
  2969. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2970. * it is interrupted, so less, or no characters are retransmitted, the function returns false
  2971. * The command will fail if the 32U2 processor is unpowered via USB since it is isolated from the rest of the electronics.
  2972. * In that case the value that is stored in the EEPROM should be used instead.
  2973. *
  2974. * @return 1 on success
  2975. * @return 0 on general failure
  2976. */
  2977. static bool get_PRUSA_SN(char* SN)
  2978. {
  2979. uint8_t selectedSerialPort_bak = selectedSerialPort;
  2980. selectedSerialPort = 0;
  2981. SERIAL_ECHOLNRPGM(PSTR(";S"));
  2982. uint8_t numbersRead = 0;
  2983. ShortTimer timeout;
  2984. timeout.start();
  2985. while (numbersRead < 19) {
  2986. if (MSerial.available() > 0) {
  2987. SN[numbersRead] = MSerial.read();
  2988. numbersRead++;
  2989. }
  2990. if (timeout.expired(100u)) break;
  2991. }
  2992. SN[numbersRead] = 0;
  2993. selectedSerialPort = selectedSerialPort_bak;
  2994. return (numbersRead == 19);
  2995. }
  2996. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2997. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2998. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2999. //! it may even interfere with other functions of the printer! You have been warned!
  3000. //! The test idea is to measure the time necessary to charge the capacitor.
  3001. //! So the algorithm is as follows:
  3002. //! 1. Set TACH_1 pin to INPUT mode and LOW
  3003. //! 2. Wait a few ms
  3004. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  3005. //! Repeat 1.-3. several times
  3006. //! Good RAMBo's times are in the range of approx. 260-320 us
  3007. //! Bad RAMBo's times are approx. 260-1200 us
  3008. //! So basically we are interested in maximum time, the minima are mostly the same.
  3009. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  3010. static void gcode_PRUSA_BadRAMBoFanTest(){
  3011. //printf_P(PSTR("Enter fan pin test\n"));
  3012. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  3013. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  3014. unsigned long tach1max = 0;
  3015. uint8_t tach1cntr = 0;
  3016. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  3017. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  3018. SET_OUTPUT(TACH_1);
  3019. WRITE(TACH_1, LOW);
  3020. _delay(20); // the delay may be lower
  3021. unsigned long tachMeasure = _micros();
  3022. cli();
  3023. SET_INPUT(TACH_1);
  3024. // just wait brutally in an endless cycle until we reach HIGH
  3025. // if this becomes a problem it may be improved to non-endless cycle
  3026. while( READ(TACH_1) == 0 ) ;
  3027. sei();
  3028. tachMeasure = _micros() - tachMeasure;
  3029. if( tach1max < tachMeasure )
  3030. tach1max = tachMeasure;
  3031. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  3032. }
  3033. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  3034. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  3035. if( tach1max > 500 ){
  3036. // bad RAMBo
  3037. SERIAL_PROTOCOLLNPGM("BAD");
  3038. } else {
  3039. SERIAL_PROTOCOLLNPGM("OK");
  3040. }
  3041. // cleanup after the test function
  3042. SET_INPUT(TACH_1);
  3043. WRITE(TACH_1, HIGH);
  3044. #endif
  3045. }
  3046. // G92 - Set current position to coordinates given
  3047. static void gcode_G92()
  3048. {
  3049. bool codes[NUM_AXIS];
  3050. float values[NUM_AXIS];
  3051. // Check which axes need to be set
  3052. for(uint8_t i = 0; i < NUM_AXIS; ++i)
  3053. {
  3054. codes[i] = code_seen(axis_codes[i]);
  3055. if(codes[i])
  3056. values[i] = code_value();
  3057. }
  3058. if((codes[E_AXIS] && values[E_AXIS] == 0) &&
  3059. (!codes[X_AXIS] && !codes[Y_AXIS] && !codes[Z_AXIS]))
  3060. {
  3061. // As a special optimization, when _just_ clearing the E position
  3062. // we schedule a flag asynchronously along with the next block to
  3063. // reset the starting E position instead of stopping the planner
  3064. current_position[E_AXIS] = 0;
  3065. plan_reset_next_e();
  3066. }
  3067. else
  3068. {
  3069. // In any other case we're forced to synchronize
  3070. st_synchronize();
  3071. for(uint8_t i = 0; i < 3; ++i)
  3072. {
  3073. if(codes[i])
  3074. current_position[i] = values[i] + cs.add_homing[i];
  3075. }
  3076. if(codes[E_AXIS])
  3077. current_position[E_AXIS] = values[E_AXIS];
  3078. // Set all at once
  3079. plan_set_position_curposXYZE();
  3080. }
  3081. }
  3082. #ifdef EXTENDED_CAPABILITIES_REPORT
  3083. static void cap_line(const char* name, bool ena = false) {
  3084. printf_P(PSTR("Cap:%S:%c\n"), name, (char)ena + '0');
  3085. }
  3086. static void extended_capabilities_report()
  3087. {
  3088. // AUTOREPORT_TEMP (M155)
  3089. cap_line(PSTR("AUTOREPORT_TEMP"), ENABLED(AUTO_REPORT));
  3090. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  3091. // AUTOREPORT_FANS (M123)
  3092. cap_line(PSTR("AUTOREPORT_FANS"), ENABLED(AUTO_REPORT));
  3093. #endif //FANCHECK and TACH_0 or TACH_1
  3094. // AUTOREPORT_POSITION (M114)
  3095. cap_line(PSTR("AUTOREPORT_POSITION"), ENABLED(AUTO_REPORT));
  3096. //@todo Update RepRap cap
  3097. }
  3098. #endif //EXTENDED_CAPABILITIES_REPORT
  3099. #ifdef BACKLASH_X
  3100. extern uint8_t st_backlash_x;
  3101. #endif //BACKLASH_X
  3102. #ifdef BACKLASH_Y
  3103. extern uint8_t st_backlash_y;
  3104. #endif //BACKLASH_Y
  3105. //! \ingroup marlin_main
  3106. //! @brief Parse and process commands
  3107. //!
  3108. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  3109. //!
  3110. //!
  3111. //! Implemented Codes
  3112. //! -------------------
  3113. //!
  3114. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  3115. //!
  3116. //!@n PRUSA CODES
  3117. //!@n P F - Returns FW versions
  3118. //!@n P R - Returns revision of printer
  3119. //!
  3120. //!@n G0 -> G1
  3121. //!@n G1 - Coordinated Movement X Y Z E
  3122. //!@n G2 - CW ARC
  3123. //!@n G3 - CCW ARC
  3124. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  3125. //!@n G10 - retract filament according to settings of M207
  3126. //!@n G11 - retract recover filament according to settings of M208
  3127. //!@n G28 - Home all Axes
  3128. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  3129. //!@n G30 - Single Z Probe, probes bed at current XY location.
  3130. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  3131. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  3132. //!@n G80 - Automatic mesh bed leveling
  3133. //!@n G81 - Print bed profile
  3134. //!@n G90 - Use Absolute Coordinates
  3135. //!@n G91 - Use Relative Coordinates
  3136. //!@n G92 - Set current position to coordinates given
  3137. //!
  3138. //!@n M Codes
  3139. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  3140. //!@n M1 - Same as M0
  3141. //!@n M17 - Enable/Power all stepper motors
  3142. //!@n M18 - Disable all stepper motors; same as M84
  3143. //!@n M20 - List SD card
  3144. //!@n M21 - Init SD card
  3145. //!@n M22 - Release SD card
  3146. //!@n M23 - Select SD file (M23 filename.g)
  3147. //!@n M24 - Start/resume SD print
  3148. //!@n M25 - Pause SD print
  3149. //!@n M26 - Set SD position in bytes (M26 S12345)
  3150. //!@n M27 - Report SD print status
  3151. //!@n M28 - Start SD write (M28 filename.g)
  3152. //!@n M29 - Stop SD write
  3153. //!@n M30 - Delete file from SD (M30 filename.g)
  3154. //!@n M31 - Output time since last M109 or SD card start to serial
  3155. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  3156. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  3157. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  3158. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  3159. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  3160. //!@n M73 - Show percent done and print time remaining
  3161. //!@n M80 - Turn on Power Supply
  3162. //!@n M81 - Turn off Power Supply
  3163. //!@n M82 - Set E codes absolute (default)
  3164. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  3165. //!@n M84 - Disable steppers until next move,
  3166. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  3167. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3168. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  3169. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  3170. //!@n M104 - Set extruder target temp
  3171. //!@n M105 - Read current temp
  3172. //!@n M106 - Fan on
  3173. //!@n M107 - Fan off
  3174. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  3175. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  3176. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  3177. //!@n M112 - Emergency stop
  3178. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  3179. //!@n M114 - Output current position to serial port
  3180. //!@n M115 - Capabilities string
  3181. //!@n M117 - display message
  3182. //!@n M119 - Output Endstop status to serial port
  3183. //!@n M123 - Tachometer value
  3184. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  3185. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  3186. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3187. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3188. //!@n M140 - Set bed target temp
  3189. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  3190. //!@n M155 - Automatically send temperatures, fan speeds, position
  3191. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3192. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3193. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3194. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3195. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  3196. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3197. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3198. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  3199. //!@n M206 - set additional homing offset
  3200. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  3201. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  3202. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3203. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3204. //!@n M220 S<factor in percent>- set speed factor override percentage
  3205. //!@n M221 S<factor in percent>- set extrude factor override percentage
  3206. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3207. //!@n M240 - Trigger a camera to take a photograph
  3208. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  3209. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3210. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3211. //!@n M301 - Set PID parameters P I and D
  3212. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3213. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3214. //!@n M304 - Set bed PID parameters P I and D
  3215. //!@n M400 - Finish all moves
  3216. //!@n M401 - Lower z-probe if present
  3217. //!@n M402 - Raise z-probe if present
  3218. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3219. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3220. //!@n M406 - Turn off Filament Sensor extrusion control
  3221. //!@n M407 - Displays measured filament diameter
  3222. //!@n M500 - stores parameters in EEPROM
  3223. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3224. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3225. //!@n M503 - print the current settings (from memory not from EEPROM)
  3226. //!@n M509 - force language selection on next restart
  3227. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3228. //!@n M552 - Set IP address
  3229. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3230. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3231. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3232. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3233. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3234. //!@n M907 - Set digital trimpot motor current using axis codes.
  3235. //!@n M908 - Control digital trimpot directly.
  3236. //!@n M350 - Set microstepping mode.
  3237. //!@n M351 - Toggle MS1 MS2 pins directly.
  3238. //!
  3239. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3240. //!@n M999 - Restart after being stopped by error
  3241. //! <br><br>
  3242. /** @defgroup marlin_main Marlin main */
  3243. /** \ingroup GCodes */
  3244. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3245. /**
  3246. They are shown in order of appearance in the code.
  3247. There are reasons why some G Codes aren't in numerical order.
  3248. */
  3249. void process_commands()
  3250. {
  3251. #ifdef FANCHECK
  3252. if(fan_check_error == EFCE_DETECTED){
  3253. fan_check_error = EFCE_REPORTED;
  3254. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3255. lcd_pause_print();
  3256. cmdqueue_serial_disabled = true;
  3257. }
  3258. #endif
  3259. if (!buflen) return; //empty command
  3260. #ifdef FILAMENT_RUNOUT_SUPPORT
  3261. SET_INPUT(FR_SENS);
  3262. #endif
  3263. #ifdef CMDBUFFER_DEBUG
  3264. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3265. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3266. SERIAL_ECHOLNPGM("");
  3267. SERIAL_ECHOPGM("In cmdqueue: ");
  3268. SERIAL_ECHO(buflen);
  3269. SERIAL_ECHOLNPGM("");
  3270. #endif /* CMDBUFFER_DEBUG */
  3271. unsigned long codenum; //throw away variable
  3272. char *starpos = NULL;
  3273. #ifdef ENABLE_AUTO_BED_LEVELING
  3274. float x_tmp, y_tmp, z_tmp, real_z;
  3275. #endif
  3276. // PRUSA GCODES
  3277. KEEPALIVE_STATE(IN_HANDLER);
  3278. #ifdef SNMM
  3279. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3280. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3281. int8_t SilentMode;
  3282. #endif
  3283. /*!
  3284. ---------------------------------------------------------------------------------
  3285. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3286. This causes the given message to be shown in the status line on an attached LCD.
  3287. It is processed early as to allow printing messages that contain G, M, N or T.
  3288. ---------------------------------------------------------------------------------
  3289. ### Special internal commands
  3290. These are used by internal functions to process certain actions in the right order. Some of these are also usable by the user.
  3291. They are processed early as the commands are complex (strings).
  3292. These are only available on the MK3(S) as these require TMC2130 drivers:
  3293. - CRASH DETECTED
  3294. - CRASH RECOVER
  3295. - CRASH_CANCEL
  3296. - TMC_SET_WAVE
  3297. - TMC_SET_STEP
  3298. - TMC_SET_CHOP
  3299. */
  3300. if (code_seen_P(PSTR("M117"))) //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3301. {
  3302. starpos = (strchr(strchr_pointer + 5, '*'));
  3303. if (starpos != NULL)
  3304. *(starpos) = '\0';
  3305. lcd_setstatus(strchr_pointer + 5);
  3306. custom_message_type = CustomMsg::MsgUpdate;
  3307. }
  3308. /*!
  3309. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  3310. #### Usage
  3311. M0 [P<ms<] [S<sec>] [string]
  3312. M1 [P<ms>] [S<sec>] [string]
  3313. #### Parameters
  3314. - `P<ms>` - Expire time, in milliseconds
  3315. - `S<sec>` - Expire time, in seconds
  3316. - `string` - Must for M1 and optional for M0 message to display on the LCD
  3317. */
  3318. else if (code_seen_P(PSTR("M0")) || code_seen_P(PSTR("M1 "))) {// M0 and M1 - (Un)conditional stop - Wait for user button press on LCD
  3319. char *src = strchr_pointer + 2;
  3320. codenum = 0;
  3321. bool hasP = false, hasS = false;
  3322. if (code_seen('P')) {
  3323. codenum = code_value(); // milliseconds to wait
  3324. hasP = codenum > 0;
  3325. }
  3326. if (code_seen('S')) {
  3327. codenum = code_value() * 1000; // seconds to wait
  3328. hasS = codenum > 0;
  3329. }
  3330. starpos = strchr(src, '*');
  3331. if (starpos != NULL) *(starpos) = '\0';
  3332. while (*src == ' ') ++src;
  3333. custom_message_type = CustomMsg::M0Wait;
  3334. if (!hasP && !hasS && *src != '\0') {
  3335. lcd_setstatus(src);
  3336. } else {
  3337. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  3338. }
  3339. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3340. st_synchronize();
  3341. previous_millis_cmd = _millis();
  3342. if (codenum > 0) {
  3343. codenum += _millis(); // keep track of when we started waiting
  3344. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3345. while(_millis() < codenum && !lcd_clicked()) {
  3346. manage_heater();
  3347. manage_inactivity(true);
  3348. lcd_update(0);
  3349. }
  3350. KEEPALIVE_STATE(IN_HANDLER);
  3351. lcd_ignore_click(false);
  3352. } else {
  3353. marlin_wait_for_click();
  3354. }
  3355. if (IS_SD_PRINTING)
  3356. custom_message_type = CustomMsg::Status;
  3357. else
  3358. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3359. }
  3360. #ifdef TMC2130
  3361. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3362. {
  3363. // ### CRASH_DETECTED - TMC2130
  3364. // ---------------------------------
  3365. if(code_seen_P(PSTR("CRASH_DETECTED")))
  3366. {
  3367. uint8_t mask = 0;
  3368. if (code_seen('X')) mask |= X_AXIS_MASK;
  3369. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3370. crashdet_detected(mask);
  3371. }
  3372. // ### CRASH_RECOVER - TMC2130
  3373. // ----------------------------------
  3374. else if(code_seen_P(PSTR("CRASH_RECOVER")))
  3375. crashdet_recover();
  3376. // ### CRASH_CANCEL - TMC2130
  3377. // ----------------------------------
  3378. else if(code_seen_P(PSTR("CRASH_CANCEL")))
  3379. crashdet_cancel();
  3380. }
  3381. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3382. {
  3383. // ### TMC_SET_WAVE_
  3384. // --------------------
  3385. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3386. {
  3387. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3388. axis = (axis == 'E')?3:(axis - 'X');
  3389. if (axis < 4)
  3390. {
  3391. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3392. tmc2130_set_wave(axis, 247, fac);
  3393. }
  3394. }
  3395. // ### TMC_SET_STEP_
  3396. // ------------------
  3397. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3398. {
  3399. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3400. axis = (axis == 'E')?3:(axis - 'X');
  3401. if (axis < 4)
  3402. {
  3403. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3404. uint16_t res = tmc2130_get_res(axis);
  3405. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3406. }
  3407. }
  3408. // ### TMC_SET_CHOP_
  3409. // -------------------
  3410. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3411. {
  3412. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3413. axis = (axis == 'E')?3:(axis - 'X');
  3414. if (axis < 4)
  3415. {
  3416. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3417. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3418. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3419. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3420. char* str_end = 0;
  3421. if (CMDBUFFER_CURRENT_STRING[14])
  3422. {
  3423. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3424. if (str_end && *str_end)
  3425. {
  3426. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3427. if (str_end && *str_end)
  3428. {
  3429. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3430. if (str_end && *str_end)
  3431. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3432. }
  3433. }
  3434. }
  3435. tmc2130_chopper_config[axis].toff = chop0;
  3436. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3437. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3438. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3439. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3440. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3441. }
  3442. }
  3443. }
  3444. #ifdef BACKLASH_X
  3445. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3446. {
  3447. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3448. st_backlash_x = bl;
  3449. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3450. }
  3451. #endif //BACKLASH_X
  3452. #ifdef BACKLASH_Y
  3453. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3454. {
  3455. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3456. st_backlash_y = bl;
  3457. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3458. }
  3459. #endif //BACKLASH_Y
  3460. #endif //TMC2130
  3461. else if(code_seen_P(PSTR("PRUSA"))){
  3462. /*!
  3463. ---------------------------------------------------------------------------------
  3464. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3465. Set of internal PRUSA commands
  3466. #### Usage
  3467. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3468. #### Parameters
  3469. - `Ping`
  3470. - `PRN` - Prints revision of the printer
  3471. - `FAN` - Prints fan details
  3472. - `fn` - Prints farm no.
  3473. - `thx`
  3474. - `uvlo`
  3475. - `MMURES` - Reset MMU
  3476. - `RESET` - (Careful!)
  3477. - `fv` - ?
  3478. - `M28`
  3479. - `SN`
  3480. - `Fir` - Prints firmware version
  3481. - `Rev`- Prints filament size, elelectronics, nozzle type
  3482. - `Lang` - Reset the language
  3483. - `Lz`
  3484. - `Beat` - Kick farm link timer
  3485. - `FR` - Full factory reset
  3486. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3487. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3488. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3489. */
  3490. if (code_seen_P(PSTR("Ping"))) { // PRUSA Ping
  3491. if (farm_mode) {
  3492. PingTime = _millis();
  3493. }
  3494. }
  3495. else if (code_seen_P(PSTR("PRN"))) { // PRUSA PRN
  3496. printf_P(_N("%d"), status_number);
  3497. } else if( code_seen_P(PSTR("FANPINTST"))){
  3498. gcode_PRUSA_BadRAMBoFanTest();
  3499. }else if (code_seen_P(PSTR("FAN"))) { // PRUSA FAN
  3500. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3501. }
  3502. else if (code_seen_P(PSTR("thx"))) // PRUSA thx
  3503. {
  3504. no_response = false;
  3505. }
  3506. else if (code_seen_P(PSTR("uvlo"))) // PRUSA uvlo
  3507. {
  3508. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3509. enquecommand_P(PSTR("M24"));
  3510. }
  3511. else if (code_seen_P(PSTR("MMURES"))) // PRUSA MMURES
  3512. {
  3513. mmu_reset();
  3514. }
  3515. else if (code_seen_P(PSTR("RESET"))) { // PRUSA RESET
  3516. #ifdef WATCHDOG
  3517. #if defined(W25X20CL) && defined(BOOTAPP)
  3518. boot_app_magic = BOOT_APP_MAGIC;
  3519. boot_app_flags = BOOT_APP_FLG_RUN;
  3520. #endif //defined(W25X20CL) && defined(BOOTAPP)
  3521. softReset();
  3522. #elif defined(BOOTAPP) //this is a safety precaution. This is because the new bootloader turns off the heaters, but the old one doesn't. The watchdog should be used most of the time.
  3523. asm volatile("jmp 0x3E000");
  3524. #endif
  3525. }else if (code_seen_P("fv")) { // PRUSA fv
  3526. // get file version
  3527. #ifdef SDSUPPORT
  3528. card.openFileReadFilteredGcode(strchr_pointer + 3,true);
  3529. while (true) {
  3530. uint16_t readByte = card.getFilteredGcodeChar();
  3531. MYSERIAL.write(readByte);
  3532. if (readByte=='\n') {
  3533. break;
  3534. }
  3535. }
  3536. card.closefile();
  3537. #endif // SDSUPPORT
  3538. } else if (code_seen_P(PSTR("M28"))) { // PRUSA M28
  3539. trace();
  3540. prusa_sd_card_upload = true;
  3541. card.openFileWrite(strchr_pointer+4);
  3542. } else if (code_seen_P(PSTR("SN"))) { // PRUSA SN
  3543. char SN[20];
  3544. eeprom_read_block(SN, (uint8_t*)EEPROM_PRUSA_SN, 20);
  3545. if (SN[19])
  3546. puts_P(PSTR("SN invalid"));
  3547. else
  3548. puts(SN);
  3549. } else if(code_seen_P(PSTR("Fir"))){ // PRUSA Fir
  3550. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3551. } else if(code_seen_P(PSTR("Rev"))){ // PRUSA Rev
  3552. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3553. } else if(code_seen_P(PSTR("Lang"))) { // PRUSA Lang
  3554. lang_reset();
  3555. } else if(code_seen_P(PSTR("Lz"))) { // PRUSA Lz
  3556. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3557. } else if(code_seen_P(PSTR("Beat"))) { // PRUSA Beat
  3558. // Kick farm link timer
  3559. kicktime = _millis();
  3560. } else if(code_seen_P(PSTR("FR"))) { // PRUSA FR
  3561. // Factory full reset
  3562. factory_reset(0);
  3563. } else if(code_seen_P(PSTR("MBL"))) { // PRUSA MBL
  3564. // Change the MBL status without changing the logical Z position.
  3565. if(code_seen('V')) {
  3566. bool value = code_value_short();
  3567. st_synchronize();
  3568. if(value != mbl.active) {
  3569. mbl.active = value;
  3570. // Use plan_set_z_position to reset the physical values
  3571. plan_set_z_position(current_position[Z_AXIS]);
  3572. }
  3573. }
  3574. //-//
  3575. /*
  3576. } else if(code_seen("rrr")) {
  3577. MYSERIAL.println("=== checking ===");
  3578. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3579. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3580. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3581. MYSERIAL.println(farm_mode,DEC);
  3582. MYSERIAL.println(eCheckMode,DEC);
  3583. } else if(code_seen("www")) {
  3584. MYSERIAL.println("=== @ FF ===");
  3585. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3586. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3587. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3588. */
  3589. } else if (code_seen_P(PSTR("nozzle"))) { // PRUSA nozzle
  3590. uint16_t nDiameter;
  3591. if(code_seen('D'))
  3592. {
  3593. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3594. nozzle_diameter_check(nDiameter);
  3595. }
  3596. else if(code_seen_P(PSTR("set")) && farm_mode)
  3597. {
  3598. strchr_pointer++; // skip 1st char (~ 's')
  3599. strchr_pointer++; // skip 2nd char (~ 'e')
  3600. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3601. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3602. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3603. }
  3604. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3605. //-// !!! SupportMenu
  3606. /*
  3607. // musi byt PRED "PRUSA model"
  3608. } else if (code_seen("smodel")) { //! PRUSA smodel
  3609. size_t nOffset;
  3610. // ! -> "l"
  3611. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3612. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3613. if(*(strchr_pointer+1+nOffset))
  3614. printer_smodel_check(strchr_pointer);
  3615. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3616. } else if (code_seen("model")) { //! PRUSA model
  3617. uint16_t nPrinterModel;
  3618. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3619. nPrinterModel=(uint16_t)code_value_long();
  3620. if(nPrinterModel!=0)
  3621. printer_model_check(nPrinterModel);
  3622. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3623. } else if (code_seen("version")) { //! PRUSA version
  3624. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3625. while(*strchr_pointer==' ') // skip leading spaces
  3626. strchr_pointer++;
  3627. if(*strchr_pointer!=0)
  3628. fw_version_check(strchr_pointer);
  3629. else SERIAL_PROTOCOLLN(FW_VERSION);
  3630. } else if (code_seen("gcode")) { //! PRUSA gcode
  3631. uint16_t nGcodeLevel;
  3632. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3633. nGcodeLevel=(uint16_t)code_value_long();
  3634. if(nGcodeLevel!=0)
  3635. gcode_level_check(nGcodeLevel);
  3636. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3637. */
  3638. }
  3639. //else if (code_seen('Cal')) {
  3640. // lcd_calibration();
  3641. // }
  3642. }
  3643. // This prevents reading files with "^" in their names.
  3644. // Since it is unclear, if there is some usage of this construct,
  3645. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3646. // else if (code_seen('^')) {
  3647. // // nothing, this is a version line
  3648. // }
  3649. else if(code_seen('G'))
  3650. {
  3651. gcode_in_progress = (int)code_value();
  3652. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3653. switch (gcode_in_progress)
  3654. {
  3655. /*!
  3656. ---------------------------------------------------------------------------------
  3657. # G Codes
  3658. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  3659. In Prusa Firmware G0 and G1 are the same.
  3660. #### Usage
  3661. G0 [ X | Y | Z | E | F | S ]
  3662. G1 [ X | Y | Z | E | F | S ]
  3663. #### Parameters
  3664. - `X` - The position to move to on the X axis
  3665. - `Y` - The position to move to on the Y axis
  3666. - `Z` - The position to move to on the Z axis
  3667. - `E` - The amount to extrude between the starting point and ending point
  3668. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3669. */
  3670. case 0: // G0 -> G1
  3671. case 1: // G1
  3672. if(Stopped == false) {
  3673. #ifdef FILAMENT_RUNOUT_SUPPORT
  3674. if(READ(FR_SENS)){
  3675. int feedmultiplyBckp=feedmultiply;
  3676. float target[4];
  3677. float lastpos[4];
  3678. target[X_AXIS]=current_position[X_AXIS];
  3679. target[Y_AXIS]=current_position[Y_AXIS];
  3680. target[Z_AXIS]=current_position[Z_AXIS];
  3681. target[E_AXIS]=current_position[E_AXIS];
  3682. lastpos[X_AXIS]=current_position[X_AXIS];
  3683. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3684. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3685. lastpos[E_AXIS]=current_position[E_AXIS];
  3686. //retract by E
  3687. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3688. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3689. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3690. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3691. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3692. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3693. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3694. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3695. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3696. //finish moves
  3697. st_synchronize();
  3698. //disable extruder steppers so filament can be removed
  3699. disable_e0();
  3700. disable_e1();
  3701. disable_e2();
  3702. _delay(100);
  3703. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3704. uint8_t cnt=0;
  3705. int counterBeep = 0;
  3706. lcd_wait_interact();
  3707. while(!lcd_clicked()){
  3708. cnt++;
  3709. manage_heater();
  3710. manage_inactivity(true);
  3711. //lcd_update(0);
  3712. if(cnt==0)
  3713. {
  3714. #if BEEPER > 0
  3715. if (counterBeep== 500){
  3716. counterBeep = 0;
  3717. }
  3718. SET_OUTPUT(BEEPER);
  3719. if (counterBeep== 0){
  3720. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3721. WRITE(BEEPER,HIGH);
  3722. }
  3723. if (counterBeep== 20){
  3724. WRITE(BEEPER,LOW);
  3725. }
  3726. counterBeep++;
  3727. #else
  3728. #endif
  3729. }
  3730. }
  3731. WRITE(BEEPER,LOW);
  3732. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3733. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3734. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3735. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3736. lcd_change_fil_state = 0;
  3737. lcd_loading_filament();
  3738. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3739. lcd_change_fil_state = 0;
  3740. lcd_alright();
  3741. switch(lcd_change_fil_state){
  3742. case 2:
  3743. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3744. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3745. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3746. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3747. lcd_loading_filament();
  3748. break;
  3749. case 3:
  3750. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3751. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3752. lcd_loading_color();
  3753. break;
  3754. default:
  3755. lcd_change_success();
  3756. break;
  3757. }
  3758. }
  3759. target[E_AXIS]+= 5;
  3760. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3761. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3762. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3763. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3764. //plan_set_e_position(current_position[E_AXIS]);
  3765. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3766. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3767. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3768. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3769. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3770. plan_set_e_position(lastpos[E_AXIS]);
  3771. feedmultiply=feedmultiplyBckp;
  3772. char cmd[9];
  3773. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3774. enquecommand(cmd);
  3775. }
  3776. #endif
  3777. get_coordinates(); // For X Y Z E F
  3778. // When recovering from a previous print move, restore the originally
  3779. // calculated target position on the first USB/SD command. This accounts
  3780. // properly for relative moves
  3781. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  3782. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  3783. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  3784. {
  3785. memcpy(destination, saved_target, sizeof(destination));
  3786. saved_target[0] = SAVED_TARGET_UNSET;
  3787. }
  3788. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3789. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3790. }
  3791. #ifdef FWRETRACT
  3792. if(cs.autoretract_enabled)
  3793. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3794. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3795. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3796. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3797. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3798. retract(!retracted[active_extruder]);
  3799. return;
  3800. }
  3801. }
  3802. #endif //FWRETRACT
  3803. prepare_move();
  3804. //ClearToSend();
  3805. }
  3806. break;
  3807. /*!
  3808. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3809. These commands don't propperly work with MBL enabled. The compensation only happens at the end of the move, so avoid long arcs.
  3810. #### Usage
  3811. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  3812. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  3813. #### Parameters
  3814. - `X` - The position to move to on the X axis
  3815. - `Y` - The position to move to on the Y axis
  3816. - `I` - The point in X space from the current X position to maintain a constant distance from
  3817. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  3818. - `E` - The amount to extrude between the starting point and ending point
  3819. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3820. */
  3821. case 2:
  3822. if(Stopped == false) {
  3823. get_arc_coordinates();
  3824. prepare_arc_move(true);
  3825. }
  3826. break;
  3827. // -------------------------------
  3828. case 3:
  3829. if(Stopped == false) {
  3830. get_arc_coordinates();
  3831. prepare_arc_move(false);
  3832. }
  3833. break;
  3834. /*!
  3835. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  3836. Pause the machine for a period of time.
  3837. #### Usage
  3838. G4 [ P | S ]
  3839. #### Parameters
  3840. - `P` - Time to wait, in milliseconds
  3841. - `S` - Time to wait, in seconds
  3842. */
  3843. case 4:
  3844. codenum = 0;
  3845. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3846. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3847. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3848. st_synchronize();
  3849. codenum += _millis(); // keep track of when we started waiting
  3850. previous_millis_cmd = _millis();
  3851. while(_millis() < codenum) {
  3852. manage_heater();
  3853. manage_inactivity();
  3854. lcd_update(0);
  3855. }
  3856. break;
  3857. #ifdef FWRETRACT
  3858. /*!
  3859. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  3860. Retracts filament according to settings of `M207`
  3861. */
  3862. case 10:
  3863. #if EXTRUDERS > 1
  3864. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3865. retract(true,retracted_swap[active_extruder]);
  3866. #else
  3867. retract(true);
  3868. #endif
  3869. break;
  3870. /*!
  3871. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  3872. Unretracts/recovers filament according to settings of `M208`
  3873. */
  3874. case 11:
  3875. #if EXTRUDERS > 1
  3876. retract(false,retracted_swap[active_extruder]);
  3877. #else
  3878. retract(false);
  3879. #endif
  3880. break;
  3881. #endif //FWRETRACT
  3882. /*!
  3883. ### G21 - Sets Units to Millimters <a href="https://reprap.org/wiki/G-code#G21:_Set_Units_to_Millimeters">G21: Set Units to Millimeters</a>
  3884. Units are in millimeters. Prusa doesn't support inches.
  3885. */
  3886. case 21:
  3887. break; //Doing nothing. This is just to prevent serial UNKOWN warnings.
  3888. /*!
  3889. ### G28 - Home all Axes one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  3890. Using `G28` without any parameters will perfom homing of all axes AND mesh bed leveling, while `G28 W` will just home all axes (no mesh bed leveling).
  3891. #### Usage
  3892. G28 [ X | Y | Z | W | C ]
  3893. #### Parameters
  3894. - `X` - Flag to go back to the X axis origin
  3895. - `Y` - Flag to go back to the Y axis origin
  3896. - `Z` - Flag to go back to the Z axis origin
  3897. - `W` - Suppress mesh bed leveling if `X`, `Y` or `Z` are not provided
  3898. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  3899. */
  3900. case 28:
  3901. {
  3902. long home_x_value = 0;
  3903. long home_y_value = 0;
  3904. long home_z_value = 0;
  3905. // Which axes should be homed?
  3906. bool home_x = code_seen(axis_codes[X_AXIS]);
  3907. home_x_value = code_value_long();
  3908. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3909. home_y_value = code_value_long();
  3910. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3911. home_z_value = code_value_long();
  3912. bool without_mbl = code_seen('W');
  3913. // calibrate?
  3914. #ifdef TMC2130
  3915. bool calib = code_seen('C');
  3916. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3917. #else
  3918. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3919. #endif //TMC2130
  3920. if ((home_x || home_y || without_mbl || home_z) == false) {
  3921. // Push the commands to the front of the message queue in the reverse order!
  3922. // There shall be always enough space reserved for these commands.
  3923. goto case_G80;
  3924. }
  3925. break;
  3926. }
  3927. #ifdef ENABLE_AUTO_BED_LEVELING
  3928. /*!
  3929. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  3930. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3931. See `G81`
  3932. */
  3933. case 29:
  3934. {
  3935. #if Z_MIN_PIN == -1
  3936. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3937. #endif
  3938. // Prevent user from running a G29 without first homing in X and Y
  3939. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3940. {
  3941. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3942. SERIAL_ECHO_START;
  3943. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3944. break; // abort G29, since we don't know where we are
  3945. }
  3946. st_synchronize();
  3947. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3948. //vector_3 corrected_position = plan_get_position_mm();
  3949. //corrected_position.debug("position before G29");
  3950. plan_bed_level_matrix.set_to_identity();
  3951. vector_3 uncorrected_position = plan_get_position();
  3952. //uncorrected_position.debug("position durring G29");
  3953. current_position[X_AXIS] = uncorrected_position.x;
  3954. current_position[Y_AXIS] = uncorrected_position.y;
  3955. current_position[Z_AXIS] = uncorrected_position.z;
  3956. plan_set_position_curposXYZE();
  3957. int l_feedmultiply = setup_for_endstop_move();
  3958. feedrate = homing_feedrate[Z_AXIS];
  3959. #ifdef AUTO_BED_LEVELING_GRID
  3960. // probe at the points of a lattice grid
  3961. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3962. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3963. // solve the plane equation ax + by + d = z
  3964. // A is the matrix with rows [x y 1] for all the probed points
  3965. // B is the vector of the Z positions
  3966. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3967. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3968. // "A" matrix of the linear system of equations
  3969. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3970. // "B" vector of Z points
  3971. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3972. int probePointCounter = 0;
  3973. bool zig = true;
  3974. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3975. {
  3976. int xProbe, xInc;
  3977. if (zig)
  3978. {
  3979. xProbe = LEFT_PROBE_BED_POSITION;
  3980. //xEnd = RIGHT_PROBE_BED_POSITION;
  3981. xInc = xGridSpacing;
  3982. zig = false;
  3983. } else // zag
  3984. {
  3985. xProbe = RIGHT_PROBE_BED_POSITION;
  3986. //xEnd = LEFT_PROBE_BED_POSITION;
  3987. xInc = -xGridSpacing;
  3988. zig = true;
  3989. }
  3990. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3991. {
  3992. float z_before;
  3993. if (probePointCounter == 0)
  3994. {
  3995. // raise before probing
  3996. z_before = Z_RAISE_BEFORE_PROBING;
  3997. } else
  3998. {
  3999. // raise extruder
  4000. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  4001. }
  4002. float measured_z = probe_pt(xProbe, yProbe, z_before);
  4003. eqnBVector[probePointCounter] = measured_z;
  4004. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  4005. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  4006. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  4007. probePointCounter++;
  4008. xProbe += xInc;
  4009. }
  4010. }
  4011. clean_up_after_endstop_move(l_feedmultiply);
  4012. // solve lsq problem
  4013. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  4014. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4015. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  4016. SERIAL_PROTOCOLPGM(" b: ");
  4017. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  4018. SERIAL_PROTOCOLPGM(" d: ");
  4019. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  4020. set_bed_level_equation_lsq(plane_equation_coefficients);
  4021. free(plane_equation_coefficients);
  4022. #else // AUTO_BED_LEVELING_GRID not defined
  4023. // Probe at 3 arbitrary points
  4024. // probe 1
  4025. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  4026. // probe 2
  4027. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4028. // probe 3
  4029. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  4030. clean_up_after_endstop_move(l_feedmultiply);
  4031. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  4032. #endif // AUTO_BED_LEVELING_GRID
  4033. st_synchronize();
  4034. // The following code correct the Z height difference from z-probe position and hotend tip position.
  4035. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  4036. // When the bed is uneven, this height must be corrected.
  4037. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  4038. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  4039. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4040. z_tmp = current_position[Z_AXIS];
  4041. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  4042. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  4043. plan_set_position_curposXYZE();
  4044. }
  4045. break;
  4046. #ifndef Z_PROBE_SLED
  4047. /*!
  4048. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4049. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4050. */
  4051. case 30:
  4052. {
  4053. st_synchronize();
  4054. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4055. int l_feedmultiply = setup_for_endstop_move();
  4056. feedrate = homing_feedrate[Z_AXIS];
  4057. run_z_probe();
  4058. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  4059. SERIAL_PROTOCOLPGM(" X: ");
  4060. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4061. SERIAL_PROTOCOLPGM(" Y: ");
  4062. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4063. SERIAL_PROTOCOLPGM(" Z: ");
  4064. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4065. SERIAL_PROTOCOLPGM("\n");
  4066. clean_up_after_endstop_move(l_feedmultiply);
  4067. }
  4068. break;
  4069. #else
  4070. /*!
  4071. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  4072. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4073. */
  4074. case 31:
  4075. dock_sled(true);
  4076. break;
  4077. /*!
  4078. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  4079. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4080. */
  4081. case 32:
  4082. dock_sled(false);
  4083. break;
  4084. #endif // Z_PROBE_SLED
  4085. #endif // ENABLE_AUTO_BED_LEVELING
  4086. #ifdef MESH_BED_LEVELING
  4087. /*!
  4088. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  4089. Sensor must be over the bed.
  4090. The maximum travel distance before an error is triggered is 10mm.
  4091. */
  4092. case 30:
  4093. {
  4094. st_synchronize();
  4095. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  4096. int l_feedmultiply = setup_for_endstop_move();
  4097. feedrate = homing_feedrate[Z_AXIS];
  4098. find_bed_induction_sensor_point_z(-10.f, 3);
  4099. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  4100. clean_up_after_endstop_move(l_feedmultiply);
  4101. }
  4102. break;
  4103. /*!
  4104. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  4105. Show/print PINDA temperature interpolating.
  4106. */
  4107. case 75:
  4108. {
  4109. for (int i = 40; i <= 110; i++)
  4110. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  4111. }
  4112. break;
  4113. /*!
  4114. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  4115. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  4116. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  4117. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  4118. superPINDA sensor has internal temperature compensation and no thermistor output. There is no point of doing temperature calibration in such case.
  4119. If PINDA_THERMISTOR and SUPERPINDA_SUPPORT is defined during compilation, calibration is skipped with serial message "No PINDA thermistor".
  4120. This can be caused also if PINDA thermistor connection is broken or PINDA temperature is lower than PINDA_MINTEMP.
  4121. #### Example
  4122. ```
  4123. G76
  4124. echo PINDA probe calibration start
  4125. echo start temperature: 35.0°
  4126. echo ...
  4127. echo PINDA temperature -- Z shift (mm): 0.---
  4128. ```
  4129. */
  4130. case 76:
  4131. {
  4132. #ifdef PINDA_THERMISTOR
  4133. if (!has_temperature_compensation())
  4134. {
  4135. SERIAL_ECHOLNPGM("No PINDA thermistor");
  4136. break;
  4137. }
  4138. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  4139. //we need to know accurate position of first calibration point
  4140. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  4141. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  4142. break;
  4143. }
  4144. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  4145. {
  4146. // We don't know where we are! HOME!
  4147. // Push the commands to the front of the message queue in the reverse order!
  4148. // There shall be always enough space reserved for these commands.
  4149. repeatcommand_front(); // repeat G76 with all its parameters
  4150. enquecommand_front_P(G28W0);
  4151. break;
  4152. }
  4153. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  4154. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  4155. if (result)
  4156. {
  4157. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4158. plan_buffer_line_curposXYZE(3000 / 60);
  4159. current_position[Z_AXIS] = 50;
  4160. current_position[Y_AXIS] = 180;
  4161. plan_buffer_line_curposXYZE(3000 / 60);
  4162. st_synchronize();
  4163. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  4164. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4165. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4166. plan_buffer_line_curposXYZE(3000 / 60);
  4167. st_synchronize();
  4168. gcode_G28(false, false, true);
  4169. }
  4170. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  4171. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  4172. current_position[Z_AXIS] = 100;
  4173. plan_buffer_line_curposXYZE(3000 / 60);
  4174. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  4175. lcd_temp_cal_show_result(false);
  4176. break;
  4177. }
  4178. }
  4179. lcd_update_enable(true);
  4180. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  4181. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  4182. float zero_z;
  4183. int z_shift = 0; //unit: steps
  4184. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  4185. if (start_temp < 35) start_temp = 35;
  4186. if (start_temp < current_temperature_pinda) start_temp += 5;
  4187. printf_P(_N("start temperature: %.1f\n"), start_temp);
  4188. // setTargetHotend(200, 0);
  4189. setTargetBed(70 + (start_temp - 30));
  4190. custom_message_type = CustomMsg::TempCal;
  4191. custom_message_state = 1;
  4192. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4193. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4194. plan_buffer_line_curposXYZE(3000 / 60);
  4195. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4196. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4197. plan_buffer_line_curposXYZE(3000 / 60);
  4198. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4199. plan_buffer_line_curposXYZE(3000 / 60);
  4200. st_synchronize();
  4201. while (current_temperature_pinda < start_temp)
  4202. {
  4203. delay_keep_alive(1000);
  4204. serialecho_temperatures();
  4205. }
  4206. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4207. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4208. plan_buffer_line_curposXYZE(3000 / 60);
  4209. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4210. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4211. plan_buffer_line_curposXYZE(3000 / 60);
  4212. st_synchronize();
  4213. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4214. if (find_z_result == false) {
  4215. lcd_temp_cal_show_result(find_z_result);
  4216. break;
  4217. }
  4218. zero_z = current_position[Z_AXIS];
  4219. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4220. int i = -1; for (; i < 5; i++)
  4221. {
  4222. float temp = (40 + i * 5);
  4223. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  4224. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4225. if (start_temp <= temp) break;
  4226. }
  4227. for (i++; i < 5; i++)
  4228. {
  4229. float temp = (40 + i * 5);
  4230. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4231. custom_message_state = i + 2;
  4232. setTargetBed(50 + 10 * (temp - 30) / 5);
  4233. // setTargetHotend(255, 0);
  4234. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4235. plan_buffer_line_curposXYZE(3000 / 60);
  4236. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4237. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4238. plan_buffer_line_curposXYZE(3000 / 60);
  4239. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4240. plan_buffer_line_curposXYZE(3000 / 60);
  4241. st_synchronize();
  4242. while (current_temperature_pinda < temp)
  4243. {
  4244. delay_keep_alive(1000);
  4245. serialecho_temperatures();
  4246. }
  4247. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4248. plan_buffer_line_curposXYZE(3000 / 60);
  4249. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4250. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4251. plan_buffer_line_curposXYZE(3000 / 60);
  4252. st_synchronize();
  4253. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4254. if (find_z_result == false) {
  4255. lcd_temp_cal_show_result(find_z_result);
  4256. break;
  4257. }
  4258. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4259. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  4260. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4261. }
  4262. lcd_temp_cal_show_result(true);
  4263. #else //PINDA_THERMISTOR
  4264. setTargetBed(PINDA_MIN_T);
  4265. float zero_z;
  4266. int z_shift = 0; //unit: steps
  4267. int t_c; // temperature
  4268. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4269. // We don't know where we are! HOME!
  4270. // Push the commands to the front of the message queue in the reverse order!
  4271. // There shall be always enough space reserved for these commands.
  4272. repeatcommand_front(); // repeat G76 with all its parameters
  4273. enquecommand_front_P(G28W0);
  4274. break;
  4275. }
  4276. puts_P(_N("PINDA probe calibration start"));
  4277. custom_message_type = CustomMsg::TempCal;
  4278. custom_message_state = 1;
  4279. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4280. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4281. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4282. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4283. plan_buffer_line_curposXYZE(3000 / 60);
  4284. st_synchronize();
  4285. while (abs(degBed() - PINDA_MIN_T) > 1) {
  4286. delay_keep_alive(1000);
  4287. serialecho_temperatures();
  4288. }
  4289. //enquecommand_P(PSTR("M190 S50"));
  4290. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4291. delay_keep_alive(1000);
  4292. serialecho_temperatures();
  4293. }
  4294. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4295. current_position[Z_AXIS] = 5;
  4296. plan_buffer_line_curposXYZE(3000 / 60);
  4297. current_position[X_AXIS] = BED_X0;
  4298. current_position[Y_AXIS] = BED_Y0;
  4299. plan_buffer_line_curposXYZE(3000 / 60);
  4300. st_synchronize();
  4301. find_bed_induction_sensor_point_z(-1.f);
  4302. zero_z = current_position[Z_AXIS];
  4303. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4304. for (int i = 0; i<5; i++) {
  4305. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4306. custom_message_state = i + 2;
  4307. t_c = 60 + i * 10;
  4308. setTargetBed(t_c);
  4309. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4310. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4311. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4312. plan_buffer_line_curposXYZE(3000 / 60);
  4313. st_synchronize();
  4314. while (degBed() < t_c) {
  4315. delay_keep_alive(1000);
  4316. serialecho_temperatures();
  4317. }
  4318. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4319. delay_keep_alive(1000);
  4320. serialecho_temperatures();
  4321. }
  4322. current_position[Z_AXIS] = 5;
  4323. plan_buffer_line_curposXYZE(3000 / 60);
  4324. current_position[X_AXIS] = BED_X0;
  4325. current_position[Y_AXIS] = BED_Y0;
  4326. plan_buffer_line_curposXYZE(3000 / 60);
  4327. st_synchronize();
  4328. find_bed_induction_sensor_point_z(-1.f);
  4329. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4330. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4331. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  4332. }
  4333. custom_message_type = CustomMsg::Status;
  4334. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4335. puts_P(_N("Temperature calibration done."));
  4336. disable_x();
  4337. disable_y();
  4338. disable_z();
  4339. disable_e0();
  4340. disable_e1();
  4341. disable_e2();
  4342. setTargetBed(0); //set bed target temperature back to 0
  4343. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  4344. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4345. lcd_update_enable(true);
  4346. lcd_update(2);
  4347. #endif //PINDA_THERMISTOR
  4348. }
  4349. break;
  4350. /*!
  4351. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4352. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4353. #### Usage
  4354. G80 [ N | R | V | L | R | F | B ]
  4355. #### Parameters
  4356. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4357. - `R` - Probe retries. Default 3 max. 10
  4358. - `V` - Verbosity level 1=low, 10=mid, 20=high. It only can be used if the firmware has been compiled with SUPPORT_VERBOSITY active.
  4359. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4360. #### Additional Parameters
  4361. - `L` - Left Bed Level correct value in um.
  4362. - `R` - Right Bed Level correct value in um.
  4363. - `F` - Front Bed Level correct value in um.
  4364. - `B` - Back Bed Level correct value in um.
  4365. */
  4366. /*
  4367. * Probes a grid and produces a mesh to compensate for variable bed height
  4368. * The S0 report the points as below
  4369. * +----> X-axis
  4370. * |
  4371. * |
  4372. * v Y-axis
  4373. */
  4374. case 80:
  4375. #ifdef MK1BP
  4376. break;
  4377. #endif //MK1BP
  4378. case_G80:
  4379. {
  4380. mesh_bed_leveling_flag = true;
  4381. #ifndef PINDA_THERMISTOR
  4382. static bool run = false; // thermistor-less PINDA temperature compensation is running
  4383. #endif // ndef PINDA_THERMISTOR
  4384. #ifdef SUPPORT_VERBOSITY
  4385. int8_t verbosity_level = 0;
  4386. if (code_seen('V')) {
  4387. // Just 'V' without a number counts as V1.
  4388. char c = strchr_pointer[1];
  4389. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4390. }
  4391. #endif //SUPPORT_VERBOSITY
  4392. // Firstly check if we know where we are
  4393. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4394. // We don't know where we are! HOME!
  4395. // Push the commands to the front of the message queue in the reverse order!
  4396. // There shall be always enough space reserved for these commands.
  4397. repeatcommand_front(); // repeat G80 with all its parameters
  4398. enquecommand_front_P(G28W0);
  4399. break;
  4400. }
  4401. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4402. if (code_seen('N')) {
  4403. nMeasPoints = code_value_uint8();
  4404. if (nMeasPoints != 7) {
  4405. nMeasPoints = 3;
  4406. }
  4407. }
  4408. else {
  4409. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4410. }
  4411. uint8_t nProbeRetry = 3;
  4412. if (code_seen('R')) {
  4413. nProbeRetry = code_value_uint8();
  4414. if (nProbeRetry > 10) {
  4415. nProbeRetry = 10;
  4416. }
  4417. }
  4418. else {
  4419. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4420. }
  4421. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4422. #ifndef PINDA_THERMISTOR
  4423. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4424. {
  4425. temp_compensation_start();
  4426. run = true;
  4427. repeatcommand_front(); // repeat G80 with all its parameters
  4428. enquecommand_front_P(G28W0);
  4429. break;
  4430. }
  4431. run = false;
  4432. #endif //PINDA_THERMISTOR
  4433. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4434. CustomMsg custom_message_type_old = custom_message_type;
  4435. unsigned int custom_message_state_old = custom_message_state;
  4436. custom_message_type = CustomMsg::MeshBedLeveling;
  4437. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4438. lcd_update(1);
  4439. mbl.reset(); //reset mesh bed leveling
  4440. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4441. // consumed during the first movements following this statement.
  4442. babystep_undo();
  4443. // Cycle through all points and probe them
  4444. // First move up. During this first movement, the babystepping will be reverted.
  4445. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4446. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60);
  4447. // The move to the first calibration point.
  4448. current_position[X_AXIS] = BED_X0;
  4449. current_position[Y_AXIS] = BED_Y0;
  4450. #ifdef SUPPORT_VERBOSITY
  4451. if (verbosity_level >= 1)
  4452. {
  4453. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4454. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4455. }
  4456. #else //SUPPORT_VERBOSITY
  4457. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4458. #endif //SUPPORT_VERBOSITY
  4459. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30);
  4460. // Wait until the move is finished.
  4461. st_synchronize();
  4462. uint8_t mesh_point = 0; //index number of calibration point
  4463. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4464. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4465. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4466. #ifdef SUPPORT_VERBOSITY
  4467. if (verbosity_level >= 1) {
  4468. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4469. }
  4470. #endif // SUPPORT_VERBOSITY
  4471. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4472. while (mesh_point != nMeasPoints * nMeasPoints) {
  4473. // Get coords of a measuring point.
  4474. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4475. uint8_t iy = mesh_point / nMeasPoints;
  4476. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4477. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4478. custom_message_state--;
  4479. mesh_point++;
  4480. continue; //skip
  4481. }*/
  4482. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4483. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4484. {
  4485. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4486. }
  4487. float z0 = 0.f;
  4488. if (has_z && (mesh_point > 0)) {
  4489. uint16_t z_offset_u = 0;
  4490. if (nMeasPoints == 7) {
  4491. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4492. }
  4493. else {
  4494. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4495. }
  4496. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4497. #ifdef SUPPORT_VERBOSITY
  4498. if (verbosity_level >= 1) {
  4499. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4500. }
  4501. #endif // SUPPORT_VERBOSITY
  4502. }
  4503. // Move Z up to MESH_HOME_Z_SEARCH.
  4504. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4505. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4506. float init_z_bckp = current_position[Z_AXIS];
  4507. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4508. st_synchronize();
  4509. // Move to XY position of the sensor point.
  4510. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4511. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4512. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4513. #ifdef SUPPORT_VERBOSITY
  4514. if (verbosity_level >= 1) {
  4515. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4516. SERIAL_PROTOCOL(mesh_point);
  4517. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4518. }
  4519. #else //SUPPORT_VERBOSITY
  4520. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4521. #endif // SUPPORT_VERBOSITY
  4522. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4523. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE);
  4524. st_synchronize();
  4525. // Go down until endstop is hit
  4526. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4527. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4528. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4529. break;
  4530. }
  4531. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4532. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4533. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4534. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4535. st_synchronize();
  4536. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4537. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4538. break;
  4539. }
  4540. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4541. puts_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken."));
  4542. break;
  4543. }
  4544. }
  4545. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4546. puts_P(PSTR("Bed leveling failed. Sensor triggered too high."));
  4547. break;
  4548. }
  4549. #ifdef SUPPORT_VERBOSITY
  4550. if (verbosity_level >= 10) {
  4551. SERIAL_ECHOPGM("X: ");
  4552. MYSERIAL.print(current_position[X_AXIS], 5);
  4553. SERIAL_ECHOLNPGM("");
  4554. SERIAL_ECHOPGM("Y: ");
  4555. MYSERIAL.print(current_position[Y_AXIS], 5);
  4556. SERIAL_PROTOCOLPGM("\n");
  4557. }
  4558. #endif // SUPPORT_VERBOSITY
  4559. float offset_z = 0;
  4560. #ifdef PINDA_THERMISTOR
  4561. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4562. #endif //PINDA_THERMISTOR
  4563. // #ifdef SUPPORT_VERBOSITY
  4564. /* if (verbosity_level >= 1)
  4565. {
  4566. SERIAL_ECHOPGM("mesh bed leveling: ");
  4567. MYSERIAL.print(current_position[Z_AXIS], 5);
  4568. SERIAL_ECHOPGM(" offset: ");
  4569. MYSERIAL.print(offset_z, 5);
  4570. SERIAL_ECHOLNPGM("");
  4571. }*/
  4572. // #endif // SUPPORT_VERBOSITY
  4573. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4574. custom_message_state--;
  4575. mesh_point++;
  4576. lcd_update(1);
  4577. }
  4578. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4579. #ifdef SUPPORT_VERBOSITY
  4580. if (verbosity_level >= 20) {
  4581. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4582. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4583. MYSERIAL.print(current_position[Z_AXIS], 5);
  4584. }
  4585. #endif // SUPPORT_VERBOSITY
  4586. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  4587. st_synchronize();
  4588. if (mesh_point != nMeasPoints * nMeasPoints) {
  4589. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4590. bool bState;
  4591. do { // repeat until Z-leveling o.k.
  4592. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4593. #ifdef TMC2130
  4594. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4595. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4596. #else // TMC2130
  4597. lcd_wait_for_click_delay(0); // ~ no timeout
  4598. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4599. #endif // TMC2130
  4600. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4601. bState=enable_z_endstop(false);
  4602. current_position[Z_AXIS] -= 1;
  4603. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  4604. st_synchronize();
  4605. enable_z_endstop(true);
  4606. #ifdef TMC2130
  4607. tmc2130_home_enter(Z_AXIS_MASK);
  4608. #endif // TMC2130
  4609. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4610. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40);
  4611. st_synchronize();
  4612. #ifdef TMC2130
  4613. tmc2130_home_exit();
  4614. #endif // TMC2130
  4615. enable_z_endstop(bState);
  4616. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4617. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4618. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4619. lcd_update_enable(true); // display / status-line recovery
  4620. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4621. repeatcommand_front(); // re-run (i.e. of "G80")
  4622. break;
  4623. }
  4624. clean_up_after_endstop_move(l_feedmultiply);
  4625. // SERIAL_ECHOLNPGM("clean up finished ");
  4626. #ifndef PINDA_THERMISTOR
  4627. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4628. #endif
  4629. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4630. // SERIAL_ECHOLNPGM("babystep applied");
  4631. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4632. #ifdef SUPPORT_VERBOSITY
  4633. if (verbosity_level >= 1) {
  4634. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4635. }
  4636. #endif // SUPPORT_VERBOSITY
  4637. for (uint8_t i = 0; i < 4; ++i) {
  4638. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4639. long correction = 0;
  4640. if (code_seen(codes[i]))
  4641. correction = code_value_long();
  4642. else if (eeprom_bed_correction_valid) {
  4643. unsigned char *addr = (i < 2) ?
  4644. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4645. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4646. correction = eeprom_read_int8(addr);
  4647. }
  4648. if (correction == 0)
  4649. continue;
  4650. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4651. SERIAL_ERROR_START;
  4652. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4653. SERIAL_ECHO(correction);
  4654. SERIAL_ECHOLNPGM(" microns");
  4655. }
  4656. else {
  4657. float offset = float(correction) * 0.001f;
  4658. switch (i) {
  4659. case 0:
  4660. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4661. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4662. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4663. }
  4664. }
  4665. break;
  4666. case 1:
  4667. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4668. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4669. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4670. }
  4671. }
  4672. break;
  4673. case 2:
  4674. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4675. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4676. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4677. }
  4678. }
  4679. break;
  4680. case 3:
  4681. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4682. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4683. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4684. }
  4685. }
  4686. break;
  4687. }
  4688. }
  4689. }
  4690. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4691. if (nMeasPoints == 3) {
  4692. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4693. }
  4694. /*
  4695. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4696. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4697. SERIAL_PROTOCOLPGM(",");
  4698. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4699. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4700. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4701. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4702. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4703. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4704. SERIAL_PROTOCOLPGM(" ");
  4705. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4706. }
  4707. SERIAL_PROTOCOLPGM("\n");
  4708. }
  4709. */
  4710. if (nMeasPoints == 7 && magnet_elimination) {
  4711. mbl_interpolation(nMeasPoints);
  4712. }
  4713. /*
  4714. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4715. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4716. SERIAL_PROTOCOLPGM(",");
  4717. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4718. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4719. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4720. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4721. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4722. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4723. SERIAL_PROTOCOLPGM(" ");
  4724. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4725. }
  4726. SERIAL_PROTOCOLPGM("\n");
  4727. }
  4728. */
  4729. // SERIAL_ECHOLNPGM("Upsample finished");
  4730. mbl.active = 1; //activate mesh bed leveling
  4731. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4732. go_home_with_z_lift();
  4733. // SERIAL_ECHOLNPGM("Go home finished");
  4734. //unretract (after PINDA preheat retraction)
  4735. if ((degHotend(active_extruder) > EXTRUDE_MINTEMP) && eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE) && calibration_status_pinda() && (target_temperature_bed >= 50)) {
  4736. current_position[E_AXIS] += default_retraction;
  4737. plan_buffer_line_curposXYZE(400);
  4738. }
  4739. KEEPALIVE_STATE(NOT_BUSY);
  4740. // Restore custom message state
  4741. lcd_setstatuspgm(_T(WELCOME_MSG));
  4742. custom_message_type = custom_message_type_old;
  4743. custom_message_state = custom_message_state_old;
  4744. mesh_bed_leveling_flag = false;
  4745. mesh_bed_run_from_menu = false;
  4746. lcd_update(2);
  4747. }
  4748. break;
  4749. /*!
  4750. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4751. Prints mesh bed leveling status and bed profile if activated.
  4752. */
  4753. case 81:
  4754. if (mbl.active) {
  4755. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4756. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4757. SERIAL_PROTOCOL(',');
  4758. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4759. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4760. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4761. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4762. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4763. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4764. SERIAL_PROTOCOLPGM(" ");
  4765. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4766. }
  4767. SERIAL_PROTOCOLLN();
  4768. }
  4769. }
  4770. else
  4771. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4772. break;
  4773. #if 0
  4774. /*!
  4775. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4776. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4777. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4778. */
  4779. case 82:
  4780. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4781. int l_feedmultiply = setup_for_endstop_move();
  4782. find_bed_induction_sensor_point_z();
  4783. clean_up_after_endstop_move(l_feedmultiply);
  4784. SERIAL_PROTOCOLPGM("Bed found at: ");
  4785. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4786. SERIAL_PROTOCOLPGM("\n");
  4787. break;
  4788. /*!
  4789. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4790. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4791. */
  4792. case 83:
  4793. {
  4794. int babystepz = code_seen('S') ? code_value() : 0;
  4795. int BabyPosition = code_seen('P') ? code_value() : 0;
  4796. if (babystepz != 0) {
  4797. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4798. // Is the axis indexed starting with zero or one?
  4799. if (BabyPosition > 4) {
  4800. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4801. }else{
  4802. // Save it to the eeprom
  4803. babystepLoadZ = babystepz;
  4804. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4805. // adjust the Z
  4806. babystepsTodoZadd(babystepLoadZ);
  4807. }
  4808. }
  4809. }
  4810. break;
  4811. /*!
  4812. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4813. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4814. */
  4815. case 84:
  4816. babystepsTodoZsubtract(babystepLoadZ);
  4817. // babystepLoadZ = 0;
  4818. break;
  4819. /*!
  4820. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep">G85: Pick best babystep</a>
  4821. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4822. */
  4823. case 85:
  4824. lcd_pick_babystep();
  4825. break;
  4826. #endif
  4827. /*!
  4828. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4829. This G-code will be performed at the start of a calibration script.
  4830. (Prusa3D specific)
  4831. */
  4832. case 86:
  4833. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4834. break;
  4835. /*!
  4836. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4837. This G-code will be performed at the end of a calibration script.
  4838. (Prusa3D specific)
  4839. */
  4840. case 87:
  4841. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4842. break;
  4843. /*!
  4844. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4845. Currently has no effect.
  4846. */
  4847. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4848. case 88:
  4849. break;
  4850. #endif // ENABLE_MESH_BED_LEVELING
  4851. /*!
  4852. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4853. All coordinates from now on are absolute relative to the origin of the machine. E axis is left intact.
  4854. */
  4855. case 90: {
  4856. axis_relative_modes &= ~(X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK);
  4857. }
  4858. break;
  4859. /*!
  4860. ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4861. All coordinates from now on are relative to the last position. E axis is left intact.
  4862. */
  4863. case 91: {
  4864. axis_relative_modes |= X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK;
  4865. }
  4866. break;
  4867. /*!
  4868. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4869. It is used for setting the current position of each axis. The parameters are always absolute to the origin.
  4870. If a parameter is omitted, that axis will not be affected.
  4871. If `X`, `Y`, or `Z` axis are specified, the move afterwards might stutter because of Mesh Bed Leveling. `E` axis is not affected if the target position is 0 (`G92 E0`).
  4872. A G92 without coordinates will reset all axes to zero on some firmware. This is not the case for Prusa-Firmware!
  4873. #### Usage
  4874. G92 [ X | Y | Z | E ]
  4875. #### Parameters
  4876. - `X` - new X axis position
  4877. - `Y` - new Y axis position
  4878. - `Z` - new Z axis position
  4879. - `E` - new extruder position
  4880. */
  4881. case 92: {
  4882. gcode_G92();
  4883. }
  4884. break;
  4885. /*!
  4886. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4887. Enable Prusa-specific Farm functions and g-code.
  4888. See Internal Prusa commands.
  4889. */
  4890. case 98:
  4891. farm_mode = 1;
  4892. PingTime = _millis();
  4893. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4894. SilentModeMenu = SILENT_MODE_OFF;
  4895. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4896. fCheckModeInit(); // alternatively invoke printer reset
  4897. break;
  4898. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4899. Disables Prusa-specific Farm functions and g-code.
  4900. */
  4901. case 99:
  4902. farm_mode = 0;
  4903. lcd_printer_connected();
  4904. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4905. lcd_update(2);
  4906. fCheckModeInit(); // alternatively invoke printer reset
  4907. break;
  4908. default:
  4909. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4910. }
  4911. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4912. gcode_in_progress = 0;
  4913. } // end if(code_seen('G'))
  4914. /*!
  4915. ### End of G-Codes
  4916. */
  4917. /*!
  4918. ---------------------------------------------------------------------------------
  4919. # M Commands
  4920. */
  4921. else if(code_seen('M'))
  4922. {
  4923. int index;
  4924. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4925. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4926. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4927. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4928. } else
  4929. {
  4930. mcode_in_progress = (int)code_value();
  4931. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4932. switch(mcode_in_progress)
  4933. {
  4934. /*!
  4935. ### M17 - Enable all axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  4936. */
  4937. case 17:
  4938. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4939. enable_x();
  4940. enable_y();
  4941. enable_z();
  4942. enable_e0();
  4943. enable_e1();
  4944. enable_e2();
  4945. break;
  4946. #ifdef SDSUPPORT
  4947. /*!
  4948. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  4949. #### Usage
  4950. M20 [ L ]
  4951. #### Parameters
  4952. - `L` - Reports ling filenames instead of just short filenames. Requires host software parsing.
  4953. */
  4954. case 20:
  4955. KEEPALIVE_STATE(NOT_BUSY); // do not send busy messages during listing. Inhibits the output of manage_heater()
  4956. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4957. card.ls(code_seen('L'));
  4958. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4959. break;
  4960. /*!
  4961. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  4962. */
  4963. case 21:
  4964. card.initsd();
  4965. break;
  4966. /*!
  4967. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  4968. */
  4969. case 22:
  4970. card.release();
  4971. break;
  4972. /*!
  4973. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  4974. #### Usage
  4975. M23 [filename]
  4976. */
  4977. case 23:
  4978. starpos = (strchr(strchr_pointer + 4,'*'));
  4979. if(starpos!=NULL)
  4980. *(starpos)='\0';
  4981. card.openFileReadFilteredGcode(strchr_pointer + 4);
  4982. break;
  4983. /*!
  4984. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  4985. */
  4986. case 24:
  4987. if (isPrintPaused)
  4988. lcd_resume_print();
  4989. else
  4990. {
  4991. if (!card.get_sdpos())
  4992. {
  4993. // A new print has started from scratch, reset stats
  4994. failstats_reset_print();
  4995. #ifndef LA_NOCOMPAT
  4996. la10c_reset();
  4997. #endif
  4998. }
  4999. card.startFileprint();
  5000. starttime=_millis();
  5001. }
  5002. break;
  5003. /*!
  5004. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  5005. Set position in SD card file to index in bytes.
  5006. This command is expected to be called after M23 and before M24.
  5007. Otherwise effect of this command is undefined.
  5008. #### Usage
  5009. M26 [ S ]
  5010. #### Parameters
  5011. - `S` - Index in bytes
  5012. */
  5013. case 26:
  5014. if(card.cardOK && code_seen('S')) {
  5015. long index = code_value_long();
  5016. card.setIndex(index);
  5017. // We don't disable interrupt during update of sdpos_atomic
  5018. // as we expect, that SD card print is not active in this moment
  5019. sdpos_atomic = index;
  5020. }
  5021. break;
  5022. /*!
  5023. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  5024. #### Usage
  5025. M27 [ P ]
  5026. #### Parameters
  5027. - `P` - Show full SFN path instead of LFN only.
  5028. */
  5029. case 27:
  5030. card.getStatus(code_seen('P'));
  5031. break;
  5032. /*!
  5033. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  5034. */
  5035. case 28:
  5036. starpos = (strchr(strchr_pointer + 4,'*'));
  5037. if(starpos != NULL){
  5038. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5039. strchr_pointer = strchr(npos,' ') + 1;
  5040. *(starpos) = '\0';
  5041. }
  5042. card.openFileWrite(strchr_pointer+4);
  5043. break;
  5044. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  5045. Stops writing to the SD file signaling the end of the uploaded file. It is processed very early and it's not written to the card.
  5046. */
  5047. case 29:
  5048. //processed in write to file routine above
  5049. //card,saving = false;
  5050. break;
  5051. /*!
  5052. ### M30 - Delete file <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  5053. #### Usage
  5054. M30 [filename]
  5055. */
  5056. case 30:
  5057. if (card.cardOK){
  5058. card.closefile();
  5059. starpos = (strchr(strchr_pointer + 4,'*'));
  5060. if(starpos != NULL){
  5061. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5062. strchr_pointer = strchr(npos,' ') + 1;
  5063. *(starpos) = '\0';
  5064. }
  5065. card.removeFile(strchr_pointer + 4);
  5066. }
  5067. break;
  5068. /*!
  5069. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  5070. @todo What are the parameters P and S for in M32?
  5071. */
  5072. case 32:
  5073. {
  5074. if(card.sdprinting) {
  5075. st_synchronize();
  5076. }
  5077. starpos = (strchr(strchr_pointer + 4,'*'));
  5078. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  5079. if(namestartpos==NULL)
  5080. {
  5081. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  5082. }
  5083. else
  5084. namestartpos++; //to skip the '!'
  5085. if(starpos!=NULL)
  5086. *(starpos)='\0';
  5087. bool call_procedure=(code_seen('P'));
  5088. if(strchr_pointer>namestartpos)
  5089. call_procedure=false; //false alert, 'P' found within filename
  5090. if( card.cardOK )
  5091. {
  5092. card.openFileReadFilteredGcode(namestartpos,!call_procedure);
  5093. if(code_seen('S'))
  5094. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  5095. card.setIndex(code_value_long());
  5096. card.startFileprint();
  5097. if(!call_procedure)
  5098. {
  5099. if(!card.get_sdpos())
  5100. {
  5101. // A new print has started from scratch, reset stats
  5102. failstats_reset_print();
  5103. #ifndef LA_NOCOMPAT
  5104. la10c_reset();
  5105. #endif
  5106. }
  5107. starttime=_millis(); // procedure calls count as normal print time.
  5108. }
  5109. }
  5110. } break;
  5111. /*!
  5112. ### M928 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  5113. #### Usage
  5114. M928 [filename]
  5115. */
  5116. case 928:
  5117. starpos = (strchr(strchr_pointer + 5,'*'));
  5118. if(starpos != NULL){
  5119. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  5120. strchr_pointer = strchr(npos,' ') + 1;
  5121. *(starpos) = '\0';
  5122. }
  5123. card.openLogFile(strchr_pointer+5);
  5124. break;
  5125. #endif //SDSUPPORT
  5126. /*!
  5127. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  5128. */
  5129. case 31: //M31 take time since the start of the SD print or an M109 command
  5130. {
  5131. stoptime=_millis();
  5132. char time[30];
  5133. unsigned long t=(stoptime-starttime)/1000;
  5134. int sec,min;
  5135. min=t/60;
  5136. sec=t%60;
  5137. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  5138. SERIAL_ECHO_START;
  5139. SERIAL_ECHOLN(time);
  5140. lcd_setstatus(time);
  5141. autotempShutdown();
  5142. }
  5143. break;
  5144. /*!
  5145. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  5146. #### Usage
  5147. M42 [ P | S ]
  5148. #### Parameters
  5149. - `P` - Pin number.
  5150. - `S` - Pin value. If the pin is analog, values are from 0 to 255. If the pin is digital, values are from 0 to 1.
  5151. */
  5152. case 42:
  5153. if (code_seen('S'))
  5154. {
  5155. int pin_status = code_value();
  5156. int pin_number = LED_PIN;
  5157. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  5158. pin_number = code_value();
  5159. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5160. {
  5161. if (sensitive_pins[i] == pin_number)
  5162. {
  5163. pin_number = -1;
  5164. break;
  5165. }
  5166. }
  5167. #if defined(FAN_PIN) && FAN_PIN > -1
  5168. if (pin_number == FAN_PIN)
  5169. fanSpeed = pin_status;
  5170. #endif
  5171. if (pin_number > -1)
  5172. {
  5173. pinMode(pin_number, OUTPUT);
  5174. digitalWrite(pin_number, pin_status);
  5175. analogWrite(pin_number, pin_status);
  5176. }
  5177. }
  5178. break;
  5179. /*!
  5180. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  5181. */
  5182. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  5183. // Reset the baby step value and the baby step applied flag.
  5184. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  5185. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  5186. // Reset the skew and offset in both RAM and EEPROM.
  5187. reset_bed_offset_and_skew();
  5188. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5189. // the planner will not perform any adjustments in the XY plane.
  5190. // Wait for the motors to stop and update the current position with the absolute values.
  5191. world2machine_revert_to_uncorrected();
  5192. break;
  5193. /*!
  5194. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  5195. #### Usage
  5196. M45 [ V ]
  5197. #### Parameters
  5198. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined. Optional.
  5199. - `Z` - If it is provided, only Z calibration will run. Otherwise full calibration is executed.
  5200. */
  5201. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  5202. {
  5203. int8_t verbosity_level = 0;
  5204. bool only_Z = code_seen('Z');
  5205. #ifdef SUPPORT_VERBOSITY
  5206. if (code_seen('V'))
  5207. {
  5208. // Just 'V' without a number counts as V1.
  5209. char c = strchr_pointer[1];
  5210. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5211. }
  5212. #endif //SUPPORT_VERBOSITY
  5213. gcode_M45(only_Z, verbosity_level);
  5214. }
  5215. break;
  5216. /*!
  5217. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  5218. */
  5219. case 46:
  5220. {
  5221. // M46: Prusa3D: Show the assigned IP address.
  5222. if (card.ToshibaFlashAir_isEnabled()) {
  5223. uint8_t ip[4];
  5224. if (card.ToshibaFlashAir_GetIP(ip)) {
  5225. // SERIAL_PROTOCOLPGM("Toshiba FlashAir current IP: ");
  5226. SERIAL_PROTOCOL(uint8_t(ip[0]));
  5227. SERIAL_PROTOCOL('.');
  5228. SERIAL_PROTOCOL(uint8_t(ip[1]));
  5229. SERIAL_PROTOCOL('.');
  5230. SERIAL_PROTOCOL(uint8_t(ip[2]));
  5231. SERIAL_PROTOCOL('.');
  5232. SERIAL_PROTOCOL(uint8_t(ip[3]));
  5233. SERIAL_PROTOCOLLN();
  5234. } else {
  5235. SERIAL_PROTOCOLPGM("?Toshiba FlashAir GetIP failed\n");
  5236. }
  5237. } else {
  5238. SERIAL_PROTOCOLLNPGM("n/a");
  5239. }
  5240. break;
  5241. }
  5242. /*!
  5243. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  5244. */
  5245. case 47:
  5246. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5247. lcd_diag_show_end_stops();
  5248. KEEPALIVE_STATE(IN_HANDLER);
  5249. break;
  5250. #if 0
  5251. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  5252. {
  5253. // Disable the default update procedure of the display. We will do a modal dialog.
  5254. lcd_update_enable(false);
  5255. // Let the planner use the uncorrected coordinates.
  5256. mbl.reset();
  5257. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5258. // the planner will not perform any adjustments in the XY plane.
  5259. // Wait for the motors to stop and update the current position with the absolute values.
  5260. world2machine_revert_to_uncorrected();
  5261. // Move the print head close to the bed.
  5262. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5263. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5264. st_synchronize();
  5265. // Home in the XY plane.
  5266. set_destination_to_current();
  5267. int l_feedmultiply = setup_for_endstop_move();
  5268. home_xy();
  5269. int8_t verbosity_level = 0;
  5270. if (code_seen('V')) {
  5271. // Just 'V' without a number counts as V1.
  5272. char c = strchr_pointer[1];
  5273. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5274. }
  5275. bool success = scan_bed_induction_points(verbosity_level);
  5276. clean_up_after_endstop_move(l_feedmultiply);
  5277. // Print head up.
  5278. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5279. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5280. st_synchronize();
  5281. lcd_update_enable(true);
  5282. break;
  5283. }
  5284. #endif
  5285. #ifdef ENABLE_AUTO_BED_LEVELING
  5286. #ifdef Z_PROBE_REPEATABILITY_TEST
  5287. /*!
  5288. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  5289. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and needs to be regenerated.
  5290. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  5291. @todo Why would you check for both uppercase and lowercase? Seems wasteful.
  5292. #### Usage
  5293. M48 [ n | X | Y | V | L ]
  5294. #### Parameters
  5295. - `n` - Number of samples. Valid values 4-50
  5296. - `X` - X position for samples
  5297. - `Y` - Y position for samples
  5298. - `V` - Verbose level. Valid values 1-4
  5299. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  5300. */
  5301. case 48: // M48 Z-Probe repeatability
  5302. {
  5303. #if Z_MIN_PIN == -1
  5304. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  5305. #endif
  5306. double sum=0.0;
  5307. double mean=0.0;
  5308. double sigma=0.0;
  5309. double sample_set[50];
  5310. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  5311. double X_current, Y_current, Z_current;
  5312. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5313. if (code_seen('V') || code_seen('v')) {
  5314. verbose_level = code_value();
  5315. if (verbose_level<0 || verbose_level>4 ) {
  5316. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5317. goto Sigma_Exit;
  5318. }
  5319. }
  5320. if (verbose_level > 0) {
  5321. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5322. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5323. }
  5324. if (code_seen('n')) {
  5325. n_samples = code_value();
  5326. if (n_samples<4 || n_samples>50 ) {
  5327. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5328. goto Sigma_Exit;
  5329. }
  5330. }
  5331. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5332. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5333. Z_current = st_get_position_mm(Z_AXIS);
  5334. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5335. ext_position = st_get_position_mm(E_AXIS);
  5336. if (code_seen('X') || code_seen('x') ) {
  5337. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5338. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5339. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5340. goto Sigma_Exit;
  5341. }
  5342. }
  5343. if (code_seen('Y') || code_seen('y') ) {
  5344. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5345. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5346. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5347. goto Sigma_Exit;
  5348. }
  5349. }
  5350. if (code_seen('L') || code_seen('l') ) {
  5351. n_legs = code_value();
  5352. if ( n_legs==1 )
  5353. n_legs = 2;
  5354. if ( n_legs<0 || n_legs>15 ) {
  5355. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5356. goto Sigma_Exit;
  5357. }
  5358. }
  5359. //
  5360. // Do all the preliminary setup work. First raise the probe.
  5361. //
  5362. st_synchronize();
  5363. plan_bed_level_matrix.set_to_identity();
  5364. plan_buffer_line( X_current, Y_current, Z_start_location,
  5365. ext_position,
  5366. homing_feedrate[Z_AXIS]/60,
  5367. active_extruder);
  5368. st_synchronize();
  5369. //
  5370. // Now get everything to the specified probe point So we can safely do a probe to
  5371. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5372. // use that as a starting point for each probe.
  5373. //
  5374. if (verbose_level > 2)
  5375. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5376. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5377. ext_position,
  5378. homing_feedrate[X_AXIS]/60,
  5379. active_extruder);
  5380. st_synchronize();
  5381. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5382. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5383. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5384. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5385. //
  5386. // OK, do the inital probe to get us close to the bed.
  5387. // Then retrace the right amount and use that in subsequent probes
  5388. //
  5389. int l_feedmultiply = setup_for_endstop_move();
  5390. run_z_probe();
  5391. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5392. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5393. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5394. ext_position,
  5395. homing_feedrate[X_AXIS]/60,
  5396. active_extruder);
  5397. st_synchronize();
  5398. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5399. for( n=0; n<n_samples; n++) {
  5400. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5401. if ( n_legs) {
  5402. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5403. int rotational_direction, l;
  5404. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5405. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5406. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5407. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5408. //SERIAL_ECHOPAIR(" theta: ",theta);
  5409. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5410. //SERIAL_PROTOCOLLNPGM("");
  5411. for( l=0; l<n_legs-1; l++) {
  5412. if (rotational_direction==1)
  5413. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5414. else
  5415. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5416. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5417. if ( radius<0.0 )
  5418. radius = -radius;
  5419. X_current = X_probe_location + cos(theta) * radius;
  5420. Y_current = Y_probe_location + sin(theta) * radius;
  5421. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5422. X_current = X_MIN_POS;
  5423. if ( X_current>X_MAX_POS)
  5424. X_current = X_MAX_POS;
  5425. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5426. Y_current = Y_MIN_POS;
  5427. if ( Y_current>Y_MAX_POS)
  5428. Y_current = Y_MAX_POS;
  5429. if (verbose_level>3 ) {
  5430. SERIAL_ECHOPAIR("x: ", X_current);
  5431. SERIAL_ECHOPAIR("y: ", Y_current);
  5432. SERIAL_PROTOCOLLNPGM("");
  5433. }
  5434. do_blocking_move_to( X_current, Y_current, Z_current );
  5435. }
  5436. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5437. }
  5438. int l_feedmultiply = setup_for_endstop_move();
  5439. run_z_probe();
  5440. sample_set[n] = current_position[Z_AXIS];
  5441. //
  5442. // Get the current mean for the data points we have so far
  5443. //
  5444. sum=0.0;
  5445. for( j=0; j<=n; j++) {
  5446. sum = sum + sample_set[j];
  5447. }
  5448. mean = sum / (double (n+1));
  5449. //
  5450. // Now, use that mean to calculate the standard deviation for the
  5451. // data points we have so far
  5452. //
  5453. sum=0.0;
  5454. for( j=0; j<=n; j++) {
  5455. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5456. }
  5457. sigma = sqrt( sum / (double (n+1)) );
  5458. if (verbose_level > 1) {
  5459. SERIAL_PROTOCOL(n+1);
  5460. SERIAL_PROTOCOL(" of ");
  5461. SERIAL_PROTOCOL(n_samples);
  5462. SERIAL_PROTOCOLPGM(" z: ");
  5463. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5464. }
  5465. if (verbose_level > 2) {
  5466. SERIAL_PROTOCOL(" mean: ");
  5467. SERIAL_PROTOCOL_F(mean,6);
  5468. SERIAL_PROTOCOL(" sigma: ");
  5469. SERIAL_PROTOCOL_F(sigma,6);
  5470. }
  5471. if (verbose_level > 0)
  5472. SERIAL_PROTOCOLPGM("\n");
  5473. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5474. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5475. st_synchronize();
  5476. }
  5477. _delay(1000);
  5478. clean_up_after_endstop_move(l_feedmultiply);
  5479. // enable_endstops(true);
  5480. if (verbose_level > 0) {
  5481. SERIAL_PROTOCOLPGM("Mean: ");
  5482. SERIAL_PROTOCOL_F(mean, 6);
  5483. SERIAL_PROTOCOLPGM("\n");
  5484. }
  5485. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5486. SERIAL_PROTOCOL_F(sigma, 6);
  5487. SERIAL_PROTOCOLPGM("\n\n");
  5488. Sigma_Exit:
  5489. break;
  5490. }
  5491. #endif // Z_PROBE_REPEATABILITY_TEST
  5492. #endif // ENABLE_AUTO_BED_LEVELING
  5493. /*!
  5494. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5495. #### Usage
  5496. M73 [ P | R | Q | S | C | D ]
  5497. #### Parameters
  5498. - `P` - Percent in normal mode
  5499. - `R` - Time remaining in normal mode
  5500. - `Q` - Percent in silent mode
  5501. - `S` - Time in silent mode
  5502. - `C` - Time to change/pause/user interaction in normal mode
  5503. - `D` - Time to change/pause/user interaction in silent mode
  5504. */
  5505. //!@todo update RepRap Gcode wiki
  5506. case 73: //M73 show percent done, time remaining and time to change/pause
  5507. {
  5508. if(code_seen('P')) print_percent_done_normal = code_value();
  5509. if(code_seen('R')) print_time_remaining_normal = code_value();
  5510. if(code_seen('Q')) print_percent_done_silent = code_value();
  5511. if(code_seen('S')) print_time_remaining_silent = code_value();
  5512. if(code_seen('C')) print_time_to_change_normal = code_value();
  5513. if(code_seen('D')) print_time_to_change_silent = code_value();
  5514. {
  5515. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d; Change in mins: %d\n");
  5516. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal, print_time_to_change_normal);
  5517. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent, print_time_to_change_silent);
  5518. }
  5519. break;
  5520. }
  5521. /*!
  5522. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5523. #### Usage
  5524. M104 [ S ]
  5525. #### Parameters
  5526. - `S` - Target temperature
  5527. */
  5528. case 104: // M104
  5529. {
  5530. uint8_t extruder;
  5531. if(setTargetedHotend(104,extruder)){
  5532. break;
  5533. }
  5534. if (code_seen('S'))
  5535. {
  5536. setTargetHotendSafe(code_value(), extruder);
  5537. }
  5538. break;
  5539. }
  5540. /*!
  5541. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5542. It is processed much earlier as to bypass the cmdqueue.
  5543. */
  5544. case 112:
  5545. kill(MSG_M112_KILL, 3);
  5546. break;
  5547. /*!
  5548. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5549. #### Usage
  5550. M140 [ S ]
  5551. #### Parameters
  5552. - `S` - Target temperature
  5553. */
  5554. case 140:
  5555. if (code_seen('S')) setTargetBed(code_value());
  5556. break;
  5557. /*!
  5558. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5559. Prints temperatures:
  5560. - `T:` - Hotend (actual / target)
  5561. - `B:` - Bed (actual / target)
  5562. - `Tx:` - x Tool (actual / target)
  5563. - `@:` - Hotend power
  5564. - `B@:` - Bed power
  5565. - `P:` - PINDAv2 actual (only MK2.5/s and MK3/s)
  5566. - `A:` - Ambient actual (only MK3/s)
  5567. _Example:_
  5568. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5569. */
  5570. case 105:
  5571. {
  5572. uint8_t extruder;
  5573. if(setTargetedHotend(105, extruder)){
  5574. break;
  5575. }
  5576. SERIAL_PROTOCOLPGM("ok ");
  5577. gcode_M105(extruder);
  5578. cmdqueue_pop_front(); //prevent an ok after the command since this command uses an ok at the beginning.
  5579. break;
  5580. }
  5581. #if defined(AUTO_REPORT)
  5582. /*!
  5583. ### M155 - Automatically send status <a href="https://reprap.org/wiki/G-code#M155:_Automatically_send_temperatures">M155: Automatically send temperatures</a>
  5584. #### Usage
  5585. M155 [ S ] [ C ]
  5586. #### Parameters
  5587. - `S` - Set autoreporting interval in seconds. 0 to disable. Maximum: 255
  5588. - `C` - Activate auto-report function (bit mask). Default is temperature.
  5589. bit 0 = Auto-report temperatures
  5590. bit 1 = Auto-report fans
  5591. bit 2 = Auto-report position
  5592. bit 3 = free
  5593. bit 4 = free
  5594. bit 5 = free
  5595. bit 6 = free
  5596. bit 7 = free
  5597. */
  5598. //!@todo update RepRap Gcode wiki
  5599. //!@todo Should be temperature always? Octoprint doesn't switch to M105 if M155 timer is set
  5600. case 155:
  5601. {
  5602. if (code_seen('S')){
  5603. autoReportFeatures.SetPeriod( code_value_uint8() );
  5604. }
  5605. if (code_seen('C')){
  5606. autoReportFeatures.SetMask(code_value());
  5607. } else{
  5608. autoReportFeatures.SetMask(1); //Backwards compability to host systems like Octoprint to send only temp if paramerter `C`isn't used.
  5609. }
  5610. }
  5611. break;
  5612. #endif //AUTO_REPORT
  5613. /*!
  5614. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5615. #### Usage
  5616. M104 [ B | R | S ]
  5617. #### Parameters (not mandatory)
  5618. - `S` - Set extruder temperature
  5619. - `R` - Set extruder temperature
  5620. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5621. Parameters S and R are treated identically.
  5622. Command always waits for both cool down and heat up.
  5623. If no parameters are supplied waits for previously set extruder temperature.
  5624. */
  5625. case 109:
  5626. {
  5627. uint8_t extruder;
  5628. if(setTargetedHotend(109, extruder)){
  5629. break;
  5630. }
  5631. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5632. heating_status = 1;
  5633. if (farm_mode) { prusa_statistics(1); };
  5634. #ifdef AUTOTEMP
  5635. autotemp_enabled=false;
  5636. #endif
  5637. if (code_seen('S')) {
  5638. setTargetHotendSafe(code_value(), extruder);
  5639. } else if (code_seen('R')) {
  5640. setTargetHotendSafe(code_value(), extruder);
  5641. }
  5642. #ifdef AUTOTEMP
  5643. if (code_seen('S')) autotemp_min=code_value();
  5644. if (code_seen('B')) autotemp_max=code_value();
  5645. if (code_seen('F'))
  5646. {
  5647. autotemp_factor=code_value();
  5648. autotemp_enabled=true;
  5649. }
  5650. #endif
  5651. codenum = _millis();
  5652. /* See if we are heating up or cooling down */
  5653. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5654. KEEPALIVE_STATE(NOT_BUSY);
  5655. cancel_heatup = false;
  5656. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5657. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5658. KEEPALIVE_STATE(IN_HANDLER);
  5659. heating_status = 2;
  5660. if (farm_mode) { prusa_statistics(2); };
  5661. //starttime=_millis();
  5662. previous_millis_cmd = _millis();
  5663. }
  5664. break;
  5665. /*!
  5666. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5667. #### Usage
  5668. M190 [ R | S ]
  5669. #### Parameters (not mandatory)
  5670. - `S` - Set extruder temperature and wait for heating
  5671. - `R` - Set extruder temperature and wait for heating or cooling
  5672. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5673. */
  5674. case 190:
  5675. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5676. {
  5677. bool CooldownNoWait = false;
  5678. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5679. heating_status = 3;
  5680. if (farm_mode) { prusa_statistics(1); };
  5681. if (code_seen('S'))
  5682. {
  5683. setTargetBed(code_value());
  5684. CooldownNoWait = true;
  5685. }
  5686. else if (code_seen('R'))
  5687. {
  5688. setTargetBed(code_value());
  5689. }
  5690. codenum = _millis();
  5691. cancel_heatup = false;
  5692. target_direction = isHeatingBed(); // true if heating, false if cooling
  5693. KEEPALIVE_STATE(NOT_BUSY);
  5694. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5695. {
  5696. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5697. {
  5698. if (!farm_mode) {
  5699. float tt = degHotend(active_extruder);
  5700. SERIAL_PROTOCOLPGM("T:");
  5701. SERIAL_PROTOCOL(tt);
  5702. SERIAL_PROTOCOLPGM(" E:");
  5703. SERIAL_PROTOCOL((int)active_extruder);
  5704. SERIAL_PROTOCOLPGM(" B:");
  5705. SERIAL_PROTOCOL_F(degBed(), 1);
  5706. SERIAL_PROTOCOLLN();
  5707. }
  5708. codenum = _millis();
  5709. }
  5710. manage_heater();
  5711. manage_inactivity();
  5712. lcd_update(0);
  5713. }
  5714. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5715. KEEPALIVE_STATE(IN_HANDLER);
  5716. heating_status = 4;
  5717. previous_millis_cmd = _millis();
  5718. }
  5719. #endif
  5720. break;
  5721. #if defined(FAN_PIN) && FAN_PIN > -1
  5722. /*!
  5723. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5724. #### Usage
  5725. M106 [ S ]
  5726. #### Parameters
  5727. - `S` - Specifies the duty cycle of the print fan. Allowed values are 0-255. If it's omitted, a value of 255 is used.
  5728. */
  5729. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5730. if (code_seen('S')){
  5731. fanSpeed=constrain(code_value(),0,255);
  5732. }
  5733. else {
  5734. fanSpeed=255;
  5735. }
  5736. break;
  5737. /*!
  5738. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5739. */
  5740. case 107:
  5741. fanSpeed = 0;
  5742. break;
  5743. #endif //FAN_PIN
  5744. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5745. /*!
  5746. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5747. Only works if the firmware is compiled with PS_ON_PIN defined.
  5748. */
  5749. case 80:
  5750. SET_OUTPUT(PS_ON_PIN); //GND
  5751. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5752. // If you have a switch on suicide pin, this is useful
  5753. // if you want to start another print with suicide feature after
  5754. // a print without suicide...
  5755. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5756. SET_OUTPUT(SUICIDE_PIN);
  5757. WRITE(SUICIDE_PIN, HIGH);
  5758. #endif
  5759. powersupply = true;
  5760. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5761. lcd_update(0);
  5762. break;
  5763. /*!
  5764. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5765. Only works if the firmware is compiled with PS_ON_PIN defined.
  5766. */
  5767. case 81:
  5768. disable_heater();
  5769. st_synchronize();
  5770. disable_e0();
  5771. disable_e1();
  5772. disable_e2();
  5773. finishAndDisableSteppers();
  5774. fanSpeed = 0;
  5775. _delay(1000); // Wait a little before to switch off
  5776. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5777. st_synchronize();
  5778. suicide();
  5779. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5780. SET_OUTPUT(PS_ON_PIN);
  5781. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5782. #endif
  5783. powersupply = false;
  5784. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5785. lcd_update(0);
  5786. break;
  5787. #endif
  5788. /*!
  5789. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5790. Makes the extruder interpret extrusion as absolute positions.
  5791. */
  5792. case 82:
  5793. axis_relative_modes &= ~E_AXIS_MASK;
  5794. break;
  5795. /*!
  5796. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5797. Makes the extruder interpret extrusion values as relative positions.
  5798. */
  5799. case 83:
  5800. axis_relative_modes |= E_AXIS_MASK;
  5801. break;
  5802. /*!
  5803. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5804. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5805. This command can be used without any additional parameters. In that case all steppers are disabled.
  5806. The file completeness check uses this parameter to detect an incomplete file. It has to be present at the end of a file with no parameters.
  5807. M84 [ S | X | Y | Z | E ]
  5808. - `S` - Seconds
  5809. - `X` - X axis
  5810. - `Y` - Y axis
  5811. - `Z` - Z axis
  5812. - `E` - Exruder
  5813. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5814. Equal to M84 (compatibility)
  5815. */
  5816. case 18: //compatibility
  5817. case 84: // M84
  5818. if(code_seen('S')){
  5819. stepper_inactive_time = code_value() * 1000;
  5820. }
  5821. else
  5822. {
  5823. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5824. if(all_axis)
  5825. {
  5826. st_synchronize();
  5827. disable_e0();
  5828. disable_e1();
  5829. disable_e2();
  5830. finishAndDisableSteppers();
  5831. }
  5832. else
  5833. {
  5834. st_synchronize();
  5835. if (code_seen('X')) disable_x();
  5836. if (code_seen('Y')) disable_y();
  5837. if (code_seen('Z')) disable_z();
  5838. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5839. if (code_seen('E')) {
  5840. disable_e0();
  5841. disable_e1();
  5842. disable_e2();
  5843. }
  5844. #endif
  5845. }
  5846. }
  5847. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5848. print_time_remaining_init();
  5849. snmm_filaments_used = 0;
  5850. break;
  5851. /*!
  5852. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5853. #### Usage
  5854. M85 [ S ]
  5855. #### Parameters
  5856. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5857. */
  5858. case 85: // M85
  5859. if(code_seen('S')) {
  5860. max_inactive_time = code_value() * 1000;
  5861. }
  5862. break;
  5863. #ifdef SAFETYTIMER
  5864. /*!
  5865. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5866. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5867. #### Usage
  5868. M86 [ S ]
  5869. #### Parameters
  5870. - `S` - specifies the time in seconds. If a value of 0 is specified, the timer is disabled.
  5871. */
  5872. case 86:
  5873. if (code_seen('S')) {
  5874. safetytimer_inactive_time = code_value() * 1000;
  5875. safetyTimer.start();
  5876. }
  5877. break;
  5878. #endif
  5879. /*!
  5880. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5881. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5882. #### Usage
  5883. M92 [ X | Y | Z | E ]
  5884. #### Parameters
  5885. - `X` - Steps per unit for the X drive
  5886. - `Y` - Steps per unit for the Y drive
  5887. - `Z` - Steps per unit for the Z drive
  5888. - `E` - Steps per unit for the extruder drive
  5889. */
  5890. case 92:
  5891. for(int8_t i=0; i < NUM_AXIS; i++)
  5892. {
  5893. if(code_seen(axis_codes[i]))
  5894. {
  5895. if(i == E_AXIS) { // E
  5896. float value = code_value();
  5897. if(value < 20.0) {
  5898. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5899. cs.max_jerk[E_AXIS] *= factor;
  5900. max_feedrate[i] *= factor;
  5901. axis_steps_per_sqr_second[i] *= factor;
  5902. }
  5903. cs.axis_steps_per_unit[i] = value;
  5904. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  5905. fsensor_set_axis_steps_per_unit(value);
  5906. #endif
  5907. }
  5908. else {
  5909. cs.axis_steps_per_unit[i] = code_value();
  5910. }
  5911. }
  5912. }
  5913. break;
  5914. /*!
  5915. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  5916. Sets the line number in G-code
  5917. #### Usage
  5918. M110 [ N ]
  5919. #### Parameters
  5920. - `N` - Line number
  5921. */
  5922. case 110:
  5923. if (code_seen('N'))
  5924. gcode_LastN = code_value_long();
  5925. break;
  5926. /*!
  5927. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  5928. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect (or disconnect).
  5929. #### Usage
  5930. M113 [ S ]
  5931. #### Parameters
  5932. - `S` - Seconds. Default is 2 seconds between "busy" messages
  5933. */
  5934. case 113:
  5935. if (code_seen('S')) {
  5936. host_keepalive_interval = (uint8_t)code_value_short();
  5937. // NOMORE(host_keepalive_interval, 60);
  5938. }
  5939. else {
  5940. SERIAL_ECHO_START;
  5941. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5942. SERIAL_PROTOCOLLN();
  5943. }
  5944. break;
  5945. /*!
  5946. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  5947. Print the firmware info and capabilities
  5948. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5949. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  5950. _Examples:_
  5951. `M115` results:
  5952. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  5953. `M115 V` results:
  5954. `3.8.1`
  5955. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  5956. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  5957. #### Usage
  5958. M115 [ V | U ]
  5959. #### Parameters
  5960. - V - Report current installed firmware version
  5961. - U - Firmware version provided by G-code to be compared to current one.
  5962. */
  5963. case 115: // M115
  5964. if (code_seen('V')) {
  5965. // Report the Prusa version number.
  5966. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5967. } else if (code_seen('U')) {
  5968. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5969. // pause the print for 30s and ask the user to upgrade the firmware.
  5970. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5971. } else {
  5972. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5973. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5974. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5975. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5976. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5977. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5978. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5979. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5980. SERIAL_ECHOPGM(" UUID:");
  5981. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5982. #ifdef EXTENDED_CAPABILITIES_REPORT
  5983. extended_capabilities_report();
  5984. #endif //EXTENDED_CAPABILITIES_REPORT
  5985. }
  5986. break;
  5987. /*!
  5988. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  5989. */
  5990. case 114:
  5991. gcode_M114();
  5992. break;
  5993. /*
  5994. M117 moved up to get the high priority
  5995. case 117: // M117 display message
  5996. starpos = (strchr(strchr_pointer + 5,'*'));
  5997. if(starpos!=NULL)
  5998. *(starpos)='\0';
  5999. lcd_setstatus(strchr_pointer + 5);
  6000. break;*/
  6001. /*!
  6002. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  6003. */
  6004. case 120:
  6005. enable_endstops(true) ;
  6006. break;
  6007. /*!
  6008. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  6009. */
  6010. case 121:
  6011. enable_endstops(false) ;
  6012. break;
  6013. /*!
  6014. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  6015. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  6016. */
  6017. case 119:
  6018. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  6019. SERIAL_PROTOCOLLN();
  6020. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  6021. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  6022. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  6023. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6024. }else{
  6025. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6026. }
  6027. SERIAL_PROTOCOLLN();
  6028. #endif
  6029. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  6030. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  6031. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  6032. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6033. }else{
  6034. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6035. }
  6036. SERIAL_PROTOCOLLN();
  6037. #endif
  6038. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  6039. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  6040. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  6041. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6042. }else{
  6043. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6044. }
  6045. SERIAL_PROTOCOLLN();
  6046. #endif
  6047. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  6048. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  6049. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  6050. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6051. }else{
  6052. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6053. }
  6054. SERIAL_PROTOCOLLN();
  6055. #endif
  6056. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  6057. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  6058. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  6059. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6060. }else{
  6061. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6062. }
  6063. SERIAL_PROTOCOLLN();
  6064. #endif
  6065. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  6066. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  6067. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  6068. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  6069. }else{
  6070. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  6071. }
  6072. SERIAL_PROTOCOLLN();
  6073. #endif
  6074. break;
  6075. //!@todo update for all axes, use for loop
  6076. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  6077. /*!
  6078. ### M123 - Tachometer value <a href="https://www.reprap.org/wiki/G-code#M123:_Tachometer_value_.28RepRap.29">M123: Tachometer value</a>
  6079. This command is used to report fan speeds and fan pwm values.
  6080. #### Usage
  6081. M123
  6082. - E0: - Hotend fan speed in RPM
  6083. - PRN1: - Part cooling fans speed in RPM
  6084. - E0@: - Hotend fan PWM value
  6085. - PRN1@: -Part cooling fan PWM value
  6086. _Example:_
  6087. E0:3240 RPM PRN1:4560 RPM E0@:255 PRN1@:255
  6088. */
  6089. //!@todo Update RepRap Gcode wiki
  6090. case 123:
  6091. gcode_M123();
  6092. break;
  6093. #endif //FANCHECK and TACH_0 and TACH_1
  6094. #ifdef BLINKM
  6095. /*!
  6096. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  6097. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  6098. #### Usage
  6099. M150 [ R | U | B ]
  6100. #### Parameters
  6101. - `R` - Red color value
  6102. - `U` - Green color value. It is NOT `G`!
  6103. - `B` - Blue color value
  6104. */
  6105. case 150:
  6106. {
  6107. byte red;
  6108. byte grn;
  6109. byte blu;
  6110. if(code_seen('R')) red = code_value();
  6111. if(code_seen('U')) grn = code_value();
  6112. if(code_seen('B')) blu = code_value();
  6113. SendColors(red,grn,blu);
  6114. }
  6115. break;
  6116. #endif //BLINKM
  6117. /*!
  6118. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  6119. #### Usage
  6120. M200 [ D | T ]
  6121. #### Parameters
  6122. - `D` - Diameter in mm
  6123. - `T` - Number of extruder (MMUs)
  6124. */
  6125. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  6126. {
  6127. uint8_t extruder = active_extruder;
  6128. if(code_seen('T')) {
  6129. extruder = code_value();
  6130. if(extruder >= EXTRUDERS) {
  6131. SERIAL_ECHO_START;
  6132. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  6133. break;
  6134. }
  6135. }
  6136. if(code_seen('D')) {
  6137. float diameter = (float)code_value();
  6138. if (diameter == 0.0) {
  6139. // setting any extruder filament size disables volumetric on the assumption that
  6140. // slicers either generate in extruder values as cubic mm or as as filament feeds
  6141. // for all extruders
  6142. cs.volumetric_enabled = false;
  6143. } else {
  6144. cs.filament_size[extruder] = (float)code_value();
  6145. // make sure all extruders have some sane value for the filament size
  6146. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  6147. #if EXTRUDERS > 1
  6148. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  6149. #if EXTRUDERS > 2
  6150. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  6151. #endif
  6152. #endif
  6153. cs.volumetric_enabled = true;
  6154. }
  6155. } else {
  6156. //reserved for setting filament diameter via UFID or filament measuring device
  6157. break;
  6158. }
  6159. calculate_extruder_multipliers();
  6160. }
  6161. break;
  6162. /*!
  6163. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration">M201: Set max printing acceleration</a>
  6164. For each axis individually.
  6165. */
  6166. case 201:
  6167. for (int8_t i = 0; i < NUM_AXIS; i++)
  6168. {
  6169. if (code_seen(axis_codes[i]))
  6170. {
  6171. unsigned long val = code_value();
  6172. #ifdef TMC2130
  6173. unsigned long val_silent = val;
  6174. if ((i == X_AXIS) || (i == Y_AXIS))
  6175. {
  6176. if (val > NORMAL_MAX_ACCEL_XY)
  6177. val = NORMAL_MAX_ACCEL_XY;
  6178. if (val_silent > SILENT_MAX_ACCEL_XY)
  6179. val_silent = SILENT_MAX_ACCEL_XY;
  6180. }
  6181. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  6182. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  6183. #else //TMC2130
  6184. max_acceleration_units_per_sq_second[i] = val;
  6185. #endif //TMC2130
  6186. }
  6187. }
  6188. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  6189. reset_acceleration_rates();
  6190. break;
  6191. #if 0 // Not used for Sprinter/grbl gen6
  6192. case 202: // M202
  6193. for(int8_t i=0; i < NUM_AXIS; i++) {
  6194. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  6195. }
  6196. break;
  6197. #endif
  6198. /*!
  6199. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  6200. For each axis individually.
  6201. */
  6202. case 203: // M203 max feedrate mm/sec
  6203. for (uint8_t i = 0; i < NUM_AXIS; i++)
  6204. {
  6205. if (code_seen(axis_codes[i]))
  6206. {
  6207. float val = code_value();
  6208. #ifdef TMC2130
  6209. float val_silent = val;
  6210. if ((i == X_AXIS) || (i == Y_AXIS))
  6211. {
  6212. if (val > NORMAL_MAX_FEEDRATE_XY)
  6213. val = NORMAL_MAX_FEEDRATE_XY;
  6214. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  6215. val_silent = SILENT_MAX_FEEDRATE_XY;
  6216. }
  6217. cs.max_feedrate_normal[i] = val;
  6218. cs.max_feedrate_silent[i] = val_silent;
  6219. #else //TMC2130
  6220. max_feedrate[i] = val;
  6221. #endif //TMC2130
  6222. }
  6223. }
  6224. break;
  6225. /*!
  6226. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  6227. #### Old format:
  6228. ##### Usage
  6229. M204 [ S | T ]
  6230. ##### Parameters
  6231. - `S` - normal moves
  6232. - `T` - filmanent only moves
  6233. #### New format:
  6234. ##### Usage
  6235. M204 [ P | R | T ]
  6236. ##### Parameters
  6237. - `P` - printing moves
  6238. - `R` - filmanent only moves
  6239. - `T` - travel moves (as of now T is ignored)
  6240. */
  6241. case 204:
  6242. {
  6243. if(code_seen('S')) {
  6244. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  6245. // and it is also generated by Slic3r to control acceleration per extrusion type
  6246. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  6247. cs.acceleration = cs.travel_acceleration = code_value();
  6248. // Interpret the T value as retract acceleration in the old Marlin format.
  6249. if(code_seen('T'))
  6250. cs.retract_acceleration = code_value();
  6251. } else {
  6252. // New acceleration format, compatible with the upstream Marlin.
  6253. if(code_seen('P'))
  6254. cs.acceleration = code_value();
  6255. if(code_seen('R'))
  6256. cs.retract_acceleration = code_value();
  6257. if(code_seen('T'))
  6258. cs.travel_acceleration = code_value();
  6259. }
  6260. }
  6261. break;
  6262. /*!
  6263. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  6264. Set some advanced settings related to movement.
  6265. #### Usage
  6266. M205 [ S | T | B | X | Y | Z | E ]
  6267. #### Parameters
  6268. - `S` - Minimum feedrate for print moves (unit/s)
  6269. - `T` - Minimum feedrate for travel moves (units/s)
  6270. - `B` - Minimum segment time (us)
  6271. - `X` - Maximum X jerk (units/s)
  6272. - `Y` - Maximum Y jerk (units/s)
  6273. - `Z` - Maximum Z jerk (units/s)
  6274. - `E` - Maximum E jerk (units/s)
  6275. */
  6276. case 205:
  6277. {
  6278. if(code_seen('S')) cs.minimumfeedrate = code_value();
  6279. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  6280. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  6281. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  6282. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  6283. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  6284. if(code_seen('E'))
  6285. {
  6286. float e = code_value();
  6287. #ifndef LA_NOCOMPAT
  6288. e = la10c_jerk(e);
  6289. #endif
  6290. cs.max_jerk[E_AXIS] = e;
  6291. }
  6292. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  6293. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  6294. }
  6295. break;
  6296. /*!
  6297. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  6298. #### Usage
  6299. M206 [ X | Y | Z ]
  6300. #### Parameters
  6301. - `X` - X axis offset
  6302. - `Y` - Y axis offset
  6303. - `Z` - Z axis offset
  6304. */
  6305. case 206:
  6306. for(uint8_t i=0; i < 3; i++)
  6307. {
  6308. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6309. }
  6310. break;
  6311. #ifdef FWRETRACT
  6312. /*!
  6313. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6314. #### Usage
  6315. M207 [ S | F | Z ]
  6316. #### Parameters
  6317. - `S` - positive length to retract, in mm
  6318. - `F` - retraction feedrate, in mm/min
  6319. - `Z` - additional zlift/hop
  6320. */
  6321. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6322. {
  6323. if(code_seen('S'))
  6324. {
  6325. cs.retract_length = code_value() ;
  6326. }
  6327. if(code_seen('F'))
  6328. {
  6329. cs.retract_feedrate = code_value()/60 ;
  6330. }
  6331. if(code_seen('Z'))
  6332. {
  6333. cs.retract_zlift = code_value() ;
  6334. }
  6335. }break;
  6336. /*!
  6337. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6338. #### Usage
  6339. M208 [ S | F ]
  6340. #### Parameters
  6341. - `S` - positive length surplus to the M207 Snnn, in mm
  6342. - `F` - feedrate, in mm/sec
  6343. */
  6344. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6345. {
  6346. if(code_seen('S'))
  6347. {
  6348. cs.retract_recover_length = code_value() ;
  6349. }
  6350. if(code_seen('F'))
  6351. {
  6352. cs.retract_recover_feedrate = code_value()/60 ;
  6353. }
  6354. }break;
  6355. /*!
  6356. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6357. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6358. #### Usage
  6359. M209 [ S ]
  6360. #### Parameters
  6361. - `S` - 1=true or 0=false
  6362. */
  6363. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6364. {
  6365. if(code_seen('S'))
  6366. {
  6367. int t= code_value() ;
  6368. switch(t)
  6369. {
  6370. case 0:
  6371. {
  6372. cs.autoretract_enabled=false;
  6373. retracted[0]=false;
  6374. #if EXTRUDERS > 1
  6375. retracted[1]=false;
  6376. #endif
  6377. #if EXTRUDERS > 2
  6378. retracted[2]=false;
  6379. #endif
  6380. }break;
  6381. case 1:
  6382. {
  6383. cs.autoretract_enabled=true;
  6384. retracted[0]=false;
  6385. #if EXTRUDERS > 1
  6386. retracted[1]=false;
  6387. #endif
  6388. #if EXTRUDERS > 2
  6389. retracted[2]=false;
  6390. #endif
  6391. }break;
  6392. default:
  6393. SERIAL_ECHO_START;
  6394. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6395. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6396. SERIAL_ECHOLNPGM("\"(1)");
  6397. }
  6398. }
  6399. }break;
  6400. #endif // FWRETRACT
  6401. #if EXTRUDERS > 1
  6402. /*!
  6403. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6404. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6405. #### Usage
  6406. M218 [ X | Y ]
  6407. #### Parameters
  6408. - `X` - X offset
  6409. - `Y` - Y offset
  6410. */
  6411. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6412. {
  6413. uint8_t extruder;
  6414. if(setTargetedHotend(218, extruder)){
  6415. break;
  6416. }
  6417. if(code_seen('X'))
  6418. {
  6419. extruder_offset[X_AXIS][extruder] = code_value();
  6420. }
  6421. if(code_seen('Y'))
  6422. {
  6423. extruder_offset[Y_AXIS][extruder] = code_value();
  6424. }
  6425. SERIAL_ECHO_START;
  6426. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6427. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6428. {
  6429. SERIAL_ECHO(" ");
  6430. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6431. SERIAL_ECHO(",");
  6432. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6433. }
  6434. SERIAL_ECHOLN("");
  6435. }break;
  6436. #endif
  6437. /*!
  6438. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6439. #### Usage
  6440. M220 [ B | S | R ]
  6441. #### Parameters
  6442. - `B` - Backup current speed factor
  6443. - `S` - Speed factor override percentage (0..100 or higher)
  6444. - `R` - Restore previous speed factor
  6445. */
  6446. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6447. {
  6448. bool codesWereSeen = false;
  6449. if (code_seen('B')) //backup current speed factor
  6450. {
  6451. saved_feedmultiply_mm = feedmultiply;
  6452. codesWereSeen = true;
  6453. }
  6454. if (code_seen('S'))
  6455. {
  6456. feedmultiply = code_value();
  6457. codesWereSeen = true;
  6458. }
  6459. if (code_seen('R')) //restore previous feedmultiply
  6460. {
  6461. feedmultiply = saved_feedmultiply_mm;
  6462. codesWereSeen = true;
  6463. }
  6464. if (!codesWereSeen)
  6465. {
  6466. printf_P(PSTR("%i%%\n"), feedmultiply);
  6467. }
  6468. }
  6469. break;
  6470. /*!
  6471. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6472. #### Usage
  6473. M221 [ S | T ]
  6474. #### Parameters
  6475. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6476. - `T` - Extruder drive number (Prusa Firmware only), default 0 if not set.
  6477. */
  6478. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6479. {
  6480. if (code_seen('S'))
  6481. {
  6482. int tmp_code = code_value();
  6483. if (code_seen('T'))
  6484. {
  6485. uint8_t extruder;
  6486. if (setTargetedHotend(221, extruder))
  6487. break;
  6488. extruder_multiply[extruder] = tmp_code;
  6489. }
  6490. else
  6491. {
  6492. extrudemultiply = tmp_code ;
  6493. }
  6494. }
  6495. else
  6496. {
  6497. printf_P(PSTR("%i%%\n"), extrudemultiply);
  6498. }
  6499. calculate_extruder_multipliers();
  6500. }
  6501. break;
  6502. /*!
  6503. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6504. Wait until the specified pin reaches the state required
  6505. #### Usage
  6506. M226 [ P | S ]
  6507. #### Parameters
  6508. - `P` - pin number
  6509. - `S` - pin state
  6510. */
  6511. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6512. {
  6513. if(code_seen('P')){
  6514. int pin_number = code_value(); // pin number
  6515. int pin_state = -1; // required pin state - default is inverted
  6516. if(code_seen('S')) pin_state = code_value(); // required pin state
  6517. if(pin_state >= -1 && pin_state <= 1){
  6518. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  6519. {
  6520. if (sensitive_pins[i] == pin_number)
  6521. {
  6522. pin_number = -1;
  6523. break;
  6524. }
  6525. }
  6526. if (pin_number > -1)
  6527. {
  6528. int target = LOW;
  6529. st_synchronize();
  6530. pinMode(pin_number, INPUT);
  6531. switch(pin_state){
  6532. case 1:
  6533. target = HIGH;
  6534. break;
  6535. case 0:
  6536. target = LOW;
  6537. break;
  6538. case -1:
  6539. target = !digitalRead(pin_number);
  6540. break;
  6541. }
  6542. while(digitalRead(pin_number) != target){
  6543. manage_heater();
  6544. manage_inactivity();
  6545. lcd_update(0);
  6546. }
  6547. }
  6548. }
  6549. }
  6550. }
  6551. break;
  6552. #if NUM_SERVOS > 0
  6553. /*!
  6554. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6555. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6556. #### Usage
  6557. M280 [ P | S ]
  6558. #### Parameters
  6559. - `P` - Servo index (id)
  6560. - `S` - Target position
  6561. */
  6562. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6563. {
  6564. int servo_index = -1;
  6565. int servo_position = 0;
  6566. if (code_seen('P'))
  6567. servo_index = code_value();
  6568. if (code_seen('S')) {
  6569. servo_position = code_value();
  6570. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6571. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6572. servos[servo_index].attach(0);
  6573. #endif
  6574. servos[servo_index].write(servo_position);
  6575. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6576. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6577. servos[servo_index].detach();
  6578. #endif
  6579. }
  6580. else {
  6581. SERIAL_ECHO_START;
  6582. SERIAL_ECHO("Servo ");
  6583. SERIAL_ECHO(servo_index);
  6584. SERIAL_ECHOLN(" out of range");
  6585. }
  6586. }
  6587. else if (servo_index >= 0) {
  6588. SERIAL_PROTOCOL(MSG_OK);
  6589. SERIAL_PROTOCOL(" Servo ");
  6590. SERIAL_PROTOCOL(servo_index);
  6591. SERIAL_PROTOCOL(": ");
  6592. SERIAL_PROTOCOL(servos[servo_index].read());
  6593. SERIAL_PROTOCOLLN();
  6594. }
  6595. }
  6596. break;
  6597. #endif // NUM_SERVOS > 0
  6598. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6599. /*!
  6600. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6601. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6602. #### Usage
  6603. M300 [ S | P ]
  6604. #### Parameters
  6605. - `S` - frequency in Hz. Not all firmware versions support this parameter
  6606. - `P` - duration in milliseconds
  6607. */
  6608. case 300: // M300
  6609. {
  6610. int beepS = code_seen('S') ? code_value() : 110;
  6611. int beepP = code_seen('P') ? code_value() : 1000;
  6612. if (beepS > 0)
  6613. {
  6614. #if BEEPER > 0
  6615. Sound_MakeCustom(beepP,beepS,false);
  6616. #endif
  6617. }
  6618. else
  6619. {
  6620. _delay(beepP);
  6621. }
  6622. }
  6623. break;
  6624. #endif // M300
  6625. #ifdef PIDTEMP
  6626. /*!
  6627. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6628. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6629. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6630. #### Usage
  6631. M301 [ P | I | D | C ]
  6632. #### Parameters
  6633. - `P` - proportional (Kp)
  6634. - `I` - integral (Ki)
  6635. - `D` - derivative (Kd)
  6636. - `C` - heating power=Kc*(e_speed0)
  6637. */
  6638. case 301:
  6639. {
  6640. if(code_seen('P')) cs.Kp = code_value();
  6641. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6642. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6643. #ifdef PID_ADD_EXTRUSION_RATE
  6644. if(code_seen('C')) Kc = code_value();
  6645. #endif
  6646. updatePID();
  6647. SERIAL_PROTOCOLRPGM(MSG_OK);
  6648. SERIAL_PROTOCOL(" p:");
  6649. SERIAL_PROTOCOL(cs.Kp);
  6650. SERIAL_PROTOCOL(" i:");
  6651. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6652. SERIAL_PROTOCOL(" d:");
  6653. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6654. #ifdef PID_ADD_EXTRUSION_RATE
  6655. SERIAL_PROTOCOL(" c:");
  6656. //Kc does not have scaling applied above, or in resetting defaults
  6657. SERIAL_PROTOCOL(Kc);
  6658. #endif
  6659. SERIAL_PROTOCOLLN();
  6660. }
  6661. break;
  6662. #endif //PIDTEMP
  6663. #ifdef PIDTEMPBED
  6664. /*!
  6665. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6666. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6667. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6668. #### Usage
  6669. M304 [ P | I | D ]
  6670. #### Parameters
  6671. - `P` - proportional (Kp)
  6672. - `I` - integral (Ki)
  6673. - `D` - derivative (Kd)
  6674. */
  6675. case 304:
  6676. {
  6677. if(code_seen('P')) cs.bedKp = code_value();
  6678. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6679. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6680. updatePID();
  6681. SERIAL_PROTOCOLRPGM(MSG_OK);
  6682. SERIAL_PROTOCOL(" p:");
  6683. SERIAL_PROTOCOL(cs.bedKp);
  6684. SERIAL_PROTOCOL(" i:");
  6685. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6686. SERIAL_PROTOCOL(" d:");
  6687. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6688. SERIAL_PROTOCOLLN();
  6689. }
  6690. break;
  6691. #endif //PIDTEMP
  6692. /*!
  6693. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6694. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6695. You need to (re)define and assign `CHDK` or `PHOTOGRAPH_PIN` the correct pin number to be able to use the feature.
  6696. */
  6697. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6698. {
  6699. #ifdef CHDK
  6700. SET_OUTPUT(CHDK);
  6701. WRITE(CHDK, HIGH);
  6702. chdkHigh = _millis();
  6703. chdkActive = true;
  6704. #else
  6705. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6706. const uint8_t NUM_PULSES=16;
  6707. const float PULSE_LENGTH=0.01524;
  6708. for(int i=0; i < NUM_PULSES; i++) {
  6709. WRITE(PHOTOGRAPH_PIN, HIGH);
  6710. _delay_ms(PULSE_LENGTH);
  6711. WRITE(PHOTOGRAPH_PIN, LOW);
  6712. _delay_ms(PULSE_LENGTH);
  6713. }
  6714. _delay(7.33);
  6715. for(int i=0; i < NUM_PULSES; i++) {
  6716. WRITE(PHOTOGRAPH_PIN, HIGH);
  6717. _delay_ms(PULSE_LENGTH);
  6718. WRITE(PHOTOGRAPH_PIN, LOW);
  6719. _delay_ms(PULSE_LENGTH);
  6720. }
  6721. #endif
  6722. #endif //chdk end if
  6723. }
  6724. break;
  6725. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6726. /*!
  6727. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6728. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6729. #### Usage
  6730. M302 [ S ]
  6731. #### Parameters
  6732. - `S` - Cold extrude minimum temperature
  6733. */
  6734. case 302:
  6735. {
  6736. float temp = .0;
  6737. if (code_seen('S')) temp=code_value();
  6738. set_extrude_min_temp(temp);
  6739. }
  6740. break;
  6741. #endif
  6742. /*!
  6743. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6744. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed. Send the appropriate code and wait for the output to update the firmware values.
  6745. #### Usage
  6746. M303 [ E | S | C ]
  6747. #### Parameters
  6748. - `E` - Extruder, default `E0`. Use `E-1` to calibrate the bed PID
  6749. - `S` - Target temperature, default `210°C` for hotend, 70 for bed
  6750. - `C` - Cycles, default `5`
  6751. */
  6752. case 303:
  6753. {
  6754. float temp = 150.0;
  6755. int e=0;
  6756. int c=5;
  6757. if (code_seen('E')) e=code_value();
  6758. if (e<0)
  6759. temp=70;
  6760. if (code_seen('S')) temp=code_value();
  6761. if (code_seen('C')) c=code_value();
  6762. PID_autotune(temp, e, c);
  6763. }
  6764. break;
  6765. /*!
  6766. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6767. Finishes all current moves and and thus clears the buffer.
  6768. Equivalent to `G4` with no parameters.
  6769. */
  6770. case 400:
  6771. {
  6772. st_synchronize();
  6773. }
  6774. break;
  6775. /*!
  6776. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6777. Currently three different materials are needed (default, flex and PVA).
  6778. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6779. #### Usage
  6780. M403 [ E | F ]
  6781. #### Parameters
  6782. - `E` - Extruder number. 0-indexed.
  6783. - `F` - Filament type
  6784. */
  6785. case 403:
  6786. {
  6787. // currently three different materials are needed (default, flex and PVA)
  6788. // add storing this information for different load/unload profiles etc. in the future
  6789. // firmware does not wait for "ok" from mmu
  6790. if (mmu_enabled)
  6791. {
  6792. uint8_t extruder = 255;
  6793. uint8_t filament = FILAMENT_UNDEFINED;
  6794. if(code_seen('E')) extruder = code_value();
  6795. if(code_seen('F')) filament = code_value();
  6796. mmu_set_filament_type(extruder, filament);
  6797. }
  6798. }
  6799. break;
  6800. /*!
  6801. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6802. Save current parameters to EEPROM.
  6803. */
  6804. case 500:
  6805. {
  6806. Config_StoreSettings();
  6807. }
  6808. break;
  6809. /*!
  6810. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6811. Set the active parameters to those stored in the EEPROM. This is useful to revert parameters after experimenting with them.
  6812. */
  6813. case 501:
  6814. {
  6815. Config_RetrieveSettings();
  6816. }
  6817. break;
  6818. /*!
  6819. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6820. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed by M500 to write the default settings.
  6821. */
  6822. case 502:
  6823. {
  6824. Config_ResetDefault();
  6825. }
  6826. break;
  6827. /*!
  6828. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6829. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6830. */
  6831. case 503:
  6832. {
  6833. Config_PrintSettings();
  6834. }
  6835. break;
  6836. /*!
  6837. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6838. Resets the language to English.
  6839. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6840. */
  6841. case 509:
  6842. {
  6843. lang_reset();
  6844. SERIAL_ECHO_START;
  6845. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6846. }
  6847. break;
  6848. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6849. /*!
  6850. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6851. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6852. #### Usage
  6853. M540 [ S ]
  6854. #### Parameters
  6855. - `S` - disabled=0, enabled=1
  6856. */
  6857. case 540:
  6858. {
  6859. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6860. }
  6861. break;
  6862. #endif
  6863. /*!
  6864. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6865. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6866. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6867. #### Usage
  6868. M851 [ Z ]
  6869. #### Parameters
  6870. - `Z` - Z offset probe to nozzle.
  6871. */
  6872. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6873. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6874. {
  6875. float value;
  6876. if (code_seen('Z'))
  6877. {
  6878. value = code_value();
  6879. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6880. {
  6881. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6882. SERIAL_ECHO_START;
  6883. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6884. SERIAL_PROTOCOLLN();
  6885. }
  6886. else
  6887. {
  6888. SERIAL_ECHO_START;
  6889. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6890. SERIAL_ECHORPGM(MSG_Z_MIN);
  6891. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6892. SERIAL_ECHORPGM(MSG_Z_MAX);
  6893. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6894. SERIAL_PROTOCOLLN();
  6895. }
  6896. }
  6897. else
  6898. {
  6899. SERIAL_ECHO_START;
  6900. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6901. SERIAL_ECHO(-cs.zprobe_zoffset);
  6902. SERIAL_PROTOCOLLN();
  6903. }
  6904. break;
  6905. }
  6906. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6907. /*!
  6908. ### M552 - Set IP address <a href="https://reprap.org/wiki/G-code#M552:_Set_IP_address.2C_enable.2Fdisable_network_interface">M552: Set IP address, enable/disable network interface"</a>
  6909. Sets the printer IP address that is shown in the support menu. Designed to be used with the help of host software.
  6910. If P is not specified nothing happens.
  6911. If the structure of the IP address is invalid, 0.0.0.0 is assumed and nothing is shown on the screen in the Support menu.
  6912. #### Usage
  6913. M552 [ P<IP_address> ]
  6914. #### Parameters
  6915. - `P` - The IP address in xxx.xxx.xxx.xxx format. Eg: P192.168.1.14
  6916. */
  6917. case 552:
  6918. {
  6919. if (code_seen('P'))
  6920. {
  6921. uint8_t valCnt = 0;
  6922. IP_address = 0;
  6923. do
  6924. {
  6925. *strchr_pointer = '*';
  6926. ((uint8_t*)&IP_address)[valCnt] = code_value_short();
  6927. valCnt++;
  6928. } while ((valCnt < 4) && code_seen('.'));
  6929. if (valCnt != 4)
  6930. IP_address = 0;
  6931. }
  6932. } break;
  6933. #ifdef FILAMENTCHANGEENABLE
  6934. /*!
  6935. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  6936. Initiates Filament change, it is also used during Filament Runout Sensor process.
  6937. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  6938. #### Usage
  6939. M600 [ X | Y | Z | E | L | AUTO ]
  6940. - `X` - X position, default 211
  6941. - `Y` - Y position, default 0
  6942. - `Z` - relative lift Z, default 2.
  6943. - `E` - initial retract, default -2
  6944. - `L` - later retract distance for removal, default -80
  6945. - `AUTO` - Automatically (only with MMU)
  6946. */
  6947. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6948. {
  6949. st_synchronize();
  6950. float x_position = current_position[X_AXIS];
  6951. float y_position = current_position[Y_AXIS];
  6952. float z_shift = 0; // is it necessary to be a float?
  6953. float e_shift_init = 0;
  6954. float e_shift_late = 0;
  6955. bool automatic = false;
  6956. //Retract extruder
  6957. if(code_seen('E'))
  6958. {
  6959. e_shift_init = code_value();
  6960. }
  6961. else
  6962. {
  6963. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6964. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6965. #endif
  6966. }
  6967. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6968. if (code_seen('L'))
  6969. {
  6970. e_shift_late = code_value();
  6971. }
  6972. else
  6973. {
  6974. #ifdef FILAMENTCHANGE_FINALRETRACT
  6975. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6976. #endif
  6977. }
  6978. //Lift Z
  6979. if(code_seen('Z'))
  6980. {
  6981. z_shift = code_value();
  6982. }
  6983. else
  6984. {
  6985. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6986. }
  6987. //Move XY to side
  6988. if(code_seen('X'))
  6989. {
  6990. x_position = code_value();
  6991. }
  6992. else
  6993. {
  6994. #ifdef FILAMENTCHANGE_XPOS
  6995. x_position = FILAMENTCHANGE_XPOS;
  6996. #endif
  6997. }
  6998. if(code_seen('Y'))
  6999. {
  7000. y_position = code_value();
  7001. }
  7002. else
  7003. {
  7004. #ifdef FILAMENTCHANGE_YPOS
  7005. y_position = FILAMENTCHANGE_YPOS ;
  7006. #endif
  7007. }
  7008. if (mmu_enabled && code_seen_P(PSTR("AUTO")))
  7009. automatic = true;
  7010. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  7011. }
  7012. break;
  7013. #endif //FILAMENTCHANGEENABLE
  7014. /*!
  7015. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  7016. */
  7017. /*!
  7018. ### M125 - Pause print (TODO: not implemented)
  7019. */
  7020. /*!
  7021. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  7022. */
  7023. case 25:
  7024. case 601:
  7025. {
  7026. if (!isPrintPaused) {
  7027. st_synchronize();
  7028. ClearToSend(); //send OK even before the command finishes executing because we want to make sure it is not skipped because of cmdqueue_pop_front();
  7029. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  7030. lcd_pause_print();
  7031. }
  7032. }
  7033. break;
  7034. /*!
  7035. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  7036. */
  7037. case 602: {
  7038. if (isPrintPaused)
  7039. lcd_resume_print();
  7040. }
  7041. break;
  7042. /*!
  7043. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  7044. */
  7045. case 603: {
  7046. lcd_print_stop();
  7047. }
  7048. break;
  7049. #ifdef PINDA_THERMISTOR
  7050. /*!
  7051. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  7052. Wait for PINDA thermistor to reach target temperature
  7053. #### Usage
  7054. M860 [ S ]
  7055. #### Parameters
  7056. - `S` - Target temperature
  7057. */
  7058. case 860:
  7059. {
  7060. int set_target_pinda = 0;
  7061. if (code_seen('S')) {
  7062. set_target_pinda = code_value();
  7063. }
  7064. else {
  7065. break;
  7066. }
  7067. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  7068. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  7069. SERIAL_PROTOCOL(set_target_pinda);
  7070. SERIAL_PROTOCOLLN();
  7071. codenum = _millis();
  7072. cancel_heatup = false;
  7073. bool is_pinda_cooling = false;
  7074. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  7075. is_pinda_cooling = true;
  7076. }
  7077. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  7078. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  7079. {
  7080. SERIAL_PROTOCOLPGM("P:");
  7081. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  7082. SERIAL_PROTOCOL('/');
  7083. SERIAL_PROTOCOLLN(set_target_pinda);
  7084. codenum = _millis();
  7085. }
  7086. manage_heater();
  7087. manage_inactivity();
  7088. lcd_update(0);
  7089. }
  7090. LCD_MESSAGERPGM(MSG_OK);
  7091. break;
  7092. }
  7093. /*!
  7094. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  7095. Set compensation ustep value `S` for compensation table index `I`.
  7096. #### Usage
  7097. M861 [ ? | ! | Z | S | I ]
  7098. #### Parameters
  7099. - `?` - Print current EEPROM offset values
  7100. - `!` - Set factory default values
  7101. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  7102. - `S` - Microsteps
  7103. - `I` - Table index
  7104. */
  7105. case 861:
  7106. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  7107. uint8_t cal_status = calibration_status_pinda();
  7108. int16_t usteps = 0;
  7109. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  7110. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  7111. for (uint8_t i = 0; i < 6; i++)
  7112. {
  7113. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  7114. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  7115. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  7116. SERIAL_PROTOCOLPGM(", ");
  7117. SERIAL_PROTOCOL(35 + (i * 5));
  7118. SERIAL_PROTOCOLPGM(", ");
  7119. SERIAL_PROTOCOL(usteps);
  7120. SERIAL_PROTOCOLPGM(", ");
  7121. SERIAL_PROTOCOL(mm * 1000);
  7122. SERIAL_PROTOCOLLN();
  7123. }
  7124. }
  7125. else if (code_seen('!')) { // ! - Set factory default values
  7126. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  7127. int16_t z_shift = 8; //40C - 20um - 8usteps
  7128. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  7129. z_shift = 24; //45C - 60um - 24usteps
  7130. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  7131. z_shift = 48; //50C - 120um - 48usteps
  7132. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  7133. z_shift = 80; //55C - 200um - 80usteps
  7134. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  7135. z_shift = 120; //60C - 300um - 120usteps
  7136. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  7137. SERIAL_PROTOCOLLN("factory restored");
  7138. }
  7139. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  7140. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  7141. int16_t z_shift = 0;
  7142. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  7143. SERIAL_PROTOCOLLN("zerorized");
  7144. }
  7145. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  7146. int16_t usteps = code_value();
  7147. if (code_seen('I')) {
  7148. uint8_t index = code_value();
  7149. if (index < 5) {
  7150. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  7151. SERIAL_PROTOCOLLN("OK");
  7152. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  7153. for (uint8_t i = 0; i < 6; i++)
  7154. {
  7155. usteps = 0;
  7156. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  7157. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  7158. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  7159. SERIAL_PROTOCOLPGM(", ");
  7160. SERIAL_PROTOCOL(35 + (i * 5));
  7161. SERIAL_PROTOCOLPGM(", ");
  7162. SERIAL_PROTOCOL(usteps);
  7163. SERIAL_PROTOCOLPGM(", ");
  7164. SERIAL_PROTOCOL(mm * 1000);
  7165. SERIAL_PROTOCOLLN();
  7166. }
  7167. }
  7168. }
  7169. }
  7170. else {
  7171. SERIAL_PROTOCOLPGM("no valid command");
  7172. }
  7173. break;
  7174. #endif //PINDA_THERMISTOR
  7175. /*!
  7176. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  7177. Checks the parameters of the printer and gcode and performs compatibility check
  7178. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  7179. - M862.2 { P<model_code> | Q }
  7180. - M862.3 { P"<model_name>" | Q }
  7181. - M862.4 { P<fw_version> | Q }
  7182. - M862.5 { P<gcode_level> | Q }
  7183. When run with P<> argument, the check is performed against the input value.
  7184. When run with Q argument, the current value is shown.
  7185. M862.3 accepts text identifiers of printer types too.
  7186. The syntax of M862.3 is (note the quotes around the type):
  7187. M862.3 P "MK3S"
  7188. Accepted printer type identifiers and their numeric counterparts:
  7189. - MK1 (100)
  7190. - MK2 (200)
  7191. - MK2MM (201)
  7192. - MK2S (202)
  7193. - MK2SMM (203)
  7194. - MK2.5 (250)
  7195. - MK2.5MMU2 (20250)
  7196. - MK2.5S (252)
  7197. - MK2.5SMMU2S (20252)
  7198. - MK3 (300)
  7199. - MK3MMU2 (20300)
  7200. - MK3S (302)
  7201. - MK3SMMU2S (20302)
  7202. */
  7203. case 862: // M862: print checking
  7204. float nDummy;
  7205. uint8_t nCommand;
  7206. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  7207. switch((ClPrintChecking)nCommand)
  7208. {
  7209. case ClPrintChecking::_Nozzle: // ~ .1
  7210. uint16_t nDiameter;
  7211. if(code_seen('P'))
  7212. {
  7213. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7214. nozzle_diameter_check(nDiameter);
  7215. }
  7216. /*
  7217. else if(code_seen('S')&&farm_mode)
  7218. {
  7219. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  7220. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  7221. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  7222. }
  7223. */
  7224. else if(code_seen('Q'))
  7225. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  7226. break;
  7227. case ClPrintChecking::_Model: // ~ .2
  7228. if(code_seen('P'))
  7229. {
  7230. uint16_t nPrinterModel;
  7231. nPrinterModel=(uint16_t)code_value_long();
  7232. printer_model_check(nPrinterModel);
  7233. }
  7234. else if(code_seen('Q'))
  7235. SERIAL_PROTOCOLLN(nPrinterType);
  7236. break;
  7237. case ClPrintChecking::_Smodel: // ~ .3
  7238. if(code_seen('P'))
  7239. printer_smodel_check(strchr_pointer);
  7240. else if(code_seen('Q'))
  7241. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  7242. break;
  7243. case ClPrintChecking::_Version: // ~ .4
  7244. if(code_seen('P'))
  7245. fw_version_check(++strchr_pointer);
  7246. else if(code_seen('Q'))
  7247. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  7248. break;
  7249. case ClPrintChecking::_Gcode: // ~ .5
  7250. if(code_seen('P'))
  7251. {
  7252. uint16_t nGcodeLevel;
  7253. nGcodeLevel=(uint16_t)code_value_long();
  7254. gcode_level_check(nGcodeLevel);
  7255. }
  7256. else if(code_seen('Q'))
  7257. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  7258. break;
  7259. }
  7260. break;
  7261. #ifdef LIN_ADVANCE
  7262. /*!
  7263. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  7264. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  7265. #### Usage
  7266. M900 [ K | R | W | H | D]
  7267. #### Parameters
  7268. - `K` - Advance K factor
  7269. - `R` - Set ratio directly (overrides WH/D)
  7270. - `W` - Width
  7271. - `H` - Height
  7272. - `D` - Diameter Set ratio from WH/D
  7273. */
  7274. case 900:
  7275. gcode_M900();
  7276. break;
  7277. #endif
  7278. /*!
  7279. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  7280. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  7281. #### Usage
  7282. M907 [ X | Y | Z | E | B | S ]
  7283. #### Parameters
  7284. - `X` - X motor driver
  7285. - `Y` - Y motor driver
  7286. - `Z` - Z motor driver
  7287. - `E` - Extruder motor driver
  7288. - `B` - Second Extruder motor driver
  7289. - `S` - All motors
  7290. */
  7291. case 907:
  7292. {
  7293. #ifdef TMC2130
  7294. // See tmc2130_cur2val() for translation to 0 .. 63 range
  7295. for (int i = 0; i < NUM_AXIS; i++)
  7296. if(code_seen(axis_codes[i]))
  7297. {
  7298. long cur_mA = code_value_long();
  7299. uint8_t val = tmc2130_cur2val(cur_mA);
  7300. tmc2130_set_current_h(i, val);
  7301. tmc2130_set_current_r(i, val);
  7302. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  7303. }
  7304. #else //TMC2130
  7305. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7306. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  7307. if(code_seen('B')) st_current_set(4,code_value());
  7308. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  7309. #endif
  7310. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  7311. if(code_seen('X')) st_current_set(0, code_value());
  7312. #endif
  7313. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  7314. if(code_seen('Z')) st_current_set(1, code_value());
  7315. #endif
  7316. #ifdef MOTOR_CURRENT_PWM_E_PIN
  7317. if(code_seen('E')) st_current_set(2, code_value());
  7318. #endif
  7319. #endif //TMC2130
  7320. }
  7321. break;
  7322. /*!
  7323. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  7324. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. Not usable on Prusa printers.
  7325. #### Usage
  7326. M908 [ P | S ]
  7327. #### Parameters
  7328. - `P` - channel
  7329. - `S` - current
  7330. */
  7331. case 908:
  7332. {
  7333. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  7334. uint8_t channel,current;
  7335. if(code_seen('P')) channel=code_value();
  7336. if(code_seen('S')) current=code_value();
  7337. digitalPotWrite(channel, current);
  7338. #endif
  7339. }
  7340. break;
  7341. #ifdef TMC2130_SERVICE_CODES_M910_M918
  7342. /*!
  7343. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  7344. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7345. */
  7346. case 910:
  7347. {
  7348. tmc2130_init();
  7349. }
  7350. break;
  7351. /*!
  7352. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  7353. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7354. #### Usage
  7355. M911 [ X | Y | Z | E ]
  7356. #### Parameters
  7357. - `X` - X stepper driver holding current value
  7358. - `Y` - Y stepper driver holding current value
  7359. - `Z` - Z stepper driver holding current value
  7360. - `E` - Extruder stepper driver holding current value
  7361. */
  7362. case 911:
  7363. {
  7364. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  7365. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  7366. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  7367. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  7368. }
  7369. break;
  7370. /*!
  7371. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7372. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7373. #### Usage
  7374. M912 [ X | Y | Z | E ]
  7375. #### Parameters
  7376. - `X` - X stepper driver running current value
  7377. - `Y` - Y stepper driver running current value
  7378. - `Z` - Z stepper driver running current value
  7379. - `E` - Extruder stepper driver running current value
  7380. */
  7381. case 912:
  7382. {
  7383. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7384. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7385. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7386. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7387. }
  7388. break;
  7389. /*!
  7390. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7391. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7392. Shows TMC2130 currents.
  7393. */
  7394. case 913:
  7395. {
  7396. tmc2130_print_currents();
  7397. }
  7398. break;
  7399. /*!
  7400. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7401. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7402. */
  7403. case 914:
  7404. {
  7405. tmc2130_mode = TMC2130_MODE_NORMAL;
  7406. update_mode_profile();
  7407. tmc2130_init();
  7408. }
  7409. break;
  7410. /*!
  7411. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7412. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7413. */
  7414. case 915:
  7415. {
  7416. tmc2130_mode = TMC2130_MODE_SILENT;
  7417. update_mode_profile();
  7418. tmc2130_init();
  7419. }
  7420. break;
  7421. /*!
  7422. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7423. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7424. #### Usage
  7425. M916 [ X | Y | Z | E ]
  7426. #### Parameters
  7427. - `X` - X stepper driver stallguard sensitivity threshold value
  7428. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7429. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7430. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7431. */
  7432. case 916:
  7433. {
  7434. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7435. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7436. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7437. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7438. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7439. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7440. }
  7441. break;
  7442. /*!
  7443. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7444. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7445. #### Usage
  7446. M917 [ X | Y | Z | E ]
  7447. #### Parameters
  7448. - `X` - X stepper driver PWM amplitude offset value
  7449. - `Y` - Y stepper driver PWM amplitude offset value
  7450. - `Z` - Z stepper driver PWM amplitude offset value
  7451. - `E` - Extruder stepper driver PWM amplitude offset value
  7452. */
  7453. case 917:
  7454. {
  7455. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7456. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7457. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7458. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7459. }
  7460. break;
  7461. /*!
  7462. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7463. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7464. #### Usage
  7465. M918 [ X | Y | Z | E ]
  7466. #### Parameters
  7467. - `X` - X stepper driver PWM amplitude gradient value
  7468. - `Y` - Y stepper driver PWM amplitude gradient value
  7469. - `Z` - Z stepper driver PWM amplitude gradient value
  7470. - `E` - Extruder stepper driver PWM amplitude gradient value
  7471. */
  7472. case 918:
  7473. {
  7474. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7475. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7476. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7477. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7478. }
  7479. break;
  7480. #endif //TMC2130_SERVICE_CODES_M910_M918
  7481. /*!
  7482. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7483. Printers with TMC2130 drivers have `X`, `Y`, `Z` and `E` as options. The steps-per-unit value is updated accordingly. Not all resolutions are valid!
  7484. Printers without TMC2130 drivers also have `B` and `S` options. In this case, the steps-per-unit value in not changed!
  7485. #### Usage
  7486. M350 [ X | Y | Z | E | B | S ]
  7487. #### Parameters
  7488. - `X` - X new resolution
  7489. - `Y` - Y new resolution
  7490. - `Z` - Z new resolution
  7491. - `E` - E new resolution
  7492. Only valid for MK2.5(S) or printers without TMC2130 drivers
  7493. - `B` - Second extruder new resolution
  7494. - `S` - All axes new resolution
  7495. */
  7496. case 350:
  7497. {
  7498. #ifdef TMC2130
  7499. for (int i=0; i<NUM_AXIS; i++)
  7500. {
  7501. if(code_seen(axis_codes[i]))
  7502. {
  7503. uint16_t res_new = code_value();
  7504. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7505. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7506. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7507. if (res_valid)
  7508. {
  7509. st_synchronize();
  7510. uint16_t res = tmc2130_get_res(i);
  7511. tmc2130_set_res(i, res_new);
  7512. cs.axis_ustep_resolution[i] = res_new;
  7513. if (res_new > res)
  7514. {
  7515. uint16_t fac = (res_new / res);
  7516. cs.axis_steps_per_unit[i] *= fac;
  7517. position[i] *= fac;
  7518. }
  7519. else
  7520. {
  7521. uint16_t fac = (res / res_new);
  7522. cs.axis_steps_per_unit[i] /= fac;
  7523. position[i] /= fac;
  7524. }
  7525. #if defined(FILAMENT_SENSOR) && defined(PAT9125)
  7526. if (i == E_AXIS)
  7527. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[i]);
  7528. #endif
  7529. }
  7530. }
  7531. }
  7532. #else //TMC2130
  7533. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7534. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7535. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7536. if(code_seen('B')) microstep_mode(4,code_value());
  7537. microstep_readings();
  7538. #endif
  7539. #endif //TMC2130
  7540. }
  7541. break;
  7542. /*!
  7543. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7544. Toggle MS1 MS2 pins directly.
  7545. #### Usage
  7546. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7547. #### Parameters
  7548. - `X` - Update X axis
  7549. - `Y` - Update Y axis
  7550. - `Z` - Update Z axis
  7551. - `E` - Update E axis
  7552. - `S` - which MSx pin to toggle
  7553. - `B` - new pin value
  7554. */
  7555. case 351:
  7556. {
  7557. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7558. if(code_seen('S')) switch((int)code_value())
  7559. {
  7560. case 1:
  7561. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7562. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7563. break;
  7564. case 2:
  7565. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7566. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7567. break;
  7568. }
  7569. microstep_readings();
  7570. #endif
  7571. }
  7572. break;
  7573. /*!
  7574. ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7575. */
  7576. case 701:
  7577. {
  7578. if (mmu_enabled && code_seen('E'))
  7579. tmp_extruder = code_value();
  7580. gcode_M701();
  7581. }
  7582. break;
  7583. /*!
  7584. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7585. #### Usage
  7586. M702 [ U | C ]
  7587. #### Parameters
  7588. - `U` - Unload all filaments used in current print
  7589. - `C` - Unload just current filament
  7590. - without any parameters unload all filaments
  7591. */
  7592. case 702:
  7593. {
  7594. #ifdef SNMM
  7595. if (code_seen('U'))
  7596. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  7597. else if (code_seen('C'))
  7598. extr_unload(); //! if "C" unload just current filament
  7599. else
  7600. extr_unload_all(); //! otherwise unload all filaments
  7601. #else
  7602. if (code_seen('C')) {
  7603. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  7604. }
  7605. else {
  7606. if(mmu_enabled) extr_unload(); //! unload current filament
  7607. else unload_filament();
  7608. }
  7609. #endif //SNMM
  7610. }
  7611. break;
  7612. /*!
  7613. ### M999 - Restart after being stopped <a href="https://reprap.org/wiki/G-code#M999:_Restart_after_being_stopped_by_error">M999: Restart after being stopped by error</a>
  7614. @todo Usually doesn't work. Should be fixed or removed. Most of the time, if `Stopped` it set, the print fails and is unrecoverable.
  7615. */
  7616. case 999:
  7617. Stopped = false;
  7618. lcd_reset_alert_level();
  7619. gcode_LastN = Stopped_gcode_LastN;
  7620. FlushSerialRequestResend();
  7621. break;
  7622. /*!
  7623. #### End of M-Commands
  7624. */
  7625. default:
  7626. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  7627. }
  7628. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7629. mcode_in_progress = 0;
  7630. }
  7631. }
  7632. // end if(code_seen('M')) (end of M codes)
  7633. /*!
  7634. -----------------------------------------------------------------------------------------
  7635. # T Codes
  7636. T<extruder nr.> - select extruder in case of multi extruder printer. select filament in case of MMU_V2.
  7637. #### For MMU_V2:
  7638. T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7639. @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7640. @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7641. @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7642. */
  7643. else if(code_seen('T'))
  7644. {
  7645. static const char duplicate_Tcode_ignored[] PROGMEM = "Duplicate T-code ignored.";
  7646. int index;
  7647. bool load_to_nozzle = false;
  7648. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  7649. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  7650. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  7651. SERIAL_ECHOLNPGM("Invalid T code.");
  7652. }
  7653. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  7654. if (mmu_enabled)
  7655. {
  7656. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7657. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7658. {
  7659. puts_P(duplicate_Tcode_ignored);
  7660. }
  7661. else
  7662. {
  7663. st_synchronize();
  7664. mmu_command(MmuCmd::T0 + tmp_extruder);
  7665. manage_response(true, true, MMU_TCODE_MOVE);
  7666. }
  7667. }
  7668. }
  7669. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  7670. if (mmu_enabled)
  7671. {
  7672. st_synchronize();
  7673. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7674. mmu_extruder = tmp_extruder; //filament change is finished
  7675. mmu_load_to_nozzle();
  7676. }
  7677. }
  7678. else {
  7679. if (*(strchr_pointer + index) == '?')
  7680. {
  7681. if(mmu_enabled)
  7682. {
  7683. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7684. load_to_nozzle = true;
  7685. } else
  7686. {
  7687. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  7688. }
  7689. }
  7690. else {
  7691. tmp_extruder = code_value();
  7692. if (mmu_enabled && lcd_autoDepleteEnabled())
  7693. {
  7694. tmp_extruder = ad_getAlternative(tmp_extruder);
  7695. }
  7696. }
  7697. st_synchronize();
  7698. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7699. if (mmu_enabled)
  7700. {
  7701. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7702. {
  7703. puts_P(duplicate_Tcode_ignored);
  7704. }
  7705. else
  7706. {
  7707. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7708. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  7709. {
  7710. mmu_command(MmuCmd::K0 + tmp_extruder);
  7711. manage_response(true, true, MMU_UNLOAD_MOVE);
  7712. }
  7713. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7714. mmu_command(MmuCmd::T0 + tmp_extruder);
  7715. manage_response(true, true, MMU_TCODE_MOVE);
  7716. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7717. mmu_extruder = tmp_extruder; //filament change is finished
  7718. if (load_to_nozzle)// for single material usage with mmu
  7719. {
  7720. mmu_load_to_nozzle();
  7721. }
  7722. }
  7723. }
  7724. else
  7725. {
  7726. #ifdef SNMM
  7727. mmu_extruder = tmp_extruder;
  7728. _delay(100);
  7729. disable_e0();
  7730. disable_e1();
  7731. disable_e2();
  7732. pinMode(E_MUX0_PIN, OUTPUT);
  7733. pinMode(E_MUX1_PIN, OUTPUT);
  7734. _delay(100);
  7735. SERIAL_ECHO_START;
  7736. SERIAL_ECHO("T:");
  7737. SERIAL_ECHOLN((int)tmp_extruder);
  7738. switch (tmp_extruder) {
  7739. case 1:
  7740. WRITE(E_MUX0_PIN, HIGH);
  7741. WRITE(E_MUX1_PIN, LOW);
  7742. break;
  7743. case 2:
  7744. WRITE(E_MUX0_PIN, LOW);
  7745. WRITE(E_MUX1_PIN, HIGH);
  7746. break;
  7747. case 3:
  7748. WRITE(E_MUX0_PIN, HIGH);
  7749. WRITE(E_MUX1_PIN, HIGH);
  7750. break;
  7751. default:
  7752. WRITE(E_MUX0_PIN, LOW);
  7753. WRITE(E_MUX1_PIN, LOW);
  7754. break;
  7755. }
  7756. _delay(100);
  7757. #else //SNMM
  7758. if (tmp_extruder >= EXTRUDERS) {
  7759. SERIAL_ECHO_START;
  7760. SERIAL_ECHO('T');
  7761. SERIAL_PROTOCOLLN((int)tmp_extruder);
  7762. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  7763. }
  7764. else {
  7765. #if EXTRUDERS > 1
  7766. boolean make_move = false;
  7767. #endif
  7768. if (code_seen('F')) {
  7769. #if EXTRUDERS > 1
  7770. make_move = true;
  7771. #endif
  7772. next_feedrate = code_value();
  7773. if (next_feedrate > 0.0) {
  7774. feedrate = next_feedrate;
  7775. }
  7776. }
  7777. #if EXTRUDERS > 1
  7778. if (tmp_extruder != active_extruder) {
  7779. // Save current position to return to after applying extruder offset
  7780. memcpy(destination, current_position, sizeof(destination));
  7781. // Offset extruder (only by XY)
  7782. int i;
  7783. for (i = 0; i < 2; i++) {
  7784. current_position[i] = current_position[i] -
  7785. extruder_offset[i][active_extruder] +
  7786. extruder_offset[i][tmp_extruder];
  7787. }
  7788. // Set the new active extruder and position
  7789. active_extruder = tmp_extruder;
  7790. plan_set_position_curposXYZE();
  7791. // Move to the old position if 'F' was in the parameters
  7792. if (make_move && Stopped == false) {
  7793. prepare_move();
  7794. }
  7795. }
  7796. #endif
  7797. SERIAL_ECHO_START;
  7798. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  7799. SERIAL_PROTOCOLLN((int)active_extruder);
  7800. }
  7801. #endif //SNMM
  7802. }
  7803. }
  7804. } // end if(code_seen('T')) (end of T codes)
  7805. /*!
  7806. #### End of T-Codes
  7807. */
  7808. /**
  7809. *---------------------------------------------------------------------------------
  7810. *# D codes
  7811. */
  7812. else if (code_seen('D')) // D codes (debug)
  7813. {
  7814. switch((int)code_value())
  7815. {
  7816. /*!
  7817. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7818. */
  7819. case -1:
  7820. dcode__1(); break;
  7821. #ifdef DEBUG_DCODES
  7822. /*!
  7823. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7824. #### Usage
  7825. D0 [ B ]
  7826. #### Parameters
  7827. - `B` - Bootloader
  7828. */
  7829. case 0:
  7830. dcode_0(); break;
  7831. /*!
  7832. *
  7833. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7834. D1
  7835. *
  7836. */
  7837. case 1:
  7838. dcode_1(); break;
  7839. /*!
  7840. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7841. This command can be used without any additional parameters. It will read the entire RAM.
  7842. #### Usage
  7843. D2 [ A | C | X ]
  7844. #### Parameters
  7845. - `A` - Address (x0000-x1fff)
  7846. - `C` - Count (1-8192)
  7847. - `X` - Data
  7848. #### Notes
  7849. - The hex address needs to be lowercase without the 0 before the x
  7850. - Count is decimal
  7851. - The hex data needs to be lowercase
  7852. */
  7853. case 2:
  7854. dcode_2(); break;
  7855. #endif //DEBUG_DCODES
  7856. #if defined DEBUG_DCODE3 || defined DEBUG_DCODES
  7857. /*!
  7858. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7859. This command can be used without any additional parameters. It will read the entire eeprom.
  7860. #### Usage
  7861. D3 [ A | C | X ]
  7862. #### Parameters
  7863. - `A` - Address (x0000-x0fff)
  7864. - `C` - Count (1-4096)
  7865. - `X` - Data (hex)
  7866. #### Notes
  7867. - The hex address needs to be lowercase without the 0 before the x
  7868. - Count is decimal
  7869. - The hex data needs to be lowercase
  7870. */
  7871. case 3:
  7872. dcode_3(); break;
  7873. #endif //DEBUG_DCODE3
  7874. #ifdef DEBUG_DCODES
  7875. /*!
  7876. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  7877. To read the digital value of a pin you need only to define the pin number.
  7878. #### Usage
  7879. D4 [ P | F | V ]
  7880. #### Parameters
  7881. - `P` - Pin (0-255)
  7882. - `F` - Function in/out (0/1)
  7883. - `V` - Value (0/1)
  7884. */
  7885. case 4:
  7886. dcode_4(); break;
  7887. #endif //DEBUG_DCODES
  7888. #if defined DEBUG_DCODE5 || defined DEBUG_DCODES
  7889. /*!
  7890. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  7891. This command can be used without any additional parameters. It will read the 1kb FLASH.
  7892. #### Usage
  7893. D5 [ A | C | X | E ]
  7894. #### Parameters
  7895. - `A` - Address (x00000-x3ffff)
  7896. - `C` - Count (1-8192)
  7897. - `X` - Data (hex)
  7898. - `E` - Erase
  7899. #### Notes
  7900. - The hex address needs to be lowercase without the 0 before the x
  7901. - Count is decimal
  7902. - The hex data needs to be lowercase
  7903. */
  7904. case 5:
  7905. dcode_5(); break;
  7906. #endif //DEBUG_DCODE5
  7907. #ifdef DEBUG_DCODES
  7908. /*!
  7909. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  7910. Reserved
  7911. */
  7912. case 6:
  7913. dcode_6(); break;
  7914. /*!
  7915. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  7916. Reserved
  7917. */
  7918. case 7:
  7919. dcode_7(); break;
  7920. /*!
  7921. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  7922. #### Usage
  7923. D8 [ ? | ! | P | Z ]
  7924. #### Parameters
  7925. - `?` - Read PINDA temperature shift values
  7926. - `!` - Reset PINDA temperature shift values to default
  7927. - `P` - Pinda temperature [C]
  7928. - `Z` - Z Offset [mm]
  7929. */
  7930. case 8:
  7931. dcode_8(); break;
  7932. /*!
  7933. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  7934. #### Usage
  7935. D9 [ I | V ]
  7936. #### Parameters
  7937. - `I` - ADC channel index
  7938. - `0` - Heater 0 temperature
  7939. - `1` - Heater 1 temperature
  7940. - `2` - Bed temperature
  7941. - `3` - PINDA temperature
  7942. - `4` - PWR voltage
  7943. - `5` - Ambient temperature
  7944. - `6` - BED voltage
  7945. - `V` Value to be written as simulated
  7946. */
  7947. case 9:
  7948. dcode_9(); break;
  7949. /*!
  7950. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  7951. */
  7952. case 10:
  7953. dcode_10(); break;
  7954. /*!
  7955. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  7956. Writes the current time in the log file.
  7957. */
  7958. #endif //DEBUG_DCODES
  7959. #ifdef HEATBED_ANALYSIS
  7960. /*!
  7961. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  7962. This command will log data to SD card file "mesh.txt".
  7963. #### Usage
  7964. D80 [ E | F | G | H | I | J ]
  7965. #### Parameters
  7966. - `E` - Dimension X (default 40)
  7967. - `F` - Dimention Y (default 40)
  7968. - `G` - Points X (default 40)
  7969. - `H` - Points Y (default 40)
  7970. - `I` - Offset X (default 74)
  7971. - `J` - Offset Y (default 34)
  7972. */
  7973. case 80:
  7974. dcode_80(); break;
  7975. /*!
  7976. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  7977. This command will log data to SD card file "wldsd.txt".
  7978. #### Usage
  7979. D81 [ E | F | G | H | I | J ]
  7980. #### Parameters
  7981. - `E` - Dimension X (default 40)
  7982. - `F` - Dimention Y (default 40)
  7983. - `G` - Points X (default 40)
  7984. - `H` - Points Y (default 40)
  7985. - `I` - Offset X (default 74)
  7986. - `J` - Offset Y (default 34)
  7987. */
  7988. case 81:
  7989. dcode_81(); break;
  7990. #endif //HEATBED_ANALYSIS
  7991. #ifdef DEBUG_DCODES
  7992. /*!
  7993. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  7994. */
  7995. case 106:
  7996. dcode_106(); break;
  7997. #ifdef TMC2130
  7998. /*!
  7999. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  8000. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  8001. #### Usage
  8002. D2130 [ Axis | Command | Subcommand | Value ]
  8003. #### Parameters
  8004. - Axis
  8005. - `X` - X stepper driver
  8006. - `Y` - Y stepper driver
  8007. - `Z` - Z stepper driver
  8008. - `E` - Extruder stepper driver
  8009. - Commands
  8010. - `0` - Current off
  8011. - `1` - Current on
  8012. - `+` - Single step
  8013. - `-` - Single step oposite direction
  8014. - `NNN` - Value sereval steps
  8015. - `?` - Read register
  8016. - Subcommands for read register
  8017. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  8018. - `step` - Step
  8019. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  8020. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  8021. - `wave` - Microstep linearity compensation curve
  8022. - `!` - Set register
  8023. - Subcommands for set register
  8024. - `mres` - Micro step resolution
  8025. - `step` - Step
  8026. - `wave` - Microstep linearity compensation curve
  8027. - Values for set register
  8028. - `0, 180 --> 250` - Off
  8029. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  8030. - `@` - Home calibrate axis
  8031. Examples:
  8032. D2130E?wave
  8033. Print extruder microstep linearity compensation curve
  8034. D2130E!wave0
  8035. Disable extruder linearity compensation curve, (sine curve is used)
  8036. D2130E!wave220
  8037. (sin(x))^1.1 extruder microstep compensation curve used
  8038. Notes:
  8039. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  8040. *
  8041. */
  8042. case 2130:
  8043. dcode_2130(); break;
  8044. #endif //TMC2130
  8045. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  8046. /*!
  8047. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  8048. #### Usage
  8049. D9125 [ ? | ! | R | X | Y | L ]
  8050. #### Parameters
  8051. - `?` - Print values
  8052. - `!` - Print values
  8053. - `R` - Resolution. Not active in code
  8054. - `X` - X values
  8055. - `Y` - Y values
  8056. - `L` - Activate filament sensor log
  8057. */
  8058. case 9125:
  8059. dcode_9125(); break;
  8060. #endif //FILAMENT_SENSOR
  8061. #endif //DEBUG_DCODES
  8062. }
  8063. }
  8064. else
  8065. {
  8066. SERIAL_ECHO_START;
  8067. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  8068. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  8069. SERIAL_ECHOLNPGM("\"(2)");
  8070. }
  8071. KEEPALIVE_STATE(NOT_BUSY);
  8072. ClearToSend();
  8073. }
  8074. /*!
  8075. #### End of D-Codes
  8076. */
  8077. /** @defgroup GCodes G-Code List
  8078. */
  8079. // ---------------------------------------------------
  8080. void FlushSerialRequestResend()
  8081. {
  8082. //char cmdbuffer[bufindr][100]="Resend:";
  8083. MYSERIAL.flush();
  8084. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  8085. }
  8086. // Confirm the execution of a command, if sent from a serial line.
  8087. // Execution of a command from a SD card will not be confirmed.
  8088. void ClearToSend()
  8089. {
  8090. previous_millis_cmd = _millis();
  8091. if (buflen && ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  8092. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  8093. }
  8094. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8095. void update_currents() {
  8096. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  8097. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  8098. float tmp_motor[3];
  8099. //SERIAL_ECHOLNPGM("Currents updated: ");
  8100. if (destination[Z_AXIS] < Z_SILENT) {
  8101. //SERIAL_ECHOLNPGM("LOW");
  8102. for (uint8_t i = 0; i < 3; i++) {
  8103. st_current_set(i, current_low[i]);
  8104. /*MYSERIAL.print(int(i));
  8105. SERIAL_ECHOPGM(": ");
  8106. MYSERIAL.println(current_low[i]);*/
  8107. }
  8108. }
  8109. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  8110. //SERIAL_ECHOLNPGM("HIGH");
  8111. for (uint8_t i = 0; i < 3; i++) {
  8112. st_current_set(i, current_high[i]);
  8113. /*MYSERIAL.print(int(i));
  8114. SERIAL_ECHOPGM(": ");
  8115. MYSERIAL.println(current_high[i]);*/
  8116. }
  8117. }
  8118. else {
  8119. for (uint8_t i = 0; i < 3; i++) {
  8120. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  8121. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  8122. st_current_set(i, tmp_motor[i]);
  8123. /*MYSERIAL.print(int(i));
  8124. SERIAL_ECHOPGM(": ");
  8125. MYSERIAL.println(tmp_motor[i]);*/
  8126. }
  8127. }
  8128. }
  8129. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8130. void get_coordinates()
  8131. {
  8132. bool seen[4]={false,false,false,false};
  8133. for(int8_t i=0; i < NUM_AXIS; i++) {
  8134. if(code_seen(axis_codes[i]))
  8135. {
  8136. bool relative = axis_relative_modes & (1 << i);
  8137. destination[i] = (float)code_value();
  8138. if (i == E_AXIS) {
  8139. float emult = extruder_multiplier[active_extruder];
  8140. if (emult != 1.) {
  8141. if (! relative) {
  8142. destination[i] -= current_position[i];
  8143. relative = true;
  8144. }
  8145. destination[i] *= emult;
  8146. }
  8147. }
  8148. if (relative)
  8149. destination[i] += current_position[i];
  8150. seen[i]=true;
  8151. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8152. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  8153. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  8154. }
  8155. else destination[i] = current_position[i]; //Are these else lines really needed?
  8156. }
  8157. if(code_seen('F')) {
  8158. next_feedrate = code_value();
  8159. #ifdef MAX_SILENT_FEEDRATE
  8160. if (tmc2130_mode == TMC2130_MODE_SILENT)
  8161. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  8162. #endif //MAX_SILENT_FEEDRATE
  8163. if(next_feedrate > 0.0) feedrate = next_feedrate;
  8164. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  8165. {
  8166. // float e_max_speed =
  8167. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  8168. }
  8169. }
  8170. }
  8171. void get_arc_coordinates()
  8172. {
  8173. #ifdef SF_ARC_FIX
  8174. bool relative_mode_backup = relative_mode;
  8175. relative_mode = true;
  8176. #endif
  8177. get_coordinates();
  8178. #ifdef SF_ARC_FIX
  8179. relative_mode=relative_mode_backup;
  8180. #endif
  8181. if(code_seen('I')) {
  8182. offset[0] = code_value();
  8183. }
  8184. else {
  8185. offset[0] = 0.0;
  8186. }
  8187. if(code_seen('J')) {
  8188. offset[1] = code_value();
  8189. }
  8190. else {
  8191. offset[1] = 0.0;
  8192. }
  8193. }
  8194. void clamp_to_software_endstops(float target[3])
  8195. {
  8196. #ifdef DEBUG_DISABLE_SWLIMITS
  8197. return;
  8198. #endif //DEBUG_DISABLE_SWLIMITS
  8199. world2machine_clamp(target[0], target[1]);
  8200. // Clamp the Z coordinate.
  8201. if (min_software_endstops) {
  8202. float negative_z_offset = 0;
  8203. #ifdef ENABLE_AUTO_BED_LEVELING
  8204. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  8205. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  8206. #endif
  8207. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  8208. }
  8209. if (max_software_endstops) {
  8210. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  8211. }
  8212. }
  8213. #ifdef MESH_BED_LEVELING
  8214. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  8215. float dx = x - current_position[X_AXIS];
  8216. float dy = y - current_position[Y_AXIS];
  8217. int n_segments = 0;
  8218. if (mbl.active) {
  8219. float len = abs(dx) + abs(dy);
  8220. if (len > 0)
  8221. // Split to 3cm segments or shorter.
  8222. n_segments = int(ceil(len / 30.f));
  8223. }
  8224. if (n_segments > 1) {
  8225. // In a multi-segment move explicitly set the final target in the plan
  8226. // as the move will be recalculated in it's entirety
  8227. float gcode_target[NUM_AXIS];
  8228. gcode_target[X_AXIS] = x;
  8229. gcode_target[Y_AXIS] = y;
  8230. gcode_target[Z_AXIS] = z;
  8231. gcode_target[E_AXIS] = e;
  8232. float dz = z - current_position[Z_AXIS];
  8233. float de = e - current_position[E_AXIS];
  8234. for (int i = 1; i < n_segments; ++ i) {
  8235. float t = float(i) / float(n_segments);
  8236. plan_buffer_line(current_position[X_AXIS] + t * dx,
  8237. current_position[Y_AXIS] + t * dy,
  8238. current_position[Z_AXIS] + t * dz,
  8239. current_position[E_AXIS] + t * de,
  8240. feed_rate, extruder, gcode_target);
  8241. if (waiting_inside_plan_buffer_line_print_aborted)
  8242. return;
  8243. }
  8244. }
  8245. // The rest of the path.
  8246. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  8247. }
  8248. #endif // MESH_BED_LEVELING
  8249. void prepare_move()
  8250. {
  8251. clamp_to_software_endstops(destination);
  8252. previous_millis_cmd = _millis();
  8253. // Do not use feedmultiply for E or Z only moves
  8254. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  8255. plan_buffer_line_destinationXYZE(feedrate/60);
  8256. }
  8257. else {
  8258. #ifdef MESH_BED_LEVELING
  8259. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  8260. #else
  8261. plan_buffer_line_destinationXYZE(feedrate*feedmultiply*(1./(60.f*100.f)));
  8262. #endif
  8263. }
  8264. set_current_to_destination();
  8265. }
  8266. void prepare_arc_move(char isclockwise) {
  8267. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  8268. // Trace the arc
  8269. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  8270. // As far as the parser is concerned, the position is now == target. In reality the
  8271. // motion control system might still be processing the action and the real tool position
  8272. // in any intermediate location.
  8273. for(int8_t i=0; i < NUM_AXIS; i++) {
  8274. current_position[i] = destination[i];
  8275. }
  8276. previous_millis_cmd = _millis();
  8277. }
  8278. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8279. #if defined(FAN_PIN)
  8280. #if CONTROLLERFAN_PIN == FAN_PIN
  8281. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  8282. #endif
  8283. #endif
  8284. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  8285. unsigned long lastMotorCheck = 0;
  8286. void controllerFan()
  8287. {
  8288. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  8289. {
  8290. lastMotorCheck = _millis();
  8291. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  8292. #if EXTRUDERS > 2
  8293. || !READ(E2_ENABLE_PIN)
  8294. #endif
  8295. #if EXTRUDER > 1
  8296. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  8297. || !READ(X2_ENABLE_PIN)
  8298. #endif
  8299. || !READ(E1_ENABLE_PIN)
  8300. #endif
  8301. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  8302. {
  8303. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  8304. }
  8305. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  8306. {
  8307. digitalWrite(CONTROLLERFAN_PIN, 0);
  8308. analogWrite(CONTROLLERFAN_PIN, 0);
  8309. }
  8310. else
  8311. {
  8312. // allows digital or PWM fan output to be used (see M42 handling)
  8313. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8314. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  8315. }
  8316. }
  8317. }
  8318. #endif
  8319. #ifdef TEMP_STAT_LEDS
  8320. static bool blue_led = false;
  8321. static bool red_led = false;
  8322. static uint32_t stat_update = 0;
  8323. void handle_status_leds(void) {
  8324. float max_temp = 0.0;
  8325. if(_millis() > stat_update) {
  8326. stat_update += 500; // Update every 0.5s
  8327. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  8328. max_temp = max(max_temp, degHotend(cur_extruder));
  8329. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  8330. }
  8331. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  8332. max_temp = max(max_temp, degTargetBed());
  8333. max_temp = max(max_temp, degBed());
  8334. #endif
  8335. if((max_temp > 55.0) && (red_led == false)) {
  8336. digitalWrite(STAT_LED_RED, 1);
  8337. digitalWrite(STAT_LED_BLUE, 0);
  8338. red_led = true;
  8339. blue_led = false;
  8340. }
  8341. if((max_temp < 54.0) && (blue_led == false)) {
  8342. digitalWrite(STAT_LED_RED, 0);
  8343. digitalWrite(STAT_LED_BLUE, 1);
  8344. red_led = false;
  8345. blue_led = true;
  8346. }
  8347. }
  8348. }
  8349. #endif
  8350. #ifdef SAFETYTIMER
  8351. /**
  8352. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  8353. *
  8354. * Full screen blocking notification message is shown after heater turning off.
  8355. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  8356. * damage print.
  8357. *
  8358. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8359. */
  8360. static void handleSafetyTimer()
  8361. {
  8362. #if (EXTRUDERS > 1)
  8363. #error Implemented only for one extruder.
  8364. #endif //(EXTRUDERS > 1)
  8365. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8366. {
  8367. safetyTimer.stop();
  8368. }
  8369. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8370. {
  8371. safetyTimer.start();
  8372. }
  8373. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8374. {
  8375. setTargetBed(0);
  8376. setAllTargetHotends(0);
  8377. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  8378. }
  8379. }
  8380. #endif //SAFETYTIMER
  8381. #ifdef IR_SENSOR_ANALOG
  8382. #define FS_CHECK_COUNT 16
  8383. /// Switching mechanism of the fsensor type.
  8384. /// Called from 2 spots which have a very similar behavior
  8385. /// 1: ClFsensorPCB::_Old -> ClFsensorPCB::_Rev04 and print _i("FS v0.4 or newer")
  8386. /// 2: ClFsensorPCB::_Rev04 -> oFsensorPCB=ClFsensorPCB::_Old and print _i("FS v0.3 or older")
  8387. void manage_inactivity_IR_ANALOG_Check(uint16_t &nFSCheckCount, ClFsensorPCB isVersion, ClFsensorPCB switchTo, const char *statusLineTxt_P) {
  8388. bool bTemp = (!CHECK_ALL_HEATERS);
  8389. bTemp = bTemp && (menu_menu == lcd_status_screen);
  8390. bTemp = bTemp && ((oFsensorPCB == isVersion) || (oFsensorPCB == ClFsensorPCB::_Undef));
  8391. bTemp = bTemp && fsensor_enabled;
  8392. if (bTemp) {
  8393. nFSCheckCount++;
  8394. if (nFSCheckCount > FS_CHECK_COUNT) {
  8395. nFSCheckCount = 0; // not necessary
  8396. oFsensorPCB = switchTo;
  8397. eeprom_update_byte((uint8_t *)EEPROM_FSENSOR_PCB, (uint8_t)oFsensorPCB);
  8398. printf_IRSensorAnalogBoardChange();
  8399. lcd_setstatuspgm(statusLineTxt_P);
  8400. }
  8401. } else {
  8402. nFSCheckCount = 0;
  8403. }
  8404. }
  8405. #endif
  8406. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8407. {
  8408. #ifdef FILAMENT_SENSOR
  8409. bool bInhibitFlag;
  8410. #ifdef IR_SENSOR_ANALOG
  8411. static uint16_t nFSCheckCount=0;
  8412. #endif // IR_SENSOR_ANALOG
  8413. if (mmu_enabled == false)
  8414. {
  8415. //-// if (mcode_in_progress != 600) //M600 not in progress
  8416. #ifdef PAT9125
  8417. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  8418. #endif // PAT9125
  8419. #ifdef IR_SENSOR
  8420. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  8421. #ifdef IR_SENSOR_ANALOG
  8422. bInhibitFlag=bInhibitFlag||bMenuFSDetect; // Settings::HWsetup::FSdetect menu active
  8423. #endif // IR_SENSOR_ANALOG
  8424. #endif // IR_SENSOR
  8425. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag) && (menu_menu != lcd_move_e)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  8426. {
  8427. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  8428. {
  8429. #ifdef IR_SENSOR_ANALOG
  8430. static uint16_t minVolt = Voltage2Raw(6.F), maxVolt = 0;
  8431. // detect min-max, some long term sliding window for filtration may be added
  8432. // avoiding floating point operations, thus computing in raw
  8433. if( current_voltage_raw_IR > maxVolt )maxVolt = current_voltage_raw_IR;
  8434. if( current_voltage_raw_IR < minVolt )minVolt = current_voltage_raw_IR;
  8435. #if 0 // Start: IR Sensor debug info
  8436. { // debug print
  8437. static uint16_t lastVolt = ~0U;
  8438. if( current_voltage_raw_IR != lastVolt ){
  8439. printf_P(PSTR("fs volt=%4.2fV (min=%4.2f max=%4.2f)\n"), Raw2Voltage(current_voltage_raw_IR), Raw2Voltage(minVolt), Raw2Voltage(maxVolt) );
  8440. lastVolt = current_voltage_raw_IR;
  8441. }
  8442. }
  8443. #endif // End: IR Sensor debug info
  8444. //! The trouble is, I can hold the filament in the hole in such a way, that it creates the exact voltage
  8445. //! to be detected as the new fsensor
  8446. //! We can either fake it by extending the detection window to a looooong time
  8447. //! or do some other countermeasures
  8448. //! what we want to detect:
  8449. //! if minvolt gets below ~0.3V, it means there is an old fsensor
  8450. //! if maxvolt gets above 4.6V, it means we either have an old fsensor or broken cables/fsensor
  8451. //! So I'm waiting for a situation, when minVolt gets to range <0, 1.5> and maxVolt gets into range <3.0, 5>
  8452. //! If and only if minVolt is in range <0.3, 1.5> and maxVolt is in range <3.0, 4.6>, I'm considering a situation with the new fsensor
  8453. if( minVolt >= IRsensor_Ldiode_TRESHOLD && minVolt <= IRsensor_Lmax_TRESHOLD
  8454. && maxVolt >= IRsensor_Hmin_TRESHOLD && maxVolt <= IRsensor_Hopen_TRESHOLD
  8455. ){
  8456. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Old, ClFsensorPCB::_Rev04, _i("FS v0.4 or newer") ); ////c=18
  8457. }
  8458. //! If and only if minVolt is in range <0.0, 0.3> and maxVolt is in range <4.6, 5.0V>, I'm considering a situation with the old fsensor
  8459. //! Note, we are not relying on one voltage here - getting just +5V can mean an old fsensor or a broken new sensor - that's why
  8460. //! we need to have both voltages detected correctly to allow switching back to the old fsensor.
  8461. else if( minVolt < IRsensor_Ldiode_TRESHOLD
  8462. && maxVolt > IRsensor_Hopen_TRESHOLD && maxVolt <= IRsensor_VMax_TRESHOLD
  8463. ){
  8464. manage_inactivity_IR_ANALOG_Check(nFSCheckCount, ClFsensorPCB::_Rev04, oFsensorPCB=ClFsensorPCB::_Old, _i("FS v0.3 or older")); ////c=18
  8465. }
  8466. #endif // IR_SENSOR_ANALOG
  8467. if (fsensor_check_autoload())
  8468. {
  8469. #ifdef PAT9125
  8470. fsensor_autoload_check_stop();
  8471. #endif //PAT9125
  8472. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  8473. if(0)
  8474. {
  8475. Sound_MakeCustom(50,1000,false);
  8476. loading_flag = true;
  8477. enquecommand_front_P((PSTR("M701")));
  8478. }
  8479. else
  8480. {
  8481. /*
  8482. lcd_update_enable(false);
  8483. show_preheat_nozzle_warning();
  8484. lcd_update_enable(true);
  8485. */
  8486. eFilamentAction=FilamentAction::AutoLoad;
  8487. bFilamentFirstRun=false;
  8488. if(target_temperature[0]>=EXTRUDE_MINTEMP){
  8489. bFilamentPreheatState=true;
  8490. // mFilamentItem(target_temperature[0],target_temperature_bed);
  8491. menu_submenu(mFilamentItemForce);
  8492. } else {
  8493. menu_submenu(lcd_generic_preheat_menu);
  8494. lcd_timeoutToStatus.start();
  8495. }
  8496. }
  8497. }
  8498. }
  8499. else
  8500. {
  8501. #ifdef PAT9125
  8502. fsensor_autoload_check_stop();
  8503. #endif //PAT9125
  8504. if (fsensor_enabled && !saved_printing)
  8505. fsensor_update();
  8506. }
  8507. }
  8508. }
  8509. #endif //FILAMENT_SENSOR
  8510. #ifdef SAFETYTIMER
  8511. handleSafetyTimer();
  8512. #endif //SAFETYTIMER
  8513. #if defined(KILL_PIN) && KILL_PIN > -1
  8514. static int killCount = 0; // make the inactivity button a bit less responsive
  8515. const int KILL_DELAY = 10000;
  8516. #endif
  8517. if(buflen < (BUFSIZE-1)){
  8518. get_command();
  8519. }
  8520. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  8521. if(max_inactive_time)
  8522. kill(_n("Inactivity Shutdown"), 4);
  8523. if(stepper_inactive_time) {
  8524. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  8525. {
  8526. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8527. disable_x();
  8528. disable_y();
  8529. disable_z();
  8530. disable_e0();
  8531. disable_e1();
  8532. disable_e2();
  8533. }
  8534. }
  8535. }
  8536. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8537. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8538. {
  8539. chdkActive = false;
  8540. WRITE(CHDK, LOW);
  8541. }
  8542. #endif
  8543. #if defined(KILL_PIN) && KILL_PIN > -1
  8544. // Check if the kill button was pressed and wait just in case it was an accidental
  8545. // key kill key press
  8546. // -------------------------------------------------------------------------------
  8547. if( 0 == READ(KILL_PIN) )
  8548. {
  8549. killCount++;
  8550. }
  8551. else if (killCount > 0)
  8552. {
  8553. killCount--;
  8554. }
  8555. // Exceeded threshold and we can confirm that it was not accidental
  8556. // KILL the machine
  8557. // ----------------------------------------------------------------
  8558. if ( killCount >= KILL_DELAY)
  8559. {
  8560. kill(NULL, 5);
  8561. }
  8562. #endif
  8563. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8564. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8565. #endif
  8566. #ifdef EXTRUDER_RUNOUT_PREVENT
  8567. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  8568. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8569. {
  8570. bool oldstatus=READ(E0_ENABLE_PIN);
  8571. enable_e0();
  8572. float oldepos=current_position[E_AXIS];
  8573. float oldedes=destination[E_AXIS];
  8574. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8575. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8576. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8577. current_position[E_AXIS]=oldepos;
  8578. destination[E_AXIS]=oldedes;
  8579. plan_set_e_position(oldepos);
  8580. previous_millis_cmd=_millis();
  8581. st_synchronize();
  8582. WRITE(E0_ENABLE_PIN,oldstatus);
  8583. }
  8584. #endif
  8585. #ifdef TEMP_STAT_LEDS
  8586. handle_status_leds();
  8587. #endif
  8588. check_axes_activity();
  8589. mmu_loop();
  8590. }
  8591. void kill(const char *full_screen_message, unsigned char id)
  8592. {
  8593. printf_P(_N("KILL: %d\n"), id);
  8594. //return;
  8595. cli(); // Stop interrupts
  8596. disable_heater();
  8597. disable_x();
  8598. // SERIAL_ECHOLNPGM("kill - disable Y");
  8599. disable_y();
  8600. poweroff_z();
  8601. disable_e0();
  8602. disable_e1();
  8603. disable_e2();
  8604. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8605. pinMode(PS_ON_PIN,INPUT);
  8606. #endif
  8607. SERIAL_ERROR_START;
  8608. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8609. if (full_screen_message != NULL) {
  8610. SERIAL_ERRORLNRPGM(full_screen_message);
  8611. lcd_display_message_fullscreen_P(full_screen_message);
  8612. } else {
  8613. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8614. }
  8615. // FMC small patch to update the LCD before ending
  8616. sei(); // enable interrupts
  8617. for ( int i=5; i--; lcd_update(0))
  8618. {
  8619. _delay(200);
  8620. }
  8621. cli(); // disable interrupts
  8622. suicide();
  8623. while(1)
  8624. {
  8625. #ifdef WATCHDOG
  8626. wdt_reset();
  8627. #endif //WATCHDOG
  8628. /* Intentionally left empty */
  8629. } // Wait for reset
  8630. }
  8631. // Stop: Emergency stop used by overtemp functions which allows recovery
  8632. //
  8633. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  8634. // processed via USB (using "Stopped") until the print is resumed via M999 or
  8635. // manually started from scratch with the LCD.
  8636. //
  8637. // Note that the current instruction is completely discarded, so resuming from Stop()
  8638. // will introduce either over/under extrusion on the current segment, and will not
  8639. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  8640. // the addition of disabling the headers) could allow true recovery in the future.
  8641. void Stop()
  8642. {
  8643. disable_heater();
  8644. if(Stopped == false) {
  8645. Stopped = true;
  8646. lcd_print_stop();
  8647. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8648. SERIAL_ERROR_START;
  8649. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8650. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8651. }
  8652. }
  8653. bool IsStopped() { return Stopped; };
  8654. void finishAndDisableSteppers()
  8655. {
  8656. st_synchronize();
  8657. disable_x();
  8658. disable_y();
  8659. disable_z();
  8660. disable_e0();
  8661. disable_e1();
  8662. disable_e2();
  8663. #ifndef LA_NOCOMPAT
  8664. // Steppers are disabled both when a print is stopped and also via M84 (which is additionally
  8665. // checked-for to indicate a complete file), so abuse this function to reset the LA detection
  8666. // state for the next print.
  8667. la10c_reset();
  8668. #endif
  8669. }
  8670. #ifdef FAST_PWM_FAN
  8671. void setPwmFrequency(uint8_t pin, int val)
  8672. {
  8673. val &= 0x07;
  8674. switch(digitalPinToTimer(pin))
  8675. {
  8676. #if defined(TCCR0A)
  8677. case TIMER0A:
  8678. case TIMER0B:
  8679. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8680. // TCCR0B |= val;
  8681. break;
  8682. #endif
  8683. #if defined(TCCR1A)
  8684. case TIMER1A:
  8685. case TIMER1B:
  8686. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8687. // TCCR1B |= val;
  8688. break;
  8689. #endif
  8690. #if defined(TCCR2)
  8691. case TIMER2:
  8692. case TIMER2:
  8693. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8694. TCCR2 |= val;
  8695. break;
  8696. #endif
  8697. #if defined(TCCR2A)
  8698. case TIMER2A:
  8699. case TIMER2B:
  8700. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8701. TCCR2B |= val;
  8702. break;
  8703. #endif
  8704. #if defined(TCCR3A)
  8705. case TIMER3A:
  8706. case TIMER3B:
  8707. case TIMER3C:
  8708. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8709. TCCR3B |= val;
  8710. break;
  8711. #endif
  8712. #if defined(TCCR4A)
  8713. case TIMER4A:
  8714. case TIMER4B:
  8715. case TIMER4C:
  8716. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8717. TCCR4B |= val;
  8718. break;
  8719. #endif
  8720. #if defined(TCCR5A)
  8721. case TIMER5A:
  8722. case TIMER5B:
  8723. case TIMER5C:
  8724. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8725. TCCR5B |= val;
  8726. break;
  8727. #endif
  8728. }
  8729. }
  8730. #endif //FAST_PWM_FAN
  8731. //! @brief Get and validate extruder number
  8732. //!
  8733. //! If it is not specified, active_extruder is returned in parameter extruder.
  8734. //! @param [in] code M code number
  8735. //! @param [out] extruder
  8736. //! @return error
  8737. //! @retval true Invalid extruder specified in T code
  8738. //! @retval false Valid extruder specified in T code, or not specifiead
  8739. bool setTargetedHotend(int code, uint8_t &extruder)
  8740. {
  8741. extruder = active_extruder;
  8742. if(code_seen('T')) {
  8743. extruder = code_value();
  8744. if(extruder >= EXTRUDERS) {
  8745. SERIAL_ECHO_START;
  8746. switch(code){
  8747. case 104:
  8748. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  8749. break;
  8750. case 105:
  8751. SERIAL_ECHORPGM(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  8752. break;
  8753. case 109:
  8754. SERIAL_ECHORPGM(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  8755. break;
  8756. case 218:
  8757. SERIAL_ECHORPGM(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  8758. break;
  8759. case 221:
  8760. SERIAL_ECHORPGM(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  8761. break;
  8762. }
  8763. SERIAL_PROTOCOLLN((int)extruder);
  8764. return true;
  8765. }
  8766. }
  8767. return false;
  8768. }
  8769. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  8770. {
  8771. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  8772. {
  8773. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  8774. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  8775. }
  8776. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  8777. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  8778. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  8779. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8780. total_filament_used = 0;
  8781. }
  8782. float calculate_extruder_multiplier(float diameter) {
  8783. float out = 1.f;
  8784. if (cs.volumetric_enabled && diameter > 0.f) {
  8785. float area = M_PI * diameter * diameter * 0.25;
  8786. out = 1.f / area;
  8787. }
  8788. if (extrudemultiply != 100)
  8789. out *= float(extrudemultiply) * 0.01f;
  8790. return out;
  8791. }
  8792. void calculate_extruder_multipliers() {
  8793. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8794. #if EXTRUDERS > 1
  8795. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8796. #if EXTRUDERS > 2
  8797. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8798. #endif
  8799. #endif
  8800. }
  8801. void delay_keep_alive(unsigned int ms)
  8802. {
  8803. for (;;) {
  8804. manage_heater();
  8805. // Manage inactivity, but don't disable steppers on timeout.
  8806. manage_inactivity(true);
  8807. lcd_update(0);
  8808. if (ms == 0)
  8809. break;
  8810. else if (ms >= 50) {
  8811. _delay(50);
  8812. ms -= 50;
  8813. } else {
  8814. _delay(ms);
  8815. ms = 0;
  8816. }
  8817. }
  8818. }
  8819. static void wait_for_heater(long codenum, uint8_t extruder) {
  8820. if (!degTargetHotend(extruder))
  8821. return;
  8822. #ifdef TEMP_RESIDENCY_TIME
  8823. long residencyStart;
  8824. residencyStart = -1;
  8825. /* continue to loop until we have reached the target temp
  8826. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  8827. cancel_heatup = false;
  8828. while ((!cancel_heatup) && ((residencyStart == -1) ||
  8829. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  8830. #else
  8831. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  8832. #endif //TEMP_RESIDENCY_TIME
  8833. if ((_millis() - codenum) > 1000UL)
  8834. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  8835. if (!farm_mode) {
  8836. SERIAL_PROTOCOLPGM("T:");
  8837. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  8838. SERIAL_PROTOCOLPGM(" E:");
  8839. SERIAL_PROTOCOL((int)extruder);
  8840. #ifdef TEMP_RESIDENCY_TIME
  8841. SERIAL_PROTOCOLPGM(" W:");
  8842. if (residencyStart > -1)
  8843. {
  8844. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  8845. SERIAL_PROTOCOLLN(codenum);
  8846. }
  8847. else
  8848. {
  8849. SERIAL_PROTOCOLLN('?');
  8850. }
  8851. }
  8852. #else
  8853. SERIAL_PROTOCOLLN();
  8854. #endif
  8855. codenum = _millis();
  8856. }
  8857. manage_heater();
  8858. manage_inactivity(true); //do not disable steppers
  8859. lcd_update(0);
  8860. #ifdef TEMP_RESIDENCY_TIME
  8861. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  8862. or when current temp falls outside the hysteresis after target temp was reached */
  8863. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  8864. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  8865. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  8866. {
  8867. residencyStart = _millis();
  8868. }
  8869. #endif //TEMP_RESIDENCY_TIME
  8870. }
  8871. }
  8872. void check_babystep()
  8873. {
  8874. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8875. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  8876. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  8877. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  8878. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  8879. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8880. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  8881. babystep_z);
  8882. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  8883. lcd_update_enable(true);
  8884. }
  8885. }
  8886. #ifdef HEATBED_ANALYSIS
  8887. void d_setup()
  8888. {
  8889. pinMode(D_DATACLOCK, INPUT_PULLUP);
  8890. pinMode(D_DATA, INPUT_PULLUP);
  8891. pinMode(D_REQUIRE, OUTPUT);
  8892. digitalWrite(D_REQUIRE, HIGH);
  8893. }
  8894. float d_ReadData()
  8895. {
  8896. int digit[13];
  8897. String mergeOutput;
  8898. float output;
  8899. digitalWrite(D_REQUIRE, HIGH);
  8900. for (int i = 0; i<13; i++)
  8901. {
  8902. for (int j = 0; j < 4; j++)
  8903. {
  8904. while (digitalRead(D_DATACLOCK) == LOW) {}
  8905. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8906. bitWrite(digit[i], j, digitalRead(D_DATA));
  8907. }
  8908. }
  8909. digitalWrite(D_REQUIRE, LOW);
  8910. mergeOutput = "";
  8911. output = 0;
  8912. for (int r = 5; r <= 10; r++) //Merge digits
  8913. {
  8914. mergeOutput += digit[r];
  8915. }
  8916. output = mergeOutput.toFloat();
  8917. if (digit[4] == 8) //Handle sign
  8918. {
  8919. output *= -1;
  8920. }
  8921. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8922. {
  8923. output /= 10;
  8924. }
  8925. return output;
  8926. }
  8927. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8928. int t1 = 0;
  8929. int t_delay = 0;
  8930. int digit[13];
  8931. int m;
  8932. char str[3];
  8933. //String mergeOutput;
  8934. char mergeOutput[15];
  8935. float output;
  8936. int mesh_point = 0; //index number of calibration point
  8937. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8938. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8939. float mesh_home_z_search = 4;
  8940. float measure_z_height = 0.2f;
  8941. float row[x_points_num];
  8942. int ix = 0;
  8943. int iy = 0;
  8944. const char* filename_wldsd = "mesh.txt";
  8945. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  8946. char numb_wldsd[8]; // (" -A.BCD" + null)
  8947. #ifdef MICROMETER_LOGGING
  8948. d_setup();
  8949. #endif //MICROMETER_LOGGING
  8950. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8951. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8952. unsigned int custom_message_type_old = custom_message_type;
  8953. unsigned int custom_message_state_old = custom_message_state;
  8954. custom_message_type = CustomMsg::MeshBedLeveling;
  8955. custom_message_state = (x_points_num * y_points_num) + 10;
  8956. lcd_update(1);
  8957. //mbl.reset();
  8958. babystep_undo();
  8959. card.openFile(filename_wldsd, false);
  8960. /*destination[Z_AXIS] = mesh_home_z_search;
  8961. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8962. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8963. for(int8_t i=0; i < NUM_AXIS; i++) {
  8964. current_position[i] = destination[i];
  8965. }
  8966. st_synchronize();
  8967. */
  8968. destination[Z_AXIS] = measure_z_height;
  8969. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8970. for(int8_t i=0; i < NUM_AXIS; i++) {
  8971. current_position[i] = destination[i];
  8972. }
  8973. st_synchronize();
  8974. /*int l_feedmultiply = */setup_for_endstop_move(false);
  8975. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8976. SERIAL_PROTOCOL(x_points_num);
  8977. SERIAL_PROTOCOLPGM(",");
  8978. SERIAL_PROTOCOL(y_points_num);
  8979. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8980. SERIAL_PROTOCOL(mesh_home_z_search);
  8981. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8982. SERIAL_PROTOCOL(x_dimension);
  8983. SERIAL_PROTOCOLPGM(",");
  8984. SERIAL_PROTOCOL(y_dimension);
  8985. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8986. while (mesh_point != x_points_num * y_points_num) {
  8987. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8988. iy = mesh_point / x_points_num;
  8989. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8990. float z0 = 0.f;
  8991. /*destination[Z_AXIS] = mesh_home_z_search;
  8992. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE);
  8993. plan_buffer_line_destinationXYZE(Z_LIFT_FEEDRATE);
  8994. for(int8_t i=0; i < NUM_AXIS; i++) {
  8995. current_position[i] = destination[i];
  8996. }
  8997. st_synchronize();*/
  8998. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8999. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  9000. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  9001. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  9002. mesh_plan_buffer_line_destinationXYZE(XY_AXIS_FEEDRATE/6);
  9003. set_current_to_destination();
  9004. st_synchronize();
  9005. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9006. delay_keep_alive(1000);
  9007. #ifdef MICROMETER_LOGGING
  9008. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9009. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  9010. //strcat(data_wldsd, numb_wldsd);
  9011. //MYSERIAL.println(data_wldsd);
  9012. //delay(1000);
  9013. //delay(3000);
  9014. //t1 = millis();
  9015. //while (digitalRead(D_DATACLOCK) == LOW) {}
  9016. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  9017. memset(digit, 0, sizeof(digit));
  9018. //cli();
  9019. digitalWrite(D_REQUIRE, LOW);
  9020. for (int i = 0; i<13; i++)
  9021. {
  9022. //t1 = millis();
  9023. for (int j = 0; j < 4; j++)
  9024. {
  9025. while (digitalRead(D_DATACLOCK) == LOW) {}
  9026. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9027. //printf_P(PSTR("Done %d\n"), j);
  9028. bitWrite(digit[i], j, digitalRead(D_DATA));
  9029. }
  9030. //t_delay = (millis() - t1);
  9031. //SERIAL_PROTOCOLPGM(" ");
  9032. //SERIAL_PROTOCOL_F(t_delay, 5);
  9033. //SERIAL_PROTOCOLPGM(" ");
  9034. }
  9035. //sei();
  9036. digitalWrite(D_REQUIRE, HIGH);
  9037. mergeOutput[0] = '\0';
  9038. output = 0;
  9039. for (int r = 5; r <= 10; r++) //Merge digits
  9040. {
  9041. sprintf(str, "%d", digit[r]);
  9042. strcat(mergeOutput, str);
  9043. }
  9044. output = atof(mergeOutput);
  9045. if (digit[4] == 8) //Handle sign
  9046. {
  9047. output *= -1;
  9048. }
  9049. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9050. {
  9051. output *= 0.1;
  9052. }
  9053. //output = d_ReadData();
  9054. //row[ix] = current_position[Z_AXIS];
  9055. //row[ix] = d_ReadData();
  9056. row[ix] = output;
  9057. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9058. memset(data_wldsd, 0, sizeof(data_wldsd));
  9059. for (int i = 0; i < x_points_num; i++) {
  9060. SERIAL_PROTOCOLPGM(" ");
  9061. SERIAL_PROTOCOL_F(row[i], 5);
  9062. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9063. dtostrf(row[i], 7, 3, numb_wldsd);
  9064. strcat(data_wldsd, numb_wldsd);
  9065. }
  9066. card.write_command(data_wldsd);
  9067. SERIAL_PROTOCOLPGM("\n");
  9068. }
  9069. custom_message_state--;
  9070. mesh_point++;
  9071. lcd_update(1);
  9072. }
  9073. #endif //MICROMETER_LOGGING
  9074. card.closefile();
  9075. //clean_up_after_endstop_move(l_feedmultiply);
  9076. }
  9077. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  9078. int t1 = 0;
  9079. int t_delay = 0;
  9080. int digit[13];
  9081. int m;
  9082. char str[3];
  9083. //String mergeOutput;
  9084. char mergeOutput[15];
  9085. float output;
  9086. int mesh_point = 0; //index number of calibration point
  9087. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  9088. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  9089. float mesh_home_z_search = 4;
  9090. float row[x_points_num];
  9091. int ix = 0;
  9092. int iy = 0;
  9093. const char* filename_wldsd = "wldsd.txt";
  9094. char data_wldsd[70];
  9095. char numb_wldsd[10];
  9096. d_setup();
  9097. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  9098. // We don't know where we are! HOME!
  9099. // Push the commands to the front of the message queue in the reverse order!
  9100. // There shall be always enough space reserved for these commands.
  9101. repeatcommand_front(); // repeat G80 with all its parameters
  9102. enquecommand_front_P(G28W0);
  9103. enquecommand_front_P((PSTR("G1 Z5")));
  9104. return;
  9105. }
  9106. unsigned int custom_message_type_old = custom_message_type;
  9107. unsigned int custom_message_state_old = custom_message_state;
  9108. custom_message_type = CustomMsg::MeshBedLeveling;
  9109. custom_message_state = (x_points_num * y_points_num) + 10;
  9110. lcd_update(1);
  9111. mbl.reset();
  9112. babystep_undo();
  9113. card.openFile(filename_wldsd, false);
  9114. current_position[Z_AXIS] = mesh_home_z_search;
  9115. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  9116. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  9117. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  9118. int l_feedmultiply = setup_for_endstop_move(false);
  9119. SERIAL_PROTOCOLPGM("Num X,Y: ");
  9120. SERIAL_PROTOCOL(x_points_num);
  9121. SERIAL_PROTOCOLPGM(",");
  9122. SERIAL_PROTOCOL(y_points_num);
  9123. SERIAL_PROTOCOLPGM("\nZ search height: ");
  9124. SERIAL_PROTOCOL(mesh_home_z_search);
  9125. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  9126. SERIAL_PROTOCOL(x_dimension);
  9127. SERIAL_PROTOCOLPGM(",");
  9128. SERIAL_PROTOCOL(y_dimension);
  9129. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  9130. while (mesh_point != x_points_num * y_points_num) {
  9131. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  9132. iy = mesh_point / x_points_num;
  9133. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  9134. float z0 = 0.f;
  9135. current_position[Z_AXIS] = mesh_home_z_search;
  9136. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  9137. st_synchronize();
  9138. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  9139. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  9140. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  9141. st_synchronize();
  9142. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  9143. break;
  9144. card.closefile();
  9145. }
  9146. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9147. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  9148. //strcat(data_wldsd, numb_wldsd);
  9149. //MYSERIAL.println(data_wldsd);
  9150. //_delay(1000);
  9151. //_delay(3000);
  9152. //t1 = _millis();
  9153. //while (digitalRead(D_DATACLOCK) == LOW) {}
  9154. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  9155. memset(digit, 0, sizeof(digit));
  9156. //cli();
  9157. digitalWrite(D_REQUIRE, LOW);
  9158. for (int i = 0; i<13; i++)
  9159. {
  9160. //t1 = _millis();
  9161. for (int j = 0; j < 4; j++)
  9162. {
  9163. while (digitalRead(D_DATACLOCK) == LOW) {}
  9164. while (digitalRead(D_DATACLOCK) == HIGH) {}
  9165. bitWrite(digit[i], j, digitalRead(D_DATA));
  9166. }
  9167. //t_delay = (_millis() - t1);
  9168. //SERIAL_PROTOCOLPGM(" ");
  9169. //SERIAL_PROTOCOL_F(t_delay, 5);
  9170. //SERIAL_PROTOCOLPGM(" ");
  9171. }
  9172. //sei();
  9173. digitalWrite(D_REQUIRE, HIGH);
  9174. mergeOutput[0] = '\0';
  9175. output = 0;
  9176. for (int r = 5; r <= 10; r++) //Merge digits
  9177. {
  9178. sprintf(str, "%d", digit[r]);
  9179. strcat(mergeOutput, str);
  9180. }
  9181. output = atof(mergeOutput);
  9182. if (digit[4] == 8) //Handle sign
  9183. {
  9184. output *= -1;
  9185. }
  9186. for (int i = digit[11]; i > 0; i--) //Handle floating point
  9187. {
  9188. output *= 0.1;
  9189. }
  9190. //output = d_ReadData();
  9191. //row[ix] = current_position[Z_AXIS];
  9192. memset(data_wldsd, 0, sizeof(data_wldsd));
  9193. for (int i = 0; i <3; i++) {
  9194. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9195. dtostrf(current_position[i], 8, 5, numb_wldsd);
  9196. strcat(data_wldsd, numb_wldsd);
  9197. strcat(data_wldsd, ";");
  9198. }
  9199. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  9200. dtostrf(output, 8, 5, numb_wldsd);
  9201. strcat(data_wldsd, numb_wldsd);
  9202. //strcat(data_wldsd, ";");
  9203. card.write_command(data_wldsd);
  9204. //row[ix] = d_ReadData();
  9205. row[ix] = output; // current_position[Z_AXIS];
  9206. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  9207. for (int i = 0; i < x_points_num; i++) {
  9208. SERIAL_PROTOCOLPGM(" ");
  9209. SERIAL_PROTOCOL_F(row[i], 5);
  9210. }
  9211. SERIAL_PROTOCOLPGM("\n");
  9212. }
  9213. custom_message_state--;
  9214. mesh_point++;
  9215. lcd_update(1);
  9216. }
  9217. card.closefile();
  9218. clean_up_after_endstop_move(l_feedmultiply);
  9219. }
  9220. #endif //HEATBED_ANALYSIS
  9221. #ifndef PINDA_THERMISTOR
  9222. static void temp_compensation_start() {
  9223. custom_message_type = CustomMsg::TempCompPreheat;
  9224. custom_message_state = PINDA_HEAT_T + 1;
  9225. lcd_update(2);
  9226. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  9227. current_position[E_AXIS] -= default_retraction;
  9228. }
  9229. plan_buffer_line_curposXYZE(400, active_extruder);
  9230. current_position[X_AXIS] = PINDA_PREHEAT_X;
  9231. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  9232. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  9233. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  9234. st_synchronize();
  9235. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  9236. for (int i = 0; i < PINDA_HEAT_T; i++) {
  9237. delay_keep_alive(1000);
  9238. custom_message_state = PINDA_HEAT_T - i;
  9239. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  9240. else lcd_update(1);
  9241. }
  9242. custom_message_type = CustomMsg::Status;
  9243. custom_message_state = 0;
  9244. }
  9245. static void temp_compensation_apply() {
  9246. int i_add;
  9247. int z_shift = 0;
  9248. float z_shift_mm;
  9249. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  9250. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  9251. i_add = (target_temperature_bed - 60) / 10;
  9252. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  9253. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  9254. }else {
  9255. //interpolation
  9256. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  9257. }
  9258. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  9259. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  9260. st_synchronize();
  9261. plan_set_z_position(current_position[Z_AXIS]);
  9262. }
  9263. else {
  9264. //we have no temp compensation data
  9265. }
  9266. }
  9267. #endif //ndef PINDA_THERMISTOR
  9268. float temp_comp_interpolation(float inp_temperature) {
  9269. //cubic spline interpolation
  9270. int n, i, j;
  9271. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  9272. int shift[10];
  9273. int temp_C[10];
  9274. n = 6; //number of measured points
  9275. shift[0] = 0;
  9276. for (i = 0; i < n; i++) {
  9277. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  9278. temp_C[i] = 50 + i * 10; //temperature in C
  9279. #ifdef PINDA_THERMISTOR
  9280. constexpr int start_compensating_temp = 35;
  9281. temp_C[i] = start_compensating_temp + i * 5; //temperature in degrees C
  9282. #ifdef SUPERPINDA_SUPPORT
  9283. static_assert(start_compensating_temp >= PINDA_MINTEMP, "Temperature compensation start point is lower than PINDA_MINTEMP.");
  9284. #endif //SUPERPINDA_SUPPORT
  9285. #else
  9286. temp_C[i] = 50 + i * 10; //temperature in C
  9287. #endif
  9288. x[i] = (float)temp_C[i];
  9289. f[i] = (float)shift[i];
  9290. }
  9291. if (inp_temperature < x[0]) return 0;
  9292. for (i = n - 1; i>0; i--) {
  9293. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  9294. h[i - 1] = x[i] - x[i - 1];
  9295. }
  9296. //*********** formation of h, s , f matrix **************
  9297. for (i = 1; i<n - 1; i++) {
  9298. m[i][i] = 2 * (h[i - 1] + h[i]);
  9299. if (i != 1) {
  9300. m[i][i - 1] = h[i - 1];
  9301. m[i - 1][i] = h[i - 1];
  9302. }
  9303. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  9304. }
  9305. //*********** forward elimination **************
  9306. for (i = 1; i<n - 2; i++) {
  9307. temp = (m[i + 1][i] / m[i][i]);
  9308. for (j = 1; j <= n - 1; j++)
  9309. m[i + 1][j] -= temp*m[i][j];
  9310. }
  9311. //*********** backward substitution *********
  9312. for (i = n - 2; i>0; i--) {
  9313. sum = 0;
  9314. for (j = i; j <= n - 2; j++)
  9315. sum += m[i][j] * s[j];
  9316. s[i] = (m[i][n - 1] - sum) / m[i][i];
  9317. }
  9318. for (i = 0; i<n - 1; i++)
  9319. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  9320. a = (s[i + 1] - s[i]) / (6 * h[i]);
  9321. b = s[i] / 2;
  9322. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  9323. d = f[i];
  9324. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  9325. }
  9326. return sum;
  9327. }
  9328. #ifdef PINDA_THERMISTOR
  9329. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  9330. {
  9331. if (!eeprom_read_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE)) return 0;
  9332. if (!calibration_status_pinda()) return 0;
  9333. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  9334. }
  9335. #endif //PINDA_THERMISTOR
  9336. void long_pause() //long pause print
  9337. {
  9338. st_synchronize();
  9339. start_pause_print = _millis();
  9340. // Stop heaters
  9341. setAllTargetHotends(0);
  9342. //lift z
  9343. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  9344. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  9345. plan_buffer_line_curposXYZE(15);
  9346. //Move XY to side
  9347. current_position[X_AXIS] = X_PAUSE_POS;
  9348. current_position[Y_AXIS] = Y_PAUSE_POS;
  9349. plan_buffer_line_curposXYZE(50);
  9350. // Turn off the print fan
  9351. fanSpeed = 0;
  9352. }
  9353. void serialecho_temperatures() {
  9354. float tt = degHotend(active_extruder);
  9355. SERIAL_PROTOCOLPGM("T:");
  9356. SERIAL_PROTOCOL(tt);
  9357. SERIAL_PROTOCOLPGM(" E:");
  9358. SERIAL_PROTOCOL((int)active_extruder);
  9359. SERIAL_PROTOCOLPGM(" B:");
  9360. SERIAL_PROTOCOL_F(degBed(), 1);
  9361. SERIAL_PROTOCOLLN();
  9362. }
  9363. #ifdef UVLO_SUPPORT
  9364. void uvlo_drain_reset()
  9365. {
  9366. // burn all that residual power
  9367. wdt_enable(WDTO_1S);
  9368. WRITE(BEEPER,HIGH);
  9369. lcd_clear();
  9370. lcd_puts_at_P(0, 1, MSG_POWERPANIC_DETECTED);
  9371. while(1);
  9372. }
  9373. void uvlo_()
  9374. {
  9375. unsigned long time_start = _millis();
  9376. bool sd_print = card.sdprinting;
  9377. // Conserve power as soon as possible.
  9378. #ifdef LCD_BL_PIN
  9379. backlightMode = BACKLIGHT_MODE_DIM;
  9380. backlightLevel_LOW = 0;
  9381. backlight_update();
  9382. #endif //LCD_BL_PIN
  9383. disable_x();
  9384. disable_y();
  9385. #ifdef TMC2130
  9386. tmc2130_set_current_h(Z_AXIS, 20);
  9387. tmc2130_set_current_r(Z_AXIS, 20);
  9388. tmc2130_set_current_h(E_AXIS, 20);
  9389. tmc2130_set_current_r(E_AXIS, 20);
  9390. #endif //TMC2130
  9391. // Stop all heaters
  9392. uint8_t saved_target_temperature_bed = target_temperature_bed;
  9393. uint16_t saved_target_temperature_ext = target_temperature[active_extruder];
  9394. setAllTargetHotends(0);
  9395. setTargetBed(0);
  9396. // Calculate the file position, from which to resume this print.
  9397. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  9398. {
  9399. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9400. sd_position -= sdlen_planner;
  9401. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9402. sd_position -= sdlen_cmdqueue;
  9403. if (sd_position < 0) sd_position = 0;
  9404. }
  9405. // save the global state at planning time
  9406. uint16_t feedrate_bckp;
  9407. if (current_block)
  9408. {
  9409. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9410. feedrate_bckp = current_block->gcode_feedrate;
  9411. }
  9412. else
  9413. {
  9414. saved_target[0] = SAVED_TARGET_UNSET;
  9415. feedrate_bckp = feedrate;
  9416. }
  9417. // From this point on and up to the print recovery, Z should not move during X/Y travels and
  9418. // should be controlled precisely. Reset the MBL status before planner_abort_hard in order to
  9419. // get the physical Z for further manipulation.
  9420. bool mbl_was_active = mbl.active;
  9421. mbl.active = false;
  9422. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  9423. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  9424. // are in action.
  9425. planner_abort_hard();
  9426. // Store the print logical Z position, which we need to recover (a slight error here would be
  9427. // recovered on the next Gcode instruction, while a physical location error would not)
  9428. float logical_z = current_position[Z_AXIS];
  9429. if(mbl_was_active) logical_z -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  9430. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z, logical_z);
  9431. // Store the print E position before we lose track
  9432. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), current_position[E_AXIS]);
  9433. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, (axis_relative_modes & E_AXIS_MASK)?0:1);
  9434. // Clean the input command queue, inhibit serial processing using saved_printing
  9435. cmdqueue_reset();
  9436. card.sdprinting = false;
  9437. saved_printing = true;
  9438. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9439. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9440. sei();
  9441. // Retract
  9442. current_position[E_AXIS] -= default_retraction;
  9443. plan_buffer_line_curposXYZE(95);
  9444. st_synchronize();
  9445. disable_e0();
  9446. // Read out the current Z motor microstep counter to move the axis up towards
  9447. // a full step before powering off. NOTE: we need to ensure to schedule more
  9448. // than "dropsegments" steps in order to move (this is always the case here
  9449. // due to UVLO_Z_AXIS_SHIFT being used)
  9450. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9451. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9452. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9453. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9454. + UVLO_Z_AXIS_SHIFT;
  9455. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9456. st_synchronize();
  9457. poweroff_z();
  9458. // Write the file position.
  9459. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  9460. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9461. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9462. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9463. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9464. // Scale the z value to 1u resolution.
  9465. int16_t v = mbl_was_active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9466. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9467. }
  9468. // Write the _final_ Z position and motor microstep counter (unused).
  9469. eeprom_update_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z, current_position[Z_AXIS]);
  9470. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9471. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9472. // Store the current position.
  9473. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9474. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9475. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9476. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9477. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY, feedmultiply);
  9478. eeprom_update_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND, saved_target_temperature_ext);
  9479. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, saved_target_temperature_bed);
  9480. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9481. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9482. #if EXTRUDERS > 1
  9483. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9484. #if EXTRUDERS > 2
  9485. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9486. #endif
  9487. #endif
  9488. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9489. eeprom_update_float((float*)(EEPROM_UVLO_ACCELL), cs.acceleration);
  9490. eeprom_update_float((float*)(EEPROM_UVLO_RETRACT_ACCELL), cs.retract_acceleration);
  9491. eeprom_update_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL), cs.travel_acceleration);
  9492. // Store the saved target
  9493. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  9494. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  9495. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  9496. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  9497. #ifdef LIN_ADVANCE
  9498. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  9499. #endif
  9500. // Finaly store the "power outage" flag.
  9501. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9502. // Increment power failure counter
  9503. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9504. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9505. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9506. WRITE(BEEPER,HIGH);
  9507. // All is set: with all the juice left, try to move extruder away to detach the nozzle completely from the print
  9508. poweron_z();
  9509. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9510. plan_buffer_line_curposXYZE(500);
  9511. st_synchronize();
  9512. wdt_enable(WDTO_1S);
  9513. while(1);
  9514. }
  9515. void uvlo_tiny()
  9516. {
  9517. unsigned long time_start = _millis();
  9518. // Conserve power as soon as possible.
  9519. disable_x();
  9520. disable_y();
  9521. disable_e0();
  9522. #ifdef TMC2130
  9523. tmc2130_set_current_h(Z_AXIS, 20);
  9524. tmc2130_set_current_r(Z_AXIS, 20);
  9525. #endif //TMC2130
  9526. // Stop all heaters
  9527. setAllTargetHotends(0);
  9528. setTargetBed(0);
  9529. // When power is interrupted on the _first_ recovery an attempt can be made to raise the
  9530. // extruder, causing the Z position to change. Similarly, when recovering, the Z position is
  9531. // lowered. In such cases we cannot just save Z, we need to re-align the steppers to a fullstep.
  9532. // Disable MBL (if not already) to work with physical coordinates.
  9533. mbl.active = false;
  9534. planner_abort_hard();
  9535. // Allow for small roundoffs to be ignored
  9536. if(abs(current_position[Z_AXIS] - eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))) >= 1.f/cs.axis_steps_per_unit[Z_AXIS])
  9537. {
  9538. // Clean the input command queue, inhibit serial processing using saved_printing
  9539. cmdqueue_reset();
  9540. card.sdprinting = false;
  9541. saved_printing = true;
  9542. // Enable stepper driver interrupt to move Z axis. This should be fine as the planner and
  9543. // command queues are empty, SD card printing is disabled, usb is inhibited.
  9544. sei();
  9545. // The axis was moved: adjust Z as done on a regular UVLO.
  9546. uint16_t z_res = tmc2130_get_res(Z_AXIS);
  9547. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9548. current_position[Z_AXIS] += float(1024 - z_microsteps)
  9549. / (z_res * cs.axis_steps_per_unit[Z_AXIS])
  9550. + UVLO_TINY_Z_AXIS_SHIFT;
  9551. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS]/60);
  9552. st_synchronize();
  9553. poweroff_z();
  9554. // Update Z position
  9555. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9556. // Update the _final_ Z motor microstep counter (unused).
  9557. z_microsteps = tmc2130_rd_MSCNT(Z_AXIS);
  9558. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9559. }
  9560. // Update the the "power outage" flag.
  9561. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9562. // Increment power failure counter
  9563. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9564. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9565. printf_P(_N("UVLO_TINY - end %d\n"), _millis() - time_start);
  9566. uvlo_drain_reset();
  9567. }
  9568. #endif //UVLO_SUPPORT
  9569. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9570. void setup_fan_interrupt() {
  9571. //INT7
  9572. DDRE &= ~(1 << 7); //input pin
  9573. PORTE &= ~(1 << 7); //no internal pull-up
  9574. //start with sensing rising edge
  9575. EICRB &= ~(1 << 6);
  9576. EICRB |= (1 << 7);
  9577. //enable INT7 interrupt
  9578. EIMSK |= (1 << 7);
  9579. }
  9580. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9581. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9582. ISR(INT7_vect) {
  9583. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9584. #ifdef FAN_SOFT_PWM
  9585. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9586. #else //FAN_SOFT_PWM
  9587. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9588. #endif //FAN_SOFT_PWM
  9589. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9590. t_fan_rising_edge = millis_nc();
  9591. }
  9592. else { //interrupt was triggered by falling edge
  9593. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9594. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9595. }
  9596. }
  9597. EICRB ^= (1 << 6); //change edge
  9598. }
  9599. #endif
  9600. #ifdef UVLO_SUPPORT
  9601. void setup_uvlo_interrupt() {
  9602. DDRE &= ~(1 << 4); //input pin
  9603. PORTE &= ~(1 << 4); //no internal pull-up
  9604. // sensing falling edge
  9605. EICRB |= (1 << 0);
  9606. EICRB &= ~(1 << 1);
  9607. // enable INT4 interrupt
  9608. EIMSK |= (1 << 4);
  9609. // check if power was lost before we armed the interrupt
  9610. if(!(PINE & (1 << 4)) && eeprom_read_byte((uint8_t*)EEPROM_UVLO))
  9611. {
  9612. SERIAL_ECHOLNPGM("INT4");
  9613. uvlo_drain_reset();
  9614. }
  9615. }
  9616. ISR(INT4_vect) {
  9617. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9618. SERIAL_ECHOLNPGM("INT4");
  9619. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9620. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9621. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9622. }
  9623. void recover_print(uint8_t automatic) {
  9624. char cmd[30];
  9625. lcd_update_enable(true);
  9626. lcd_update(2);
  9627. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20
  9628. // Recover position, temperatures and extrude_multipliers
  9629. bool mbl_was_active = recover_machine_state_after_power_panic();
  9630. // Lift the print head 25mm, first to avoid collisions with oozed material with the print,
  9631. // and second also so one may remove the excess priming material.
  9632. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1)
  9633. {
  9634. sprintf_P(cmd, PSTR("G1 Z%.3f F800"), current_position[Z_AXIS] + 25);
  9635. enquecommand(cmd);
  9636. }
  9637. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine
  9638. // transformation status. G28 will not touch Z when MBL is off.
  9639. enquecommand_P(PSTR("G28 X Y"));
  9640. // Set the target bed and nozzle temperatures and wait.
  9641. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  9642. enquecommand(cmd);
  9643. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  9644. enquecommand(cmd);
  9645. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9646. enquecommand(cmd);
  9647. enquecommand_P(PSTR("M83")); //E axis relative mode
  9648. // If not automatically recoreverd (long power loss)
  9649. if(automatic == 0){
  9650. //Extrude some filament to stabilize the pressure
  9651. enquecommand_P(PSTR("G1 E5 F120"));
  9652. // Retract to be consistent with a short pause
  9653. sprintf_P(cmd, PSTR("G1 E%-0.3f F2700"), default_retraction);
  9654. enquecommand(cmd);
  9655. }
  9656. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9657. // Restart the print.
  9658. restore_print_from_eeprom(mbl_was_active);
  9659. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9660. }
  9661. bool recover_machine_state_after_power_panic()
  9662. {
  9663. // 1) Preset some dummy values for the XY axes
  9664. current_position[X_AXIS] = 0;
  9665. current_position[Y_AXIS] = 0;
  9666. // 2) Restore the mesh bed leveling offsets, but not the MBL status.
  9667. // This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9668. bool mbl_was_active = false;
  9669. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9670. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9671. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9672. // Scale the z value to 10u resolution.
  9673. int16_t v;
  9674. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9675. if (v != 0)
  9676. mbl_was_active = true;
  9677. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9678. }
  9679. // Recover the physical coordinate of the Z axis at the time of the power panic.
  9680. // The current position after power panic is moved to the next closest 0th full step.
  9681. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z));
  9682. // Recover last E axis position
  9683. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9684. memcpy(destination, current_position, sizeof(destination));
  9685. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9686. print_world_coordinates();
  9687. // 3) Initialize the logical to physical coordinate system transformation.
  9688. world2machine_initialize();
  9689. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9690. // print_mesh_bed_leveling_table();
  9691. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9692. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9693. babystep_load();
  9694. // 5) Set the physical positions from the logical positions using the world2machine transformation
  9695. // This is only done to inizialize Z/E axes with physical locations, since X/Y are unknown.
  9696. plan_set_position_curposXYZE();
  9697. // 6) Power up the Z motors, mark their positions as known.
  9698. axis_known_position[Z_AXIS] = true;
  9699. enable_z();
  9700. // 7) Recover the target temperatures.
  9701. target_temperature[active_extruder] = eeprom_read_word((uint16_t*)EEPROM_UVLO_TARGET_HOTEND);
  9702. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9703. // 8) Recover extruder multipilers
  9704. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9705. #if EXTRUDERS > 1
  9706. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9707. #if EXTRUDERS > 2
  9708. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9709. #endif
  9710. #endif
  9711. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9712. // 9) Recover the saved target
  9713. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  9714. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  9715. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  9716. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  9717. #ifdef LIN_ADVANCE
  9718. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  9719. #endif
  9720. return mbl_was_active;
  9721. }
  9722. void restore_print_from_eeprom(bool mbl_was_active) {
  9723. int feedrate_rec;
  9724. int feedmultiply_rec;
  9725. uint8_t fan_speed_rec;
  9726. char cmd[30];
  9727. char filename[13];
  9728. uint8_t depth = 0;
  9729. char dir_name[9];
  9730. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9731. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9732. feedmultiply_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDMULTIPLY);
  9733. SERIAL_ECHOPGM("Feedrate:");
  9734. MYSERIAL.print(feedrate_rec);
  9735. SERIAL_ECHOPGM(", feedmultiply:");
  9736. MYSERIAL.println(feedmultiply_rec);
  9737. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9738. MYSERIAL.println(int(depth));
  9739. for (int i = 0; i < depth; i++) {
  9740. for (int j = 0; j < 8; j++) {
  9741. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9742. }
  9743. dir_name[8] = '\0';
  9744. MYSERIAL.println(dir_name);
  9745. // strcpy(dir_names[i], dir_name);
  9746. card.chdir(dir_name, false);
  9747. }
  9748. for (int i = 0; i < 8; i++) {
  9749. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9750. }
  9751. filename[8] = '\0';
  9752. MYSERIAL.print(filename);
  9753. strcat_P(filename, PSTR(".gco"));
  9754. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9755. enquecommand(cmd);
  9756. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9757. SERIAL_ECHOPGM("Position read from eeprom:");
  9758. MYSERIAL.println(position);
  9759. // Move to the XY print position in logical coordinates, where the print has been killed, but
  9760. // without shifting Z along the way. This requires performing the move without mbl.
  9761. sprintf_P(cmd, PSTR("G1 X%f Y%f F3000"),
  9762. eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0)),
  9763. eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4)));
  9764. enquecommand(cmd);
  9765. // Enable MBL and switch to logical positioning
  9766. if (mbl_was_active)
  9767. enquecommand_P(PSTR("PRUSA MBL V1"));
  9768. // Move the Z axis down to the print, in logical coordinates.
  9769. sprintf_P(cmd, PSTR("G1 Z%f"), eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)));
  9770. enquecommand(cmd);
  9771. // Restore acceleration settings
  9772. float acceleration = eeprom_read_float((float*)(EEPROM_UVLO_ACCELL));
  9773. float retract_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_RETRACT_ACCELL));
  9774. float travel_acceleration = eeprom_read_float((float*)(EEPROM_UVLO_TRAVEL_ACCELL));
  9775. sprintf_P(cmd, PSTR("M204 P%f R%f T%f"), acceleration, retract_acceleration, travel_acceleration);
  9776. enquecommand(cmd);
  9777. // Unretract.
  9778. sprintf_P(cmd, PSTR("G1 E%0.3f F2700"), default_retraction);
  9779. enquecommand(cmd);
  9780. // Recover final E axis position and mode
  9781. float pos_e = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9782. sprintf_P(cmd, PSTR("G92 E"));
  9783. dtostrf(pos_e, 6, 3, cmd + strlen(cmd));
  9784. enquecommand(cmd);
  9785. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9786. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9787. // Set the feedrates saved at the power panic.
  9788. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9789. enquecommand(cmd);
  9790. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9791. enquecommand(cmd);
  9792. // Set the fan speed saved at the power panic.
  9793. strcpy_P(cmd, PSTR("M106 S"));
  9794. strcat(cmd, itostr3(int(fan_speed_rec)));
  9795. enquecommand(cmd);
  9796. // Set a position in the file.
  9797. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9798. enquecommand(cmd);
  9799. enquecommand_P(PSTR("G4 S0"));
  9800. enquecommand_P(PSTR("PRUSA uvlo"));
  9801. }
  9802. #endif //UVLO_SUPPORT
  9803. //! @brief Immediately stop print moves
  9804. //!
  9805. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  9806. //! If printing from sd card, position in file is saved.
  9807. //! If printing from USB, line number is saved.
  9808. //!
  9809. //! @param z_move
  9810. //! @param e_move
  9811. void stop_and_save_print_to_ram(float z_move, float e_move)
  9812. {
  9813. if (saved_printing) return;
  9814. #if 0
  9815. unsigned char nplanner_blocks;
  9816. #endif
  9817. unsigned char nlines;
  9818. uint16_t sdlen_planner;
  9819. uint16_t sdlen_cmdqueue;
  9820. cli();
  9821. if (card.sdprinting) {
  9822. #if 0
  9823. nplanner_blocks = number_of_blocks();
  9824. #endif
  9825. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  9826. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9827. saved_sdpos -= sdlen_planner;
  9828. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9829. saved_sdpos -= sdlen_cmdqueue;
  9830. saved_printing_type = PRINTING_TYPE_SD;
  9831. }
  9832. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  9833. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  9834. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  9835. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  9836. saved_sdpos -= nlines;
  9837. saved_sdpos -= buflen; //number of blocks in cmd buffer
  9838. saved_printing_type = PRINTING_TYPE_USB;
  9839. }
  9840. else {
  9841. saved_printing_type = PRINTING_TYPE_NONE;
  9842. //not sd printing nor usb printing
  9843. }
  9844. #if 0
  9845. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  9846. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  9847. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  9848. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  9849. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  9850. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  9851. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  9852. {
  9853. card.setIndex(saved_sdpos);
  9854. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  9855. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  9856. MYSERIAL.print(char(card.get()));
  9857. SERIAL_ECHOLNPGM("Content of command buffer: ");
  9858. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  9859. MYSERIAL.print(char(card.get()));
  9860. SERIAL_ECHOLNPGM("End of command buffer");
  9861. }
  9862. {
  9863. // Print the content of the planner buffer, line by line:
  9864. card.setIndex(saved_sdpos);
  9865. int8_t iline = 0;
  9866. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  9867. SERIAL_ECHOPGM("Planner line (from file): ");
  9868. MYSERIAL.print(int(iline), DEC);
  9869. SERIAL_ECHOPGM(", length: ");
  9870. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  9871. SERIAL_ECHOPGM(", steps: (");
  9872. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  9873. SERIAL_ECHOPGM(",");
  9874. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  9875. SERIAL_ECHOPGM(",");
  9876. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  9877. SERIAL_ECHOPGM(",");
  9878. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  9879. SERIAL_ECHOPGM("), events: ");
  9880. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  9881. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  9882. MYSERIAL.print(char(card.get()));
  9883. }
  9884. }
  9885. {
  9886. // Print the content of the command buffer, line by line:
  9887. int8_t iline = 0;
  9888. union {
  9889. struct {
  9890. char lo;
  9891. char hi;
  9892. } lohi;
  9893. uint16_t value;
  9894. } sdlen_single;
  9895. int _bufindr = bufindr;
  9896. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  9897. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  9898. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  9899. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  9900. }
  9901. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  9902. MYSERIAL.print(int(iline), DEC);
  9903. SERIAL_ECHOPGM(", type: ");
  9904. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  9905. SERIAL_ECHOPGM(", len: ");
  9906. MYSERIAL.println(sdlen_single.value, DEC);
  9907. // Print the content of the buffer line.
  9908. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  9909. SERIAL_ECHOPGM("Buffer line (from file): ");
  9910. MYSERIAL.println(int(iline), DEC);
  9911. for (; sdlen_single.value > 0; -- sdlen_single.value)
  9912. MYSERIAL.print(char(card.get()));
  9913. if (-- _buflen == 0)
  9914. break;
  9915. // First skip the current command ID and iterate up to the end of the string.
  9916. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  9917. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  9918. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9919. // If the end of the buffer was empty,
  9920. if (_bufindr == sizeof(cmdbuffer)) {
  9921. // skip to the start and find the nonzero command.
  9922. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9923. }
  9924. }
  9925. }
  9926. #endif
  9927. // save the global state at planning time
  9928. if (current_block)
  9929. {
  9930. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9931. saved_feedrate2 = current_block->gcode_feedrate;
  9932. }
  9933. else
  9934. {
  9935. saved_target[0] = SAVED_TARGET_UNSET;
  9936. saved_feedrate2 = feedrate;
  9937. }
  9938. planner_abort_hard(); //abort printing
  9939. memcpy(saved_pos, current_position, sizeof(saved_pos));
  9940. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  9941. saved_active_extruder = active_extruder; //save active_extruder
  9942. saved_extruder_temperature = degTargetHotend(active_extruder);
  9943. saved_extruder_relative_mode = axis_relative_modes & E_AXIS_MASK;
  9944. saved_fanSpeed = fanSpeed;
  9945. cmdqueue_reset(); //empty cmdqueue
  9946. card.sdprinting = false;
  9947. // card.closefile();
  9948. saved_printing = true;
  9949. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  9950. st_reset_timer();
  9951. sei();
  9952. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  9953. #if 1
  9954. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  9955. // the caller can continue processing. This is used during powerpanic to save the state as we
  9956. // move away from the print.
  9957. char buf[48];
  9958. if(e_move)
  9959. {
  9960. // First unretract (relative extrusion)
  9961. if(!saved_extruder_relative_mode){
  9962. enquecommand(PSTR("M83"), true);
  9963. }
  9964. //retract 45mm/s
  9965. // A single sprintf may not be faster, but is definitely 20B shorter
  9966. // than a sequence of commands building the string piece by piece
  9967. // A snprintf would have been a safer call, but since it is not used
  9968. // in the whole program, its implementation would bring more bytes to the total size
  9969. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  9970. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  9971. enquecommand(buf, false);
  9972. }
  9973. if(z_move)
  9974. {
  9975. // Then lift Z axis
  9976. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  9977. enquecommand(buf, false);
  9978. }
  9979. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  9980. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  9981. repeatcommand_front();
  9982. #else
  9983. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  9984. st_synchronize(); //wait moving
  9985. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9986. memcpy(destination, current_position, sizeof(destination));
  9987. #endif
  9988. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9989. }
  9990. }
  9991. //! @brief Restore print from ram
  9992. //!
  9993. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  9994. //! print fan speed, waits for extruder temperature restore, then restores
  9995. //! position and continues print moves.
  9996. //!
  9997. //! Internally lcd_update() is called by wait_for_heater().
  9998. //!
  9999. //! @param e_move
  10000. void restore_print_from_ram_and_continue(float e_move)
  10001. {
  10002. if (!saved_printing) return;
  10003. #ifdef FANCHECK
  10004. // Do not allow resume printing if fans are still not ok
  10005. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  10006. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  10007. #endif
  10008. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  10009. // current_position[axis] = st_get_position_mm(axis);
  10010. active_extruder = saved_active_extruder; //restore active_extruder
  10011. fanSpeed = saved_fanSpeed;
  10012. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  10013. {
  10014. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  10015. heating_status = 1;
  10016. wait_for_heater(_millis(), saved_active_extruder);
  10017. heating_status = 2;
  10018. }
  10019. axis_relative_modes ^= (-saved_extruder_relative_mode ^ axis_relative_modes) & E_AXIS_MASK;
  10020. float e = saved_pos[E_AXIS] - e_move;
  10021. plan_set_e_position(e);
  10022. #ifdef FANCHECK
  10023. fans_check_enabled = false;
  10024. #endif
  10025. //first move print head in XY to the saved position:
  10026. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  10027. //then move Z
  10028. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  10029. //and finaly unretract (35mm/s)
  10030. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  10031. st_synchronize();
  10032. #ifdef FANCHECK
  10033. fans_check_enabled = true;
  10034. #endif
  10035. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  10036. feedrate = saved_feedrate2;
  10037. feedmultiply = saved_feedmultiply2;
  10038. memcpy(current_position, saved_pos, sizeof(saved_pos));
  10039. memcpy(destination, current_position, sizeof(destination));
  10040. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  10041. card.setIndex(saved_sdpos);
  10042. sdpos_atomic = saved_sdpos;
  10043. card.sdprinting = true;
  10044. }
  10045. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  10046. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  10047. serial_count = 0;
  10048. FlushSerialRequestResend();
  10049. }
  10050. else {
  10051. //not sd printing nor usb printing
  10052. }
  10053. lcd_setstatuspgm(_T(WELCOME_MSG));
  10054. saved_printing_type = PRINTING_TYPE_NONE;
  10055. saved_printing = false;
  10056. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  10057. }
  10058. // Cancel the state related to a currently saved print
  10059. void cancel_saved_printing()
  10060. {
  10061. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  10062. saved_target[0] = SAVED_TARGET_UNSET;
  10063. saved_printing_type = PRINTING_TYPE_NONE;
  10064. saved_printing = false;
  10065. }
  10066. void print_world_coordinates()
  10067. {
  10068. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  10069. }
  10070. void print_physical_coordinates()
  10071. {
  10072. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  10073. }
  10074. void print_mesh_bed_leveling_table()
  10075. {
  10076. SERIAL_ECHOPGM("mesh bed leveling: ");
  10077. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  10078. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  10079. MYSERIAL.print(mbl.z_values[y][x], 3);
  10080. SERIAL_ECHO(' ');
  10081. }
  10082. SERIAL_ECHOLN();
  10083. }
  10084. uint8_t calc_percent_done()
  10085. {
  10086. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  10087. uint8_t percent_done = 0;
  10088. #ifdef TMC2130
  10089. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100)
  10090. {
  10091. percent_done = print_percent_done_normal;
  10092. }
  10093. else if (print_percent_done_silent <= 100)
  10094. {
  10095. percent_done = print_percent_done_silent;
  10096. }
  10097. #else
  10098. if (print_percent_done_normal <= 100)
  10099. {
  10100. percent_done = print_percent_done_normal;
  10101. }
  10102. #endif //TMC2130
  10103. else
  10104. {
  10105. percent_done = card.percentDone();
  10106. }
  10107. return percent_done;
  10108. }
  10109. static void print_time_remaining_init()
  10110. {
  10111. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  10112. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  10113. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  10114. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  10115. print_time_to_change_normal = PRINT_TIME_REMAINING_INIT;
  10116. print_time_to_change_silent = PRINT_TIME_REMAINING_INIT;
  10117. }
  10118. void load_filament_final_feed()
  10119. {
  10120. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  10121. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL);
  10122. }
  10123. //! @brief Wait for user to check the state
  10124. //! @par nozzle_temp nozzle temperature to load filament
  10125. void M600_check_state(float nozzle_temp)
  10126. {
  10127. lcd_change_fil_state = 0;
  10128. while (lcd_change_fil_state != 1)
  10129. {
  10130. lcd_change_fil_state = 0;
  10131. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10132. lcd_alright();
  10133. KEEPALIVE_STATE(IN_HANDLER);
  10134. switch(lcd_change_fil_state)
  10135. {
  10136. // Filament failed to load so load it again
  10137. case 2:
  10138. if (mmu_enabled)
  10139. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  10140. else
  10141. M600_load_filament_movements();
  10142. break;
  10143. // Filament loaded properly but color is not clear
  10144. case 3:
  10145. st_synchronize();
  10146. load_filament_final_feed();
  10147. lcd_loading_color();
  10148. st_synchronize();
  10149. break;
  10150. // Everything good
  10151. default:
  10152. lcd_change_success();
  10153. break;
  10154. }
  10155. }
  10156. }
  10157. //! @brief Wait for user action
  10158. //!
  10159. //! Beep, manage nozzle heater and wait for user to start unload filament
  10160. //! If times out, active extruder temperature is set to 0.
  10161. //!
  10162. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  10163. void M600_wait_for_user(float HotendTempBckp) {
  10164. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10165. int counterBeep = 0;
  10166. unsigned long waiting_start_time = _millis();
  10167. uint8_t wait_for_user_state = 0;
  10168. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10169. bool bFirst=true;
  10170. while (!(wait_for_user_state == 0 && lcd_clicked())){
  10171. manage_heater();
  10172. manage_inactivity(true);
  10173. #if BEEPER > 0
  10174. if (counterBeep == 500) {
  10175. counterBeep = 0;
  10176. }
  10177. SET_OUTPUT(BEEPER);
  10178. if (counterBeep == 0) {
  10179. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  10180. {
  10181. bFirst=false;
  10182. WRITE(BEEPER, HIGH);
  10183. }
  10184. }
  10185. if (counterBeep == 20) {
  10186. WRITE(BEEPER, LOW);
  10187. }
  10188. counterBeep++;
  10189. #endif //BEEPER > 0
  10190. switch (wait_for_user_state) {
  10191. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  10192. delay_keep_alive(4);
  10193. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  10194. lcd_display_message_fullscreen_P(_i("Press the knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  10195. wait_for_user_state = 1;
  10196. setAllTargetHotends(0);
  10197. st_synchronize();
  10198. disable_e0();
  10199. disable_e1();
  10200. disable_e2();
  10201. }
  10202. break;
  10203. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  10204. delay_keep_alive(4);
  10205. if (lcd_clicked()) {
  10206. setTargetHotend(HotendTempBckp, active_extruder);
  10207. lcd_wait_for_heater();
  10208. wait_for_user_state = 2;
  10209. }
  10210. break;
  10211. case 2: //waiting for nozzle to reach target temperature
  10212. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  10213. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  10214. waiting_start_time = _millis();
  10215. wait_for_user_state = 0;
  10216. }
  10217. else {
  10218. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  10219. lcd_set_cursor(1, 4);
  10220. lcd_print(ftostr3(degHotend(active_extruder)));
  10221. }
  10222. break;
  10223. }
  10224. }
  10225. WRITE(BEEPER, LOW);
  10226. }
  10227. void M600_load_filament_movements()
  10228. {
  10229. #ifdef SNMM
  10230. display_loading();
  10231. do
  10232. {
  10233. current_position[E_AXIS] += 0.002;
  10234. plan_buffer_line_curposXYZE(500, active_extruder);
  10235. delay_keep_alive(2);
  10236. }
  10237. while (!lcd_clicked());
  10238. st_synchronize();
  10239. current_position[E_AXIS] += bowden_length[mmu_extruder];
  10240. plan_buffer_line_curposXYZE(3000, active_extruder);
  10241. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  10242. plan_buffer_line_curposXYZE(1400, active_extruder);
  10243. current_position[E_AXIS] += 40;
  10244. plan_buffer_line_curposXYZE(400, active_extruder);
  10245. current_position[E_AXIS] += 10;
  10246. plan_buffer_line_curposXYZE(50, active_extruder);
  10247. #else
  10248. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  10249. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST);
  10250. #endif
  10251. load_filament_final_feed();
  10252. lcd_loading_filament();
  10253. st_synchronize();
  10254. }
  10255. void M600_load_filament() {
  10256. //load filament for single material and SNMM
  10257. lcd_wait_interact();
  10258. //load_filament_time = _millis();
  10259. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10260. #ifdef PAT9125
  10261. fsensor_autoload_check_start();
  10262. #endif //PAT9125
  10263. while(!lcd_clicked())
  10264. {
  10265. manage_heater();
  10266. manage_inactivity(true);
  10267. #ifdef FILAMENT_SENSOR
  10268. if (fsensor_check_autoload())
  10269. {
  10270. Sound_MakeCustom(50,1000,false);
  10271. break;
  10272. }
  10273. #endif //FILAMENT_SENSOR
  10274. }
  10275. #ifdef PAT9125
  10276. fsensor_autoload_check_stop();
  10277. #endif //PAT9125
  10278. KEEPALIVE_STATE(IN_HANDLER);
  10279. #ifdef FSENSOR_QUALITY
  10280. fsensor_oq_meassure_start(70);
  10281. #endif //FSENSOR_QUALITY
  10282. M600_load_filament_movements();
  10283. Sound_MakeCustom(50,1000,false);
  10284. #ifdef FSENSOR_QUALITY
  10285. fsensor_oq_meassure_stop();
  10286. if (!fsensor_oq_result())
  10287. {
  10288. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  10289. lcd_update_enable(true);
  10290. lcd_update(2);
  10291. if (disable)
  10292. fsensor_disable();
  10293. }
  10294. #endif //FSENSOR_QUALITY
  10295. lcd_update_enable(false);
  10296. }
  10297. //! @brief Wait for click
  10298. //!
  10299. //! Set
  10300. void marlin_wait_for_click()
  10301. {
  10302. int8_t busy_state_backup = busy_state;
  10303. KEEPALIVE_STATE(PAUSED_FOR_USER);
  10304. lcd_consume_click();
  10305. while(!lcd_clicked())
  10306. {
  10307. manage_heater();
  10308. manage_inactivity(true);
  10309. lcd_update(0);
  10310. }
  10311. KEEPALIVE_STATE(busy_state_backup);
  10312. }
  10313. #define FIL_LOAD_LENGTH 60
  10314. #ifdef PSU_Delta
  10315. bool bEnableForce_z;
  10316. void init_force_z()
  10317. {
  10318. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  10319. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  10320. disable_force_z();
  10321. }
  10322. void check_force_z()
  10323. {
  10324. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  10325. init_force_z(); // causes enforced switching into disable-state
  10326. }
  10327. void disable_force_z()
  10328. {
  10329. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  10330. bEnableForce_z=false;
  10331. // switching to silent mode
  10332. #ifdef TMC2130
  10333. tmc2130_mode=TMC2130_MODE_SILENT;
  10334. update_mode_profile();
  10335. tmc2130_init(true);
  10336. #endif // TMC2130
  10337. }
  10338. void enable_force_z()
  10339. {
  10340. if(bEnableForce_z)
  10341. return; // motor already enabled (may be ;-p )
  10342. bEnableForce_z=true;
  10343. // mode recovering
  10344. #ifdef TMC2130
  10345. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  10346. update_mode_profile();
  10347. tmc2130_init(true);
  10348. #endif // TMC2130
  10349. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  10350. }
  10351. #endif // PSU_Delta