Marlin_main.cpp 349 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. //filament types
  118. #define FILAMENT_DEFAULT 0
  119. #define FILAMENT_FLEX 1
  120. #define FILAMENT_PVA 2
  121. #define FILAMENT_UNDEFINED 255
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. unsigned long PingTime = _millis();
  133. unsigned long NcTime;
  134. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  135. //used for PINDA temp calibration and pause print
  136. #define DEFAULT_RETRACTION 1
  137. #define DEFAULT_RETRACTION_MM 4 //MM
  138. float default_retraction = DEFAULT_RETRACTION;
  139. float homing_feedrate[] = HOMING_FEEDRATE;
  140. // Currently only the extruder axis may be switched to a relative mode.
  141. // Other axes are always absolute or relative based on the common relative_mode flag.
  142. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  143. int feedmultiply=100; //100->1 200->2
  144. int extrudemultiply=100; //100->1 200->2
  145. int extruder_multiply[EXTRUDERS] = {100
  146. #if EXTRUDERS > 1
  147. , 100
  148. #if EXTRUDERS > 2
  149. , 100
  150. #endif
  151. #endif
  152. };
  153. int bowden_length[4] = {385, 385, 385, 385};
  154. bool is_usb_printing = false;
  155. bool homing_flag = false;
  156. bool temp_cal_active = false;
  157. unsigned long kicktime = _millis()+100000;
  158. unsigned int usb_printing_counter;
  159. int8_t lcd_change_fil_state = 0;
  160. unsigned long pause_time = 0;
  161. unsigned long start_pause_print = _millis();
  162. unsigned long t_fan_rising_edge = _millis();
  163. LongTimer safetyTimer;
  164. static LongTimer crashDetTimer;
  165. //unsigned long load_filament_time;
  166. bool mesh_bed_leveling_flag = false;
  167. bool mesh_bed_run_from_menu = false;
  168. bool prusa_sd_card_upload = false;
  169. unsigned int status_number = 0;
  170. unsigned long total_filament_used;
  171. unsigned int heating_status;
  172. unsigned int heating_status_counter;
  173. bool loading_flag = false;
  174. char snmm_filaments_used = 0;
  175. bool fan_state[2];
  176. int fan_edge_counter[2];
  177. int fan_speed[2];
  178. char dir_names[3][9];
  179. bool sortAlpha = false;
  180. float extruder_multiplier[EXTRUDERS] = {1.0
  181. #if EXTRUDERS > 1
  182. , 1.0
  183. #if EXTRUDERS > 2
  184. , 1.0
  185. #endif
  186. #endif
  187. };
  188. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  189. //shortcuts for more readable code
  190. #define _x current_position[X_AXIS]
  191. #define _y current_position[Y_AXIS]
  192. #define _z current_position[Z_AXIS]
  193. #define _e current_position[E_AXIS]
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. // Extruder offset
  198. #if EXTRUDERS > 1
  199. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  200. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  201. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  202. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  203. #endif
  204. };
  205. #endif
  206. uint8_t active_extruder = 0;
  207. int fanSpeed=0;
  208. #ifdef FWRETRACT
  209. bool retracted[EXTRUDERS]={false
  210. #if EXTRUDERS > 1
  211. , false
  212. #if EXTRUDERS > 2
  213. , false
  214. #endif
  215. #endif
  216. };
  217. bool retracted_swap[EXTRUDERS]={false
  218. #if EXTRUDERS > 1
  219. , false
  220. #if EXTRUDERS > 2
  221. , false
  222. #endif
  223. #endif
  224. };
  225. float retract_length_swap = RETRACT_LENGTH_SWAP;
  226. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  227. #endif
  228. #ifdef PS_DEFAULT_OFF
  229. bool powersupply = false;
  230. #else
  231. bool powersupply = true;
  232. #endif
  233. bool cancel_heatup = false ;
  234. int8_t busy_state = NOT_BUSY;
  235. static long prev_busy_signal_ms = -1;
  236. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  237. const char errormagic[] PROGMEM = "Error:";
  238. const char echomagic[] PROGMEM = "echo:";
  239. bool no_response = false;
  240. uint8_t important_status;
  241. uint8_t saved_filament_type;
  242. // save/restore printing in case that mmu was not responding
  243. bool mmu_print_saved = false;
  244. // storing estimated time to end of print counted by slicer
  245. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  246. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  247. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. //===========================================================================
  250. //=============================Private Variables=============================
  251. //===========================================================================
  252. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  253. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  254. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  255. // For tracing an arc
  256. static float offset[3] = {0.0, 0.0, 0.0};
  257. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  258. // Determines Absolute or Relative Coordinates.
  259. // Also there is bool axis_relative_modes[] per axis flag.
  260. static bool relative_mode = false;
  261. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  262. //static float tt = 0;
  263. //static float bt = 0;
  264. //Inactivity shutdown variables
  265. static unsigned long previous_millis_cmd = 0;
  266. unsigned long max_inactive_time = 0;
  267. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  268. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  269. unsigned long starttime=0;
  270. unsigned long stoptime=0;
  271. unsigned long _usb_timer = 0;
  272. bool extruder_under_pressure = true;
  273. bool Stopped=false;
  274. #if NUM_SERVOS > 0
  275. Servo servos[NUM_SERVOS];
  276. #endif
  277. bool target_direction;
  278. //Insert variables if CHDK is defined
  279. #ifdef CHDK
  280. unsigned long chdkHigh = 0;
  281. boolean chdkActive = false;
  282. #endif
  283. //! @name RAM save/restore printing
  284. //! @{
  285. bool saved_printing = false; //!< Print is paused and saved in RAM
  286. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  287. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  288. static float saved_pos[4] = { 0, 0, 0, 0 };
  289. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  290. static float saved_feedrate2 = 0;
  291. static uint8_t saved_active_extruder = 0;
  292. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  293. static bool saved_extruder_under_pressure = false;
  294. static bool saved_extruder_relative_mode = false;
  295. static int saved_fanSpeed = 0; //!< Print fan speed
  296. //! @}
  297. static int saved_feedmultiply_mm = 100;
  298. //===========================================================================
  299. //=============================Routines======================================
  300. //===========================================================================
  301. static void get_arc_coordinates();
  302. static bool setTargetedHotend(int code, uint8_t &extruder);
  303. static void print_time_remaining_init();
  304. static void wait_for_heater(long codenum, uint8_t extruder);
  305. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  306. static void temp_compensation_start();
  307. static void temp_compensation_apply();
  308. uint16_t gcode_in_progress = 0;
  309. uint16_t mcode_in_progress = 0;
  310. void serial_echopair_P(const char *s_P, float v)
  311. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  312. void serial_echopair_P(const char *s_P, double v)
  313. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  314. void serial_echopair_P(const char *s_P, unsigned long v)
  315. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  316. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  317. {
  318. #if 0
  319. char ch=pgm_read_byte(str);
  320. while(ch)
  321. {
  322. MYSERIAL.write(ch);
  323. ch=pgm_read_byte(++str);
  324. }
  325. #else
  326. // hmm, same size as the above version, the compiler did a good job optimizing the above
  327. while( uint8_t ch = pgm_read_byte(str) ){
  328. MYSERIAL.write((char)ch);
  329. ++str;
  330. }
  331. #endif
  332. }
  333. #ifdef SDSUPPORT
  334. #include "SdFatUtil.h"
  335. int freeMemory() { return SdFatUtil::FreeRam(); }
  336. #else
  337. extern "C" {
  338. extern unsigned int __bss_end;
  339. extern unsigned int __heap_start;
  340. extern void *__brkval;
  341. int freeMemory() {
  342. int free_memory;
  343. if ((int)__brkval == 0)
  344. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  345. else
  346. free_memory = ((int)&free_memory) - ((int)__brkval);
  347. return free_memory;
  348. }
  349. }
  350. #endif //!SDSUPPORT
  351. void setup_killpin()
  352. {
  353. #if defined(KILL_PIN) && KILL_PIN > -1
  354. SET_INPUT(KILL_PIN);
  355. WRITE(KILL_PIN,HIGH);
  356. #endif
  357. }
  358. // Set home pin
  359. void setup_homepin(void)
  360. {
  361. #if defined(HOME_PIN) && HOME_PIN > -1
  362. SET_INPUT(HOME_PIN);
  363. WRITE(HOME_PIN,HIGH);
  364. #endif
  365. }
  366. void setup_photpin()
  367. {
  368. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  369. SET_OUTPUT(PHOTOGRAPH_PIN);
  370. WRITE(PHOTOGRAPH_PIN, LOW);
  371. #endif
  372. }
  373. void setup_powerhold()
  374. {
  375. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  376. SET_OUTPUT(SUICIDE_PIN);
  377. WRITE(SUICIDE_PIN, HIGH);
  378. #endif
  379. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  380. SET_OUTPUT(PS_ON_PIN);
  381. #if defined(PS_DEFAULT_OFF)
  382. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  383. #else
  384. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  385. #endif
  386. #endif
  387. }
  388. void suicide()
  389. {
  390. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  391. SET_OUTPUT(SUICIDE_PIN);
  392. WRITE(SUICIDE_PIN, LOW);
  393. #endif
  394. }
  395. void servo_init()
  396. {
  397. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  398. servos[0].attach(SERVO0_PIN);
  399. #endif
  400. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  401. servos[1].attach(SERVO1_PIN);
  402. #endif
  403. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  404. servos[2].attach(SERVO2_PIN);
  405. #endif
  406. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  407. servos[3].attach(SERVO3_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 5)
  410. #error "TODO: enter initalisation code for more servos"
  411. #endif
  412. }
  413. bool fans_check_enabled = true;
  414. #ifdef TMC2130
  415. void crashdet_stop_and_save_print()
  416. {
  417. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  418. }
  419. void crashdet_restore_print_and_continue()
  420. {
  421. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  422. // babystep_apply();
  423. }
  424. void crashdet_stop_and_save_print2()
  425. {
  426. cli();
  427. planner_abort_hard(); //abort printing
  428. cmdqueue_reset(); //empty cmdqueue
  429. card.sdprinting = false;
  430. card.closefile();
  431. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  432. st_reset_timer();
  433. sei();
  434. }
  435. void crashdet_detected(uint8_t mask)
  436. {
  437. st_synchronize();
  438. static uint8_t crashDet_counter = 0;
  439. bool automatic_recovery_after_crash = true;
  440. if (crashDet_counter++ == 0) {
  441. crashDetTimer.start();
  442. }
  443. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  444. crashDetTimer.stop();
  445. crashDet_counter = 0;
  446. }
  447. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  448. automatic_recovery_after_crash = false;
  449. crashDetTimer.stop();
  450. crashDet_counter = 0;
  451. }
  452. else {
  453. crashDetTimer.start();
  454. }
  455. lcd_update_enable(true);
  456. lcd_clear();
  457. lcd_update(2);
  458. if (mask & X_AXIS_MASK)
  459. {
  460. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  461. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  462. }
  463. if (mask & Y_AXIS_MASK)
  464. {
  465. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  466. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  467. }
  468. lcd_update_enable(true);
  469. lcd_update(2);
  470. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  471. gcode_G28(true, true, false); //home X and Y
  472. st_synchronize();
  473. if (automatic_recovery_after_crash) {
  474. enquecommand_P(PSTR("CRASH_RECOVER"));
  475. }else{
  476. setTargetHotend(0, active_extruder);
  477. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  478. lcd_update_enable(true);
  479. if (yesno)
  480. {
  481. enquecommand_P(PSTR("CRASH_RECOVER"));
  482. }
  483. else
  484. {
  485. enquecommand_P(PSTR("CRASH_CANCEL"));
  486. }
  487. }
  488. }
  489. void crashdet_recover()
  490. {
  491. crashdet_restore_print_and_continue();
  492. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  493. }
  494. void crashdet_cancel()
  495. {
  496. saved_printing = false;
  497. tmc2130_sg_stop_on_crash = true;
  498. if (saved_printing_type == PRINTING_TYPE_SD) {
  499. lcd_print_stop();
  500. }else if(saved_printing_type == PRINTING_TYPE_USB){
  501. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  502. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  503. }
  504. }
  505. #endif //TMC2130
  506. void failstats_reset_print()
  507. {
  508. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  512. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  513. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  514. }
  515. #ifdef MESH_BED_LEVELING
  516. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  517. #endif
  518. // Factory reset function
  519. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  520. // Level input parameter sets depth of reset
  521. int er_progress = 0;
  522. static void factory_reset(char level)
  523. {
  524. lcd_clear();
  525. switch (level) {
  526. // Level 0: Language reset
  527. case 0:
  528. Sound_MakeCustom(100,0,false);
  529. lang_reset();
  530. break;
  531. //Level 1: Reset statistics
  532. case 1:
  533. Sound_MakeCustom(100,0,false);
  534. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  535. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  536. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  537. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  538. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  539. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  540. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  541. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  542. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  543. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  546. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  547. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  548. lcd_menu_statistics();
  549. break;
  550. // Level 2: Prepare for shipping
  551. case 2:
  552. //lcd_puts_P(PSTR("Factory RESET"));
  553. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  554. // Force language selection at the next boot up.
  555. lang_reset();
  556. // Force the "Follow calibration flow" message at the next boot up.
  557. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  558. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  559. farm_no = 0;
  560. farm_mode = false;
  561. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  562. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  563. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  564. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  565. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  566. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  567. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  568. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  571. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  572. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  573. #ifdef FILAMENT_SENSOR
  574. fsensor_enable();
  575. fsensor_autoload_set(true);
  576. #endif //FILAMENT_SENSOR
  577. Sound_MakeCustom(100,0,false);
  578. //_delay_ms(2000);
  579. break;
  580. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  581. case 3:
  582. lcd_puts_P(PSTR("Factory RESET"));
  583. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  584. Sound_MakeCustom(100,0,false);
  585. er_progress = 0;
  586. lcd_puts_at_P(3, 3, PSTR(" "));
  587. lcd_set_cursor(3, 3);
  588. lcd_print(er_progress);
  589. // Erase EEPROM
  590. for (int i = 0; i < 4096; i++) {
  591. eeprom_update_byte((uint8_t*)i, 0xFF);
  592. if (i % 41 == 0) {
  593. er_progress++;
  594. lcd_puts_at_P(3, 3, PSTR(" "));
  595. lcd_set_cursor(3, 3);
  596. lcd_print(er_progress);
  597. lcd_puts_P(PSTR("%"));
  598. }
  599. }
  600. break;
  601. case 4:
  602. bowden_menu();
  603. break;
  604. default:
  605. break;
  606. }
  607. }
  608. extern "C" {
  609. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  610. }
  611. int uart_putchar(char c, FILE *)
  612. {
  613. MYSERIAL.write(c);
  614. return 0;
  615. }
  616. void lcd_splash()
  617. {
  618. lcd_clear(); // clears display and homes screen
  619. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  620. }
  621. void factory_reset()
  622. {
  623. KEEPALIVE_STATE(PAUSED_FOR_USER);
  624. if (!READ(BTN_ENC))
  625. {
  626. _delay_ms(1000);
  627. if (!READ(BTN_ENC))
  628. {
  629. lcd_clear();
  630. lcd_puts_P(PSTR("Factory RESET"));
  631. SET_OUTPUT(BEEPER);
  632. if(eSoundMode!=e_SOUND_MODE_SILENT)
  633. WRITE(BEEPER, HIGH);
  634. while (!READ(BTN_ENC));
  635. WRITE(BEEPER, LOW);
  636. _delay_ms(2000);
  637. char level = reset_menu();
  638. factory_reset(level);
  639. switch (level) {
  640. case 0: _delay_ms(0); break;
  641. case 1: _delay_ms(0); break;
  642. case 2: _delay_ms(0); break;
  643. case 3: _delay_ms(0); break;
  644. }
  645. }
  646. }
  647. KEEPALIVE_STATE(IN_HANDLER);
  648. }
  649. void show_fw_version_warnings() {
  650. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  651. switch (FW_DEV_VERSION) {
  652. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  653. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  654. case(FW_VERSION_DEVEL):
  655. case(FW_VERSION_DEBUG):
  656. lcd_update_enable(false);
  657. lcd_clear();
  658. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  659. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  660. #else
  661. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  662. #endif
  663. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  664. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  665. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  666. lcd_wait_for_click();
  667. break;
  668. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  669. }
  670. lcd_update_enable(true);
  671. }
  672. //! @brief try to check if firmware is on right type of printer
  673. static void check_if_fw_is_on_right_printer(){
  674. #ifdef FILAMENT_SENSOR
  675. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  676. #ifdef IR_SENSOR
  677. swi2c_init();
  678. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  679. if (pat9125_detected){
  680. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  681. #endif //IR_SENSOR
  682. #ifdef PAT9125
  683. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  684. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  685. if (ir_detected){
  686. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  687. #endif //PAT9125
  688. }
  689. #endif //FILAMENT_SENSOR
  690. }
  691. uint8_t check_printer_version()
  692. {
  693. uint8_t version_changed = 0;
  694. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  695. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  696. if (printer_type != PRINTER_TYPE) {
  697. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  698. else version_changed |= 0b10;
  699. }
  700. if (motherboard != MOTHERBOARD) {
  701. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  702. else version_changed |= 0b01;
  703. }
  704. return version_changed;
  705. }
  706. #ifdef BOOTAPP
  707. #include "bootapp.h" //bootloader support
  708. #endif //BOOTAPP
  709. #if (LANG_MODE != 0) //secondary language support
  710. #ifdef W25X20CL
  711. // language update from external flash
  712. #define LANGBOOT_BLOCKSIZE 0x1000u
  713. #define LANGBOOT_RAMBUFFER 0x0800
  714. void update_sec_lang_from_external_flash()
  715. {
  716. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  717. {
  718. uint8_t lang = boot_reserved >> 4;
  719. uint8_t state = boot_reserved & 0xf;
  720. lang_table_header_t header;
  721. uint32_t src_addr;
  722. if (lang_get_header(lang, &header, &src_addr))
  723. {
  724. lcd_puts_at_P(1,3,PSTR("Language update."));
  725. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  726. _delay(100);
  727. boot_reserved = (state + 1) | (lang << 4);
  728. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  729. {
  730. cli();
  731. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  732. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  733. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  734. if (state == 0)
  735. {
  736. //TODO - check header integrity
  737. }
  738. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  739. }
  740. else
  741. {
  742. //TODO - check sec lang data integrity
  743. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  744. }
  745. }
  746. }
  747. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  748. }
  749. #ifdef DEBUG_W25X20CL
  750. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  751. {
  752. lang_table_header_t header;
  753. uint8_t count = 0;
  754. uint32_t addr = 0x00000;
  755. while (1)
  756. {
  757. printf_P(_n("LANGTABLE%d:"), count);
  758. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  759. if (header.magic != LANG_MAGIC)
  760. {
  761. printf_P(_n("NG!\n"));
  762. break;
  763. }
  764. printf_P(_n("OK\n"));
  765. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  766. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  767. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  768. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  769. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  770. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  771. addr += header.size;
  772. codes[count] = header.code;
  773. count ++;
  774. }
  775. return count;
  776. }
  777. void list_sec_lang_from_external_flash()
  778. {
  779. uint16_t codes[8];
  780. uint8_t count = lang_xflash_enum_codes(codes);
  781. printf_P(_n("XFlash lang count = %hhd\n"), count);
  782. }
  783. #endif //DEBUG_W25X20CL
  784. #endif //W25X20CL
  785. #endif //(LANG_MODE != 0)
  786. static void w25x20cl_err_msg()
  787. {
  788. lcd_clear();
  789. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  790. }
  791. // "Setup" function is called by the Arduino framework on startup.
  792. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  793. // are initialized by the main() routine provided by the Arduino framework.
  794. void setup()
  795. {
  796. mmu_init();
  797. ultralcd_init();
  798. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  799. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  800. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  801. spi_init();
  802. lcd_splash();
  803. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  804. #ifdef W25X20CL
  805. bool w25x20cl_success = w25x20cl_init();
  806. if (w25x20cl_success)
  807. {
  808. optiboot_w25x20cl_enter();
  809. #if (LANG_MODE != 0) //secondary language support
  810. update_sec_lang_from_external_flash();
  811. #endif //(LANG_MODE != 0)
  812. }
  813. else
  814. {
  815. w25x20cl_err_msg();
  816. }
  817. #else
  818. const bool w25x20cl_success = true;
  819. #endif //W25X20CL
  820. setup_killpin();
  821. setup_powerhold();
  822. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  823. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  824. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  825. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  826. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  827. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  828. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  829. if (farm_mode)
  830. {
  831. no_response = true; //we need confirmation by recieving PRUSA thx
  832. important_status = 8;
  833. prusa_statistics(8);
  834. selectedSerialPort = 1;
  835. #ifdef TMC2130
  836. //increased extruder current (PFW363)
  837. tmc2130_current_h[E_AXIS] = 36;
  838. tmc2130_current_r[E_AXIS] = 36;
  839. #endif //TMC2130
  840. #ifdef FILAMENT_SENSOR
  841. //disabled filament autoload (PFW360)
  842. fsensor_autoload_set(false);
  843. #endif //FILAMENT_SENSOR
  844. // ~ FanCheck -> on
  845. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  846. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  847. }
  848. MYSERIAL.begin(BAUDRATE);
  849. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  850. #ifndef W25X20CL
  851. SERIAL_PROTOCOLLNPGM("start");
  852. #endif //W25X20CL
  853. stdout = uartout;
  854. SERIAL_ECHO_START;
  855. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  856. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  857. #ifdef DEBUG_SEC_LANG
  858. lang_table_header_t header;
  859. uint32_t src_addr = 0x00000;
  860. if (lang_get_header(1, &header, &src_addr))
  861. {
  862. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  863. #define LT_PRINT_TEST 2
  864. // flash usage
  865. // total p.test
  866. //0 252718 t+c text code
  867. //1 253142 424 170 254
  868. //2 253040 322 164 158
  869. //3 253248 530 135 395
  870. #if (LT_PRINT_TEST==1) //not optimized printf
  871. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  872. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  873. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  874. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  875. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  876. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  877. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  878. #elif (LT_PRINT_TEST==2) //optimized printf
  879. printf_P(
  880. _n(
  881. " _src_addr = 0x%08lx\n"
  882. " _lt_magic = 0x%08lx %S\n"
  883. " _lt_size = 0x%04x (%d)\n"
  884. " _lt_count = 0x%04x (%d)\n"
  885. " _lt_chsum = 0x%04x\n"
  886. " _lt_code = 0x%04x (%c%c)\n"
  887. " _lt_resv1 = 0x%08lx\n"
  888. ),
  889. src_addr,
  890. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  891. header.size, header.size,
  892. header.count, header.count,
  893. header.checksum,
  894. header.code, header.code >> 8, header.code & 0xff,
  895. header.signature
  896. );
  897. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  898. MYSERIAL.print(" _src_addr = 0x");
  899. MYSERIAL.println(src_addr, 16);
  900. MYSERIAL.print(" _lt_magic = 0x");
  901. MYSERIAL.print(header.magic, 16);
  902. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  903. MYSERIAL.print(" _lt_size = 0x");
  904. MYSERIAL.print(header.size, 16);
  905. MYSERIAL.print(" (");
  906. MYSERIAL.print(header.size, 10);
  907. MYSERIAL.println(")");
  908. MYSERIAL.print(" _lt_count = 0x");
  909. MYSERIAL.print(header.count, 16);
  910. MYSERIAL.print(" (");
  911. MYSERIAL.print(header.count, 10);
  912. MYSERIAL.println(")");
  913. MYSERIAL.print(" _lt_chsum = 0x");
  914. MYSERIAL.println(header.checksum, 16);
  915. MYSERIAL.print(" _lt_code = 0x");
  916. MYSERIAL.print(header.code, 16);
  917. MYSERIAL.print(" (");
  918. MYSERIAL.print((char)(header.code >> 8), 0);
  919. MYSERIAL.print((char)(header.code & 0xff), 0);
  920. MYSERIAL.println(")");
  921. MYSERIAL.print(" _lt_resv1 = 0x");
  922. MYSERIAL.println(header.signature, 16);
  923. #endif //(LT_PRINT_TEST==)
  924. #undef LT_PRINT_TEST
  925. #if 0
  926. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  927. for (uint16_t i = 0; i < 1024; i++)
  928. {
  929. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  930. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  931. if ((i % 16) == 15) putchar('\n');
  932. }
  933. #endif
  934. uint16_t sum = 0;
  935. for (uint16_t i = 0; i < header.size; i++)
  936. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  937. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  938. sum -= header.checksum; //subtract checksum
  939. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  940. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  941. if (sum == header.checksum)
  942. printf_P(_n("Checksum OK\n"), sum);
  943. else
  944. printf_P(_n("Checksum NG\n"), sum);
  945. }
  946. else
  947. printf_P(_n("lang_get_header failed!\n"));
  948. #if 0
  949. for (uint16_t i = 0; i < 1024*10; i++)
  950. {
  951. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  952. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  953. if ((i % 16) == 15) putchar('\n');
  954. }
  955. #endif
  956. #if 0
  957. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  958. for (int i = 0; i < 4096; ++i) {
  959. int b = eeprom_read_byte((unsigned char*)i);
  960. if (b != 255) {
  961. SERIAL_ECHO(i);
  962. SERIAL_ECHO(":");
  963. SERIAL_ECHO(b);
  964. SERIAL_ECHOLN("");
  965. }
  966. }
  967. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  968. #endif
  969. #endif //DEBUG_SEC_LANG
  970. // Check startup - does nothing if bootloader sets MCUSR to 0
  971. byte mcu = MCUSR;
  972. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  973. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  974. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  975. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  976. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  977. if (mcu & 1) puts_P(MSG_POWERUP);
  978. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  979. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  980. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  981. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  982. MCUSR = 0;
  983. //SERIAL_ECHORPGM(MSG_MARLIN);
  984. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  985. #ifdef STRING_VERSION_CONFIG_H
  986. #ifdef STRING_CONFIG_H_AUTHOR
  987. SERIAL_ECHO_START;
  988. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  989. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  990. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  991. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  992. SERIAL_ECHOPGM("Compiled: ");
  993. SERIAL_ECHOLNPGM(__DATE__);
  994. #endif
  995. #endif
  996. SERIAL_ECHO_START;
  997. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  998. SERIAL_ECHO(freeMemory());
  999. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1000. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1001. //lcd_update_enable(false); // why do we need this?? - andre
  1002. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1003. bool previous_settings_retrieved = false;
  1004. uint8_t hw_changed = check_printer_version();
  1005. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1006. previous_settings_retrieved = Config_RetrieveSettings();
  1007. }
  1008. else { //printer version was changed so use default settings
  1009. Config_ResetDefault();
  1010. }
  1011. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1012. tp_init(); // Initialize temperature loop
  1013. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1014. else
  1015. {
  1016. w25x20cl_err_msg();
  1017. printf_P(_n("W25X20CL not responding.\n"));
  1018. }
  1019. plan_init(); // Initialize planner;
  1020. factory_reset();
  1021. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1022. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1023. {
  1024. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1025. // where all the EEPROM entries are set to 0x0ff.
  1026. // Once a firmware boots up, it forces at least a language selection, which changes
  1027. // EEPROM_LANG to number lower than 0x0ff.
  1028. // 1) Set a high power mode.
  1029. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1030. #ifdef TMC2130
  1031. tmc2130_mode = TMC2130_MODE_NORMAL;
  1032. #endif //TMC2130
  1033. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1034. }
  1035. lcd_encoder_diff=0;
  1036. #ifdef TMC2130
  1037. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1038. if (silentMode == 0xff) silentMode = 0;
  1039. tmc2130_mode = TMC2130_MODE_NORMAL;
  1040. if (lcd_crash_detect_enabled() && !farm_mode)
  1041. {
  1042. lcd_crash_detect_enable();
  1043. puts_P(_N("CrashDetect ENABLED!"));
  1044. }
  1045. else
  1046. {
  1047. lcd_crash_detect_disable();
  1048. puts_P(_N("CrashDetect DISABLED"));
  1049. }
  1050. #ifdef TMC2130_LINEARITY_CORRECTION
  1051. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1052. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1053. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1054. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1055. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1056. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1057. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1058. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1059. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1060. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1061. #endif //TMC2130_LINEARITY_CORRECTION
  1062. #ifdef TMC2130_VARIABLE_RESOLUTION
  1063. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1064. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1065. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1066. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1067. #else //TMC2130_VARIABLE_RESOLUTION
  1068. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1069. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1070. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1071. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1072. #endif //TMC2130_VARIABLE_RESOLUTION
  1073. #endif //TMC2130
  1074. st_init(); // Initialize stepper, this enables interrupts!
  1075. #ifdef UVLO_SUPPORT
  1076. setup_uvlo_interrupt();
  1077. #endif //UVLO_SUPPORT
  1078. #ifdef TMC2130
  1079. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1080. update_mode_profile();
  1081. tmc2130_init();
  1082. #endif //TMC2130
  1083. #ifdef PSU_Delta
  1084. init_force_z(); // ! important for correct Z-axis initialization
  1085. #endif // PSU_Delta
  1086. setup_photpin();
  1087. servo_init();
  1088. // Reset the machine correction matrix.
  1089. // It does not make sense to load the correction matrix until the machine is homed.
  1090. world2machine_reset();
  1091. #ifdef FILAMENT_SENSOR
  1092. fsensor_init();
  1093. #endif //FILAMENT_SENSOR
  1094. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1095. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1096. #endif
  1097. setup_homepin();
  1098. #ifdef TMC2130
  1099. if (1) {
  1100. // try to run to zero phase before powering the Z motor.
  1101. // Move in negative direction
  1102. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1103. // Round the current micro-micro steps to micro steps.
  1104. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1105. // Until the phase counter is reset to zero.
  1106. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1107. _delay(2);
  1108. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1109. _delay(2);
  1110. }
  1111. }
  1112. #endif //TMC2130
  1113. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1114. enable_z();
  1115. #endif
  1116. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1117. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1118. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1119. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1120. if (farm_mode)
  1121. {
  1122. prusa_statistics(8);
  1123. }
  1124. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1125. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1126. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1127. // but this times out if a blocking dialog is shown in setup().
  1128. card.initsd();
  1129. #ifdef DEBUG_SD_SPEED_TEST
  1130. if (card.cardOK)
  1131. {
  1132. uint8_t* buff = (uint8_t*)block_buffer;
  1133. uint32_t block = 0;
  1134. uint32_t sumr = 0;
  1135. uint32_t sumw = 0;
  1136. for (int i = 0; i < 1024; i++)
  1137. {
  1138. uint32_t u = _micros();
  1139. bool res = card.card.readBlock(i, buff);
  1140. u = _micros() - u;
  1141. if (res)
  1142. {
  1143. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1144. sumr += u;
  1145. u = _micros();
  1146. res = card.card.writeBlock(i, buff);
  1147. u = _micros() - u;
  1148. if (res)
  1149. {
  1150. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1151. sumw += u;
  1152. }
  1153. else
  1154. {
  1155. printf_P(PSTR("writeBlock %4d error\n"), i);
  1156. break;
  1157. }
  1158. }
  1159. else
  1160. {
  1161. printf_P(PSTR("readBlock %4d error\n"), i);
  1162. break;
  1163. }
  1164. }
  1165. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1166. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1167. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1168. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1169. }
  1170. else
  1171. printf_P(PSTR("Card NG!\n"));
  1172. #endif //DEBUG_SD_SPEED_TEST
  1173. eeprom_init();
  1174. #ifdef SNMM
  1175. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1176. int _z = BOWDEN_LENGTH;
  1177. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1178. }
  1179. #endif
  1180. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1181. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1182. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1183. #if (LANG_MODE != 0) //secondary language support
  1184. #ifdef DEBUG_W25X20CL
  1185. W25X20CL_SPI_ENTER();
  1186. uint8_t uid[8]; // 64bit unique id
  1187. w25x20cl_rd_uid(uid);
  1188. puts_P(_n("W25X20CL UID="));
  1189. for (uint8_t i = 0; i < 8; i ++)
  1190. printf_P(PSTR("%02hhx"), uid[i]);
  1191. putchar('\n');
  1192. list_sec_lang_from_external_flash();
  1193. #endif //DEBUG_W25X20CL
  1194. // lang_reset();
  1195. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1196. lcd_language();
  1197. #ifdef DEBUG_SEC_LANG
  1198. uint16_t sec_lang_code = lang_get_code(1);
  1199. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1200. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1201. lang_print_sec_lang(uartout);
  1202. #endif //DEBUG_SEC_LANG
  1203. #endif //(LANG_MODE != 0)
  1204. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1205. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1206. temp_cal_active = false;
  1207. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1208. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1209. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1210. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1211. int16_t z_shift = 0;
  1212. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1213. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1214. temp_cal_active = false;
  1215. }
  1216. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1217. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1218. }
  1219. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1220. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1221. }
  1222. //mbl_mode_init();
  1223. mbl_settings_init();
  1224. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1225. if (SilentModeMenu_MMU == 255) {
  1226. SilentModeMenu_MMU = 1;
  1227. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1228. }
  1229. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1230. setup_fan_interrupt();
  1231. #endif //DEBUG_DISABLE_FANCHECK
  1232. #ifdef PAT9125
  1233. fsensor_setup_interrupt();
  1234. #endif //PAT9125
  1235. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1236. #ifndef DEBUG_DISABLE_STARTMSGS
  1237. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1238. if (!farm_mode) {
  1239. check_if_fw_is_on_right_printer();
  1240. show_fw_version_warnings();
  1241. }
  1242. switch (hw_changed) {
  1243. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1244. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1245. case(0b01):
  1246. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1247. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1248. break;
  1249. case(0b10):
  1250. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1251. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1252. break;
  1253. case(0b11):
  1254. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1255. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1256. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1257. break;
  1258. default: break; //no change, show no message
  1259. }
  1260. if (!previous_settings_retrieved) {
  1261. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1262. Config_StoreSettings();
  1263. }
  1264. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1265. lcd_wizard(WizState::Run);
  1266. }
  1267. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1268. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1269. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1270. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1271. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1272. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1273. // Show the message.
  1274. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1275. }
  1276. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1277. // Show the message.
  1278. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1279. lcd_update_enable(true);
  1280. }
  1281. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1282. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1283. lcd_update_enable(true);
  1284. }
  1285. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1286. // Show the message.
  1287. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1288. }
  1289. }
  1290. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1291. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1292. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1293. update_current_firmware_version_to_eeprom();
  1294. lcd_selftest();
  1295. }
  1296. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1297. KEEPALIVE_STATE(IN_PROCESS);
  1298. #endif //DEBUG_DISABLE_STARTMSGS
  1299. lcd_update_enable(true);
  1300. lcd_clear();
  1301. lcd_update(2);
  1302. // Store the currently running firmware into an eeprom,
  1303. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1304. update_current_firmware_version_to_eeprom();
  1305. #ifdef TMC2130
  1306. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1307. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1308. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1309. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1310. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1311. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1312. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1313. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1314. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1315. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1316. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1317. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1318. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1319. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1320. #endif //TMC2130
  1321. #ifdef UVLO_SUPPORT
  1322. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1323. /*
  1324. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1325. else {
  1326. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1327. lcd_update_enable(true);
  1328. lcd_update(2);
  1329. lcd_setstatuspgm(_T(WELCOME_MSG));
  1330. }
  1331. */
  1332. manage_heater(); // Update temperatures
  1333. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1334. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1335. #endif
  1336. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1337. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1338. puts_P(_N("Automatic recovery!"));
  1339. #endif
  1340. recover_print(1);
  1341. }
  1342. else{
  1343. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1344. puts_P(_N("Normal recovery!"));
  1345. #endif
  1346. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1347. else {
  1348. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1349. lcd_update_enable(true);
  1350. lcd_update(2);
  1351. lcd_setstatuspgm(_T(WELCOME_MSG));
  1352. }
  1353. }
  1354. }
  1355. #endif //UVLO_SUPPORT
  1356. fCheckModeInit();
  1357. fSetMmuMode(mmu_enabled);
  1358. KEEPALIVE_STATE(NOT_BUSY);
  1359. #ifdef WATCHDOG
  1360. wdt_enable(WDTO_4S);
  1361. #endif //WATCHDOG
  1362. }
  1363. void trace();
  1364. #define CHUNK_SIZE 64 // bytes
  1365. #define SAFETY_MARGIN 1
  1366. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1367. int chunkHead = 0;
  1368. void serial_read_stream() {
  1369. setAllTargetHotends(0);
  1370. setTargetBed(0);
  1371. lcd_clear();
  1372. lcd_puts_P(PSTR(" Upload in progress"));
  1373. // first wait for how many bytes we will receive
  1374. uint32_t bytesToReceive;
  1375. // receive the four bytes
  1376. char bytesToReceiveBuffer[4];
  1377. for (int i=0; i<4; i++) {
  1378. int data;
  1379. while ((data = MYSERIAL.read()) == -1) {};
  1380. bytesToReceiveBuffer[i] = data;
  1381. }
  1382. // make it a uint32
  1383. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1384. // we're ready, notify the sender
  1385. MYSERIAL.write('+');
  1386. // lock in the routine
  1387. uint32_t receivedBytes = 0;
  1388. while (prusa_sd_card_upload) {
  1389. int i;
  1390. for (i=0; i<CHUNK_SIZE; i++) {
  1391. int data;
  1392. // check if we're not done
  1393. if (receivedBytes == bytesToReceive) {
  1394. break;
  1395. }
  1396. // read the next byte
  1397. while ((data = MYSERIAL.read()) == -1) {};
  1398. receivedBytes++;
  1399. // save it to the chunk
  1400. chunk[i] = data;
  1401. }
  1402. // write the chunk to SD
  1403. card.write_command_no_newline(&chunk[0]);
  1404. // notify the sender we're ready for more data
  1405. MYSERIAL.write('+');
  1406. // for safety
  1407. manage_heater();
  1408. // check if we're done
  1409. if(receivedBytes == bytesToReceive) {
  1410. trace(); // beep
  1411. card.closefile();
  1412. prusa_sd_card_upload = false;
  1413. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1414. }
  1415. }
  1416. }
  1417. /**
  1418. * Output a "busy" message at regular intervals
  1419. * while the machine is not accepting commands.
  1420. */
  1421. void host_keepalive() {
  1422. #ifndef HOST_KEEPALIVE_FEATURE
  1423. return;
  1424. #endif //HOST_KEEPALIVE_FEATURE
  1425. if (farm_mode) return;
  1426. long ms = _millis();
  1427. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1428. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1429. switch (busy_state) {
  1430. case IN_HANDLER:
  1431. case IN_PROCESS:
  1432. SERIAL_ECHO_START;
  1433. SERIAL_ECHOLNPGM("busy: processing");
  1434. break;
  1435. case PAUSED_FOR_USER:
  1436. SERIAL_ECHO_START;
  1437. SERIAL_ECHOLNPGM("busy: paused for user");
  1438. break;
  1439. case PAUSED_FOR_INPUT:
  1440. SERIAL_ECHO_START;
  1441. SERIAL_ECHOLNPGM("busy: paused for input");
  1442. break;
  1443. default:
  1444. break;
  1445. }
  1446. }
  1447. prev_busy_signal_ms = ms;
  1448. }
  1449. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1450. // Before loop(), the setup() function is called by the main() routine.
  1451. void loop()
  1452. {
  1453. KEEPALIVE_STATE(NOT_BUSY);
  1454. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1455. {
  1456. is_usb_printing = true;
  1457. usb_printing_counter--;
  1458. _usb_timer = _millis();
  1459. }
  1460. if (usb_printing_counter == 0)
  1461. {
  1462. is_usb_printing = false;
  1463. }
  1464. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1465. {
  1466. is_usb_printing = true;
  1467. }
  1468. #ifdef FANCHECK
  1469. if (fan_check_error && isPrintPaused)
  1470. {
  1471. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1472. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1473. }
  1474. #endif
  1475. if (prusa_sd_card_upload)
  1476. {
  1477. //we read byte-by byte
  1478. serial_read_stream();
  1479. }
  1480. else
  1481. {
  1482. get_command();
  1483. #ifdef SDSUPPORT
  1484. card.checkautostart(false);
  1485. #endif
  1486. if(buflen)
  1487. {
  1488. cmdbuffer_front_already_processed = false;
  1489. #ifdef SDSUPPORT
  1490. if(card.saving)
  1491. {
  1492. // Saving a G-code file onto an SD-card is in progress.
  1493. // Saving starts with M28, saving until M29 is seen.
  1494. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1495. card.write_command(CMDBUFFER_CURRENT_STRING);
  1496. if(card.logging)
  1497. process_commands();
  1498. else
  1499. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1500. } else {
  1501. card.closefile();
  1502. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1503. }
  1504. } else {
  1505. process_commands();
  1506. }
  1507. #else
  1508. process_commands();
  1509. #endif //SDSUPPORT
  1510. if (! cmdbuffer_front_already_processed && buflen)
  1511. {
  1512. // ptr points to the start of the block currently being processed.
  1513. // The first character in the block is the block type.
  1514. char *ptr = cmdbuffer + bufindr;
  1515. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1516. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1517. union {
  1518. struct {
  1519. char lo;
  1520. char hi;
  1521. } lohi;
  1522. uint16_t value;
  1523. } sdlen;
  1524. sdlen.value = 0;
  1525. {
  1526. // This block locks the interrupts globally for 3.25 us,
  1527. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1528. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1529. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1530. cli();
  1531. // Reset the command to something, which will be ignored by the power panic routine,
  1532. // so this buffer length will not be counted twice.
  1533. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1534. // Extract the current buffer length.
  1535. sdlen.lohi.lo = *ptr ++;
  1536. sdlen.lohi.hi = *ptr;
  1537. // and pass it to the planner queue.
  1538. planner_add_sd_length(sdlen.value);
  1539. sei();
  1540. }
  1541. }
  1542. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1543. cli();
  1544. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1545. // and one for each command to previous block in the planner queue.
  1546. planner_add_sd_length(1);
  1547. sei();
  1548. }
  1549. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1550. // this block's SD card length will not be counted twice as its command type has been replaced
  1551. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1552. cmdqueue_pop_front();
  1553. }
  1554. host_keepalive();
  1555. }
  1556. }
  1557. //check heater every n milliseconds
  1558. manage_heater();
  1559. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1560. checkHitEndstops();
  1561. lcd_update(0);
  1562. #ifdef TMC2130
  1563. tmc2130_check_overtemp();
  1564. if (tmc2130_sg_crash)
  1565. {
  1566. uint8_t crash = tmc2130_sg_crash;
  1567. tmc2130_sg_crash = 0;
  1568. // crashdet_stop_and_save_print();
  1569. switch (crash)
  1570. {
  1571. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1572. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1573. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1574. }
  1575. }
  1576. #endif //TMC2130
  1577. mmu_loop();
  1578. }
  1579. #define DEFINE_PGM_READ_ANY(type, reader) \
  1580. static inline type pgm_read_any(const type *p) \
  1581. { return pgm_read_##reader##_near(p); }
  1582. DEFINE_PGM_READ_ANY(float, float);
  1583. DEFINE_PGM_READ_ANY(signed char, byte);
  1584. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1585. static const PROGMEM type array##_P[3] = \
  1586. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1587. static inline type array(int axis) \
  1588. { return pgm_read_any(&array##_P[axis]); } \
  1589. type array##_ext(int axis) \
  1590. { return pgm_read_any(&array##_P[axis]); }
  1591. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1592. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1593. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1594. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1595. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1596. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1597. static void axis_is_at_home(int axis) {
  1598. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1599. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1600. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1601. }
  1602. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1603. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1604. //! @return original feedmultiply
  1605. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1606. saved_feedrate = feedrate;
  1607. int l_feedmultiply = feedmultiply;
  1608. feedmultiply = 100;
  1609. previous_millis_cmd = _millis();
  1610. enable_endstops(enable_endstops_now);
  1611. return l_feedmultiply;
  1612. }
  1613. //! @param original_feedmultiply feedmultiply to restore
  1614. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1615. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1616. enable_endstops(false);
  1617. #endif
  1618. feedrate = saved_feedrate;
  1619. feedmultiply = original_feedmultiply;
  1620. previous_millis_cmd = _millis();
  1621. }
  1622. #ifdef ENABLE_AUTO_BED_LEVELING
  1623. #ifdef AUTO_BED_LEVELING_GRID
  1624. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1625. {
  1626. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1627. planeNormal.debug("planeNormal");
  1628. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1629. //bedLevel.debug("bedLevel");
  1630. //plan_bed_level_matrix.debug("bed level before");
  1631. //vector_3 uncorrected_position = plan_get_position_mm();
  1632. //uncorrected_position.debug("position before");
  1633. vector_3 corrected_position = plan_get_position();
  1634. // corrected_position.debug("position after");
  1635. current_position[X_AXIS] = corrected_position.x;
  1636. current_position[Y_AXIS] = corrected_position.y;
  1637. current_position[Z_AXIS] = corrected_position.z;
  1638. // put the bed at 0 so we don't go below it.
  1639. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1640. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1641. }
  1642. #else // not AUTO_BED_LEVELING_GRID
  1643. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1644. plan_bed_level_matrix.set_to_identity();
  1645. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1646. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1647. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1648. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1649. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1650. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1651. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1652. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1653. vector_3 corrected_position = plan_get_position();
  1654. current_position[X_AXIS] = corrected_position.x;
  1655. current_position[Y_AXIS] = corrected_position.y;
  1656. current_position[Z_AXIS] = corrected_position.z;
  1657. // put the bed at 0 so we don't go below it.
  1658. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1659. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1660. }
  1661. #endif // AUTO_BED_LEVELING_GRID
  1662. static void run_z_probe() {
  1663. plan_bed_level_matrix.set_to_identity();
  1664. feedrate = homing_feedrate[Z_AXIS];
  1665. // move down until you find the bed
  1666. float zPosition = -10;
  1667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1668. st_synchronize();
  1669. // we have to let the planner know where we are right now as it is not where we said to go.
  1670. zPosition = st_get_position_mm(Z_AXIS);
  1671. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1672. // move up the retract distance
  1673. zPosition += home_retract_mm(Z_AXIS);
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1675. st_synchronize();
  1676. // move back down slowly to find bed
  1677. feedrate = homing_feedrate[Z_AXIS]/4;
  1678. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1680. st_synchronize();
  1681. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1682. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1683. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1684. }
  1685. static void do_blocking_move_to(float x, float y, float z) {
  1686. float oldFeedRate = feedrate;
  1687. feedrate = homing_feedrate[Z_AXIS];
  1688. current_position[Z_AXIS] = z;
  1689. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1690. st_synchronize();
  1691. feedrate = XY_TRAVEL_SPEED;
  1692. current_position[X_AXIS] = x;
  1693. current_position[Y_AXIS] = y;
  1694. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1695. st_synchronize();
  1696. feedrate = oldFeedRate;
  1697. }
  1698. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1699. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1700. }
  1701. /// Probe bed height at position (x,y), returns the measured z value
  1702. static float probe_pt(float x, float y, float z_before) {
  1703. // move to right place
  1704. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1705. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1706. run_z_probe();
  1707. float measured_z = current_position[Z_AXIS];
  1708. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1709. SERIAL_PROTOCOLPGM(" x: ");
  1710. SERIAL_PROTOCOL(x);
  1711. SERIAL_PROTOCOLPGM(" y: ");
  1712. SERIAL_PROTOCOL(y);
  1713. SERIAL_PROTOCOLPGM(" z: ");
  1714. SERIAL_PROTOCOL(measured_z);
  1715. SERIAL_PROTOCOLPGM("\n");
  1716. return measured_z;
  1717. }
  1718. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1719. #ifdef LIN_ADVANCE
  1720. /**
  1721. * M900: Set and/or Get advance K factor and WH/D ratio
  1722. *
  1723. * K<factor> Set advance K factor
  1724. * R<ratio> Set ratio directly (overrides WH/D)
  1725. * W<width> H<height> D<diam> Set ratio from WH/D
  1726. */
  1727. inline void gcode_M900() {
  1728. st_synchronize();
  1729. const float newK = code_seen('K') ? code_value_float() : -1;
  1730. if (newK >= 0) extruder_advance_k = newK;
  1731. float newR = code_seen('R') ? code_value_float() : -1;
  1732. if (newR < 0) {
  1733. const float newD = code_seen('D') ? code_value_float() : -1,
  1734. newW = code_seen('W') ? code_value_float() : -1,
  1735. newH = code_seen('H') ? code_value_float() : -1;
  1736. if (newD >= 0 && newW >= 0 && newH >= 0)
  1737. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1738. }
  1739. if (newR >= 0) advance_ed_ratio = newR;
  1740. SERIAL_ECHO_START;
  1741. SERIAL_ECHOPGM("Advance K=");
  1742. SERIAL_ECHOLN(extruder_advance_k);
  1743. SERIAL_ECHOPGM(" E/D=");
  1744. const float ratio = advance_ed_ratio;
  1745. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1746. }
  1747. #endif // LIN_ADVANCE
  1748. bool check_commands() {
  1749. bool end_command_found = false;
  1750. while (buflen)
  1751. {
  1752. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1753. if (!cmdbuffer_front_already_processed)
  1754. cmdqueue_pop_front();
  1755. cmdbuffer_front_already_processed = false;
  1756. }
  1757. return end_command_found;
  1758. }
  1759. // raise_z_above: slowly raise Z to the requested height
  1760. //
  1761. // contrarily to a simple move, this function will carefully plan a move
  1762. // when the current Z position is unknown. In such cases, stallguard is
  1763. // enabled and will prevent prolonged pushing against the Z tops
  1764. void raise_z_above(float target, bool plan)
  1765. {
  1766. if (current_position[Z_AXIS] >= target)
  1767. return;
  1768. // Z needs raising
  1769. current_position[Z_AXIS] = target;
  1770. if (axis_known_position[Z_AXIS])
  1771. {
  1772. // current position is known, it's safe to raise Z
  1773. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  1774. return;
  1775. }
  1776. // ensure Z is powered in normal mode to overcome initial load
  1777. enable_z();
  1778. st_synchronize();
  1779. // rely on crashguard to limit damage
  1780. bool z_endstop_enabled = enable_z_endstop(true);
  1781. #ifdef TMC2130
  1782. tmc2130_home_enter(Z_AXIS_MASK);
  1783. #endif //TMC2130
  1784. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  1785. st_synchronize();
  1786. #ifdef TMC2130
  1787. if (endstop_z_hit_on_purpose())
  1788. {
  1789. // not necessarily exact, but will avoid further vertical moves
  1790. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1791. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS],
  1792. current_position[Z_AXIS], current_position[E_AXIS]);
  1793. }
  1794. tmc2130_home_exit();
  1795. #endif //TMC2130
  1796. enable_z_endstop(z_endstop_enabled);
  1797. }
  1798. #ifdef TMC2130
  1799. bool calibrate_z_auto()
  1800. {
  1801. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1802. lcd_clear();
  1803. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1804. bool endstops_enabled = enable_endstops(true);
  1805. int axis_up_dir = -home_dir(Z_AXIS);
  1806. tmc2130_home_enter(Z_AXIS_MASK);
  1807. current_position[Z_AXIS] = 0;
  1808. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1809. set_destination_to_current();
  1810. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1811. feedrate = homing_feedrate[Z_AXIS];
  1812. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1813. st_synchronize();
  1814. // current_position[axis] = 0;
  1815. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. tmc2130_home_exit();
  1817. enable_endstops(false);
  1818. current_position[Z_AXIS] = 0;
  1819. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1820. set_destination_to_current();
  1821. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1822. feedrate = homing_feedrate[Z_AXIS] / 2;
  1823. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1824. st_synchronize();
  1825. enable_endstops(endstops_enabled);
  1826. if (PRINTER_TYPE == PRINTER_MK3) {
  1827. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1828. }
  1829. else {
  1830. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1831. }
  1832. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1833. return true;
  1834. }
  1835. #endif //TMC2130
  1836. #ifdef TMC2130
  1837. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1838. #else
  1839. void homeaxis(int axis, uint8_t cnt)
  1840. #endif //TMC2130
  1841. {
  1842. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1843. #define HOMEAXIS_DO(LETTER) \
  1844. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1845. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1846. {
  1847. int axis_home_dir = home_dir(axis);
  1848. feedrate = homing_feedrate[axis];
  1849. #ifdef TMC2130
  1850. tmc2130_home_enter(X_AXIS_MASK << axis);
  1851. #endif //TMC2130
  1852. // Move away a bit, so that the print head does not touch the end position,
  1853. // and the following movement to endstop has a chance to achieve the required velocity
  1854. // for the stall guard to work.
  1855. current_position[axis] = 0;
  1856. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1857. set_destination_to_current();
  1858. // destination[axis] = 11.f;
  1859. destination[axis] = -3.f * axis_home_dir;
  1860. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1861. st_synchronize();
  1862. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1863. endstops_hit_on_purpose();
  1864. enable_endstops(false);
  1865. current_position[axis] = 0;
  1866. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1867. destination[axis] = 1. * axis_home_dir;
  1868. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1869. st_synchronize();
  1870. // Now continue to move up to the left end stop with the collision detection enabled.
  1871. enable_endstops(true);
  1872. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1873. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1874. st_synchronize();
  1875. for (uint8_t i = 0; i < cnt; i++)
  1876. {
  1877. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1878. endstops_hit_on_purpose();
  1879. enable_endstops(false);
  1880. current_position[axis] = 0;
  1881. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1882. destination[axis] = -10.f * axis_home_dir;
  1883. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1884. st_synchronize();
  1885. endstops_hit_on_purpose();
  1886. // Now move left up to the collision, this time with a repeatable velocity.
  1887. enable_endstops(true);
  1888. destination[axis] = 11.f * axis_home_dir;
  1889. #ifdef TMC2130
  1890. feedrate = homing_feedrate[axis];
  1891. #else //TMC2130
  1892. feedrate = homing_feedrate[axis] / 2;
  1893. #endif //TMC2130
  1894. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1895. st_synchronize();
  1896. #ifdef TMC2130
  1897. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1898. if (pstep) pstep[i] = mscnt >> 4;
  1899. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1900. #endif //TMC2130
  1901. }
  1902. endstops_hit_on_purpose();
  1903. enable_endstops(false);
  1904. #ifdef TMC2130
  1905. uint8_t orig = tmc2130_home_origin[axis];
  1906. uint8_t back = tmc2130_home_bsteps[axis];
  1907. if (tmc2130_home_enabled && (orig <= 63))
  1908. {
  1909. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1910. if (back > 0)
  1911. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1912. }
  1913. else
  1914. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1915. tmc2130_home_exit();
  1916. #endif //TMC2130
  1917. axis_is_at_home(axis);
  1918. axis_known_position[axis] = true;
  1919. // Move from minimum
  1920. #ifdef TMC2130
  1921. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1922. #else //TMC2130
  1923. float dist = - axis_home_dir * 0.01f * 64;
  1924. #endif //TMC2130
  1925. current_position[axis] -= dist;
  1926. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1927. current_position[axis] += dist;
  1928. destination[axis] = current_position[axis];
  1929. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1930. st_synchronize();
  1931. feedrate = 0.0;
  1932. }
  1933. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1934. {
  1935. #ifdef TMC2130
  1936. FORCE_HIGH_POWER_START;
  1937. #endif
  1938. int axis_home_dir = home_dir(axis);
  1939. current_position[axis] = 0;
  1940. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1941. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1942. feedrate = homing_feedrate[axis];
  1943. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1944. st_synchronize();
  1945. #ifdef TMC2130
  1946. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1947. FORCE_HIGH_POWER_END;
  1948. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1949. return;
  1950. }
  1951. #endif //TMC2130
  1952. current_position[axis] = 0;
  1953. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1954. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1955. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1956. st_synchronize();
  1957. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1958. feedrate = homing_feedrate[axis]/2 ;
  1959. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1960. st_synchronize();
  1961. #ifdef TMC2130
  1962. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1963. FORCE_HIGH_POWER_END;
  1964. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1965. return;
  1966. }
  1967. #endif //TMC2130
  1968. axis_is_at_home(axis);
  1969. destination[axis] = current_position[axis];
  1970. feedrate = 0.0;
  1971. endstops_hit_on_purpose();
  1972. axis_known_position[axis] = true;
  1973. #ifdef TMC2130
  1974. FORCE_HIGH_POWER_END;
  1975. #endif
  1976. }
  1977. enable_endstops(endstops_enabled);
  1978. }
  1979. /**/
  1980. void home_xy()
  1981. {
  1982. set_destination_to_current();
  1983. homeaxis(X_AXIS);
  1984. homeaxis(Y_AXIS);
  1985. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1986. endstops_hit_on_purpose();
  1987. }
  1988. void refresh_cmd_timeout(void)
  1989. {
  1990. previous_millis_cmd = _millis();
  1991. }
  1992. #ifdef FWRETRACT
  1993. void retract(bool retracting, bool swapretract = false) {
  1994. if(retracting && !retracted[active_extruder]) {
  1995. destination[X_AXIS]=current_position[X_AXIS];
  1996. destination[Y_AXIS]=current_position[Y_AXIS];
  1997. destination[Z_AXIS]=current_position[Z_AXIS];
  1998. destination[E_AXIS]=current_position[E_AXIS];
  1999. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2000. plan_set_e_position(current_position[E_AXIS]);
  2001. float oldFeedrate = feedrate;
  2002. feedrate=cs.retract_feedrate*60;
  2003. retracted[active_extruder]=true;
  2004. prepare_move();
  2005. current_position[Z_AXIS]-=cs.retract_zlift;
  2006. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2007. prepare_move();
  2008. feedrate = oldFeedrate;
  2009. } else if(!retracting && retracted[active_extruder]) {
  2010. destination[X_AXIS]=current_position[X_AXIS];
  2011. destination[Y_AXIS]=current_position[Y_AXIS];
  2012. destination[Z_AXIS]=current_position[Z_AXIS];
  2013. destination[E_AXIS]=current_position[E_AXIS];
  2014. current_position[Z_AXIS]+=cs.retract_zlift;
  2015. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2016. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2017. plan_set_e_position(current_position[E_AXIS]);
  2018. float oldFeedrate = feedrate;
  2019. feedrate=cs.retract_recover_feedrate*60;
  2020. retracted[active_extruder]=false;
  2021. prepare_move();
  2022. feedrate = oldFeedrate;
  2023. }
  2024. } //retract
  2025. #endif //FWRETRACT
  2026. void trace() {
  2027. Sound_MakeCustom(25,440,true);
  2028. }
  2029. /*
  2030. void ramming() {
  2031. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2032. if (current_temperature[0] < 230) {
  2033. //PLA
  2034. max_feedrate[E_AXIS] = 50;
  2035. //current_position[E_AXIS] -= 8;
  2036. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2037. //current_position[E_AXIS] += 8;
  2038. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2039. current_position[E_AXIS] += 5.4;
  2040. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2041. current_position[E_AXIS] += 3.2;
  2042. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2043. current_position[E_AXIS] += 3;
  2044. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2045. st_synchronize();
  2046. max_feedrate[E_AXIS] = 80;
  2047. current_position[E_AXIS] -= 82;
  2048. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2049. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2050. current_position[E_AXIS] -= 20;
  2051. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2052. current_position[E_AXIS] += 5;
  2053. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2054. current_position[E_AXIS] += 5;
  2055. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2056. current_position[E_AXIS] -= 10;
  2057. st_synchronize();
  2058. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2059. current_position[E_AXIS] += 10;
  2060. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2061. current_position[E_AXIS] -= 10;
  2062. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2063. current_position[E_AXIS] += 10;
  2064. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2065. current_position[E_AXIS] -= 10;
  2066. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2067. st_synchronize();
  2068. }
  2069. else {
  2070. //ABS
  2071. max_feedrate[E_AXIS] = 50;
  2072. //current_position[E_AXIS] -= 8;
  2073. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2074. //current_position[E_AXIS] += 8;
  2075. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2076. current_position[E_AXIS] += 3.1;
  2077. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2078. current_position[E_AXIS] += 3.1;
  2079. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2080. current_position[E_AXIS] += 4;
  2081. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2082. st_synchronize();
  2083. //current_position[X_AXIS] += 23; //delay
  2084. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2085. //current_position[X_AXIS] -= 23; //delay
  2086. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2087. _delay(4700);
  2088. max_feedrate[E_AXIS] = 80;
  2089. current_position[E_AXIS] -= 92;
  2090. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2091. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2092. current_position[E_AXIS] -= 5;
  2093. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2094. current_position[E_AXIS] += 5;
  2095. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2096. current_position[E_AXIS] -= 5;
  2097. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2098. st_synchronize();
  2099. current_position[E_AXIS] += 5;
  2100. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2101. current_position[E_AXIS] -= 5;
  2102. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2103. current_position[E_AXIS] += 5;
  2104. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2105. current_position[E_AXIS] -= 5;
  2106. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2107. st_synchronize();
  2108. }
  2109. }
  2110. */
  2111. #ifdef TMC2130
  2112. void force_high_power_mode(bool start_high_power_section) {
  2113. #ifdef PSU_Delta
  2114. if (start_high_power_section == true) enable_force_z();
  2115. #endif //PSU_Delta
  2116. uint8_t silent;
  2117. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2118. if (silent == 1) {
  2119. //we are in silent mode, set to normal mode to enable crash detection
  2120. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2121. st_synchronize();
  2122. cli();
  2123. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2124. update_mode_profile();
  2125. tmc2130_init();
  2126. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2127. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2128. st_reset_timer();
  2129. sei();
  2130. }
  2131. }
  2132. #endif //TMC2130
  2133. #ifdef TMC2130
  2134. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2135. #else
  2136. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2137. #endif //TMC2130
  2138. {
  2139. st_synchronize();
  2140. #if 0
  2141. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2142. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2143. #endif
  2144. // Flag for the display update routine and to disable the print cancelation during homing.
  2145. homing_flag = true;
  2146. // Which axes should be homed?
  2147. bool home_x = home_x_axis;
  2148. bool home_y = home_y_axis;
  2149. bool home_z = home_z_axis;
  2150. // Either all X,Y,Z codes are present, or none of them.
  2151. bool home_all_axes = home_x == home_y && home_x == home_z;
  2152. if (home_all_axes)
  2153. // No X/Y/Z code provided means to home all axes.
  2154. home_x = home_y = home_z = true;
  2155. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2156. if (home_all_axes) {
  2157. raise_z_above(MESH_HOME_Z_SEARCH);
  2158. st_synchronize();
  2159. }
  2160. #ifdef ENABLE_AUTO_BED_LEVELING
  2161. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2162. #endif //ENABLE_AUTO_BED_LEVELING
  2163. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2164. // the planner will not perform any adjustments in the XY plane.
  2165. // Wait for the motors to stop and update the current position with the absolute values.
  2166. world2machine_revert_to_uncorrected();
  2167. // For mesh bed leveling deactivate the matrix temporarily.
  2168. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2169. // in a single axis only.
  2170. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2171. #ifdef MESH_BED_LEVELING
  2172. uint8_t mbl_was_active = mbl.active;
  2173. mbl.active = 0;
  2174. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2175. #endif
  2176. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2177. // consumed during the first movements following this statement.
  2178. if (home_z)
  2179. babystep_undo();
  2180. saved_feedrate = feedrate;
  2181. int l_feedmultiply = feedmultiply;
  2182. feedmultiply = 100;
  2183. previous_millis_cmd = _millis();
  2184. enable_endstops(true);
  2185. memcpy(destination, current_position, sizeof(destination));
  2186. feedrate = 0.0;
  2187. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2188. if(home_z)
  2189. homeaxis(Z_AXIS);
  2190. #endif
  2191. #ifdef QUICK_HOME
  2192. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2193. if(home_x && home_y) //first diagonal move
  2194. {
  2195. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2196. int x_axis_home_dir = home_dir(X_AXIS);
  2197. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2198. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2199. feedrate = homing_feedrate[X_AXIS];
  2200. if(homing_feedrate[Y_AXIS]<feedrate)
  2201. feedrate = homing_feedrate[Y_AXIS];
  2202. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2203. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2204. } else {
  2205. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2206. }
  2207. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2208. st_synchronize();
  2209. axis_is_at_home(X_AXIS);
  2210. axis_is_at_home(Y_AXIS);
  2211. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2212. destination[X_AXIS] = current_position[X_AXIS];
  2213. destination[Y_AXIS] = current_position[Y_AXIS];
  2214. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2215. feedrate = 0.0;
  2216. st_synchronize();
  2217. endstops_hit_on_purpose();
  2218. current_position[X_AXIS] = destination[X_AXIS];
  2219. current_position[Y_AXIS] = destination[Y_AXIS];
  2220. current_position[Z_AXIS] = destination[Z_AXIS];
  2221. }
  2222. #endif /* QUICK_HOME */
  2223. #ifdef TMC2130
  2224. if(home_x)
  2225. {
  2226. if (!calib)
  2227. homeaxis(X_AXIS);
  2228. else
  2229. tmc2130_home_calibrate(X_AXIS);
  2230. }
  2231. if(home_y)
  2232. {
  2233. if (!calib)
  2234. homeaxis(Y_AXIS);
  2235. else
  2236. tmc2130_home_calibrate(Y_AXIS);
  2237. }
  2238. #else //TMC2130
  2239. if(home_x) homeaxis(X_AXIS);
  2240. if(home_y) homeaxis(Y_AXIS);
  2241. #endif //TMC2130
  2242. if(home_x_axis && home_x_value != 0)
  2243. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2244. if(home_y_axis && home_y_value != 0)
  2245. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2246. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2247. #ifndef Z_SAFE_HOMING
  2248. if(home_z) {
  2249. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2250. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2251. st_synchronize();
  2252. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2253. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2254. raise_z_above(MESH_HOME_Z_SEARCH);
  2255. st_synchronize();
  2256. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2257. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2258. // 1st mesh bed leveling measurement point, corrected.
  2259. world2machine_initialize();
  2260. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2261. world2machine_reset();
  2262. if (destination[Y_AXIS] < Y_MIN_POS)
  2263. destination[Y_AXIS] = Y_MIN_POS;
  2264. feedrate = homing_feedrate[X_AXIS] / 20;
  2265. enable_endstops(false);
  2266. #ifdef DEBUG_BUILD
  2267. SERIAL_ECHOLNPGM("plan_set_position()");
  2268. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2269. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2270. #endif
  2271. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2272. #ifdef DEBUG_BUILD
  2273. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2274. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2275. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2276. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2277. #endif
  2278. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2279. st_synchronize();
  2280. current_position[X_AXIS] = destination[X_AXIS];
  2281. current_position[Y_AXIS] = destination[Y_AXIS];
  2282. enable_endstops(true);
  2283. endstops_hit_on_purpose();
  2284. homeaxis(Z_AXIS);
  2285. #else // MESH_BED_LEVELING
  2286. homeaxis(Z_AXIS);
  2287. #endif // MESH_BED_LEVELING
  2288. }
  2289. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2290. if(home_all_axes) {
  2291. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2292. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2293. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2294. feedrate = XY_TRAVEL_SPEED/60;
  2295. current_position[Z_AXIS] = 0;
  2296. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2297. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2298. st_synchronize();
  2299. current_position[X_AXIS] = destination[X_AXIS];
  2300. current_position[Y_AXIS] = destination[Y_AXIS];
  2301. homeaxis(Z_AXIS);
  2302. }
  2303. // Let's see if X and Y are homed and probe is inside bed area.
  2304. if(home_z) {
  2305. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2306. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2307. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2308. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2309. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2310. current_position[Z_AXIS] = 0;
  2311. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2312. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2313. feedrate = max_feedrate[Z_AXIS];
  2314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2315. st_synchronize();
  2316. homeaxis(Z_AXIS);
  2317. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2318. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2319. SERIAL_ECHO_START;
  2320. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2321. } else {
  2322. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2323. SERIAL_ECHO_START;
  2324. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2325. }
  2326. }
  2327. #endif // Z_SAFE_HOMING
  2328. #endif // Z_HOME_DIR < 0
  2329. if(home_z_axis && home_z_value != 0)
  2330. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2331. #ifdef ENABLE_AUTO_BED_LEVELING
  2332. if(home_z)
  2333. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2334. #endif
  2335. // Set the planner and stepper routine positions.
  2336. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2337. // contains the machine coordinates.
  2338. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2339. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2340. enable_endstops(false);
  2341. #endif
  2342. feedrate = saved_feedrate;
  2343. feedmultiply = l_feedmultiply;
  2344. previous_millis_cmd = _millis();
  2345. endstops_hit_on_purpose();
  2346. #ifndef MESH_BED_LEVELING
  2347. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2348. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2349. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2350. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2351. lcd_adjust_z();
  2352. #endif
  2353. // Load the machine correction matrix
  2354. world2machine_initialize();
  2355. // and correct the current_position XY axes to match the transformed coordinate system.
  2356. world2machine_update_current();
  2357. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2358. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2359. {
  2360. if (! home_z && mbl_was_active) {
  2361. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2362. mbl.active = true;
  2363. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2364. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2365. }
  2366. }
  2367. else
  2368. {
  2369. st_synchronize();
  2370. homing_flag = false;
  2371. }
  2372. #endif
  2373. if (farm_mode) { prusa_statistics(20); };
  2374. homing_flag = false;
  2375. #if 0
  2376. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2377. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2378. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2379. #endif
  2380. }
  2381. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2382. {
  2383. #ifdef TMC2130
  2384. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2385. #else
  2386. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2387. #endif //TMC2130
  2388. }
  2389. void adjust_bed_reset()
  2390. {
  2391. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2392. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2393. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2394. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2395. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2396. }
  2397. //! @brief Calibrate XYZ
  2398. //! @param onlyZ if true, calibrate only Z axis
  2399. //! @param verbosity_level
  2400. //! @retval true Succeeded
  2401. //! @retval false Failed
  2402. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2403. {
  2404. bool final_result = false;
  2405. #ifdef TMC2130
  2406. FORCE_HIGH_POWER_START;
  2407. #endif // TMC2130
  2408. // Only Z calibration?
  2409. if (!onlyZ)
  2410. {
  2411. setTargetBed(0);
  2412. setAllTargetHotends(0);
  2413. adjust_bed_reset(); //reset bed level correction
  2414. }
  2415. // Disable the default update procedure of the display. We will do a modal dialog.
  2416. lcd_update_enable(false);
  2417. // Let the planner use the uncorrected coordinates.
  2418. mbl.reset();
  2419. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2420. // the planner will not perform any adjustments in the XY plane.
  2421. // Wait for the motors to stop and update the current position with the absolute values.
  2422. world2machine_revert_to_uncorrected();
  2423. // Reset the baby step value applied without moving the axes.
  2424. babystep_reset();
  2425. // Mark all axes as in a need for homing.
  2426. memset(axis_known_position, 0, sizeof(axis_known_position));
  2427. // Home in the XY plane.
  2428. //set_destination_to_current();
  2429. int l_feedmultiply = setup_for_endstop_move();
  2430. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2431. home_xy();
  2432. enable_endstops(false);
  2433. current_position[X_AXIS] += 5;
  2434. current_position[Y_AXIS] += 5;
  2435. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2436. st_synchronize();
  2437. // Let the user move the Z axes up to the end stoppers.
  2438. #ifdef TMC2130
  2439. if (calibrate_z_auto())
  2440. {
  2441. #else //TMC2130
  2442. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2443. {
  2444. #endif //TMC2130
  2445. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2446. if(onlyZ){
  2447. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2448. lcd_set_cursor(0, 3);
  2449. lcd_print(1);
  2450. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2451. }else{
  2452. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2453. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2454. lcd_set_cursor(0, 2);
  2455. lcd_print(1);
  2456. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2457. }
  2458. refresh_cmd_timeout();
  2459. #ifndef STEEL_SHEET
  2460. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2461. {
  2462. lcd_wait_for_cool_down();
  2463. }
  2464. #endif //STEEL_SHEET
  2465. if(!onlyZ)
  2466. {
  2467. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2468. #ifdef STEEL_SHEET
  2469. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2470. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2471. #endif //STEEL_SHEET
  2472. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2473. KEEPALIVE_STATE(IN_HANDLER);
  2474. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2475. lcd_set_cursor(0, 2);
  2476. lcd_print(1);
  2477. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2478. }
  2479. bool endstops_enabled = enable_endstops(false);
  2480. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2481. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2482. st_synchronize();
  2483. // Move the print head close to the bed.
  2484. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2485. enable_endstops(true);
  2486. #ifdef TMC2130
  2487. tmc2130_home_enter(Z_AXIS_MASK);
  2488. #endif //TMC2130
  2489. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2490. st_synchronize();
  2491. #ifdef TMC2130
  2492. tmc2130_home_exit();
  2493. #endif //TMC2130
  2494. enable_endstops(endstops_enabled);
  2495. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2496. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2497. {
  2498. if (onlyZ)
  2499. {
  2500. clean_up_after_endstop_move(l_feedmultiply);
  2501. // Z only calibration.
  2502. // Load the machine correction matrix
  2503. world2machine_initialize();
  2504. // and correct the current_position to match the transformed coordinate system.
  2505. world2machine_update_current();
  2506. //FIXME
  2507. bool result = sample_mesh_and_store_reference();
  2508. if (result)
  2509. {
  2510. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2511. // Shipped, the nozzle height has been set already. The user can start printing now.
  2512. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2513. final_result = true;
  2514. // babystep_apply();
  2515. }
  2516. }
  2517. else
  2518. {
  2519. // Reset the baby step value and the baby step applied flag.
  2520. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2521. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2522. // Complete XYZ calibration.
  2523. uint8_t point_too_far_mask = 0;
  2524. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2525. clean_up_after_endstop_move(l_feedmultiply);
  2526. // Print head up.
  2527. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2528. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2529. st_synchronize();
  2530. //#ifndef NEW_XYZCAL
  2531. if (result >= 0)
  2532. {
  2533. #ifdef HEATBED_V2
  2534. sample_z();
  2535. #else //HEATBED_V2
  2536. point_too_far_mask = 0;
  2537. // Second half: The fine adjustment.
  2538. // Let the planner use the uncorrected coordinates.
  2539. mbl.reset();
  2540. world2machine_reset();
  2541. // Home in the XY plane.
  2542. int l_feedmultiply = setup_for_endstop_move();
  2543. home_xy();
  2544. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2545. clean_up_after_endstop_move(l_feedmultiply);
  2546. // Print head up.
  2547. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2548. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2549. st_synchronize();
  2550. // if (result >= 0) babystep_apply();
  2551. #endif //HEATBED_V2
  2552. }
  2553. //#endif //NEW_XYZCAL
  2554. lcd_update_enable(true);
  2555. lcd_update(2);
  2556. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2557. if (result >= 0)
  2558. {
  2559. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2560. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2561. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2562. final_result = true;
  2563. }
  2564. }
  2565. #ifdef TMC2130
  2566. tmc2130_home_exit();
  2567. #endif
  2568. }
  2569. else
  2570. {
  2571. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2572. final_result = false;
  2573. }
  2574. }
  2575. else
  2576. {
  2577. // Timeouted.
  2578. }
  2579. lcd_update_enable(true);
  2580. #ifdef TMC2130
  2581. FORCE_HIGH_POWER_END;
  2582. #endif // TMC2130
  2583. return final_result;
  2584. }
  2585. void gcode_M114()
  2586. {
  2587. SERIAL_PROTOCOLPGM("X:");
  2588. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2589. SERIAL_PROTOCOLPGM(" Y:");
  2590. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2591. SERIAL_PROTOCOLPGM(" Z:");
  2592. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2593. SERIAL_PROTOCOLPGM(" E:");
  2594. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2595. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2596. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2597. SERIAL_PROTOCOLPGM(" Y:");
  2598. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2599. SERIAL_PROTOCOLPGM(" Z:");
  2600. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2601. SERIAL_PROTOCOLPGM(" E:");
  2602. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2603. SERIAL_PROTOCOLLN("");
  2604. }
  2605. //! extracted code to compute z_shift for M600 in case of filament change operation
  2606. //! requested from fsensors.
  2607. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2608. //! unlike the previous implementation, which was adding 25mm even when the head was
  2609. //! printing at e.g. 24mm height.
  2610. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2611. //! the printout.
  2612. //! This function is templated to enable fast change of computation data type.
  2613. //! @return new z_shift value
  2614. template<typename T>
  2615. static T gcode_M600_filament_change_z_shift()
  2616. {
  2617. #ifdef FILAMENTCHANGE_ZADD
  2618. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2619. // avoid floating point arithmetics when not necessary - results in shorter code
  2620. T ztmp = T( current_position[Z_AXIS] );
  2621. T z_shift = 0;
  2622. if(ztmp < T(25)){
  2623. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2624. }
  2625. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2626. #else
  2627. return T(0);
  2628. #endif
  2629. }
  2630. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2631. {
  2632. st_synchronize();
  2633. float lastpos[4];
  2634. if (farm_mode)
  2635. {
  2636. prusa_statistics(22);
  2637. }
  2638. //First backup current position and settings
  2639. int feedmultiplyBckp = feedmultiply;
  2640. float HotendTempBckp = degTargetHotend(active_extruder);
  2641. int fanSpeedBckp = fanSpeed;
  2642. lastpos[X_AXIS] = current_position[X_AXIS];
  2643. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2644. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2645. lastpos[E_AXIS] = current_position[E_AXIS];
  2646. //Retract E
  2647. current_position[E_AXIS] += e_shift;
  2648. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2649. st_synchronize();
  2650. //Lift Z
  2651. current_position[Z_AXIS] += z_shift;
  2652. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2653. st_synchronize();
  2654. //Move XY to side
  2655. current_position[X_AXIS] = x_position;
  2656. current_position[Y_AXIS] = y_position;
  2657. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2658. st_synchronize();
  2659. //Beep, manage nozzle heater and wait for user to start unload filament
  2660. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2661. lcd_change_fil_state = 0;
  2662. // Unload filament
  2663. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2664. else unload_filament(); //unload filament for single material (used also in M702)
  2665. //finish moves
  2666. st_synchronize();
  2667. if (!mmu_enabled)
  2668. {
  2669. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2670. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2671. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2672. if (lcd_change_fil_state == 0)
  2673. {
  2674. lcd_clear();
  2675. lcd_set_cursor(0, 2);
  2676. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2677. current_position[X_AXIS] -= 100;
  2678. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2679. st_synchronize();
  2680. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2681. }
  2682. }
  2683. if (mmu_enabled)
  2684. {
  2685. if (!automatic) {
  2686. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2687. mmu_M600_wait_and_beep();
  2688. if (saved_printing) {
  2689. lcd_clear();
  2690. lcd_set_cursor(0, 2);
  2691. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2692. mmu_command(MmuCmd::R0);
  2693. manage_response(false, false);
  2694. }
  2695. }
  2696. mmu_M600_load_filament(automatic, HotendTempBckp);
  2697. }
  2698. else
  2699. M600_load_filament();
  2700. if (!automatic) M600_check_state(HotendTempBckp);
  2701. lcd_update_enable(true);
  2702. //Not let's go back to print
  2703. fanSpeed = fanSpeedBckp;
  2704. //Feed a little of filament to stabilize pressure
  2705. if (!automatic)
  2706. {
  2707. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2708. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2709. }
  2710. //Move XY back
  2711. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2712. FILAMENTCHANGE_XYFEED, active_extruder);
  2713. st_synchronize();
  2714. //Move Z back
  2715. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2716. FILAMENTCHANGE_ZFEED, active_extruder);
  2717. st_synchronize();
  2718. //Set E position to original
  2719. plan_set_e_position(lastpos[E_AXIS]);
  2720. memcpy(current_position, lastpos, sizeof(lastpos));
  2721. memcpy(destination, current_position, sizeof(current_position));
  2722. //Recover feed rate
  2723. feedmultiply = feedmultiplyBckp;
  2724. char cmd[9];
  2725. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2726. enquecommand(cmd);
  2727. #ifdef IR_SENSOR
  2728. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2729. fsensor_check_autoload();
  2730. #endif //IR_SENSOR
  2731. lcd_setstatuspgm(_T(WELCOME_MSG));
  2732. custom_message_type = CustomMsg::Status;
  2733. }
  2734. void gcode_M701()
  2735. {
  2736. printf_P(PSTR("gcode_M701 begin\n"));
  2737. if (farm_mode)
  2738. {
  2739. prusa_statistics(22);
  2740. }
  2741. if (mmu_enabled)
  2742. {
  2743. extr_adj(tmp_extruder);//loads current extruder
  2744. mmu_extruder = tmp_extruder;
  2745. }
  2746. else
  2747. {
  2748. enable_z();
  2749. custom_message_type = CustomMsg::FilamentLoading;
  2750. #ifdef FSENSOR_QUALITY
  2751. fsensor_oq_meassure_start(40);
  2752. #endif //FSENSOR_QUALITY
  2753. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2754. current_position[E_AXIS] += 40;
  2755. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2756. st_synchronize();
  2757. raise_z_above(MIN_Z_FOR_LOAD, false);
  2758. current_position[E_AXIS] += 30;
  2759. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2760. load_filament_final_feed(); //slow sequence
  2761. st_synchronize();
  2762. Sound_MakeCustom(50,500,false);
  2763. if (!farm_mode && loading_flag) {
  2764. lcd_load_filament_color_check();
  2765. }
  2766. lcd_update_enable(true);
  2767. lcd_update(2);
  2768. lcd_setstatuspgm(_T(WELCOME_MSG));
  2769. disable_z();
  2770. loading_flag = false;
  2771. custom_message_type = CustomMsg::Status;
  2772. #ifdef FSENSOR_QUALITY
  2773. fsensor_oq_meassure_stop();
  2774. if (!fsensor_oq_result())
  2775. {
  2776. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2777. lcd_update_enable(true);
  2778. lcd_update(2);
  2779. if (disable)
  2780. fsensor_disable();
  2781. }
  2782. #endif //FSENSOR_QUALITY
  2783. }
  2784. }
  2785. /**
  2786. * @brief Get serial number from 32U2 processor
  2787. *
  2788. * Typical format of S/N is:CZPX0917X003XC13518
  2789. *
  2790. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2791. *
  2792. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2793. * reply is transmitted to serial port 1 character by character.
  2794. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2795. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2796. * in any case.
  2797. */
  2798. static void gcode_PRUSA_SN()
  2799. {
  2800. if (farm_mode) {
  2801. selectedSerialPort = 0;
  2802. putchar(';');
  2803. putchar('S');
  2804. int numbersRead = 0;
  2805. ShortTimer timeout;
  2806. timeout.start();
  2807. while (numbersRead < 19) {
  2808. while (MSerial.available() > 0) {
  2809. uint8_t serial_char = MSerial.read();
  2810. selectedSerialPort = 1;
  2811. putchar(serial_char);
  2812. numbersRead++;
  2813. selectedSerialPort = 0;
  2814. }
  2815. if (timeout.expired(100u)) break;
  2816. }
  2817. selectedSerialPort = 1;
  2818. putchar('\n');
  2819. #if 0
  2820. for (int b = 0; b < 3; b++) {
  2821. _tone(BEEPER, 110);
  2822. _delay(50);
  2823. _noTone(BEEPER);
  2824. _delay(50);
  2825. }
  2826. #endif
  2827. } else {
  2828. puts_P(_N("Not in farm mode."));
  2829. }
  2830. }
  2831. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2832. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2833. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2834. //! it may even interfere with other functions of the printer! You have been warned!
  2835. //! The test idea is to measure the time necessary to charge the capacitor.
  2836. //! So the algorithm is as follows:
  2837. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2838. //! 2. Wait a few ms
  2839. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2840. //! Repeat 1.-3. several times
  2841. //! Good RAMBo's times are in the range of approx. 260-320 us
  2842. //! Bad RAMBo's times are approx. 260-1200 us
  2843. //! So basically we are interested in maximum time, the minima are mostly the same.
  2844. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2845. static void gcode_PRUSA_BadRAMBoFanTest(){
  2846. //printf_P(PSTR("Enter fan pin test\n"));
  2847. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2848. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2849. unsigned long tach1max = 0;
  2850. uint8_t tach1cntr = 0;
  2851. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2852. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2853. SET_OUTPUT(TACH_1);
  2854. WRITE(TACH_1, LOW);
  2855. _delay(20); // the delay may be lower
  2856. unsigned long tachMeasure = _micros();
  2857. cli();
  2858. SET_INPUT(TACH_1);
  2859. // just wait brutally in an endless cycle until we reach HIGH
  2860. // if this becomes a problem it may be improved to non-endless cycle
  2861. while( READ(TACH_1) == 0 ) ;
  2862. sei();
  2863. tachMeasure = _micros() - tachMeasure;
  2864. if( tach1max < tachMeasure )
  2865. tach1max = tachMeasure;
  2866. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2867. }
  2868. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2869. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2870. if( tach1max > 500 ){
  2871. // bad RAMBo
  2872. SERIAL_PROTOCOLLNPGM("BAD");
  2873. } else {
  2874. SERIAL_PROTOCOLLNPGM("OK");
  2875. }
  2876. // cleanup after the test function
  2877. SET_INPUT(TACH_1);
  2878. WRITE(TACH_1, HIGH);
  2879. #endif
  2880. }
  2881. #ifdef BACKLASH_X
  2882. extern uint8_t st_backlash_x;
  2883. #endif //BACKLASH_X
  2884. #ifdef BACKLASH_Y
  2885. extern uint8_t st_backlash_y;
  2886. #endif //BACKLASH_Y
  2887. //! \ingroup marlin_main
  2888. //! @brief Parse and process commands
  2889. //!
  2890. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2891. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2892. //!
  2893. //!
  2894. //! Implemented Codes
  2895. //! -------------------
  2896. //!
  2897. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2898. //!
  2899. //!@n PRUSA CODES
  2900. //!@n P F - Returns FW versions
  2901. //!@n P R - Returns revision of printer
  2902. //!
  2903. //!@n G0 -> G1
  2904. //!@n G1 - Coordinated Movement X Y Z E
  2905. //!@n G2 - CW ARC
  2906. //!@n G3 - CCW ARC
  2907. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2908. //!@n G10 - retract filament according to settings of M207
  2909. //!@n G11 - retract recover filament according to settings of M208
  2910. //!@n G28 - Home all Axis
  2911. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2912. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2913. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2914. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2915. //!@n G80 - Automatic mesh bed leveling
  2916. //!@n G81 - Print bed profile
  2917. //!@n G90 - Use Absolute Coordinates
  2918. //!@n G91 - Use Relative Coordinates
  2919. //!@n G92 - Set current position to coordinates given
  2920. //!
  2921. //!@n M Codes
  2922. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2923. //!@n M1 - Same as M0
  2924. //!@n M17 - Enable/Power all stepper motors
  2925. //!@n M18 - Disable all stepper motors; same as M84
  2926. //!@n M20 - List SD card
  2927. //!@n M21 - Init SD card
  2928. //!@n M22 - Release SD card
  2929. //!@n M23 - Select SD file (M23 filename.g)
  2930. //!@n M24 - Start/resume SD print
  2931. //!@n M25 - Pause SD print
  2932. //!@n M26 - Set SD position in bytes (M26 S12345)
  2933. //!@n M27 - Report SD print status
  2934. //!@n M28 - Start SD write (M28 filename.g)
  2935. //!@n M29 - Stop SD write
  2936. //!@n M30 - Delete file from SD (M30 filename.g)
  2937. //!@n M31 - Output time since last M109 or SD card start to serial
  2938. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2939. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2940. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2941. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2942. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2943. //!@n M73 - Show percent done and print time remaining
  2944. //!@n M80 - Turn on Power Supply
  2945. //!@n M81 - Turn off Power Supply
  2946. //!@n M82 - Set E codes absolute (default)
  2947. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2948. //!@n M84 - Disable steppers until next move,
  2949. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2950. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2951. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2952. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2953. //!@n M104 - Set extruder target temp
  2954. //!@n M105 - Read current temp
  2955. //!@n M106 - Fan on
  2956. //!@n M107 - Fan off
  2957. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2958. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2959. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2960. //!@n M112 - Emergency stop
  2961. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2962. //!@n M114 - Output current position to serial port
  2963. //!@n M115 - Capabilities string
  2964. //!@n M117 - display message
  2965. //!@n M119 - Output Endstop status to serial port
  2966. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2967. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2968. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2969. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2970. //!@n M140 - Set bed target temp
  2971. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2972. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2973. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2974. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2975. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2976. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2977. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2978. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2979. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2980. //!@n M206 - set additional homing offset
  2981. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2982. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2983. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2984. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2985. //!@n M220 S<factor in percent>- set speed factor override percentage
  2986. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2987. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2988. //!@n M240 - Trigger a camera to take a photograph
  2989. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2990. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2991. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2992. //!@n M301 - Set PID parameters P I and D
  2993. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2994. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2995. //!@n M304 - Set bed PID parameters P I and D
  2996. //!@n M400 - Finish all moves
  2997. //!@n M401 - Lower z-probe if present
  2998. //!@n M402 - Raise z-probe if present
  2999. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3000. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3001. //!@n M406 - Turn off Filament Sensor extrusion control
  3002. //!@n M407 - Displays measured filament diameter
  3003. //!@n M500 - stores parameters in EEPROM
  3004. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3005. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3006. //!@n M503 - print the current settings (from memory not from EEPROM)
  3007. //!@n M509 - force language selection on next restart
  3008. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3009. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3010. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3011. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3012. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3013. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3014. //!@n M907 - Set digital trimpot motor current using axis codes.
  3015. //!@n M908 - Control digital trimpot directly.
  3016. //!@n M350 - Set microstepping mode.
  3017. //!@n M351 - Toggle MS1 MS2 pins directly.
  3018. //!
  3019. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3020. //!@n M999 - Restart after being stopped by error
  3021. //! <br><br>
  3022. /** @defgroup marlin_main Marlin main */
  3023. /** \ingroup GCodes */
  3024. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)_
  3025. void process_commands()
  3026. {
  3027. #ifdef FANCHECK
  3028. if(fan_check_error){
  3029. if(fan_check_error == EFCE_DETECTED){
  3030. fan_check_error = EFCE_REPORTED;
  3031. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3032. lcd_pause_print();
  3033. } // otherwise it has already been reported, so just ignore further processing
  3034. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3035. }
  3036. #endif
  3037. if (!buflen) return; //empty command
  3038. #ifdef FILAMENT_RUNOUT_SUPPORT
  3039. SET_INPUT(FR_SENS);
  3040. #endif
  3041. #ifdef CMDBUFFER_DEBUG
  3042. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3043. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3044. SERIAL_ECHOLNPGM("");
  3045. SERIAL_ECHOPGM("In cmdqueue: ");
  3046. SERIAL_ECHO(buflen);
  3047. SERIAL_ECHOLNPGM("");
  3048. #endif /* CMDBUFFER_DEBUG */
  3049. unsigned long codenum; //throw away variable
  3050. char *starpos = NULL;
  3051. #ifdef ENABLE_AUTO_BED_LEVELING
  3052. float x_tmp, y_tmp, z_tmp, real_z;
  3053. #endif
  3054. // PRUSA GCODES
  3055. KEEPALIVE_STATE(IN_HANDLER);
  3056. #ifdef SNMM
  3057. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3058. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3059. int8_t SilentMode;
  3060. #endif
  3061. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3062. starpos = (strchr(strchr_pointer + 5, '*'));
  3063. if (starpos != NULL)
  3064. *(starpos) = '\0';
  3065. lcd_setstatus(strchr_pointer + 5);
  3066. }
  3067. #ifdef TMC2130
  3068. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3069. {
  3070. //! ### CRASH_DETECTED - TMC2130
  3071. // ---------------------------------
  3072. if(code_seen("CRASH_DETECTED"))
  3073. {
  3074. uint8_t mask = 0;
  3075. if (code_seen('X')) mask |= X_AXIS_MASK;
  3076. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3077. crashdet_detected(mask);
  3078. }
  3079. //! ### CRASH_RECOVER - TMC2130
  3080. // ----------------------------------
  3081. else if(code_seen("CRASH_RECOVER"))
  3082. crashdet_recover();
  3083. //! ### CRASH_CANCEL - TMC2130
  3084. // ----------------------------------
  3085. else if(code_seen("CRASH_CANCEL"))
  3086. crashdet_cancel();
  3087. }
  3088. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3089. {
  3090. //! ### TMC_SET_WAVE_
  3091. // --------------------
  3092. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3093. {
  3094. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3095. axis = (axis == 'E')?3:(axis - 'X');
  3096. if (axis < 4)
  3097. {
  3098. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3099. tmc2130_set_wave(axis, 247, fac);
  3100. }
  3101. }
  3102. //! ### TMC_SET_STEP_
  3103. // ------------------
  3104. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3105. {
  3106. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3107. axis = (axis == 'E')?3:(axis - 'X');
  3108. if (axis < 4)
  3109. {
  3110. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3111. uint16_t res = tmc2130_get_res(axis);
  3112. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3113. }
  3114. }
  3115. //! ### TMC_SET_CHOP_
  3116. // -------------------
  3117. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3118. {
  3119. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3120. axis = (axis == 'E')?3:(axis - 'X');
  3121. if (axis < 4)
  3122. {
  3123. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3124. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3125. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3126. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3127. char* str_end = 0;
  3128. if (CMDBUFFER_CURRENT_STRING[14])
  3129. {
  3130. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3131. if (str_end && *str_end)
  3132. {
  3133. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3134. if (str_end && *str_end)
  3135. {
  3136. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3137. if (str_end && *str_end)
  3138. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3139. }
  3140. }
  3141. }
  3142. tmc2130_chopper_config[axis].toff = chop0;
  3143. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3144. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3145. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3146. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3147. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3148. }
  3149. }
  3150. }
  3151. #ifdef BACKLASH_X
  3152. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3153. {
  3154. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3155. st_backlash_x = bl;
  3156. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3157. }
  3158. #endif //BACKLASH_X
  3159. #ifdef BACKLASH_Y
  3160. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3161. {
  3162. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3163. st_backlash_y = bl;
  3164. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3165. }
  3166. #endif //BACKLASH_Y
  3167. #endif //TMC2130
  3168. else if(code_seen("PRUSA")){
  3169. /*!
  3170. *
  3171. ### PRUSA - Internal command set
  3172. Set of internal PRUSA commands
  3173. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | fsensor_recover | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3174. - `Ping`
  3175. - `PRN` - Prints revision of the printer
  3176. - `FAN` - Prints fan details
  3177. - `fn` - Prints farm no.
  3178. - `thx`
  3179. - `uvlo`
  3180. - `fsensor_recover` - Filament sensor recover - restore print and continue
  3181. - `MMURES` - Reset MMU
  3182. - `RESET` - (Careful!)
  3183. - `fv` - ?
  3184. - `M28`
  3185. - `SN`
  3186. - `Fir` - Prints firmware version
  3187. - `Rev`- Prints filament size, elelectronics, nozzle type
  3188. - `Lang` - Reset the language
  3189. - `Lz`
  3190. - `Beat` - Kick farm link timer
  3191. - `FR` - Full factory reset
  3192. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3193. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3194. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3195. *
  3196. */
  3197. if (code_seen("Ping")) { // PRUSA Ping
  3198. if (farm_mode) {
  3199. PingTime = _millis();
  3200. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3201. }
  3202. }
  3203. else if (code_seen("PRN")) { // PRUSA PRN
  3204. printf_P(_N("%d"), status_number);
  3205. } else if( code_seen("FANPINTST") ){
  3206. gcode_PRUSA_BadRAMBoFanTest();
  3207. }else if (code_seen("FAN")) { //! PRUSA FAN
  3208. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3209. }else if (code_seen("fn")) { // PRUSA fn
  3210. if (farm_mode) {
  3211. printf_P(_N("%d"), farm_no);
  3212. }
  3213. else {
  3214. puts_P(_N("Not in farm mode."));
  3215. }
  3216. }
  3217. else if (code_seen("thx")) // PRUSA thx
  3218. {
  3219. no_response = false;
  3220. }
  3221. else if (code_seen("uvlo")) // PRUSA uvlo
  3222. {
  3223. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3224. enquecommand_P(PSTR("M24"));
  3225. }
  3226. #ifdef FILAMENT_SENSOR
  3227. else if (code_seen("fsensor_recover")) // PRUSA fsensor_recover
  3228. {
  3229. fsensor_restore_print_and_continue();
  3230. }
  3231. #endif //FILAMENT_SENSOR
  3232. else if (code_seen("MMURES")) // PRUSA MMURES
  3233. {
  3234. mmu_reset();
  3235. }
  3236. else if (code_seen("RESET")) { // PRUSA RESET
  3237. // careful!
  3238. if (farm_mode) {
  3239. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3240. boot_app_magic = BOOT_APP_MAGIC;
  3241. boot_app_flags = BOOT_APP_FLG_RUN;
  3242. wdt_enable(WDTO_15MS);
  3243. cli();
  3244. while(1);
  3245. #else //WATCHDOG
  3246. asm volatile("jmp 0x3E000");
  3247. #endif //WATCHDOG
  3248. }
  3249. else {
  3250. MYSERIAL.println("Not in farm mode.");
  3251. }
  3252. }else if (code_seen("fv")) { // PRUSA fv
  3253. // get file version
  3254. #ifdef SDSUPPORT
  3255. card.openFile(strchr_pointer + 3,true);
  3256. while (true) {
  3257. uint16_t readByte = card.get();
  3258. MYSERIAL.write(readByte);
  3259. if (readByte=='\n') {
  3260. break;
  3261. }
  3262. }
  3263. card.closefile();
  3264. #endif // SDSUPPORT
  3265. } else if (code_seen("M28")) { // PRUSA M28
  3266. trace();
  3267. prusa_sd_card_upload = true;
  3268. card.openFile(strchr_pointer+4,false);
  3269. } else if (code_seen("SN")) { // PRUSA SN
  3270. gcode_PRUSA_SN();
  3271. } else if(code_seen("Fir")){ // PRUSA Fir
  3272. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3273. } else if(code_seen("Rev")){ // PRUSA Rev
  3274. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3275. } else if(code_seen("Lang")) { // PRUSA Lang
  3276. lang_reset();
  3277. } else if(code_seen("Lz")) { // PRUSA Lz
  3278. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3279. } else if(code_seen("Beat")) { // PRUSA Beat
  3280. // Kick farm link timer
  3281. kicktime = _millis();
  3282. } else if(code_seen("FR")) { // PRUSA FR
  3283. // Factory full reset
  3284. factory_reset(0);
  3285. //-//
  3286. /*
  3287. } else if(code_seen("rrr")) {
  3288. MYSERIAL.println("=== checking ===");
  3289. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3290. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3291. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3292. MYSERIAL.println(farm_mode,DEC);
  3293. MYSERIAL.println(eCheckMode,DEC);
  3294. } else if(code_seen("www")) {
  3295. MYSERIAL.println("=== @ FF ===");
  3296. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3297. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3298. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3299. */
  3300. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3301. uint16_t nDiameter;
  3302. if(code_seen('D'))
  3303. {
  3304. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3305. nozzle_diameter_check(nDiameter);
  3306. }
  3307. else if(code_seen("set") && farm_mode)
  3308. {
  3309. strchr_pointer++; // skip 1st char (~ 's')
  3310. strchr_pointer++; // skip 2nd char (~ 'e')
  3311. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3312. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3313. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3314. }
  3315. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3316. //-// !!! SupportMenu
  3317. /*
  3318. // musi byt PRED "PRUSA model"
  3319. } else if (code_seen("smodel")) { //! PRUSA smodel
  3320. size_t nOffset;
  3321. // ! -> "l"
  3322. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3323. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3324. if(*(strchr_pointer+1+nOffset))
  3325. printer_smodel_check(strchr_pointer);
  3326. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3327. } else if (code_seen("model")) { //! PRUSA model
  3328. uint16_t nPrinterModel;
  3329. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3330. nPrinterModel=(uint16_t)code_value_long();
  3331. if(nPrinterModel!=0)
  3332. printer_model_check(nPrinterModel);
  3333. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3334. } else if (code_seen("version")) { //! PRUSA version
  3335. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3336. while(*strchr_pointer==' ') // skip leading spaces
  3337. strchr_pointer++;
  3338. if(*strchr_pointer!=0)
  3339. fw_version_check(strchr_pointer);
  3340. else SERIAL_PROTOCOLLN(FW_VERSION);
  3341. } else if (code_seen("gcode")) { //! PRUSA gcode
  3342. uint16_t nGcodeLevel;
  3343. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3344. nGcodeLevel=(uint16_t)code_value_long();
  3345. if(nGcodeLevel!=0)
  3346. gcode_level_check(nGcodeLevel);
  3347. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3348. */
  3349. }
  3350. //else if (code_seen('Cal')) {
  3351. // lcd_calibration();
  3352. // }
  3353. }
  3354. // This prevents reading files with "^" in their names.
  3355. // Since it is unclear, if there is some usage of this construct,
  3356. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3357. // else if (code_seen('^')) {
  3358. // // nothing, this is a version line
  3359. // }
  3360. else if(code_seen('G'))
  3361. {
  3362. gcode_in_progress = (int)code_value();
  3363. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3364. switch (gcode_in_progress)
  3365. {
  3366. //! ### G0, G1 - Coordinated movement X Y Z E
  3367. // --------------------------------------
  3368. case 0: // G0 -> G1
  3369. case 1: // G1
  3370. if(Stopped == false) {
  3371. #ifdef FILAMENT_RUNOUT_SUPPORT
  3372. if(READ(FR_SENS)){
  3373. int feedmultiplyBckp=feedmultiply;
  3374. float target[4];
  3375. float lastpos[4];
  3376. target[X_AXIS]=current_position[X_AXIS];
  3377. target[Y_AXIS]=current_position[Y_AXIS];
  3378. target[Z_AXIS]=current_position[Z_AXIS];
  3379. target[E_AXIS]=current_position[E_AXIS];
  3380. lastpos[X_AXIS]=current_position[X_AXIS];
  3381. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3382. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3383. lastpos[E_AXIS]=current_position[E_AXIS];
  3384. //retract by E
  3385. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3386. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3387. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3388. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3389. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3390. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3391. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3392. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3393. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3394. //finish moves
  3395. st_synchronize();
  3396. //disable extruder steppers so filament can be removed
  3397. disable_e0();
  3398. disable_e1();
  3399. disable_e2();
  3400. _delay(100);
  3401. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3402. uint8_t cnt=0;
  3403. int counterBeep = 0;
  3404. lcd_wait_interact();
  3405. while(!lcd_clicked()){
  3406. cnt++;
  3407. manage_heater();
  3408. manage_inactivity(true);
  3409. //lcd_update(0);
  3410. if(cnt==0)
  3411. {
  3412. #if BEEPER > 0
  3413. if (counterBeep== 500){
  3414. counterBeep = 0;
  3415. }
  3416. SET_OUTPUT(BEEPER);
  3417. if (counterBeep== 0){
  3418. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3419. WRITE(BEEPER,HIGH);
  3420. }
  3421. if (counterBeep== 20){
  3422. WRITE(BEEPER,LOW);
  3423. }
  3424. counterBeep++;
  3425. #else
  3426. #endif
  3427. }
  3428. }
  3429. WRITE(BEEPER,LOW);
  3430. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3431. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3432. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3433. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3434. lcd_change_fil_state = 0;
  3435. lcd_loading_filament();
  3436. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3437. lcd_change_fil_state = 0;
  3438. lcd_alright();
  3439. switch(lcd_change_fil_state){
  3440. case 2:
  3441. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3442. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3443. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3444. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3445. lcd_loading_filament();
  3446. break;
  3447. case 3:
  3448. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3449. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3450. lcd_loading_color();
  3451. break;
  3452. default:
  3453. lcd_change_success();
  3454. break;
  3455. }
  3456. }
  3457. target[E_AXIS]+= 5;
  3458. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3459. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3460. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3461. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3462. //plan_set_e_position(current_position[E_AXIS]);
  3463. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3464. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3465. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3466. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3467. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3468. plan_set_e_position(lastpos[E_AXIS]);
  3469. feedmultiply=feedmultiplyBckp;
  3470. char cmd[9];
  3471. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3472. enquecommand(cmd);
  3473. }
  3474. #endif
  3475. get_coordinates(); // For X Y Z E F
  3476. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3477. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3478. }
  3479. #ifdef FWRETRACT
  3480. if(cs.autoretract_enabled)
  3481. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3482. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3483. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3484. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3485. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3486. retract(!retracted[active_extruder]);
  3487. return;
  3488. }
  3489. }
  3490. #endif //FWRETRACT
  3491. prepare_move();
  3492. //ClearToSend();
  3493. }
  3494. break;
  3495. //! ### G2 - CW ARC
  3496. // ------------------------------
  3497. case 2:
  3498. if(Stopped == false) {
  3499. get_arc_coordinates();
  3500. prepare_arc_move(true);
  3501. }
  3502. break;
  3503. //! ### G3 - CCW ARC
  3504. // -------------------------------
  3505. case 3:
  3506. if(Stopped == false) {
  3507. get_arc_coordinates();
  3508. prepare_arc_move(false);
  3509. }
  3510. break;
  3511. //! ### G4 - Dwell
  3512. // -------------------------------
  3513. case 4:
  3514. codenum = 0;
  3515. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3516. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3517. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3518. st_synchronize();
  3519. codenum += _millis(); // keep track of when we started waiting
  3520. previous_millis_cmd = _millis();
  3521. while(_millis() < codenum) {
  3522. manage_heater();
  3523. manage_inactivity();
  3524. lcd_update(0);
  3525. }
  3526. break;
  3527. #ifdef FWRETRACT
  3528. //! ### G10 Retract
  3529. // ------------------------------
  3530. case 10:
  3531. #if EXTRUDERS > 1
  3532. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3533. retract(true,retracted_swap[active_extruder]);
  3534. #else
  3535. retract(true);
  3536. #endif
  3537. break;
  3538. //! ### G11 - Retract recover
  3539. // -----------------------------
  3540. case 11:
  3541. #if EXTRUDERS > 1
  3542. retract(false,retracted_swap[active_extruder]);
  3543. #else
  3544. retract(false);
  3545. #endif
  3546. break;
  3547. #endif //FWRETRACT
  3548. //! ### G28 - Home all Axis one at a time
  3549. // --------------------------------------------
  3550. case 28:
  3551. {
  3552. long home_x_value = 0;
  3553. long home_y_value = 0;
  3554. long home_z_value = 0;
  3555. // Which axes should be homed?
  3556. bool home_x = code_seen(axis_codes[X_AXIS]);
  3557. home_x_value = code_value_long();
  3558. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3559. home_y_value = code_value_long();
  3560. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3561. home_z_value = code_value_long();
  3562. bool without_mbl = code_seen('W');
  3563. // calibrate?
  3564. #ifdef TMC2130
  3565. bool calib = code_seen('C');
  3566. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3567. #else
  3568. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3569. #endif //TMC2130
  3570. if ((home_x || home_y || without_mbl || home_z) == false) {
  3571. // Push the commands to the front of the message queue in the reverse order!
  3572. // There shall be always enough space reserved for these commands.
  3573. goto case_G80;
  3574. }
  3575. break;
  3576. }
  3577. #ifdef ENABLE_AUTO_BED_LEVELING
  3578. //! ### G29 - Detailed Z-Probe
  3579. // --------------------------------
  3580. case 29:
  3581. {
  3582. #if Z_MIN_PIN == -1
  3583. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3584. #endif
  3585. // Prevent user from running a G29 without first homing in X and Y
  3586. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3587. {
  3588. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3589. SERIAL_ECHO_START;
  3590. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3591. break; // abort G29, since we don't know where we are
  3592. }
  3593. st_synchronize();
  3594. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3595. //vector_3 corrected_position = plan_get_position_mm();
  3596. //corrected_position.debug("position before G29");
  3597. plan_bed_level_matrix.set_to_identity();
  3598. vector_3 uncorrected_position = plan_get_position();
  3599. //uncorrected_position.debug("position durring G29");
  3600. current_position[X_AXIS] = uncorrected_position.x;
  3601. current_position[Y_AXIS] = uncorrected_position.y;
  3602. current_position[Z_AXIS] = uncorrected_position.z;
  3603. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3604. int l_feedmultiply = setup_for_endstop_move();
  3605. feedrate = homing_feedrate[Z_AXIS];
  3606. #ifdef AUTO_BED_LEVELING_GRID
  3607. // probe at the points of a lattice grid
  3608. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3609. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3610. // solve the plane equation ax + by + d = z
  3611. // A is the matrix with rows [x y 1] for all the probed points
  3612. // B is the vector of the Z positions
  3613. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3614. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3615. // "A" matrix of the linear system of equations
  3616. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3617. // "B" vector of Z points
  3618. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3619. int probePointCounter = 0;
  3620. bool zig = true;
  3621. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3622. {
  3623. int xProbe, xInc;
  3624. if (zig)
  3625. {
  3626. xProbe = LEFT_PROBE_BED_POSITION;
  3627. //xEnd = RIGHT_PROBE_BED_POSITION;
  3628. xInc = xGridSpacing;
  3629. zig = false;
  3630. } else // zag
  3631. {
  3632. xProbe = RIGHT_PROBE_BED_POSITION;
  3633. //xEnd = LEFT_PROBE_BED_POSITION;
  3634. xInc = -xGridSpacing;
  3635. zig = true;
  3636. }
  3637. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3638. {
  3639. float z_before;
  3640. if (probePointCounter == 0)
  3641. {
  3642. // raise before probing
  3643. z_before = Z_RAISE_BEFORE_PROBING;
  3644. } else
  3645. {
  3646. // raise extruder
  3647. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3648. }
  3649. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3650. eqnBVector[probePointCounter] = measured_z;
  3651. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3652. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3653. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3654. probePointCounter++;
  3655. xProbe += xInc;
  3656. }
  3657. }
  3658. clean_up_after_endstop_move(l_feedmultiply);
  3659. // solve lsq problem
  3660. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3661. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3662. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3663. SERIAL_PROTOCOLPGM(" b: ");
  3664. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3665. SERIAL_PROTOCOLPGM(" d: ");
  3666. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3667. set_bed_level_equation_lsq(plane_equation_coefficients);
  3668. free(plane_equation_coefficients);
  3669. #else // AUTO_BED_LEVELING_GRID not defined
  3670. // Probe at 3 arbitrary points
  3671. // probe 1
  3672. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3673. // probe 2
  3674. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3675. // probe 3
  3676. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3677. clean_up_after_endstop_move(l_feedmultiply);
  3678. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3679. #endif // AUTO_BED_LEVELING_GRID
  3680. st_synchronize();
  3681. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3682. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3683. // When the bed is uneven, this height must be corrected.
  3684. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3685. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3686. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3687. z_tmp = current_position[Z_AXIS];
  3688. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3689. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3690. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3691. }
  3692. break;
  3693. #ifndef Z_PROBE_SLED
  3694. //! ### G30 - Single Z Probe
  3695. // ------------------------------------
  3696. case 30:
  3697. {
  3698. st_synchronize();
  3699. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3700. int l_feedmultiply = setup_for_endstop_move();
  3701. feedrate = homing_feedrate[Z_AXIS];
  3702. run_z_probe();
  3703. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3704. SERIAL_PROTOCOLPGM(" X: ");
  3705. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3706. SERIAL_PROTOCOLPGM(" Y: ");
  3707. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3708. SERIAL_PROTOCOLPGM(" Z: ");
  3709. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3710. SERIAL_PROTOCOLPGM("\n");
  3711. clean_up_after_endstop_move(l_feedmultiply);
  3712. }
  3713. break;
  3714. #else
  3715. //! ### G31 - Dock the sled
  3716. // ---------------------------
  3717. case 31:
  3718. dock_sled(true);
  3719. break;
  3720. //! ### G32 - Undock the sled
  3721. // ----------------------------
  3722. case 32:
  3723. dock_sled(false);
  3724. break;
  3725. #endif // Z_PROBE_SLED
  3726. #endif // ENABLE_AUTO_BED_LEVELING
  3727. #ifdef MESH_BED_LEVELING
  3728. //! ### G30 - Single Z Probe
  3729. // ----------------------------
  3730. case 30:
  3731. {
  3732. st_synchronize();
  3733. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3734. int l_feedmultiply = setup_for_endstop_move();
  3735. feedrate = homing_feedrate[Z_AXIS];
  3736. find_bed_induction_sensor_point_z(-10.f, 3);
  3737. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3738. clean_up_after_endstop_move(l_feedmultiply);
  3739. }
  3740. break;
  3741. //! ### G75 - Print temperature interpolation
  3742. // ---------------------------------------------
  3743. case 75:
  3744. {
  3745. for (int i = 40; i <= 110; i++)
  3746. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3747. }
  3748. break;
  3749. //! ### G76 - PINDA probe temperature calibration
  3750. // ------------------------------------------------
  3751. case 76:
  3752. {
  3753. #ifdef PINDA_THERMISTOR
  3754. if (true)
  3755. {
  3756. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3757. //we need to know accurate position of first calibration point
  3758. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3759. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3760. break;
  3761. }
  3762. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3763. {
  3764. // We don't know where we are! HOME!
  3765. // Push the commands to the front of the message queue in the reverse order!
  3766. // There shall be always enough space reserved for these commands.
  3767. repeatcommand_front(); // repeat G76 with all its parameters
  3768. enquecommand_front_P((PSTR("G28 W0")));
  3769. break;
  3770. }
  3771. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3772. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3773. if (result)
  3774. {
  3775. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3776. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3777. current_position[Z_AXIS] = 50;
  3778. current_position[Y_AXIS] = 180;
  3779. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3780. st_synchronize();
  3781. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3782. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3783. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3784. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3785. st_synchronize();
  3786. gcode_G28(false, false, true);
  3787. }
  3788. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3789. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3790. current_position[Z_AXIS] = 100;
  3791. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3792. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3793. lcd_temp_cal_show_result(false);
  3794. break;
  3795. }
  3796. }
  3797. lcd_update_enable(true);
  3798. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3799. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3800. float zero_z;
  3801. int z_shift = 0; //unit: steps
  3802. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3803. if (start_temp < 35) start_temp = 35;
  3804. if (start_temp < current_temperature_pinda) start_temp += 5;
  3805. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3806. // setTargetHotend(200, 0);
  3807. setTargetBed(70 + (start_temp - 30));
  3808. custom_message_type = CustomMsg::TempCal;
  3809. custom_message_state = 1;
  3810. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3811. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3812. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3813. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3814. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3815. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3816. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3817. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3818. st_synchronize();
  3819. while (current_temperature_pinda < start_temp)
  3820. {
  3821. delay_keep_alive(1000);
  3822. serialecho_temperatures();
  3823. }
  3824. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3825. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3826. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3827. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3828. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3829. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3830. st_synchronize();
  3831. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3832. if (find_z_result == false) {
  3833. lcd_temp_cal_show_result(find_z_result);
  3834. break;
  3835. }
  3836. zero_z = current_position[Z_AXIS];
  3837. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3838. int i = -1; for (; i < 5; i++)
  3839. {
  3840. float temp = (40 + i * 5);
  3841. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3842. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3843. if (start_temp <= temp) break;
  3844. }
  3845. for (i++; i < 5; i++)
  3846. {
  3847. float temp = (40 + i * 5);
  3848. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3849. custom_message_state = i + 2;
  3850. setTargetBed(50 + 10 * (temp - 30) / 5);
  3851. // setTargetHotend(255, 0);
  3852. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3853. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3854. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3855. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3856. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3857. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3858. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3859. st_synchronize();
  3860. while (current_temperature_pinda < temp)
  3861. {
  3862. delay_keep_alive(1000);
  3863. serialecho_temperatures();
  3864. }
  3865. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3866. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3867. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3868. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3869. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3870. st_synchronize();
  3871. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3872. if (find_z_result == false) {
  3873. lcd_temp_cal_show_result(find_z_result);
  3874. break;
  3875. }
  3876. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3877. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3878. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3879. }
  3880. lcd_temp_cal_show_result(true);
  3881. break;
  3882. }
  3883. #endif //PINDA_THERMISTOR
  3884. setTargetBed(PINDA_MIN_T);
  3885. float zero_z;
  3886. int z_shift = 0; //unit: steps
  3887. int t_c; // temperature
  3888. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3889. // We don't know where we are! HOME!
  3890. // Push the commands to the front of the message queue in the reverse order!
  3891. // There shall be always enough space reserved for these commands.
  3892. repeatcommand_front(); // repeat G76 with all its parameters
  3893. enquecommand_front_P((PSTR("G28 W0")));
  3894. break;
  3895. }
  3896. puts_P(_N("PINDA probe calibration start"));
  3897. custom_message_type = CustomMsg::TempCal;
  3898. custom_message_state = 1;
  3899. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3900. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3901. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3902. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3903. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3904. st_synchronize();
  3905. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3906. delay_keep_alive(1000);
  3907. serialecho_temperatures();
  3908. }
  3909. //enquecommand_P(PSTR("M190 S50"));
  3910. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3911. delay_keep_alive(1000);
  3912. serialecho_temperatures();
  3913. }
  3914. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3915. current_position[Z_AXIS] = 5;
  3916. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3917. current_position[X_AXIS] = BED_X0;
  3918. current_position[Y_AXIS] = BED_Y0;
  3919. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3920. st_synchronize();
  3921. find_bed_induction_sensor_point_z(-1.f);
  3922. zero_z = current_position[Z_AXIS];
  3923. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3924. for (int i = 0; i<5; i++) {
  3925. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3926. custom_message_state = i + 2;
  3927. t_c = 60 + i * 10;
  3928. setTargetBed(t_c);
  3929. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3930. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3931. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3932. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3933. st_synchronize();
  3934. while (degBed() < t_c) {
  3935. delay_keep_alive(1000);
  3936. serialecho_temperatures();
  3937. }
  3938. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3939. delay_keep_alive(1000);
  3940. serialecho_temperatures();
  3941. }
  3942. current_position[Z_AXIS] = 5;
  3943. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3944. current_position[X_AXIS] = BED_X0;
  3945. current_position[Y_AXIS] = BED_Y0;
  3946. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3947. st_synchronize();
  3948. find_bed_induction_sensor_point_z(-1.f);
  3949. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3950. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3951. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3952. }
  3953. custom_message_type = CustomMsg::Status;
  3954. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3955. puts_P(_N("Temperature calibration done."));
  3956. disable_x();
  3957. disable_y();
  3958. disable_z();
  3959. disable_e0();
  3960. disable_e1();
  3961. disable_e2();
  3962. setTargetBed(0); //set bed target temperature back to 0
  3963. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3964. temp_cal_active = true;
  3965. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3966. lcd_update_enable(true);
  3967. lcd_update(2);
  3968. }
  3969. break;
  3970. //! ### G80 - Mesh-based Z probe
  3971. // -----------------------------------
  3972. /*
  3973. * Probes a grid and produces a mesh to compensate for variable bed height
  3974. * The S0 report the points as below
  3975. * +----> X-axis
  3976. * |
  3977. * |
  3978. * v Y-axis
  3979. */
  3980. case 80:
  3981. #ifdef MK1BP
  3982. break;
  3983. #endif //MK1BP
  3984. case_G80:
  3985. {
  3986. mesh_bed_leveling_flag = true;
  3987. #ifndef PINDA_THERMISTOR
  3988. static bool run = false; // thermistor-less PINDA temperature compensation is running
  3989. #endif // ndef PINDA_THERMISTOR
  3990. #ifdef SUPPORT_VERBOSITY
  3991. int8_t verbosity_level = 0;
  3992. if (code_seen('V')) {
  3993. // Just 'V' without a number counts as V1.
  3994. char c = strchr_pointer[1];
  3995. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3996. }
  3997. #endif //SUPPORT_VERBOSITY
  3998. // Firstly check if we know where we are
  3999. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4000. // We don't know where we are! HOME!
  4001. // Push the commands to the front of the message queue in the reverse order!
  4002. // There shall be always enough space reserved for these commands.
  4003. if (lcd_commands_type != LcdCommands::StopPrint) {
  4004. repeatcommand_front(); // repeat G80 with all its parameters
  4005. enquecommand_front_P((PSTR("G28 W0")));
  4006. }
  4007. else {
  4008. mesh_bed_leveling_flag = false;
  4009. }
  4010. break;
  4011. }
  4012. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4013. if (code_seen('N')) {
  4014. nMeasPoints = code_value_uint8();
  4015. if (nMeasPoints != 7) {
  4016. nMeasPoints = 3;
  4017. }
  4018. }
  4019. else {
  4020. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4021. }
  4022. uint8_t nProbeRetry = 3;
  4023. if (code_seen('R')) {
  4024. nProbeRetry = code_value_uint8();
  4025. if (nProbeRetry > 10) {
  4026. nProbeRetry = 10;
  4027. }
  4028. }
  4029. else {
  4030. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4031. }
  4032. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4033. #ifndef PINDA_THERMISTOR
  4034. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4035. {
  4036. if (lcd_commands_type != LcdCommands::StopPrint) {
  4037. temp_compensation_start();
  4038. run = true;
  4039. repeatcommand_front(); // repeat G80 with all its parameters
  4040. enquecommand_front_P((PSTR("G28 W0")));
  4041. }
  4042. else {
  4043. mesh_bed_leveling_flag = false;
  4044. }
  4045. break;
  4046. }
  4047. run = false;
  4048. #endif //PINDA_THERMISTOR
  4049. if (lcd_commands_type == LcdCommands::StopPrint) {
  4050. mesh_bed_leveling_flag = false;
  4051. break;
  4052. }
  4053. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4054. CustomMsg custom_message_type_old = custom_message_type;
  4055. unsigned int custom_message_state_old = custom_message_state;
  4056. custom_message_type = CustomMsg::MeshBedLeveling;
  4057. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4058. lcd_update(1);
  4059. mbl.reset(); //reset mesh bed leveling
  4060. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4061. // consumed during the first movements following this statement.
  4062. babystep_undo();
  4063. // Cycle through all points and probe them
  4064. // First move up. During this first movement, the babystepping will be reverted.
  4065. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4066. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4067. // The move to the first calibration point.
  4068. current_position[X_AXIS] = BED_X0;
  4069. current_position[Y_AXIS] = BED_Y0;
  4070. #ifdef SUPPORT_VERBOSITY
  4071. if (verbosity_level >= 1)
  4072. {
  4073. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4074. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4075. }
  4076. #else //SUPPORT_VERBOSITY
  4077. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4078. #endif //SUPPORT_VERBOSITY
  4079. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4080. // Wait until the move is finished.
  4081. st_synchronize();
  4082. uint8_t mesh_point = 0; //index number of calibration point
  4083. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4084. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4085. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4086. #ifdef SUPPORT_VERBOSITY
  4087. if (verbosity_level >= 1) {
  4088. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4089. }
  4090. #endif // SUPPORT_VERBOSITY
  4091. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4092. const char *kill_message = NULL;
  4093. while (mesh_point != nMeasPoints * nMeasPoints) {
  4094. // Get coords of a measuring point.
  4095. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4096. uint8_t iy = mesh_point / nMeasPoints;
  4097. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4098. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4099. custom_message_state--;
  4100. mesh_point++;
  4101. continue; //skip
  4102. }*/
  4103. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4104. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4105. {
  4106. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4107. }
  4108. float z0 = 0.f;
  4109. if (has_z && (mesh_point > 0)) {
  4110. uint16_t z_offset_u = 0;
  4111. if (nMeasPoints == 7) {
  4112. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4113. }
  4114. else {
  4115. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4116. }
  4117. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4118. #ifdef SUPPORT_VERBOSITY
  4119. if (verbosity_level >= 1) {
  4120. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4121. }
  4122. #endif // SUPPORT_VERBOSITY
  4123. }
  4124. // Move Z up to MESH_HOME_Z_SEARCH.
  4125. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4126. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4127. float init_z_bckp = current_position[Z_AXIS];
  4128. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4129. st_synchronize();
  4130. // Move to XY position of the sensor point.
  4131. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4132. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4133. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4134. #ifdef SUPPORT_VERBOSITY
  4135. if (verbosity_level >= 1) {
  4136. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4137. SERIAL_PROTOCOL(mesh_point);
  4138. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4139. }
  4140. #else //SUPPORT_VERBOSITY
  4141. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4142. #endif // SUPPORT_VERBOSITY
  4143. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4144. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4145. st_synchronize();
  4146. // Go down until endstop is hit
  4147. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4148. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4149. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4150. break;
  4151. }
  4152. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4153. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4154. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4155. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4156. st_synchronize();
  4157. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4158. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4159. break;
  4160. }
  4161. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4162. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4163. break;
  4164. }
  4165. }
  4166. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4167. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4168. break;
  4169. }
  4170. #ifdef SUPPORT_VERBOSITY
  4171. if (verbosity_level >= 10) {
  4172. SERIAL_ECHOPGM("X: ");
  4173. MYSERIAL.print(current_position[X_AXIS], 5);
  4174. SERIAL_ECHOLNPGM("");
  4175. SERIAL_ECHOPGM("Y: ");
  4176. MYSERIAL.print(current_position[Y_AXIS], 5);
  4177. SERIAL_PROTOCOLPGM("\n");
  4178. }
  4179. #endif // SUPPORT_VERBOSITY
  4180. float offset_z = 0;
  4181. #ifdef PINDA_THERMISTOR
  4182. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4183. #endif //PINDA_THERMISTOR
  4184. // #ifdef SUPPORT_VERBOSITY
  4185. /* if (verbosity_level >= 1)
  4186. {
  4187. SERIAL_ECHOPGM("mesh bed leveling: ");
  4188. MYSERIAL.print(current_position[Z_AXIS], 5);
  4189. SERIAL_ECHOPGM(" offset: ");
  4190. MYSERIAL.print(offset_z, 5);
  4191. SERIAL_ECHOLNPGM("");
  4192. }*/
  4193. // #endif // SUPPORT_VERBOSITY
  4194. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4195. custom_message_state--;
  4196. mesh_point++;
  4197. lcd_update(1);
  4198. }
  4199. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4200. #ifdef SUPPORT_VERBOSITY
  4201. if (verbosity_level >= 20) {
  4202. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4203. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4204. MYSERIAL.print(current_position[Z_AXIS], 5);
  4205. }
  4206. #endif // SUPPORT_VERBOSITY
  4207. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4208. st_synchronize();
  4209. if (mesh_point != nMeasPoints * nMeasPoints) {
  4210. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4211. bool bState;
  4212. do { // repeat until Z-leveling o.k.
  4213. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4214. #ifdef TMC2130
  4215. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4216. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4217. #else // TMC2130
  4218. lcd_wait_for_click_delay(0); // ~ no timeout
  4219. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4220. #endif // TMC2130
  4221. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4222. bState=enable_z_endstop(false);
  4223. current_position[Z_AXIS] -= 1;
  4224. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4225. st_synchronize();
  4226. enable_z_endstop(true);
  4227. #ifdef TMC2130
  4228. tmc2130_home_enter(Z_AXIS_MASK);
  4229. #endif // TMC2130
  4230. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4231. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4232. st_synchronize();
  4233. #ifdef TMC2130
  4234. tmc2130_home_exit();
  4235. #endif // TMC2130
  4236. enable_z_endstop(bState);
  4237. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4238. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4239. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4240. lcd_update_enable(true); // display / status-line recovery
  4241. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4242. repeatcommand_front(); // re-run (i.e. of "G80")
  4243. break;
  4244. }
  4245. clean_up_after_endstop_move(l_feedmultiply);
  4246. // SERIAL_ECHOLNPGM("clean up finished ");
  4247. #ifndef PINDA_THERMISTOR
  4248. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4249. #endif
  4250. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4251. // SERIAL_ECHOLNPGM("babystep applied");
  4252. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4253. #ifdef SUPPORT_VERBOSITY
  4254. if (verbosity_level >= 1) {
  4255. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4256. }
  4257. #endif // SUPPORT_VERBOSITY
  4258. for (uint8_t i = 0; i < 4; ++i) {
  4259. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4260. long correction = 0;
  4261. if (code_seen(codes[i]))
  4262. correction = code_value_long();
  4263. else if (eeprom_bed_correction_valid) {
  4264. unsigned char *addr = (i < 2) ?
  4265. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4266. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4267. correction = eeprom_read_int8(addr);
  4268. }
  4269. if (correction == 0)
  4270. continue;
  4271. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4272. SERIAL_ERROR_START;
  4273. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4274. SERIAL_ECHO(correction);
  4275. SERIAL_ECHOLNPGM(" microns");
  4276. }
  4277. else {
  4278. float offset = float(correction) * 0.001f;
  4279. switch (i) {
  4280. case 0:
  4281. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4282. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4283. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4284. }
  4285. }
  4286. break;
  4287. case 1:
  4288. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4289. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4290. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4291. }
  4292. }
  4293. break;
  4294. case 2:
  4295. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4296. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4297. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4298. }
  4299. }
  4300. break;
  4301. case 3:
  4302. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4303. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4304. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4305. }
  4306. }
  4307. break;
  4308. }
  4309. }
  4310. }
  4311. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4312. if (nMeasPoints == 3) {
  4313. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4314. }
  4315. /*
  4316. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4317. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4318. SERIAL_PROTOCOLPGM(",");
  4319. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4320. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4321. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4322. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4323. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4324. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4325. SERIAL_PROTOCOLPGM(" ");
  4326. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4327. }
  4328. SERIAL_PROTOCOLPGM("\n");
  4329. }
  4330. */
  4331. if (nMeasPoints == 7 && magnet_elimination) {
  4332. mbl_interpolation(nMeasPoints);
  4333. }
  4334. /*
  4335. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4336. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4337. SERIAL_PROTOCOLPGM(",");
  4338. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4339. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4340. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4341. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4342. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4343. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4344. SERIAL_PROTOCOLPGM(" ");
  4345. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4346. }
  4347. SERIAL_PROTOCOLPGM("\n");
  4348. }
  4349. */
  4350. // SERIAL_ECHOLNPGM("Upsample finished");
  4351. mbl.active = 1; //activate mesh bed leveling
  4352. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4353. go_home_with_z_lift();
  4354. // SERIAL_ECHOLNPGM("Go home finished");
  4355. //unretract (after PINDA preheat retraction)
  4356. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4357. current_position[E_AXIS] += default_retraction;
  4358. plan_buffer_line_curposXYZE(400, active_extruder);
  4359. }
  4360. KEEPALIVE_STATE(NOT_BUSY);
  4361. // Restore custom message state
  4362. lcd_setstatuspgm(_T(WELCOME_MSG));
  4363. custom_message_type = custom_message_type_old;
  4364. custom_message_state = custom_message_state_old;
  4365. mesh_bed_leveling_flag = false;
  4366. mesh_bed_run_from_menu = false;
  4367. lcd_update(2);
  4368. }
  4369. break;
  4370. //! ### G81 - Mesh bed leveling status
  4371. // -----------------------------------------
  4372. /*
  4373. * Prints mesh bed leveling status and bed profile if activated
  4374. */
  4375. case 81:
  4376. if (mbl.active) {
  4377. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4378. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4379. SERIAL_PROTOCOLPGM(",");
  4380. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4381. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4382. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4383. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4384. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4385. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4386. SERIAL_PROTOCOLPGM(" ");
  4387. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4388. }
  4389. SERIAL_PROTOCOLPGM("\n");
  4390. }
  4391. }
  4392. else
  4393. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4394. break;
  4395. #if 0
  4396. /*
  4397. * G82: Single Z probe at current location
  4398. *
  4399. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4400. *
  4401. */
  4402. case 82:
  4403. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4404. int l_feedmultiply = setup_for_endstop_move();
  4405. find_bed_induction_sensor_point_z();
  4406. clean_up_after_endstop_move(l_feedmultiply);
  4407. SERIAL_PROTOCOLPGM("Bed found at: ");
  4408. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4409. SERIAL_PROTOCOLPGM("\n");
  4410. break;
  4411. /*
  4412. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4413. */
  4414. case 83:
  4415. {
  4416. int babystepz = code_seen('S') ? code_value() : 0;
  4417. int BabyPosition = code_seen('P') ? code_value() : 0;
  4418. if (babystepz != 0) {
  4419. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4420. // Is the axis indexed starting with zero or one?
  4421. if (BabyPosition > 4) {
  4422. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4423. }else{
  4424. // Save it to the eeprom
  4425. babystepLoadZ = babystepz;
  4426. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4427. // adjust the Z
  4428. babystepsTodoZadd(babystepLoadZ);
  4429. }
  4430. }
  4431. }
  4432. break;
  4433. /*
  4434. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4435. */
  4436. case 84:
  4437. babystepsTodoZsubtract(babystepLoadZ);
  4438. // babystepLoadZ = 0;
  4439. break;
  4440. /*
  4441. * G85: Prusa3D specific: Pick best babystep
  4442. */
  4443. case 85:
  4444. lcd_pick_babystep();
  4445. break;
  4446. #endif
  4447. /**
  4448. * ### G86 - Disable babystep correction after home
  4449. *
  4450. * This G-code will be performed at the start of a calibration script.
  4451. * (Prusa3D specific)
  4452. */
  4453. case 86:
  4454. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4455. break;
  4456. /**
  4457. * ### G87 - Enable babystep correction after home
  4458. *
  4459. *
  4460. * This G-code will be performed at the end of a calibration script.
  4461. * (Prusa3D specific)
  4462. */
  4463. case 87:
  4464. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4465. break;
  4466. /**
  4467. * ### G88 - Reserved
  4468. *
  4469. * Currently has no effect.
  4470. */
  4471. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4472. case 88:
  4473. break;
  4474. #endif // ENABLE_MESH_BED_LEVELING
  4475. //! ### G90 - Switch off relative mode
  4476. // -------------------------------
  4477. case 90:
  4478. relative_mode = false;
  4479. break;
  4480. //! ### G91 - Switch on relative mode
  4481. // -------------------------------
  4482. case 91:
  4483. relative_mode = true;
  4484. break;
  4485. //! ### G92 - Set position
  4486. // -----------------------------
  4487. case 92:
  4488. if(!code_seen(axis_codes[E_AXIS]))
  4489. st_synchronize();
  4490. for(int8_t i=0; i < NUM_AXIS; i++) {
  4491. if(code_seen(axis_codes[i])) {
  4492. if(i == E_AXIS) {
  4493. current_position[i] = code_value();
  4494. plan_set_e_position(current_position[E_AXIS]);
  4495. }
  4496. else {
  4497. current_position[i] = code_value()+cs.add_homing[i];
  4498. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4499. }
  4500. }
  4501. }
  4502. break;
  4503. //! ### G98 - Activate farm mode
  4504. // -----------------------------------
  4505. case 98:
  4506. farm_mode = 1;
  4507. PingTime = _millis();
  4508. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4509. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4510. SilentModeMenu = SILENT_MODE_OFF;
  4511. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4512. fCheckModeInit(); // alternatively invoke printer reset
  4513. break;
  4514. //! ### G99 - Deactivate farm mode
  4515. // -------------------------------------
  4516. case 99:
  4517. farm_mode = 0;
  4518. lcd_printer_connected();
  4519. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4520. lcd_update(2);
  4521. fCheckModeInit(); // alternatively invoke printer reset
  4522. break;
  4523. default:
  4524. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4525. }
  4526. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4527. gcode_in_progress = 0;
  4528. } // end if(code_seen('G'))
  4529. //! ---------------------------------------------------------------------------------
  4530. else if(code_seen('M'))
  4531. {
  4532. int index;
  4533. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4534. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4535. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4536. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4537. } else
  4538. {
  4539. mcode_in_progress = (int)code_value();
  4540. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4541. switch(mcode_in_progress)
  4542. {
  4543. //! ### M0, M1 - Stop the printer
  4544. // ---------------------------------------------------------------
  4545. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4546. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4547. {
  4548. char *src = strchr_pointer + 2;
  4549. codenum = 0;
  4550. bool hasP = false, hasS = false;
  4551. if (code_seen('P')) {
  4552. codenum = code_value(); // milliseconds to wait
  4553. hasP = codenum > 0;
  4554. }
  4555. if (code_seen('S')) {
  4556. codenum = code_value() * 1000; // seconds to wait
  4557. hasS = codenum > 0;
  4558. }
  4559. starpos = strchr(src, '*');
  4560. if (starpos != NULL) *(starpos) = '\0';
  4561. while (*src == ' ') ++src;
  4562. if (!hasP && !hasS && *src != '\0') {
  4563. lcd_setstatus(src);
  4564. } else {
  4565. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4566. }
  4567. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4568. st_synchronize();
  4569. previous_millis_cmd = _millis();
  4570. if (codenum > 0){
  4571. codenum += _millis(); // keep track of when we started waiting
  4572. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4573. while(_millis() < codenum && !lcd_clicked()){
  4574. manage_heater();
  4575. manage_inactivity(true);
  4576. lcd_update(0);
  4577. }
  4578. KEEPALIVE_STATE(IN_HANDLER);
  4579. lcd_ignore_click(false);
  4580. }else{
  4581. marlin_wait_for_click();
  4582. }
  4583. if (IS_SD_PRINTING)
  4584. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4585. else
  4586. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4587. }
  4588. break;
  4589. //! ### M17 - Enable axes
  4590. // ---------------------------------
  4591. case 17:
  4592. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4593. enable_x();
  4594. enable_y();
  4595. enable_z();
  4596. enable_e0();
  4597. enable_e1();
  4598. enable_e2();
  4599. break;
  4600. #ifdef SDSUPPORT
  4601. //! ### M20 - SD Card file list
  4602. // -----------------------------------
  4603. case 20:
  4604. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4605. card.ls();
  4606. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4607. break;
  4608. //! ### M21 - Init SD card
  4609. // ------------------------------------
  4610. case 21:
  4611. card.initsd();
  4612. break;
  4613. //! ### M22 - Release SD card
  4614. // -----------------------------------
  4615. case 22:
  4616. card.release();
  4617. break;
  4618. //! ### M23 - Select file
  4619. // -----------------------------------
  4620. case 23:
  4621. starpos = (strchr(strchr_pointer + 4,'*'));
  4622. if(starpos!=NULL)
  4623. *(starpos)='\0';
  4624. card.openFile(strchr_pointer + 4,true);
  4625. break;
  4626. //! ### M24 - Start SD print
  4627. // ----------------------------------
  4628. case 24:
  4629. if (!card.paused)
  4630. failstats_reset_print();
  4631. card.startFileprint();
  4632. starttime=_millis();
  4633. break;
  4634. //! ### M25 - Pause SD print
  4635. // ----------------------------------
  4636. case 25:
  4637. card.pauseSDPrint();
  4638. break;
  4639. //! ### M26 S\<index\> - Set SD index
  4640. //! Set position in SD card file to index in bytes.
  4641. //! This command is expected to be called after M23 and before M24.
  4642. //! Otherwise effect of this command is undefined.
  4643. // ----------------------------------
  4644. case 26:
  4645. if(card.cardOK && code_seen('S')) {
  4646. long index = code_value_long();
  4647. card.setIndex(index);
  4648. // We don't disable interrupt during update of sdpos_atomic
  4649. // as we expect, that SD card print is not active in this moment
  4650. sdpos_atomic = index;
  4651. }
  4652. break;
  4653. //! ### M27 - Get SD status
  4654. // ----------------------------------
  4655. case 27:
  4656. card.getStatus();
  4657. break;
  4658. //! ### M28 - Start SD write
  4659. // ---------------------------------
  4660. case 28:
  4661. starpos = (strchr(strchr_pointer + 4,'*'));
  4662. if(starpos != NULL){
  4663. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4664. strchr_pointer = strchr(npos,' ') + 1;
  4665. *(starpos) = '\0';
  4666. }
  4667. card.openFile(strchr_pointer+4,false);
  4668. break;
  4669. //! ### M29 - Stop SD write
  4670. // -------------------------------------
  4671. //! Currently has no effect.
  4672. case 29:
  4673. //processed in write to file routine above
  4674. //card,saving = false;
  4675. break;
  4676. //! ### M30 - Delete file <filename>
  4677. // ----------------------------------
  4678. case 30:
  4679. if (card.cardOK){
  4680. card.closefile();
  4681. starpos = (strchr(strchr_pointer + 4,'*'));
  4682. if(starpos != NULL){
  4683. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4684. strchr_pointer = strchr(npos,' ') + 1;
  4685. *(starpos) = '\0';
  4686. }
  4687. card.removeFile(strchr_pointer + 4);
  4688. }
  4689. break;
  4690. //! ### M32 - Select file and start SD print
  4691. // ------------------------------------
  4692. case 32:
  4693. {
  4694. if(card.sdprinting) {
  4695. st_synchronize();
  4696. }
  4697. starpos = (strchr(strchr_pointer + 4,'*'));
  4698. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4699. if(namestartpos==NULL)
  4700. {
  4701. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4702. }
  4703. else
  4704. namestartpos++; //to skip the '!'
  4705. if(starpos!=NULL)
  4706. *(starpos)='\0';
  4707. bool call_procedure=(code_seen('P'));
  4708. if(strchr_pointer>namestartpos)
  4709. call_procedure=false; //false alert, 'P' found within filename
  4710. if( card.cardOK )
  4711. {
  4712. card.openFile(namestartpos,true,!call_procedure);
  4713. if(code_seen('S'))
  4714. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4715. card.setIndex(code_value_long());
  4716. card.startFileprint();
  4717. if(!call_procedure)
  4718. starttime=_millis(); //procedure calls count as normal print time.
  4719. }
  4720. } break;
  4721. //! ### M982 - Start SD write
  4722. // ---------------------------------
  4723. case 928:
  4724. starpos = (strchr(strchr_pointer + 5,'*'));
  4725. if(starpos != NULL){
  4726. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4727. strchr_pointer = strchr(npos,' ') + 1;
  4728. *(starpos) = '\0';
  4729. }
  4730. card.openLogFile(strchr_pointer+5);
  4731. break;
  4732. #endif //SDSUPPORT
  4733. //! ### M31 - Report current print time
  4734. // --------------------------------------------------
  4735. case 31: //M31 take time since the start of the SD print or an M109 command
  4736. {
  4737. stoptime=_millis();
  4738. char time[30];
  4739. unsigned long t=(stoptime-starttime)/1000;
  4740. int sec,min;
  4741. min=t/60;
  4742. sec=t%60;
  4743. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4744. SERIAL_ECHO_START;
  4745. SERIAL_ECHOLN(time);
  4746. lcd_setstatus(time);
  4747. autotempShutdown();
  4748. }
  4749. break;
  4750. //! ### M42 - Set pin state
  4751. // -----------------------------
  4752. case 42:
  4753. if (code_seen('S'))
  4754. {
  4755. int pin_status = code_value();
  4756. int pin_number = LED_PIN;
  4757. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4758. pin_number = code_value();
  4759. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4760. {
  4761. if (sensitive_pins[i] == pin_number)
  4762. {
  4763. pin_number = -1;
  4764. break;
  4765. }
  4766. }
  4767. #if defined(FAN_PIN) && FAN_PIN > -1
  4768. if (pin_number == FAN_PIN)
  4769. fanSpeed = pin_status;
  4770. #endif
  4771. if (pin_number > -1)
  4772. {
  4773. pinMode(pin_number, OUTPUT);
  4774. digitalWrite(pin_number, pin_status);
  4775. analogWrite(pin_number, pin_status);
  4776. }
  4777. }
  4778. break;
  4779. //! ### M44 - Reset the bed skew and offset calibration (Prusa specific)
  4780. // --------------------------------------------------------------------
  4781. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4782. // Reset the baby step value and the baby step applied flag.
  4783. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4784. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4785. // Reset the skew and offset in both RAM and EEPROM.
  4786. reset_bed_offset_and_skew();
  4787. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4788. // the planner will not perform any adjustments in the XY plane.
  4789. // Wait for the motors to stop and update the current position with the absolute values.
  4790. world2machine_revert_to_uncorrected();
  4791. break;
  4792. //! ### M45 - Bed skew and offset with manual Z up (Prusa specific)
  4793. // ------------------------------------------------------
  4794. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4795. {
  4796. int8_t verbosity_level = 0;
  4797. bool only_Z = code_seen('Z');
  4798. #ifdef SUPPORT_VERBOSITY
  4799. if (code_seen('V'))
  4800. {
  4801. // Just 'V' without a number counts as V1.
  4802. char c = strchr_pointer[1];
  4803. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4804. }
  4805. #endif //SUPPORT_VERBOSITY
  4806. gcode_M45(only_Z, verbosity_level);
  4807. }
  4808. break;
  4809. /*
  4810. case 46:
  4811. {
  4812. // M46: Prusa3D: Show the assigned IP address.
  4813. uint8_t ip[4];
  4814. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4815. if (hasIP) {
  4816. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4817. SERIAL_ECHO(int(ip[0]));
  4818. SERIAL_ECHOPGM(".");
  4819. SERIAL_ECHO(int(ip[1]));
  4820. SERIAL_ECHOPGM(".");
  4821. SERIAL_ECHO(int(ip[2]));
  4822. SERIAL_ECHOPGM(".");
  4823. SERIAL_ECHO(int(ip[3]));
  4824. SERIAL_ECHOLNPGM("");
  4825. } else {
  4826. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4827. }
  4828. break;
  4829. }
  4830. */
  4831. //! ### M47 - Show end stops dialog on the display (Prusa specific)
  4832. // ----------------------------------------------------
  4833. case 47:
  4834. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4835. lcd_diag_show_end_stops();
  4836. KEEPALIVE_STATE(IN_HANDLER);
  4837. break;
  4838. #if 0
  4839. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4840. {
  4841. // Disable the default update procedure of the display. We will do a modal dialog.
  4842. lcd_update_enable(false);
  4843. // Let the planner use the uncorrected coordinates.
  4844. mbl.reset();
  4845. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4846. // the planner will not perform any adjustments in the XY plane.
  4847. // Wait for the motors to stop and update the current position with the absolute values.
  4848. world2machine_revert_to_uncorrected();
  4849. // Move the print head close to the bed.
  4850. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4852. st_synchronize();
  4853. // Home in the XY plane.
  4854. set_destination_to_current();
  4855. int l_feedmultiply = setup_for_endstop_move();
  4856. home_xy();
  4857. int8_t verbosity_level = 0;
  4858. if (code_seen('V')) {
  4859. // Just 'V' without a number counts as V1.
  4860. char c = strchr_pointer[1];
  4861. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4862. }
  4863. bool success = scan_bed_induction_points(verbosity_level);
  4864. clean_up_after_endstop_move(l_feedmultiply);
  4865. // Print head up.
  4866. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4867. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4868. st_synchronize();
  4869. lcd_update_enable(true);
  4870. break;
  4871. }
  4872. #endif
  4873. #ifdef ENABLE_AUTO_BED_LEVELING
  4874. #ifdef Z_PROBE_REPEATABILITY_TEST
  4875. //! ### M48 - Z-Probe repeatability measurement function.
  4876. // ------------------------------------------------------
  4877. //!
  4878. //! _Usage:_
  4879. //!
  4880. //! M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4881. //!
  4882. //! This function assumes the bed has been homed. Specifically, that a G28 command
  4883. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4884. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4885. //! regenerated.
  4886. //!
  4887. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4888. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4889. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4890. //!
  4891. case 48: // M48 Z-Probe repeatability
  4892. {
  4893. #if Z_MIN_PIN == -1
  4894. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4895. #endif
  4896. double sum=0.0;
  4897. double mean=0.0;
  4898. double sigma=0.0;
  4899. double sample_set[50];
  4900. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4901. double X_current, Y_current, Z_current;
  4902. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4903. if (code_seen('V') || code_seen('v')) {
  4904. verbose_level = code_value();
  4905. if (verbose_level<0 || verbose_level>4 ) {
  4906. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4907. goto Sigma_Exit;
  4908. }
  4909. }
  4910. if (verbose_level > 0) {
  4911. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4912. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4913. }
  4914. if (code_seen('n')) {
  4915. n_samples = code_value();
  4916. if (n_samples<4 || n_samples>50 ) {
  4917. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4918. goto Sigma_Exit;
  4919. }
  4920. }
  4921. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4922. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4923. Z_current = st_get_position_mm(Z_AXIS);
  4924. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4925. ext_position = st_get_position_mm(E_AXIS);
  4926. if (code_seen('X') || code_seen('x') ) {
  4927. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4928. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4929. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4930. goto Sigma_Exit;
  4931. }
  4932. }
  4933. if (code_seen('Y') || code_seen('y') ) {
  4934. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4935. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4936. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4937. goto Sigma_Exit;
  4938. }
  4939. }
  4940. if (code_seen('L') || code_seen('l') ) {
  4941. n_legs = code_value();
  4942. if ( n_legs==1 )
  4943. n_legs = 2;
  4944. if ( n_legs<0 || n_legs>15 ) {
  4945. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4946. goto Sigma_Exit;
  4947. }
  4948. }
  4949. //
  4950. // Do all the preliminary setup work. First raise the probe.
  4951. //
  4952. st_synchronize();
  4953. plan_bed_level_matrix.set_to_identity();
  4954. plan_buffer_line( X_current, Y_current, Z_start_location,
  4955. ext_position,
  4956. homing_feedrate[Z_AXIS]/60,
  4957. active_extruder);
  4958. st_synchronize();
  4959. //
  4960. // Now get everything to the specified probe point So we can safely do a probe to
  4961. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4962. // use that as a starting point for each probe.
  4963. //
  4964. if (verbose_level > 2)
  4965. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4966. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4967. ext_position,
  4968. homing_feedrate[X_AXIS]/60,
  4969. active_extruder);
  4970. st_synchronize();
  4971. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4972. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4973. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4974. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4975. //
  4976. // OK, do the inital probe to get us close to the bed.
  4977. // Then retrace the right amount and use that in subsequent probes
  4978. //
  4979. int l_feedmultiply = setup_for_endstop_move();
  4980. run_z_probe();
  4981. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4982. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4983. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4984. ext_position,
  4985. homing_feedrate[X_AXIS]/60,
  4986. active_extruder);
  4987. st_synchronize();
  4988. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4989. for( n=0; n<n_samples; n++) {
  4990. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4991. if ( n_legs) {
  4992. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4993. int rotational_direction, l;
  4994. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4995. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4996. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4997. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4998. //SERIAL_ECHOPAIR(" theta: ",theta);
  4999. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5000. //SERIAL_PROTOCOLLNPGM("");
  5001. for( l=0; l<n_legs-1; l++) {
  5002. if (rotational_direction==1)
  5003. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5004. else
  5005. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5006. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5007. if ( radius<0.0 )
  5008. radius = -radius;
  5009. X_current = X_probe_location + cos(theta) * radius;
  5010. Y_current = Y_probe_location + sin(theta) * radius;
  5011. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5012. X_current = X_MIN_POS;
  5013. if ( X_current>X_MAX_POS)
  5014. X_current = X_MAX_POS;
  5015. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5016. Y_current = Y_MIN_POS;
  5017. if ( Y_current>Y_MAX_POS)
  5018. Y_current = Y_MAX_POS;
  5019. if (verbose_level>3 ) {
  5020. SERIAL_ECHOPAIR("x: ", X_current);
  5021. SERIAL_ECHOPAIR("y: ", Y_current);
  5022. SERIAL_PROTOCOLLNPGM("");
  5023. }
  5024. do_blocking_move_to( X_current, Y_current, Z_current );
  5025. }
  5026. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5027. }
  5028. int l_feedmultiply = setup_for_endstop_move();
  5029. run_z_probe();
  5030. sample_set[n] = current_position[Z_AXIS];
  5031. //
  5032. // Get the current mean for the data points we have so far
  5033. //
  5034. sum=0.0;
  5035. for( j=0; j<=n; j++) {
  5036. sum = sum + sample_set[j];
  5037. }
  5038. mean = sum / (double (n+1));
  5039. //
  5040. // Now, use that mean to calculate the standard deviation for the
  5041. // data points we have so far
  5042. //
  5043. sum=0.0;
  5044. for( j=0; j<=n; j++) {
  5045. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5046. }
  5047. sigma = sqrt( sum / (double (n+1)) );
  5048. if (verbose_level > 1) {
  5049. SERIAL_PROTOCOL(n+1);
  5050. SERIAL_PROTOCOL(" of ");
  5051. SERIAL_PROTOCOL(n_samples);
  5052. SERIAL_PROTOCOLPGM(" z: ");
  5053. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5054. }
  5055. if (verbose_level > 2) {
  5056. SERIAL_PROTOCOL(" mean: ");
  5057. SERIAL_PROTOCOL_F(mean,6);
  5058. SERIAL_PROTOCOL(" sigma: ");
  5059. SERIAL_PROTOCOL_F(sigma,6);
  5060. }
  5061. if (verbose_level > 0)
  5062. SERIAL_PROTOCOLPGM("\n");
  5063. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5064. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5065. st_synchronize();
  5066. }
  5067. _delay(1000);
  5068. clean_up_after_endstop_move(l_feedmultiply);
  5069. // enable_endstops(true);
  5070. if (verbose_level > 0) {
  5071. SERIAL_PROTOCOLPGM("Mean: ");
  5072. SERIAL_PROTOCOL_F(mean, 6);
  5073. SERIAL_PROTOCOLPGM("\n");
  5074. }
  5075. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5076. SERIAL_PROTOCOL_F(sigma, 6);
  5077. SERIAL_PROTOCOLPGM("\n\n");
  5078. Sigma_Exit:
  5079. break;
  5080. }
  5081. #endif // Z_PROBE_REPEATABILITY_TEST
  5082. #endif // ENABLE_AUTO_BED_LEVELING
  5083. //! ### M73 - Set/get print progress
  5084. // -------------------------------------
  5085. //! _Usage:_
  5086. //!
  5087. //! M73 P<percent> R<time_remaining> Q<percent_silent> S<time_remaining_silent>
  5088. //!
  5089. case 73: //M73 show percent done and time remaining
  5090. if(code_seen('P')) print_percent_done_normal = code_value();
  5091. if(code_seen('R')) print_time_remaining_normal = code_value();
  5092. if(code_seen('Q')) print_percent_done_silent = code_value();
  5093. if(code_seen('S')) print_time_remaining_silent = code_value();
  5094. {
  5095. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5096. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5097. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5098. }
  5099. break;
  5100. //! ### M104 - Set hotend temperature
  5101. // -----------------------------------------
  5102. case 104: // M104
  5103. {
  5104. uint8_t extruder;
  5105. if(setTargetedHotend(104,extruder)){
  5106. break;
  5107. }
  5108. if (code_seen('S'))
  5109. {
  5110. setTargetHotendSafe(code_value(), extruder);
  5111. }
  5112. break;
  5113. }
  5114. //! ### M112 - Emergency stop
  5115. // -----------------------------------------
  5116. case 112:
  5117. kill(_n(""), 3);
  5118. break;
  5119. //! ### M140 - Set bed temperature
  5120. // -----------------------------------------
  5121. case 140:
  5122. if (code_seen('S')) setTargetBed(code_value());
  5123. break;
  5124. //! ### M105 - Report temperatures
  5125. // -----------------------------------------
  5126. case 105:
  5127. {
  5128. uint8_t extruder;
  5129. if(setTargetedHotend(105, extruder)){
  5130. break;
  5131. }
  5132. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5133. SERIAL_PROTOCOLPGM("ok T:");
  5134. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5135. SERIAL_PROTOCOLPGM(" /");
  5136. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5137. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5138. SERIAL_PROTOCOLPGM(" B:");
  5139. SERIAL_PROTOCOL_F(degBed(),1);
  5140. SERIAL_PROTOCOLPGM(" /");
  5141. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5142. #endif //TEMP_BED_PIN
  5143. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5144. SERIAL_PROTOCOLPGM(" T");
  5145. SERIAL_PROTOCOL(cur_extruder);
  5146. SERIAL_PROTOCOLPGM(":");
  5147. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5148. SERIAL_PROTOCOLPGM(" /");
  5149. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5150. }
  5151. #else
  5152. SERIAL_ERROR_START;
  5153. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5154. #endif
  5155. SERIAL_PROTOCOLPGM(" @:");
  5156. #ifdef EXTRUDER_WATTS
  5157. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5158. SERIAL_PROTOCOLPGM("W");
  5159. #else
  5160. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5161. #endif
  5162. SERIAL_PROTOCOLPGM(" B@:");
  5163. #ifdef BED_WATTS
  5164. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5165. SERIAL_PROTOCOLPGM("W");
  5166. #else
  5167. SERIAL_PROTOCOL(getHeaterPower(-1));
  5168. #endif
  5169. #ifdef PINDA_THERMISTOR
  5170. SERIAL_PROTOCOLPGM(" P:");
  5171. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5172. #endif //PINDA_THERMISTOR
  5173. #ifdef AMBIENT_THERMISTOR
  5174. SERIAL_PROTOCOLPGM(" A:");
  5175. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5176. #endif //AMBIENT_THERMISTOR
  5177. #ifdef SHOW_TEMP_ADC_VALUES
  5178. {float raw = 0.0;
  5179. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5180. SERIAL_PROTOCOLPGM(" ADC B:");
  5181. SERIAL_PROTOCOL_F(degBed(),1);
  5182. SERIAL_PROTOCOLPGM("C->");
  5183. raw = rawBedTemp();
  5184. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5185. SERIAL_PROTOCOLPGM(" Rb->");
  5186. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5187. SERIAL_PROTOCOLPGM(" Rxb->");
  5188. SERIAL_PROTOCOL_F(raw, 5);
  5189. #endif
  5190. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5191. SERIAL_PROTOCOLPGM(" T");
  5192. SERIAL_PROTOCOL(cur_extruder);
  5193. SERIAL_PROTOCOLPGM(":");
  5194. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5195. SERIAL_PROTOCOLPGM("C->");
  5196. raw = rawHotendTemp(cur_extruder);
  5197. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5198. SERIAL_PROTOCOLPGM(" Rt");
  5199. SERIAL_PROTOCOL(cur_extruder);
  5200. SERIAL_PROTOCOLPGM("->");
  5201. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5202. SERIAL_PROTOCOLPGM(" Rx");
  5203. SERIAL_PROTOCOL(cur_extruder);
  5204. SERIAL_PROTOCOLPGM("->");
  5205. SERIAL_PROTOCOL_F(raw, 5);
  5206. }}
  5207. #endif
  5208. SERIAL_PROTOCOLLN("");
  5209. KEEPALIVE_STATE(NOT_BUSY);
  5210. return;
  5211. break;
  5212. }
  5213. //! ### M109 - Wait for extruder temperature
  5214. //! Parameters (not mandatory):
  5215. //! * S \<temp\> set extruder temperature
  5216. //! * R \<temp\> set extruder temperature
  5217. //!
  5218. //! Parameters S and R are treated identically.
  5219. //! Command always waits for both cool down and heat up.
  5220. //! If no parameters are supplied waits for previously
  5221. //! set extruder temperature.
  5222. // -------------------------------------------------
  5223. case 109:
  5224. {
  5225. uint8_t extruder;
  5226. if(setTargetedHotend(109, extruder)){
  5227. break;
  5228. }
  5229. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5230. heating_status = 1;
  5231. if (farm_mode) { prusa_statistics(1); };
  5232. #ifdef AUTOTEMP
  5233. autotemp_enabled=false;
  5234. #endif
  5235. if (code_seen('S')) {
  5236. setTargetHotendSafe(code_value(), extruder);
  5237. } else if (code_seen('R')) {
  5238. setTargetHotendSafe(code_value(), extruder);
  5239. }
  5240. #ifdef AUTOTEMP
  5241. if (code_seen('S')) autotemp_min=code_value();
  5242. if (code_seen('B')) autotemp_max=code_value();
  5243. if (code_seen('F'))
  5244. {
  5245. autotemp_factor=code_value();
  5246. autotemp_enabled=true;
  5247. }
  5248. #endif
  5249. codenum = _millis();
  5250. /* See if we are heating up or cooling down */
  5251. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5252. KEEPALIVE_STATE(NOT_BUSY);
  5253. cancel_heatup = false;
  5254. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5255. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5256. KEEPALIVE_STATE(IN_HANDLER);
  5257. heating_status = 2;
  5258. if (farm_mode) { prusa_statistics(2); };
  5259. //starttime=_millis();
  5260. previous_millis_cmd = _millis();
  5261. }
  5262. break;
  5263. //! ### M190 - Wait for bed temperature
  5264. //! Parameters (not mandatory):
  5265. //! * S \<temp\> set extruder temperature and wait for heating
  5266. //! * R \<temp\> set extruder temperature and wait for heating or cooling
  5267. //!
  5268. //! If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5269. case 190:
  5270. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5271. {
  5272. bool CooldownNoWait = false;
  5273. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5274. heating_status = 3;
  5275. if (farm_mode) { prusa_statistics(1); };
  5276. if (code_seen('S'))
  5277. {
  5278. setTargetBed(code_value());
  5279. CooldownNoWait = true;
  5280. }
  5281. else if (code_seen('R'))
  5282. {
  5283. setTargetBed(code_value());
  5284. }
  5285. codenum = _millis();
  5286. cancel_heatup = false;
  5287. target_direction = isHeatingBed(); // true if heating, false if cooling
  5288. KEEPALIVE_STATE(NOT_BUSY);
  5289. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5290. {
  5291. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5292. {
  5293. if (!farm_mode) {
  5294. float tt = degHotend(active_extruder);
  5295. SERIAL_PROTOCOLPGM("T:");
  5296. SERIAL_PROTOCOL(tt);
  5297. SERIAL_PROTOCOLPGM(" E:");
  5298. SERIAL_PROTOCOL((int)active_extruder);
  5299. SERIAL_PROTOCOLPGM(" B:");
  5300. SERIAL_PROTOCOL_F(degBed(), 1);
  5301. SERIAL_PROTOCOLLN("");
  5302. }
  5303. codenum = _millis();
  5304. }
  5305. manage_heater();
  5306. manage_inactivity();
  5307. lcd_update(0);
  5308. }
  5309. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5310. KEEPALIVE_STATE(IN_HANDLER);
  5311. heating_status = 4;
  5312. previous_millis_cmd = _millis();
  5313. }
  5314. #endif
  5315. break;
  5316. #if defined(FAN_PIN) && FAN_PIN > -1
  5317. //! ### M106 - Set fan speed
  5318. // -------------------------------------------
  5319. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5320. if (code_seen('S')){
  5321. fanSpeed=constrain(code_value(),0,255);
  5322. }
  5323. else {
  5324. fanSpeed=255;
  5325. }
  5326. break;
  5327. //! ### M107 - Fan off
  5328. // -------------------------------
  5329. case 107:
  5330. fanSpeed = 0;
  5331. break;
  5332. #endif //FAN_PIN
  5333. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5334. //! ### M80 - Turn on the Power Supply
  5335. // -------------------------------
  5336. case 80:
  5337. SET_OUTPUT(PS_ON_PIN); //GND
  5338. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5339. // If you have a switch on suicide pin, this is useful
  5340. // if you want to start another print with suicide feature after
  5341. // a print without suicide...
  5342. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5343. SET_OUTPUT(SUICIDE_PIN);
  5344. WRITE(SUICIDE_PIN, HIGH);
  5345. #endif
  5346. powersupply = true;
  5347. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5348. lcd_update(0);
  5349. break;
  5350. #endif
  5351. //! ### M81 - Turn off Power Supply
  5352. // --------------------------------------
  5353. case 81:
  5354. disable_heater();
  5355. st_synchronize();
  5356. disable_e0();
  5357. disable_e1();
  5358. disable_e2();
  5359. finishAndDisableSteppers();
  5360. fanSpeed = 0;
  5361. _delay(1000); // Wait a little before to switch off
  5362. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5363. st_synchronize();
  5364. suicide();
  5365. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5366. SET_OUTPUT(PS_ON_PIN);
  5367. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5368. #endif
  5369. powersupply = false;
  5370. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5371. lcd_update(0);
  5372. break;
  5373. //! ### M82 - Set E axis to absolute mode
  5374. // ---------------------------------------
  5375. case 82:
  5376. axis_relative_modes[3] = false;
  5377. break;
  5378. //! ### M83 - Set E axis to relative mode
  5379. // ---------------------------------------
  5380. case 83:
  5381. axis_relative_modes[3] = true;
  5382. break;
  5383. //! ### M84, M18 - Disable steppers
  5384. //---------------------------------------
  5385. //! This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5386. //!
  5387. //! M84 [E<flag>] [S<seconds>] [X<flag>] [Y<flag>] [Z<flag>]
  5388. //!
  5389. case 18: //compatibility
  5390. case 84: // M84
  5391. if(code_seen('S')){
  5392. stepper_inactive_time = code_value() * 1000;
  5393. }
  5394. else
  5395. {
  5396. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5397. if(all_axis)
  5398. {
  5399. st_synchronize();
  5400. disable_e0();
  5401. disable_e1();
  5402. disable_e2();
  5403. finishAndDisableSteppers();
  5404. }
  5405. else
  5406. {
  5407. st_synchronize();
  5408. if (code_seen('X')) disable_x();
  5409. if (code_seen('Y')) disable_y();
  5410. if (code_seen('Z')) disable_z();
  5411. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5412. if (code_seen('E')) {
  5413. disable_e0();
  5414. disable_e1();
  5415. disable_e2();
  5416. }
  5417. #endif
  5418. }
  5419. }
  5420. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5421. print_time_remaining_init();
  5422. snmm_filaments_used = 0;
  5423. break;
  5424. //! ### M85 - Set max inactive time
  5425. // ---------------------------------------
  5426. case 85: // M85
  5427. if(code_seen('S')) {
  5428. max_inactive_time = code_value() * 1000;
  5429. }
  5430. break;
  5431. #ifdef SAFETYTIMER
  5432. //! ### M86 - Set safety timer expiration time
  5433. //!
  5434. //! _Usage:_
  5435. //! M86 S<seconds>
  5436. //!
  5437. //! Sets the safety timer expiration time in seconds. M86 S0 will disable safety timer.
  5438. //! When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5439. case 86:
  5440. if (code_seen('S')) {
  5441. safetytimer_inactive_time = code_value() * 1000;
  5442. safetyTimer.start();
  5443. }
  5444. break;
  5445. #endif
  5446. //! ### M92 Set Axis steps-per-unit
  5447. // ---------------------------------------
  5448. //! Same syntax as G92
  5449. case 92:
  5450. for(int8_t i=0; i < NUM_AXIS; i++)
  5451. {
  5452. if(code_seen(axis_codes[i]))
  5453. {
  5454. if(i == 3) { // E
  5455. float value = code_value();
  5456. if(value < 20.0) {
  5457. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5458. cs.max_jerk[E_AXIS] *= factor;
  5459. max_feedrate[i] *= factor;
  5460. axis_steps_per_sqr_second[i] *= factor;
  5461. }
  5462. cs.axis_steps_per_unit[i] = value;
  5463. }
  5464. else {
  5465. cs.axis_steps_per_unit[i] = code_value();
  5466. }
  5467. }
  5468. }
  5469. break;
  5470. //! ### M110 - Set Line number
  5471. // ---------------------------------------
  5472. case 110:
  5473. if (code_seen('N'))
  5474. gcode_LastN = code_value_long();
  5475. break;
  5476. //! ### M113 - Get or set host keep-alive interval
  5477. // ------------------------------------------
  5478. case 113:
  5479. if (code_seen('S')) {
  5480. host_keepalive_interval = (uint8_t)code_value_short();
  5481. // NOMORE(host_keepalive_interval, 60);
  5482. }
  5483. else {
  5484. SERIAL_ECHO_START;
  5485. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5486. SERIAL_PROTOCOLLN("");
  5487. }
  5488. break;
  5489. //! ### M115 - Firmware info
  5490. // --------------------------------------
  5491. //! Print the firmware info and capabilities
  5492. //!
  5493. //! M115 [V] [U<version>]
  5494. //!
  5495. //! Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5496. //! `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5497. //! pause the print for 30s and ask the user to upgrade the firmware.
  5498. case 115: // M115
  5499. if (code_seen('V')) {
  5500. // Report the Prusa version number.
  5501. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5502. } else if (code_seen('U')) {
  5503. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5504. // pause the print for 30s and ask the user to upgrade the firmware.
  5505. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5506. } else {
  5507. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5508. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5509. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5510. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5511. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5512. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5513. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5514. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5515. SERIAL_ECHOPGM(" UUID:");
  5516. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5517. }
  5518. break;
  5519. //! ### M114 - Get current position
  5520. // -------------------------------------
  5521. case 114:
  5522. gcode_M114();
  5523. break;
  5524. //! ### M117 - Set LCD Message
  5525. // --------------------------------------
  5526. /*
  5527. M117 moved up to get the high priority
  5528. case 117: // M117 display message
  5529. starpos = (strchr(strchr_pointer + 5,'*'));
  5530. if(starpos!=NULL)
  5531. *(starpos)='\0';
  5532. lcd_setstatus(strchr_pointer + 5);
  5533. break;*/
  5534. //! ### M120 - Disable endstops
  5535. // ----------------------------------------
  5536. case 120:
  5537. enable_endstops(false) ;
  5538. break;
  5539. //! ### M121 - Enable endstops
  5540. // ----------------------------------------
  5541. case 121:
  5542. enable_endstops(true) ;
  5543. break;
  5544. //! ### M119 - Get endstop states
  5545. // ----------------------------------------
  5546. case 119:
  5547. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5548. SERIAL_PROTOCOLLN("");
  5549. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5550. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5551. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5552. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5553. }else{
  5554. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5555. }
  5556. SERIAL_PROTOCOLLN("");
  5557. #endif
  5558. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5559. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5560. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5561. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5562. }else{
  5563. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5564. }
  5565. SERIAL_PROTOCOLLN("");
  5566. #endif
  5567. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5568. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5569. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5570. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5571. }else{
  5572. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5573. }
  5574. SERIAL_PROTOCOLLN("");
  5575. #endif
  5576. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5577. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5578. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5579. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5580. }else{
  5581. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5582. }
  5583. SERIAL_PROTOCOLLN("");
  5584. #endif
  5585. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5586. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5587. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5588. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5589. }else{
  5590. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5591. }
  5592. SERIAL_PROTOCOLLN("");
  5593. #endif
  5594. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5595. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5596. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5597. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5598. }else{
  5599. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5600. }
  5601. SERIAL_PROTOCOLLN("");
  5602. #endif
  5603. break;
  5604. //TODO: update for all axis, use for loop
  5605. #ifdef BLINKM
  5606. //! ### M150 - Set RGB(W) Color
  5607. // -------------------------------------------
  5608. case 150:
  5609. {
  5610. byte red;
  5611. byte grn;
  5612. byte blu;
  5613. if(code_seen('R')) red = code_value();
  5614. if(code_seen('U')) grn = code_value();
  5615. if(code_seen('B')) blu = code_value();
  5616. SendColors(red,grn,blu);
  5617. }
  5618. break;
  5619. #endif //BLINKM
  5620. //! ### M200 - Set filament diameter
  5621. // ----------------------------------------
  5622. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5623. {
  5624. uint8_t extruder = active_extruder;
  5625. if(code_seen('T')) {
  5626. extruder = code_value();
  5627. if(extruder >= EXTRUDERS) {
  5628. SERIAL_ECHO_START;
  5629. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5630. break;
  5631. }
  5632. }
  5633. if(code_seen('D')) {
  5634. float diameter = (float)code_value();
  5635. if (diameter == 0.0) {
  5636. // setting any extruder filament size disables volumetric on the assumption that
  5637. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5638. // for all extruders
  5639. cs.volumetric_enabled = false;
  5640. } else {
  5641. cs.filament_size[extruder] = (float)code_value();
  5642. // make sure all extruders have some sane value for the filament size
  5643. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5644. #if EXTRUDERS > 1
  5645. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5646. #if EXTRUDERS > 2
  5647. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5648. #endif
  5649. #endif
  5650. cs.volumetric_enabled = true;
  5651. }
  5652. } else {
  5653. //reserved for setting filament diameter via UFID or filament measuring device
  5654. break;
  5655. }
  5656. calculate_extruder_multipliers();
  5657. }
  5658. break;
  5659. //! ### M201 - Set Print Max Acceleration
  5660. // -------------------------------------------
  5661. case 201:
  5662. for (int8_t i = 0; i < NUM_AXIS; i++)
  5663. {
  5664. if (code_seen(axis_codes[i]))
  5665. {
  5666. unsigned long val = code_value();
  5667. #ifdef TMC2130
  5668. unsigned long val_silent = val;
  5669. if ((i == X_AXIS) || (i == Y_AXIS))
  5670. {
  5671. if (val > NORMAL_MAX_ACCEL_XY)
  5672. val = NORMAL_MAX_ACCEL_XY;
  5673. if (val_silent > SILENT_MAX_ACCEL_XY)
  5674. val_silent = SILENT_MAX_ACCEL_XY;
  5675. }
  5676. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5677. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5678. #else //TMC2130
  5679. max_acceleration_units_per_sq_second[i] = val;
  5680. #endif //TMC2130
  5681. }
  5682. }
  5683. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5684. reset_acceleration_rates();
  5685. break;
  5686. #if 0 // Not used for Sprinter/grbl gen6
  5687. case 202: // M202
  5688. for(int8_t i=0; i < NUM_AXIS; i++) {
  5689. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5690. }
  5691. break;
  5692. #endif
  5693. //! ### M203 - Set Max Feedrate
  5694. // ---------------------------------------
  5695. case 203: // M203 max feedrate mm/sec
  5696. for (int8_t i = 0; i < NUM_AXIS; i++)
  5697. {
  5698. if (code_seen(axis_codes[i]))
  5699. {
  5700. float val = code_value();
  5701. #ifdef TMC2130
  5702. float val_silent = val;
  5703. if ((i == X_AXIS) || (i == Y_AXIS))
  5704. {
  5705. if (val > NORMAL_MAX_FEEDRATE_XY)
  5706. val = NORMAL_MAX_FEEDRATE_XY;
  5707. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5708. val_silent = SILENT_MAX_FEEDRATE_XY;
  5709. }
  5710. cs.max_feedrate_normal[i] = val;
  5711. cs.max_feedrate_silent[i] = val_silent;
  5712. #else //TMC2130
  5713. max_feedrate[i] = val;
  5714. #endif //TMC2130
  5715. }
  5716. }
  5717. break;
  5718. //! ### M204 - Acceleration settings
  5719. // ------------------------------------------
  5720. //! Supporting old format:
  5721. //!
  5722. //! M204 S[normal moves] T[filmanent only moves]
  5723. //!
  5724. //! and new format:
  5725. //!
  5726. //! M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5727. case 204:
  5728. {
  5729. if(code_seen('S')) {
  5730. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5731. // and it is also generated by Slic3r to control acceleration per extrusion type
  5732. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5733. cs.acceleration = code_value();
  5734. // Interpret the T value as retract acceleration in the old Marlin format.
  5735. if(code_seen('T'))
  5736. cs.retract_acceleration = code_value();
  5737. } else {
  5738. // New acceleration format, compatible with the upstream Marlin.
  5739. if(code_seen('P'))
  5740. cs.acceleration = code_value();
  5741. if(code_seen('R'))
  5742. cs.retract_acceleration = code_value();
  5743. if(code_seen('T')) {
  5744. // Interpret the T value as the travel acceleration in the new Marlin format.
  5745. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5746. // travel_acceleration = code_value();
  5747. }
  5748. }
  5749. }
  5750. break;
  5751. //! ### M205 - Set advanced settings
  5752. // ---------------------------------------------
  5753. //! Set some advanced settings related to movement.
  5754. //!
  5755. //! M205 [S] [T] [B] [X] [Y] [Z] [E]
  5756. /*!
  5757. - `S` - Minimum feedrate for print moves (unit/s)
  5758. - `T` - Minimum feedrate for travel moves (units/s)
  5759. - `B` - Minimum segment time (us)
  5760. - `X` - Maximum X jerk (units/s), similarly for other axes
  5761. */
  5762. case 205:
  5763. {
  5764. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5765. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5766. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5767. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5768. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5769. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5770. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5771. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5772. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5773. }
  5774. break;
  5775. //! ### M206 - Set additional homing offsets
  5776. // ----------------------------------------------
  5777. case 206:
  5778. for(int8_t i=0; i < 3; i++)
  5779. {
  5780. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5781. }
  5782. break;
  5783. #ifdef FWRETRACT
  5784. //! ### M207 - Set firmware retraction
  5785. // --------------------------------------------------
  5786. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5787. {
  5788. if(code_seen('S'))
  5789. {
  5790. cs.retract_length = code_value() ;
  5791. }
  5792. if(code_seen('F'))
  5793. {
  5794. cs.retract_feedrate = code_value()/60 ;
  5795. }
  5796. if(code_seen('Z'))
  5797. {
  5798. cs.retract_zlift = code_value() ;
  5799. }
  5800. }break;
  5801. //! ### M208 - Set retract recover length
  5802. // --------------------------------------------
  5803. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5804. {
  5805. if(code_seen('S'))
  5806. {
  5807. cs.retract_recover_length = code_value() ;
  5808. }
  5809. if(code_seen('F'))
  5810. {
  5811. cs.retract_recover_feedrate = code_value()/60 ;
  5812. }
  5813. }break;
  5814. //! ### M209 - Enable/disable automatict retract
  5815. // ---------------------------------------------
  5816. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5817. {
  5818. if(code_seen('S'))
  5819. {
  5820. int t= code_value() ;
  5821. switch(t)
  5822. {
  5823. case 0:
  5824. {
  5825. cs.autoretract_enabled=false;
  5826. retracted[0]=false;
  5827. #if EXTRUDERS > 1
  5828. retracted[1]=false;
  5829. #endif
  5830. #if EXTRUDERS > 2
  5831. retracted[2]=false;
  5832. #endif
  5833. }break;
  5834. case 1:
  5835. {
  5836. cs.autoretract_enabled=true;
  5837. retracted[0]=false;
  5838. #if EXTRUDERS > 1
  5839. retracted[1]=false;
  5840. #endif
  5841. #if EXTRUDERS > 2
  5842. retracted[2]=false;
  5843. #endif
  5844. }break;
  5845. default:
  5846. SERIAL_ECHO_START;
  5847. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5848. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5849. SERIAL_ECHOLNPGM("\"(1)");
  5850. }
  5851. }
  5852. }break;
  5853. #endif // FWRETRACT
  5854. #if EXTRUDERS > 1
  5855. // ### M218 - Set hotend offset
  5856. // ----------------------------------------
  5857. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5858. {
  5859. uint8_t extruder;
  5860. if(setTargetedHotend(218, extruder)){
  5861. break;
  5862. }
  5863. if(code_seen('X'))
  5864. {
  5865. extruder_offset[X_AXIS][extruder] = code_value();
  5866. }
  5867. if(code_seen('Y'))
  5868. {
  5869. extruder_offset[Y_AXIS][extruder] = code_value();
  5870. }
  5871. SERIAL_ECHO_START;
  5872. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5873. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5874. {
  5875. SERIAL_ECHO(" ");
  5876. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5877. SERIAL_ECHO(",");
  5878. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5879. }
  5880. SERIAL_ECHOLN("");
  5881. }break;
  5882. #endif
  5883. //! ### M220 Set feedrate percentage
  5884. // -----------------------------------------------
  5885. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5886. {
  5887. if (code_seen('B')) //backup current speed factor
  5888. {
  5889. saved_feedmultiply_mm = feedmultiply;
  5890. }
  5891. if(code_seen('S'))
  5892. {
  5893. feedmultiply = code_value() ;
  5894. }
  5895. if (code_seen('R')) { //restore previous feedmultiply
  5896. feedmultiply = saved_feedmultiply_mm;
  5897. }
  5898. }
  5899. break;
  5900. //! ### M221 - Set extrude factor override percentage
  5901. // ----------------------------------------------------
  5902. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5903. {
  5904. if(code_seen('S'))
  5905. {
  5906. int tmp_code = code_value();
  5907. if (code_seen('T'))
  5908. {
  5909. uint8_t extruder;
  5910. if(setTargetedHotend(221, extruder)){
  5911. break;
  5912. }
  5913. extruder_multiply[extruder] = tmp_code;
  5914. }
  5915. else
  5916. {
  5917. extrudemultiply = tmp_code ;
  5918. }
  5919. }
  5920. calculate_extruder_multipliers();
  5921. }
  5922. break;
  5923. //! ### M226 - Wait for Pin state
  5924. // ------------------------------------------
  5925. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5926. {
  5927. if(code_seen('P')){
  5928. int pin_number = code_value(); // pin number
  5929. int pin_state = -1; // required pin state - default is inverted
  5930. if(code_seen('S')) pin_state = code_value(); // required pin state
  5931. if(pin_state >= -1 && pin_state <= 1){
  5932. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5933. {
  5934. if (sensitive_pins[i] == pin_number)
  5935. {
  5936. pin_number = -1;
  5937. break;
  5938. }
  5939. }
  5940. if (pin_number > -1)
  5941. {
  5942. int target = LOW;
  5943. st_synchronize();
  5944. pinMode(pin_number, INPUT);
  5945. switch(pin_state){
  5946. case 1:
  5947. target = HIGH;
  5948. break;
  5949. case 0:
  5950. target = LOW;
  5951. break;
  5952. case -1:
  5953. target = !digitalRead(pin_number);
  5954. break;
  5955. }
  5956. while(digitalRead(pin_number) != target){
  5957. manage_heater();
  5958. manage_inactivity();
  5959. lcd_update(0);
  5960. }
  5961. }
  5962. }
  5963. }
  5964. }
  5965. break;
  5966. #if NUM_SERVOS > 0
  5967. //! ### M280 - Set/Get servo position
  5968. // --------------------------------------------
  5969. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5970. {
  5971. int servo_index = -1;
  5972. int servo_position = 0;
  5973. if (code_seen('P'))
  5974. servo_index = code_value();
  5975. if (code_seen('S')) {
  5976. servo_position = code_value();
  5977. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5978. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5979. servos[servo_index].attach(0);
  5980. #endif
  5981. servos[servo_index].write(servo_position);
  5982. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5983. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5984. servos[servo_index].detach();
  5985. #endif
  5986. }
  5987. else {
  5988. SERIAL_ECHO_START;
  5989. SERIAL_ECHO("Servo ");
  5990. SERIAL_ECHO(servo_index);
  5991. SERIAL_ECHOLN(" out of range");
  5992. }
  5993. }
  5994. else if (servo_index >= 0) {
  5995. SERIAL_PROTOCOL(MSG_OK);
  5996. SERIAL_PROTOCOL(" Servo ");
  5997. SERIAL_PROTOCOL(servo_index);
  5998. SERIAL_PROTOCOL(": ");
  5999. SERIAL_PROTOCOL(servos[servo_index].read());
  6000. SERIAL_PROTOCOLLN("");
  6001. }
  6002. }
  6003. break;
  6004. #endif // NUM_SERVOS > 0
  6005. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6006. //! ### M300 - Play tone
  6007. // -----------------------
  6008. case 300: // M300
  6009. {
  6010. int beepS = code_seen('S') ? code_value() : 110;
  6011. int beepP = code_seen('P') ? code_value() : 1000;
  6012. if (beepS > 0)
  6013. {
  6014. #if BEEPER > 0
  6015. Sound_MakeCustom(beepP,beepS,false);
  6016. #endif
  6017. }
  6018. else
  6019. {
  6020. _delay(beepP);
  6021. }
  6022. }
  6023. break;
  6024. #endif // M300
  6025. #ifdef PIDTEMP
  6026. //! ### M301 - Set hotend PID
  6027. // ---------------------------------------
  6028. case 301:
  6029. {
  6030. if(code_seen('P')) cs.Kp = code_value();
  6031. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6032. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6033. #ifdef PID_ADD_EXTRUSION_RATE
  6034. if(code_seen('C')) Kc = code_value();
  6035. #endif
  6036. updatePID();
  6037. SERIAL_PROTOCOLRPGM(MSG_OK);
  6038. SERIAL_PROTOCOL(" p:");
  6039. SERIAL_PROTOCOL(cs.Kp);
  6040. SERIAL_PROTOCOL(" i:");
  6041. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6042. SERIAL_PROTOCOL(" d:");
  6043. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6044. #ifdef PID_ADD_EXTRUSION_RATE
  6045. SERIAL_PROTOCOL(" c:");
  6046. //Kc does not have scaling applied above, or in resetting defaults
  6047. SERIAL_PROTOCOL(Kc);
  6048. #endif
  6049. SERIAL_PROTOCOLLN("");
  6050. }
  6051. break;
  6052. #endif //PIDTEMP
  6053. #ifdef PIDTEMPBED
  6054. //! ### M304 - Set bed PID
  6055. // --------------------------------------
  6056. case 304:
  6057. {
  6058. if(code_seen('P')) cs.bedKp = code_value();
  6059. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6060. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6061. updatePID();
  6062. SERIAL_PROTOCOLRPGM(MSG_OK);
  6063. SERIAL_PROTOCOL(" p:");
  6064. SERIAL_PROTOCOL(cs.bedKp);
  6065. SERIAL_PROTOCOL(" i:");
  6066. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6067. SERIAL_PROTOCOL(" d:");
  6068. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6069. SERIAL_PROTOCOLLN("");
  6070. }
  6071. break;
  6072. #endif //PIDTEMP
  6073. //! ### M240 - Trigger camera
  6074. // --------------------------------------------
  6075. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6076. {
  6077. #ifdef CHDK
  6078. SET_OUTPUT(CHDK);
  6079. WRITE(CHDK, HIGH);
  6080. chdkHigh = _millis();
  6081. chdkActive = true;
  6082. #else
  6083. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6084. const uint8_t NUM_PULSES=16;
  6085. const float PULSE_LENGTH=0.01524;
  6086. for(int i=0; i < NUM_PULSES; i++) {
  6087. WRITE(PHOTOGRAPH_PIN, HIGH);
  6088. _delay_ms(PULSE_LENGTH);
  6089. WRITE(PHOTOGRAPH_PIN, LOW);
  6090. _delay_ms(PULSE_LENGTH);
  6091. }
  6092. _delay(7.33);
  6093. for(int i=0; i < NUM_PULSES; i++) {
  6094. WRITE(PHOTOGRAPH_PIN, HIGH);
  6095. _delay_ms(PULSE_LENGTH);
  6096. WRITE(PHOTOGRAPH_PIN, LOW);
  6097. _delay_ms(PULSE_LENGTH);
  6098. }
  6099. #endif
  6100. #endif //chdk end if
  6101. }
  6102. break;
  6103. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6104. //! ### M302 - Allow cold extrude, or set minimum extrude temperature
  6105. // -------------------------------------------------------------------
  6106. case 302:
  6107. {
  6108. float temp = .0;
  6109. if (code_seen('S')) temp=code_value();
  6110. set_extrude_min_temp(temp);
  6111. }
  6112. break;
  6113. #endif
  6114. //! ### M303 - PID autotune
  6115. // -------------------------------------
  6116. case 303:
  6117. {
  6118. float temp = 150.0;
  6119. int e=0;
  6120. int c=5;
  6121. if (code_seen('E')) e=code_value();
  6122. if (e<0)
  6123. temp=70;
  6124. if (code_seen('S')) temp=code_value();
  6125. if (code_seen('C')) c=code_value();
  6126. PID_autotune(temp, e, c);
  6127. }
  6128. break;
  6129. //! ### M400 - Wait for all moves to finish
  6130. // -----------------------------------------
  6131. case 400:
  6132. {
  6133. st_synchronize();
  6134. }
  6135. break;
  6136. //! ### M403 - Set filament type (material) for particular extruder and notify the MMU
  6137. // ----------------------------------------------
  6138. case 403:
  6139. {
  6140. // currently three different materials are needed (default, flex and PVA)
  6141. // add storing this information for different load/unload profiles etc. in the future
  6142. // firmware does not wait for "ok" from mmu
  6143. if (mmu_enabled)
  6144. {
  6145. uint8_t extruder = 255;
  6146. uint8_t filament = FILAMENT_UNDEFINED;
  6147. if(code_seen('E')) extruder = code_value();
  6148. if(code_seen('F')) filament = code_value();
  6149. mmu_set_filament_type(extruder, filament);
  6150. }
  6151. }
  6152. break;
  6153. //! ### M500 - Store settings in EEPROM
  6154. // -----------------------------------------
  6155. case 500:
  6156. {
  6157. Config_StoreSettings();
  6158. }
  6159. break;
  6160. //! ### M501 - Read settings from EEPROM
  6161. // ----------------------------------------
  6162. case 501:
  6163. {
  6164. Config_RetrieveSettings();
  6165. }
  6166. break;
  6167. //! ### M502 - Revert all settings to factory default
  6168. // -------------------------------------------------
  6169. case 502:
  6170. {
  6171. Config_ResetDefault();
  6172. }
  6173. break;
  6174. //! ### M503 - Repport all settings currently in memory
  6175. // -------------------------------------------------
  6176. case 503:
  6177. {
  6178. Config_PrintSettings();
  6179. }
  6180. break;
  6181. //! ### M509 - Force language selection
  6182. // ------------------------------------------------
  6183. case 509:
  6184. {
  6185. lang_reset();
  6186. SERIAL_ECHO_START;
  6187. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6188. }
  6189. break;
  6190. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6191. //! ### M540 - Abort print on endstop hit (enable/disable)
  6192. // -----------------------------------------------------
  6193. case 540:
  6194. {
  6195. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6196. }
  6197. break;
  6198. #endif
  6199. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6200. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6201. {
  6202. float value;
  6203. if (code_seen('Z'))
  6204. {
  6205. value = code_value();
  6206. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6207. {
  6208. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6209. SERIAL_ECHO_START;
  6210. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6211. SERIAL_PROTOCOLLN("");
  6212. }
  6213. else
  6214. {
  6215. SERIAL_ECHO_START;
  6216. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6217. SERIAL_ECHORPGM(MSG_Z_MIN);
  6218. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6219. SERIAL_ECHORPGM(MSG_Z_MAX);
  6220. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6221. SERIAL_PROTOCOLLN("");
  6222. }
  6223. }
  6224. else
  6225. {
  6226. SERIAL_ECHO_START;
  6227. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6228. SERIAL_ECHO(-cs.zprobe_zoffset);
  6229. SERIAL_PROTOCOLLN("");
  6230. }
  6231. break;
  6232. }
  6233. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6234. #ifdef FILAMENTCHANGEENABLE
  6235. //! ### M600 - Initiate Filament change procedure
  6236. // --------------------------------------
  6237. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6238. {
  6239. st_synchronize();
  6240. float x_position = current_position[X_AXIS];
  6241. float y_position = current_position[Y_AXIS];
  6242. float z_shift = 0; // is it necessary to be a float?
  6243. float e_shift_init = 0;
  6244. float e_shift_late = 0;
  6245. bool automatic = false;
  6246. //Retract extruder
  6247. if(code_seen('E'))
  6248. {
  6249. e_shift_init = code_value();
  6250. }
  6251. else
  6252. {
  6253. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6254. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6255. #endif
  6256. }
  6257. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6258. if (code_seen('L'))
  6259. {
  6260. e_shift_late = code_value();
  6261. }
  6262. else
  6263. {
  6264. #ifdef FILAMENTCHANGE_FINALRETRACT
  6265. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6266. #endif
  6267. }
  6268. //Lift Z
  6269. if(code_seen('Z'))
  6270. {
  6271. z_shift = code_value();
  6272. }
  6273. else
  6274. {
  6275. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6276. }
  6277. //Move XY to side
  6278. if(code_seen('X'))
  6279. {
  6280. x_position = code_value();
  6281. }
  6282. else
  6283. {
  6284. #ifdef FILAMENTCHANGE_XPOS
  6285. x_position = FILAMENTCHANGE_XPOS;
  6286. #endif
  6287. }
  6288. if(code_seen('Y'))
  6289. {
  6290. y_position = code_value();
  6291. }
  6292. else
  6293. {
  6294. #ifdef FILAMENTCHANGE_YPOS
  6295. y_position = FILAMENTCHANGE_YPOS ;
  6296. #endif
  6297. }
  6298. if (mmu_enabled && code_seen("AUTO"))
  6299. automatic = true;
  6300. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6301. }
  6302. break;
  6303. #endif //FILAMENTCHANGEENABLE
  6304. //! ### M601 - Pause print
  6305. // -------------------------------
  6306. case 601:
  6307. {
  6308. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6309. lcd_pause_print();
  6310. }
  6311. break;
  6312. //! ### M602 - Resume print
  6313. // -------------------------------
  6314. case 602: {
  6315. lcd_resume_print();
  6316. }
  6317. break;
  6318. //! ### M603 - Stop print
  6319. // -------------------------------
  6320. case 603: {
  6321. lcd_print_stop();
  6322. }
  6323. #ifdef PINDA_THERMISTOR
  6324. //! ### M860 - Wait for extruder temperature (PINDA)
  6325. // --------------------------------------------------------------
  6326. /*!
  6327. Wait for PINDA thermistor to reach target temperature
  6328. M860 [S<target_temperature>]
  6329. */
  6330. case 860:
  6331. {
  6332. int set_target_pinda = 0;
  6333. if (code_seen('S')) {
  6334. set_target_pinda = code_value();
  6335. }
  6336. else {
  6337. break;
  6338. }
  6339. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6340. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6341. SERIAL_PROTOCOL(set_target_pinda);
  6342. SERIAL_PROTOCOLLN("");
  6343. codenum = _millis();
  6344. cancel_heatup = false;
  6345. bool is_pinda_cooling = false;
  6346. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6347. is_pinda_cooling = true;
  6348. }
  6349. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6350. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6351. {
  6352. SERIAL_PROTOCOLPGM("P:");
  6353. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6354. SERIAL_PROTOCOLPGM("/");
  6355. SERIAL_PROTOCOL(set_target_pinda);
  6356. SERIAL_PROTOCOLLN("");
  6357. codenum = _millis();
  6358. }
  6359. manage_heater();
  6360. manage_inactivity();
  6361. lcd_update(0);
  6362. }
  6363. LCD_MESSAGERPGM(MSG_OK);
  6364. break;
  6365. }
  6366. //! ### M861 - Set/Get PINDA temperature compensation offsets
  6367. // -----------------------------------------------------------
  6368. /*!
  6369. M861 [ ? | ! | Z | S<microsteps> [I<table_index>] ]
  6370. - `?` - Print current EEPROM offset values
  6371. - `!` - Set factory default values
  6372. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6373. - `S<microsteps>` `I<table_index>` - Set compensation ustep value S for compensation table index I
  6374. */
  6375. case 861:
  6376. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6377. uint8_t cal_status = calibration_status_pinda();
  6378. int16_t usteps = 0;
  6379. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6380. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6381. for (uint8_t i = 0; i < 6; i++)
  6382. {
  6383. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6384. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6385. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6386. SERIAL_PROTOCOLPGM(", ");
  6387. SERIAL_PROTOCOL(35 + (i * 5));
  6388. SERIAL_PROTOCOLPGM(", ");
  6389. SERIAL_PROTOCOL(usteps);
  6390. SERIAL_PROTOCOLPGM(", ");
  6391. SERIAL_PROTOCOL(mm * 1000);
  6392. SERIAL_PROTOCOLLN("");
  6393. }
  6394. }
  6395. else if (code_seen('!')) { // ! - Set factory default values
  6396. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6397. int16_t z_shift = 8; //40C - 20um - 8usteps
  6398. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6399. z_shift = 24; //45C - 60um - 24usteps
  6400. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6401. z_shift = 48; //50C - 120um - 48usteps
  6402. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6403. z_shift = 80; //55C - 200um - 80usteps
  6404. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6405. z_shift = 120; //60C - 300um - 120usteps
  6406. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6407. SERIAL_PROTOCOLLN("factory restored");
  6408. }
  6409. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6410. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6411. int16_t z_shift = 0;
  6412. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6413. SERIAL_PROTOCOLLN("zerorized");
  6414. }
  6415. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6416. int16_t usteps = code_value();
  6417. if (code_seen('I')) {
  6418. uint8_t index = code_value();
  6419. if (index < 5) {
  6420. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6421. SERIAL_PROTOCOLLN("OK");
  6422. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6423. for (uint8_t i = 0; i < 6; i++)
  6424. {
  6425. usteps = 0;
  6426. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6427. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6428. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6429. SERIAL_PROTOCOLPGM(", ");
  6430. SERIAL_PROTOCOL(35 + (i * 5));
  6431. SERIAL_PROTOCOLPGM(", ");
  6432. SERIAL_PROTOCOL(usteps);
  6433. SERIAL_PROTOCOLPGM(", ");
  6434. SERIAL_PROTOCOL(mm * 1000);
  6435. SERIAL_PROTOCOLLN("");
  6436. }
  6437. }
  6438. }
  6439. }
  6440. else {
  6441. SERIAL_PROTOCOLPGM("no valid command");
  6442. }
  6443. break;
  6444. #endif //PINDA_THERMISTOR
  6445. //! ### M862 - Print checking
  6446. // ----------------------------------------------
  6447. /*!
  6448. Checks the parameters of the printer and gcode and performs compatibility check
  6449. - M862.1 { P<nozzle_diameter> | Q }
  6450. - M862.2 { P<model_code> | Q }
  6451. - M862.3 { P"<model_name>" | Q }
  6452. - M862.4 { P<fw_version> | Q }
  6453. - M862.5 { P<gcode_level> | Q }
  6454. When run with P<> argument, the check is performed against the input value.
  6455. When run with Q argument, the current value is shown.
  6456. M862.3 accepts text identifiers of printer types too.
  6457. The syntax of M862.3 is (note the quotes around the type):
  6458. M862.3 P "MK3S"
  6459. Accepted printer type identifiers and their numeric counterparts:
  6460. - MK1 (100)
  6461. - MK2 (200)
  6462. - MK2MM (201)
  6463. - MK2S (202)
  6464. - MK2SMM (203)
  6465. - MK2.5 (250)
  6466. - MK2.5MMU2 (20250)
  6467. - MK2.5S (252)
  6468. - MK2.5SMMU2S (20252)
  6469. - MK3 (300)
  6470. - MK3MMU2 (20300)
  6471. - MK3S (302)
  6472. - MK3SMMU2S (20302)
  6473. */
  6474. case 862: // M862: print checking
  6475. float nDummy;
  6476. uint8_t nCommand;
  6477. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6478. switch((ClPrintChecking)nCommand)
  6479. {
  6480. case ClPrintChecking::_Nozzle: // ~ .1
  6481. uint16_t nDiameter;
  6482. if(code_seen('P'))
  6483. {
  6484. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6485. nozzle_diameter_check(nDiameter);
  6486. }
  6487. /*
  6488. else if(code_seen('S')&&farm_mode)
  6489. {
  6490. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6491. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6492. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6493. }
  6494. */
  6495. else if(code_seen('Q'))
  6496. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6497. break;
  6498. case ClPrintChecking::_Model: // ~ .2
  6499. if(code_seen('P'))
  6500. {
  6501. uint16_t nPrinterModel;
  6502. nPrinterModel=(uint16_t)code_value_long();
  6503. printer_model_check(nPrinterModel);
  6504. }
  6505. else if(code_seen('Q'))
  6506. SERIAL_PROTOCOLLN(nPrinterType);
  6507. break;
  6508. case ClPrintChecking::_Smodel: // ~ .3
  6509. if(code_seen('P'))
  6510. printer_smodel_check(strchr_pointer);
  6511. else if(code_seen('Q'))
  6512. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6513. break;
  6514. case ClPrintChecking::_Version: // ~ .4
  6515. if(code_seen('P'))
  6516. fw_version_check(++strchr_pointer);
  6517. else if(code_seen('Q'))
  6518. SERIAL_PROTOCOLLN(FW_VERSION);
  6519. break;
  6520. case ClPrintChecking::_Gcode: // ~ .5
  6521. if(code_seen('P'))
  6522. {
  6523. uint16_t nGcodeLevel;
  6524. nGcodeLevel=(uint16_t)code_value_long();
  6525. gcode_level_check(nGcodeLevel);
  6526. }
  6527. else if(code_seen('Q'))
  6528. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6529. break;
  6530. }
  6531. break;
  6532. #ifdef LIN_ADVANCE
  6533. //! ### M900 - Set Linear advance options
  6534. // ----------------------------------------------
  6535. case 900:
  6536. gcode_M900();
  6537. break;
  6538. #endif
  6539. //! ### M907 - Set digital trimpot motor current in mA using axis codes
  6540. // ---------------------------------------------------------------
  6541. case 907:
  6542. {
  6543. #ifdef TMC2130
  6544. //! See tmc2130_cur2val() for translation to 0 .. 63 range
  6545. for (int i = 0; i < NUM_AXIS; i++)
  6546. if(code_seen(axis_codes[i]))
  6547. {
  6548. long cur_mA = code_value_long();
  6549. uint8_t val = tmc2130_cur2val(cur_mA);
  6550. tmc2130_set_current_h(i, val);
  6551. tmc2130_set_current_r(i, val);
  6552. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6553. }
  6554. #else //TMC2130
  6555. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6556. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6557. if(code_seen('B')) st_current_set(4,code_value());
  6558. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6559. #endif
  6560. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6561. if(code_seen('X')) st_current_set(0, code_value());
  6562. #endif
  6563. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6564. if(code_seen('Z')) st_current_set(1, code_value());
  6565. #endif
  6566. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6567. if(code_seen('E')) st_current_set(2, code_value());
  6568. #endif
  6569. #endif //TMC2130
  6570. }
  6571. break;
  6572. //! ### M908 - Control digital trimpot directly
  6573. // ---------------------------------------------------------
  6574. case 908:
  6575. {
  6576. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6577. uint8_t channel,current;
  6578. if(code_seen('P')) channel=code_value();
  6579. if(code_seen('S')) current=code_value();
  6580. digitalPotWrite(channel, current);
  6581. #endif
  6582. }
  6583. break;
  6584. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6585. //! ### M910 - TMC2130 init
  6586. // -----------------------------------------------
  6587. case 910:
  6588. {
  6589. tmc2130_init();
  6590. }
  6591. break;
  6592. //! ### M911 - Set TMC2130 holding currents
  6593. // -------------------------------------------------
  6594. case 911:
  6595. {
  6596. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6597. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6598. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6599. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6600. }
  6601. break;
  6602. //! ### M912 - Set TMC2130 running currents
  6603. // -----------------------------------------------
  6604. case 912:
  6605. {
  6606. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6607. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6608. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6609. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6610. }
  6611. break;
  6612. //! ### M913 - Print TMC2130 currents
  6613. // -----------------------------
  6614. case 913:
  6615. {
  6616. tmc2130_print_currents();
  6617. }
  6618. break;
  6619. //! ### M914 - Set TMC2130 normal mode
  6620. // ------------------------------
  6621. case 914:
  6622. {
  6623. tmc2130_mode = TMC2130_MODE_NORMAL;
  6624. update_mode_profile();
  6625. tmc2130_init();
  6626. }
  6627. break;
  6628. //! ### M95 - Set TMC2130 silent mode
  6629. // ------------------------------
  6630. case 915:
  6631. {
  6632. tmc2130_mode = TMC2130_MODE_SILENT;
  6633. update_mode_profile();
  6634. tmc2130_init();
  6635. }
  6636. break;
  6637. //! ### M916 - Set TMC2130 Stallguard sensitivity threshold
  6638. // -------------------------------------------------------
  6639. case 916:
  6640. {
  6641. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6642. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6643. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6644. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6645. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6646. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6647. }
  6648. break;
  6649. //! ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl)
  6650. // --------------------------------------------------------------
  6651. case 917:
  6652. {
  6653. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6654. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6655. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6656. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6657. }
  6658. break;
  6659. //! ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad)
  6660. // -------------------------------------------------------------
  6661. case 918:
  6662. {
  6663. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6664. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6665. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6666. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6667. }
  6668. break;
  6669. #endif //TMC2130_SERVICE_CODES_M910_M918
  6670. //! ### M350 - Set microstepping mode
  6671. // ---------------------------------------------------
  6672. //! Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6673. case 350:
  6674. {
  6675. #ifdef TMC2130
  6676. for (int i=0; i<NUM_AXIS; i++)
  6677. {
  6678. if(code_seen(axis_codes[i]))
  6679. {
  6680. uint16_t res_new = code_value();
  6681. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  6682. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  6683. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  6684. if (res_valid)
  6685. {
  6686. st_synchronize();
  6687. uint16_t res = tmc2130_get_res(i);
  6688. tmc2130_set_res(i, res_new);
  6689. cs.axis_ustep_resolution[i] = res_new;
  6690. if (res_new > res)
  6691. {
  6692. uint16_t fac = (res_new / res);
  6693. cs.axis_steps_per_unit[i] *= fac;
  6694. position[i] *= fac;
  6695. }
  6696. else
  6697. {
  6698. uint16_t fac = (res / res_new);
  6699. cs.axis_steps_per_unit[i] /= fac;
  6700. position[i] /= fac;
  6701. }
  6702. }
  6703. }
  6704. }
  6705. #else //TMC2130
  6706. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6707. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6708. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6709. if(code_seen('B')) microstep_mode(4,code_value());
  6710. microstep_readings();
  6711. #endif
  6712. #endif //TMC2130
  6713. }
  6714. break;
  6715. //! ### M351 - Toggle Microstep Pins
  6716. // -----------------------------------
  6717. //! Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6718. //!
  6719. //! M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  6720. case 351:
  6721. {
  6722. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6723. if(code_seen('S')) switch((int)code_value())
  6724. {
  6725. case 1:
  6726. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6727. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6728. break;
  6729. case 2:
  6730. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6731. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6732. break;
  6733. }
  6734. microstep_readings();
  6735. #endif
  6736. }
  6737. break;
  6738. //! ### M701 - Load filament
  6739. // -------------------------
  6740. case 701:
  6741. {
  6742. if (mmu_enabled && code_seen('E'))
  6743. tmp_extruder = code_value();
  6744. gcode_M701();
  6745. }
  6746. break;
  6747. //! ### M702 - Unload filament
  6748. // ------------------------
  6749. /*!
  6750. M702 [U C]
  6751. - `U` Unload all filaments used in current print
  6752. - `C` Unload just current filament
  6753. - without any parameters unload all filaments
  6754. */
  6755. case 702:
  6756. {
  6757. #ifdef SNMM
  6758. if (code_seen('U'))
  6759. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6760. else if (code_seen('C'))
  6761. extr_unload(); //! if "C" unload just current filament
  6762. else
  6763. extr_unload_all(); //! otherwise unload all filaments
  6764. #else
  6765. if (code_seen('C')) {
  6766. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6767. }
  6768. else {
  6769. if(mmu_enabled) extr_unload(); //! unload current filament
  6770. else unload_filament();
  6771. }
  6772. #endif //SNMM
  6773. }
  6774. break;
  6775. //! ### M999 - Restart after being stopped
  6776. // ------------------------------------
  6777. case 999:
  6778. Stopped = false;
  6779. lcd_reset_alert_level();
  6780. gcode_LastN = Stopped_gcode_LastN;
  6781. FlushSerialRequestResend();
  6782. break;
  6783. default:
  6784. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6785. }
  6786. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6787. mcode_in_progress = 0;
  6788. }
  6789. }
  6790. // end if(code_seen('M')) (end of M codes)
  6791. //! -----------------------------------------------------------------------------------------
  6792. //! T Codes
  6793. //!
  6794. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6795. //! select filament in case of MMU_V2
  6796. //! if extruder is "?", open menu to let the user select extruder/filament
  6797. //!
  6798. //! For MMU_V2:
  6799. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6800. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6801. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6802. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6803. else if(code_seen('T'))
  6804. {
  6805. int index;
  6806. bool load_to_nozzle = false;
  6807. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6808. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6809. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6810. SERIAL_ECHOLNPGM("Invalid T code.");
  6811. }
  6812. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6813. if (mmu_enabled)
  6814. {
  6815. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6816. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6817. {
  6818. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6819. }
  6820. else
  6821. {
  6822. st_synchronize();
  6823. mmu_command(MmuCmd::T0 + tmp_extruder);
  6824. manage_response(true, true, MMU_TCODE_MOVE);
  6825. }
  6826. }
  6827. }
  6828. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6829. if (mmu_enabled)
  6830. {
  6831. st_synchronize();
  6832. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6833. mmu_extruder = tmp_extruder; //filament change is finished
  6834. mmu_load_to_nozzle();
  6835. }
  6836. }
  6837. else {
  6838. if (*(strchr_pointer + index) == '?')
  6839. {
  6840. if(mmu_enabled)
  6841. {
  6842. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6843. load_to_nozzle = true;
  6844. } else
  6845. {
  6846. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6847. }
  6848. }
  6849. else {
  6850. tmp_extruder = code_value();
  6851. if (mmu_enabled && lcd_autoDepleteEnabled())
  6852. {
  6853. tmp_extruder = ad_getAlternative(tmp_extruder);
  6854. }
  6855. }
  6856. st_synchronize();
  6857. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6858. if (mmu_enabled)
  6859. {
  6860. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6861. {
  6862. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6863. }
  6864. else
  6865. {
  6866. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6867. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6868. {
  6869. mmu_command(MmuCmd::K0 + tmp_extruder);
  6870. manage_response(true, true, MMU_UNLOAD_MOVE);
  6871. }
  6872. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6873. mmu_command(MmuCmd::T0 + tmp_extruder);
  6874. manage_response(true, true, MMU_TCODE_MOVE);
  6875. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6876. mmu_extruder = tmp_extruder; //filament change is finished
  6877. if (load_to_nozzle)// for single material usage with mmu
  6878. {
  6879. mmu_load_to_nozzle();
  6880. }
  6881. }
  6882. }
  6883. else
  6884. {
  6885. #ifdef SNMM
  6886. #ifdef LIN_ADVANCE
  6887. if (mmu_extruder != tmp_extruder)
  6888. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6889. #endif
  6890. mmu_extruder = tmp_extruder;
  6891. _delay(100);
  6892. disable_e0();
  6893. disable_e1();
  6894. disable_e2();
  6895. pinMode(E_MUX0_PIN, OUTPUT);
  6896. pinMode(E_MUX1_PIN, OUTPUT);
  6897. _delay(100);
  6898. SERIAL_ECHO_START;
  6899. SERIAL_ECHO("T:");
  6900. SERIAL_ECHOLN((int)tmp_extruder);
  6901. switch (tmp_extruder) {
  6902. case 1:
  6903. WRITE(E_MUX0_PIN, HIGH);
  6904. WRITE(E_MUX1_PIN, LOW);
  6905. break;
  6906. case 2:
  6907. WRITE(E_MUX0_PIN, LOW);
  6908. WRITE(E_MUX1_PIN, HIGH);
  6909. break;
  6910. case 3:
  6911. WRITE(E_MUX0_PIN, HIGH);
  6912. WRITE(E_MUX1_PIN, HIGH);
  6913. break;
  6914. default:
  6915. WRITE(E_MUX0_PIN, LOW);
  6916. WRITE(E_MUX1_PIN, LOW);
  6917. break;
  6918. }
  6919. _delay(100);
  6920. #else //SNMM
  6921. if (tmp_extruder >= EXTRUDERS) {
  6922. SERIAL_ECHO_START;
  6923. SERIAL_ECHOPGM("T");
  6924. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6925. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6926. }
  6927. else {
  6928. #if EXTRUDERS > 1
  6929. boolean make_move = false;
  6930. #endif
  6931. if (code_seen('F')) {
  6932. #if EXTRUDERS > 1
  6933. make_move = true;
  6934. #endif
  6935. next_feedrate = code_value();
  6936. if (next_feedrate > 0.0) {
  6937. feedrate = next_feedrate;
  6938. }
  6939. }
  6940. #if EXTRUDERS > 1
  6941. if (tmp_extruder != active_extruder) {
  6942. // Save current position to return to after applying extruder offset
  6943. memcpy(destination, current_position, sizeof(destination));
  6944. // Offset extruder (only by XY)
  6945. int i;
  6946. for (i = 0; i < 2; i++) {
  6947. current_position[i] = current_position[i] -
  6948. extruder_offset[i][active_extruder] +
  6949. extruder_offset[i][tmp_extruder];
  6950. }
  6951. // Set the new active extruder and position
  6952. active_extruder = tmp_extruder;
  6953. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6954. // Move to the old position if 'F' was in the parameters
  6955. if (make_move && Stopped == false) {
  6956. prepare_move();
  6957. }
  6958. }
  6959. #endif
  6960. SERIAL_ECHO_START;
  6961. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6962. SERIAL_PROTOCOLLN((int)active_extruder);
  6963. }
  6964. #endif //SNMM
  6965. }
  6966. }
  6967. } // end if(code_seen('T')) (end of T codes)
  6968. //! ----------------------------------------------------------------------------------------------
  6969. else if (code_seen('D')) // D codes (debug)
  6970. {
  6971. switch((int)code_value())
  6972. {
  6973. //! ### D-1 - Endless loop
  6974. // -------------------
  6975. case -1:
  6976. dcode__1(); break;
  6977. #ifdef DEBUG_DCODES
  6978. //! ### D0 - Reset
  6979. // --------------
  6980. case 0:
  6981. dcode_0(); break;
  6982. //! ### D1 - Clear EEPROM
  6983. // ------------------
  6984. case 1:
  6985. dcode_1(); break;
  6986. //! ### D2 - Read/Write RAM
  6987. // --------------------
  6988. case 2:
  6989. dcode_2(); break;
  6990. #endif //DEBUG_DCODES
  6991. #ifdef DEBUG_DCODE3
  6992. //! ### D3 - Read/Write EEPROM
  6993. // -----------------------
  6994. case 3:
  6995. dcode_3(); break;
  6996. #endif //DEBUG_DCODE3
  6997. #ifdef DEBUG_DCODES
  6998. //! ### D4 - Read/Write PIN
  6999. // ---------------------
  7000. case 4:
  7001. dcode_4(); break;
  7002. #endif //DEBUG_DCODES
  7003. #ifdef DEBUG_DCODE5
  7004. //! ### D5 - Read/Write FLASH
  7005. // ------------------------
  7006. case 5:
  7007. dcode_5(); break;
  7008. break;
  7009. #endif //DEBUG_DCODE5
  7010. #ifdef DEBUG_DCODES
  7011. //! ### D6 - Read/Write external FLASH
  7012. // ---------------------------------------
  7013. case 6:
  7014. dcode_6(); break;
  7015. //! ### D7 - Read/Write Bootloader
  7016. // -------------------------------
  7017. case 7:
  7018. dcode_7(); break;
  7019. //! ### D8 - Read/Write PINDA
  7020. // ---------------------------
  7021. case 8:
  7022. dcode_8(); break;
  7023. // ### D9 - Read/Write ADC
  7024. // ------------------------
  7025. case 9:
  7026. dcode_9(); break;
  7027. //! ### D10 - XYZ calibration = OK
  7028. // ------------------------------
  7029. case 10:
  7030. dcode_10(); break;
  7031. #endif //DEBUG_DCODES
  7032. #ifdef HEATBED_ANALYSIS
  7033. //! ### D80 - Bed check
  7034. // ---------------------
  7035. /*!
  7036. - `E` - dimension x
  7037. - `F` - dimention y
  7038. - `G` - points_x
  7039. - `H` - points_y
  7040. - `I` - offset_x
  7041. - `J` - offset_y
  7042. */
  7043. case 80:
  7044. {
  7045. float dimension_x = 40;
  7046. float dimension_y = 40;
  7047. int points_x = 40;
  7048. int points_y = 40;
  7049. float offset_x = 74;
  7050. float offset_y = 33;
  7051. if (code_seen('E')) dimension_x = code_value();
  7052. if (code_seen('F')) dimension_y = code_value();
  7053. if (code_seen('G')) {points_x = code_value(); }
  7054. if (code_seen('H')) {points_y = code_value(); }
  7055. if (code_seen('I')) {offset_x = code_value(); }
  7056. if (code_seen('J')) {offset_y = code_value(); }
  7057. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7058. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7059. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7060. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7061. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7062. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7063. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7064. }break;
  7065. //! ### D81 - Bed analysis
  7066. // -----------------------------
  7067. /*!
  7068. - `E` - dimension x
  7069. - `F` - dimention y
  7070. - `G` - points_x
  7071. - `H` - points_y
  7072. - `I` - offset_x
  7073. - `J` - offset_y
  7074. */
  7075. case 81:
  7076. {
  7077. float dimension_x = 40;
  7078. float dimension_y = 40;
  7079. int points_x = 40;
  7080. int points_y = 40;
  7081. float offset_x = 74;
  7082. float offset_y = 33;
  7083. if (code_seen('E')) dimension_x = code_value();
  7084. if (code_seen('F')) dimension_y = code_value();
  7085. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7086. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7087. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7088. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7089. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7090. } break;
  7091. #endif //HEATBED_ANALYSIS
  7092. #ifdef DEBUG_DCODES
  7093. //! ### D106 print measured fan speed for different pwm values
  7094. // --------------------------------------------------------------
  7095. case 106:
  7096. {
  7097. for (int i = 255; i > 0; i = i - 5) {
  7098. fanSpeed = i;
  7099. //delay_keep_alive(2000);
  7100. for (int j = 0; j < 100; j++) {
  7101. delay_keep_alive(100);
  7102. }
  7103. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7104. }
  7105. }break;
  7106. #ifdef TMC2130
  7107. //! ### D2130 - TMC2130 Trinamic stepper controller
  7108. // ---------------------------
  7109. /*!
  7110. D2130<axis><command>[subcommand][value]
  7111. - <command>:
  7112. - '0' current off
  7113. - '1' current on
  7114. - '+' single step
  7115. - * value sereval steps
  7116. - '-' dtto oposite direction
  7117. - '?' read register
  7118. - * "mres"
  7119. - * "step"
  7120. - * "mscnt"
  7121. - * "mscuract"
  7122. - * "wave"
  7123. - '!' set register
  7124. - * "mres"
  7125. - * "step"
  7126. - * "wave"
  7127. - '@' home calibrate axis
  7128. Example:
  7129. D2130E?wave ... print extruder microstep linearity compensation curve
  7130. D2130E!wave0 ... disable extruder linearity compensation curve, (sine curve is used)
  7131. D2130E!wave220 ... (sin(x))^1.1 extruder microstep compensation curve used
  7132. */
  7133. case 2130:
  7134. dcode_2130(); break;
  7135. #endif //TMC2130
  7136. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7137. //! ### D9125 - FILAMENT_SENSOR
  7138. // ---------------------------------
  7139. case 9125:
  7140. dcode_9125(); break;
  7141. #endif //FILAMENT_SENSOR
  7142. #endif //DEBUG_DCODES
  7143. }
  7144. }
  7145. else
  7146. {
  7147. SERIAL_ECHO_START;
  7148. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7149. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7150. SERIAL_ECHOLNPGM("\"(2)");
  7151. }
  7152. KEEPALIVE_STATE(NOT_BUSY);
  7153. ClearToSend();
  7154. }
  7155. /** @defgroup GCodes G-Code List
  7156. */
  7157. // ---------------------------------------------------
  7158. void FlushSerialRequestResend()
  7159. {
  7160. //char cmdbuffer[bufindr][100]="Resend:";
  7161. MYSERIAL.flush();
  7162. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7163. }
  7164. // Confirm the execution of a command, if sent from a serial line.
  7165. // Execution of a command from a SD card will not be confirmed.
  7166. void ClearToSend()
  7167. {
  7168. previous_millis_cmd = _millis();
  7169. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7170. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7171. }
  7172. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7173. void update_currents() {
  7174. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7175. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7176. float tmp_motor[3];
  7177. //SERIAL_ECHOLNPGM("Currents updated: ");
  7178. if (destination[Z_AXIS] < Z_SILENT) {
  7179. //SERIAL_ECHOLNPGM("LOW");
  7180. for (uint8_t i = 0; i < 3; i++) {
  7181. st_current_set(i, current_low[i]);
  7182. /*MYSERIAL.print(int(i));
  7183. SERIAL_ECHOPGM(": ");
  7184. MYSERIAL.println(current_low[i]);*/
  7185. }
  7186. }
  7187. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7188. //SERIAL_ECHOLNPGM("HIGH");
  7189. for (uint8_t i = 0; i < 3; i++) {
  7190. st_current_set(i, current_high[i]);
  7191. /*MYSERIAL.print(int(i));
  7192. SERIAL_ECHOPGM(": ");
  7193. MYSERIAL.println(current_high[i]);*/
  7194. }
  7195. }
  7196. else {
  7197. for (uint8_t i = 0; i < 3; i++) {
  7198. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7199. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7200. st_current_set(i, tmp_motor[i]);
  7201. /*MYSERIAL.print(int(i));
  7202. SERIAL_ECHOPGM(": ");
  7203. MYSERIAL.println(tmp_motor[i]);*/
  7204. }
  7205. }
  7206. }
  7207. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7208. void get_coordinates()
  7209. {
  7210. bool seen[4]={false,false,false,false};
  7211. for(int8_t i=0; i < NUM_AXIS; i++) {
  7212. if(code_seen(axis_codes[i]))
  7213. {
  7214. bool relative = axis_relative_modes[i] || relative_mode;
  7215. destination[i] = (float)code_value();
  7216. if (i == E_AXIS) {
  7217. float emult = extruder_multiplier[active_extruder];
  7218. if (emult != 1.) {
  7219. if (! relative) {
  7220. destination[i] -= current_position[i];
  7221. relative = true;
  7222. }
  7223. destination[i] *= emult;
  7224. }
  7225. }
  7226. if (relative)
  7227. destination[i] += current_position[i];
  7228. seen[i]=true;
  7229. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7230. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7231. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7232. }
  7233. else destination[i] = current_position[i]; //Are these else lines really needed?
  7234. }
  7235. if(code_seen('F')) {
  7236. next_feedrate = code_value();
  7237. #ifdef MAX_SILENT_FEEDRATE
  7238. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7239. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7240. #endif //MAX_SILENT_FEEDRATE
  7241. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7242. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7243. {
  7244. // float e_max_speed =
  7245. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7246. }
  7247. }
  7248. }
  7249. void get_arc_coordinates()
  7250. {
  7251. #ifdef SF_ARC_FIX
  7252. bool relative_mode_backup = relative_mode;
  7253. relative_mode = true;
  7254. #endif
  7255. get_coordinates();
  7256. #ifdef SF_ARC_FIX
  7257. relative_mode=relative_mode_backup;
  7258. #endif
  7259. if(code_seen('I')) {
  7260. offset[0] = code_value();
  7261. }
  7262. else {
  7263. offset[0] = 0.0;
  7264. }
  7265. if(code_seen('J')) {
  7266. offset[1] = code_value();
  7267. }
  7268. else {
  7269. offset[1] = 0.0;
  7270. }
  7271. }
  7272. void clamp_to_software_endstops(float target[3])
  7273. {
  7274. #ifdef DEBUG_DISABLE_SWLIMITS
  7275. return;
  7276. #endif //DEBUG_DISABLE_SWLIMITS
  7277. world2machine_clamp(target[0], target[1]);
  7278. // Clamp the Z coordinate.
  7279. if (min_software_endstops) {
  7280. float negative_z_offset = 0;
  7281. #ifdef ENABLE_AUTO_BED_LEVELING
  7282. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7283. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7284. #endif
  7285. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7286. }
  7287. if (max_software_endstops) {
  7288. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7289. }
  7290. }
  7291. #ifdef MESH_BED_LEVELING
  7292. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7293. float dx = x - current_position[X_AXIS];
  7294. float dy = y - current_position[Y_AXIS];
  7295. float dz = z - current_position[Z_AXIS];
  7296. int n_segments = 0;
  7297. if (mbl.active) {
  7298. float len = abs(dx) + abs(dy);
  7299. if (len > 0)
  7300. // Split to 3cm segments or shorter.
  7301. n_segments = int(ceil(len / 30.f));
  7302. }
  7303. if (n_segments > 1) {
  7304. float de = e - current_position[E_AXIS];
  7305. for (int i = 1; i < n_segments; ++ i) {
  7306. float t = float(i) / float(n_segments);
  7307. if (saved_printing || (mbl.active == false)) return;
  7308. plan_buffer_line(
  7309. current_position[X_AXIS] + t * dx,
  7310. current_position[Y_AXIS] + t * dy,
  7311. current_position[Z_AXIS] + t * dz,
  7312. current_position[E_AXIS] + t * de,
  7313. feed_rate, extruder);
  7314. }
  7315. }
  7316. // The rest of the path.
  7317. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7318. current_position[X_AXIS] = x;
  7319. current_position[Y_AXIS] = y;
  7320. current_position[Z_AXIS] = z;
  7321. current_position[E_AXIS] = e;
  7322. }
  7323. #endif // MESH_BED_LEVELING
  7324. void prepare_move()
  7325. {
  7326. clamp_to_software_endstops(destination);
  7327. previous_millis_cmd = _millis();
  7328. // Do not use feedmultiply for E or Z only moves
  7329. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7330. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7331. }
  7332. else {
  7333. #ifdef MESH_BED_LEVELING
  7334. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7335. #else
  7336. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7337. #endif
  7338. }
  7339. for(int8_t i=0; i < NUM_AXIS; i++) {
  7340. current_position[i] = destination[i];
  7341. }
  7342. }
  7343. void prepare_arc_move(char isclockwise) {
  7344. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7345. // Trace the arc
  7346. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7347. // As far as the parser is concerned, the position is now == target. In reality the
  7348. // motion control system might still be processing the action and the real tool position
  7349. // in any intermediate location.
  7350. for(int8_t i=0; i < NUM_AXIS; i++) {
  7351. current_position[i] = destination[i];
  7352. }
  7353. previous_millis_cmd = _millis();
  7354. }
  7355. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7356. #if defined(FAN_PIN)
  7357. #if CONTROLLERFAN_PIN == FAN_PIN
  7358. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7359. #endif
  7360. #endif
  7361. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7362. unsigned long lastMotorCheck = 0;
  7363. void controllerFan()
  7364. {
  7365. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7366. {
  7367. lastMotorCheck = _millis();
  7368. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7369. #if EXTRUDERS > 2
  7370. || !READ(E2_ENABLE_PIN)
  7371. #endif
  7372. #if EXTRUDER > 1
  7373. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7374. || !READ(X2_ENABLE_PIN)
  7375. #endif
  7376. || !READ(E1_ENABLE_PIN)
  7377. #endif
  7378. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7379. {
  7380. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7381. }
  7382. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7383. {
  7384. digitalWrite(CONTROLLERFAN_PIN, 0);
  7385. analogWrite(CONTROLLERFAN_PIN, 0);
  7386. }
  7387. else
  7388. {
  7389. // allows digital or PWM fan output to be used (see M42 handling)
  7390. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7391. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7392. }
  7393. }
  7394. }
  7395. #endif
  7396. #ifdef TEMP_STAT_LEDS
  7397. static bool blue_led = false;
  7398. static bool red_led = false;
  7399. static uint32_t stat_update = 0;
  7400. void handle_status_leds(void) {
  7401. float max_temp = 0.0;
  7402. if(_millis() > stat_update) {
  7403. stat_update += 500; // Update every 0.5s
  7404. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7405. max_temp = max(max_temp, degHotend(cur_extruder));
  7406. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7407. }
  7408. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7409. max_temp = max(max_temp, degTargetBed());
  7410. max_temp = max(max_temp, degBed());
  7411. #endif
  7412. if((max_temp > 55.0) && (red_led == false)) {
  7413. digitalWrite(STAT_LED_RED, 1);
  7414. digitalWrite(STAT_LED_BLUE, 0);
  7415. red_led = true;
  7416. blue_led = false;
  7417. }
  7418. if((max_temp < 54.0) && (blue_led == false)) {
  7419. digitalWrite(STAT_LED_RED, 0);
  7420. digitalWrite(STAT_LED_BLUE, 1);
  7421. red_led = false;
  7422. blue_led = true;
  7423. }
  7424. }
  7425. }
  7426. #endif
  7427. #ifdef SAFETYTIMER
  7428. /**
  7429. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7430. *
  7431. * Full screen blocking notification message is shown after heater turning off.
  7432. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7433. * damage print.
  7434. *
  7435. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  7436. */
  7437. static void handleSafetyTimer()
  7438. {
  7439. #if (EXTRUDERS > 1)
  7440. #error Implemented only for one extruder.
  7441. #endif //(EXTRUDERS > 1)
  7442. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  7443. {
  7444. safetyTimer.stop();
  7445. }
  7446. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  7447. {
  7448. safetyTimer.start();
  7449. }
  7450. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  7451. {
  7452. setTargetBed(0);
  7453. setAllTargetHotends(0);
  7454. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  7455. }
  7456. }
  7457. #endif //SAFETYTIMER
  7458. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  7459. {
  7460. bool bInhibitFlag;
  7461. #ifdef FILAMENT_SENSOR
  7462. if (mmu_enabled == false)
  7463. {
  7464. //-// if (mcode_in_progress != 600) //M600 not in progress
  7465. #ifdef PAT9125
  7466. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  7467. #endif // PAT9125
  7468. #ifdef IR_SENSOR
  7469. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  7470. #endif // IR_SENSOR
  7471. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  7472. {
  7473. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  7474. {
  7475. if (fsensor_check_autoload())
  7476. {
  7477. #ifdef PAT9125
  7478. fsensor_autoload_check_stop();
  7479. #endif //PAT9125
  7480. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  7481. if(0)
  7482. {
  7483. Sound_MakeCustom(50,1000,false);
  7484. loading_flag = true;
  7485. enquecommand_front_P((PSTR("M701")));
  7486. }
  7487. else
  7488. {
  7489. /*
  7490. lcd_update_enable(false);
  7491. show_preheat_nozzle_warning();
  7492. lcd_update_enable(true);
  7493. */
  7494. eFilamentAction=FilamentAction::AutoLoad;
  7495. bFilamentFirstRun=false;
  7496. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  7497. {
  7498. bFilamentPreheatState=true;
  7499. // mFilamentItem(target_temperature[0],target_temperature_bed);
  7500. menu_submenu(mFilamentItemForce);
  7501. }
  7502. else
  7503. {
  7504. menu_submenu(lcd_generic_preheat_menu);
  7505. lcd_timeoutToStatus.start();
  7506. }
  7507. }
  7508. }
  7509. }
  7510. else
  7511. {
  7512. #ifdef PAT9125
  7513. fsensor_autoload_check_stop();
  7514. #endif //PAT9125
  7515. fsensor_update();
  7516. }
  7517. }
  7518. }
  7519. #endif //FILAMENT_SENSOR
  7520. #ifdef SAFETYTIMER
  7521. handleSafetyTimer();
  7522. #endif //SAFETYTIMER
  7523. #if defined(KILL_PIN) && KILL_PIN > -1
  7524. static int killCount = 0; // make the inactivity button a bit less responsive
  7525. const int KILL_DELAY = 10000;
  7526. #endif
  7527. if(buflen < (BUFSIZE-1)){
  7528. get_command();
  7529. }
  7530. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  7531. if(max_inactive_time)
  7532. kill(_n(""), 4);
  7533. if(stepper_inactive_time) {
  7534. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  7535. {
  7536. if(blocks_queued() == false && ignore_stepper_queue == false) {
  7537. disable_x();
  7538. disable_y();
  7539. disable_z();
  7540. disable_e0();
  7541. disable_e1();
  7542. disable_e2();
  7543. }
  7544. }
  7545. }
  7546. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7547. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7548. {
  7549. chdkActive = false;
  7550. WRITE(CHDK, LOW);
  7551. }
  7552. #endif
  7553. #if defined(KILL_PIN) && KILL_PIN > -1
  7554. // Check if the kill button was pressed and wait just in case it was an accidental
  7555. // key kill key press
  7556. // -------------------------------------------------------------------------------
  7557. if( 0 == READ(KILL_PIN) )
  7558. {
  7559. killCount++;
  7560. }
  7561. else if (killCount > 0)
  7562. {
  7563. killCount--;
  7564. }
  7565. // Exceeded threshold and we can confirm that it was not accidental
  7566. // KILL the machine
  7567. // ----------------------------------------------------------------
  7568. if ( killCount >= KILL_DELAY)
  7569. {
  7570. kill("", 5);
  7571. }
  7572. #endif
  7573. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7574. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7575. #endif
  7576. #ifdef EXTRUDER_RUNOUT_PREVENT
  7577. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7578. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7579. {
  7580. bool oldstatus=READ(E0_ENABLE_PIN);
  7581. enable_e0();
  7582. float oldepos=current_position[E_AXIS];
  7583. float oldedes=destination[E_AXIS];
  7584. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7585. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7586. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7587. current_position[E_AXIS]=oldepos;
  7588. destination[E_AXIS]=oldedes;
  7589. plan_set_e_position(oldepos);
  7590. previous_millis_cmd=_millis();
  7591. st_synchronize();
  7592. WRITE(E0_ENABLE_PIN,oldstatus);
  7593. }
  7594. #endif
  7595. #ifdef TEMP_STAT_LEDS
  7596. handle_status_leds();
  7597. #endif
  7598. check_axes_activity();
  7599. mmu_loop();
  7600. }
  7601. void kill(const char *full_screen_message, unsigned char id)
  7602. {
  7603. printf_P(_N("KILL: %d\n"), id);
  7604. //return;
  7605. cli(); // Stop interrupts
  7606. disable_heater();
  7607. disable_x();
  7608. // SERIAL_ECHOLNPGM("kill - disable Y");
  7609. disable_y();
  7610. disable_z();
  7611. disable_e0();
  7612. disable_e1();
  7613. disable_e2();
  7614. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7615. pinMode(PS_ON_PIN,INPUT);
  7616. #endif
  7617. SERIAL_ERROR_START;
  7618. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7619. if (full_screen_message != NULL) {
  7620. SERIAL_ERRORLNRPGM(full_screen_message);
  7621. lcd_display_message_fullscreen_P(full_screen_message);
  7622. } else {
  7623. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7624. }
  7625. // FMC small patch to update the LCD before ending
  7626. sei(); // enable interrupts
  7627. for ( int i=5; i--; lcd_update(0))
  7628. {
  7629. _delay(200);
  7630. }
  7631. cli(); // disable interrupts
  7632. suicide();
  7633. while(1)
  7634. {
  7635. #ifdef WATCHDOG
  7636. wdt_reset();
  7637. #endif //WATCHDOG
  7638. /* Intentionally left empty */
  7639. } // Wait for reset
  7640. }
  7641. void Stop()
  7642. {
  7643. disable_heater();
  7644. if(Stopped == false) {
  7645. Stopped = true;
  7646. lcd_print_stop();
  7647. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7648. SERIAL_ERROR_START;
  7649. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7650. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7651. }
  7652. }
  7653. bool IsStopped() { return Stopped; };
  7654. #ifdef FAST_PWM_FAN
  7655. void setPwmFrequency(uint8_t pin, int val)
  7656. {
  7657. val &= 0x07;
  7658. switch(digitalPinToTimer(pin))
  7659. {
  7660. #if defined(TCCR0A)
  7661. case TIMER0A:
  7662. case TIMER0B:
  7663. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7664. // TCCR0B |= val;
  7665. break;
  7666. #endif
  7667. #if defined(TCCR1A)
  7668. case TIMER1A:
  7669. case TIMER1B:
  7670. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7671. // TCCR1B |= val;
  7672. break;
  7673. #endif
  7674. #if defined(TCCR2)
  7675. case TIMER2:
  7676. case TIMER2:
  7677. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7678. TCCR2 |= val;
  7679. break;
  7680. #endif
  7681. #if defined(TCCR2A)
  7682. case TIMER2A:
  7683. case TIMER2B:
  7684. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7685. TCCR2B |= val;
  7686. break;
  7687. #endif
  7688. #if defined(TCCR3A)
  7689. case TIMER3A:
  7690. case TIMER3B:
  7691. case TIMER3C:
  7692. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7693. TCCR3B |= val;
  7694. break;
  7695. #endif
  7696. #if defined(TCCR4A)
  7697. case TIMER4A:
  7698. case TIMER4B:
  7699. case TIMER4C:
  7700. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7701. TCCR4B |= val;
  7702. break;
  7703. #endif
  7704. #if defined(TCCR5A)
  7705. case TIMER5A:
  7706. case TIMER5B:
  7707. case TIMER5C:
  7708. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7709. TCCR5B |= val;
  7710. break;
  7711. #endif
  7712. }
  7713. }
  7714. #endif //FAST_PWM_FAN
  7715. //! @brief Get and validate extruder number
  7716. //!
  7717. //! If it is not specified, active_extruder is returned in parameter extruder.
  7718. //! @param [in] code M code number
  7719. //! @param [out] extruder
  7720. //! @return error
  7721. //! @retval true Invalid extruder specified in T code
  7722. //! @retval false Valid extruder specified in T code, or not specifiead
  7723. bool setTargetedHotend(int code, uint8_t &extruder)
  7724. {
  7725. extruder = active_extruder;
  7726. if(code_seen('T')) {
  7727. extruder = code_value();
  7728. if(extruder >= EXTRUDERS) {
  7729. SERIAL_ECHO_START;
  7730. switch(code){
  7731. case 104:
  7732. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7733. break;
  7734. case 105:
  7735. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7736. break;
  7737. case 109:
  7738. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7739. break;
  7740. case 218:
  7741. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7742. break;
  7743. case 221:
  7744. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7745. break;
  7746. }
  7747. SERIAL_PROTOCOLLN((int)extruder);
  7748. return true;
  7749. }
  7750. }
  7751. return false;
  7752. }
  7753. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7754. {
  7755. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7756. {
  7757. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7758. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7759. }
  7760. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7761. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7762. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7763. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7764. total_filament_used = 0;
  7765. }
  7766. float calculate_extruder_multiplier(float diameter) {
  7767. float out = 1.f;
  7768. if (cs.volumetric_enabled && diameter > 0.f) {
  7769. float area = M_PI * diameter * diameter * 0.25;
  7770. out = 1.f / area;
  7771. }
  7772. if (extrudemultiply != 100)
  7773. out *= float(extrudemultiply) * 0.01f;
  7774. return out;
  7775. }
  7776. void calculate_extruder_multipliers() {
  7777. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7778. #if EXTRUDERS > 1
  7779. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7780. #if EXTRUDERS > 2
  7781. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7782. #endif
  7783. #endif
  7784. }
  7785. void delay_keep_alive(unsigned int ms)
  7786. {
  7787. for (;;) {
  7788. manage_heater();
  7789. // Manage inactivity, but don't disable steppers on timeout.
  7790. manage_inactivity(true);
  7791. lcd_update(0);
  7792. if (ms == 0)
  7793. break;
  7794. else if (ms >= 50) {
  7795. _delay(50);
  7796. ms -= 50;
  7797. } else {
  7798. _delay(ms);
  7799. ms = 0;
  7800. }
  7801. }
  7802. }
  7803. static void wait_for_heater(long codenum, uint8_t extruder) {
  7804. #ifdef TEMP_RESIDENCY_TIME
  7805. long residencyStart;
  7806. residencyStart = -1;
  7807. /* continue to loop until we have reached the target temp
  7808. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7809. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7810. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7811. #else
  7812. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7813. #endif //TEMP_RESIDENCY_TIME
  7814. if ((_millis() - codenum) > 1000UL)
  7815. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7816. if (!farm_mode) {
  7817. SERIAL_PROTOCOLPGM("T:");
  7818. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7819. SERIAL_PROTOCOLPGM(" E:");
  7820. SERIAL_PROTOCOL((int)extruder);
  7821. #ifdef TEMP_RESIDENCY_TIME
  7822. SERIAL_PROTOCOLPGM(" W:");
  7823. if (residencyStart > -1)
  7824. {
  7825. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7826. SERIAL_PROTOCOLLN(codenum);
  7827. }
  7828. else
  7829. {
  7830. SERIAL_PROTOCOLLN("?");
  7831. }
  7832. }
  7833. #else
  7834. SERIAL_PROTOCOLLN("");
  7835. #endif
  7836. codenum = _millis();
  7837. }
  7838. manage_heater();
  7839. manage_inactivity(true); //do not disable steppers
  7840. lcd_update(0);
  7841. #ifdef TEMP_RESIDENCY_TIME
  7842. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7843. or when current temp falls outside the hysteresis after target temp was reached */
  7844. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7845. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7846. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7847. {
  7848. residencyStart = _millis();
  7849. }
  7850. #endif //TEMP_RESIDENCY_TIME
  7851. }
  7852. }
  7853. void check_babystep()
  7854. {
  7855. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7856. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7857. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7858. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7859. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7860. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7861. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7862. babystep_z);
  7863. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7864. lcd_update_enable(true);
  7865. }
  7866. }
  7867. #ifdef HEATBED_ANALYSIS
  7868. void d_setup()
  7869. {
  7870. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7871. pinMode(D_DATA, INPUT_PULLUP);
  7872. pinMode(D_REQUIRE, OUTPUT);
  7873. digitalWrite(D_REQUIRE, HIGH);
  7874. }
  7875. float d_ReadData()
  7876. {
  7877. int digit[13];
  7878. String mergeOutput;
  7879. float output;
  7880. digitalWrite(D_REQUIRE, HIGH);
  7881. for (int i = 0; i<13; i++)
  7882. {
  7883. for (int j = 0; j < 4; j++)
  7884. {
  7885. while (digitalRead(D_DATACLOCK) == LOW) {}
  7886. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7887. bitWrite(digit[i], j, digitalRead(D_DATA));
  7888. }
  7889. }
  7890. digitalWrite(D_REQUIRE, LOW);
  7891. mergeOutput = "";
  7892. output = 0;
  7893. for (int r = 5; r <= 10; r++) //Merge digits
  7894. {
  7895. mergeOutput += digit[r];
  7896. }
  7897. output = mergeOutput.toFloat();
  7898. if (digit[4] == 8) //Handle sign
  7899. {
  7900. output *= -1;
  7901. }
  7902. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7903. {
  7904. output /= 10;
  7905. }
  7906. return output;
  7907. }
  7908. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7909. int t1 = 0;
  7910. int t_delay = 0;
  7911. int digit[13];
  7912. int m;
  7913. char str[3];
  7914. //String mergeOutput;
  7915. char mergeOutput[15];
  7916. float output;
  7917. int mesh_point = 0; //index number of calibration point
  7918. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7919. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7920. float mesh_home_z_search = 4;
  7921. float measure_z_height = 0.2f;
  7922. float row[x_points_num];
  7923. int ix = 0;
  7924. int iy = 0;
  7925. const char* filename_wldsd = "mesh.txt";
  7926. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7927. char numb_wldsd[8]; // (" -A.BCD" + null)
  7928. #ifdef MICROMETER_LOGGING
  7929. d_setup();
  7930. #endif //MICROMETER_LOGGING
  7931. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7932. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7933. unsigned int custom_message_type_old = custom_message_type;
  7934. unsigned int custom_message_state_old = custom_message_state;
  7935. custom_message_type = CustomMsg::MeshBedLeveling;
  7936. custom_message_state = (x_points_num * y_points_num) + 10;
  7937. lcd_update(1);
  7938. //mbl.reset();
  7939. babystep_undo();
  7940. card.openFile(filename_wldsd, false);
  7941. /*destination[Z_AXIS] = mesh_home_z_search;
  7942. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7943. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7944. for(int8_t i=0; i < NUM_AXIS; i++) {
  7945. current_position[i] = destination[i];
  7946. }
  7947. st_synchronize();
  7948. */
  7949. destination[Z_AXIS] = measure_z_height;
  7950. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7951. for(int8_t i=0; i < NUM_AXIS; i++) {
  7952. current_position[i] = destination[i];
  7953. }
  7954. st_synchronize();
  7955. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7956. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7957. SERIAL_PROTOCOL(x_points_num);
  7958. SERIAL_PROTOCOLPGM(",");
  7959. SERIAL_PROTOCOL(y_points_num);
  7960. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7961. SERIAL_PROTOCOL(mesh_home_z_search);
  7962. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7963. SERIAL_PROTOCOL(x_dimension);
  7964. SERIAL_PROTOCOLPGM(",");
  7965. SERIAL_PROTOCOL(y_dimension);
  7966. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7967. while (mesh_point != x_points_num * y_points_num) {
  7968. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7969. iy = mesh_point / x_points_num;
  7970. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7971. float z0 = 0.f;
  7972. /*destination[Z_AXIS] = mesh_home_z_search;
  7973. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7974. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7975. for(int8_t i=0; i < NUM_AXIS; i++) {
  7976. current_position[i] = destination[i];
  7977. }
  7978. st_synchronize();*/
  7979. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7980. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7981. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7982. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7983. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7984. for(int8_t i=0; i < NUM_AXIS; i++) {
  7985. current_position[i] = destination[i];
  7986. }
  7987. st_synchronize();
  7988. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7989. delay_keep_alive(1000);
  7990. #ifdef MICROMETER_LOGGING
  7991. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7992. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7993. //strcat(data_wldsd, numb_wldsd);
  7994. //MYSERIAL.println(data_wldsd);
  7995. //delay(1000);
  7996. //delay(3000);
  7997. //t1 = millis();
  7998. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7999. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8000. memset(digit, 0, sizeof(digit));
  8001. //cli();
  8002. digitalWrite(D_REQUIRE, LOW);
  8003. for (int i = 0; i<13; i++)
  8004. {
  8005. //t1 = millis();
  8006. for (int j = 0; j < 4; j++)
  8007. {
  8008. while (digitalRead(D_DATACLOCK) == LOW) {}
  8009. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8010. //printf_P(PSTR("Done %d\n"), j);
  8011. bitWrite(digit[i], j, digitalRead(D_DATA));
  8012. }
  8013. //t_delay = (millis() - t1);
  8014. //SERIAL_PROTOCOLPGM(" ");
  8015. //SERIAL_PROTOCOL_F(t_delay, 5);
  8016. //SERIAL_PROTOCOLPGM(" ");
  8017. }
  8018. //sei();
  8019. digitalWrite(D_REQUIRE, HIGH);
  8020. mergeOutput[0] = '\0';
  8021. output = 0;
  8022. for (int r = 5; r <= 10; r++) //Merge digits
  8023. {
  8024. sprintf(str, "%d", digit[r]);
  8025. strcat(mergeOutput, str);
  8026. }
  8027. output = atof(mergeOutput);
  8028. if (digit[4] == 8) //Handle sign
  8029. {
  8030. output *= -1;
  8031. }
  8032. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8033. {
  8034. output *= 0.1;
  8035. }
  8036. //output = d_ReadData();
  8037. //row[ix] = current_position[Z_AXIS];
  8038. //row[ix] = d_ReadData();
  8039. row[ix] = output;
  8040. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8041. memset(data_wldsd, 0, sizeof(data_wldsd));
  8042. for (int i = 0; i < x_points_num; i++) {
  8043. SERIAL_PROTOCOLPGM(" ");
  8044. SERIAL_PROTOCOL_F(row[i], 5);
  8045. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8046. dtostrf(row[i], 7, 3, numb_wldsd);
  8047. strcat(data_wldsd, numb_wldsd);
  8048. }
  8049. card.write_command(data_wldsd);
  8050. SERIAL_PROTOCOLPGM("\n");
  8051. }
  8052. custom_message_state--;
  8053. mesh_point++;
  8054. lcd_update(1);
  8055. }
  8056. #endif //MICROMETER_LOGGING
  8057. card.closefile();
  8058. //clean_up_after_endstop_move(l_feedmultiply);
  8059. }
  8060. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8061. int t1 = 0;
  8062. int t_delay = 0;
  8063. int digit[13];
  8064. int m;
  8065. char str[3];
  8066. //String mergeOutput;
  8067. char mergeOutput[15];
  8068. float output;
  8069. int mesh_point = 0; //index number of calibration point
  8070. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8071. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8072. float mesh_home_z_search = 4;
  8073. float row[x_points_num];
  8074. int ix = 0;
  8075. int iy = 0;
  8076. const char* filename_wldsd = "wldsd.txt";
  8077. char data_wldsd[70];
  8078. char numb_wldsd[10];
  8079. d_setup();
  8080. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8081. // We don't know where we are! HOME!
  8082. // Push the commands to the front of the message queue in the reverse order!
  8083. // There shall be always enough space reserved for these commands.
  8084. repeatcommand_front(); // repeat G80 with all its parameters
  8085. enquecommand_front_P((PSTR("G28 W0")));
  8086. enquecommand_front_P((PSTR("G1 Z5")));
  8087. return;
  8088. }
  8089. unsigned int custom_message_type_old = custom_message_type;
  8090. unsigned int custom_message_state_old = custom_message_state;
  8091. custom_message_type = CustomMsg::MeshBedLeveling;
  8092. custom_message_state = (x_points_num * y_points_num) + 10;
  8093. lcd_update(1);
  8094. mbl.reset();
  8095. babystep_undo();
  8096. card.openFile(filename_wldsd, false);
  8097. current_position[Z_AXIS] = mesh_home_z_search;
  8098. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8099. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8100. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8101. int l_feedmultiply = setup_for_endstop_move(false);
  8102. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8103. SERIAL_PROTOCOL(x_points_num);
  8104. SERIAL_PROTOCOLPGM(",");
  8105. SERIAL_PROTOCOL(y_points_num);
  8106. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8107. SERIAL_PROTOCOL(mesh_home_z_search);
  8108. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8109. SERIAL_PROTOCOL(x_dimension);
  8110. SERIAL_PROTOCOLPGM(",");
  8111. SERIAL_PROTOCOL(y_dimension);
  8112. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8113. while (mesh_point != x_points_num * y_points_num) {
  8114. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8115. iy = mesh_point / x_points_num;
  8116. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8117. float z0 = 0.f;
  8118. current_position[Z_AXIS] = mesh_home_z_search;
  8119. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8120. st_synchronize();
  8121. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8122. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8123. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8124. st_synchronize();
  8125. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8126. break;
  8127. card.closefile();
  8128. }
  8129. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8130. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8131. //strcat(data_wldsd, numb_wldsd);
  8132. //MYSERIAL.println(data_wldsd);
  8133. //_delay(1000);
  8134. //_delay(3000);
  8135. //t1 = _millis();
  8136. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8137. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8138. memset(digit, 0, sizeof(digit));
  8139. //cli();
  8140. digitalWrite(D_REQUIRE, LOW);
  8141. for (int i = 0; i<13; i++)
  8142. {
  8143. //t1 = _millis();
  8144. for (int j = 0; j < 4; j++)
  8145. {
  8146. while (digitalRead(D_DATACLOCK) == LOW) {}
  8147. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8148. bitWrite(digit[i], j, digitalRead(D_DATA));
  8149. }
  8150. //t_delay = (_millis() - t1);
  8151. //SERIAL_PROTOCOLPGM(" ");
  8152. //SERIAL_PROTOCOL_F(t_delay, 5);
  8153. //SERIAL_PROTOCOLPGM(" ");
  8154. }
  8155. //sei();
  8156. digitalWrite(D_REQUIRE, HIGH);
  8157. mergeOutput[0] = '\0';
  8158. output = 0;
  8159. for (int r = 5; r <= 10; r++) //Merge digits
  8160. {
  8161. sprintf(str, "%d", digit[r]);
  8162. strcat(mergeOutput, str);
  8163. }
  8164. output = atof(mergeOutput);
  8165. if (digit[4] == 8) //Handle sign
  8166. {
  8167. output *= -1;
  8168. }
  8169. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8170. {
  8171. output *= 0.1;
  8172. }
  8173. //output = d_ReadData();
  8174. //row[ix] = current_position[Z_AXIS];
  8175. memset(data_wldsd, 0, sizeof(data_wldsd));
  8176. for (int i = 0; i <3; i++) {
  8177. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8178. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8179. strcat(data_wldsd, numb_wldsd);
  8180. strcat(data_wldsd, ";");
  8181. }
  8182. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8183. dtostrf(output, 8, 5, numb_wldsd);
  8184. strcat(data_wldsd, numb_wldsd);
  8185. //strcat(data_wldsd, ";");
  8186. card.write_command(data_wldsd);
  8187. //row[ix] = d_ReadData();
  8188. row[ix] = output; // current_position[Z_AXIS];
  8189. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8190. for (int i = 0; i < x_points_num; i++) {
  8191. SERIAL_PROTOCOLPGM(" ");
  8192. SERIAL_PROTOCOL_F(row[i], 5);
  8193. }
  8194. SERIAL_PROTOCOLPGM("\n");
  8195. }
  8196. custom_message_state--;
  8197. mesh_point++;
  8198. lcd_update(1);
  8199. }
  8200. card.closefile();
  8201. clean_up_after_endstop_move(l_feedmultiply);
  8202. }
  8203. #endif //HEATBED_ANALYSIS
  8204. #ifndef PINDA_THERMISTOR
  8205. static void temp_compensation_start() {
  8206. custom_message_type = CustomMsg::TempCompPreheat;
  8207. custom_message_state = PINDA_HEAT_T + 1;
  8208. lcd_update(2);
  8209. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8210. current_position[E_AXIS] -= default_retraction;
  8211. }
  8212. plan_buffer_line_curposXYZE(400, active_extruder);
  8213. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8214. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8215. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8216. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8217. st_synchronize();
  8218. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8219. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8220. delay_keep_alive(1000);
  8221. custom_message_state = PINDA_HEAT_T - i;
  8222. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8223. else lcd_update(1);
  8224. }
  8225. custom_message_type = CustomMsg::Status;
  8226. custom_message_state = 0;
  8227. }
  8228. static void temp_compensation_apply() {
  8229. int i_add;
  8230. int z_shift = 0;
  8231. float z_shift_mm;
  8232. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8233. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8234. i_add = (target_temperature_bed - 60) / 10;
  8235. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8236. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8237. }else {
  8238. //interpolation
  8239. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8240. }
  8241. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8242. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8243. st_synchronize();
  8244. plan_set_z_position(current_position[Z_AXIS]);
  8245. }
  8246. else {
  8247. //we have no temp compensation data
  8248. }
  8249. }
  8250. #endif //ndef PINDA_THERMISTOR
  8251. float temp_comp_interpolation(float inp_temperature) {
  8252. //cubic spline interpolation
  8253. int n, i, j;
  8254. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8255. int shift[10];
  8256. int temp_C[10];
  8257. n = 6; //number of measured points
  8258. shift[0] = 0;
  8259. for (i = 0; i < n; i++) {
  8260. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8261. temp_C[i] = 50 + i * 10; //temperature in C
  8262. #ifdef PINDA_THERMISTOR
  8263. temp_C[i] = 35 + i * 5; //temperature in C
  8264. #else
  8265. temp_C[i] = 50 + i * 10; //temperature in C
  8266. #endif
  8267. x[i] = (float)temp_C[i];
  8268. f[i] = (float)shift[i];
  8269. }
  8270. if (inp_temperature < x[0]) return 0;
  8271. for (i = n - 1; i>0; i--) {
  8272. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8273. h[i - 1] = x[i] - x[i - 1];
  8274. }
  8275. //*********** formation of h, s , f matrix **************
  8276. for (i = 1; i<n - 1; i++) {
  8277. m[i][i] = 2 * (h[i - 1] + h[i]);
  8278. if (i != 1) {
  8279. m[i][i - 1] = h[i - 1];
  8280. m[i - 1][i] = h[i - 1];
  8281. }
  8282. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8283. }
  8284. //*********** forward elimination **************
  8285. for (i = 1; i<n - 2; i++) {
  8286. temp = (m[i + 1][i] / m[i][i]);
  8287. for (j = 1; j <= n - 1; j++)
  8288. m[i + 1][j] -= temp*m[i][j];
  8289. }
  8290. //*********** backward substitution *********
  8291. for (i = n - 2; i>0; i--) {
  8292. sum = 0;
  8293. for (j = i; j <= n - 2; j++)
  8294. sum += m[i][j] * s[j];
  8295. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8296. }
  8297. for (i = 0; i<n - 1; i++)
  8298. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8299. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8300. b = s[i] / 2;
  8301. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8302. d = f[i];
  8303. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8304. }
  8305. return sum;
  8306. }
  8307. #ifdef PINDA_THERMISTOR
  8308. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8309. {
  8310. if (!temp_cal_active) return 0;
  8311. if (!calibration_status_pinda()) return 0;
  8312. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8313. }
  8314. #endif //PINDA_THERMISTOR
  8315. void long_pause() //long pause print
  8316. {
  8317. st_synchronize();
  8318. start_pause_print = _millis();
  8319. //retract
  8320. current_position[E_AXIS] -= default_retraction;
  8321. plan_buffer_line_curposXYZE(400, active_extruder);
  8322. //lift z
  8323. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8324. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8325. plan_buffer_line_curposXYZE(15, active_extruder);
  8326. //Move XY to side
  8327. current_position[X_AXIS] = X_PAUSE_POS;
  8328. current_position[Y_AXIS] = Y_PAUSE_POS;
  8329. plan_buffer_line_curposXYZE(50, active_extruder);
  8330. // Turn off the hotends and print fan
  8331. setAllTargetHotends(0);
  8332. fanSpeed = 0;
  8333. }
  8334. void serialecho_temperatures() {
  8335. float tt = degHotend(active_extruder);
  8336. SERIAL_PROTOCOLPGM("T:");
  8337. SERIAL_PROTOCOL(tt);
  8338. SERIAL_PROTOCOLPGM(" E:");
  8339. SERIAL_PROTOCOL((int)active_extruder);
  8340. SERIAL_PROTOCOLPGM(" B:");
  8341. SERIAL_PROTOCOL_F(degBed(), 1);
  8342. SERIAL_PROTOCOLLN("");
  8343. }
  8344. #ifdef UVLO_SUPPORT
  8345. void uvlo_()
  8346. {
  8347. unsigned long time_start = _millis();
  8348. bool sd_print = card.sdprinting;
  8349. // Conserve power as soon as possible.
  8350. disable_x();
  8351. disable_y();
  8352. #ifdef TMC2130
  8353. tmc2130_set_current_h(Z_AXIS, 20);
  8354. tmc2130_set_current_r(Z_AXIS, 20);
  8355. tmc2130_set_current_h(E_AXIS, 20);
  8356. tmc2130_set_current_r(E_AXIS, 20);
  8357. #endif //TMC2130
  8358. // Indicate that the interrupt has been triggered.
  8359. // SERIAL_ECHOLNPGM("UVLO");
  8360. // Read out the current Z motor microstep counter. This will be later used
  8361. // for reaching the zero full step before powering off.
  8362. uint16_t z_microsteps = 0;
  8363. #ifdef TMC2130
  8364. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8365. #endif //TMC2130
  8366. // Calculate the file position, from which to resume this print.
  8367. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8368. {
  8369. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8370. sd_position -= sdlen_planner;
  8371. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8372. sd_position -= sdlen_cmdqueue;
  8373. if (sd_position < 0) sd_position = 0;
  8374. }
  8375. // Backup the feedrate in mm/min.
  8376. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8377. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8378. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8379. // are in action.
  8380. planner_abort_hard();
  8381. // Store the current extruder position.
  8382. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8383. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8384. // Clean the input command queue.
  8385. cmdqueue_reset();
  8386. card.sdprinting = false;
  8387. // card.closefile();
  8388. // Enable stepper driver interrupt to move Z axis.
  8389. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8390. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8391. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8392. sei();
  8393. plan_buffer_line(
  8394. current_position[X_AXIS],
  8395. current_position[Y_AXIS],
  8396. current_position[Z_AXIS],
  8397. current_position[E_AXIS] - default_retraction,
  8398. 95, active_extruder);
  8399. st_synchronize();
  8400. disable_e0();
  8401. plan_buffer_line(
  8402. current_position[X_AXIS],
  8403. current_position[Y_AXIS],
  8404. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8405. current_position[E_AXIS] - default_retraction,
  8406. 40, active_extruder);
  8407. st_synchronize();
  8408. disable_e0();
  8409. plan_buffer_line(
  8410. current_position[X_AXIS],
  8411. current_position[Y_AXIS],
  8412. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8413. current_position[E_AXIS] - default_retraction,
  8414. 40, active_extruder);
  8415. st_synchronize();
  8416. disable_e0();
  8417. // Move Z up to the next 0th full step.
  8418. // Write the file position.
  8419. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8420. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8421. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8422. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8423. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8424. // Scale the z value to 1u resolution.
  8425. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  8426. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  8427. }
  8428. // Read out the current Z motor microstep counter. This will be later used
  8429. // for reaching the zero full step before powering off.
  8430. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  8431. // Store the current position.
  8432. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  8433. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  8434. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  8435. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  8436. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  8437. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  8438. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  8439. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  8440. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  8441. #if EXTRUDERS > 1
  8442. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  8443. #if EXTRUDERS > 2
  8444. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  8445. #endif
  8446. #endif
  8447. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  8448. // Finaly store the "power outage" flag.
  8449. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  8450. st_synchronize();
  8451. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  8452. // Increment power failure counter
  8453. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8454. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8455. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  8456. #if 0
  8457. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  8458. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  8459. plan_buffer_line_curposXYZE(500, active_extruder);
  8460. st_synchronize();
  8461. #endif
  8462. wdt_enable(WDTO_500MS);
  8463. WRITE(BEEPER,HIGH);
  8464. while(1)
  8465. ;
  8466. }
  8467. void uvlo_tiny()
  8468. {
  8469. uint16_t z_microsteps=0;
  8470. // Conserve power as soon as possible.
  8471. disable_x();
  8472. disable_y();
  8473. disable_e0();
  8474. #ifdef TMC2130
  8475. tmc2130_set_current_h(Z_AXIS, 20);
  8476. tmc2130_set_current_r(Z_AXIS, 20);
  8477. #endif //TMC2130
  8478. // Read out the current Z motor microstep counter
  8479. #ifdef TMC2130
  8480. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8481. #endif //TMC2130
  8482. planner_abort_hard();
  8483. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  8484. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  8485. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  8486. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  8487. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  8488. }
  8489. //after multiple power panics current Z axis is unknow
  8490. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  8491. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  8492. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  8493. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  8494. }
  8495. // Finaly store the "power outage" flag.
  8496. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  8497. // Increment power failure counter
  8498. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8499. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8500. wdt_enable(WDTO_500MS);
  8501. WRITE(BEEPER,HIGH);
  8502. while(1)
  8503. ;
  8504. }
  8505. #endif //UVLO_SUPPORT
  8506. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  8507. void setup_fan_interrupt() {
  8508. //INT7
  8509. DDRE &= ~(1 << 7); //input pin
  8510. PORTE &= ~(1 << 7); //no internal pull-up
  8511. //start with sensing rising edge
  8512. EICRB &= ~(1 << 6);
  8513. EICRB |= (1 << 7);
  8514. //enable INT7 interrupt
  8515. EIMSK |= (1 << 7);
  8516. }
  8517. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  8518. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  8519. ISR(INT7_vect) {
  8520. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  8521. #ifdef FAN_SOFT_PWM
  8522. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  8523. #else //FAN_SOFT_PWM
  8524. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  8525. #endif //FAN_SOFT_PWM
  8526. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  8527. t_fan_rising_edge = millis_nc();
  8528. }
  8529. else { //interrupt was triggered by falling edge
  8530. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  8531. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  8532. }
  8533. }
  8534. EICRB ^= (1 << 6); //change edge
  8535. }
  8536. #endif
  8537. #ifdef UVLO_SUPPORT
  8538. void setup_uvlo_interrupt() {
  8539. DDRE &= ~(1 << 4); //input pin
  8540. PORTE &= ~(1 << 4); //no internal pull-up
  8541. //sensing falling edge
  8542. EICRB |= (1 << 0);
  8543. EICRB &= ~(1 << 1);
  8544. //enable INT4 interrupt
  8545. EIMSK |= (1 << 4);
  8546. }
  8547. ISR(INT4_vect) {
  8548. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8549. SERIAL_ECHOLNPGM("INT4");
  8550. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8551. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8552. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8553. }
  8554. void recover_print(uint8_t automatic) {
  8555. char cmd[30];
  8556. lcd_update_enable(true);
  8557. lcd_update(2);
  8558. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8559. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8560. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8561. // Lift the print head, so one may remove the excess priming material.
  8562. if(!bTiny&&(current_position[Z_AXIS]<25))
  8563. enquecommand_P(PSTR("G1 Z25 F800"));
  8564. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8565. enquecommand_P(PSTR("G28 X Y"));
  8566. // Set the target bed and nozzle temperatures and wait.
  8567. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8568. enquecommand(cmd);
  8569. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8570. enquecommand(cmd);
  8571. enquecommand_P(PSTR("M83")); //E axis relative mode
  8572. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8573. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8574. if(automatic == 0){
  8575. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8576. }
  8577. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8578. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8579. // Restart the print.
  8580. restore_print_from_eeprom();
  8581. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8582. }
  8583. void recover_machine_state_after_power_panic(bool bTiny)
  8584. {
  8585. char cmd[30];
  8586. // 1) Recover the logical cordinates at the time of the power panic.
  8587. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8588. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8589. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8590. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8591. mbl.active = false;
  8592. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8593. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8594. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8595. // Scale the z value to 10u resolution.
  8596. int16_t v;
  8597. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8598. if (v != 0)
  8599. mbl.active = true;
  8600. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8601. }
  8602. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8603. // The current position after power panic is moved to the next closest 0th full step.
  8604. if(bTiny){
  8605. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8606. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8607. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8608. //after multiple power panics the print is slightly in the air so get it little bit down.
  8609. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8610. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8611. }
  8612. else{
  8613. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8614. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8615. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8616. }
  8617. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8618. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8619. sprintf_P(cmd, PSTR("G92 E"));
  8620. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8621. enquecommand(cmd);
  8622. }
  8623. memcpy(destination, current_position, sizeof(destination));
  8624. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8625. print_world_coordinates();
  8626. // 3) Initialize the logical to physical coordinate system transformation.
  8627. world2machine_initialize();
  8628. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8629. // print_mesh_bed_leveling_table();
  8630. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8631. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8632. babystep_load();
  8633. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8634. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8635. // 6) Power up the motors, mark their positions as known.
  8636. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8637. axis_known_position[X_AXIS] = true; enable_x();
  8638. axis_known_position[Y_AXIS] = true; enable_y();
  8639. axis_known_position[Z_AXIS] = true; enable_z();
  8640. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8641. print_physical_coordinates();
  8642. // 7) Recover the target temperatures.
  8643. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8644. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8645. // 8) Recover extruder multipilers
  8646. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8647. #if EXTRUDERS > 1
  8648. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8649. #if EXTRUDERS > 2
  8650. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8651. #endif
  8652. #endif
  8653. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8654. }
  8655. void restore_print_from_eeprom() {
  8656. int feedrate_rec;
  8657. uint8_t fan_speed_rec;
  8658. char cmd[30];
  8659. char filename[13];
  8660. uint8_t depth = 0;
  8661. char dir_name[9];
  8662. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8663. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8664. SERIAL_ECHOPGM("Feedrate:");
  8665. MYSERIAL.println(feedrate_rec);
  8666. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8667. MYSERIAL.println(int(depth));
  8668. for (int i = 0; i < depth; i++) {
  8669. for (int j = 0; j < 8; j++) {
  8670. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8671. }
  8672. dir_name[8] = '\0';
  8673. MYSERIAL.println(dir_name);
  8674. strcpy(dir_names[i], dir_name);
  8675. card.chdir(dir_name);
  8676. }
  8677. for (int i = 0; i < 8; i++) {
  8678. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8679. }
  8680. filename[8] = '\0';
  8681. MYSERIAL.print(filename);
  8682. strcat_P(filename, PSTR(".gco"));
  8683. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8684. enquecommand(cmd);
  8685. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8686. SERIAL_ECHOPGM("Position read from eeprom:");
  8687. MYSERIAL.println(position);
  8688. // E axis relative mode.
  8689. enquecommand_P(PSTR("M83"));
  8690. // Move to the XY print position in logical coordinates, where the print has been killed.
  8691. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8692. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8693. strcat_P(cmd, PSTR(" F2000"));
  8694. enquecommand(cmd);
  8695. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8696. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8697. // Move the Z axis down to the print, in logical coordinates.
  8698. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8699. enquecommand(cmd);
  8700. // Unretract.
  8701. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8702. // Set the feedrate saved at the power panic.
  8703. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8704. enquecommand(cmd);
  8705. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8706. {
  8707. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8708. }
  8709. // Set the fan speed saved at the power panic.
  8710. strcpy_P(cmd, PSTR("M106 S"));
  8711. strcat(cmd, itostr3(int(fan_speed_rec)));
  8712. enquecommand(cmd);
  8713. // Set a position in the file.
  8714. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8715. enquecommand(cmd);
  8716. enquecommand_P(PSTR("G4 S0"));
  8717. enquecommand_P(PSTR("PRUSA uvlo"));
  8718. }
  8719. #endif //UVLO_SUPPORT
  8720. //! @brief Immediately stop print moves
  8721. //!
  8722. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8723. //! If printing from sd card, position in file is saved.
  8724. //! If printing from USB, line number is saved.
  8725. //!
  8726. //! @param z_move
  8727. //! @param e_move
  8728. void stop_and_save_print_to_ram(float z_move, float e_move)
  8729. {
  8730. if (saved_printing) return;
  8731. #if 0
  8732. unsigned char nplanner_blocks;
  8733. #endif
  8734. unsigned char nlines;
  8735. uint16_t sdlen_planner;
  8736. uint16_t sdlen_cmdqueue;
  8737. cli();
  8738. if (card.sdprinting) {
  8739. #if 0
  8740. nplanner_blocks = number_of_blocks();
  8741. #endif
  8742. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8743. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8744. saved_sdpos -= sdlen_planner;
  8745. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8746. saved_sdpos -= sdlen_cmdqueue;
  8747. saved_printing_type = PRINTING_TYPE_SD;
  8748. }
  8749. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8750. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8751. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8752. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8753. saved_sdpos -= nlines;
  8754. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8755. saved_printing_type = PRINTING_TYPE_USB;
  8756. }
  8757. else {
  8758. saved_printing_type = PRINTING_TYPE_NONE;
  8759. //not sd printing nor usb printing
  8760. }
  8761. #if 0
  8762. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8763. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8764. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8765. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8766. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8767. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8768. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8769. {
  8770. card.setIndex(saved_sdpos);
  8771. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8772. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8773. MYSERIAL.print(char(card.get()));
  8774. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8775. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8776. MYSERIAL.print(char(card.get()));
  8777. SERIAL_ECHOLNPGM("End of command buffer");
  8778. }
  8779. {
  8780. // Print the content of the planner buffer, line by line:
  8781. card.setIndex(saved_sdpos);
  8782. int8_t iline = 0;
  8783. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8784. SERIAL_ECHOPGM("Planner line (from file): ");
  8785. MYSERIAL.print(int(iline), DEC);
  8786. SERIAL_ECHOPGM(", length: ");
  8787. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8788. SERIAL_ECHOPGM(", steps: (");
  8789. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8790. SERIAL_ECHOPGM(",");
  8791. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8792. SERIAL_ECHOPGM(",");
  8793. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8794. SERIAL_ECHOPGM(",");
  8795. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8796. SERIAL_ECHOPGM("), events: ");
  8797. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8798. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8799. MYSERIAL.print(char(card.get()));
  8800. }
  8801. }
  8802. {
  8803. // Print the content of the command buffer, line by line:
  8804. int8_t iline = 0;
  8805. union {
  8806. struct {
  8807. char lo;
  8808. char hi;
  8809. } lohi;
  8810. uint16_t value;
  8811. } sdlen_single;
  8812. int _bufindr = bufindr;
  8813. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8814. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8815. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8816. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8817. }
  8818. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8819. MYSERIAL.print(int(iline), DEC);
  8820. SERIAL_ECHOPGM(", type: ");
  8821. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8822. SERIAL_ECHOPGM(", len: ");
  8823. MYSERIAL.println(sdlen_single.value, DEC);
  8824. // Print the content of the buffer line.
  8825. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8826. SERIAL_ECHOPGM("Buffer line (from file): ");
  8827. MYSERIAL.println(int(iline), DEC);
  8828. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8829. MYSERIAL.print(char(card.get()));
  8830. if (-- _buflen == 0)
  8831. break;
  8832. // First skip the current command ID and iterate up to the end of the string.
  8833. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8834. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8835. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8836. // If the end of the buffer was empty,
  8837. if (_bufindr == sizeof(cmdbuffer)) {
  8838. // skip to the start and find the nonzero command.
  8839. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8840. }
  8841. }
  8842. }
  8843. #endif
  8844. #if 0
  8845. saved_feedrate2 = feedrate; //save feedrate
  8846. #else
  8847. // Try to deduce the feedrate from the first block of the planner.
  8848. // Speed is in mm/min.
  8849. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8850. #endif
  8851. planner_abort_hard(); //abort printing
  8852. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8853. saved_active_extruder = active_extruder; //save active_extruder
  8854. saved_extruder_temperature = degTargetHotend(active_extruder);
  8855. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8856. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8857. saved_fanSpeed = fanSpeed;
  8858. cmdqueue_reset(); //empty cmdqueue
  8859. card.sdprinting = false;
  8860. // card.closefile();
  8861. saved_printing = true;
  8862. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8863. st_reset_timer();
  8864. sei();
  8865. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8866. #if 1
  8867. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8868. char buf[48];
  8869. // First unretract (relative extrusion)
  8870. if(!saved_extruder_relative_mode){
  8871. enquecommand(PSTR("M83"), true);
  8872. }
  8873. //retract 45mm/s
  8874. // A single sprintf may not be faster, but is definitely 20B shorter
  8875. // than a sequence of commands building the string piece by piece
  8876. // A snprintf would have been a safer call, but since it is not used
  8877. // in the whole program, its implementation would bring more bytes to the total size
  8878. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8879. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8880. enquecommand(buf, false);
  8881. // Then lift Z axis
  8882. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8883. // At this point the command queue is empty.
  8884. enquecommand(buf, false);
  8885. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8886. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8887. repeatcommand_front();
  8888. #else
  8889. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8890. st_synchronize(); //wait moving
  8891. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8892. memcpy(destination, current_position, sizeof(destination));
  8893. #endif
  8894. }
  8895. }
  8896. //! @brief Restore print from ram
  8897. //!
  8898. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8899. //! print fan speed, waits for extruder temperature restore, then restores
  8900. //! position and continues print moves.
  8901. //!
  8902. //! Internally lcd_update() is called by wait_for_heater().
  8903. //!
  8904. //! @param e_move
  8905. void restore_print_from_ram_and_continue(float e_move)
  8906. {
  8907. if (!saved_printing) return;
  8908. #ifdef FANCHECK
  8909. // Do not allow resume printing if fans are still not ok
  8910. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  8911. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  8912. #endif
  8913. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8914. // current_position[axis] = st_get_position_mm(axis);
  8915. active_extruder = saved_active_extruder; //restore active_extruder
  8916. fanSpeed = saved_fanSpeed;
  8917. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8918. {
  8919. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8920. heating_status = 1;
  8921. wait_for_heater(_millis(), saved_active_extruder);
  8922. heating_status = 2;
  8923. }
  8924. feedrate = saved_feedrate2; //restore feedrate
  8925. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8926. float e = saved_pos[E_AXIS] - e_move;
  8927. plan_set_e_position(e);
  8928. #ifdef FANCHECK
  8929. fans_check_enabled = false;
  8930. #endif
  8931. //first move print head in XY to the saved position:
  8932. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8933. st_synchronize();
  8934. //then move Z
  8935. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8936. st_synchronize();
  8937. //and finaly unretract (35mm/s)
  8938. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8939. st_synchronize();
  8940. #ifdef FANCHECK
  8941. fans_check_enabled = true;
  8942. #endif
  8943. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8944. memcpy(destination, current_position, sizeof(destination));
  8945. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8946. card.setIndex(saved_sdpos);
  8947. sdpos_atomic = saved_sdpos;
  8948. card.sdprinting = true;
  8949. }
  8950. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8951. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8952. serial_count = 0;
  8953. FlushSerialRequestResend();
  8954. }
  8955. else {
  8956. //not sd printing nor usb printing
  8957. }
  8958. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  8959. lcd_setstatuspgm(_T(WELCOME_MSG));
  8960. saved_printing_type = PRINTING_TYPE_NONE;
  8961. saved_printing = false;
  8962. }
  8963. void print_world_coordinates()
  8964. {
  8965. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8966. }
  8967. void print_physical_coordinates()
  8968. {
  8969. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8970. }
  8971. void print_mesh_bed_leveling_table()
  8972. {
  8973. SERIAL_ECHOPGM("mesh bed leveling: ");
  8974. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8975. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8976. MYSERIAL.print(mbl.z_values[y][x], 3);
  8977. SERIAL_ECHOPGM(" ");
  8978. }
  8979. SERIAL_ECHOLNPGM("");
  8980. }
  8981. uint16_t print_time_remaining() {
  8982. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8983. #ifdef TMC2130
  8984. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8985. else print_t = print_time_remaining_silent;
  8986. #else
  8987. print_t = print_time_remaining_normal;
  8988. #endif //TMC2130
  8989. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8990. return print_t;
  8991. }
  8992. uint8_t calc_percent_done()
  8993. {
  8994. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8995. uint8_t percent_done = 0;
  8996. #ifdef TMC2130
  8997. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8998. percent_done = print_percent_done_normal;
  8999. }
  9000. else if (print_percent_done_silent <= 100) {
  9001. percent_done = print_percent_done_silent;
  9002. }
  9003. #else
  9004. if (print_percent_done_normal <= 100) {
  9005. percent_done = print_percent_done_normal;
  9006. }
  9007. #endif //TMC2130
  9008. else {
  9009. percent_done = card.percentDone();
  9010. }
  9011. return percent_done;
  9012. }
  9013. static void print_time_remaining_init()
  9014. {
  9015. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9016. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9017. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9018. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9019. }
  9020. void load_filament_final_feed()
  9021. {
  9022. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9023. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  9024. }
  9025. //! @brief Wait for user to check the state
  9026. //! @par nozzle_temp nozzle temperature to load filament
  9027. void M600_check_state(float nozzle_temp)
  9028. {
  9029. lcd_change_fil_state = 0;
  9030. while (lcd_change_fil_state != 1)
  9031. {
  9032. lcd_change_fil_state = 0;
  9033. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9034. lcd_alright();
  9035. KEEPALIVE_STATE(IN_HANDLER);
  9036. switch(lcd_change_fil_state)
  9037. {
  9038. // Filament failed to load so load it again
  9039. case 2:
  9040. if (mmu_enabled)
  9041. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9042. else
  9043. M600_load_filament_movements();
  9044. break;
  9045. // Filament loaded properly but color is not clear
  9046. case 3:
  9047. st_synchronize();
  9048. load_filament_final_feed();
  9049. lcd_loading_color();
  9050. st_synchronize();
  9051. break;
  9052. // Everything good
  9053. default:
  9054. lcd_change_success();
  9055. break;
  9056. }
  9057. }
  9058. }
  9059. //! @brief Wait for user action
  9060. //!
  9061. //! Beep, manage nozzle heater and wait for user to start unload filament
  9062. //! If times out, active extruder temperature is set to 0.
  9063. //!
  9064. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9065. void M600_wait_for_user(float HotendTempBckp) {
  9066. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9067. int counterBeep = 0;
  9068. unsigned long waiting_start_time = _millis();
  9069. uint8_t wait_for_user_state = 0;
  9070. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9071. bool bFirst=true;
  9072. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9073. manage_heater();
  9074. manage_inactivity(true);
  9075. #if BEEPER > 0
  9076. if (counterBeep == 500) {
  9077. counterBeep = 0;
  9078. }
  9079. SET_OUTPUT(BEEPER);
  9080. if (counterBeep == 0) {
  9081. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9082. {
  9083. bFirst=false;
  9084. WRITE(BEEPER, HIGH);
  9085. }
  9086. }
  9087. if (counterBeep == 20) {
  9088. WRITE(BEEPER, LOW);
  9089. }
  9090. counterBeep++;
  9091. #endif //BEEPER > 0
  9092. switch (wait_for_user_state) {
  9093. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9094. delay_keep_alive(4);
  9095. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9096. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9097. wait_for_user_state = 1;
  9098. setAllTargetHotends(0);
  9099. st_synchronize();
  9100. disable_e0();
  9101. disable_e1();
  9102. disable_e2();
  9103. }
  9104. break;
  9105. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9106. delay_keep_alive(4);
  9107. if (lcd_clicked()) {
  9108. setTargetHotend(HotendTempBckp, active_extruder);
  9109. lcd_wait_for_heater();
  9110. wait_for_user_state = 2;
  9111. }
  9112. break;
  9113. case 2: //waiting for nozzle to reach target temperature
  9114. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9115. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9116. waiting_start_time = _millis();
  9117. wait_for_user_state = 0;
  9118. }
  9119. else {
  9120. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9121. lcd_set_cursor(1, 4);
  9122. lcd_print(ftostr3(degHotend(active_extruder)));
  9123. }
  9124. break;
  9125. }
  9126. }
  9127. WRITE(BEEPER, LOW);
  9128. }
  9129. void M600_load_filament_movements()
  9130. {
  9131. #ifdef SNMM
  9132. display_loading();
  9133. do
  9134. {
  9135. current_position[E_AXIS] += 0.002;
  9136. plan_buffer_line_curposXYZE(500, active_extruder);
  9137. delay_keep_alive(2);
  9138. }
  9139. while (!lcd_clicked());
  9140. st_synchronize();
  9141. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9142. plan_buffer_line_curposXYZE(3000, active_extruder);
  9143. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9144. plan_buffer_line_curposXYZE(1400, active_extruder);
  9145. current_position[E_AXIS] += 40;
  9146. plan_buffer_line_curposXYZE(400, active_extruder);
  9147. current_position[E_AXIS] += 10;
  9148. plan_buffer_line_curposXYZE(50, active_extruder);
  9149. #else
  9150. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9151. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9152. #endif
  9153. load_filament_final_feed();
  9154. lcd_loading_filament();
  9155. st_synchronize();
  9156. }
  9157. void M600_load_filament() {
  9158. //load filament for single material and SNMM
  9159. lcd_wait_interact();
  9160. //load_filament_time = _millis();
  9161. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9162. #ifdef PAT9125
  9163. fsensor_autoload_check_start();
  9164. #endif //PAT9125
  9165. while(!lcd_clicked())
  9166. {
  9167. manage_heater();
  9168. manage_inactivity(true);
  9169. #ifdef FILAMENT_SENSOR
  9170. if (fsensor_check_autoload())
  9171. {
  9172. Sound_MakeCustom(50,1000,false);
  9173. break;
  9174. }
  9175. #endif //FILAMENT_SENSOR
  9176. }
  9177. #ifdef PAT9125
  9178. fsensor_autoload_check_stop();
  9179. #endif //PAT9125
  9180. KEEPALIVE_STATE(IN_HANDLER);
  9181. #ifdef FSENSOR_QUALITY
  9182. fsensor_oq_meassure_start(70);
  9183. #endif //FSENSOR_QUALITY
  9184. M600_load_filament_movements();
  9185. Sound_MakeCustom(50,1000,false);
  9186. #ifdef FSENSOR_QUALITY
  9187. fsensor_oq_meassure_stop();
  9188. if (!fsensor_oq_result())
  9189. {
  9190. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9191. lcd_update_enable(true);
  9192. lcd_update(2);
  9193. if (disable)
  9194. fsensor_disable();
  9195. }
  9196. #endif //FSENSOR_QUALITY
  9197. lcd_update_enable(false);
  9198. }
  9199. //! @brief Wait for click
  9200. //!
  9201. //! Set
  9202. void marlin_wait_for_click()
  9203. {
  9204. int8_t busy_state_backup = busy_state;
  9205. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9206. lcd_consume_click();
  9207. while(!lcd_clicked())
  9208. {
  9209. manage_heater();
  9210. manage_inactivity(true);
  9211. lcd_update(0);
  9212. }
  9213. KEEPALIVE_STATE(busy_state_backup);
  9214. }
  9215. #define FIL_LOAD_LENGTH 60
  9216. #ifdef PSU_Delta
  9217. bool bEnableForce_z;
  9218. void init_force_z()
  9219. {
  9220. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9221. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9222. disable_force_z();
  9223. }
  9224. void check_force_z()
  9225. {
  9226. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9227. init_force_z(); // causes enforced switching into disable-state
  9228. }
  9229. void disable_force_z()
  9230. {
  9231. uint16_t z_microsteps=0;
  9232. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9233. bEnableForce_z=false;
  9234. // switching to silent mode
  9235. #ifdef TMC2130
  9236. tmc2130_mode=TMC2130_MODE_SILENT;
  9237. update_mode_profile();
  9238. tmc2130_init(true);
  9239. #endif // TMC2130
  9240. axis_known_position[Z_AXIS]=false;
  9241. }
  9242. void enable_force_z()
  9243. {
  9244. if(bEnableForce_z)
  9245. return; // motor already enabled (may be ;-p )
  9246. bEnableForce_z=true;
  9247. // mode recovering
  9248. #ifdef TMC2130
  9249. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9250. update_mode_profile();
  9251. tmc2130_init(true);
  9252. #endif // TMC2130
  9253. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9254. }
  9255. #endif // PSU_Delta