Marlin_main.cpp 310 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. // Macros for bit masks
  109. #define BIT(b) (1<<(b))
  110. #define TEST(n,b) (((n)&BIT(b))!=0)
  111. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  112. //Macro for print fan speed
  113. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  114. #define PRINTING_TYPE_SD 0
  115. #define PRINTING_TYPE_USB 1
  116. //filament types
  117. #define FILAMENT_DEFAULT 0
  118. #define FILAMENT_FLEX 1
  119. #define FILAMENT_PVA 2
  120. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  121. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  122. //Implemented Codes
  123. //-------------------
  124. // PRUSA CODES
  125. // P F - Returns FW versions
  126. // P R - Returns revision of printer
  127. // G0 -> G1
  128. // G1 - Coordinated Movement X Y Z E
  129. // G2 - CW ARC
  130. // G3 - CCW ARC
  131. // G4 - Dwell S<seconds> or P<milliseconds>
  132. // G10 - retract filament according to settings of M207
  133. // G11 - retract recover filament according to settings of M208
  134. // G28 - Home all Axis
  135. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  136. // G30 - Single Z Probe, probes bed at current XY location.
  137. // G31 - Dock sled (Z_PROBE_SLED only)
  138. // G32 - Undock sled (Z_PROBE_SLED only)
  139. // G80 - Automatic mesh bed leveling
  140. // G81 - Print bed profile
  141. // G90 - Use Absolute Coordinates
  142. // G91 - Use Relative Coordinates
  143. // G92 - Set current position to coordinates given
  144. // M Codes
  145. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  146. // M1 - Same as M0
  147. // M17 - Enable/Power all stepper motors
  148. // M18 - Disable all stepper motors; same as M84
  149. // M20 - List SD card
  150. // M21 - Init SD card
  151. // M22 - Release SD card
  152. // M23 - Select SD file (M23 filename.g)
  153. // M24 - Start/resume SD print
  154. // M25 - Pause SD print
  155. // M26 - Set SD position in bytes (M26 S12345)
  156. // M27 - Report SD print status
  157. // M28 - Start SD write (M28 filename.g)
  158. // M29 - Stop SD write
  159. // M30 - Delete file from SD (M30 filename.g)
  160. // M31 - Output time since last M109 or SD card start to serial
  161. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  162. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  163. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  164. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  165. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  166. // M73 - Show percent done and print time remaining
  167. // M80 - Turn on Power Supply
  168. // M81 - Turn off Power Supply
  169. // M82 - Set E codes absolute (default)
  170. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  171. // M84 - Disable steppers until next move,
  172. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  173. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  174. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  175. // M92 - Set axis_steps_per_unit - same syntax as G92
  176. // M104 - Set extruder target temp
  177. // M105 - Read current temp
  178. // M106 - Fan on
  179. // M107 - Fan off
  180. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  181. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  182. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  183. // M112 - Emergency stop
  184. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  185. // M114 - Output current position to serial port
  186. // M115 - Capabilities string
  187. // M117 - display message
  188. // M119 - Output Endstop status to serial port
  189. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  190. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  191. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  192. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  193. // M140 - Set bed target temp
  194. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  195. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  196. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  197. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  198. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  199. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  200. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  201. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  202. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  203. // M206 - set additional homing offset
  204. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  205. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  206. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  207. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  208. // M220 S<factor in percent>- set speed factor override percentage
  209. // M221 S<factor in percent>- set extrude factor override percentage
  210. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  211. // M240 - Trigger a camera to take a photograph
  212. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  213. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  214. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  215. // M301 - Set PID parameters P I and D
  216. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  217. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  218. // M304 - Set bed PID parameters P I and D
  219. // M400 - Finish all moves
  220. // M401 - Lower z-probe if present
  221. // M402 - Raise z-probe if present
  222. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  223. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  224. // M406 - Turn off Filament Sensor extrusion control
  225. // M407 - Displays measured filament diameter
  226. // M500 - stores parameters in EEPROM
  227. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  228. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  229. // M503 - print the current settings (from memory not from EEPROM)
  230. // M509 - force language selection on next restart
  231. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  232. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  233. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  234. // M860 - Wait for PINDA thermistor to reach target temperature.
  235. // M861 - Set / Read PINDA temperature compensation offsets
  236. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  237. // M907 - Set digital trimpot motor current using axis codes.
  238. // M908 - Control digital trimpot directly.
  239. // M350 - Set microstepping mode.
  240. // M351 - Toggle MS1 MS2 pins directly.
  241. // M928 - Start SD logging (M928 filename.g) - ended by M29
  242. // M999 - Restart after being stopped by error
  243. //Stepper Movement Variables
  244. //===========================================================================
  245. //=============================imported variables============================
  246. //===========================================================================
  247. //===========================================================================
  248. //=============================public variables=============================
  249. //===========================================================================
  250. #ifdef SDSUPPORT
  251. CardReader card;
  252. #endif
  253. unsigned long PingTime = millis();
  254. unsigned long NcTime;
  255. //used for PINDA temp calibration and pause print
  256. #define DEFAULT_RETRACTION 1
  257. #define DEFAULT_RETRACTION_MM 4 //MM
  258. float default_retraction = DEFAULT_RETRACTION;
  259. float homing_feedrate[] = HOMING_FEEDRATE;
  260. // Currently only the extruder axis may be switched to a relative mode.
  261. // Other axes are always absolute or relative based on the common relative_mode flag.
  262. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  263. int feedmultiply=100; //100->1 200->2
  264. int saved_feedmultiply;
  265. int extrudemultiply=100; //100->1 200->2
  266. int extruder_multiply[EXTRUDERS] = {100
  267. #if EXTRUDERS > 1
  268. , 100
  269. #if EXTRUDERS > 2
  270. , 100
  271. #endif
  272. #endif
  273. };
  274. int bowden_length[4] = {385, 385, 385, 385};
  275. bool is_usb_printing = false;
  276. bool homing_flag = false;
  277. bool temp_cal_active = false;
  278. unsigned long kicktime = millis()+100000;
  279. unsigned int usb_printing_counter;
  280. int8_t lcd_change_fil_state = 0;
  281. int feedmultiplyBckp = 100;
  282. float HotendTempBckp = 0;
  283. int fanSpeedBckp = 0;
  284. float pause_lastpos[4];
  285. unsigned long pause_time = 0;
  286. unsigned long start_pause_print = millis();
  287. unsigned long t_fan_rising_edge = millis();
  288. static LongTimer safetyTimer;
  289. static LongTimer crashDetTimer;
  290. //unsigned long load_filament_time;
  291. bool mesh_bed_leveling_flag = false;
  292. bool mesh_bed_run_from_menu = false;
  293. int8_t FarmMode = 0;
  294. bool prusa_sd_card_upload = false;
  295. unsigned int status_number = 0;
  296. unsigned long total_filament_used;
  297. unsigned int heating_status;
  298. unsigned int heating_status_counter;
  299. bool custom_message;
  300. bool loading_flag = false;
  301. unsigned int custom_message_type;
  302. unsigned int custom_message_state;
  303. char snmm_filaments_used = 0;
  304. bool fan_state[2];
  305. int fan_edge_counter[2];
  306. int fan_speed[2];
  307. char dir_names[3][9];
  308. bool sortAlpha = false;
  309. bool volumetric_enabled = false;
  310. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  311. #if EXTRUDERS > 1
  312. , DEFAULT_NOMINAL_FILAMENT_DIA
  313. #if EXTRUDERS > 2
  314. , DEFAULT_NOMINAL_FILAMENT_DIA
  315. #endif
  316. #endif
  317. };
  318. float extruder_multiplier[EXTRUDERS] = {1.0
  319. #if EXTRUDERS > 1
  320. , 1.0
  321. #if EXTRUDERS > 2
  322. , 1.0
  323. #endif
  324. #endif
  325. };
  326. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  327. //shortcuts for more readable code
  328. #define _x current_position[X_AXIS]
  329. #define _y current_position[Y_AXIS]
  330. #define _z current_position[Z_AXIS]
  331. #define _e current_position[E_AXIS]
  332. float add_homing[3]={0,0,0};
  333. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  334. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  335. bool axis_known_position[3] = {false, false, false};
  336. float zprobe_zoffset;
  337. // Extruder offset
  338. #if EXTRUDERS > 1
  339. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  340. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  341. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  342. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  343. #endif
  344. };
  345. #endif
  346. uint8_t active_extruder = 0;
  347. int fanSpeed=0;
  348. #ifdef FWRETRACT
  349. bool autoretract_enabled=false;
  350. bool retracted[EXTRUDERS]={false
  351. #if EXTRUDERS > 1
  352. , false
  353. #if EXTRUDERS > 2
  354. , false
  355. #endif
  356. #endif
  357. };
  358. bool retracted_swap[EXTRUDERS]={false
  359. #if EXTRUDERS > 1
  360. , false
  361. #if EXTRUDERS > 2
  362. , false
  363. #endif
  364. #endif
  365. };
  366. float retract_length = RETRACT_LENGTH;
  367. float retract_length_swap = RETRACT_LENGTH_SWAP;
  368. float retract_feedrate = RETRACT_FEEDRATE;
  369. float retract_zlift = RETRACT_ZLIFT;
  370. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  371. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  372. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  373. #endif
  374. #ifdef PS_DEFAULT_OFF
  375. bool powersupply = false;
  376. #else
  377. bool powersupply = true;
  378. #endif
  379. bool cancel_heatup = false ;
  380. #ifdef HOST_KEEPALIVE_FEATURE
  381. int busy_state = NOT_BUSY;
  382. static long prev_busy_signal_ms = -1;
  383. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  384. #else
  385. #define host_keepalive();
  386. #define KEEPALIVE_STATE(n);
  387. #endif
  388. const char errormagic[] PROGMEM = "Error:";
  389. const char echomagic[] PROGMEM = "echo:";
  390. bool no_response = false;
  391. uint8_t important_status;
  392. uint8_t saved_filament_type;
  393. // save/restore printing
  394. bool saved_printing = false;
  395. // save/restore printing in case that mmu was not responding
  396. bool mmu_print_saved = false;
  397. // storing estimated time to end of print counted by slicer
  398. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  399. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  400. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  401. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  402. //===========================================================================
  403. //=============================Private Variables=============================
  404. //===========================================================================
  405. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  406. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  407. // For tracing an arc
  408. static float offset[3] = {0.0, 0.0, 0.0};
  409. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  410. // Determines Absolute or Relative Coordinates.
  411. // Also there is bool axis_relative_modes[] per axis flag.
  412. static bool relative_mode = false;
  413. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  414. //static float tt = 0;
  415. //static float bt = 0;
  416. //Inactivity shutdown variables
  417. static unsigned long previous_millis_cmd = 0;
  418. unsigned long max_inactive_time = 0;
  419. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  420. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  421. unsigned long starttime=0;
  422. unsigned long stoptime=0;
  423. unsigned long _usb_timer = 0;
  424. static uint8_t tmp_extruder;
  425. bool extruder_under_pressure = true;
  426. bool Stopped=false;
  427. #if NUM_SERVOS > 0
  428. Servo servos[NUM_SERVOS];
  429. #endif
  430. bool CooldownNoWait = true;
  431. bool target_direction;
  432. //Insert variables if CHDK is defined
  433. #ifdef CHDK
  434. unsigned long chdkHigh = 0;
  435. boolean chdkActive = false;
  436. #endif
  437. // save/restore printing
  438. static uint32_t saved_sdpos = 0;
  439. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  440. static float saved_pos[4] = { 0, 0, 0, 0 };
  441. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  442. static float saved_feedrate2 = 0;
  443. static uint8_t saved_active_extruder = 0;
  444. static bool saved_extruder_under_pressure = false;
  445. static bool saved_extruder_relative_mode = false;
  446. //===========================================================================
  447. //=============================Routines======================================
  448. //===========================================================================
  449. static void get_arc_coordinates();
  450. static bool setTargetedHotend(int code);
  451. static void print_time_remaining_init();
  452. uint16_t gcode_in_progress = 0;
  453. uint16_t mcode_in_progress = 0;
  454. void serial_echopair_P(const char *s_P, float v)
  455. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  456. void serial_echopair_P(const char *s_P, double v)
  457. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  458. void serial_echopair_P(const char *s_P, unsigned long v)
  459. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  460. #ifdef SDSUPPORT
  461. #include "SdFatUtil.h"
  462. int freeMemory() { return SdFatUtil::FreeRam(); }
  463. #else
  464. extern "C" {
  465. extern unsigned int __bss_end;
  466. extern unsigned int __heap_start;
  467. extern void *__brkval;
  468. int freeMemory() {
  469. int free_memory;
  470. if ((int)__brkval == 0)
  471. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  472. else
  473. free_memory = ((int)&free_memory) - ((int)__brkval);
  474. return free_memory;
  475. }
  476. }
  477. #endif //!SDSUPPORT
  478. void setup_killpin()
  479. {
  480. #if defined(KILL_PIN) && KILL_PIN > -1
  481. SET_INPUT(KILL_PIN);
  482. WRITE(KILL_PIN,HIGH);
  483. #endif
  484. }
  485. // Set home pin
  486. void setup_homepin(void)
  487. {
  488. #if defined(HOME_PIN) && HOME_PIN > -1
  489. SET_INPUT(HOME_PIN);
  490. WRITE(HOME_PIN,HIGH);
  491. #endif
  492. }
  493. void setup_photpin()
  494. {
  495. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  496. SET_OUTPUT(PHOTOGRAPH_PIN);
  497. WRITE(PHOTOGRAPH_PIN, LOW);
  498. #endif
  499. }
  500. void setup_powerhold()
  501. {
  502. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  503. SET_OUTPUT(SUICIDE_PIN);
  504. WRITE(SUICIDE_PIN, HIGH);
  505. #endif
  506. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  507. SET_OUTPUT(PS_ON_PIN);
  508. #if defined(PS_DEFAULT_OFF)
  509. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  510. #else
  511. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  512. #endif
  513. #endif
  514. }
  515. void suicide()
  516. {
  517. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  518. SET_OUTPUT(SUICIDE_PIN);
  519. WRITE(SUICIDE_PIN, LOW);
  520. #endif
  521. }
  522. void servo_init()
  523. {
  524. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  525. servos[0].attach(SERVO0_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  528. servos[1].attach(SERVO1_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  531. servos[2].attach(SERVO2_PIN);
  532. #endif
  533. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  534. servos[3].attach(SERVO3_PIN);
  535. #endif
  536. #if (NUM_SERVOS >= 5)
  537. #error "TODO: enter initalisation code for more servos"
  538. #endif
  539. }
  540. void stop_and_save_print_to_ram(float z_move, float e_move);
  541. void restore_print_from_ram_and_continue(float e_move);
  542. bool fans_check_enabled = true;
  543. #ifdef TMC2130
  544. extern int8_t CrashDetectMenu;
  545. void crashdet_enable()
  546. {
  547. tmc2130_sg_stop_on_crash = true;
  548. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  549. CrashDetectMenu = 1;
  550. }
  551. void crashdet_disable()
  552. {
  553. tmc2130_sg_stop_on_crash = false;
  554. tmc2130_sg_crash = 0;
  555. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  556. CrashDetectMenu = 0;
  557. }
  558. void crashdet_stop_and_save_print()
  559. {
  560. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  561. }
  562. void crashdet_restore_print_and_continue()
  563. {
  564. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  565. // babystep_apply();
  566. }
  567. void crashdet_stop_and_save_print2()
  568. {
  569. cli();
  570. planner_abort_hard(); //abort printing
  571. cmdqueue_reset(); //empty cmdqueue
  572. card.sdprinting = false;
  573. card.closefile();
  574. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  575. st_reset_timer();
  576. sei();
  577. }
  578. void crashdet_detected(uint8_t mask)
  579. {
  580. st_synchronize();
  581. static uint8_t crashDet_counter = 0;
  582. bool automatic_recovery_after_crash = true;
  583. if (crashDet_counter++ == 0) {
  584. crashDetTimer.start();
  585. }
  586. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  587. crashDetTimer.stop();
  588. crashDet_counter = 0;
  589. }
  590. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  591. automatic_recovery_after_crash = false;
  592. crashDetTimer.stop();
  593. crashDet_counter = 0;
  594. }
  595. else {
  596. crashDetTimer.start();
  597. }
  598. lcd_update_enable(true);
  599. lcd_clear();
  600. lcd_update(2);
  601. if (mask & X_AXIS_MASK)
  602. {
  603. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  604. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  605. }
  606. if (mask & Y_AXIS_MASK)
  607. {
  608. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  609. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  610. }
  611. lcd_update_enable(true);
  612. lcd_update(2);
  613. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  614. gcode_G28(true, true, false); //home X and Y
  615. st_synchronize();
  616. if (automatic_recovery_after_crash) {
  617. enquecommand_P(PSTR("CRASH_RECOVER"));
  618. }else{
  619. HotendTempBckp = degTargetHotend(active_extruder);
  620. setTargetHotend(0, active_extruder);
  621. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  622. lcd_update_enable(true);
  623. if (yesno)
  624. {
  625. char cmd1[10];
  626. strcpy(cmd1, "M109 S");
  627. strcat(cmd1, ftostr3(HotendTempBckp));
  628. enquecommand(cmd1);
  629. enquecommand_P(PSTR("CRASH_RECOVER"));
  630. }
  631. else
  632. {
  633. enquecommand_P(PSTR("CRASH_CANCEL"));
  634. }
  635. }
  636. }
  637. void crashdet_recover()
  638. {
  639. crashdet_restore_print_and_continue();
  640. tmc2130_sg_stop_on_crash = true;
  641. }
  642. void crashdet_cancel()
  643. {
  644. tmc2130_sg_stop_on_crash = true;
  645. if (saved_printing_type == PRINTING_TYPE_SD) {
  646. lcd_print_stop();
  647. }else if(saved_printing_type == PRINTING_TYPE_USB){
  648. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  649. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  650. }
  651. }
  652. #endif //TMC2130
  653. void failstats_reset_print()
  654. {
  655. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  656. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  657. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  658. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  659. }
  660. #ifdef MESH_BED_LEVELING
  661. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  662. #endif
  663. // Factory reset function
  664. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  665. // Level input parameter sets depth of reset
  666. // Quiet parameter masks all waitings for user interact.
  667. int er_progress = 0;
  668. void factory_reset(char level, bool quiet)
  669. {
  670. lcd_clear();
  671. switch (level) {
  672. // Level 0: Language reset
  673. case 0:
  674. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  675. WRITE(BEEPER, HIGH);
  676. _delay_ms(100);
  677. WRITE(BEEPER, LOW);
  678. lang_reset();
  679. break;
  680. //Level 1: Reset statistics
  681. case 1:
  682. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  683. WRITE(BEEPER, HIGH);
  684. _delay_ms(100);
  685. WRITE(BEEPER, LOW);
  686. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  687. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  688. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  689. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  690. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  691. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  692. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  693. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  694. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  696. lcd_menu_statistics();
  697. break;
  698. // Level 2: Prepare for shipping
  699. case 2:
  700. //lcd_puts_P(PSTR("Factory RESET"));
  701. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  702. // Force language selection at the next boot up.
  703. lang_reset();
  704. // Force the "Follow calibration flow" message at the next boot up.
  705. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  706. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  707. farm_no = 0;
  708. farm_mode = false;
  709. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  710. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  711. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  712. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  713. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  714. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  715. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  716. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  717. #ifdef FILAMENT_SENSOR
  718. fsensor_enable();
  719. fsensor_autoload_set(true);
  720. #endif //FILAMENT_SENSOR
  721. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  722. WRITE(BEEPER, HIGH);
  723. _delay_ms(100);
  724. WRITE(BEEPER, LOW);
  725. //_delay_ms(2000);
  726. break;
  727. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  728. case 3:
  729. lcd_puts_P(PSTR("Factory RESET"));
  730. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  731. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  732. WRITE(BEEPER, HIGH);
  733. _delay_ms(100);
  734. WRITE(BEEPER, LOW);
  735. er_progress = 0;
  736. lcd_puts_at_P(3, 3, PSTR(" "));
  737. lcd_set_cursor(3, 3);
  738. lcd_print(er_progress);
  739. // Erase EEPROM
  740. for (int i = 0; i < 4096; i++) {
  741. eeprom_write_byte((uint8_t*)i, 0xFF);
  742. if (i % 41 == 0) {
  743. er_progress++;
  744. lcd_puts_at_P(3, 3, PSTR(" "));
  745. lcd_set_cursor(3, 3);
  746. lcd_print(er_progress);
  747. lcd_puts_P(PSTR("%"));
  748. }
  749. }
  750. break;
  751. case 4:
  752. bowden_menu();
  753. break;
  754. default:
  755. break;
  756. }
  757. }
  758. FILE _uartout = {0};
  759. int uart_putchar(char c, FILE *stream)
  760. {
  761. MYSERIAL.write(c);
  762. return 0;
  763. }
  764. void lcd_splash()
  765. {
  766. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  767. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  768. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  769. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  770. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  771. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  772. }
  773. void factory_reset()
  774. {
  775. KEEPALIVE_STATE(PAUSED_FOR_USER);
  776. if (!READ(BTN_ENC))
  777. {
  778. _delay_ms(1000);
  779. if (!READ(BTN_ENC))
  780. {
  781. lcd_clear();
  782. lcd_puts_P(PSTR("Factory RESET"));
  783. SET_OUTPUT(BEEPER);
  784. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  785. WRITE(BEEPER, HIGH);
  786. while (!READ(BTN_ENC));
  787. WRITE(BEEPER, LOW);
  788. _delay_ms(2000);
  789. char level = reset_menu();
  790. factory_reset(level, false);
  791. switch (level) {
  792. case 0: _delay_ms(0); break;
  793. case 1: _delay_ms(0); break;
  794. case 2: _delay_ms(0); break;
  795. case 3: _delay_ms(0); break;
  796. }
  797. // _delay_ms(100);
  798. /*
  799. #ifdef MESH_BED_LEVELING
  800. _delay_ms(2000);
  801. if (!READ(BTN_ENC))
  802. {
  803. WRITE(BEEPER, HIGH);
  804. _delay_ms(100);
  805. WRITE(BEEPER, LOW);
  806. _delay_ms(200);
  807. WRITE(BEEPER, HIGH);
  808. _delay_ms(100);
  809. WRITE(BEEPER, LOW);
  810. int _z = 0;
  811. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  812. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  813. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  814. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  815. }
  816. else
  817. {
  818. WRITE(BEEPER, HIGH);
  819. _delay_ms(100);
  820. WRITE(BEEPER, LOW);
  821. }
  822. #endif // mesh */
  823. }
  824. }
  825. else
  826. {
  827. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  828. }
  829. KEEPALIVE_STATE(IN_HANDLER);
  830. }
  831. void show_fw_version_warnings() {
  832. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  833. switch (FW_DEV_VERSION) {
  834. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  835. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  836. case(FW_VERSION_DEVEL):
  837. case(FW_VERSION_DEBUG):
  838. lcd_update_enable(false);
  839. lcd_clear();
  840. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  841. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  842. #else
  843. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  844. #endif
  845. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  846. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  847. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  848. lcd_wait_for_click();
  849. break;
  850. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  851. }
  852. lcd_update_enable(true);
  853. }
  854. uint8_t check_printer_version()
  855. {
  856. uint8_t version_changed = 0;
  857. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  858. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  859. if (printer_type != PRINTER_TYPE) {
  860. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  861. else version_changed |= 0b10;
  862. }
  863. if (motherboard != MOTHERBOARD) {
  864. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  865. else version_changed |= 0b01;
  866. }
  867. return version_changed;
  868. }
  869. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  870. {
  871. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  872. }
  873. #ifdef BOOTAPP
  874. #include "bootapp.h" //bootloader support
  875. #endif //BOOTAPP
  876. #if (LANG_MODE != 0) //secondary language support
  877. #ifdef W25X20CL
  878. // language update from external flash
  879. #define LANGBOOT_BLOCKSIZE 0x1000u
  880. #define LANGBOOT_RAMBUFFER 0x0800
  881. void update_sec_lang_from_external_flash()
  882. {
  883. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  884. {
  885. uint8_t lang = boot_reserved >> 4;
  886. uint8_t state = boot_reserved & 0xf;
  887. lang_table_header_t header;
  888. uint32_t src_addr;
  889. if (lang_get_header(lang, &header, &src_addr))
  890. {
  891. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  892. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  893. delay(100);
  894. boot_reserved = (state + 1) | (lang << 4);
  895. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  896. {
  897. cli();
  898. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  899. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  900. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  901. if (state == 0)
  902. {
  903. //TODO - check header integrity
  904. }
  905. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  906. }
  907. else
  908. {
  909. //TODO - check sec lang data integrity
  910. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  911. }
  912. }
  913. }
  914. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  915. }
  916. #ifdef DEBUG_W25X20CL
  917. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  918. {
  919. lang_table_header_t header;
  920. uint8_t count = 0;
  921. uint32_t addr = 0x00000;
  922. while (1)
  923. {
  924. printf_P(_n("LANGTABLE%d:"), count);
  925. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  926. if (header.magic != LANG_MAGIC)
  927. {
  928. printf_P(_n("NG!\n"));
  929. break;
  930. }
  931. printf_P(_n("OK\n"));
  932. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  933. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  934. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  935. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  936. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  937. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  938. addr += header.size;
  939. codes[count] = header.code;
  940. count ++;
  941. }
  942. return count;
  943. }
  944. void list_sec_lang_from_external_flash()
  945. {
  946. uint16_t codes[8];
  947. uint8_t count = lang_xflash_enum_codes(codes);
  948. printf_P(_n("XFlash lang count = %hhd\n"), count);
  949. }
  950. #endif //DEBUG_W25X20CL
  951. #endif //W25X20CL
  952. #endif //(LANG_MODE != 0)
  953. // "Setup" function is called by the Arduino framework on startup.
  954. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  955. // are initialized by the main() routine provided by the Arduino framework.
  956. void setup()
  957. {
  958. ultralcd_init();
  959. spi_init();
  960. lcd_splash();
  961. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  962. #ifdef W25X20CL
  963. if (!w25x20cl_init())
  964. kill(_i("External SPI flash W25X20CL not responding."));
  965. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  966. optiboot_w25x20cl_enter();
  967. #endif
  968. #if (LANG_MODE != 0) //secondary language support
  969. #ifdef W25X20CL
  970. if (w25x20cl_init())
  971. update_sec_lang_from_external_flash();
  972. #endif //W25X20CL
  973. #endif //(LANG_MODE != 0)
  974. setup_killpin();
  975. setup_powerhold();
  976. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  977. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  978. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  979. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  980. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  981. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  982. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  983. if (farm_mode)
  984. {
  985. no_response = true; //we need confirmation by recieving PRUSA thx
  986. important_status = 8;
  987. prusa_statistics(8);
  988. selectedSerialPort = 1;
  989. #ifdef TMC2130
  990. //increased extruder current (PFW363)
  991. tmc2130_current_h[E_AXIS] = 36;
  992. tmc2130_current_r[E_AXIS] = 36;
  993. #endif //TMC2130
  994. #ifdef FILAMENT_SENSOR
  995. //disabled filament autoload (PFW360)
  996. fsensor_autoload_set(false);
  997. #endif //FILAMENT_SENSOR
  998. }
  999. MYSERIAL.begin(BAUDRATE);
  1000. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  1001. stdout = uartout;
  1002. SERIAL_PROTOCOLLNPGM("start");
  1003. SERIAL_ECHO_START;
  1004. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  1005. uart2_init();
  1006. #ifdef DEBUG_SEC_LANG
  1007. lang_table_header_t header;
  1008. uint32_t src_addr = 0x00000;
  1009. if (lang_get_header(1, &header, &src_addr))
  1010. {
  1011. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1012. #define LT_PRINT_TEST 2
  1013. // flash usage
  1014. // total p.test
  1015. //0 252718 t+c text code
  1016. //1 253142 424 170 254
  1017. //2 253040 322 164 158
  1018. //3 253248 530 135 395
  1019. #if (LT_PRINT_TEST==1) //not optimized printf
  1020. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1021. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1022. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1023. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1024. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1025. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1026. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1027. #elif (LT_PRINT_TEST==2) //optimized printf
  1028. printf_P(
  1029. _n(
  1030. " _src_addr = 0x%08lx\n"
  1031. " _lt_magic = 0x%08lx %S\n"
  1032. " _lt_size = 0x%04x (%d)\n"
  1033. " _lt_count = 0x%04x (%d)\n"
  1034. " _lt_chsum = 0x%04x\n"
  1035. " _lt_code = 0x%04x (%c%c)\n"
  1036. " _lt_resv1 = 0x%08lx\n"
  1037. ),
  1038. src_addr,
  1039. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1040. header.size, header.size,
  1041. header.count, header.count,
  1042. header.checksum,
  1043. header.code, header.code >> 8, header.code & 0xff,
  1044. header.signature
  1045. );
  1046. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1047. MYSERIAL.print(" _src_addr = 0x");
  1048. MYSERIAL.println(src_addr, 16);
  1049. MYSERIAL.print(" _lt_magic = 0x");
  1050. MYSERIAL.print(header.magic, 16);
  1051. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1052. MYSERIAL.print(" _lt_size = 0x");
  1053. MYSERIAL.print(header.size, 16);
  1054. MYSERIAL.print(" (");
  1055. MYSERIAL.print(header.size, 10);
  1056. MYSERIAL.println(")");
  1057. MYSERIAL.print(" _lt_count = 0x");
  1058. MYSERIAL.print(header.count, 16);
  1059. MYSERIAL.print(" (");
  1060. MYSERIAL.print(header.count, 10);
  1061. MYSERIAL.println(")");
  1062. MYSERIAL.print(" _lt_chsum = 0x");
  1063. MYSERIAL.println(header.checksum, 16);
  1064. MYSERIAL.print(" _lt_code = 0x");
  1065. MYSERIAL.print(header.code, 16);
  1066. MYSERIAL.print(" (");
  1067. MYSERIAL.print((char)(header.code >> 8), 0);
  1068. MYSERIAL.print((char)(header.code & 0xff), 0);
  1069. MYSERIAL.println(")");
  1070. MYSERIAL.print(" _lt_resv1 = 0x");
  1071. MYSERIAL.println(header.signature, 16);
  1072. #endif //(LT_PRINT_TEST==)
  1073. #undef LT_PRINT_TEST
  1074. #if 0
  1075. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1076. for (uint16_t i = 0; i < 1024; i++)
  1077. {
  1078. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1079. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1080. if ((i % 16) == 15) putchar('\n');
  1081. }
  1082. #endif
  1083. uint16_t sum = 0;
  1084. for (uint16_t i = 0; i < header.size; i++)
  1085. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1086. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1087. sum -= header.checksum; //subtract checksum
  1088. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1089. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1090. if (sum == header.checksum)
  1091. printf_P(_n("Checksum OK\n"), sum);
  1092. else
  1093. printf_P(_n("Checksum NG\n"), sum);
  1094. }
  1095. else
  1096. printf_P(_n("lang_get_header failed!\n"));
  1097. #if 0
  1098. for (uint16_t i = 0; i < 1024*10; i++)
  1099. {
  1100. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1101. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1102. if ((i % 16) == 15) putchar('\n');
  1103. }
  1104. #endif
  1105. #if 0
  1106. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1107. for (int i = 0; i < 4096; ++i) {
  1108. int b = eeprom_read_byte((unsigned char*)i);
  1109. if (b != 255) {
  1110. SERIAL_ECHO(i);
  1111. SERIAL_ECHO(":");
  1112. SERIAL_ECHO(b);
  1113. SERIAL_ECHOLN("");
  1114. }
  1115. }
  1116. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1117. #endif
  1118. #endif //DEBUG_SEC_LANG
  1119. // Check startup - does nothing if bootloader sets MCUSR to 0
  1120. byte mcu = MCUSR;
  1121. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1122. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1123. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1124. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1125. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1126. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1127. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1128. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1129. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1130. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1131. MCUSR = 0;
  1132. //SERIAL_ECHORPGM(MSG_MARLIN);
  1133. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1134. #ifdef STRING_VERSION_CONFIG_H
  1135. #ifdef STRING_CONFIG_H_AUTHOR
  1136. SERIAL_ECHO_START;
  1137. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1138. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1139. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1140. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1141. SERIAL_ECHOPGM("Compiled: ");
  1142. SERIAL_ECHOLNPGM(__DATE__);
  1143. #endif
  1144. #endif
  1145. SERIAL_ECHO_START;
  1146. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1147. SERIAL_ECHO(freeMemory());
  1148. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1149. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1150. //lcd_update_enable(false); // why do we need this?? - andre
  1151. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1152. bool previous_settings_retrieved = false;
  1153. uint8_t hw_changed = check_printer_version();
  1154. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1155. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1156. }
  1157. else { //printer version was changed so use default settings
  1158. Config_ResetDefault();
  1159. }
  1160. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1161. tp_init(); // Initialize temperature loop
  1162. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1163. plan_init(); // Initialize planner;
  1164. factory_reset();
  1165. #ifdef TMC2130
  1166. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1167. if (silentMode == 0xff) silentMode = 0;
  1168. tmc2130_mode = TMC2130_MODE_NORMAL;
  1169. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1170. if (crashdet && !farm_mode)
  1171. {
  1172. crashdet_enable();
  1173. puts_P(_N("CrashDetect ENABLED!"));
  1174. }
  1175. else
  1176. {
  1177. crashdet_disable();
  1178. puts_P(_N("CrashDetect DISABLED"));
  1179. }
  1180. #ifdef TMC2130_LINEARITY_CORRECTION
  1181. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1182. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1183. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1184. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1185. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1186. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1187. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1188. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1189. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1190. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1191. #endif //TMC2130_LINEARITY_CORRECTION
  1192. #ifdef TMC2130_VARIABLE_RESOLUTION
  1193. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1194. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1195. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1196. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1197. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1198. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1199. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1200. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1201. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1202. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1203. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1204. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1205. #else //TMC2130_VARIABLE_RESOLUTION
  1206. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1207. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1208. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1209. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1210. #endif //TMC2130_VARIABLE_RESOLUTION
  1211. #endif //TMC2130
  1212. st_init(); // Initialize stepper, this enables interrupts!
  1213. #ifdef TMC2130
  1214. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1215. update_mode_profile();
  1216. tmc2130_init();
  1217. #endif //TMC2130
  1218. setup_photpin();
  1219. servo_init();
  1220. // Reset the machine correction matrix.
  1221. // It does not make sense to load the correction matrix until the machine is homed.
  1222. world2machine_reset();
  1223. #ifdef FILAMENT_SENSOR
  1224. fsensor_init();
  1225. #endif //FILAMENT_SENSOR
  1226. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1227. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1228. #endif
  1229. setup_homepin();
  1230. #ifdef TMC2130
  1231. if (1) {
  1232. // try to run to zero phase before powering the Z motor.
  1233. // Move in negative direction
  1234. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1235. // Round the current micro-micro steps to micro steps.
  1236. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1237. // Until the phase counter is reset to zero.
  1238. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1239. delay(2);
  1240. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1241. delay(2);
  1242. }
  1243. }
  1244. #endif //TMC2130
  1245. #if defined(Z_AXIS_ALWAYS_ON)
  1246. enable_z();
  1247. #endif
  1248. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1249. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1250. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1251. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1252. if (farm_mode)
  1253. {
  1254. prusa_statistics(8);
  1255. }
  1256. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1257. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1258. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1259. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1260. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1261. // where all the EEPROM entries are set to 0x0ff.
  1262. // Once a firmware boots up, it forces at least a language selection, which changes
  1263. // EEPROM_LANG to number lower than 0x0ff.
  1264. // 1) Set a high power mode.
  1265. #ifdef TMC2130
  1266. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1267. tmc2130_mode = TMC2130_MODE_NORMAL;
  1268. #endif //TMC2130
  1269. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1270. }
  1271. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1272. // but this times out if a blocking dialog is shown in setup().
  1273. card.initsd();
  1274. #ifdef DEBUG_SD_SPEED_TEST
  1275. if (card.cardOK)
  1276. {
  1277. uint8_t* buff = (uint8_t*)block_buffer;
  1278. uint32_t block = 0;
  1279. uint32_t sumr = 0;
  1280. uint32_t sumw = 0;
  1281. for (int i = 0; i < 1024; i++)
  1282. {
  1283. uint32_t u = micros();
  1284. bool res = card.card.readBlock(i, buff);
  1285. u = micros() - u;
  1286. if (res)
  1287. {
  1288. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1289. sumr += u;
  1290. u = micros();
  1291. res = card.card.writeBlock(i, buff);
  1292. u = micros() - u;
  1293. if (res)
  1294. {
  1295. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1296. sumw += u;
  1297. }
  1298. else
  1299. {
  1300. printf_P(PSTR("writeBlock %4d error\n"), i);
  1301. break;
  1302. }
  1303. }
  1304. else
  1305. {
  1306. printf_P(PSTR("readBlock %4d error\n"), i);
  1307. break;
  1308. }
  1309. }
  1310. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1311. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1312. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1313. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1314. }
  1315. else
  1316. printf_P(PSTR("Card NG!\n"));
  1317. #endif //DEBUG_SD_SPEED_TEST
  1318. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1319. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1320. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1321. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1322. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1323. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1324. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1325. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1326. #ifdef SNMM
  1327. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1328. int _z = BOWDEN_LENGTH;
  1329. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1330. }
  1331. #endif
  1332. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1333. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1334. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1335. #if (LANG_MODE != 0) //secondary language support
  1336. #ifdef DEBUG_W25X20CL
  1337. W25X20CL_SPI_ENTER();
  1338. uint8_t uid[8]; // 64bit unique id
  1339. w25x20cl_rd_uid(uid);
  1340. puts_P(_n("W25X20CL UID="));
  1341. for (uint8_t i = 0; i < 8; i ++)
  1342. printf_P(PSTR("%02hhx"), uid[i]);
  1343. putchar('\n');
  1344. list_sec_lang_from_external_flash();
  1345. #endif //DEBUG_W25X20CL
  1346. // lang_reset();
  1347. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1348. lcd_language();
  1349. #ifdef DEBUG_SEC_LANG
  1350. uint16_t sec_lang_code = lang_get_code(1);
  1351. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1352. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1353. // lang_print_sec_lang(uartout);
  1354. #endif //DEBUG_SEC_LANG
  1355. #endif //(LANG_MODE != 0)
  1356. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1357. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1358. temp_cal_active = false;
  1359. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1360. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1361. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1362. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1363. int16_t z_shift = 0;
  1364. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1365. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1366. temp_cal_active = false;
  1367. }
  1368. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1369. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1370. }
  1371. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1372. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1373. }
  1374. check_babystep(); //checking if Z babystep is in allowed range
  1375. #ifdef UVLO_SUPPORT
  1376. setup_uvlo_interrupt();
  1377. #endif //UVLO_SUPPORT
  1378. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1379. setup_fan_interrupt();
  1380. #endif //DEBUG_DISABLE_FANCHECK
  1381. #ifdef FILAMENT_SENSOR
  1382. fsensor_setup_interrupt();
  1383. #endif //FILAMENT_SENSOR
  1384. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1385. #ifndef DEBUG_DISABLE_STARTMSGS
  1386. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1387. show_fw_version_warnings();
  1388. switch (hw_changed) {
  1389. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1390. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1391. case(0b01):
  1392. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1393. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1394. break;
  1395. case(0b10):
  1396. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1397. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1398. break;
  1399. case(0b11):
  1400. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1401. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1402. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1403. break;
  1404. default: break; //no change, show no message
  1405. }
  1406. if (!previous_settings_retrieved) {
  1407. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1408. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1409. }
  1410. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1411. lcd_wizard(0);
  1412. }
  1413. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1414. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1415. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1416. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1417. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1418. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1419. // Show the message.
  1420. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1421. }
  1422. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1423. // Show the message.
  1424. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1425. lcd_update_enable(true);
  1426. }
  1427. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1428. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1429. lcd_update_enable(true);
  1430. }
  1431. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1432. // Show the message.
  1433. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1434. }
  1435. }
  1436. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1437. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1438. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1439. update_current_firmware_version_to_eeprom();
  1440. lcd_selftest();
  1441. }
  1442. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1443. KEEPALIVE_STATE(IN_PROCESS);
  1444. #endif //DEBUG_DISABLE_STARTMSGS
  1445. lcd_update_enable(true);
  1446. lcd_clear();
  1447. lcd_update(2);
  1448. // Store the currently running firmware into an eeprom,
  1449. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1450. update_current_firmware_version_to_eeprom();
  1451. #ifdef TMC2130
  1452. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1453. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1454. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1455. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1456. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1457. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1458. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1459. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1460. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1461. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1462. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1463. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1464. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1465. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1466. #endif //TMC2130
  1467. #ifdef UVLO_SUPPORT
  1468. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1469. /*
  1470. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1471. else {
  1472. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1473. lcd_update_enable(true);
  1474. lcd_update(2);
  1475. lcd_setstatuspgm(_T(WELCOME_MSG));
  1476. }
  1477. */
  1478. manage_heater(); // Update temperatures
  1479. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1480. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1481. #endif
  1482. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1483. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1484. puts_P(_N("Automatic recovery!"));
  1485. #endif
  1486. recover_print(1);
  1487. }
  1488. else{
  1489. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1490. puts_P(_N("Normal recovery!"));
  1491. #endif
  1492. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1493. else {
  1494. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1495. lcd_update_enable(true);
  1496. lcd_update(2);
  1497. lcd_setstatuspgm(_T(WELCOME_MSG));
  1498. }
  1499. }
  1500. }
  1501. #endif //UVLO_SUPPORT
  1502. KEEPALIVE_STATE(NOT_BUSY);
  1503. #ifdef WATCHDOG
  1504. wdt_enable(WDTO_4S);
  1505. #endif //WATCHDOG
  1506. }
  1507. void trace();
  1508. #define CHUNK_SIZE 64 // bytes
  1509. #define SAFETY_MARGIN 1
  1510. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1511. int chunkHead = 0;
  1512. void serial_read_stream() {
  1513. setAllTargetHotends(0);
  1514. setTargetBed(0);
  1515. lcd_clear();
  1516. lcd_puts_P(PSTR(" Upload in progress"));
  1517. // first wait for how many bytes we will receive
  1518. uint32_t bytesToReceive;
  1519. // receive the four bytes
  1520. char bytesToReceiveBuffer[4];
  1521. for (int i=0; i<4; i++) {
  1522. int data;
  1523. while ((data = MYSERIAL.read()) == -1) {};
  1524. bytesToReceiveBuffer[i] = data;
  1525. }
  1526. // make it a uint32
  1527. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1528. // we're ready, notify the sender
  1529. MYSERIAL.write('+');
  1530. // lock in the routine
  1531. uint32_t receivedBytes = 0;
  1532. while (prusa_sd_card_upload) {
  1533. int i;
  1534. for (i=0; i<CHUNK_SIZE; i++) {
  1535. int data;
  1536. // check if we're not done
  1537. if (receivedBytes == bytesToReceive) {
  1538. break;
  1539. }
  1540. // read the next byte
  1541. while ((data = MYSERIAL.read()) == -1) {};
  1542. receivedBytes++;
  1543. // save it to the chunk
  1544. chunk[i] = data;
  1545. }
  1546. // write the chunk to SD
  1547. card.write_command_no_newline(&chunk[0]);
  1548. // notify the sender we're ready for more data
  1549. MYSERIAL.write('+');
  1550. // for safety
  1551. manage_heater();
  1552. // check if we're done
  1553. if(receivedBytes == bytesToReceive) {
  1554. trace(); // beep
  1555. card.closefile();
  1556. prusa_sd_card_upload = false;
  1557. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1558. }
  1559. }
  1560. }
  1561. #ifdef HOST_KEEPALIVE_FEATURE
  1562. /**
  1563. * Output a "busy" message at regular intervals
  1564. * while the machine is not accepting commands.
  1565. */
  1566. void host_keepalive() {
  1567. if (farm_mode) return;
  1568. long ms = millis();
  1569. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1570. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1571. switch (busy_state) {
  1572. case IN_HANDLER:
  1573. case IN_PROCESS:
  1574. SERIAL_ECHO_START;
  1575. SERIAL_ECHOLNPGM("busy: processing");
  1576. break;
  1577. case PAUSED_FOR_USER:
  1578. SERIAL_ECHO_START;
  1579. SERIAL_ECHOLNPGM("busy: paused for user");
  1580. break;
  1581. case PAUSED_FOR_INPUT:
  1582. SERIAL_ECHO_START;
  1583. SERIAL_ECHOLNPGM("busy: paused for input");
  1584. break;
  1585. default:
  1586. break;
  1587. }
  1588. }
  1589. prev_busy_signal_ms = ms;
  1590. }
  1591. #endif
  1592. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1593. // Before loop(), the setup() function is called by the main() routine.
  1594. void loop()
  1595. {
  1596. KEEPALIVE_STATE(NOT_BUSY);
  1597. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1598. {
  1599. is_usb_printing = true;
  1600. usb_printing_counter--;
  1601. _usb_timer = millis();
  1602. }
  1603. if (usb_printing_counter == 0)
  1604. {
  1605. is_usb_printing = false;
  1606. }
  1607. if (prusa_sd_card_upload)
  1608. {
  1609. //we read byte-by byte
  1610. serial_read_stream();
  1611. } else
  1612. {
  1613. get_command();
  1614. #ifdef SDSUPPORT
  1615. card.checkautostart(false);
  1616. #endif
  1617. if(buflen)
  1618. {
  1619. cmdbuffer_front_already_processed = false;
  1620. #ifdef SDSUPPORT
  1621. if(card.saving)
  1622. {
  1623. // Saving a G-code file onto an SD-card is in progress.
  1624. // Saving starts with M28, saving until M29 is seen.
  1625. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1626. card.write_command(CMDBUFFER_CURRENT_STRING);
  1627. if(card.logging)
  1628. process_commands();
  1629. else
  1630. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1631. } else {
  1632. card.closefile();
  1633. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1634. }
  1635. } else {
  1636. process_commands();
  1637. }
  1638. #else
  1639. process_commands();
  1640. #endif //SDSUPPORT
  1641. if (! cmdbuffer_front_already_processed && buflen)
  1642. {
  1643. // ptr points to the start of the block currently being processed.
  1644. // The first character in the block is the block type.
  1645. char *ptr = cmdbuffer + bufindr;
  1646. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1647. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1648. union {
  1649. struct {
  1650. char lo;
  1651. char hi;
  1652. } lohi;
  1653. uint16_t value;
  1654. } sdlen;
  1655. sdlen.value = 0;
  1656. {
  1657. // This block locks the interrupts globally for 3.25 us,
  1658. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1659. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1660. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1661. cli();
  1662. // Reset the command to something, which will be ignored by the power panic routine,
  1663. // so this buffer length will not be counted twice.
  1664. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1665. // Extract the current buffer length.
  1666. sdlen.lohi.lo = *ptr ++;
  1667. sdlen.lohi.hi = *ptr;
  1668. // and pass it to the planner queue.
  1669. planner_add_sd_length(sdlen.value);
  1670. sei();
  1671. }
  1672. }
  1673. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1674. cli();
  1675. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1676. // and one for each command to previous block in the planner queue.
  1677. planner_add_sd_length(1);
  1678. sei();
  1679. }
  1680. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1681. // this block's SD card length will not be counted twice as its command type has been replaced
  1682. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1683. cmdqueue_pop_front();
  1684. }
  1685. host_keepalive();
  1686. }
  1687. }
  1688. //check heater every n milliseconds
  1689. manage_heater();
  1690. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1691. checkHitEndstops();
  1692. lcd_update(0);
  1693. #ifdef FILAMENT_SENSOR
  1694. if (mcode_in_progress != 600) //M600 not in progress
  1695. fsensor_update();
  1696. #endif //FILAMENT_SENSOR
  1697. #ifdef TMC2130
  1698. tmc2130_check_overtemp();
  1699. if (tmc2130_sg_crash)
  1700. {
  1701. uint8_t crash = tmc2130_sg_crash;
  1702. tmc2130_sg_crash = 0;
  1703. // crashdet_stop_and_save_print();
  1704. switch (crash)
  1705. {
  1706. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1707. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1708. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1709. }
  1710. }
  1711. #endif //TMC2130
  1712. }
  1713. #define DEFINE_PGM_READ_ANY(type, reader) \
  1714. static inline type pgm_read_any(const type *p) \
  1715. { return pgm_read_##reader##_near(p); }
  1716. DEFINE_PGM_READ_ANY(float, float);
  1717. DEFINE_PGM_READ_ANY(signed char, byte);
  1718. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1719. static const PROGMEM type array##_P[3] = \
  1720. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1721. static inline type array(int axis) \
  1722. { return pgm_read_any(&array##_P[axis]); } \
  1723. type array##_ext(int axis) \
  1724. { return pgm_read_any(&array##_P[axis]); }
  1725. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1726. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1727. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1728. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1729. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1730. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1731. static void axis_is_at_home(int axis) {
  1732. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1733. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1734. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1735. }
  1736. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1737. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1738. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1739. saved_feedrate = feedrate;
  1740. saved_feedmultiply = feedmultiply;
  1741. feedmultiply = 100;
  1742. previous_millis_cmd = millis();
  1743. enable_endstops(enable_endstops_now);
  1744. }
  1745. static void clean_up_after_endstop_move() {
  1746. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1747. enable_endstops(false);
  1748. #endif
  1749. feedrate = saved_feedrate;
  1750. feedmultiply = saved_feedmultiply;
  1751. previous_millis_cmd = millis();
  1752. }
  1753. #ifdef ENABLE_AUTO_BED_LEVELING
  1754. #ifdef AUTO_BED_LEVELING_GRID
  1755. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1756. {
  1757. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1758. planeNormal.debug("planeNormal");
  1759. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1760. //bedLevel.debug("bedLevel");
  1761. //plan_bed_level_matrix.debug("bed level before");
  1762. //vector_3 uncorrected_position = plan_get_position_mm();
  1763. //uncorrected_position.debug("position before");
  1764. vector_3 corrected_position = plan_get_position();
  1765. // corrected_position.debug("position after");
  1766. current_position[X_AXIS] = corrected_position.x;
  1767. current_position[Y_AXIS] = corrected_position.y;
  1768. current_position[Z_AXIS] = corrected_position.z;
  1769. // put the bed at 0 so we don't go below it.
  1770. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1771. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1772. }
  1773. #else // not AUTO_BED_LEVELING_GRID
  1774. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1775. plan_bed_level_matrix.set_to_identity();
  1776. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1777. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1778. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1779. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1780. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1781. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1782. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1783. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1784. vector_3 corrected_position = plan_get_position();
  1785. current_position[X_AXIS] = corrected_position.x;
  1786. current_position[Y_AXIS] = corrected_position.y;
  1787. current_position[Z_AXIS] = corrected_position.z;
  1788. // put the bed at 0 so we don't go below it.
  1789. current_position[Z_AXIS] = zprobe_zoffset;
  1790. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1791. }
  1792. #endif // AUTO_BED_LEVELING_GRID
  1793. static void run_z_probe() {
  1794. plan_bed_level_matrix.set_to_identity();
  1795. feedrate = homing_feedrate[Z_AXIS];
  1796. // move down until you find the bed
  1797. float zPosition = -10;
  1798. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1799. st_synchronize();
  1800. // we have to let the planner know where we are right now as it is not where we said to go.
  1801. zPosition = st_get_position_mm(Z_AXIS);
  1802. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1803. // move up the retract distance
  1804. zPosition += home_retract_mm(Z_AXIS);
  1805. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1806. st_synchronize();
  1807. // move back down slowly to find bed
  1808. feedrate = homing_feedrate[Z_AXIS]/4;
  1809. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1810. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1811. st_synchronize();
  1812. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1813. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1814. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1815. }
  1816. static void do_blocking_move_to(float x, float y, float z) {
  1817. float oldFeedRate = feedrate;
  1818. feedrate = homing_feedrate[Z_AXIS];
  1819. current_position[Z_AXIS] = z;
  1820. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1821. st_synchronize();
  1822. feedrate = XY_TRAVEL_SPEED;
  1823. current_position[X_AXIS] = x;
  1824. current_position[Y_AXIS] = y;
  1825. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1826. st_synchronize();
  1827. feedrate = oldFeedRate;
  1828. }
  1829. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1830. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1831. }
  1832. /// Probe bed height at position (x,y), returns the measured z value
  1833. static float probe_pt(float x, float y, float z_before) {
  1834. // move to right place
  1835. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1836. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1837. run_z_probe();
  1838. float measured_z = current_position[Z_AXIS];
  1839. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1840. SERIAL_PROTOCOLPGM(" x: ");
  1841. SERIAL_PROTOCOL(x);
  1842. SERIAL_PROTOCOLPGM(" y: ");
  1843. SERIAL_PROTOCOL(y);
  1844. SERIAL_PROTOCOLPGM(" z: ");
  1845. SERIAL_PROTOCOL(measured_z);
  1846. SERIAL_PROTOCOLPGM("\n");
  1847. return measured_z;
  1848. }
  1849. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1850. #ifdef LIN_ADVANCE
  1851. /**
  1852. * M900: Set and/or Get advance K factor and WH/D ratio
  1853. *
  1854. * K<factor> Set advance K factor
  1855. * R<ratio> Set ratio directly (overrides WH/D)
  1856. * W<width> H<height> D<diam> Set ratio from WH/D
  1857. */
  1858. inline void gcode_M900() {
  1859. st_synchronize();
  1860. const float newK = code_seen('K') ? code_value_float() : -1;
  1861. if (newK >= 0) extruder_advance_k = newK;
  1862. float newR = code_seen('R') ? code_value_float() : -1;
  1863. if (newR < 0) {
  1864. const float newD = code_seen('D') ? code_value_float() : -1,
  1865. newW = code_seen('W') ? code_value_float() : -1,
  1866. newH = code_seen('H') ? code_value_float() : -1;
  1867. if (newD >= 0 && newW >= 0 && newH >= 0)
  1868. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1869. }
  1870. if (newR >= 0) advance_ed_ratio = newR;
  1871. SERIAL_ECHO_START;
  1872. SERIAL_ECHOPGM("Advance K=");
  1873. SERIAL_ECHOLN(extruder_advance_k);
  1874. SERIAL_ECHOPGM(" E/D=");
  1875. const float ratio = advance_ed_ratio;
  1876. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1877. }
  1878. #endif // LIN_ADVANCE
  1879. bool check_commands() {
  1880. bool end_command_found = false;
  1881. while (buflen)
  1882. {
  1883. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1884. if (!cmdbuffer_front_already_processed)
  1885. cmdqueue_pop_front();
  1886. cmdbuffer_front_already_processed = false;
  1887. }
  1888. return end_command_found;
  1889. }
  1890. #ifdef TMC2130
  1891. bool calibrate_z_auto()
  1892. {
  1893. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1894. lcd_clear();
  1895. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1896. bool endstops_enabled = enable_endstops(true);
  1897. int axis_up_dir = -home_dir(Z_AXIS);
  1898. tmc2130_home_enter(Z_AXIS_MASK);
  1899. current_position[Z_AXIS] = 0;
  1900. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1901. set_destination_to_current();
  1902. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1903. feedrate = homing_feedrate[Z_AXIS];
  1904. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1905. st_synchronize();
  1906. // current_position[axis] = 0;
  1907. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1908. tmc2130_home_exit();
  1909. enable_endstops(false);
  1910. current_position[Z_AXIS] = 0;
  1911. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1912. set_destination_to_current();
  1913. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1914. feedrate = homing_feedrate[Z_AXIS] / 2;
  1915. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1916. st_synchronize();
  1917. enable_endstops(endstops_enabled);
  1918. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1919. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1920. return true;
  1921. }
  1922. #endif //TMC2130
  1923. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1924. {
  1925. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1926. #define HOMEAXIS_DO(LETTER) \
  1927. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1928. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1929. {
  1930. int axis_home_dir = home_dir(axis);
  1931. feedrate = homing_feedrate[axis];
  1932. #ifdef TMC2130
  1933. tmc2130_home_enter(X_AXIS_MASK << axis);
  1934. #endif //TMC2130
  1935. // Move right a bit, so that the print head does not touch the left end position,
  1936. // and the following left movement has a chance to achieve the required velocity
  1937. // for the stall guard to work.
  1938. current_position[axis] = 0;
  1939. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1940. set_destination_to_current();
  1941. // destination[axis] = 11.f;
  1942. destination[axis] = 3.f;
  1943. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1944. st_synchronize();
  1945. // Move left away from the possible collision with the collision detection disabled.
  1946. endstops_hit_on_purpose();
  1947. enable_endstops(false);
  1948. current_position[axis] = 0;
  1949. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1950. destination[axis] = - 1.;
  1951. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1952. st_synchronize();
  1953. // Now continue to move up to the left end stop with the collision detection enabled.
  1954. enable_endstops(true);
  1955. destination[axis] = - 1.1 * max_length(axis);
  1956. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1957. st_synchronize();
  1958. for (uint8_t i = 0; i < cnt; i++)
  1959. {
  1960. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1961. endstops_hit_on_purpose();
  1962. enable_endstops(false);
  1963. current_position[axis] = 0;
  1964. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1965. destination[axis] = 10.f;
  1966. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1967. st_synchronize();
  1968. endstops_hit_on_purpose();
  1969. // Now move left up to the collision, this time with a repeatable velocity.
  1970. enable_endstops(true);
  1971. destination[axis] = - 11.f;
  1972. #ifdef TMC2130
  1973. feedrate = homing_feedrate[axis];
  1974. #else //TMC2130
  1975. feedrate = homing_feedrate[axis] / 2;
  1976. #endif //TMC2130
  1977. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1978. st_synchronize();
  1979. #ifdef TMC2130
  1980. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1981. if (pstep) pstep[i] = mscnt >> 4;
  1982. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1983. #endif //TMC2130
  1984. }
  1985. endstops_hit_on_purpose();
  1986. enable_endstops(false);
  1987. #ifdef TMC2130
  1988. uint8_t orig = tmc2130_home_origin[axis];
  1989. uint8_t back = tmc2130_home_bsteps[axis];
  1990. if (tmc2130_home_enabled && (orig <= 63))
  1991. {
  1992. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1993. if (back > 0)
  1994. tmc2130_do_steps(axis, back, 1, 1000);
  1995. }
  1996. else
  1997. tmc2130_do_steps(axis, 8, 2, 1000);
  1998. tmc2130_home_exit();
  1999. #endif //TMC2130
  2000. axis_is_at_home(axis);
  2001. axis_known_position[axis] = true;
  2002. // Move from minimum
  2003. #ifdef TMC2130
  2004. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2005. #else //TMC2130
  2006. float dist = 0.01f * 64;
  2007. #endif //TMC2130
  2008. current_position[axis] -= dist;
  2009. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2010. current_position[axis] += dist;
  2011. destination[axis] = current_position[axis];
  2012. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2013. st_synchronize();
  2014. feedrate = 0.0;
  2015. }
  2016. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2017. {
  2018. #ifdef TMC2130
  2019. FORCE_HIGH_POWER_START;
  2020. #endif
  2021. int axis_home_dir = home_dir(axis);
  2022. current_position[axis] = 0;
  2023. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2024. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2025. feedrate = homing_feedrate[axis];
  2026. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2027. st_synchronize();
  2028. #ifdef TMC2130
  2029. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2030. FORCE_HIGH_POWER_END;
  2031. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2032. return;
  2033. }
  2034. #endif //TMC2130
  2035. current_position[axis] = 0;
  2036. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2037. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2038. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2039. st_synchronize();
  2040. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2041. feedrate = homing_feedrate[axis]/2 ;
  2042. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2043. st_synchronize();
  2044. #ifdef TMC2130
  2045. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2046. FORCE_HIGH_POWER_END;
  2047. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2048. return;
  2049. }
  2050. #endif //TMC2130
  2051. axis_is_at_home(axis);
  2052. destination[axis] = current_position[axis];
  2053. feedrate = 0.0;
  2054. endstops_hit_on_purpose();
  2055. axis_known_position[axis] = true;
  2056. #ifdef TMC2130
  2057. FORCE_HIGH_POWER_END;
  2058. #endif
  2059. }
  2060. enable_endstops(endstops_enabled);
  2061. }
  2062. /**/
  2063. void home_xy()
  2064. {
  2065. set_destination_to_current();
  2066. homeaxis(X_AXIS);
  2067. homeaxis(Y_AXIS);
  2068. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2069. endstops_hit_on_purpose();
  2070. }
  2071. void refresh_cmd_timeout(void)
  2072. {
  2073. previous_millis_cmd = millis();
  2074. }
  2075. #ifdef FWRETRACT
  2076. void retract(bool retracting, bool swapretract = false) {
  2077. if(retracting && !retracted[active_extruder]) {
  2078. destination[X_AXIS]=current_position[X_AXIS];
  2079. destination[Y_AXIS]=current_position[Y_AXIS];
  2080. destination[Z_AXIS]=current_position[Z_AXIS];
  2081. destination[E_AXIS]=current_position[E_AXIS];
  2082. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2083. plan_set_e_position(current_position[E_AXIS]);
  2084. float oldFeedrate = feedrate;
  2085. feedrate=retract_feedrate*60;
  2086. retracted[active_extruder]=true;
  2087. prepare_move();
  2088. current_position[Z_AXIS]-=retract_zlift;
  2089. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2090. prepare_move();
  2091. feedrate = oldFeedrate;
  2092. } else if(!retracting && retracted[active_extruder]) {
  2093. destination[X_AXIS]=current_position[X_AXIS];
  2094. destination[Y_AXIS]=current_position[Y_AXIS];
  2095. destination[Z_AXIS]=current_position[Z_AXIS];
  2096. destination[E_AXIS]=current_position[E_AXIS];
  2097. current_position[Z_AXIS]+=retract_zlift;
  2098. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2099. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2100. plan_set_e_position(current_position[E_AXIS]);
  2101. float oldFeedrate = feedrate;
  2102. feedrate=retract_recover_feedrate*60;
  2103. retracted[active_extruder]=false;
  2104. prepare_move();
  2105. feedrate = oldFeedrate;
  2106. }
  2107. } //retract
  2108. #endif //FWRETRACT
  2109. void trace() {
  2110. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  2111. tone(BEEPER, 440);
  2112. delay(25);
  2113. noTone(BEEPER);
  2114. delay(20);
  2115. }
  2116. /*
  2117. void ramming() {
  2118. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2119. if (current_temperature[0] < 230) {
  2120. //PLA
  2121. max_feedrate[E_AXIS] = 50;
  2122. //current_position[E_AXIS] -= 8;
  2123. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2124. //current_position[E_AXIS] += 8;
  2125. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2126. current_position[E_AXIS] += 5.4;
  2127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2128. current_position[E_AXIS] += 3.2;
  2129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2130. current_position[E_AXIS] += 3;
  2131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2132. st_synchronize();
  2133. max_feedrate[E_AXIS] = 80;
  2134. current_position[E_AXIS] -= 82;
  2135. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2136. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2137. current_position[E_AXIS] -= 20;
  2138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2139. current_position[E_AXIS] += 5;
  2140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2141. current_position[E_AXIS] += 5;
  2142. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2143. current_position[E_AXIS] -= 10;
  2144. st_synchronize();
  2145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2146. current_position[E_AXIS] += 10;
  2147. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2148. current_position[E_AXIS] -= 10;
  2149. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2150. current_position[E_AXIS] += 10;
  2151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2152. current_position[E_AXIS] -= 10;
  2153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2154. st_synchronize();
  2155. }
  2156. else {
  2157. //ABS
  2158. max_feedrate[E_AXIS] = 50;
  2159. //current_position[E_AXIS] -= 8;
  2160. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2161. //current_position[E_AXIS] += 8;
  2162. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2163. current_position[E_AXIS] += 3.1;
  2164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2165. current_position[E_AXIS] += 3.1;
  2166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2167. current_position[E_AXIS] += 4;
  2168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2169. st_synchronize();
  2170. //current_position[X_AXIS] += 23; //delay
  2171. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2172. //current_position[X_AXIS] -= 23; //delay
  2173. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2174. delay(4700);
  2175. max_feedrate[E_AXIS] = 80;
  2176. current_position[E_AXIS] -= 92;
  2177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2178. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2179. current_position[E_AXIS] -= 5;
  2180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2181. current_position[E_AXIS] += 5;
  2182. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2183. current_position[E_AXIS] -= 5;
  2184. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2185. st_synchronize();
  2186. current_position[E_AXIS] += 5;
  2187. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2188. current_position[E_AXIS] -= 5;
  2189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2190. current_position[E_AXIS] += 5;
  2191. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2192. current_position[E_AXIS] -= 5;
  2193. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2194. st_synchronize();
  2195. }
  2196. }
  2197. */
  2198. #ifdef TMC2130
  2199. void force_high_power_mode(bool start_high_power_section) {
  2200. uint8_t silent;
  2201. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2202. if (silent == 1) {
  2203. //we are in silent mode, set to normal mode to enable crash detection
  2204. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2205. st_synchronize();
  2206. cli();
  2207. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2208. update_mode_profile();
  2209. tmc2130_init();
  2210. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2211. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2212. st_reset_timer();
  2213. sei();
  2214. }
  2215. }
  2216. #endif //TMC2130
  2217. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2218. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2219. }
  2220. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2221. st_synchronize();
  2222. #if 0
  2223. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2224. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2225. #endif
  2226. // Flag for the display update routine and to disable the print cancelation during homing.
  2227. homing_flag = true;
  2228. // Which axes should be homed?
  2229. bool home_x = home_x_axis;
  2230. bool home_y = home_y_axis;
  2231. bool home_z = home_z_axis;
  2232. // Either all X,Y,Z codes are present, or none of them.
  2233. bool home_all_axes = home_x == home_y && home_x == home_z;
  2234. if (home_all_axes)
  2235. // No X/Y/Z code provided means to home all axes.
  2236. home_x = home_y = home_z = true;
  2237. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2238. if (home_all_axes) {
  2239. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2240. feedrate = homing_feedrate[Z_AXIS];
  2241. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2242. st_synchronize();
  2243. }
  2244. #ifdef ENABLE_AUTO_BED_LEVELING
  2245. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2246. #endif //ENABLE_AUTO_BED_LEVELING
  2247. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2248. // the planner will not perform any adjustments in the XY plane.
  2249. // Wait for the motors to stop and update the current position with the absolute values.
  2250. world2machine_revert_to_uncorrected();
  2251. // For mesh bed leveling deactivate the matrix temporarily.
  2252. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2253. // in a single axis only.
  2254. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2255. #ifdef MESH_BED_LEVELING
  2256. uint8_t mbl_was_active = mbl.active;
  2257. mbl.active = 0;
  2258. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2259. #endif
  2260. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2261. // consumed during the first movements following this statement.
  2262. if (home_z)
  2263. babystep_undo();
  2264. saved_feedrate = feedrate;
  2265. saved_feedmultiply = feedmultiply;
  2266. feedmultiply = 100;
  2267. previous_millis_cmd = millis();
  2268. enable_endstops(true);
  2269. memcpy(destination, current_position, sizeof(destination));
  2270. feedrate = 0.0;
  2271. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2272. if(home_z)
  2273. homeaxis(Z_AXIS);
  2274. #endif
  2275. #ifdef QUICK_HOME
  2276. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2277. if(home_x && home_y) //first diagonal move
  2278. {
  2279. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2280. int x_axis_home_dir = home_dir(X_AXIS);
  2281. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2282. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2283. feedrate = homing_feedrate[X_AXIS];
  2284. if(homing_feedrate[Y_AXIS]<feedrate)
  2285. feedrate = homing_feedrate[Y_AXIS];
  2286. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2287. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2288. } else {
  2289. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2290. }
  2291. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2292. st_synchronize();
  2293. axis_is_at_home(X_AXIS);
  2294. axis_is_at_home(Y_AXIS);
  2295. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2296. destination[X_AXIS] = current_position[X_AXIS];
  2297. destination[Y_AXIS] = current_position[Y_AXIS];
  2298. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2299. feedrate = 0.0;
  2300. st_synchronize();
  2301. endstops_hit_on_purpose();
  2302. current_position[X_AXIS] = destination[X_AXIS];
  2303. current_position[Y_AXIS] = destination[Y_AXIS];
  2304. current_position[Z_AXIS] = destination[Z_AXIS];
  2305. }
  2306. #endif /* QUICK_HOME */
  2307. #ifdef TMC2130
  2308. if(home_x)
  2309. {
  2310. if (!calib)
  2311. homeaxis(X_AXIS);
  2312. else
  2313. tmc2130_home_calibrate(X_AXIS);
  2314. }
  2315. if(home_y)
  2316. {
  2317. if (!calib)
  2318. homeaxis(Y_AXIS);
  2319. else
  2320. tmc2130_home_calibrate(Y_AXIS);
  2321. }
  2322. #endif //TMC2130
  2323. if(home_x_axis && home_x_value != 0)
  2324. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2325. if(home_y_axis && home_y_value != 0)
  2326. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2327. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2328. #ifndef Z_SAFE_HOMING
  2329. if(home_z) {
  2330. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2331. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2332. feedrate = max_feedrate[Z_AXIS];
  2333. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2334. st_synchronize();
  2335. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2336. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2337. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2338. {
  2339. homeaxis(X_AXIS);
  2340. homeaxis(Y_AXIS);
  2341. }
  2342. // 1st mesh bed leveling measurement point, corrected.
  2343. world2machine_initialize();
  2344. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2345. world2machine_reset();
  2346. if (destination[Y_AXIS] < Y_MIN_POS)
  2347. destination[Y_AXIS] = Y_MIN_POS;
  2348. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2349. feedrate = homing_feedrate[Z_AXIS]/10;
  2350. current_position[Z_AXIS] = 0;
  2351. enable_endstops(false);
  2352. #ifdef DEBUG_BUILD
  2353. SERIAL_ECHOLNPGM("plan_set_position()");
  2354. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2355. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2356. #endif
  2357. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2358. #ifdef DEBUG_BUILD
  2359. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2360. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2361. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2362. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2363. #endif
  2364. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2365. st_synchronize();
  2366. current_position[X_AXIS] = destination[X_AXIS];
  2367. current_position[Y_AXIS] = destination[Y_AXIS];
  2368. enable_endstops(true);
  2369. endstops_hit_on_purpose();
  2370. homeaxis(Z_AXIS);
  2371. #else // MESH_BED_LEVELING
  2372. homeaxis(Z_AXIS);
  2373. #endif // MESH_BED_LEVELING
  2374. }
  2375. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2376. if(home_all_axes) {
  2377. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2378. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2379. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2380. feedrate = XY_TRAVEL_SPEED/60;
  2381. current_position[Z_AXIS] = 0;
  2382. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2383. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2384. st_synchronize();
  2385. current_position[X_AXIS] = destination[X_AXIS];
  2386. current_position[Y_AXIS] = destination[Y_AXIS];
  2387. homeaxis(Z_AXIS);
  2388. }
  2389. // Let's see if X and Y are homed and probe is inside bed area.
  2390. if(home_z) {
  2391. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2392. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2393. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2394. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2395. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2396. current_position[Z_AXIS] = 0;
  2397. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2398. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2399. feedrate = max_feedrate[Z_AXIS];
  2400. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2401. st_synchronize();
  2402. homeaxis(Z_AXIS);
  2403. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2404. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2405. SERIAL_ECHO_START;
  2406. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2407. } else {
  2408. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2409. SERIAL_ECHO_START;
  2410. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2411. }
  2412. }
  2413. #endif // Z_SAFE_HOMING
  2414. #endif // Z_HOME_DIR < 0
  2415. if(home_z_axis && home_z_value != 0)
  2416. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2417. #ifdef ENABLE_AUTO_BED_LEVELING
  2418. if(home_z)
  2419. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2420. #endif
  2421. // Set the planner and stepper routine positions.
  2422. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2423. // contains the machine coordinates.
  2424. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2425. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2426. enable_endstops(false);
  2427. #endif
  2428. feedrate = saved_feedrate;
  2429. feedmultiply = saved_feedmultiply;
  2430. previous_millis_cmd = millis();
  2431. endstops_hit_on_purpose();
  2432. #ifndef MESH_BED_LEVELING
  2433. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2434. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2435. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2436. lcd_adjust_z();
  2437. #endif
  2438. // Load the machine correction matrix
  2439. world2machine_initialize();
  2440. // and correct the current_position XY axes to match the transformed coordinate system.
  2441. world2machine_update_current();
  2442. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2443. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2444. {
  2445. if (! home_z && mbl_was_active) {
  2446. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2447. mbl.active = true;
  2448. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2449. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2450. }
  2451. }
  2452. else
  2453. {
  2454. st_synchronize();
  2455. homing_flag = false;
  2456. }
  2457. #endif
  2458. if (farm_mode) { prusa_statistics(20); };
  2459. homing_flag = false;
  2460. #if 0
  2461. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2462. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2463. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2464. #endif
  2465. }
  2466. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2467. {
  2468. bool final_result = false;
  2469. #ifdef TMC2130
  2470. FORCE_HIGH_POWER_START;
  2471. #endif // TMC2130
  2472. // Only Z calibration?
  2473. if (!onlyZ)
  2474. {
  2475. setTargetBed(0);
  2476. setAllTargetHotends(0);
  2477. adjust_bed_reset(); //reset bed level correction
  2478. }
  2479. // Disable the default update procedure of the display. We will do a modal dialog.
  2480. lcd_update_enable(false);
  2481. // Let the planner use the uncorrected coordinates.
  2482. mbl.reset();
  2483. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2484. // the planner will not perform any adjustments in the XY plane.
  2485. // Wait for the motors to stop and update the current position with the absolute values.
  2486. world2machine_revert_to_uncorrected();
  2487. // Reset the baby step value applied without moving the axes.
  2488. babystep_reset();
  2489. // Mark all axes as in a need for homing.
  2490. memset(axis_known_position, 0, sizeof(axis_known_position));
  2491. // Home in the XY plane.
  2492. //set_destination_to_current();
  2493. setup_for_endstop_move();
  2494. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2495. home_xy();
  2496. enable_endstops(false);
  2497. current_position[X_AXIS] += 5;
  2498. current_position[Y_AXIS] += 5;
  2499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2500. st_synchronize();
  2501. // Let the user move the Z axes up to the end stoppers.
  2502. #ifdef TMC2130
  2503. if (calibrate_z_auto())
  2504. {
  2505. #else //TMC2130
  2506. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2507. {
  2508. #endif //TMC2130
  2509. refresh_cmd_timeout();
  2510. #ifndef STEEL_SHEET
  2511. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2512. {
  2513. lcd_wait_for_cool_down();
  2514. }
  2515. #endif //STEEL_SHEET
  2516. if(!onlyZ)
  2517. {
  2518. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2519. #ifdef STEEL_SHEET
  2520. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2521. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2522. #endif //STEEL_SHEET
  2523. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2524. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2525. KEEPALIVE_STATE(IN_HANDLER);
  2526. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2527. lcd_set_cursor(0, 2);
  2528. lcd_print(1);
  2529. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2530. }
  2531. // Move the print head close to the bed.
  2532. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2533. bool endstops_enabled = enable_endstops(true);
  2534. #ifdef TMC2130
  2535. tmc2130_home_enter(Z_AXIS_MASK);
  2536. #endif //TMC2130
  2537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2538. st_synchronize();
  2539. #ifdef TMC2130
  2540. tmc2130_home_exit();
  2541. #endif //TMC2130
  2542. enable_endstops(endstops_enabled);
  2543. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2544. {
  2545. int8_t verbosity_level = 0;
  2546. if (code_seen('V'))
  2547. {
  2548. // Just 'V' without a number counts as V1.
  2549. char c = strchr_pointer[1];
  2550. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2551. }
  2552. if (onlyZ)
  2553. {
  2554. clean_up_after_endstop_move();
  2555. // Z only calibration.
  2556. // Load the machine correction matrix
  2557. world2machine_initialize();
  2558. // and correct the current_position to match the transformed coordinate system.
  2559. world2machine_update_current();
  2560. //FIXME
  2561. bool result = sample_mesh_and_store_reference();
  2562. if (result)
  2563. {
  2564. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2565. // Shipped, the nozzle height has been set already. The user can start printing now.
  2566. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2567. final_result = true;
  2568. // babystep_apply();
  2569. }
  2570. }
  2571. else
  2572. {
  2573. // Reset the baby step value and the baby step applied flag.
  2574. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2575. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2576. // Complete XYZ calibration.
  2577. uint8_t point_too_far_mask = 0;
  2578. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2579. clean_up_after_endstop_move();
  2580. // Print head up.
  2581. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2583. st_synchronize();
  2584. //#ifndef NEW_XYZCAL
  2585. if (result >= 0)
  2586. {
  2587. #ifdef HEATBED_V2
  2588. sample_z();
  2589. #else //HEATBED_V2
  2590. point_too_far_mask = 0;
  2591. // Second half: The fine adjustment.
  2592. // Let the planner use the uncorrected coordinates.
  2593. mbl.reset();
  2594. world2machine_reset();
  2595. // Home in the XY plane.
  2596. setup_for_endstop_move();
  2597. home_xy();
  2598. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2599. clean_up_after_endstop_move();
  2600. // Print head up.
  2601. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2603. st_synchronize();
  2604. // if (result >= 0) babystep_apply();
  2605. #endif //HEATBED_V2
  2606. }
  2607. //#endif //NEW_XYZCAL
  2608. lcd_update_enable(true);
  2609. lcd_update(2);
  2610. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2611. if (result >= 0)
  2612. {
  2613. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2614. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2615. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2616. final_result = true;
  2617. }
  2618. }
  2619. #ifdef TMC2130
  2620. tmc2130_home_exit();
  2621. #endif
  2622. }
  2623. else
  2624. {
  2625. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2626. final_result = false;
  2627. }
  2628. }
  2629. else
  2630. {
  2631. // Timeouted.
  2632. }
  2633. lcd_update_enable(true);
  2634. #ifdef TMC2130
  2635. FORCE_HIGH_POWER_END;
  2636. #endif // TMC2130
  2637. return final_result;
  2638. }
  2639. void gcode_M114()
  2640. {
  2641. SERIAL_PROTOCOLPGM("X:");
  2642. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2643. SERIAL_PROTOCOLPGM(" Y:");
  2644. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2645. SERIAL_PROTOCOLPGM(" Z:");
  2646. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2647. SERIAL_PROTOCOLPGM(" E:");
  2648. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2649. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2650. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2651. SERIAL_PROTOCOLPGM(" Y:");
  2652. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2653. SERIAL_PROTOCOLPGM(" Z:");
  2654. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2655. SERIAL_PROTOCOLPGM(" E:");
  2656. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2657. SERIAL_PROTOCOLLN("");
  2658. }
  2659. void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float e_shift_late) {
  2660. st_synchronize();
  2661. float lastpos[4];
  2662. if (farm_mode)
  2663. {
  2664. prusa_statistics(22);
  2665. }
  2666. //First backup current position and settings
  2667. feedmultiplyBckp=feedmultiply;
  2668. HotendTempBckp = degTargetHotend(active_extruder);
  2669. fanSpeedBckp = fanSpeed;
  2670. lastpos[X_AXIS]=current_position[X_AXIS];
  2671. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2672. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2673. lastpos[E_AXIS]=current_position[E_AXIS];
  2674. //Retract E
  2675. current_position[E_AXIS]+= e_shift;
  2676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2677. st_synchronize();
  2678. //Lift Z
  2679. current_position[Z_AXIS]+= z_shift;
  2680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2681. st_synchronize();
  2682. //Move XY to side
  2683. current_position[X_AXIS]= x_position;
  2684. current_position[Y_AXIS]= y_position;
  2685. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2686. st_synchronize();
  2687. //Beep, manage nozzle heater and wait for user to start unload filament
  2688. if(!automatic) M600_wait_for_user();
  2689. lcd_change_fil_state = 0;
  2690. // Unload filament
  2691. if (mmu_enabled)
  2692. extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2693. else
  2694. unload_filament(); //unload filament for single material (used also in M702)
  2695. //finish moves
  2696. st_synchronize();
  2697. if (!mmu_enabled)
  2698. {
  2699. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2700. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2701. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2702. lcd_update_enable(true);
  2703. }
  2704. if (mmu_enabled)
  2705. mmu_M600_load_filament(automatic);
  2706. else
  2707. M600_load_filament();
  2708. if(!automatic) M600_check_state();
  2709. //Not let's go back to print
  2710. fanSpeed = fanSpeedBckp;
  2711. //Feed a little of filament to stabilize pressure
  2712. if (!automatic) {
  2713. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2714. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2715. }
  2716. //Move XY back
  2717. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2718. st_synchronize();
  2719. //Move Z back
  2720. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2721. st_synchronize();
  2722. //Unretract
  2723. current_position[E_AXIS]= current_position[E_AXIS] - e_shift;
  2724. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2725. st_synchronize();
  2726. //Set E position to original
  2727. plan_set_e_position(lastpos[E_AXIS]);
  2728. memcpy(current_position, lastpos, sizeof(lastpos));
  2729. memcpy(destination, current_position, sizeof(current_position));
  2730. //Recover feed rate
  2731. feedmultiply=feedmultiplyBckp;
  2732. char cmd[9];
  2733. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2734. enquecommand(cmd);
  2735. lcd_setstatuspgm(_T(WELCOME_MSG));
  2736. custom_message = false;
  2737. custom_message_type = 0;
  2738. }
  2739. void gcode_M701()
  2740. {
  2741. printf_P(PSTR("gcode_M701 begin\n"));
  2742. if (mmu_enabled)
  2743. extr_adj(snmm_extruder);//loads current extruder
  2744. else
  2745. {
  2746. enable_z();
  2747. custom_message = true;
  2748. custom_message_type = 2;
  2749. #ifdef FILAMENT_SENSOR
  2750. fsensor_oq_meassure_start(40);
  2751. #endif //FILAMENT_SENSOR
  2752. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2753. current_position[E_AXIS] += 40;
  2754. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2755. st_synchronize();
  2756. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2757. current_position[E_AXIS] += 30;
  2758. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2759. st_synchronize();
  2760. current_position[E_AXIS] += 25;
  2761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2762. st_synchronize();
  2763. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) tone(BEEPER, 500);
  2764. delay_keep_alive(50);
  2765. noTone(BEEPER);
  2766. if (!farm_mode && loading_flag) {
  2767. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2768. while (!clean) {
  2769. lcd_update_enable(true);
  2770. lcd_update(2);
  2771. current_position[E_AXIS] += 25;
  2772. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2773. st_synchronize();
  2774. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2775. }
  2776. }
  2777. lcd_update_enable(true);
  2778. lcd_update(2);
  2779. lcd_setstatuspgm(_T(WELCOME_MSG));
  2780. disable_z();
  2781. loading_flag = false;
  2782. custom_message = false;
  2783. custom_message_type = 0;
  2784. #ifdef FILAMENT_SENSOR
  2785. fsensor_oq_meassure_stop();
  2786. if (!fsensor_oq_result())
  2787. {
  2788. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2789. lcd_update_enable(true);
  2790. lcd_update(2);
  2791. if (disable)
  2792. fsensor_disable();
  2793. }
  2794. #endif //FILAMENT_SENSOR
  2795. }
  2796. }
  2797. /**
  2798. * @brief Get serial number from 32U2 processor
  2799. *
  2800. * Typical format of S/N is:CZPX0917X003XC13518
  2801. *
  2802. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2803. *
  2804. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2805. * reply is transmitted to serial port 1 character by character.
  2806. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2807. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2808. * in any case.
  2809. */
  2810. static void gcode_PRUSA_SN()
  2811. {
  2812. if (farm_mode) {
  2813. selectedSerialPort = 0;
  2814. putchar(';');
  2815. putchar('S');
  2816. int numbersRead = 0;
  2817. ShortTimer timeout;
  2818. timeout.start();
  2819. while (numbersRead < 19) {
  2820. while (MSerial.available() > 0) {
  2821. uint8_t serial_char = MSerial.read();
  2822. selectedSerialPort = 1;
  2823. putchar(serial_char);
  2824. numbersRead++;
  2825. selectedSerialPort = 0;
  2826. }
  2827. if (timeout.expired(100u)) break;
  2828. }
  2829. selectedSerialPort = 1;
  2830. putchar('\n');
  2831. #if 0
  2832. for (int b = 0; b < 3; b++) {
  2833. tone(BEEPER, 110);
  2834. delay(50);
  2835. noTone(BEEPER);
  2836. delay(50);
  2837. }
  2838. #endif
  2839. } else {
  2840. puts_P(_N("Not in farm mode."));
  2841. }
  2842. }
  2843. #ifdef BACKLASH_X
  2844. extern uint8_t st_backlash_x;
  2845. #endif //BACKLASH_X
  2846. #ifdef BACKLASH_Y
  2847. extern uint8_t st_backlash_y;
  2848. #endif //BACKLASH_Y
  2849. void process_commands()
  2850. {
  2851. if (!buflen) return; //empty command
  2852. #ifdef FILAMENT_RUNOUT_SUPPORT
  2853. SET_INPUT(FR_SENS);
  2854. #endif
  2855. #ifdef CMDBUFFER_DEBUG
  2856. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2857. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2858. SERIAL_ECHOLNPGM("");
  2859. SERIAL_ECHOPGM("In cmdqueue: ");
  2860. SERIAL_ECHO(buflen);
  2861. SERIAL_ECHOLNPGM("");
  2862. #endif /* CMDBUFFER_DEBUG */
  2863. unsigned long codenum; //throw away variable
  2864. char *starpos = NULL;
  2865. #ifdef ENABLE_AUTO_BED_LEVELING
  2866. float x_tmp, y_tmp, z_tmp, real_z;
  2867. #endif
  2868. // PRUSA GCODES
  2869. KEEPALIVE_STATE(IN_HANDLER);
  2870. #ifdef SNMM
  2871. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2872. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2873. int8_t SilentMode;
  2874. #endif
  2875. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2876. starpos = (strchr(strchr_pointer + 5, '*'));
  2877. if (starpos != NULL)
  2878. *(starpos) = '\0';
  2879. lcd_setstatus(strchr_pointer + 5);
  2880. }
  2881. #ifdef TMC2130
  2882. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2883. {
  2884. if(code_seen("CRASH_DETECTED"))
  2885. {
  2886. uint8_t mask = 0;
  2887. if (code_seen('X')) mask |= X_AXIS_MASK;
  2888. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  2889. crashdet_detected(mask);
  2890. }
  2891. else if(code_seen("CRASH_RECOVER"))
  2892. crashdet_recover();
  2893. else if(code_seen("CRASH_CANCEL"))
  2894. crashdet_cancel();
  2895. }
  2896. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2897. {
  2898. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2899. {
  2900. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2901. axis = (axis == 'E')?3:(axis - 'X');
  2902. if (axis < 4)
  2903. {
  2904. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2905. tmc2130_set_wave(axis, 247, fac);
  2906. }
  2907. }
  2908. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2909. {
  2910. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2911. axis = (axis == 'E')?3:(axis - 'X');
  2912. if (axis < 4)
  2913. {
  2914. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2915. uint16_t res = tmc2130_get_res(axis);
  2916. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2917. }
  2918. }
  2919. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2920. {
  2921. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2922. axis = (axis == 'E')?3:(axis - 'X');
  2923. if (axis < 4)
  2924. {
  2925. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2926. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2927. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2928. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2929. char* str_end = 0;
  2930. if (CMDBUFFER_CURRENT_STRING[14])
  2931. {
  2932. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2933. if (str_end && *str_end)
  2934. {
  2935. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2936. if (str_end && *str_end)
  2937. {
  2938. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2939. if (str_end && *str_end)
  2940. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2941. }
  2942. }
  2943. }
  2944. tmc2130_chopper_config[axis].toff = chop0;
  2945. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2946. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2947. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2948. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2949. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2950. }
  2951. }
  2952. }
  2953. #ifdef BACKLASH_X
  2954. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2955. {
  2956. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2957. st_backlash_x = bl;
  2958. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2959. }
  2960. #endif //BACKLASH_X
  2961. #ifdef BACKLASH_Y
  2962. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2963. {
  2964. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2965. st_backlash_y = bl;
  2966. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2967. }
  2968. #endif //BACKLASH_Y
  2969. #endif //TMC2130
  2970. else if(code_seen("PRUSA")){
  2971. if (code_seen("Ping")) { //PRUSA Ping
  2972. if (farm_mode) {
  2973. PingTime = millis();
  2974. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2975. }
  2976. }
  2977. else if (code_seen("PRN")) {
  2978. printf_P(_N("%d"), status_number);
  2979. }else if (code_seen("FAN")) {
  2980. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2981. }else if (code_seen("fn")) {
  2982. if (farm_mode) {
  2983. printf_P(_N("%d"), farm_no);
  2984. }
  2985. else {
  2986. puts_P(_N("Not in farm mode."));
  2987. }
  2988. }
  2989. else if (code_seen("thx")) {
  2990. no_response = false;
  2991. }
  2992. else if (code_seen("uvlo")) {
  2993. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2994. enquecommand_P(PSTR("M24"));
  2995. }
  2996. else if (code_seen("MMURES")) {
  2997. printf_P(PSTR("X0\n"));
  2998. fprintf_P(uart2io, PSTR("X0\n"));
  2999. }
  3000. else if (code_seen("RESET")) {
  3001. // careful!
  3002. if (farm_mode) {
  3003. #ifdef WATCHDOG
  3004. boot_app_magic = BOOT_APP_MAGIC;
  3005. boot_app_flags = BOOT_APP_FLG_RUN;
  3006. wdt_enable(WDTO_15MS);
  3007. cli();
  3008. while(1);
  3009. #else //WATCHDOG
  3010. asm volatile("jmp 0x3E000");
  3011. #endif //WATCHDOG
  3012. }
  3013. else {
  3014. MYSERIAL.println("Not in farm mode.");
  3015. }
  3016. }else if (code_seen("fv")) {
  3017. // get file version
  3018. #ifdef SDSUPPORT
  3019. card.openFile(strchr_pointer + 3,true);
  3020. while (true) {
  3021. uint16_t readByte = card.get();
  3022. MYSERIAL.write(readByte);
  3023. if (readByte=='\n') {
  3024. break;
  3025. }
  3026. }
  3027. card.closefile();
  3028. #endif // SDSUPPORT
  3029. } else if (code_seen("M28")) {
  3030. trace();
  3031. prusa_sd_card_upload = true;
  3032. card.openFile(strchr_pointer+4,false);
  3033. } else if (code_seen("SN")) {
  3034. gcode_PRUSA_SN();
  3035. } else if(code_seen("Fir")){
  3036. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3037. } else if(code_seen("Rev")){
  3038. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3039. } else if(code_seen("Lang")) {
  3040. lang_reset();
  3041. } else if(code_seen("Lz")) {
  3042. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3043. } else if(code_seen("Beat")) {
  3044. // Kick farm link timer
  3045. kicktime = millis();
  3046. } else if(code_seen("FR")) {
  3047. // Factory full reset
  3048. factory_reset(0,true);
  3049. }
  3050. //else if (code_seen('Cal')) {
  3051. // lcd_calibration();
  3052. // }
  3053. }
  3054. else if (code_seen('^')) {
  3055. // nothing, this is a version line
  3056. } else if(code_seen('G'))
  3057. {
  3058. gcode_in_progress = (int)code_value();
  3059. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3060. switch (gcode_in_progress)
  3061. {
  3062. case 0: // G0 -> G1
  3063. case 1: // G1
  3064. if(Stopped == false) {
  3065. #ifdef FILAMENT_RUNOUT_SUPPORT
  3066. if(READ(FR_SENS)){
  3067. feedmultiplyBckp=feedmultiply;
  3068. float target[4];
  3069. float lastpos[4];
  3070. target[X_AXIS]=current_position[X_AXIS];
  3071. target[Y_AXIS]=current_position[Y_AXIS];
  3072. target[Z_AXIS]=current_position[Z_AXIS];
  3073. target[E_AXIS]=current_position[E_AXIS];
  3074. lastpos[X_AXIS]=current_position[X_AXIS];
  3075. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3076. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3077. lastpos[E_AXIS]=current_position[E_AXIS];
  3078. //retract by E
  3079. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3080. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3081. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3082. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3083. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3084. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3085. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3086. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3087. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3088. //finish moves
  3089. st_synchronize();
  3090. //disable extruder steppers so filament can be removed
  3091. disable_e0();
  3092. disable_e1();
  3093. disable_e2();
  3094. delay(100);
  3095. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3096. uint8_t cnt=0;
  3097. int counterBeep = 0;
  3098. lcd_wait_interact();
  3099. while(!lcd_clicked()){
  3100. cnt++;
  3101. manage_heater();
  3102. manage_inactivity(true);
  3103. //lcd_update(0);
  3104. if(cnt==0)
  3105. {
  3106. #if BEEPER > 0
  3107. if (counterBeep== 500){
  3108. counterBeep = 0;
  3109. }
  3110. SET_OUTPUT(BEEPER);
  3111. if (counterBeep== 0){
  3112. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3113. WRITE(BEEPER,HIGH);
  3114. }
  3115. if (counterBeep== 20){
  3116. WRITE(BEEPER,LOW);
  3117. }
  3118. counterBeep++;
  3119. #else
  3120. #endif
  3121. }
  3122. }
  3123. WRITE(BEEPER,LOW);
  3124. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3125. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3126. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3127. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3128. lcd_change_fil_state = 0;
  3129. lcd_loading_filament();
  3130. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3131. lcd_change_fil_state = 0;
  3132. lcd_alright();
  3133. switch(lcd_change_fil_state){
  3134. case 2:
  3135. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3136. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3137. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3138. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3139. lcd_loading_filament();
  3140. break;
  3141. case 3:
  3142. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3143. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3144. lcd_loading_color();
  3145. break;
  3146. default:
  3147. lcd_change_success();
  3148. break;
  3149. }
  3150. }
  3151. target[E_AXIS]+= 5;
  3152. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3153. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3154. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3155. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3156. //plan_set_e_position(current_position[E_AXIS]);
  3157. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3158. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3159. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3160. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3161. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3162. plan_set_e_position(lastpos[E_AXIS]);
  3163. feedmultiply=feedmultiplyBckp;
  3164. char cmd[9];
  3165. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3166. enquecommand(cmd);
  3167. }
  3168. #endif
  3169. get_coordinates(); // For X Y Z E F
  3170. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3171. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3172. }
  3173. #ifdef FWRETRACT
  3174. if(autoretract_enabled)
  3175. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3176. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3177. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3178. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3179. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3180. retract(!retracted[active_extruder]);
  3181. return;
  3182. }
  3183. }
  3184. #endif //FWRETRACT
  3185. prepare_move();
  3186. //ClearToSend();
  3187. }
  3188. break;
  3189. case 2: // G2 - CW ARC
  3190. if(Stopped == false) {
  3191. get_arc_coordinates();
  3192. prepare_arc_move(true);
  3193. }
  3194. break;
  3195. case 3: // G3 - CCW ARC
  3196. if(Stopped == false) {
  3197. get_arc_coordinates();
  3198. prepare_arc_move(false);
  3199. }
  3200. break;
  3201. case 4: // G4 dwell
  3202. codenum = 0;
  3203. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3204. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3205. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3206. st_synchronize();
  3207. codenum += millis(); // keep track of when we started waiting
  3208. previous_millis_cmd = millis();
  3209. while(millis() < codenum) {
  3210. manage_heater();
  3211. manage_inactivity();
  3212. lcd_update(0);
  3213. }
  3214. break;
  3215. #ifdef FWRETRACT
  3216. case 10: // G10 retract
  3217. #if EXTRUDERS > 1
  3218. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3219. retract(true,retracted_swap[active_extruder]);
  3220. #else
  3221. retract(true);
  3222. #endif
  3223. break;
  3224. case 11: // G11 retract_recover
  3225. #if EXTRUDERS > 1
  3226. retract(false,retracted_swap[active_extruder]);
  3227. #else
  3228. retract(false);
  3229. #endif
  3230. break;
  3231. #endif //FWRETRACT
  3232. case 28: //G28 Home all Axis one at a time
  3233. {
  3234. long home_x_value = 0;
  3235. long home_y_value = 0;
  3236. long home_z_value = 0;
  3237. // Which axes should be homed?
  3238. bool home_x = code_seen(axis_codes[X_AXIS]);
  3239. home_x_value = code_value_long();
  3240. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3241. home_y_value = code_value_long();
  3242. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3243. home_z_value = code_value_long();
  3244. bool without_mbl = code_seen('W');
  3245. // calibrate?
  3246. bool calib = code_seen('C');
  3247. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3248. if ((home_x || home_y || without_mbl || home_z) == false) {
  3249. // Push the commands to the front of the message queue in the reverse order!
  3250. // There shall be always enough space reserved for these commands.
  3251. goto case_G80;
  3252. }
  3253. break;
  3254. }
  3255. #ifdef ENABLE_AUTO_BED_LEVELING
  3256. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3257. {
  3258. #if Z_MIN_PIN == -1
  3259. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3260. #endif
  3261. // Prevent user from running a G29 without first homing in X and Y
  3262. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3263. {
  3264. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3265. SERIAL_ECHO_START;
  3266. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3267. break; // abort G29, since we don't know where we are
  3268. }
  3269. st_synchronize();
  3270. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3271. //vector_3 corrected_position = plan_get_position_mm();
  3272. //corrected_position.debug("position before G29");
  3273. plan_bed_level_matrix.set_to_identity();
  3274. vector_3 uncorrected_position = plan_get_position();
  3275. //uncorrected_position.debug("position durring G29");
  3276. current_position[X_AXIS] = uncorrected_position.x;
  3277. current_position[Y_AXIS] = uncorrected_position.y;
  3278. current_position[Z_AXIS] = uncorrected_position.z;
  3279. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3280. setup_for_endstop_move();
  3281. feedrate = homing_feedrate[Z_AXIS];
  3282. #ifdef AUTO_BED_LEVELING_GRID
  3283. // probe at the points of a lattice grid
  3284. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3285. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3286. // solve the plane equation ax + by + d = z
  3287. // A is the matrix with rows [x y 1] for all the probed points
  3288. // B is the vector of the Z positions
  3289. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3290. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3291. // "A" matrix of the linear system of equations
  3292. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3293. // "B" vector of Z points
  3294. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3295. int probePointCounter = 0;
  3296. bool zig = true;
  3297. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3298. {
  3299. int xProbe, xInc;
  3300. if (zig)
  3301. {
  3302. xProbe = LEFT_PROBE_BED_POSITION;
  3303. //xEnd = RIGHT_PROBE_BED_POSITION;
  3304. xInc = xGridSpacing;
  3305. zig = false;
  3306. } else // zag
  3307. {
  3308. xProbe = RIGHT_PROBE_BED_POSITION;
  3309. //xEnd = LEFT_PROBE_BED_POSITION;
  3310. xInc = -xGridSpacing;
  3311. zig = true;
  3312. }
  3313. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3314. {
  3315. float z_before;
  3316. if (probePointCounter == 0)
  3317. {
  3318. // raise before probing
  3319. z_before = Z_RAISE_BEFORE_PROBING;
  3320. } else
  3321. {
  3322. // raise extruder
  3323. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3324. }
  3325. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3326. eqnBVector[probePointCounter] = measured_z;
  3327. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3328. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3329. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3330. probePointCounter++;
  3331. xProbe += xInc;
  3332. }
  3333. }
  3334. clean_up_after_endstop_move();
  3335. // solve lsq problem
  3336. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3337. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3338. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3339. SERIAL_PROTOCOLPGM(" b: ");
  3340. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3341. SERIAL_PROTOCOLPGM(" d: ");
  3342. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3343. set_bed_level_equation_lsq(plane_equation_coefficients);
  3344. free(plane_equation_coefficients);
  3345. #else // AUTO_BED_LEVELING_GRID not defined
  3346. // Probe at 3 arbitrary points
  3347. // probe 1
  3348. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3349. // probe 2
  3350. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3351. // probe 3
  3352. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3353. clean_up_after_endstop_move();
  3354. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3355. #endif // AUTO_BED_LEVELING_GRID
  3356. st_synchronize();
  3357. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3358. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3359. // When the bed is uneven, this height must be corrected.
  3360. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3361. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3362. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3363. z_tmp = current_position[Z_AXIS];
  3364. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3365. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3366. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3367. }
  3368. break;
  3369. #ifndef Z_PROBE_SLED
  3370. case 30: // G30 Single Z Probe
  3371. {
  3372. st_synchronize();
  3373. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3374. setup_for_endstop_move();
  3375. feedrate = homing_feedrate[Z_AXIS];
  3376. run_z_probe();
  3377. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3378. SERIAL_PROTOCOLPGM(" X: ");
  3379. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3380. SERIAL_PROTOCOLPGM(" Y: ");
  3381. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3382. SERIAL_PROTOCOLPGM(" Z: ");
  3383. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3384. SERIAL_PROTOCOLPGM("\n");
  3385. clean_up_after_endstop_move();
  3386. }
  3387. break;
  3388. #else
  3389. case 31: // dock the sled
  3390. dock_sled(true);
  3391. break;
  3392. case 32: // undock the sled
  3393. dock_sled(false);
  3394. break;
  3395. #endif // Z_PROBE_SLED
  3396. #endif // ENABLE_AUTO_BED_LEVELING
  3397. #ifdef MESH_BED_LEVELING
  3398. case 30: // G30 Single Z Probe
  3399. {
  3400. st_synchronize();
  3401. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3402. setup_for_endstop_move();
  3403. feedrate = homing_feedrate[Z_AXIS];
  3404. find_bed_induction_sensor_point_z(-10.f, 3);
  3405. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3406. clean_up_after_endstop_move();
  3407. }
  3408. break;
  3409. case 75:
  3410. {
  3411. for (int i = 40; i <= 110; i++)
  3412. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3413. }
  3414. break;
  3415. case 76: //PINDA probe temperature calibration
  3416. {
  3417. #ifdef PINDA_THERMISTOR
  3418. if (true)
  3419. {
  3420. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3421. //we need to know accurate position of first calibration point
  3422. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3423. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3424. break;
  3425. }
  3426. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3427. {
  3428. // We don't know where we are! HOME!
  3429. // Push the commands to the front of the message queue in the reverse order!
  3430. // There shall be always enough space reserved for these commands.
  3431. repeatcommand_front(); // repeat G76 with all its parameters
  3432. enquecommand_front_P((PSTR("G28 W0")));
  3433. break;
  3434. }
  3435. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3436. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3437. if (result)
  3438. {
  3439. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3440. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3441. current_position[Z_AXIS] = 50;
  3442. current_position[Y_AXIS] = 180;
  3443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3444. st_synchronize();
  3445. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3446. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3447. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3448. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3449. st_synchronize();
  3450. gcode_G28(false, false, true);
  3451. }
  3452. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3453. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3454. current_position[Z_AXIS] = 100;
  3455. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3456. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3457. lcd_temp_cal_show_result(false);
  3458. break;
  3459. }
  3460. }
  3461. lcd_update_enable(true);
  3462. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3463. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3464. float zero_z;
  3465. int z_shift = 0; //unit: steps
  3466. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3467. if (start_temp < 35) start_temp = 35;
  3468. if (start_temp < current_temperature_pinda) start_temp += 5;
  3469. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3470. // setTargetHotend(200, 0);
  3471. setTargetBed(70 + (start_temp - 30));
  3472. custom_message = true;
  3473. custom_message_type = 4;
  3474. custom_message_state = 1;
  3475. custom_message = _T(MSG_TEMP_CALIBRATION);
  3476. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3477. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3478. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3479. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3480. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3481. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3482. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3483. st_synchronize();
  3484. while (current_temperature_pinda < start_temp)
  3485. {
  3486. delay_keep_alive(1000);
  3487. serialecho_temperatures();
  3488. }
  3489. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3490. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3491. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3492. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3493. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3494. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3495. st_synchronize();
  3496. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3497. if (find_z_result == false) {
  3498. lcd_temp_cal_show_result(find_z_result);
  3499. break;
  3500. }
  3501. zero_z = current_position[Z_AXIS];
  3502. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3503. int i = -1; for (; i < 5; i++)
  3504. {
  3505. float temp = (40 + i * 5);
  3506. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3507. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3508. if (start_temp <= temp) break;
  3509. }
  3510. for (i++; i < 5; i++)
  3511. {
  3512. float temp = (40 + i * 5);
  3513. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3514. custom_message_state = i + 2;
  3515. setTargetBed(50 + 10 * (temp - 30) / 5);
  3516. // setTargetHotend(255, 0);
  3517. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3518. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3519. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3520. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3522. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3523. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3524. st_synchronize();
  3525. while (current_temperature_pinda < temp)
  3526. {
  3527. delay_keep_alive(1000);
  3528. serialecho_temperatures();
  3529. }
  3530. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3531. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3532. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3533. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3534. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3535. st_synchronize();
  3536. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3537. if (find_z_result == false) {
  3538. lcd_temp_cal_show_result(find_z_result);
  3539. break;
  3540. }
  3541. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3542. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3543. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3544. }
  3545. lcd_temp_cal_show_result(true);
  3546. break;
  3547. }
  3548. #endif //PINDA_THERMISTOR
  3549. setTargetBed(PINDA_MIN_T);
  3550. float zero_z;
  3551. int z_shift = 0; //unit: steps
  3552. int t_c; // temperature
  3553. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3554. // We don't know where we are! HOME!
  3555. // Push the commands to the front of the message queue in the reverse order!
  3556. // There shall be always enough space reserved for these commands.
  3557. repeatcommand_front(); // repeat G76 with all its parameters
  3558. enquecommand_front_P((PSTR("G28 W0")));
  3559. break;
  3560. }
  3561. puts_P(_N("PINDA probe calibration start"));
  3562. custom_message = true;
  3563. custom_message_type = 4;
  3564. custom_message_state = 1;
  3565. custom_message = _T(MSG_TEMP_CALIBRATION);
  3566. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3567. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3568. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3569. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3570. st_synchronize();
  3571. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3572. delay_keep_alive(1000);
  3573. serialecho_temperatures();
  3574. }
  3575. //enquecommand_P(PSTR("M190 S50"));
  3576. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3577. delay_keep_alive(1000);
  3578. serialecho_temperatures();
  3579. }
  3580. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3581. current_position[Z_AXIS] = 5;
  3582. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3583. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3584. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3585. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3586. st_synchronize();
  3587. find_bed_induction_sensor_point_z(-1.f);
  3588. zero_z = current_position[Z_AXIS];
  3589. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3590. for (int i = 0; i<5; i++) {
  3591. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3592. custom_message_state = i + 2;
  3593. t_c = 60 + i * 10;
  3594. setTargetBed(t_c);
  3595. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3596. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3597. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3599. st_synchronize();
  3600. while (degBed() < t_c) {
  3601. delay_keep_alive(1000);
  3602. serialecho_temperatures();
  3603. }
  3604. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3605. delay_keep_alive(1000);
  3606. serialecho_temperatures();
  3607. }
  3608. current_position[Z_AXIS] = 5;
  3609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3610. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3611. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3613. st_synchronize();
  3614. find_bed_induction_sensor_point_z(-1.f);
  3615. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3616. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3617. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3618. }
  3619. custom_message_type = 0;
  3620. custom_message = false;
  3621. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3622. puts_P(_N("Temperature calibration done."));
  3623. disable_x();
  3624. disable_y();
  3625. disable_z();
  3626. disable_e0();
  3627. disable_e1();
  3628. disable_e2();
  3629. setTargetBed(0); //set bed target temperature back to 0
  3630. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3631. temp_cal_active = true;
  3632. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3633. lcd_update_enable(true);
  3634. lcd_update(2);
  3635. }
  3636. break;
  3637. #ifdef DIS
  3638. case 77:
  3639. {
  3640. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3641. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3642. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3643. float dimension_x = 40;
  3644. float dimension_y = 40;
  3645. int points_x = 40;
  3646. int points_y = 40;
  3647. float offset_x = 74;
  3648. float offset_y = 33;
  3649. if (code_seen('X')) dimension_x = code_value();
  3650. if (code_seen('Y')) dimension_y = code_value();
  3651. if (code_seen("XP")) { strchr_pointer+=1; points_x = code_value(); }
  3652. if (code_seen("YP")) { strchr_pointer+=1; points_y = code_value(); }
  3653. if (code_seen("XO")) { strchr_pointer+=1; offset_x = code_value(); }
  3654. if (code_seen("YO")) { strchr_pointer+=1; offset_y = code_value(); }
  3655. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3656. } break;
  3657. #endif
  3658. case 79: {
  3659. for (int i = 255; i > 0; i = i - 5) {
  3660. fanSpeed = i;
  3661. //delay_keep_alive(2000);
  3662. for (int j = 0; j < 100; j++) {
  3663. delay_keep_alive(100);
  3664. }
  3665. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3666. }
  3667. }break;
  3668. /**
  3669. * G80: Mesh-based Z probe, probes a grid and produces a
  3670. * mesh to compensate for variable bed height
  3671. *
  3672. * The S0 report the points as below
  3673. *
  3674. * +----> X-axis
  3675. * |
  3676. * |
  3677. * v Y-axis
  3678. *
  3679. */
  3680. case 80:
  3681. #ifdef MK1BP
  3682. break;
  3683. #endif //MK1BP
  3684. case_G80:
  3685. {
  3686. mesh_bed_leveling_flag = true;
  3687. static bool run = false;
  3688. #ifdef SUPPORT_VERBOSITY
  3689. int8_t verbosity_level = 0;
  3690. if (code_seen('V')) {
  3691. // Just 'V' without a number counts as V1.
  3692. char c = strchr_pointer[1];
  3693. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3694. }
  3695. #endif //SUPPORT_VERBOSITY
  3696. // Firstly check if we know where we are
  3697. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3698. // We don't know where we are! HOME!
  3699. // Push the commands to the front of the message queue in the reverse order!
  3700. // There shall be always enough space reserved for these commands.
  3701. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3702. repeatcommand_front(); // repeat G80 with all its parameters
  3703. enquecommand_front_P((PSTR("G28 W0")));
  3704. }
  3705. else {
  3706. mesh_bed_leveling_flag = false;
  3707. }
  3708. break;
  3709. }
  3710. bool temp_comp_start = true;
  3711. #ifdef PINDA_THERMISTOR
  3712. temp_comp_start = false;
  3713. #endif //PINDA_THERMISTOR
  3714. if (temp_comp_start)
  3715. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3716. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3717. temp_compensation_start();
  3718. run = true;
  3719. repeatcommand_front(); // repeat G80 with all its parameters
  3720. enquecommand_front_P((PSTR("G28 W0")));
  3721. }
  3722. else {
  3723. mesh_bed_leveling_flag = false;
  3724. }
  3725. break;
  3726. }
  3727. run = false;
  3728. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3729. mesh_bed_leveling_flag = false;
  3730. break;
  3731. }
  3732. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3733. bool custom_message_old = custom_message;
  3734. unsigned int custom_message_type_old = custom_message_type;
  3735. unsigned int custom_message_state_old = custom_message_state;
  3736. custom_message = true;
  3737. custom_message_type = 1;
  3738. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3739. lcd_update(1);
  3740. mbl.reset(); //reset mesh bed leveling
  3741. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3742. // consumed during the first movements following this statement.
  3743. babystep_undo();
  3744. // Cycle through all points and probe them
  3745. // First move up. During this first movement, the babystepping will be reverted.
  3746. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3747. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3748. // The move to the first calibration point.
  3749. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3750. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3751. #ifdef SUPPORT_VERBOSITY
  3752. if (verbosity_level >= 1)
  3753. {
  3754. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3755. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3756. }
  3757. #endif //SUPPORT_VERBOSITY
  3758. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3759. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3760. // Wait until the move is finished.
  3761. st_synchronize();
  3762. int mesh_point = 0; //index number of calibration point
  3763. int ix = 0;
  3764. int iy = 0;
  3765. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3766. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3767. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3768. #ifdef SUPPORT_VERBOSITY
  3769. if (verbosity_level >= 1) {
  3770. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3771. }
  3772. #endif // SUPPORT_VERBOSITY
  3773. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3774. const char *kill_message = NULL;
  3775. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3776. // Get coords of a measuring point.
  3777. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3778. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3779. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3780. float z0 = 0.f;
  3781. if (has_z && mesh_point > 0) {
  3782. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3783. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3784. //#if 0
  3785. #ifdef SUPPORT_VERBOSITY
  3786. if (verbosity_level >= 1) {
  3787. SERIAL_ECHOLNPGM("");
  3788. SERIAL_ECHOPGM("Bed leveling, point: ");
  3789. MYSERIAL.print(mesh_point);
  3790. SERIAL_ECHOPGM(", calibration z: ");
  3791. MYSERIAL.print(z0, 5);
  3792. SERIAL_ECHOLNPGM("");
  3793. }
  3794. #endif // SUPPORT_VERBOSITY
  3795. //#endif
  3796. }
  3797. // Move Z up to MESH_HOME_Z_SEARCH.
  3798. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3799. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3800. st_synchronize();
  3801. // Move to XY position of the sensor point.
  3802. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3803. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3804. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3805. #ifdef SUPPORT_VERBOSITY
  3806. if (verbosity_level >= 1) {
  3807. SERIAL_PROTOCOL(mesh_point);
  3808. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3809. }
  3810. #endif // SUPPORT_VERBOSITY
  3811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3812. st_synchronize();
  3813. // Go down until endstop is hit
  3814. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3815. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3816. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3817. break;
  3818. }
  3819. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3820. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3821. break;
  3822. }
  3823. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3824. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3825. break;
  3826. }
  3827. #ifdef SUPPORT_VERBOSITY
  3828. if (verbosity_level >= 10) {
  3829. SERIAL_ECHOPGM("X: ");
  3830. MYSERIAL.print(current_position[X_AXIS], 5);
  3831. SERIAL_ECHOLNPGM("");
  3832. SERIAL_ECHOPGM("Y: ");
  3833. MYSERIAL.print(current_position[Y_AXIS], 5);
  3834. SERIAL_PROTOCOLPGM("\n");
  3835. }
  3836. #endif // SUPPORT_VERBOSITY
  3837. float offset_z = 0;
  3838. #ifdef PINDA_THERMISTOR
  3839. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3840. #endif //PINDA_THERMISTOR
  3841. // #ifdef SUPPORT_VERBOSITY
  3842. /* if (verbosity_level >= 1)
  3843. {
  3844. SERIAL_ECHOPGM("mesh bed leveling: ");
  3845. MYSERIAL.print(current_position[Z_AXIS], 5);
  3846. SERIAL_ECHOPGM(" offset: ");
  3847. MYSERIAL.print(offset_z, 5);
  3848. SERIAL_ECHOLNPGM("");
  3849. }*/
  3850. // #endif // SUPPORT_VERBOSITY
  3851. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3852. custom_message_state--;
  3853. mesh_point++;
  3854. lcd_update(1);
  3855. }
  3856. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3857. #ifdef SUPPORT_VERBOSITY
  3858. if (verbosity_level >= 20) {
  3859. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3860. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3861. MYSERIAL.print(current_position[Z_AXIS], 5);
  3862. }
  3863. #endif // SUPPORT_VERBOSITY
  3864. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3865. st_synchronize();
  3866. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3867. kill(kill_message);
  3868. SERIAL_ECHOLNPGM("killed");
  3869. }
  3870. clean_up_after_endstop_move();
  3871. // SERIAL_ECHOLNPGM("clean up finished ");
  3872. bool apply_temp_comp = true;
  3873. #ifdef PINDA_THERMISTOR
  3874. apply_temp_comp = false;
  3875. #endif
  3876. if (apply_temp_comp)
  3877. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3878. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3879. // SERIAL_ECHOLNPGM("babystep applied");
  3880. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3881. #ifdef SUPPORT_VERBOSITY
  3882. if (verbosity_level >= 1) {
  3883. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3884. }
  3885. #endif // SUPPORT_VERBOSITY
  3886. for (uint8_t i = 0; i < 4; ++i) {
  3887. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3888. long correction = 0;
  3889. if (code_seen(codes[i]))
  3890. correction = code_value_long();
  3891. else if (eeprom_bed_correction_valid) {
  3892. unsigned char *addr = (i < 2) ?
  3893. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3894. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3895. correction = eeprom_read_int8(addr);
  3896. }
  3897. if (correction == 0)
  3898. continue;
  3899. float offset = float(correction) * 0.001f;
  3900. if (fabs(offset) > 0.101f) {
  3901. SERIAL_ERROR_START;
  3902. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3903. SERIAL_ECHO(offset);
  3904. SERIAL_ECHOLNPGM(" microns");
  3905. }
  3906. else {
  3907. switch (i) {
  3908. case 0:
  3909. for (uint8_t row = 0; row < 3; ++row) {
  3910. mbl.z_values[row][1] += 0.5f * offset;
  3911. mbl.z_values[row][0] += offset;
  3912. }
  3913. break;
  3914. case 1:
  3915. for (uint8_t row = 0; row < 3; ++row) {
  3916. mbl.z_values[row][1] += 0.5f * offset;
  3917. mbl.z_values[row][2] += offset;
  3918. }
  3919. break;
  3920. case 2:
  3921. for (uint8_t col = 0; col < 3; ++col) {
  3922. mbl.z_values[1][col] += 0.5f * offset;
  3923. mbl.z_values[0][col] += offset;
  3924. }
  3925. break;
  3926. case 3:
  3927. for (uint8_t col = 0; col < 3; ++col) {
  3928. mbl.z_values[1][col] += 0.5f * offset;
  3929. mbl.z_values[2][col] += offset;
  3930. }
  3931. break;
  3932. }
  3933. }
  3934. }
  3935. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3936. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3937. // SERIAL_ECHOLNPGM("Upsample finished");
  3938. mbl.active = 1; //activate mesh bed leveling
  3939. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3940. go_home_with_z_lift();
  3941. // SERIAL_ECHOLNPGM("Go home finished");
  3942. //unretract (after PINDA preheat retraction)
  3943. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3944. current_position[E_AXIS] += default_retraction;
  3945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3946. }
  3947. KEEPALIVE_STATE(NOT_BUSY);
  3948. // Restore custom message state
  3949. lcd_setstatuspgm(_T(WELCOME_MSG));
  3950. custom_message = custom_message_old;
  3951. custom_message_type = custom_message_type_old;
  3952. custom_message_state = custom_message_state_old;
  3953. mesh_bed_leveling_flag = false;
  3954. mesh_bed_run_from_menu = false;
  3955. lcd_update(2);
  3956. }
  3957. break;
  3958. /**
  3959. * G81: Print mesh bed leveling status and bed profile if activated
  3960. */
  3961. case 81:
  3962. if (mbl.active) {
  3963. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3964. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3965. SERIAL_PROTOCOLPGM(",");
  3966. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3967. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3968. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3969. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3970. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3971. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3972. SERIAL_PROTOCOLPGM(" ");
  3973. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3974. }
  3975. SERIAL_PROTOCOLPGM("\n");
  3976. }
  3977. }
  3978. else
  3979. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3980. break;
  3981. #if 0
  3982. /**
  3983. * G82: Single Z probe at current location
  3984. *
  3985. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3986. *
  3987. */
  3988. case 82:
  3989. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3990. setup_for_endstop_move();
  3991. find_bed_induction_sensor_point_z();
  3992. clean_up_after_endstop_move();
  3993. SERIAL_PROTOCOLPGM("Bed found at: ");
  3994. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3995. SERIAL_PROTOCOLPGM("\n");
  3996. break;
  3997. /**
  3998. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3999. */
  4000. case 83:
  4001. {
  4002. int babystepz = code_seen('S') ? code_value() : 0;
  4003. int BabyPosition = code_seen('P') ? code_value() : 0;
  4004. if (babystepz != 0) {
  4005. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4006. // Is the axis indexed starting with zero or one?
  4007. if (BabyPosition > 4) {
  4008. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4009. }else{
  4010. // Save it to the eeprom
  4011. babystepLoadZ = babystepz;
  4012. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4013. // adjust the Z
  4014. babystepsTodoZadd(babystepLoadZ);
  4015. }
  4016. }
  4017. }
  4018. break;
  4019. /**
  4020. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4021. */
  4022. case 84:
  4023. babystepsTodoZsubtract(babystepLoadZ);
  4024. // babystepLoadZ = 0;
  4025. break;
  4026. /**
  4027. * G85: Prusa3D specific: Pick best babystep
  4028. */
  4029. case 85:
  4030. lcd_pick_babystep();
  4031. break;
  4032. #endif
  4033. /**
  4034. * G86: Prusa3D specific: Disable babystep correction after home.
  4035. * This G-code will be performed at the start of a calibration script.
  4036. */
  4037. case 86:
  4038. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4039. break;
  4040. /**
  4041. * G87: Prusa3D specific: Enable babystep correction after home
  4042. * This G-code will be performed at the end of a calibration script.
  4043. */
  4044. case 87:
  4045. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4046. break;
  4047. /**
  4048. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4049. */
  4050. case 88:
  4051. break;
  4052. #endif // ENABLE_MESH_BED_LEVELING
  4053. case 90: // G90
  4054. relative_mode = false;
  4055. break;
  4056. case 91: // G91
  4057. relative_mode = true;
  4058. break;
  4059. case 92: // G92
  4060. if(!code_seen(axis_codes[E_AXIS]))
  4061. st_synchronize();
  4062. for(int8_t i=0; i < NUM_AXIS; i++) {
  4063. if(code_seen(axis_codes[i])) {
  4064. if(i == E_AXIS) {
  4065. current_position[i] = code_value();
  4066. plan_set_e_position(current_position[E_AXIS]);
  4067. }
  4068. else {
  4069. current_position[i] = code_value()+add_homing[i];
  4070. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4071. }
  4072. }
  4073. }
  4074. break;
  4075. case 98: // G98 (activate farm mode)
  4076. farm_mode = 1;
  4077. PingTime = millis();
  4078. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4079. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4080. SilentModeMenu = SILENT_MODE_OFF;
  4081. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4082. break;
  4083. case 99: // G99 (deactivate farm mode)
  4084. farm_mode = 0;
  4085. lcd_printer_connected();
  4086. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4087. lcd_update(2);
  4088. break;
  4089. default:
  4090. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4091. }
  4092. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4093. gcode_in_progress = 0;
  4094. } // end if(code_seen('G'))
  4095. else if(code_seen('M'))
  4096. {
  4097. int index;
  4098. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4099. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4100. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4101. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4102. } else
  4103. {
  4104. mcode_in_progress = (int)code_value();
  4105. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4106. switch(mcode_in_progress)
  4107. {
  4108. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4109. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4110. {
  4111. char *src = strchr_pointer + 2;
  4112. codenum = 0;
  4113. bool hasP = false, hasS = false;
  4114. if (code_seen('P')) {
  4115. codenum = code_value(); // milliseconds to wait
  4116. hasP = codenum > 0;
  4117. }
  4118. if (code_seen('S')) {
  4119. codenum = code_value() * 1000; // seconds to wait
  4120. hasS = codenum > 0;
  4121. }
  4122. starpos = strchr(src, '*');
  4123. if (starpos != NULL) *(starpos) = '\0';
  4124. while (*src == ' ') ++src;
  4125. if (!hasP && !hasS && *src != '\0') {
  4126. lcd_setstatus(src);
  4127. } else {
  4128. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4129. }
  4130. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4131. st_synchronize();
  4132. previous_millis_cmd = millis();
  4133. if (codenum > 0){
  4134. codenum += millis(); // keep track of when we started waiting
  4135. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4136. while(millis() < codenum && !lcd_clicked()){
  4137. manage_heater();
  4138. manage_inactivity(true);
  4139. lcd_update(0);
  4140. }
  4141. KEEPALIVE_STATE(IN_HANDLER);
  4142. lcd_ignore_click(false);
  4143. }else{
  4144. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4145. while(!lcd_clicked()){
  4146. manage_heater();
  4147. manage_inactivity(true);
  4148. lcd_update(0);
  4149. }
  4150. KEEPALIVE_STATE(IN_HANDLER);
  4151. }
  4152. if (IS_SD_PRINTING)
  4153. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4154. else
  4155. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4156. }
  4157. break;
  4158. case 17:
  4159. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4160. enable_x();
  4161. enable_y();
  4162. enable_z();
  4163. enable_e0();
  4164. enable_e1();
  4165. enable_e2();
  4166. break;
  4167. #ifdef SDSUPPORT
  4168. case 20: // M20 - list SD card
  4169. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4170. card.ls();
  4171. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4172. break;
  4173. case 21: // M21 - init SD card
  4174. card.initsd();
  4175. break;
  4176. case 22: //M22 - release SD card
  4177. card.release();
  4178. break;
  4179. case 23: //M23 - Select file
  4180. starpos = (strchr(strchr_pointer + 4,'*'));
  4181. if(starpos!=NULL)
  4182. *(starpos)='\0';
  4183. card.openFile(strchr_pointer + 4,true);
  4184. break;
  4185. case 24: //M24 - Start SD print
  4186. if (!card.paused)
  4187. failstats_reset_print();
  4188. card.startFileprint();
  4189. starttime=millis();
  4190. break;
  4191. case 25: //M25 - Pause SD print
  4192. card.pauseSDPrint();
  4193. break;
  4194. case 26: //M26 - Set SD index
  4195. if(card.cardOK && code_seen('S')) {
  4196. card.setIndex(code_value_long());
  4197. }
  4198. break;
  4199. case 27: //M27 - Get SD status
  4200. card.getStatus();
  4201. break;
  4202. case 28: //M28 - Start SD write
  4203. starpos = (strchr(strchr_pointer + 4,'*'));
  4204. if(starpos != NULL){
  4205. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4206. strchr_pointer = strchr(npos,' ') + 1;
  4207. *(starpos) = '\0';
  4208. }
  4209. card.openFile(strchr_pointer+4,false);
  4210. break;
  4211. case 29: //M29 - Stop SD write
  4212. //processed in write to file routine above
  4213. //card,saving = false;
  4214. break;
  4215. case 30: //M30 <filename> Delete File
  4216. if (card.cardOK){
  4217. card.closefile();
  4218. starpos = (strchr(strchr_pointer + 4,'*'));
  4219. if(starpos != NULL){
  4220. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4221. strchr_pointer = strchr(npos,' ') + 1;
  4222. *(starpos) = '\0';
  4223. }
  4224. card.removeFile(strchr_pointer + 4);
  4225. }
  4226. break;
  4227. case 32: //M32 - Select file and start SD print
  4228. {
  4229. if(card.sdprinting) {
  4230. st_synchronize();
  4231. }
  4232. starpos = (strchr(strchr_pointer + 4,'*'));
  4233. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4234. if(namestartpos==NULL)
  4235. {
  4236. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4237. }
  4238. else
  4239. namestartpos++; //to skip the '!'
  4240. if(starpos!=NULL)
  4241. *(starpos)='\0';
  4242. bool call_procedure=(code_seen('P'));
  4243. if(strchr_pointer>namestartpos)
  4244. call_procedure=false; //false alert, 'P' found within filename
  4245. if( card.cardOK )
  4246. {
  4247. card.openFile(namestartpos,true,!call_procedure);
  4248. if(code_seen('S'))
  4249. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4250. card.setIndex(code_value_long());
  4251. card.startFileprint();
  4252. if(!call_procedure)
  4253. starttime=millis(); //procedure calls count as normal print time.
  4254. }
  4255. } break;
  4256. case 928: //M928 - Start SD write
  4257. starpos = (strchr(strchr_pointer + 5,'*'));
  4258. if(starpos != NULL){
  4259. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4260. strchr_pointer = strchr(npos,' ') + 1;
  4261. *(starpos) = '\0';
  4262. }
  4263. card.openLogFile(strchr_pointer+5);
  4264. break;
  4265. #endif //SDSUPPORT
  4266. case 31: //M31 take time since the start of the SD print or an M109 command
  4267. {
  4268. stoptime=millis();
  4269. char time[30];
  4270. unsigned long t=(stoptime-starttime)/1000;
  4271. int sec,min;
  4272. min=t/60;
  4273. sec=t%60;
  4274. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4275. SERIAL_ECHO_START;
  4276. SERIAL_ECHOLN(time);
  4277. lcd_setstatus(time);
  4278. autotempShutdown();
  4279. }
  4280. break;
  4281. case 42: //M42 -Change pin status via gcode
  4282. if (code_seen('S'))
  4283. {
  4284. int pin_status = code_value();
  4285. int pin_number = LED_PIN;
  4286. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4287. pin_number = code_value();
  4288. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4289. {
  4290. if (sensitive_pins[i] == pin_number)
  4291. {
  4292. pin_number = -1;
  4293. break;
  4294. }
  4295. }
  4296. #if defined(FAN_PIN) && FAN_PIN > -1
  4297. if (pin_number == FAN_PIN)
  4298. fanSpeed = pin_status;
  4299. #endif
  4300. if (pin_number > -1)
  4301. {
  4302. pinMode(pin_number, OUTPUT);
  4303. digitalWrite(pin_number, pin_status);
  4304. analogWrite(pin_number, pin_status);
  4305. }
  4306. }
  4307. break;
  4308. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4309. // Reset the baby step value and the baby step applied flag.
  4310. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4311. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4312. // Reset the skew and offset in both RAM and EEPROM.
  4313. reset_bed_offset_and_skew();
  4314. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4315. // the planner will not perform any adjustments in the XY plane.
  4316. // Wait for the motors to stop and update the current position with the absolute values.
  4317. world2machine_revert_to_uncorrected();
  4318. break;
  4319. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4320. {
  4321. int8_t verbosity_level = 0;
  4322. bool only_Z = code_seen('Z');
  4323. #ifdef SUPPORT_VERBOSITY
  4324. if (code_seen('V'))
  4325. {
  4326. // Just 'V' without a number counts as V1.
  4327. char c = strchr_pointer[1];
  4328. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4329. }
  4330. #endif //SUPPORT_VERBOSITY
  4331. gcode_M45(only_Z, verbosity_level);
  4332. }
  4333. break;
  4334. /*
  4335. case 46:
  4336. {
  4337. // M46: Prusa3D: Show the assigned IP address.
  4338. uint8_t ip[4];
  4339. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4340. if (hasIP) {
  4341. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4342. SERIAL_ECHO(int(ip[0]));
  4343. SERIAL_ECHOPGM(".");
  4344. SERIAL_ECHO(int(ip[1]));
  4345. SERIAL_ECHOPGM(".");
  4346. SERIAL_ECHO(int(ip[2]));
  4347. SERIAL_ECHOPGM(".");
  4348. SERIAL_ECHO(int(ip[3]));
  4349. SERIAL_ECHOLNPGM("");
  4350. } else {
  4351. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4352. }
  4353. break;
  4354. }
  4355. */
  4356. case 47:
  4357. // M47: Prusa3D: Show end stops dialog on the display.
  4358. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4359. lcd_diag_show_end_stops();
  4360. KEEPALIVE_STATE(IN_HANDLER);
  4361. break;
  4362. #if 0
  4363. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4364. {
  4365. // Disable the default update procedure of the display. We will do a modal dialog.
  4366. lcd_update_enable(false);
  4367. // Let the planner use the uncorrected coordinates.
  4368. mbl.reset();
  4369. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4370. // the planner will not perform any adjustments in the XY plane.
  4371. // Wait for the motors to stop and update the current position with the absolute values.
  4372. world2machine_revert_to_uncorrected();
  4373. // Move the print head close to the bed.
  4374. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4375. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4376. st_synchronize();
  4377. // Home in the XY plane.
  4378. set_destination_to_current();
  4379. setup_for_endstop_move();
  4380. home_xy();
  4381. int8_t verbosity_level = 0;
  4382. if (code_seen('V')) {
  4383. // Just 'V' without a number counts as V1.
  4384. char c = strchr_pointer[1];
  4385. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4386. }
  4387. bool success = scan_bed_induction_points(verbosity_level);
  4388. clean_up_after_endstop_move();
  4389. // Print head up.
  4390. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4391. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4392. st_synchronize();
  4393. lcd_update_enable(true);
  4394. break;
  4395. }
  4396. #endif
  4397. // M48 Z-Probe repeatability measurement function.
  4398. //
  4399. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4400. //
  4401. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4402. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4403. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4404. // regenerated.
  4405. //
  4406. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4407. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4408. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4409. //
  4410. #ifdef ENABLE_AUTO_BED_LEVELING
  4411. #ifdef Z_PROBE_REPEATABILITY_TEST
  4412. case 48: // M48 Z-Probe repeatability
  4413. {
  4414. #if Z_MIN_PIN == -1
  4415. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4416. #endif
  4417. double sum=0.0;
  4418. double mean=0.0;
  4419. double sigma=0.0;
  4420. double sample_set[50];
  4421. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4422. double X_current, Y_current, Z_current;
  4423. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4424. if (code_seen('V') || code_seen('v')) {
  4425. verbose_level = code_value();
  4426. if (verbose_level<0 || verbose_level>4 ) {
  4427. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4428. goto Sigma_Exit;
  4429. }
  4430. }
  4431. if (verbose_level > 0) {
  4432. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4433. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4434. }
  4435. if (code_seen('n')) {
  4436. n_samples = code_value();
  4437. if (n_samples<4 || n_samples>50 ) {
  4438. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4439. goto Sigma_Exit;
  4440. }
  4441. }
  4442. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4443. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4444. Z_current = st_get_position_mm(Z_AXIS);
  4445. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4446. ext_position = st_get_position_mm(E_AXIS);
  4447. if (code_seen('X') || code_seen('x') ) {
  4448. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4449. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4450. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4451. goto Sigma_Exit;
  4452. }
  4453. }
  4454. if (code_seen('Y') || code_seen('y') ) {
  4455. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4456. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4457. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4458. goto Sigma_Exit;
  4459. }
  4460. }
  4461. if (code_seen('L') || code_seen('l') ) {
  4462. n_legs = code_value();
  4463. if ( n_legs==1 )
  4464. n_legs = 2;
  4465. if ( n_legs<0 || n_legs>15 ) {
  4466. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4467. goto Sigma_Exit;
  4468. }
  4469. }
  4470. //
  4471. // Do all the preliminary setup work. First raise the probe.
  4472. //
  4473. st_synchronize();
  4474. plan_bed_level_matrix.set_to_identity();
  4475. plan_buffer_line( X_current, Y_current, Z_start_location,
  4476. ext_position,
  4477. homing_feedrate[Z_AXIS]/60,
  4478. active_extruder);
  4479. st_synchronize();
  4480. //
  4481. // Now get everything to the specified probe point So we can safely do a probe to
  4482. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4483. // use that as a starting point for each probe.
  4484. //
  4485. if (verbose_level > 2)
  4486. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4487. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4488. ext_position,
  4489. homing_feedrate[X_AXIS]/60,
  4490. active_extruder);
  4491. st_synchronize();
  4492. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4493. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4494. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4495. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4496. //
  4497. // OK, do the inital probe to get us close to the bed.
  4498. // Then retrace the right amount and use that in subsequent probes
  4499. //
  4500. setup_for_endstop_move();
  4501. run_z_probe();
  4502. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4503. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4504. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4505. ext_position,
  4506. homing_feedrate[X_AXIS]/60,
  4507. active_extruder);
  4508. st_synchronize();
  4509. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4510. for( n=0; n<n_samples; n++) {
  4511. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4512. if ( n_legs) {
  4513. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4514. int rotational_direction, l;
  4515. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4516. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4517. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4518. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4519. //SERIAL_ECHOPAIR(" theta: ",theta);
  4520. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4521. //SERIAL_PROTOCOLLNPGM("");
  4522. for( l=0; l<n_legs-1; l++) {
  4523. if (rotational_direction==1)
  4524. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4525. else
  4526. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4527. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4528. if ( radius<0.0 )
  4529. radius = -radius;
  4530. X_current = X_probe_location + cos(theta) * radius;
  4531. Y_current = Y_probe_location + sin(theta) * radius;
  4532. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4533. X_current = X_MIN_POS;
  4534. if ( X_current>X_MAX_POS)
  4535. X_current = X_MAX_POS;
  4536. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4537. Y_current = Y_MIN_POS;
  4538. if ( Y_current>Y_MAX_POS)
  4539. Y_current = Y_MAX_POS;
  4540. if (verbose_level>3 ) {
  4541. SERIAL_ECHOPAIR("x: ", X_current);
  4542. SERIAL_ECHOPAIR("y: ", Y_current);
  4543. SERIAL_PROTOCOLLNPGM("");
  4544. }
  4545. do_blocking_move_to( X_current, Y_current, Z_current );
  4546. }
  4547. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4548. }
  4549. setup_for_endstop_move();
  4550. run_z_probe();
  4551. sample_set[n] = current_position[Z_AXIS];
  4552. //
  4553. // Get the current mean for the data points we have so far
  4554. //
  4555. sum=0.0;
  4556. for( j=0; j<=n; j++) {
  4557. sum = sum + sample_set[j];
  4558. }
  4559. mean = sum / (double (n+1));
  4560. //
  4561. // Now, use that mean to calculate the standard deviation for the
  4562. // data points we have so far
  4563. //
  4564. sum=0.0;
  4565. for( j=0; j<=n; j++) {
  4566. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4567. }
  4568. sigma = sqrt( sum / (double (n+1)) );
  4569. if (verbose_level > 1) {
  4570. SERIAL_PROTOCOL(n+1);
  4571. SERIAL_PROTOCOL(" of ");
  4572. SERIAL_PROTOCOL(n_samples);
  4573. SERIAL_PROTOCOLPGM(" z: ");
  4574. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4575. }
  4576. if (verbose_level > 2) {
  4577. SERIAL_PROTOCOL(" mean: ");
  4578. SERIAL_PROTOCOL_F(mean,6);
  4579. SERIAL_PROTOCOL(" sigma: ");
  4580. SERIAL_PROTOCOL_F(sigma,6);
  4581. }
  4582. if (verbose_level > 0)
  4583. SERIAL_PROTOCOLPGM("\n");
  4584. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4585. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4586. st_synchronize();
  4587. }
  4588. delay(1000);
  4589. clean_up_after_endstop_move();
  4590. // enable_endstops(true);
  4591. if (verbose_level > 0) {
  4592. SERIAL_PROTOCOLPGM("Mean: ");
  4593. SERIAL_PROTOCOL_F(mean, 6);
  4594. SERIAL_PROTOCOLPGM("\n");
  4595. }
  4596. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4597. SERIAL_PROTOCOL_F(sigma, 6);
  4598. SERIAL_PROTOCOLPGM("\n\n");
  4599. Sigma_Exit:
  4600. break;
  4601. }
  4602. #endif // Z_PROBE_REPEATABILITY_TEST
  4603. #endif // ENABLE_AUTO_BED_LEVELING
  4604. case 73: //M73 show percent done and time remaining
  4605. if(code_seen('P')) print_percent_done_normal = code_value();
  4606. if(code_seen('R')) print_time_remaining_normal = code_value();
  4607. if(code_seen('Q')) print_percent_done_silent = code_value();
  4608. if(code_seen('S')) print_time_remaining_silent = code_value();
  4609. {
  4610. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4611. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4612. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4613. }
  4614. break;
  4615. case 104: // M104
  4616. if(setTargetedHotend(104)){
  4617. break;
  4618. }
  4619. if (code_seen('S'))
  4620. {
  4621. setTargetHotendSafe(code_value(), tmp_extruder);
  4622. }
  4623. setWatch();
  4624. break;
  4625. case 112: // M112 -Emergency Stop
  4626. kill(_n(""), 3);
  4627. break;
  4628. case 140: // M140 set bed temp
  4629. if (code_seen('S')) setTargetBed(code_value());
  4630. break;
  4631. case 105 : // M105
  4632. if(setTargetedHotend(105)){
  4633. break;
  4634. }
  4635. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4636. SERIAL_PROTOCOLPGM("ok T:");
  4637. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4638. SERIAL_PROTOCOLPGM(" /");
  4639. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4640. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4641. SERIAL_PROTOCOLPGM(" B:");
  4642. SERIAL_PROTOCOL_F(degBed(),1);
  4643. SERIAL_PROTOCOLPGM(" /");
  4644. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4645. #endif //TEMP_BED_PIN
  4646. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4647. SERIAL_PROTOCOLPGM(" T");
  4648. SERIAL_PROTOCOL(cur_extruder);
  4649. SERIAL_PROTOCOLPGM(":");
  4650. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4651. SERIAL_PROTOCOLPGM(" /");
  4652. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4653. }
  4654. #else
  4655. SERIAL_ERROR_START;
  4656. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4657. #endif
  4658. SERIAL_PROTOCOLPGM(" @:");
  4659. #ifdef EXTRUDER_WATTS
  4660. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4661. SERIAL_PROTOCOLPGM("W");
  4662. #else
  4663. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4664. #endif
  4665. SERIAL_PROTOCOLPGM(" B@:");
  4666. #ifdef BED_WATTS
  4667. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4668. SERIAL_PROTOCOLPGM("W");
  4669. #else
  4670. SERIAL_PROTOCOL(getHeaterPower(-1));
  4671. #endif
  4672. #ifdef PINDA_THERMISTOR
  4673. SERIAL_PROTOCOLPGM(" P:");
  4674. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4675. #endif //PINDA_THERMISTOR
  4676. #ifdef AMBIENT_THERMISTOR
  4677. SERIAL_PROTOCOLPGM(" A:");
  4678. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4679. #endif //AMBIENT_THERMISTOR
  4680. #ifdef SHOW_TEMP_ADC_VALUES
  4681. {float raw = 0.0;
  4682. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4683. SERIAL_PROTOCOLPGM(" ADC B:");
  4684. SERIAL_PROTOCOL_F(degBed(),1);
  4685. SERIAL_PROTOCOLPGM("C->");
  4686. raw = rawBedTemp();
  4687. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4688. SERIAL_PROTOCOLPGM(" Rb->");
  4689. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4690. SERIAL_PROTOCOLPGM(" Rxb->");
  4691. SERIAL_PROTOCOL_F(raw, 5);
  4692. #endif
  4693. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4694. SERIAL_PROTOCOLPGM(" T");
  4695. SERIAL_PROTOCOL(cur_extruder);
  4696. SERIAL_PROTOCOLPGM(":");
  4697. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4698. SERIAL_PROTOCOLPGM("C->");
  4699. raw = rawHotendTemp(cur_extruder);
  4700. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4701. SERIAL_PROTOCOLPGM(" Rt");
  4702. SERIAL_PROTOCOL(cur_extruder);
  4703. SERIAL_PROTOCOLPGM("->");
  4704. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4705. SERIAL_PROTOCOLPGM(" Rx");
  4706. SERIAL_PROTOCOL(cur_extruder);
  4707. SERIAL_PROTOCOLPGM("->");
  4708. SERIAL_PROTOCOL_F(raw, 5);
  4709. }}
  4710. #endif
  4711. SERIAL_PROTOCOLLN("");
  4712. KEEPALIVE_STATE(NOT_BUSY);
  4713. return;
  4714. break;
  4715. case 109:
  4716. {// M109 - Wait for extruder heater to reach target.
  4717. if(setTargetedHotend(109)){
  4718. break;
  4719. }
  4720. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4721. heating_status = 1;
  4722. if (farm_mode) { prusa_statistics(1); };
  4723. #ifdef AUTOTEMP
  4724. autotemp_enabled=false;
  4725. #endif
  4726. if (code_seen('S')) {
  4727. setTargetHotendSafe(code_value(), tmp_extruder);
  4728. CooldownNoWait = true;
  4729. } else if (code_seen('R')) {
  4730. setTargetHotendSafe(code_value(), tmp_extruder);
  4731. CooldownNoWait = false;
  4732. }
  4733. #ifdef AUTOTEMP
  4734. if (code_seen('S')) autotemp_min=code_value();
  4735. if (code_seen('B')) autotemp_max=code_value();
  4736. if (code_seen('F'))
  4737. {
  4738. autotemp_factor=code_value();
  4739. autotemp_enabled=true;
  4740. }
  4741. #endif
  4742. setWatch();
  4743. codenum = millis();
  4744. /* See if we are heating up or cooling down */
  4745. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4746. KEEPALIVE_STATE(NOT_BUSY);
  4747. cancel_heatup = false;
  4748. wait_for_heater(codenum); //loops until target temperature is reached
  4749. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4750. KEEPALIVE_STATE(IN_HANDLER);
  4751. heating_status = 2;
  4752. if (farm_mode) { prusa_statistics(2); };
  4753. //starttime=millis();
  4754. previous_millis_cmd = millis();
  4755. }
  4756. break;
  4757. case 190: // M190 - Wait for bed heater to reach target.
  4758. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4759. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4760. heating_status = 3;
  4761. if (farm_mode) { prusa_statistics(1); };
  4762. if (code_seen('S'))
  4763. {
  4764. setTargetBed(code_value());
  4765. CooldownNoWait = true;
  4766. }
  4767. else if (code_seen('R'))
  4768. {
  4769. setTargetBed(code_value());
  4770. CooldownNoWait = false;
  4771. }
  4772. codenum = millis();
  4773. cancel_heatup = false;
  4774. target_direction = isHeatingBed(); // true if heating, false if cooling
  4775. KEEPALIVE_STATE(NOT_BUSY);
  4776. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4777. {
  4778. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4779. {
  4780. if (!farm_mode) {
  4781. float tt = degHotend(active_extruder);
  4782. SERIAL_PROTOCOLPGM("T:");
  4783. SERIAL_PROTOCOL(tt);
  4784. SERIAL_PROTOCOLPGM(" E:");
  4785. SERIAL_PROTOCOL((int)active_extruder);
  4786. SERIAL_PROTOCOLPGM(" B:");
  4787. SERIAL_PROTOCOL_F(degBed(), 1);
  4788. SERIAL_PROTOCOLLN("");
  4789. }
  4790. codenum = millis();
  4791. }
  4792. manage_heater();
  4793. manage_inactivity();
  4794. lcd_update(0);
  4795. }
  4796. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4797. KEEPALIVE_STATE(IN_HANDLER);
  4798. heating_status = 4;
  4799. previous_millis_cmd = millis();
  4800. #endif
  4801. break;
  4802. #if defined(FAN_PIN) && FAN_PIN > -1
  4803. case 106: //M106 Fan On
  4804. if (code_seen('S')){
  4805. fanSpeed=constrain(code_value(),0,255);
  4806. }
  4807. else {
  4808. fanSpeed=255;
  4809. }
  4810. break;
  4811. case 107: //M107 Fan Off
  4812. fanSpeed = 0;
  4813. break;
  4814. #endif //FAN_PIN
  4815. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4816. case 80: // M80 - Turn on Power Supply
  4817. SET_OUTPUT(PS_ON_PIN); //GND
  4818. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4819. // If you have a switch on suicide pin, this is useful
  4820. // if you want to start another print with suicide feature after
  4821. // a print without suicide...
  4822. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4823. SET_OUTPUT(SUICIDE_PIN);
  4824. WRITE(SUICIDE_PIN, HIGH);
  4825. #endif
  4826. powersupply = true;
  4827. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4828. lcd_update(0);
  4829. break;
  4830. #endif
  4831. case 81: // M81 - Turn off Power Supply
  4832. disable_heater();
  4833. st_synchronize();
  4834. disable_e0();
  4835. disable_e1();
  4836. disable_e2();
  4837. finishAndDisableSteppers();
  4838. fanSpeed = 0;
  4839. delay(1000); // Wait a little before to switch off
  4840. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4841. st_synchronize();
  4842. suicide();
  4843. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4844. SET_OUTPUT(PS_ON_PIN);
  4845. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4846. #endif
  4847. powersupply = false;
  4848. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4849. lcd_update(0);
  4850. break;
  4851. case 82:
  4852. axis_relative_modes[3] = false;
  4853. break;
  4854. case 83:
  4855. axis_relative_modes[3] = true;
  4856. break;
  4857. case 18: //compatibility
  4858. case 84: // M84
  4859. if(code_seen('S')){
  4860. stepper_inactive_time = code_value() * 1000;
  4861. }
  4862. else
  4863. {
  4864. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4865. if(all_axis)
  4866. {
  4867. st_synchronize();
  4868. disable_e0();
  4869. disable_e1();
  4870. disable_e2();
  4871. finishAndDisableSteppers();
  4872. }
  4873. else
  4874. {
  4875. st_synchronize();
  4876. if (code_seen('X')) disable_x();
  4877. if (code_seen('Y')) disable_y();
  4878. if (code_seen('Z')) disable_z();
  4879. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4880. if (code_seen('E')) {
  4881. disable_e0();
  4882. disable_e1();
  4883. disable_e2();
  4884. }
  4885. #endif
  4886. }
  4887. }
  4888. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4889. print_time_remaining_init();
  4890. snmm_filaments_used = 0;
  4891. break;
  4892. case 85: // M85
  4893. if(code_seen('S')) {
  4894. max_inactive_time = code_value() * 1000;
  4895. }
  4896. break;
  4897. #ifdef SAFETYTIMER
  4898. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4899. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4900. if (code_seen('S')) {
  4901. safetytimer_inactive_time = code_value() * 1000;
  4902. safetyTimer.start();
  4903. }
  4904. break;
  4905. #endif
  4906. case 92: // M92
  4907. for(int8_t i=0; i < NUM_AXIS; i++)
  4908. {
  4909. if(code_seen(axis_codes[i]))
  4910. {
  4911. if(i == 3) { // E
  4912. float value = code_value();
  4913. if(value < 20.0) {
  4914. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4915. max_jerk[E_AXIS] *= factor;
  4916. max_feedrate[i] *= factor;
  4917. axis_steps_per_sqr_second[i] *= factor;
  4918. }
  4919. axis_steps_per_unit[i] = value;
  4920. }
  4921. else {
  4922. axis_steps_per_unit[i] = code_value();
  4923. }
  4924. }
  4925. }
  4926. break;
  4927. case 110: // M110 - reset line pos
  4928. if (code_seen('N'))
  4929. gcode_LastN = code_value_long();
  4930. break;
  4931. #ifdef HOST_KEEPALIVE_FEATURE
  4932. case 113: // M113 - Get or set Host Keepalive interval
  4933. if (code_seen('S')) {
  4934. host_keepalive_interval = (uint8_t)code_value_short();
  4935. // NOMORE(host_keepalive_interval, 60);
  4936. }
  4937. else {
  4938. SERIAL_ECHO_START;
  4939. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4940. SERIAL_PROTOCOLLN("");
  4941. }
  4942. break;
  4943. #endif
  4944. case 115: // M115
  4945. if (code_seen('V')) {
  4946. // Report the Prusa version number.
  4947. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4948. } else if (code_seen('U')) {
  4949. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4950. // pause the print and ask the user to upgrade the firmware.
  4951. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4952. } else {
  4953. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4954. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4955. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4956. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4957. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4958. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4959. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4960. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4961. SERIAL_ECHOPGM(" UUID:");
  4962. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4963. }
  4964. break;
  4965. /* case 117: // M117 display message
  4966. starpos = (strchr(strchr_pointer + 5,'*'));
  4967. if(starpos!=NULL)
  4968. *(starpos)='\0';
  4969. lcd_setstatus(strchr_pointer + 5);
  4970. break;*/
  4971. case 114: // M114
  4972. gcode_M114();
  4973. break;
  4974. case 120: // M120
  4975. enable_endstops(false) ;
  4976. break;
  4977. case 121: // M121
  4978. enable_endstops(true) ;
  4979. break;
  4980. case 119: // M119
  4981. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4982. SERIAL_PROTOCOLLN("");
  4983. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4984. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4985. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4986. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4987. }else{
  4988. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4989. }
  4990. SERIAL_PROTOCOLLN("");
  4991. #endif
  4992. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4993. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4994. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4995. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4996. }else{
  4997. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4998. }
  4999. SERIAL_PROTOCOLLN("");
  5000. #endif
  5001. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5002. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  5003. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5004. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5005. }else{
  5006. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5007. }
  5008. SERIAL_PROTOCOLLN("");
  5009. #endif
  5010. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5011. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  5012. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5013. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5014. }else{
  5015. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5016. }
  5017. SERIAL_PROTOCOLLN("");
  5018. #endif
  5019. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5020. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5021. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5022. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5023. }else{
  5024. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5025. }
  5026. SERIAL_PROTOCOLLN("");
  5027. #endif
  5028. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5029. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5030. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5031. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  5032. }else{
  5033. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  5034. }
  5035. SERIAL_PROTOCOLLN("");
  5036. #endif
  5037. break;
  5038. //TODO: update for all axis, use for loop
  5039. #ifdef BLINKM
  5040. case 150: // M150
  5041. {
  5042. byte red;
  5043. byte grn;
  5044. byte blu;
  5045. if(code_seen('R')) red = code_value();
  5046. if(code_seen('U')) grn = code_value();
  5047. if(code_seen('B')) blu = code_value();
  5048. SendColors(red,grn,blu);
  5049. }
  5050. break;
  5051. #endif //BLINKM
  5052. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5053. {
  5054. tmp_extruder = active_extruder;
  5055. if(code_seen('T')) {
  5056. tmp_extruder = code_value();
  5057. if(tmp_extruder >= EXTRUDERS) {
  5058. SERIAL_ECHO_START;
  5059. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  5060. break;
  5061. }
  5062. }
  5063. if(code_seen('D')) {
  5064. float diameter = (float)code_value();
  5065. if (diameter == 0.0) {
  5066. // setting any extruder filament size disables volumetric on the assumption that
  5067. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5068. // for all extruders
  5069. volumetric_enabled = false;
  5070. } else {
  5071. filament_size[tmp_extruder] = (float)code_value();
  5072. // make sure all extruders have some sane value for the filament size
  5073. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  5074. #if EXTRUDERS > 1
  5075. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  5076. #if EXTRUDERS > 2
  5077. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  5078. #endif
  5079. #endif
  5080. volumetric_enabled = true;
  5081. }
  5082. } else {
  5083. //reserved for setting filament diameter via UFID or filament measuring device
  5084. break;
  5085. }
  5086. calculate_extruder_multipliers();
  5087. }
  5088. break;
  5089. case 201: // M201
  5090. for (int8_t i = 0; i < NUM_AXIS; i++)
  5091. {
  5092. if (code_seen(axis_codes[i]))
  5093. {
  5094. unsigned long val = code_value();
  5095. #ifdef TMC2130
  5096. unsigned long val_silent = val;
  5097. if ((i == X_AXIS) || (i == Y_AXIS))
  5098. {
  5099. if (val > NORMAL_MAX_ACCEL_XY)
  5100. val = NORMAL_MAX_ACCEL_XY;
  5101. if (val_silent > SILENT_MAX_ACCEL_XY)
  5102. val_silent = SILENT_MAX_ACCEL_XY;
  5103. }
  5104. max_acceleration_units_per_sq_second_normal[i] = val;
  5105. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5106. #else //TMC2130
  5107. max_acceleration_units_per_sq_second[i] = val;
  5108. #endif //TMC2130
  5109. }
  5110. }
  5111. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5112. reset_acceleration_rates();
  5113. break;
  5114. #if 0 // Not used for Sprinter/grbl gen6
  5115. case 202: // M202
  5116. for(int8_t i=0; i < NUM_AXIS; i++) {
  5117. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5118. }
  5119. break;
  5120. #endif
  5121. case 203: // M203 max feedrate mm/sec
  5122. for (int8_t i = 0; i < NUM_AXIS; i++)
  5123. {
  5124. if (code_seen(axis_codes[i]))
  5125. {
  5126. float val = code_value();
  5127. #ifdef TMC2130
  5128. float val_silent = val;
  5129. if ((i == X_AXIS) || (i == Y_AXIS))
  5130. {
  5131. if (val > NORMAL_MAX_FEEDRATE_XY)
  5132. val = NORMAL_MAX_FEEDRATE_XY;
  5133. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5134. val_silent = SILENT_MAX_FEEDRATE_XY;
  5135. }
  5136. max_feedrate_normal[i] = val;
  5137. max_feedrate_silent[i] = val_silent;
  5138. #else //TMC2130
  5139. max_feedrate[i] = val;
  5140. #endif //TMC2130
  5141. }
  5142. }
  5143. break;
  5144. case 204:
  5145. // M204 acclereration settings.
  5146. // Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5147. // and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5148. {
  5149. if(code_seen('S')) {
  5150. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5151. // and it is also generated by Slic3r to control acceleration per extrusion type
  5152. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5153. acceleration = code_value();
  5154. // Interpret the T value as retract acceleration in the old Marlin format.
  5155. if(code_seen('T'))
  5156. retract_acceleration = code_value();
  5157. } else {
  5158. // New acceleration format, compatible with the upstream Marlin.
  5159. if(code_seen('P'))
  5160. acceleration = code_value();
  5161. if(code_seen('R'))
  5162. retract_acceleration = code_value();
  5163. if(code_seen('T')) {
  5164. // Interpret the T value as the travel acceleration in the new Marlin format.
  5165. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5166. // travel_acceleration = code_value();
  5167. }
  5168. }
  5169. }
  5170. break;
  5171. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5172. {
  5173. if(code_seen('S')) minimumfeedrate = code_value();
  5174. if(code_seen('T')) mintravelfeedrate = code_value();
  5175. if(code_seen('B')) minsegmenttime = code_value() ;
  5176. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5177. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5178. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5179. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5180. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5181. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5182. }
  5183. break;
  5184. case 206: // M206 additional homing offset
  5185. for(int8_t i=0; i < 3; i++)
  5186. {
  5187. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5188. }
  5189. break;
  5190. #ifdef FWRETRACT
  5191. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5192. {
  5193. if(code_seen('S'))
  5194. {
  5195. retract_length = code_value() ;
  5196. }
  5197. if(code_seen('F'))
  5198. {
  5199. retract_feedrate = code_value()/60 ;
  5200. }
  5201. if(code_seen('Z'))
  5202. {
  5203. retract_zlift = code_value() ;
  5204. }
  5205. }break;
  5206. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5207. {
  5208. if(code_seen('S'))
  5209. {
  5210. retract_recover_length = code_value() ;
  5211. }
  5212. if(code_seen('F'))
  5213. {
  5214. retract_recover_feedrate = code_value()/60 ;
  5215. }
  5216. }break;
  5217. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5218. {
  5219. if(code_seen('S'))
  5220. {
  5221. int t= code_value() ;
  5222. switch(t)
  5223. {
  5224. case 0:
  5225. {
  5226. autoretract_enabled=false;
  5227. retracted[0]=false;
  5228. #if EXTRUDERS > 1
  5229. retracted[1]=false;
  5230. #endif
  5231. #if EXTRUDERS > 2
  5232. retracted[2]=false;
  5233. #endif
  5234. }break;
  5235. case 1:
  5236. {
  5237. autoretract_enabled=true;
  5238. retracted[0]=false;
  5239. #if EXTRUDERS > 1
  5240. retracted[1]=false;
  5241. #endif
  5242. #if EXTRUDERS > 2
  5243. retracted[2]=false;
  5244. #endif
  5245. }break;
  5246. default:
  5247. SERIAL_ECHO_START;
  5248. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5249. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5250. SERIAL_ECHOLNPGM("\"(1)");
  5251. }
  5252. }
  5253. }break;
  5254. #endif // FWRETRACT
  5255. #if EXTRUDERS > 1
  5256. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5257. {
  5258. if(setTargetedHotend(218)){
  5259. break;
  5260. }
  5261. if(code_seen('X'))
  5262. {
  5263. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5264. }
  5265. if(code_seen('Y'))
  5266. {
  5267. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5268. }
  5269. SERIAL_ECHO_START;
  5270. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5271. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5272. {
  5273. SERIAL_ECHO(" ");
  5274. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5275. SERIAL_ECHO(",");
  5276. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5277. }
  5278. SERIAL_ECHOLN("");
  5279. }break;
  5280. #endif
  5281. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5282. {
  5283. if(code_seen('S'))
  5284. {
  5285. feedmultiply = code_value() ;
  5286. }
  5287. }
  5288. break;
  5289. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5290. {
  5291. if(code_seen('S'))
  5292. {
  5293. int tmp_code = code_value();
  5294. if (code_seen('T'))
  5295. {
  5296. if(setTargetedHotend(221)){
  5297. break;
  5298. }
  5299. extruder_multiply[tmp_extruder] = tmp_code;
  5300. }
  5301. else
  5302. {
  5303. extrudemultiply = tmp_code ;
  5304. }
  5305. }
  5306. calculate_extruder_multipliers();
  5307. }
  5308. break;
  5309. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5310. {
  5311. if(code_seen('P')){
  5312. int pin_number = code_value(); // pin number
  5313. int pin_state = -1; // required pin state - default is inverted
  5314. if(code_seen('S')) pin_state = code_value(); // required pin state
  5315. if(pin_state >= -1 && pin_state <= 1){
  5316. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5317. {
  5318. if (sensitive_pins[i] == pin_number)
  5319. {
  5320. pin_number = -1;
  5321. break;
  5322. }
  5323. }
  5324. if (pin_number > -1)
  5325. {
  5326. int target = LOW;
  5327. st_synchronize();
  5328. pinMode(pin_number, INPUT);
  5329. switch(pin_state){
  5330. case 1:
  5331. target = HIGH;
  5332. break;
  5333. case 0:
  5334. target = LOW;
  5335. break;
  5336. case -1:
  5337. target = !digitalRead(pin_number);
  5338. break;
  5339. }
  5340. while(digitalRead(pin_number) != target){
  5341. manage_heater();
  5342. manage_inactivity();
  5343. lcd_update(0);
  5344. }
  5345. }
  5346. }
  5347. }
  5348. }
  5349. break;
  5350. #if NUM_SERVOS > 0
  5351. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5352. {
  5353. int servo_index = -1;
  5354. int servo_position = 0;
  5355. if (code_seen('P'))
  5356. servo_index = code_value();
  5357. if (code_seen('S')) {
  5358. servo_position = code_value();
  5359. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5360. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5361. servos[servo_index].attach(0);
  5362. #endif
  5363. servos[servo_index].write(servo_position);
  5364. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5365. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5366. servos[servo_index].detach();
  5367. #endif
  5368. }
  5369. else {
  5370. SERIAL_ECHO_START;
  5371. SERIAL_ECHO("Servo ");
  5372. SERIAL_ECHO(servo_index);
  5373. SERIAL_ECHOLN(" out of range");
  5374. }
  5375. }
  5376. else if (servo_index >= 0) {
  5377. SERIAL_PROTOCOL(_T(MSG_OK));
  5378. SERIAL_PROTOCOL(" Servo ");
  5379. SERIAL_PROTOCOL(servo_index);
  5380. SERIAL_PROTOCOL(": ");
  5381. SERIAL_PROTOCOL(servos[servo_index].read());
  5382. SERIAL_PROTOCOLLN("");
  5383. }
  5384. }
  5385. break;
  5386. #endif // NUM_SERVOS > 0
  5387. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5388. case 300: // M300
  5389. {
  5390. int beepS = code_seen('S') ? code_value() : 110;
  5391. int beepP = code_seen('P') ? code_value() : 1000;
  5392. if (beepS > 0)
  5393. {
  5394. #if BEEPER > 0
  5395. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5396. tone(BEEPER, beepS);
  5397. delay(beepP);
  5398. noTone(BEEPER);
  5399. #endif
  5400. }
  5401. else
  5402. {
  5403. delay(beepP);
  5404. }
  5405. }
  5406. break;
  5407. #endif // M300
  5408. #ifdef PIDTEMP
  5409. case 301: // M301
  5410. {
  5411. if(code_seen('P')) Kp = code_value();
  5412. if(code_seen('I')) Ki = scalePID_i(code_value());
  5413. if(code_seen('D')) Kd = scalePID_d(code_value());
  5414. #ifdef PID_ADD_EXTRUSION_RATE
  5415. if(code_seen('C')) Kc = code_value();
  5416. #endif
  5417. updatePID();
  5418. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5419. SERIAL_PROTOCOL(" p:");
  5420. SERIAL_PROTOCOL(Kp);
  5421. SERIAL_PROTOCOL(" i:");
  5422. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5423. SERIAL_PROTOCOL(" d:");
  5424. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5425. #ifdef PID_ADD_EXTRUSION_RATE
  5426. SERIAL_PROTOCOL(" c:");
  5427. //Kc does not have scaling applied above, or in resetting defaults
  5428. SERIAL_PROTOCOL(Kc);
  5429. #endif
  5430. SERIAL_PROTOCOLLN("");
  5431. }
  5432. break;
  5433. #endif //PIDTEMP
  5434. #ifdef PIDTEMPBED
  5435. case 304: // M304
  5436. {
  5437. if(code_seen('P')) bedKp = code_value();
  5438. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5439. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5440. updatePID();
  5441. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5442. SERIAL_PROTOCOL(" p:");
  5443. SERIAL_PROTOCOL(bedKp);
  5444. SERIAL_PROTOCOL(" i:");
  5445. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5446. SERIAL_PROTOCOL(" d:");
  5447. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5448. SERIAL_PROTOCOLLN("");
  5449. }
  5450. break;
  5451. #endif //PIDTEMP
  5452. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5453. {
  5454. #ifdef CHDK
  5455. SET_OUTPUT(CHDK);
  5456. WRITE(CHDK, HIGH);
  5457. chdkHigh = millis();
  5458. chdkActive = true;
  5459. #else
  5460. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5461. const uint8_t NUM_PULSES=16;
  5462. const float PULSE_LENGTH=0.01524;
  5463. for(int i=0; i < NUM_PULSES; i++) {
  5464. WRITE(PHOTOGRAPH_PIN, HIGH);
  5465. _delay_ms(PULSE_LENGTH);
  5466. WRITE(PHOTOGRAPH_PIN, LOW);
  5467. _delay_ms(PULSE_LENGTH);
  5468. }
  5469. delay(7.33);
  5470. for(int i=0; i < NUM_PULSES; i++) {
  5471. WRITE(PHOTOGRAPH_PIN, HIGH);
  5472. _delay_ms(PULSE_LENGTH);
  5473. WRITE(PHOTOGRAPH_PIN, LOW);
  5474. _delay_ms(PULSE_LENGTH);
  5475. }
  5476. #endif
  5477. #endif //chdk end if
  5478. }
  5479. break;
  5480. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5481. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5482. {
  5483. float temp = .0;
  5484. if (code_seen('S')) temp=code_value();
  5485. set_extrude_min_temp(temp);
  5486. }
  5487. break;
  5488. #endif
  5489. case 303: // M303 PID autotune
  5490. {
  5491. float temp = 150.0;
  5492. int e=0;
  5493. int c=5;
  5494. if (code_seen('E')) e=code_value();
  5495. if (e<0)
  5496. temp=70;
  5497. if (code_seen('S')) temp=code_value();
  5498. if (code_seen('C')) c=code_value();
  5499. PID_autotune(temp, e, c);
  5500. }
  5501. break;
  5502. case 400: // M400 finish all moves
  5503. {
  5504. st_synchronize();
  5505. }
  5506. break;
  5507. case 403: //M403 set filament type (material) for particular extruder and send this information to mmu
  5508. {
  5509. //currently three different materials are needed (default, flex and PVA)
  5510. //add storing this information for different load/unload profiles etc. in the future
  5511. //firmware does not wait for "ok" from mmu
  5512. uint8_t extruder;
  5513. uint8_t filament;
  5514. if(code_seen('E')) extruder = code_value();
  5515. if(code_seen('F')) filament = code_value();
  5516. printf_P(PSTR("Extruder: %d; "), extruder);
  5517. switch (filament) {
  5518. case FILAMENT_FLEX: printf_P(PSTR("Flex\n")); break;
  5519. case FILAMENT_PVA: printf_P(PSTR("PVA\n")); break;
  5520. default: printf_P(PSTR("Default\n")); break;
  5521. }
  5522. printf_P(PSTR("F%d%d\n"), extruder, filament);
  5523. fprintf_P(uart2io, PSTR("F%d%d\n"), extruder, filament);
  5524. }
  5525. break;
  5526. case 500: // M500 Store settings in EEPROM
  5527. {
  5528. Config_StoreSettings(EEPROM_OFFSET);
  5529. }
  5530. break;
  5531. case 501: // M501 Read settings from EEPROM
  5532. {
  5533. Config_RetrieveSettings(EEPROM_OFFSET);
  5534. }
  5535. break;
  5536. case 502: // M502 Revert to default settings
  5537. {
  5538. Config_ResetDefault();
  5539. }
  5540. break;
  5541. case 503: // M503 print settings currently in memory
  5542. {
  5543. Config_PrintSettings();
  5544. }
  5545. break;
  5546. case 509: //M509 Force language selection
  5547. {
  5548. lang_reset();
  5549. SERIAL_ECHO_START;
  5550. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5551. }
  5552. break;
  5553. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5554. case 540:
  5555. {
  5556. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5557. }
  5558. break;
  5559. #endif
  5560. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5561. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5562. {
  5563. float value;
  5564. if (code_seen('Z'))
  5565. {
  5566. value = code_value();
  5567. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5568. {
  5569. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5570. SERIAL_ECHO_START;
  5571. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5572. SERIAL_PROTOCOLLN("");
  5573. }
  5574. else
  5575. {
  5576. SERIAL_ECHO_START;
  5577. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5578. SERIAL_ECHORPGM(MSG_Z_MIN);
  5579. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5580. SERIAL_ECHORPGM(MSG_Z_MAX);
  5581. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5582. SERIAL_PROTOCOLLN("");
  5583. }
  5584. }
  5585. else
  5586. {
  5587. SERIAL_ECHO_START;
  5588. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5589. SERIAL_ECHO(-zprobe_zoffset);
  5590. SERIAL_PROTOCOLLN("");
  5591. }
  5592. break;
  5593. }
  5594. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5595. #ifdef FILAMENTCHANGEENABLE
  5596. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5597. {
  5598. st_synchronize();
  5599. float x_position = current_position[X_AXIS];
  5600. float y_position = current_position[Y_AXIS];
  5601. float z_shift = 0;
  5602. float e_shift_init = 0;
  5603. float e_shift_late = 0;
  5604. bool automatic = false;
  5605. //Retract extruder
  5606. if(code_seen('E'))
  5607. {
  5608. e_shift_init = code_value();
  5609. }
  5610. else
  5611. {
  5612. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5613. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5614. #endif
  5615. }
  5616. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5617. if (code_seen('L'))
  5618. {
  5619. e_shift_late = code_value();
  5620. }
  5621. else
  5622. {
  5623. #ifdef FILAMENTCHANGE_FINALRETRACT
  5624. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5625. #endif
  5626. }
  5627. //Lift Z
  5628. if(code_seen('Z'))
  5629. {
  5630. z_shift = code_value();
  5631. }
  5632. else
  5633. {
  5634. #ifdef FILAMENTCHANGE_ZADD
  5635. z_shift= FILAMENTCHANGE_ZADD ;
  5636. if(current_position[Z_AXIS] < 25) z_shift+= 25 ;
  5637. #endif
  5638. }
  5639. //Move XY to side
  5640. if(code_seen('X'))
  5641. {
  5642. x_position = code_value();
  5643. }
  5644. else
  5645. {
  5646. #ifdef FILAMENTCHANGE_XPOS
  5647. x_position = FILAMENTCHANGE_XPOS;
  5648. #endif
  5649. }
  5650. if(code_seen('Y'))
  5651. {
  5652. y_position = code_value();
  5653. }
  5654. else
  5655. {
  5656. #ifdef FILAMENTCHANGE_YPOS
  5657. y_position = FILAMENTCHANGE_YPOS ;
  5658. #endif
  5659. }
  5660. if (mmu_enabled && code_seen("AUTO"))
  5661. automatic = true;
  5662. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5663. }
  5664. break;
  5665. #endif //FILAMENTCHANGEENABLE
  5666. case 601: {
  5667. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5668. }
  5669. break;
  5670. case 602: {
  5671. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5672. }
  5673. break;
  5674. #ifdef PINDA_THERMISTOR
  5675. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5676. {
  5677. int set_target_pinda = 0;
  5678. if (code_seen('S')) {
  5679. set_target_pinda = code_value();
  5680. }
  5681. else {
  5682. break;
  5683. }
  5684. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5685. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5686. SERIAL_PROTOCOL(set_target_pinda);
  5687. SERIAL_PROTOCOLLN("");
  5688. codenum = millis();
  5689. cancel_heatup = false;
  5690. bool is_pinda_cooling = false;
  5691. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5692. is_pinda_cooling = true;
  5693. }
  5694. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5695. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5696. {
  5697. SERIAL_PROTOCOLPGM("P:");
  5698. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5699. SERIAL_PROTOCOLPGM("/");
  5700. SERIAL_PROTOCOL(set_target_pinda);
  5701. SERIAL_PROTOCOLLN("");
  5702. codenum = millis();
  5703. }
  5704. manage_heater();
  5705. manage_inactivity();
  5706. lcd_update(0);
  5707. }
  5708. LCD_MESSAGERPGM(_T(MSG_OK));
  5709. break;
  5710. }
  5711. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5712. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5713. uint8_t cal_status = calibration_status_pinda();
  5714. int16_t usteps = 0;
  5715. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5716. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5717. for (uint8_t i = 0; i < 6; i++)
  5718. {
  5719. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5720. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5721. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5722. SERIAL_PROTOCOLPGM(", ");
  5723. SERIAL_PROTOCOL(35 + (i * 5));
  5724. SERIAL_PROTOCOLPGM(", ");
  5725. SERIAL_PROTOCOL(usteps);
  5726. SERIAL_PROTOCOLPGM(", ");
  5727. SERIAL_PROTOCOL(mm * 1000);
  5728. SERIAL_PROTOCOLLN("");
  5729. }
  5730. }
  5731. else if (code_seen('!')) { // ! - Set factory default values
  5732. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5733. int16_t z_shift = 8; //40C - 20um - 8usteps
  5734. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5735. z_shift = 24; //45C - 60um - 24usteps
  5736. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5737. z_shift = 48; //50C - 120um - 48usteps
  5738. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5739. z_shift = 80; //55C - 200um - 80usteps
  5740. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5741. z_shift = 120; //60C - 300um - 120usteps
  5742. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5743. SERIAL_PROTOCOLLN("factory restored");
  5744. }
  5745. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5746. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5747. int16_t z_shift = 0;
  5748. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5749. SERIAL_PROTOCOLLN("zerorized");
  5750. }
  5751. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5752. int16_t usteps = code_value();
  5753. if (code_seen('I')) {
  5754. byte index = code_value();
  5755. if ((index >= 0) && (index < 5)) {
  5756. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5757. SERIAL_PROTOCOLLN("OK");
  5758. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5759. for (uint8_t i = 0; i < 6; i++)
  5760. {
  5761. usteps = 0;
  5762. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5763. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5764. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5765. SERIAL_PROTOCOLPGM(", ");
  5766. SERIAL_PROTOCOL(35 + (i * 5));
  5767. SERIAL_PROTOCOLPGM(", ");
  5768. SERIAL_PROTOCOL(usteps);
  5769. SERIAL_PROTOCOLPGM(", ");
  5770. SERIAL_PROTOCOL(mm * 1000);
  5771. SERIAL_PROTOCOLLN("");
  5772. }
  5773. }
  5774. }
  5775. }
  5776. else {
  5777. SERIAL_PROTOCOLPGM("no valid command");
  5778. }
  5779. break;
  5780. #endif //PINDA_THERMISTOR
  5781. #ifdef LIN_ADVANCE
  5782. case 900: // M900: Set LIN_ADVANCE options.
  5783. gcode_M900();
  5784. break;
  5785. #endif
  5786. case 907: // M907 Set digital trimpot motor current using axis codes.
  5787. {
  5788. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5789. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5790. if(code_seen('B')) st_current_set(4,code_value());
  5791. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5792. #endif
  5793. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5794. if(code_seen('X')) st_current_set(0, code_value());
  5795. #endif
  5796. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5797. if(code_seen('Z')) st_current_set(1, code_value());
  5798. #endif
  5799. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5800. if(code_seen('E')) st_current_set(2, code_value());
  5801. #endif
  5802. }
  5803. break;
  5804. case 908: // M908 Control digital trimpot directly.
  5805. {
  5806. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5807. uint8_t channel,current;
  5808. if(code_seen('P')) channel=code_value();
  5809. if(code_seen('S')) current=code_value();
  5810. digitalPotWrite(channel, current);
  5811. #endif
  5812. }
  5813. break;
  5814. #ifdef TMC2130
  5815. case 910: // M910 TMC2130 init
  5816. {
  5817. tmc2130_init();
  5818. }
  5819. break;
  5820. case 911: // M911 Set TMC2130 holding currents
  5821. {
  5822. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5823. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5824. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5825. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5826. }
  5827. break;
  5828. case 912: // M912 Set TMC2130 running currents
  5829. {
  5830. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5831. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5832. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5833. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5834. }
  5835. break;
  5836. case 913: // M913 Print TMC2130 currents
  5837. {
  5838. tmc2130_print_currents();
  5839. }
  5840. break;
  5841. case 914: // M914 Set normal mode
  5842. {
  5843. tmc2130_mode = TMC2130_MODE_NORMAL;
  5844. update_mode_profile();
  5845. tmc2130_init();
  5846. }
  5847. break;
  5848. case 915: // M915 Set silent mode
  5849. {
  5850. tmc2130_mode = TMC2130_MODE_SILENT;
  5851. update_mode_profile();
  5852. tmc2130_init();
  5853. }
  5854. break;
  5855. case 916: // M916 Set sg_thrs
  5856. {
  5857. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5858. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5859. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5860. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5861. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5862. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5863. }
  5864. break;
  5865. case 917: // M917 Set TMC2130 pwm_ampl
  5866. {
  5867. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5868. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5869. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5870. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5871. }
  5872. break;
  5873. case 918: // M918 Set TMC2130 pwm_grad
  5874. {
  5875. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5876. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5877. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5878. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5879. }
  5880. break;
  5881. #endif //TMC2130
  5882. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5883. {
  5884. #ifdef TMC2130
  5885. if(code_seen('E'))
  5886. {
  5887. uint16_t res_new = code_value();
  5888. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5889. {
  5890. st_synchronize();
  5891. uint8_t axis = E_AXIS;
  5892. uint16_t res = tmc2130_get_res(axis);
  5893. tmc2130_set_res(axis, res_new);
  5894. if (res_new > res)
  5895. {
  5896. uint16_t fac = (res_new / res);
  5897. axis_steps_per_unit[axis] *= fac;
  5898. position[E_AXIS] *= fac;
  5899. }
  5900. else
  5901. {
  5902. uint16_t fac = (res / res_new);
  5903. axis_steps_per_unit[axis] /= fac;
  5904. position[E_AXIS] /= fac;
  5905. }
  5906. }
  5907. }
  5908. #else //TMC2130
  5909. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5910. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5911. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5912. if(code_seen('B')) microstep_mode(4,code_value());
  5913. microstep_readings();
  5914. #endif
  5915. #endif //TMC2130
  5916. }
  5917. break;
  5918. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5919. {
  5920. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5921. if(code_seen('S')) switch((int)code_value())
  5922. {
  5923. case 1:
  5924. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5925. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5926. break;
  5927. case 2:
  5928. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5929. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5930. break;
  5931. }
  5932. microstep_readings();
  5933. #endif
  5934. }
  5935. break;
  5936. case 701: //M701: load filament
  5937. {
  5938. if (mmu_enabled && code_seen('E'))
  5939. snmm_extruder = code_value();
  5940. gcode_M701();
  5941. }
  5942. break;
  5943. case 702:
  5944. {
  5945. if (mmu_enabled)
  5946. {
  5947. if (code_seen('U'))
  5948. extr_unload_used(); //unload all filaments which were used in current print
  5949. else if (code_seen('C'))
  5950. extr_unload(); //unload just current filament
  5951. else
  5952. extr_unload_all(); //unload all filaments
  5953. }
  5954. else
  5955. unload_filament();
  5956. }
  5957. break;
  5958. case 999: // M999: Restart after being stopped
  5959. Stopped = false;
  5960. lcd_reset_alert_level();
  5961. gcode_LastN = Stopped_gcode_LastN;
  5962. FlushSerialRequestResend();
  5963. break;
  5964. default:
  5965. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5966. }
  5967. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  5968. mcode_in_progress = 0;
  5969. }
  5970. } // end if(code_seen('M')) (end of M codes)
  5971. else if(code_seen('T'))
  5972. {
  5973. int index;
  5974. st_synchronize();
  5975. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5976. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5977. SERIAL_ECHOLNPGM("Invalid T code.");
  5978. }
  5979. else {
  5980. if (*(strchr_pointer + index) == '?') {
  5981. tmp_extruder = choose_extruder_menu();
  5982. }
  5983. else {
  5984. tmp_extruder = code_value();
  5985. }
  5986. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5987. if (mmu_enabled)
  5988. {
  5989. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  5990. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  5991. manage_response(true, true);
  5992. snmm_extruder = tmp_extruder; //filament change is finished
  5993. if (*(strchr_pointer + index) == '?')// for single material usage with mmu
  5994. mmu_load_to_nozzle();
  5995. }
  5996. else
  5997. {
  5998. #ifdef SNMM
  5999. #ifdef LIN_ADVANCE
  6000. if (snmm_extruder != tmp_extruder)
  6001. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6002. #endif
  6003. snmm_extruder = tmp_extruder;
  6004. delay(100);
  6005. disable_e0();
  6006. disable_e1();
  6007. disable_e2();
  6008. pinMode(E_MUX0_PIN, OUTPUT);
  6009. pinMode(E_MUX1_PIN, OUTPUT);
  6010. delay(100);
  6011. SERIAL_ECHO_START;
  6012. SERIAL_ECHO("T:");
  6013. SERIAL_ECHOLN((int)tmp_extruder);
  6014. switch (tmp_extruder) {
  6015. case 1:
  6016. WRITE(E_MUX0_PIN, HIGH);
  6017. WRITE(E_MUX1_PIN, LOW);
  6018. break;
  6019. case 2:
  6020. WRITE(E_MUX0_PIN, LOW);
  6021. WRITE(E_MUX1_PIN, HIGH);
  6022. break;
  6023. case 3:
  6024. WRITE(E_MUX0_PIN, HIGH);
  6025. WRITE(E_MUX1_PIN, HIGH);
  6026. break;
  6027. default:
  6028. WRITE(E_MUX0_PIN, LOW);
  6029. WRITE(E_MUX1_PIN, LOW);
  6030. break;
  6031. }
  6032. delay(100);
  6033. #else //SNMM
  6034. if (tmp_extruder >= EXTRUDERS) {
  6035. SERIAL_ECHO_START;
  6036. SERIAL_ECHOPGM("T");
  6037. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6038. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6039. }
  6040. else {
  6041. #if EXTRUDERS > 1
  6042. boolean make_move = false;
  6043. #endif
  6044. if (code_seen('F')) {
  6045. #if EXTRUDERS > 1
  6046. make_move = true;
  6047. #endif
  6048. next_feedrate = code_value();
  6049. if (next_feedrate > 0.0) {
  6050. feedrate = next_feedrate;
  6051. }
  6052. }
  6053. #if EXTRUDERS > 1
  6054. if (tmp_extruder != active_extruder) {
  6055. // Save current position to return to after applying extruder offset
  6056. memcpy(destination, current_position, sizeof(destination));
  6057. // Offset extruder (only by XY)
  6058. int i;
  6059. for (i = 0; i < 2; i++) {
  6060. current_position[i] = current_position[i] -
  6061. extruder_offset[i][active_extruder] +
  6062. extruder_offset[i][tmp_extruder];
  6063. }
  6064. // Set the new active extruder and position
  6065. active_extruder = tmp_extruder;
  6066. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6067. // Move to the old position if 'F' was in the parameters
  6068. if (make_move && Stopped == false) {
  6069. prepare_move();
  6070. }
  6071. }
  6072. #endif
  6073. SERIAL_ECHO_START;
  6074. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6075. SERIAL_PROTOCOLLN((int)active_extruder);
  6076. }
  6077. #endif //SNMM
  6078. }
  6079. }
  6080. } // end if(code_seen('T')) (end of T codes)
  6081. else if (code_seen('D')) // D codes (debug)
  6082. {
  6083. switch((int)code_value())
  6084. {
  6085. #ifdef DEBUG_DCODES
  6086. case -1: // D-1 - Endless loop
  6087. dcode__1(); break;
  6088. case 0: // D0 - Reset
  6089. dcode_0(); break;
  6090. case 1: // D1 - Clear EEPROM
  6091. dcode_1(); break;
  6092. case 2: // D2 - Read/Write RAM
  6093. dcode_2(); break;
  6094. #endif //DEBUG_DCODES
  6095. #ifdef DEBUG_DCODE3
  6096. case 3: // D3 - Read/Write EEPROM
  6097. dcode_3(); break;
  6098. #endif //DEBUG_DCODE3
  6099. #ifdef DEBUG_DCODES
  6100. case 4: // D4 - Read/Write PIN
  6101. dcode_4(); break;
  6102. case 5: // D5 - Read/Write FLASH
  6103. // dcode_5(); break;
  6104. break;
  6105. case 6: // D6 - Read/Write external FLASH
  6106. dcode_6(); break;
  6107. case 7: // D7 - Read/Write Bootloader
  6108. dcode_7(); break;
  6109. case 8: // D8 - Read/Write PINDA
  6110. dcode_8(); break;
  6111. case 9: // D9 - Read/Write ADC
  6112. dcode_9(); break;
  6113. case 10: // D10 - XYZ calibration = OK
  6114. dcode_10(); break;
  6115. #ifdef TMC2130
  6116. case 2130: // D9125 - TMC2130
  6117. dcode_2130(); break;
  6118. #endif //TMC2130
  6119. #ifdef FILAMENT_SENSOR
  6120. case 9125: // D9125 - FILAMENT_SENSOR
  6121. dcode_9125(); break;
  6122. #endif //FILAMENT_SENSOR
  6123. #endif //DEBUG_DCODES
  6124. }
  6125. }
  6126. else
  6127. {
  6128. SERIAL_ECHO_START;
  6129. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6130. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6131. SERIAL_ECHOLNPGM("\"(2)");
  6132. }
  6133. KEEPALIVE_STATE(NOT_BUSY);
  6134. ClearToSend();
  6135. }
  6136. void FlushSerialRequestResend()
  6137. {
  6138. //char cmdbuffer[bufindr][100]="Resend:";
  6139. MYSERIAL.flush();
  6140. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6141. }
  6142. // Confirm the execution of a command, if sent from a serial line.
  6143. // Execution of a command from a SD card will not be confirmed.
  6144. void ClearToSend()
  6145. {
  6146. previous_millis_cmd = millis();
  6147. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6148. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6149. }
  6150. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6151. void update_currents() {
  6152. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6153. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6154. float tmp_motor[3];
  6155. //SERIAL_ECHOLNPGM("Currents updated: ");
  6156. if (destination[Z_AXIS] < Z_SILENT) {
  6157. //SERIAL_ECHOLNPGM("LOW");
  6158. for (uint8_t i = 0; i < 3; i++) {
  6159. st_current_set(i, current_low[i]);
  6160. /*MYSERIAL.print(int(i));
  6161. SERIAL_ECHOPGM(": ");
  6162. MYSERIAL.println(current_low[i]);*/
  6163. }
  6164. }
  6165. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6166. //SERIAL_ECHOLNPGM("HIGH");
  6167. for (uint8_t i = 0; i < 3; i++) {
  6168. st_current_set(i, current_high[i]);
  6169. /*MYSERIAL.print(int(i));
  6170. SERIAL_ECHOPGM(": ");
  6171. MYSERIAL.println(current_high[i]);*/
  6172. }
  6173. }
  6174. else {
  6175. for (uint8_t i = 0; i < 3; i++) {
  6176. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6177. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6178. st_current_set(i, tmp_motor[i]);
  6179. /*MYSERIAL.print(int(i));
  6180. SERIAL_ECHOPGM(": ");
  6181. MYSERIAL.println(tmp_motor[i]);*/
  6182. }
  6183. }
  6184. }
  6185. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6186. void get_coordinates()
  6187. {
  6188. bool seen[4]={false,false,false,false};
  6189. for(int8_t i=0; i < NUM_AXIS; i++) {
  6190. if(code_seen(axis_codes[i]))
  6191. {
  6192. bool relative = axis_relative_modes[i] || relative_mode;
  6193. destination[i] = (float)code_value();
  6194. if (i == E_AXIS) {
  6195. float emult = extruder_multiplier[active_extruder];
  6196. if (emult != 1.) {
  6197. if (! relative) {
  6198. destination[i] -= current_position[i];
  6199. relative = true;
  6200. }
  6201. destination[i] *= emult;
  6202. }
  6203. }
  6204. if (relative)
  6205. destination[i] += current_position[i];
  6206. seen[i]=true;
  6207. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6208. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6209. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6210. }
  6211. else destination[i] = current_position[i]; //Are these else lines really needed?
  6212. }
  6213. if(code_seen('F')) {
  6214. next_feedrate = code_value();
  6215. #ifdef MAX_SILENT_FEEDRATE
  6216. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6217. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6218. #endif //MAX_SILENT_FEEDRATE
  6219. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6220. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6221. {
  6222. // float e_max_speed =
  6223. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6224. }
  6225. }
  6226. }
  6227. void get_arc_coordinates()
  6228. {
  6229. #ifdef SF_ARC_FIX
  6230. bool relative_mode_backup = relative_mode;
  6231. relative_mode = true;
  6232. #endif
  6233. get_coordinates();
  6234. #ifdef SF_ARC_FIX
  6235. relative_mode=relative_mode_backup;
  6236. #endif
  6237. if(code_seen('I')) {
  6238. offset[0] = code_value();
  6239. }
  6240. else {
  6241. offset[0] = 0.0;
  6242. }
  6243. if(code_seen('J')) {
  6244. offset[1] = code_value();
  6245. }
  6246. else {
  6247. offset[1] = 0.0;
  6248. }
  6249. }
  6250. void clamp_to_software_endstops(float target[3])
  6251. {
  6252. #ifdef DEBUG_DISABLE_SWLIMITS
  6253. return;
  6254. #endif //DEBUG_DISABLE_SWLIMITS
  6255. world2machine_clamp(target[0], target[1]);
  6256. // Clamp the Z coordinate.
  6257. if (min_software_endstops) {
  6258. float negative_z_offset = 0;
  6259. #ifdef ENABLE_AUTO_BED_LEVELING
  6260. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6261. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6262. #endif
  6263. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6264. }
  6265. if (max_software_endstops) {
  6266. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6267. }
  6268. }
  6269. #ifdef MESH_BED_LEVELING
  6270. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6271. float dx = x - current_position[X_AXIS];
  6272. float dy = y - current_position[Y_AXIS];
  6273. float dz = z - current_position[Z_AXIS];
  6274. int n_segments = 0;
  6275. if (mbl.active) {
  6276. float len = abs(dx) + abs(dy);
  6277. if (len > 0)
  6278. // Split to 3cm segments or shorter.
  6279. n_segments = int(ceil(len / 30.f));
  6280. }
  6281. if (n_segments > 1) {
  6282. float de = e - current_position[E_AXIS];
  6283. for (int i = 1; i < n_segments; ++ i) {
  6284. float t = float(i) / float(n_segments);
  6285. if (saved_printing || (mbl.active == false)) return;
  6286. plan_buffer_line(
  6287. current_position[X_AXIS] + t * dx,
  6288. current_position[Y_AXIS] + t * dy,
  6289. current_position[Z_AXIS] + t * dz,
  6290. current_position[E_AXIS] + t * de,
  6291. feed_rate, extruder);
  6292. }
  6293. }
  6294. // The rest of the path.
  6295. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6296. current_position[X_AXIS] = x;
  6297. current_position[Y_AXIS] = y;
  6298. current_position[Z_AXIS] = z;
  6299. current_position[E_AXIS] = e;
  6300. }
  6301. #endif // MESH_BED_LEVELING
  6302. void prepare_move()
  6303. {
  6304. clamp_to_software_endstops(destination);
  6305. previous_millis_cmd = millis();
  6306. // Do not use feedmultiply for E or Z only moves
  6307. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6308. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6309. }
  6310. else {
  6311. #ifdef MESH_BED_LEVELING
  6312. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6313. #else
  6314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6315. #endif
  6316. }
  6317. for(int8_t i=0; i < NUM_AXIS; i++) {
  6318. current_position[i] = destination[i];
  6319. }
  6320. }
  6321. void prepare_arc_move(char isclockwise) {
  6322. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6323. // Trace the arc
  6324. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6325. // As far as the parser is concerned, the position is now == target. In reality the
  6326. // motion control system might still be processing the action and the real tool position
  6327. // in any intermediate location.
  6328. for(int8_t i=0; i < NUM_AXIS; i++) {
  6329. current_position[i] = destination[i];
  6330. }
  6331. previous_millis_cmd = millis();
  6332. }
  6333. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6334. #if defined(FAN_PIN)
  6335. #if CONTROLLERFAN_PIN == FAN_PIN
  6336. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6337. #endif
  6338. #endif
  6339. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6340. unsigned long lastMotorCheck = 0;
  6341. void controllerFan()
  6342. {
  6343. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6344. {
  6345. lastMotorCheck = millis();
  6346. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6347. #if EXTRUDERS > 2
  6348. || !READ(E2_ENABLE_PIN)
  6349. #endif
  6350. #if EXTRUDER > 1
  6351. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6352. || !READ(X2_ENABLE_PIN)
  6353. #endif
  6354. || !READ(E1_ENABLE_PIN)
  6355. #endif
  6356. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6357. {
  6358. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6359. }
  6360. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6361. {
  6362. digitalWrite(CONTROLLERFAN_PIN, 0);
  6363. analogWrite(CONTROLLERFAN_PIN, 0);
  6364. }
  6365. else
  6366. {
  6367. // allows digital or PWM fan output to be used (see M42 handling)
  6368. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6369. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6370. }
  6371. }
  6372. }
  6373. #endif
  6374. #ifdef TEMP_STAT_LEDS
  6375. static bool blue_led = false;
  6376. static bool red_led = false;
  6377. static uint32_t stat_update = 0;
  6378. void handle_status_leds(void) {
  6379. float max_temp = 0.0;
  6380. if(millis() > stat_update) {
  6381. stat_update += 500; // Update every 0.5s
  6382. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6383. max_temp = max(max_temp, degHotend(cur_extruder));
  6384. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6385. }
  6386. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6387. max_temp = max(max_temp, degTargetBed());
  6388. max_temp = max(max_temp, degBed());
  6389. #endif
  6390. if((max_temp > 55.0) && (red_led == false)) {
  6391. digitalWrite(STAT_LED_RED, 1);
  6392. digitalWrite(STAT_LED_BLUE, 0);
  6393. red_led = true;
  6394. blue_led = false;
  6395. }
  6396. if((max_temp < 54.0) && (blue_led == false)) {
  6397. digitalWrite(STAT_LED_RED, 0);
  6398. digitalWrite(STAT_LED_BLUE, 1);
  6399. red_led = false;
  6400. blue_led = true;
  6401. }
  6402. }
  6403. }
  6404. #endif
  6405. #ifdef SAFETYTIMER
  6406. /**
  6407. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6408. *
  6409. * Full screen blocking notification message is shown after heater turning off.
  6410. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6411. * damage print.
  6412. *
  6413. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6414. */
  6415. static void handleSafetyTimer()
  6416. {
  6417. #if (EXTRUDERS > 1)
  6418. #error Implemented only for one extruder.
  6419. #endif //(EXTRUDERS > 1)
  6420. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6421. {
  6422. safetyTimer.stop();
  6423. }
  6424. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6425. {
  6426. safetyTimer.start();
  6427. }
  6428. else if (safetyTimer.expired(safetytimer_inactive_time))
  6429. {
  6430. setTargetBed(0);
  6431. setAllTargetHotends(0);
  6432. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6433. }
  6434. }
  6435. #endif //SAFETYTIMER
  6436. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6437. {
  6438. #ifdef FILAMENT_SENSOR
  6439. if (mcode_in_progress != 600) //M600 not in progress
  6440. {
  6441. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6442. {
  6443. if (fsensor_check_autoload())
  6444. {
  6445. fsensor_autoload_check_stop();
  6446. if (degHotend0() > EXTRUDE_MINTEMP)
  6447. {
  6448. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  6449. tone(BEEPER, 1000);
  6450. delay_keep_alive(50);
  6451. noTone(BEEPER);
  6452. loading_flag = true;
  6453. enquecommand_front_P((PSTR("M701")));
  6454. }
  6455. else
  6456. {
  6457. lcd_update_enable(false);
  6458. lcd_clear();
  6459. lcd_set_cursor(0, 0);
  6460. lcd_puts_P(_T(MSG_ERROR));
  6461. lcd_set_cursor(0, 2);
  6462. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6463. delay(2000);
  6464. lcd_clear();
  6465. lcd_update_enable(true);
  6466. }
  6467. }
  6468. }
  6469. else
  6470. fsensor_autoload_check_stop();
  6471. }
  6472. #endif //FILAMENT_SENSOR
  6473. #ifdef SAFETYTIMER
  6474. handleSafetyTimer();
  6475. #endif //SAFETYTIMER
  6476. #if defined(KILL_PIN) && KILL_PIN > -1
  6477. static int killCount = 0; // make the inactivity button a bit less responsive
  6478. const int KILL_DELAY = 10000;
  6479. #endif
  6480. if(buflen < (BUFSIZE-1)){
  6481. get_command();
  6482. }
  6483. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6484. if(max_inactive_time)
  6485. kill(_n(""), 4);
  6486. if(stepper_inactive_time) {
  6487. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6488. {
  6489. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6490. disable_x();
  6491. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6492. disable_y();
  6493. disable_z();
  6494. disable_e0();
  6495. disable_e1();
  6496. disable_e2();
  6497. }
  6498. }
  6499. }
  6500. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6501. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6502. {
  6503. chdkActive = false;
  6504. WRITE(CHDK, LOW);
  6505. }
  6506. #endif
  6507. #if defined(KILL_PIN) && KILL_PIN > -1
  6508. // Check if the kill button was pressed and wait just in case it was an accidental
  6509. // key kill key press
  6510. // -------------------------------------------------------------------------------
  6511. if( 0 == READ(KILL_PIN) )
  6512. {
  6513. killCount++;
  6514. }
  6515. else if (killCount > 0)
  6516. {
  6517. killCount--;
  6518. }
  6519. // Exceeded threshold and we can confirm that it was not accidental
  6520. // KILL the machine
  6521. // ----------------------------------------------------------------
  6522. if ( killCount >= KILL_DELAY)
  6523. {
  6524. kill("", 5);
  6525. }
  6526. #endif
  6527. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6528. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6529. #endif
  6530. #ifdef EXTRUDER_RUNOUT_PREVENT
  6531. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6532. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6533. {
  6534. bool oldstatus=READ(E0_ENABLE_PIN);
  6535. enable_e0();
  6536. float oldepos=current_position[E_AXIS];
  6537. float oldedes=destination[E_AXIS];
  6538. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6539. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6540. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6541. current_position[E_AXIS]=oldepos;
  6542. destination[E_AXIS]=oldedes;
  6543. plan_set_e_position(oldepos);
  6544. previous_millis_cmd=millis();
  6545. st_synchronize();
  6546. WRITE(E0_ENABLE_PIN,oldstatus);
  6547. }
  6548. #endif
  6549. #ifdef TEMP_STAT_LEDS
  6550. handle_status_leds();
  6551. #endif
  6552. check_axes_activity();
  6553. }
  6554. void kill(const char *full_screen_message, unsigned char id)
  6555. {
  6556. printf_P(_N("KILL: %d\n"), id);
  6557. //return;
  6558. cli(); // Stop interrupts
  6559. disable_heater();
  6560. disable_x();
  6561. // SERIAL_ECHOLNPGM("kill - disable Y");
  6562. disable_y();
  6563. disable_z();
  6564. disable_e0();
  6565. disable_e1();
  6566. disable_e2();
  6567. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6568. pinMode(PS_ON_PIN,INPUT);
  6569. #endif
  6570. SERIAL_ERROR_START;
  6571. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6572. if (full_screen_message != NULL) {
  6573. SERIAL_ERRORLNRPGM(full_screen_message);
  6574. lcd_display_message_fullscreen_P(full_screen_message);
  6575. } else {
  6576. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6577. }
  6578. // FMC small patch to update the LCD before ending
  6579. sei(); // enable interrupts
  6580. for ( int i=5; i--; lcd_update(0))
  6581. {
  6582. delay(200);
  6583. }
  6584. cli(); // disable interrupts
  6585. suicide();
  6586. while(1)
  6587. {
  6588. #ifdef WATCHDOG
  6589. wdt_reset();
  6590. #endif //WATCHDOG
  6591. /* Intentionally left empty */
  6592. } // Wait for reset
  6593. }
  6594. void Stop()
  6595. {
  6596. disable_heater();
  6597. if(Stopped == false) {
  6598. Stopped = true;
  6599. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6600. SERIAL_ERROR_START;
  6601. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6602. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6603. }
  6604. }
  6605. bool IsStopped() { return Stopped; };
  6606. #ifdef FAST_PWM_FAN
  6607. void setPwmFrequency(uint8_t pin, int val)
  6608. {
  6609. val &= 0x07;
  6610. switch(digitalPinToTimer(pin))
  6611. {
  6612. #if defined(TCCR0A)
  6613. case TIMER0A:
  6614. case TIMER0B:
  6615. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6616. // TCCR0B |= val;
  6617. break;
  6618. #endif
  6619. #if defined(TCCR1A)
  6620. case TIMER1A:
  6621. case TIMER1B:
  6622. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6623. // TCCR1B |= val;
  6624. break;
  6625. #endif
  6626. #if defined(TCCR2)
  6627. case TIMER2:
  6628. case TIMER2:
  6629. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6630. TCCR2 |= val;
  6631. break;
  6632. #endif
  6633. #if defined(TCCR2A)
  6634. case TIMER2A:
  6635. case TIMER2B:
  6636. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6637. TCCR2B |= val;
  6638. break;
  6639. #endif
  6640. #if defined(TCCR3A)
  6641. case TIMER3A:
  6642. case TIMER3B:
  6643. case TIMER3C:
  6644. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6645. TCCR3B |= val;
  6646. break;
  6647. #endif
  6648. #if defined(TCCR4A)
  6649. case TIMER4A:
  6650. case TIMER4B:
  6651. case TIMER4C:
  6652. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6653. TCCR4B |= val;
  6654. break;
  6655. #endif
  6656. #if defined(TCCR5A)
  6657. case TIMER5A:
  6658. case TIMER5B:
  6659. case TIMER5C:
  6660. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6661. TCCR5B |= val;
  6662. break;
  6663. #endif
  6664. }
  6665. }
  6666. #endif //FAST_PWM_FAN
  6667. bool setTargetedHotend(int code){
  6668. tmp_extruder = active_extruder;
  6669. if(code_seen('T')) {
  6670. tmp_extruder = code_value();
  6671. if(tmp_extruder >= EXTRUDERS) {
  6672. SERIAL_ECHO_START;
  6673. switch(code){
  6674. case 104:
  6675. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6676. break;
  6677. case 105:
  6678. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6679. break;
  6680. case 109:
  6681. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6682. break;
  6683. case 218:
  6684. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6685. break;
  6686. case 221:
  6687. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6688. break;
  6689. }
  6690. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6691. return true;
  6692. }
  6693. }
  6694. return false;
  6695. }
  6696. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6697. {
  6698. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6699. {
  6700. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6701. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6702. }
  6703. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6704. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6705. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6706. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6707. total_filament_used = 0;
  6708. }
  6709. float calculate_extruder_multiplier(float diameter) {
  6710. float out = 1.f;
  6711. if (volumetric_enabled && diameter > 0.f) {
  6712. float area = M_PI * diameter * diameter * 0.25;
  6713. out = 1.f / area;
  6714. }
  6715. if (extrudemultiply != 100)
  6716. out *= float(extrudemultiply) * 0.01f;
  6717. return out;
  6718. }
  6719. void calculate_extruder_multipliers() {
  6720. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6721. #if EXTRUDERS > 1
  6722. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6723. #if EXTRUDERS > 2
  6724. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6725. #endif
  6726. #endif
  6727. }
  6728. void delay_keep_alive(unsigned int ms)
  6729. {
  6730. for (;;) {
  6731. manage_heater();
  6732. // Manage inactivity, but don't disable steppers on timeout.
  6733. manage_inactivity(true);
  6734. lcd_update(0);
  6735. if (ms == 0)
  6736. break;
  6737. else if (ms >= 50) {
  6738. delay(50);
  6739. ms -= 50;
  6740. } else {
  6741. delay(ms);
  6742. ms = 0;
  6743. }
  6744. }
  6745. }
  6746. void wait_for_heater(long codenum) {
  6747. #ifdef TEMP_RESIDENCY_TIME
  6748. long residencyStart;
  6749. residencyStart = -1;
  6750. /* continue to loop until we have reached the target temp
  6751. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6752. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6753. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6754. #else
  6755. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6756. #endif //TEMP_RESIDENCY_TIME
  6757. if ((millis() - codenum) > 1000UL)
  6758. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6759. if (!farm_mode) {
  6760. SERIAL_PROTOCOLPGM("T:");
  6761. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6762. SERIAL_PROTOCOLPGM(" E:");
  6763. SERIAL_PROTOCOL((int)tmp_extruder);
  6764. #ifdef TEMP_RESIDENCY_TIME
  6765. SERIAL_PROTOCOLPGM(" W:");
  6766. if (residencyStart > -1)
  6767. {
  6768. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6769. SERIAL_PROTOCOLLN(codenum);
  6770. }
  6771. else
  6772. {
  6773. SERIAL_PROTOCOLLN("?");
  6774. }
  6775. }
  6776. #else
  6777. SERIAL_PROTOCOLLN("");
  6778. #endif
  6779. codenum = millis();
  6780. }
  6781. manage_heater();
  6782. manage_inactivity();
  6783. lcd_update(0);
  6784. #ifdef TEMP_RESIDENCY_TIME
  6785. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6786. or when current temp falls outside the hysteresis after target temp was reached */
  6787. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6788. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6789. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6790. {
  6791. residencyStart = millis();
  6792. }
  6793. #endif //TEMP_RESIDENCY_TIME
  6794. }
  6795. }
  6796. void check_babystep() {
  6797. int babystep_z;
  6798. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6799. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6800. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6801. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6802. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6803. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6804. lcd_update_enable(true);
  6805. }
  6806. }
  6807. #ifdef DIS
  6808. void d_setup()
  6809. {
  6810. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6811. pinMode(D_DATA, INPUT_PULLUP);
  6812. pinMode(D_REQUIRE, OUTPUT);
  6813. digitalWrite(D_REQUIRE, HIGH);
  6814. }
  6815. float d_ReadData()
  6816. {
  6817. int digit[13];
  6818. String mergeOutput;
  6819. float output;
  6820. digitalWrite(D_REQUIRE, HIGH);
  6821. for (int i = 0; i<13; i++)
  6822. {
  6823. for (int j = 0; j < 4; j++)
  6824. {
  6825. while (digitalRead(D_DATACLOCK) == LOW) {}
  6826. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6827. bitWrite(digit[i], j, digitalRead(D_DATA));
  6828. }
  6829. }
  6830. digitalWrite(D_REQUIRE, LOW);
  6831. mergeOutput = "";
  6832. output = 0;
  6833. for (int r = 5; r <= 10; r++) //Merge digits
  6834. {
  6835. mergeOutput += digit[r];
  6836. }
  6837. output = mergeOutput.toFloat();
  6838. if (digit[4] == 8) //Handle sign
  6839. {
  6840. output *= -1;
  6841. }
  6842. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6843. {
  6844. output /= 10;
  6845. }
  6846. return output;
  6847. }
  6848. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6849. int t1 = 0;
  6850. int t_delay = 0;
  6851. int digit[13];
  6852. int m;
  6853. char str[3];
  6854. //String mergeOutput;
  6855. char mergeOutput[15];
  6856. float output;
  6857. int mesh_point = 0; //index number of calibration point
  6858. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6859. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6860. float mesh_home_z_search = 4;
  6861. float row[x_points_num];
  6862. int ix = 0;
  6863. int iy = 0;
  6864. const char* filename_wldsd = "wldsd.txt";
  6865. char data_wldsd[70];
  6866. char numb_wldsd[10];
  6867. d_setup();
  6868. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6869. // We don't know where we are! HOME!
  6870. // Push the commands to the front of the message queue in the reverse order!
  6871. // There shall be always enough space reserved for these commands.
  6872. repeatcommand_front(); // repeat G80 with all its parameters
  6873. enquecommand_front_P((PSTR("G28 W0")));
  6874. enquecommand_front_P((PSTR("G1 Z5")));
  6875. return;
  6876. }
  6877. bool custom_message_old = custom_message;
  6878. unsigned int custom_message_type_old = custom_message_type;
  6879. unsigned int custom_message_state_old = custom_message_state;
  6880. custom_message = true;
  6881. custom_message_type = 1;
  6882. custom_message_state = (x_points_num * y_points_num) + 10;
  6883. lcd_update(1);
  6884. mbl.reset();
  6885. babystep_undo();
  6886. card.openFile(filename_wldsd, false);
  6887. current_position[Z_AXIS] = mesh_home_z_search;
  6888. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6889. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6890. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6891. setup_for_endstop_move(false);
  6892. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6893. SERIAL_PROTOCOL(x_points_num);
  6894. SERIAL_PROTOCOLPGM(",");
  6895. SERIAL_PROTOCOL(y_points_num);
  6896. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6897. SERIAL_PROTOCOL(mesh_home_z_search);
  6898. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6899. SERIAL_PROTOCOL(x_dimension);
  6900. SERIAL_PROTOCOLPGM(",");
  6901. SERIAL_PROTOCOL(y_dimension);
  6902. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6903. while (mesh_point != x_points_num * y_points_num) {
  6904. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6905. iy = mesh_point / x_points_num;
  6906. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6907. float z0 = 0.f;
  6908. current_position[Z_AXIS] = mesh_home_z_search;
  6909. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6910. st_synchronize();
  6911. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6912. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6913. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6914. st_synchronize();
  6915. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6916. break;
  6917. card.closefile();
  6918. }
  6919. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6920. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6921. //strcat(data_wldsd, numb_wldsd);
  6922. //MYSERIAL.println(data_wldsd);
  6923. //delay(1000);
  6924. //delay(3000);
  6925. //t1 = millis();
  6926. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6927. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6928. memset(digit, 0, sizeof(digit));
  6929. //cli();
  6930. digitalWrite(D_REQUIRE, LOW);
  6931. for (int i = 0; i<13; i++)
  6932. {
  6933. //t1 = millis();
  6934. for (int j = 0; j < 4; j++)
  6935. {
  6936. while (digitalRead(D_DATACLOCK) == LOW) {}
  6937. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6938. bitWrite(digit[i], j, digitalRead(D_DATA));
  6939. }
  6940. //t_delay = (millis() - t1);
  6941. //SERIAL_PROTOCOLPGM(" ");
  6942. //SERIAL_PROTOCOL_F(t_delay, 5);
  6943. //SERIAL_PROTOCOLPGM(" ");
  6944. }
  6945. //sei();
  6946. digitalWrite(D_REQUIRE, HIGH);
  6947. mergeOutput[0] = '\0';
  6948. output = 0;
  6949. for (int r = 5; r <= 10; r++) //Merge digits
  6950. {
  6951. sprintf(str, "%d", digit[r]);
  6952. strcat(mergeOutput, str);
  6953. }
  6954. output = atof(mergeOutput);
  6955. if (digit[4] == 8) //Handle sign
  6956. {
  6957. output *= -1;
  6958. }
  6959. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6960. {
  6961. output *= 0.1;
  6962. }
  6963. //output = d_ReadData();
  6964. //row[ix] = current_position[Z_AXIS];
  6965. memset(data_wldsd, 0, sizeof(data_wldsd));
  6966. for (int i = 0; i <3; i++) {
  6967. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6968. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6969. strcat(data_wldsd, numb_wldsd);
  6970. strcat(data_wldsd, ";");
  6971. }
  6972. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6973. dtostrf(output, 8, 5, numb_wldsd);
  6974. strcat(data_wldsd, numb_wldsd);
  6975. //strcat(data_wldsd, ";");
  6976. card.write_command(data_wldsd);
  6977. //row[ix] = d_ReadData();
  6978. row[ix] = output; // current_position[Z_AXIS];
  6979. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6980. for (int i = 0; i < x_points_num; i++) {
  6981. SERIAL_PROTOCOLPGM(" ");
  6982. SERIAL_PROTOCOL_F(row[i], 5);
  6983. }
  6984. SERIAL_PROTOCOLPGM("\n");
  6985. }
  6986. custom_message_state--;
  6987. mesh_point++;
  6988. lcd_update(1);
  6989. }
  6990. card.closefile();
  6991. }
  6992. #endif
  6993. void temp_compensation_start() {
  6994. custom_message = true;
  6995. custom_message_type = 5;
  6996. custom_message_state = PINDA_HEAT_T + 1;
  6997. lcd_update(2);
  6998. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6999. current_position[E_AXIS] -= default_retraction;
  7000. }
  7001. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7002. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7003. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7004. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7005. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7006. st_synchronize();
  7007. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7008. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7009. delay_keep_alive(1000);
  7010. custom_message_state = PINDA_HEAT_T - i;
  7011. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7012. else lcd_update(1);
  7013. }
  7014. custom_message_type = 0;
  7015. custom_message_state = 0;
  7016. custom_message = false;
  7017. }
  7018. void temp_compensation_apply() {
  7019. int i_add;
  7020. int z_shift = 0;
  7021. float z_shift_mm;
  7022. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7023. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7024. i_add = (target_temperature_bed - 60) / 10;
  7025. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7026. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7027. }else {
  7028. //interpolation
  7029. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7030. }
  7031. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7033. st_synchronize();
  7034. plan_set_z_position(current_position[Z_AXIS]);
  7035. }
  7036. else {
  7037. //we have no temp compensation data
  7038. }
  7039. }
  7040. float temp_comp_interpolation(float inp_temperature) {
  7041. //cubic spline interpolation
  7042. int n, i, j;
  7043. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7044. int shift[10];
  7045. int temp_C[10];
  7046. n = 6; //number of measured points
  7047. shift[0] = 0;
  7048. for (i = 0; i < n; i++) {
  7049. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7050. temp_C[i] = 50 + i * 10; //temperature in C
  7051. #ifdef PINDA_THERMISTOR
  7052. temp_C[i] = 35 + i * 5; //temperature in C
  7053. #else
  7054. temp_C[i] = 50 + i * 10; //temperature in C
  7055. #endif
  7056. x[i] = (float)temp_C[i];
  7057. f[i] = (float)shift[i];
  7058. }
  7059. if (inp_temperature < x[0]) return 0;
  7060. for (i = n - 1; i>0; i--) {
  7061. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7062. h[i - 1] = x[i] - x[i - 1];
  7063. }
  7064. //*********** formation of h, s , f matrix **************
  7065. for (i = 1; i<n - 1; i++) {
  7066. m[i][i] = 2 * (h[i - 1] + h[i]);
  7067. if (i != 1) {
  7068. m[i][i - 1] = h[i - 1];
  7069. m[i - 1][i] = h[i - 1];
  7070. }
  7071. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7072. }
  7073. //*********** forward elimination **************
  7074. for (i = 1; i<n - 2; i++) {
  7075. temp = (m[i + 1][i] / m[i][i]);
  7076. for (j = 1; j <= n - 1; j++)
  7077. m[i + 1][j] -= temp*m[i][j];
  7078. }
  7079. //*********** backward substitution *********
  7080. for (i = n - 2; i>0; i--) {
  7081. sum = 0;
  7082. for (j = i; j <= n - 2; j++)
  7083. sum += m[i][j] * s[j];
  7084. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7085. }
  7086. for (i = 0; i<n - 1; i++)
  7087. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7088. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7089. b = s[i] / 2;
  7090. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7091. d = f[i];
  7092. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7093. }
  7094. return sum;
  7095. }
  7096. #ifdef PINDA_THERMISTOR
  7097. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7098. {
  7099. if (!temp_cal_active) return 0;
  7100. if (!calibration_status_pinda()) return 0;
  7101. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7102. }
  7103. #endif //PINDA_THERMISTOR
  7104. void long_pause() //long pause print
  7105. {
  7106. st_synchronize();
  7107. //save currently set parameters to global variables
  7108. saved_feedmultiply = feedmultiply;
  7109. HotendTempBckp = degTargetHotend(active_extruder);
  7110. fanSpeedBckp = fanSpeed;
  7111. start_pause_print = millis();
  7112. //save position
  7113. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7114. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7115. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7116. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7117. //retract
  7118. current_position[E_AXIS] -= default_retraction;
  7119. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7120. //lift z
  7121. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7122. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7124. //set nozzle target temperature to 0
  7125. setAllTargetHotends(0);
  7126. //Move XY to side
  7127. current_position[X_AXIS] = X_PAUSE_POS;
  7128. current_position[Y_AXIS] = Y_PAUSE_POS;
  7129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7130. // Turn off the print fan
  7131. fanSpeed = 0;
  7132. st_synchronize();
  7133. }
  7134. void serialecho_temperatures() {
  7135. float tt = degHotend(active_extruder);
  7136. SERIAL_PROTOCOLPGM("T:");
  7137. SERIAL_PROTOCOL(tt);
  7138. SERIAL_PROTOCOLPGM(" E:");
  7139. SERIAL_PROTOCOL((int)active_extruder);
  7140. SERIAL_PROTOCOLPGM(" B:");
  7141. SERIAL_PROTOCOL_F(degBed(), 1);
  7142. SERIAL_PROTOCOLLN("");
  7143. }
  7144. extern uint32_t sdpos_atomic;
  7145. #ifdef UVLO_SUPPORT
  7146. void uvlo_()
  7147. {
  7148. unsigned long time_start = millis();
  7149. bool sd_print = card.sdprinting;
  7150. // Conserve power as soon as possible.
  7151. disable_x();
  7152. disable_y();
  7153. #ifdef TMC2130
  7154. tmc2130_set_current_h(Z_AXIS, 20);
  7155. tmc2130_set_current_r(Z_AXIS, 20);
  7156. tmc2130_set_current_h(E_AXIS, 20);
  7157. tmc2130_set_current_r(E_AXIS, 20);
  7158. #endif //TMC2130
  7159. // Indicate that the interrupt has been triggered.
  7160. // SERIAL_ECHOLNPGM("UVLO");
  7161. // Read out the current Z motor microstep counter. This will be later used
  7162. // for reaching the zero full step before powering off.
  7163. uint16_t z_microsteps = 0;
  7164. #ifdef TMC2130
  7165. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7166. #endif //TMC2130
  7167. // Calculate the file position, from which to resume this print.
  7168. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7169. {
  7170. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7171. sd_position -= sdlen_planner;
  7172. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7173. sd_position -= sdlen_cmdqueue;
  7174. if (sd_position < 0) sd_position = 0;
  7175. }
  7176. // Backup the feedrate in mm/min.
  7177. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7178. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7179. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7180. // are in action.
  7181. planner_abort_hard();
  7182. // Store the current extruder position.
  7183. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7184. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7185. // Clean the input command queue.
  7186. cmdqueue_reset();
  7187. card.sdprinting = false;
  7188. // card.closefile();
  7189. // Enable stepper driver interrupt to move Z axis.
  7190. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7191. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7192. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7193. sei();
  7194. plan_buffer_line(
  7195. current_position[X_AXIS],
  7196. current_position[Y_AXIS],
  7197. current_position[Z_AXIS],
  7198. current_position[E_AXIS] - default_retraction,
  7199. 95, active_extruder);
  7200. st_synchronize();
  7201. disable_e0();
  7202. plan_buffer_line(
  7203. current_position[X_AXIS],
  7204. current_position[Y_AXIS],
  7205. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7206. current_position[E_AXIS] - default_retraction,
  7207. 40, active_extruder);
  7208. st_synchronize();
  7209. disable_e0();
  7210. plan_buffer_line(
  7211. current_position[X_AXIS],
  7212. current_position[Y_AXIS],
  7213. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7214. current_position[E_AXIS] - default_retraction,
  7215. 40, active_extruder);
  7216. st_synchronize();
  7217. disable_e0();
  7218. disable_z();
  7219. // Move Z up to the next 0th full step.
  7220. // Write the file position.
  7221. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7222. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7223. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7224. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7225. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7226. // Scale the z value to 1u resolution.
  7227. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7228. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7229. }
  7230. // Read out the current Z motor microstep counter. This will be later used
  7231. // for reaching the zero full step before powering off.
  7232. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7233. // Store the current position.
  7234. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7235. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7236. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7237. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7238. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7239. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7240. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7241. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7242. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7243. #if EXTRUDERS > 1
  7244. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7245. #if EXTRUDERS > 2
  7246. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7247. #endif
  7248. #endif
  7249. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7250. // Finaly store the "power outage" flag.
  7251. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7252. st_synchronize();
  7253. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7254. disable_z();
  7255. // Increment power failure counter
  7256. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7257. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7258. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7259. #if 0
  7260. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7261. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7262. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7263. st_synchronize();
  7264. #endif
  7265. wdt_enable(WDTO_500MS);
  7266. WRITE(BEEPER,HIGH);
  7267. while(1)
  7268. ;
  7269. }
  7270. void uvlo_tiny()
  7271. {
  7272. uint16_t z_microsteps=0;
  7273. // Conserve power as soon as possible.
  7274. disable_x();
  7275. disable_y();
  7276. disable_e0();
  7277. #ifdef TMC2130
  7278. tmc2130_set_current_h(Z_AXIS, 20);
  7279. tmc2130_set_current_r(Z_AXIS, 20);
  7280. #endif //TMC2130
  7281. // Read out the current Z motor microstep counter
  7282. #ifdef TMC2130
  7283. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7284. #endif //TMC2130
  7285. planner_abort_hard();
  7286. sei();
  7287. plan_buffer_line(
  7288. current_position[X_AXIS],
  7289. current_position[Y_AXIS],
  7290. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7291. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7292. current_position[E_AXIS],
  7293. 40, active_extruder);
  7294. st_synchronize();
  7295. disable_z();
  7296. // Finaly store the "power outage" flag.
  7297. //if(sd_print)
  7298. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7299. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7300. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7301. // Increment power failure counter
  7302. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7303. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7304. wdt_enable(WDTO_500MS);
  7305. WRITE(BEEPER,HIGH);
  7306. while(1)
  7307. ;
  7308. }
  7309. #endif //UVLO_SUPPORT
  7310. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7311. void setup_fan_interrupt() {
  7312. //INT7
  7313. DDRE &= ~(1 << 7); //input pin
  7314. PORTE &= ~(1 << 7); //no internal pull-up
  7315. //start with sensing rising edge
  7316. EICRB &= ~(1 << 6);
  7317. EICRB |= (1 << 7);
  7318. //enable INT7 interrupt
  7319. EIMSK |= (1 << 7);
  7320. }
  7321. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7322. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7323. ISR(INT7_vect) {
  7324. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7325. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7326. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7327. t_fan_rising_edge = millis_nc();
  7328. }
  7329. else { //interrupt was triggered by falling edge
  7330. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7331. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7332. }
  7333. }
  7334. EICRB ^= (1 << 6); //change edge
  7335. }
  7336. #endif
  7337. #ifdef UVLO_SUPPORT
  7338. void setup_uvlo_interrupt() {
  7339. DDRE &= ~(1 << 4); //input pin
  7340. PORTE &= ~(1 << 4); //no internal pull-up
  7341. //sensing falling edge
  7342. EICRB |= (1 << 0);
  7343. EICRB &= ~(1 << 1);
  7344. //enable INT4 interrupt
  7345. EIMSK |= (1 << 4);
  7346. }
  7347. ISR(INT4_vect) {
  7348. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7349. SERIAL_ECHOLNPGM("INT4");
  7350. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7351. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7352. }
  7353. void recover_print(uint8_t automatic) {
  7354. char cmd[30];
  7355. lcd_update_enable(true);
  7356. lcd_update(2);
  7357. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7358. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7359. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7360. // Lift the print head, so one may remove the excess priming material.
  7361. if(!bTiny&&(current_position[Z_AXIS]<25))
  7362. enquecommand_P(PSTR("G1 Z25 F800"));
  7363. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7364. enquecommand_P(PSTR("G28 X Y"));
  7365. // Set the target bed and nozzle temperatures and wait.
  7366. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7367. enquecommand(cmd);
  7368. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7369. enquecommand(cmd);
  7370. enquecommand_P(PSTR("M83")); //E axis relative mode
  7371. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7372. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7373. if(automatic == 0){
  7374. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7375. }
  7376. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7377. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7378. // Restart the print.
  7379. restore_print_from_eeprom();
  7380. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7381. }
  7382. void recover_machine_state_after_power_panic(bool bTiny)
  7383. {
  7384. char cmd[30];
  7385. // 1) Recover the logical cordinates at the time of the power panic.
  7386. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7387. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7388. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7389. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7390. // The current position after power panic is moved to the next closest 0th full step.
  7391. if(bTiny)
  7392. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7393. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7394. else
  7395. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7396. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7397. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7398. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7399. sprintf_P(cmd, PSTR("G92 E"));
  7400. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7401. enquecommand(cmd);
  7402. }
  7403. memcpy(destination, current_position, sizeof(destination));
  7404. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7405. print_world_coordinates();
  7406. // 2) Initialize the logical to physical coordinate system transformation.
  7407. world2machine_initialize();
  7408. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7409. mbl.active = false;
  7410. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7411. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7412. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7413. // Scale the z value to 10u resolution.
  7414. int16_t v;
  7415. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7416. if (v != 0)
  7417. mbl.active = true;
  7418. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7419. }
  7420. if (mbl.active)
  7421. mbl.upsample_3x3();
  7422. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7423. // print_mesh_bed_leveling_table();
  7424. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7425. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7426. babystep_load();
  7427. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7428. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7429. // 6) Power up the motors, mark their positions as known.
  7430. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7431. axis_known_position[X_AXIS] = true; enable_x();
  7432. axis_known_position[Y_AXIS] = true; enable_y();
  7433. axis_known_position[Z_AXIS] = true; enable_z();
  7434. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7435. print_physical_coordinates();
  7436. // 7) Recover the target temperatures.
  7437. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7438. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7439. // 8) Recover extruder multipilers
  7440. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7441. #if EXTRUDERS > 1
  7442. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7443. #if EXTRUDERS > 2
  7444. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7445. #endif
  7446. #endif
  7447. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7448. }
  7449. void restore_print_from_eeprom() {
  7450. int feedrate_rec;
  7451. uint8_t fan_speed_rec;
  7452. char cmd[30];
  7453. char filename[13];
  7454. uint8_t depth = 0;
  7455. char dir_name[9];
  7456. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7457. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7458. SERIAL_ECHOPGM("Feedrate:");
  7459. MYSERIAL.println(feedrate_rec);
  7460. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7461. MYSERIAL.println(int(depth));
  7462. for (int i = 0; i < depth; i++) {
  7463. for (int j = 0; j < 8; j++) {
  7464. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7465. }
  7466. dir_name[8] = '\0';
  7467. MYSERIAL.println(dir_name);
  7468. strcpy(dir_names[i], dir_name);
  7469. card.chdir(dir_name);
  7470. }
  7471. for (int i = 0; i < 8; i++) {
  7472. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7473. }
  7474. filename[8] = '\0';
  7475. MYSERIAL.print(filename);
  7476. strcat_P(filename, PSTR(".gco"));
  7477. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7478. enquecommand(cmd);
  7479. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7480. SERIAL_ECHOPGM("Position read from eeprom:");
  7481. MYSERIAL.println(position);
  7482. // E axis relative mode.
  7483. enquecommand_P(PSTR("M83"));
  7484. // Move to the XY print position in logical coordinates, where the print has been killed.
  7485. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7486. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7487. strcat_P(cmd, PSTR(" F2000"));
  7488. enquecommand(cmd);
  7489. // Move the Z axis down to the print, in logical coordinates.
  7490. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7491. enquecommand(cmd);
  7492. // Unretract.
  7493. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  7494. // Set the feedrate saved at the power panic.
  7495. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7496. enquecommand(cmd);
  7497. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7498. {
  7499. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7500. }
  7501. // Set the fan speed saved at the power panic.
  7502. strcpy_P(cmd, PSTR("M106 S"));
  7503. strcat(cmd, itostr3(int(fan_speed_rec)));
  7504. enquecommand(cmd);
  7505. // Set a position in the file.
  7506. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7507. enquecommand(cmd);
  7508. enquecommand_P(PSTR("G4 S0"));
  7509. enquecommand_P(PSTR("PRUSA uvlo"));
  7510. }
  7511. #endif //UVLO_SUPPORT
  7512. ////////////////////////////////////////////////////////////////////////////////
  7513. // save/restore printing
  7514. void stop_and_save_print_to_ram(float z_move, float e_move)
  7515. {
  7516. if (saved_printing) return;
  7517. #if 0
  7518. unsigned char nplanner_blocks;
  7519. #endif
  7520. unsigned char nlines;
  7521. uint16_t sdlen_planner;
  7522. uint16_t sdlen_cmdqueue;
  7523. cli();
  7524. if (card.sdprinting) {
  7525. #if 0
  7526. nplanner_blocks = number_of_blocks();
  7527. #endif
  7528. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7529. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7530. saved_sdpos -= sdlen_planner;
  7531. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7532. saved_sdpos -= sdlen_cmdqueue;
  7533. saved_printing_type = PRINTING_TYPE_SD;
  7534. }
  7535. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7536. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7537. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7538. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7539. saved_sdpos -= nlines;
  7540. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7541. saved_printing_type = PRINTING_TYPE_USB;
  7542. }
  7543. else {
  7544. //not sd printing nor usb printing
  7545. }
  7546. #if 0
  7547. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7548. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7549. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7550. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7551. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7552. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7553. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7554. {
  7555. card.setIndex(saved_sdpos);
  7556. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7557. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7558. MYSERIAL.print(char(card.get()));
  7559. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7560. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7561. MYSERIAL.print(char(card.get()));
  7562. SERIAL_ECHOLNPGM("End of command buffer");
  7563. }
  7564. {
  7565. // Print the content of the planner buffer, line by line:
  7566. card.setIndex(saved_sdpos);
  7567. int8_t iline = 0;
  7568. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7569. SERIAL_ECHOPGM("Planner line (from file): ");
  7570. MYSERIAL.print(int(iline), DEC);
  7571. SERIAL_ECHOPGM(", length: ");
  7572. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7573. SERIAL_ECHOPGM(", steps: (");
  7574. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7575. SERIAL_ECHOPGM(",");
  7576. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7577. SERIAL_ECHOPGM(",");
  7578. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7579. SERIAL_ECHOPGM(",");
  7580. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7581. SERIAL_ECHOPGM("), events: ");
  7582. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7583. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7584. MYSERIAL.print(char(card.get()));
  7585. }
  7586. }
  7587. {
  7588. // Print the content of the command buffer, line by line:
  7589. int8_t iline = 0;
  7590. union {
  7591. struct {
  7592. char lo;
  7593. char hi;
  7594. } lohi;
  7595. uint16_t value;
  7596. } sdlen_single;
  7597. int _bufindr = bufindr;
  7598. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7599. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7600. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7601. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7602. }
  7603. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7604. MYSERIAL.print(int(iline), DEC);
  7605. SERIAL_ECHOPGM(", type: ");
  7606. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7607. SERIAL_ECHOPGM(", len: ");
  7608. MYSERIAL.println(sdlen_single.value, DEC);
  7609. // Print the content of the buffer line.
  7610. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7611. SERIAL_ECHOPGM("Buffer line (from file): ");
  7612. MYSERIAL.println(int(iline), DEC);
  7613. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7614. MYSERIAL.print(char(card.get()));
  7615. if (-- _buflen == 0)
  7616. break;
  7617. // First skip the current command ID and iterate up to the end of the string.
  7618. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7619. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7620. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7621. // If the end of the buffer was empty,
  7622. if (_bufindr == sizeof(cmdbuffer)) {
  7623. // skip to the start and find the nonzero command.
  7624. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7625. }
  7626. }
  7627. }
  7628. #endif
  7629. #if 0
  7630. saved_feedrate2 = feedrate; //save feedrate
  7631. #else
  7632. // Try to deduce the feedrate from the first block of the planner.
  7633. // Speed is in mm/min.
  7634. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7635. #endif
  7636. planner_abort_hard(); //abort printing
  7637. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7638. saved_active_extruder = active_extruder; //save active_extruder
  7639. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7640. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7641. cmdqueue_reset(); //empty cmdqueue
  7642. card.sdprinting = false;
  7643. // card.closefile();
  7644. saved_printing = true;
  7645. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7646. st_reset_timer();
  7647. sei();
  7648. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7649. #if 1
  7650. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7651. char buf[48];
  7652. // First unretract (relative extrusion)
  7653. if(!saved_extruder_relative_mode){
  7654. strcpy_P(buf, PSTR("M83"));
  7655. enquecommand(buf, false);
  7656. }
  7657. //retract 45mm/s
  7658. strcpy_P(buf, PSTR("G1 E"));
  7659. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7660. strcat_P(buf, PSTR(" F"));
  7661. dtostrf(2700, 8, 3, buf + strlen(buf));
  7662. enquecommand(buf, false);
  7663. // Then lift Z axis
  7664. strcpy_P(buf, PSTR("G1 Z"));
  7665. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7666. strcat_P(buf, PSTR(" F"));
  7667. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7668. // At this point the command queue is empty.
  7669. enquecommand(buf, false);
  7670. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7671. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7672. repeatcommand_front();
  7673. #else
  7674. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7675. st_synchronize(); //wait moving
  7676. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7677. memcpy(destination, current_position, sizeof(destination));
  7678. #endif
  7679. }
  7680. }
  7681. void restore_print_from_ram_and_continue(float e_move)
  7682. {
  7683. if (!saved_printing) return;
  7684. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7685. // current_position[axis] = st_get_position_mm(axis);
  7686. active_extruder = saved_active_extruder; //restore active_extruder
  7687. feedrate = saved_feedrate2; //restore feedrate
  7688. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7689. float e = saved_pos[E_AXIS] - e_move;
  7690. plan_set_e_position(e);
  7691. //first move print head in XY to the saved position:
  7692. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7693. st_synchronize();
  7694. //then move Z
  7695. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7696. st_synchronize();
  7697. //and finaly unretract (35mm/s)
  7698. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7699. st_synchronize();
  7700. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7701. memcpy(destination, current_position, sizeof(destination));
  7702. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7703. card.setIndex(saved_sdpos);
  7704. sdpos_atomic = saved_sdpos;
  7705. card.sdprinting = true;
  7706. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7707. }
  7708. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7709. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7710. serial_count = 0;
  7711. FlushSerialRequestResend();
  7712. }
  7713. else {
  7714. //not sd printing nor usb printing
  7715. }
  7716. lcd_setstatuspgm(_T(WELCOME_MSG));
  7717. saved_printing = false;
  7718. }
  7719. void print_world_coordinates()
  7720. {
  7721. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7722. }
  7723. void print_physical_coordinates()
  7724. {
  7725. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7726. }
  7727. void print_mesh_bed_leveling_table()
  7728. {
  7729. SERIAL_ECHOPGM("mesh bed leveling: ");
  7730. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7731. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7732. MYSERIAL.print(mbl.z_values[y][x], 3);
  7733. SERIAL_ECHOPGM(" ");
  7734. }
  7735. SERIAL_ECHOLNPGM("");
  7736. }
  7737. uint16_t print_time_remaining() {
  7738. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7739. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7740. else print_t = print_time_remaining_silent;
  7741. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7742. return print_t;
  7743. }
  7744. uint8_t print_percent_done() {
  7745. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7746. uint8_t percent_done = 0;
  7747. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7748. percent_done = print_percent_done_normal;
  7749. }
  7750. else if (print_percent_done_silent <= 100) {
  7751. percent_done = print_percent_done_silent;
  7752. }
  7753. else {
  7754. percent_done = card.percentDone();
  7755. }
  7756. return percent_done;
  7757. }
  7758. static void print_time_remaining_init() {
  7759. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7760. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7761. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7762. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7763. }
  7764. bool mmu_get_response(bool timeout, bool clear) {
  7765. //waits for "ok" from mmu
  7766. //function returns true if "ok" was received
  7767. //if timeout is set to true function return false if there is no "ok" received before timeout
  7768. bool response = true;
  7769. LongTimer mmu_get_reponse_timeout;
  7770. if (clear) uart2_rx_clr();
  7771. KEEPALIVE_STATE(IN_PROCESS);
  7772. mmu_get_reponse_timeout.start();
  7773. while (!uart2_rx_ok())
  7774. {
  7775. delay_keep_alive(100);
  7776. if (timeout && mmu_get_reponse_timeout.expired(5 * 60 * 1000ul)) { //5 minutes timeout
  7777. response = false;
  7778. break;
  7779. }
  7780. }
  7781. return response;
  7782. }
  7783. void manage_response(bool move_axes, bool turn_off_nozzle) {
  7784. bool response = false;
  7785. mmu_print_saved = false;
  7786. bool lcd_update_was_enabled = false;
  7787. float hotend_temp_bckp = degTargetHotend(active_extruder);
  7788. float z_position_bckp = current_position[Z_AXIS];
  7789. float x_position_bckp = current_position[X_AXIS];
  7790. float y_position_bckp = current_position[Y_AXIS];
  7791. while(!response) {
  7792. response = mmu_get_response(true, !mmu_print_saved); //wait for "ok" from mmu
  7793. if (!response) { //no "ok" was received in reserved time frame, user will fix the issue on mmu unit
  7794. if (!mmu_print_saved) { //first occurence, we are saving current position, park print head in certain position and disable nozzle heater
  7795. if (lcd_update_enabled) {
  7796. lcd_update_was_enabled = true;
  7797. lcd_update_enable(false);
  7798. }
  7799. st_synchronize();
  7800. mmu_print_saved = true;
  7801. hotend_temp_bckp = degTargetHotend(active_extruder);
  7802. if (move_axes) {
  7803. z_position_bckp = current_position[Z_AXIS];
  7804. x_position_bckp = current_position[X_AXIS];
  7805. y_position_bckp = current_position[Y_AXIS];
  7806. //lift z
  7807. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7808. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7809. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7810. st_synchronize();
  7811. //Move XY to side
  7812. current_position[X_AXIS] = X_PAUSE_POS;
  7813. current_position[Y_AXIS] = Y_PAUSE_POS;
  7814. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7815. st_synchronize();
  7816. }
  7817. if (turn_off_nozzle) {
  7818. //set nozzle target temperature to 0
  7819. setAllTargetHotends(0);
  7820. printf_P(PSTR("MMU not responding\n"));
  7821. lcd_show_fullscreen_message_and_wait_P(_i("MMU needs user attention. Please press knob to resume nozzle target temperature."));
  7822. setTargetHotend(hotend_temp_bckp, active_extruder);
  7823. while ((degTargetHotend(active_extruder) - degHotend(active_extruder)) > 5) {
  7824. delay_keep_alive(1000);
  7825. lcd_wait_for_heater();
  7826. }
  7827. }
  7828. }
  7829. lcd_display_message_fullscreen_P(_i("Check MMU. Fix the issue and then press button on MMU unit."));
  7830. }
  7831. else if (mmu_print_saved) {
  7832. printf_P(PSTR("MMU start responding\n"));
  7833. lcd_clear();
  7834. lcd_display_message_fullscreen_P(_i("MMU OK. Resuming..."));
  7835. if (move_axes) {
  7836. current_position[X_AXIS] = x_position_bckp;
  7837. current_position[Y_AXIS] = y_position_bckp;
  7838. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7839. st_synchronize();
  7840. current_position[Z_AXIS] = z_position_bckp;
  7841. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7842. st_synchronize();
  7843. }
  7844. else {
  7845. delay_keep_alive(1000); //delay just for showing MMU OK message for a while in case that there are no xyz movements
  7846. }
  7847. }
  7848. }
  7849. if (lcd_update_was_enabled) lcd_update_enable(true);
  7850. }
  7851. void mmu_load_to_nozzle() {
  7852. st_synchronize();
  7853. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7854. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  7855. current_position[E_AXIS] += 7.2f;
  7856. float feedrate = 562;
  7857. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7858. st_synchronize();
  7859. current_position[E_AXIS] += 14.4f;
  7860. feedrate = 871;
  7861. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7862. st_synchronize();
  7863. current_position[E_AXIS] += 36.0f;
  7864. feedrate = 1393;
  7865. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7866. st_synchronize();
  7867. current_position[E_AXIS] += 14.4f;
  7868. feedrate = 871;
  7869. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7870. st_synchronize();
  7871. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  7872. }
  7873. void mmu_switch_extruder(uint8_t extruder) {
  7874. }
  7875. void M600_check_state() {
  7876. //Wait for user to check the state
  7877. lcd_change_fil_state = 0;
  7878. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  7879. lcd_change_fil_state = 0;
  7880. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7881. lcd_alright();
  7882. KEEPALIVE_STATE(IN_HANDLER);
  7883. switch(lcd_change_fil_state){
  7884. // Filament failed to load so load it again
  7885. case 2:
  7886. if (mmu_enabled)
  7887. mmu_M600_load_filament(false); //nonautomatic load; change to "wrong filament loaded" option?
  7888. else
  7889. M600_load_filament_movements();
  7890. break;
  7891. // Filament loaded properly but color is not clear
  7892. case 3:
  7893. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7894. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7895. lcd_loading_color();
  7896. break;
  7897. // Everything good
  7898. default:
  7899. lcd_change_success();
  7900. lcd_update_enable(true);
  7901. break;
  7902. }
  7903. }
  7904. }
  7905. void M600_wait_for_user() {
  7906. //Beep, manage nozzle heater and wait for user to start unload filament
  7907. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7908. int counterBeep = 0;
  7909. unsigned long waiting_start_time = millis();
  7910. uint8_t wait_for_user_state = 0;
  7911. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7912. bool bFirst=true;
  7913. while (!(wait_for_user_state == 0 && lcd_clicked())){
  7914. manage_heater();
  7915. manage_inactivity(true);
  7916. #if BEEPER > 0
  7917. if (counterBeep == 500) {
  7918. counterBeep = 0;
  7919. }
  7920. SET_OUTPUT(BEEPER);
  7921. if (counterBeep == 0) {
  7922. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  7923. {
  7924. bFirst=false;
  7925. WRITE(BEEPER, HIGH);
  7926. }
  7927. }
  7928. if (counterBeep == 20) {
  7929. WRITE(BEEPER, LOW);
  7930. }
  7931. counterBeep++;
  7932. #endif //BEEPER > 0
  7933. switch (wait_for_user_state) {
  7934. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  7935. delay_keep_alive(4);
  7936. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  7937. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  7938. wait_for_user_state = 1;
  7939. setTargetHotend(0, 0);
  7940. setTargetHotend(0, 1);
  7941. setTargetHotend(0, 2);
  7942. st_synchronize();
  7943. disable_e0();
  7944. disable_e1();
  7945. disable_e2();
  7946. }
  7947. break;
  7948. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  7949. delay_keep_alive(4);
  7950. if (lcd_clicked()) {
  7951. setTargetHotend(HotendTempBckp, active_extruder);
  7952. lcd_wait_for_heater();
  7953. wait_for_user_state = 2;
  7954. }
  7955. break;
  7956. case 2: //waiting for nozzle to reach target temperature
  7957. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  7958. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  7959. waiting_start_time = millis();
  7960. wait_for_user_state = 0;
  7961. }
  7962. else {
  7963. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  7964. lcd_set_cursor(1, 4);
  7965. lcd_print(ftostr3(degHotend(active_extruder)));
  7966. }
  7967. break;
  7968. }
  7969. }
  7970. WRITE(BEEPER, LOW);
  7971. }
  7972. void mmu_M600_load_filament(bool automatic)
  7973. {
  7974. //load filament for mmu v2
  7975. bool response = false;
  7976. bool yes = false;
  7977. if (!automatic) {
  7978. yes = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Do you want to switch extruder?"), false);
  7979. if(yes) tmp_extruder = choose_extruder_menu();
  7980. else tmp_extruder = snmm_extruder;
  7981. }
  7982. else {
  7983. tmp_extruder = (tmp_extruder+1)%5;
  7984. }
  7985. lcd_update_enable(false);
  7986. lcd_clear();
  7987. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  7988. lcd_print(" ");
  7989. lcd_print(tmp_extruder + 1);
  7990. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7991. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  7992. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  7993. manage_response(false, true);
  7994. snmm_extruder = tmp_extruder; //filament change is finished
  7995. mmu_load_to_nozzle();
  7996. st_synchronize();
  7997. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  7999. }
  8000. void M600_load_filament_movements()
  8001. {
  8002. #ifdef SNMM
  8003. display_loading();
  8004. do
  8005. {
  8006. current_position[E_AXIS] += 0.002;
  8007. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8008. delay_keep_alive(2);
  8009. }
  8010. while (!lcd_clicked());
  8011. st_synchronize();
  8012. current_position[E_AXIS] += bowden_length[snmm_extruder];
  8013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8014. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8016. current_position[E_AXIS] += 40;
  8017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8018. current_position[E_AXIS] += 10;
  8019. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8020. #else
  8021. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  8023. #endif
  8024. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  8025. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  8026. lcd_loading_filament();
  8027. }
  8028. void M600_load_filament() {
  8029. //load filament for single material and SNMM
  8030. lcd_wait_interact();
  8031. //load_filament_time = millis();
  8032. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8033. #ifdef FILAMENT_SENSOR
  8034. fsensor_autoload_check_start();
  8035. #endif //FILAMENT_SENSOR
  8036. while(!lcd_clicked())
  8037. {
  8038. manage_heater();
  8039. manage_inactivity(true);
  8040. #ifdef FILAMENT_SENSOR
  8041. if (fsensor_check_autoload())
  8042. {
  8043. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8044. tone(BEEPER, 1000);
  8045. delay_keep_alive(50);
  8046. noTone(BEEPER);
  8047. break;
  8048. }
  8049. #endif //FILAMENT_SENSOR
  8050. }
  8051. #ifdef FILAMENT_SENSOR
  8052. fsensor_autoload_check_stop();
  8053. #endif //FILAMENT_SENSOR
  8054. KEEPALIVE_STATE(IN_HANDLER);
  8055. #ifdef FILAMENT_SENSOR
  8056. fsensor_oq_meassure_start(70);
  8057. #endif //FILAMENT_SENSOR
  8058. M600_load_filament_movements();
  8059. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8060. tone(BEEPER, 500);
  8061. delay_keep_alive(50);
  8062. noTone(BEEPER);
  8063. #ifdef FILAMENT_SENSOR
  8064. fsensor_oq_meassure_stop();
  8065. if (!fsensor_oq_result())
  8066. {
  8067. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8068. lcd_update_enable(true);
  8069. lcd_update(2);
  8070. if (disable)
  8071. fsensor_disable();
  8072. }
  8073. #endif //FILAMENT_SENSOR
  8074. }
  8075. #define FIL_LOAD_LENGTH 60