Marlin_main.cpp 272 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include <avr/wdt.h>
  48. #include "Dcodes.h"
  49. #ifdef SWSPI
  50. #include "swspi.h"
  51. #endif //SWSPI
  52. #ifdef SWI2C
  53. #include "swi2c.h"
  54. #endif //SWI2C
  55. #ifdef PAT9125
  56. #include "pat9125.h"
  57. #include "fsensor.h"
  58. #endif //PAT9125
  59. #ifdef TMC2130
  60. #include "tmc2130.h"
  61. #endif //TMC2130
  62. #ifdef BLINKM
  63. #include "BlinkM.h"
  64. #include "Wire.h"
  65. #endif
  66. #ifdef ULTRALCD
  67. #include "ultralcd.h"
  68. #endif
  69. #if NUM_SERVOS > 0
  70. #include "Servo.h"
  71. #endif
  72. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  73. #include <SPI.h>
  74. #endif
  75. #define VERSION_STRING "1.0.2"
  76. #include "ultralcd.h"
  77. #include "cmdqueue.h"
  78. // Macros for bit masks
  79. #define BIT(b) (1<<(b))
  80. #define TEST(n,b) (((n)&BIT(b))!=0)
  81. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  82. //Macro for print fan speed
  83. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  84. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  85. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  86. //Implemented Codes
  87. //-------------------
  88. // PRUSA CODES
  89. // P F - Returns FW versions
  90. // P R - Returns revision of printer
  91. // G0 -> G1
  92. // G1 - Coordinated Movement X Y Z E
  93. // G2 - CW ARC
  94. // G3 - CCW ARC
  95. // G4 - Dwell S<seconds> or P<milliseconds>
  96. // G10 - retract filament according to settings of M207
  97. // G11 - retract recover filament according to settings of M208
  98. // G28 - Home all Axis
  99. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  100. // G30 - Single Z Probe, probes bed at current XY location.
  101. // G31 - Dock sled (Z_PROBE_SLED only)
  102. // G32 - Undock sled (Z_PROBE_SLED only)
  103. // G80 - Automatic mesh bed leveling
  104. // G81 - Print bed profile
  105. // G90 - Use Absolute Coordinates
  106. // G91 - Use Relative Coordinates
  107. // G92 - Set current position to coordinates given
  108. // M Codes
  109. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  110. // M1 - Same as M0
  111. // M17 - Enable/Power all stepper motors
  112. // M18 - Disable all stepper motors; same as M84
  113. // M20 - List SD card
  114. // M21 - Init SD card
  115. // M22 - Release SD card
  116. // M23 - Select SD file (M23 filename.g)
  117. // M24 - Start/resume SD print
  118. // M25 - Pause SD print
  119. // M26 - Set SD position in bytes (M26 S12345)
  120. // M27 - Report SD print status
  121. // M28 - Start SD write (M28 filename.g)
  122. // M29 - Stop SD write
  123. // M30 - Delete file from SD (M30 filename.g)
  124. // M31 - Output time since last M109 or SD card start to serial
  125. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  126. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  127. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  128. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  129. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  130. // M80 - Turn on Power Supply
  131. // M81 - Turn off Power Supply
  132. // M82 - Set E codes absolute (default)
  133. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  134. // M84 - Disable steppers until next move,
  135. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  136. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  137. // M92 - Set axis_steps_per_unit - same syntax as G92
  138. // M104 - Set extruder target temp
  139. // M105 - Read current temp
  140. // M106 - Fan on
  141. // M107 - Fan off
  142. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  143. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  144. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  145. // M112 - Emergency stop
  146. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. // M114 - Output current position to serial port
  148. // M115 - Capabilities string
  149. // M117 - display message
  150. // M119 - Output Endstop status to serial port
  151. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  152. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  153. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  154. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  155. // M140 - Set bed target temp
  156. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  157. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  158. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  159. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  160. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  161. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  162. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  163. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  164. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  165. // M206 - set additional homing offset
  166. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  167. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  168. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  169. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  170. // M220 S<factor in percent>- set speed factor override percentage
  171. // M221 S<factor in percent>- set extrude factor override percentage
  172. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  173. // M240 - Trigger a camera to take a photograph
  174. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  175. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  176. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  177. // M301 - Set PID parameters P I and D
  178. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  179. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  180. // M304 - Set bed PID parameters P I and D
  181. // M400 - Finish all moves
  182. // M401 - Lower z-probe if present
  183. // M402 - Raise z-probe if present
  184. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  185. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  186. // M406 - Turn off Filament Sensor extrusion control
  187. // M407 - Displays measured filament diameter
  188. // M500 - stores parameters in EEPROM
  189. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  190. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  191. // M503 - print the current settings (from memory not from EEPROM)
  192. // M509 - force language selection on next restart
  193. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  194. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  195. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  196. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  197. // M907 - Set digital trimpot motor current using axis codes.
  198. // M908 - Control digital trimpot directly.
  199. // M350 - Set microstepping mode.
  200. // M351 - Toggle MS1 MS2 pins directly.
  201. // M928 - Start SD logging (M928 filename.g) - ended by M29
  202. // M999 - Restart after being stopped by error
  203. //Stepper Movement Variables
  204. //===========================================================================
  205. //=============================imported variables============================
  206. //===========================================================================
  207. //===========================================================================
  208. //=============================public variables=============================
  209. //===========================================================================
  210. #ifdef SDSUPPORT
  211. CardReader card;
  212. #endif
  213. unsigned long PingTime = millis();
  214. union Data
  215. {
  216. byte b[2];
  217. int value;
  218. };
  219. float homing_feedrate[] = HOMING_FEEDRATE;
  220. // Currently only the extruder axis may be switched to a relative mode.
  221. // Other axes are always absolute or relative based on the common relative_mode flag.
  222. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  223. int feedmultiply=100; //100->1 200->2
  224. int saved_feedmultiply;
  225. int extrudemultiply=100; //100->1 200->2
  226. int extruder_multiply[EXTRUDERS] = {100
  227. #if EXTRUDERS > 1
  228. , 100
  229. #if EXTRUDERS > 2
  230. , 100
  231. #endif
  232. #endif
  233. };
  234. int bowden_length[4] = {385, 385, 385, 385};
  235. bool is_usb_printing = false;
  236. bool homing_flag = false;
  237. bool temp_cal_active = false;
  238. unsigned long kicktime = millis()+100000;
  239. unsigned int usb_printing_counter;
  240. int lcd_change_fil_state = 0;
  241. int feedmultiplyBckp = 100;
  242. float HotendTempBckp = 0;
  243. int fanSpeedBckp = 0;
  244. float pause_lastpos[4];
  245. unsigned long pause_time = 0;
  246. unsigned long start_pause_print = millis();
  247. unsigned long t_fan_rising_edge = millis();
  248. //unsigned long load_filament_time;
  249. bool mesh_bed_leveling_flag = false;
  250. bool mesh_bed_run_from_menu = false;
  251. unsigned char lang_selected = 0;
  252. int8_t FarmMode = 0;
  253. bool prusa_sd_card_upload = false;
  254. unsigned int status_number = 0;
  255. unsigned long total_filament_used;
  256. unsigned int heating_status;
  257. unsigned int heating_status_counter;
  258. bool custom_message;
  259. bool loading_flag = false;
  260. unsigned int custom_message_type;
  261. unsigned int custom_message_state;
  262. char snmm_filaments_used = 0;
  263. float distance_from_min[2];
  264. bool fan_state[2];
  265. int fan_edge_counter[2];
  266. int fan_speed[2];
  267. char dir_names[3][9];
  268. bool sortAlpha = false;
  269. bool volumetric_enabled = false;
  270. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  271. #if EXTRUDERS > 1
  272. , DEFAULT_NOMINAL_FILAMENT_DIA
  273. #if EXTRUDERS > 2
  274. , DEFAULT_NOMINAL_FILAMENT_DIA
  275. #endif
  276. #endif
  277. };
  278. float volumetric_multiplier[EXTRUDERS] = {1.0
  279. #if EXTRUDERS > 1
  280. , 1.0
  281. #if EXTRUDERS > 2
  282. , 1.0
  283. #endif
  284. #endif
  285. };
  286. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  287. float add_homing[3]={0,0,0};
  288. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  289. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  290. bool axis_known_position[3] = {false, false, false};
  291. float zprobe_zoffset;
  292. // Extruder offset
  293. #if EXTRUDERS > 1
  294. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  295. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  296. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  297. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  298. #endif
  299. };
  300. #endif
  301. uint8_t active_extruder = 0;
  302. int fanSpeed=0;
  303. #ifdef FWRETRACT
  304. bool autoretract_enabled=false;
  305. bool retracted[EXTRUDERS]={false
  306. #if EXTRUDERS > 1
  307. , false
  308. #if EXTRUDERS > 2
  309. , false
  310. #endif
  311. #endif
  312. };
  313. bool retracted_swap[EXTRUDERS]={false
  314. #if EXTRUDERS > 1
  315. , false
  316. #if EXTRUDERS > 2
  317. , false
  318. #endif
  319. #endif
  320. };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif
  329. #ifdef ULTIPANEL
  330. #ifdef PS_DEFAULT_OFF
  331. bool powersupply = false;
  332. #else
  333. bool powersupply = true;
  334. #endif
  335. #endif
  336. bool cancel_heatup = false ;
  337. #ifdef HOST_KEEPALIVE_FEATURE
  338. int busy_state = NOT_BUSY;
  339. static long prev_busy_signal_ms = -1;
  340. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  341. #else
  342. #define host_keepalive();
  343. #define KEEPALIVE_STATE(n);
  344. #endif
  345. #ifdef FILAMENT_SENSOR
  346. //Variables for Filament Sensor input
  347. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  348. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  349. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  350. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  351. int delay_index1=0; //index into ring buffer
  352. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  353. float delay_dist=0; //delay distance counter
  354. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  355. #endif
  356. const char errormagic[] PROGMEM = "Error:";
  357. const char echomagic[] PROGMEM = "echo:";
  358. //===========================================================================
  359. //=============================Private Variables=============================
  360. //===========================================================================
  361. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  362. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  363. static float delta[3] = {0.0, 0.0, 0.0};
  364. // For tracing an arc
  365. static float offset[3] = {0.0, 0.0, 0.0};
  366. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  367. // Determines Absolute or Relative Coordinates.
  368. // Also there is bool axis_relative_modes[] per axis flag.
  369. static bool relative_mode = false;
  370. #ifndef _DISABLE_M42_M226
  371. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  372. #endif //_DISABLE_M42_M226
  373. //static float tt = 0;
  374. //static float bt = 0;
  375. //Inactivity shutdown variables
  376. static unsigned long previous_millis_cmd = 0;
  377. unsigned long max_inactive_time = 0;
  378. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  379. unsigned long starttime=0;
  380. unsigned long stoptime=0;
  381. unsigned long _usb_timer = 0;
  382. static uint8_t tmp_extruder;
  383. bool extruder_under_pressure = true;
  384. bool Stopped=false;
  385. #if NUM_SERVOS > 0
  386. Servo servos[NUM_SERVOS];
  387. #endif
  388. bool CooldownNoWait = true;
  389. bool target_direction;
  390. //Insert variables if CHDK is defined
  391. #ifdef CHDK
  392. unsigned long chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. //===========================================================================
  396. //=============================Routines======================================
  397. //===========================================================================
  398. void get_arc_coordinates();
  399. bool setTargetedHotend(int code);
  400. void serial_echopair_P(const char *s_P, float v)
  401. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  402. void serial_echopair_P(const char *s_P, double v)
  403. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  404. void serial_echopair_P(const char *s_P, unsigned long v)
  405. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  406. #ifdef SDSUPPORT
  407. #include "SdFatUtil.h"
  408. int freeMemory() { return SdFatUtil::FreeRam(); }
  409. #else
  410. extern "C" {
  411. extern unsigned int __bss_end;
  412. extern unsigned int __heap_start;
  413. extern void *__brkval;
  414. int freeMemory() {
  415. int free_memory;
  416. if ((int)__brkval == 0)
  417. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  418. else
  419. free_memory = ((int)&free_memory) - ((int)__brkval);
  420. return free_memory;
  421. }
  422. }
  423. #endif //!SDSUPPORT
  424. void setup_killpin()
  425. {
  426. #if defined(KILL_PIN) && KILL_PIN > -1
  427. SET_INPUT(KILL_PIN);
  428. WRITE(KILL_PIN,HIGH);
  429. #endif
  430. }
  431. // Set home pin
  432. void setup_homepin(void)
  433. {
  434. #if defined(HOME_PIN) && HOME_PIN > -1
  435. SET_INPUT(HOME_PIN);
  436. WRITE(HOME_PIN,HIGH);
  437. #endif
  438. }
  439. void setup_photpin()
  440. {
  441. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  442. SET_OUTPUT(PHOTOGRAPH_PIN);
  443. WRITE(PHOTOGRAPH_PIN, LOW);
  444. #endif
  445. }
  446. void setup_powerhold()
  447. {
  448. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  449. SET_OUTPUT(SUICIDE_PIN);
  450. WRITE(SUICIDE_PIN, HIGH);
  451. #endif
  452. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  453. SET_OUTPUT(PS_ON_PIN);
  454. #if defined(PS_DEFAULT_OFF)
  455. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  456. #else
  457. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  458. #endif
  459. #endif
  460. }
  461. void suicide()
  462. {
  463. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  464. SET_OUTPUT(SUICIDE_PIN);
  465. WRITE(SUICIDE_PIN, LOW);
  466. #endif
  467. }
  468. void servo_init()
  469. {
  470. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  471. servos[0].attach(SERVO0_PIN);
  472. #endif
  473. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  474. servos[1].attach(SERVO1_PIN);
  475. #endif
  476. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  477. servos[2].attach(SERVO2_PIN);
  478. #endif
  479. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  480. servos[3].attach(SERVO3_PIN);
  481. #endif
  482. #if (NUM_SERVOS >= 5)
  483. #error "TODO: enter initalisation code for more servos"
  484. #endif
  485. }
  486. static void lcd_language_menu();
  487. void stop_and_save_print_to_ram(float z_move, float e_move);
  488. void restore_print_from_ram_and_continue(float e_move);
  489. bool fans_check_enabled = true;
  490. bool filament_autoload_enabled = true;
  491. extern int8_t CrashDetectMenu;
  492. void crashdet_enable()
  493. {
  494. // MYSERIAL.println("crashdet_enable");
  495. tmc2130_sg_stop_on_crash = true;
  496. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  497. CrashDetectMenu = 1;
  498. }
  499. void crashdet_disable()
  500. {
  501. // MYSERIAL.println("crashdet_disable");
  502. tmc2130_sg_stop_on_crash = false;
  503. tmc2130_sg_crash = 0;
  504. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  505. CrashDetectMenu = 0;
  506. }
  507. void crashdet_stop_and_save_print()
  508. {
  509. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  510. }
  511. void crashdet_restore_print_and_continue()
  512. {
  513. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  514. // babystep_apply();
  515. }
  516. void crashdet_stop_and_save_print2()
  517. {
  518. cli();
  519. planner_abort_hard(); //abort printing
  520. cmdqueue_reset(); //empty cmdqueue
  521. card.sdprinting = false;
  522. card.closefile();
  523. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  524. st_reset_timer();
  525. sei();
  526. }
  527. void crashdet_detected(uint8_t mask)
  528. {
  529. // printf("CRASH_DETECTED");
  530. /* while (!is_buffer_empty())
  531. {
  532. process_commands();
  533. cmdqueue_pop_front();
  534. }*/
  535. st_synchronize();
  536. lcd_update_enable(true);
  537. lcd_implementation_clear();
  538. lcd_update(2);
  539. if (mask & X_AXIS_MASK)
  540. {
  541. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  542. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  543. }
  544. if (mask & Y_AXIS_MASK)
  545. {
  546. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  547. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  548. }
  549. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  550. bool yesno = true;
  551. #else
  552. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_CRASH_DETECTED, false);
  553. #endif
  554. lcd_update_enable(true);
  555. lcd_update(2);
  556. lcd_setstatuspgm(MSG_CRASH_DETECTED);
  557. if (yesno)
  558. {
  559. enquecommand_P(PSTR("G28 X Y"));
  560. enquecommand_P(PSTR("CRASH_RECOVER"));
  561. }
  562. else
  563. {
  564. enquecommand_P(PSTR("CRASH_CANCEL"));
  565. }
  566. }
  567. void crashdet_recover()
  568. {
  569. crashdet_restore_print_and_continue();
  570. tmc2130_sg_stop_on_crash = true;
  571. }
  572. void crashdet_cancel()
  573. {
  574. card.sdprinting = false;
  575. card.closefile();
  576. tmc2130_sg_stop_on_crash = true;
  577. }
  578. void failstats_reset_print()
  579. {
  580. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  581. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  582. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  583. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  584. }
  585. #ifdef MESH_BED_LEVELING
  586. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  587. #endif
  588. // Factory reset function
  589. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  590. // Level input parameter sets depth of reset
  591. // Quiet parameter masks all waitings for user interact.
  592. int er_progress = 0;
  593. void factory_reset(char level, bool quiet)
  594. {
  595. lcd_implementation_clear();
  596. int cursor_pos = 0;
  597. switch (level) {
  598. // Level 0: Language reset
  599. case 0:
  600. WRITE(BEEPER, HIGH);
  601. _delay_ms(100);
  602. WRITE(BEEPER, LOW);
  603. lcd_force_language_selection();
  604. break;
  605. //Level 1: Reset statistics
  606. case 1:
  607. WRITE(BEEPER, HIGH);
  608. _delay_ms(100);
  609. WRITE(BEEPER, LOW);
  610. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  611. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  612. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  613. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  614. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  615. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  616. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  617. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  618. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  619. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  620. lcd_menu_statistics();
  621. break;
  622. // Level 2: Prepare for shipping
  623. case 2:
  624. //lcd_printPGM(PSTR("Factory RESET"));
  625. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  626. // Force language selection at the next boot up.
  627. lcd_force_language_selection();
  628. // Force the "Follow calibration flow" message at the next boot up.
  629. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  630. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  631. farm_no = 0;
  632. farm_mode == false;
  633. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  634. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  635. WRITE(BEEPER, HIGH);
  636. _delay_ms(100);
  637. WRITE(BEEPER, LOW);
  638. //_delay_ms(2000);
  639. break;
  640. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  641. case 3:
  642. lcd_printPGM(PSTR("Factory RESET"));
  643. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  644. WRITE(BEEPER, HIGH);
  645. _delay_ms(100);
  646. WRITE(BEEPER, LOW);
  647. er_progress = 0;
  648. lcd_print_at_PGM(3, 3, PSTR(" "));
  649. lcd_implementation_print_at(3, 3, er_progress);
  650. // Erase EEPROM
  651. for (int i = 0; i < 4096; i++) {
  652. eeprom_write_byte((uint8_t*)i, 0xFF);
  653. if (i % 41 == 0) {
  654. er_progress++;
  655. lcd_print_at_PGM(3, 3, PSTR(" "));
  656. lcd_implementation_print_at(3, 3, er_progress);
  657. lcd_printPGM(PSTR("%"));
  658. }
  659. }
  660. break;
  661. case 4:
  662. bowden_menu();
  663. break;
  664. default:
  665. break;
  666. }
  667. }
  668. #include "LiquidCrystal.h"
  669. extern LiquidCrystal lcd;
  670. FILE _lcdout = {0};
  671. int lcd_putchar(char c, FILE *stream)
  672. {
  673. lcd.write(c);
  674. return 0;
  675. }
  676. FILE _uartout = {0};
  677. int uart_putchar(char c, FILE *stream)
  678. {
  679. MYSERIAL.write(c);
  680. return 0;
  681. }
  682. void lcd_splash()
  683. {
  684. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  685. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  686. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  687. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  688. }
  689. void factory_reset()
  690. {
  691. KEEPALIVE_STATE(PAUSED_FOR_USER);
  692. if (!READ(BTN_ENC))
  693. {
  694. _delay_ms(1000);
  695. if (!READ(BTN_ENC))
  696. {
  697. lcd_implementation_clear();
  698. lcd_printPGM(PSTR("Factory RESET"));
  699. SET_OUTPUT(BEEPER);
  700. WRITE(BEEPER, HIGH);
  701. while (!READ(BTN_ENC));
  702. WRITE(BEEPER, LOW);
  703. _delay_ms(2000);
  704. char level = reset_menu();
  705. factory_reset(level, false);
  706. switch (level) {
  707. case 0: _delay_ms(0); break;
  708. case 1: _delay_ms(0); break;
  709. case 2: _delay_ms(0); break;
  710. case 3: _delay_ms(0); break;
  711. }
  712. // _delay_ms(100);
  713. /*
  714. #ifdef MESH_BED_LEVELING
  715. _delay_ms(2000);
  716. if (!READ(BTN_ENC))
  717. {
  718. WRITE(BEEPER, HIGH);
  719. _delay_ms(100);
  720. WRITE(BEEPER, LOW);
  721. _delay_ms(200);
  722. WRITE(BEEPER, HIGH);
  723. _delay_ms(100);
  724. WRITE(BEEPER, LOW);
  725. int _z = 0;
  726. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  727. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  728. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  729. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  730. }
  731. else
  732. {
  733. WRITE(BEEPER, HIGH);
  734. _delay_ms(100);
  735. WRITE(BEEPER, LOW);
  736. }
  737. #endif // mesh */
  738. }
  739. }
  740. else
  741. {
  742. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  743. }
  744. KEEPALIVE_STATE(IN_HANDLER);
  745. }
  746. void show_fw_version_warnings() {
  747. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  748. switch (FW_DEV_VERSION) {
  749. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_ALPHA); break;
  750. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_BETA); break;
  751. case(FW_VERSION_DEVEL):
  752. case(FW_VERSION_DEBUG):
  753. lcd_update_enable(false);
  754. lcd_implementation_clear();
  755. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  756. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  757. #else
  758. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  759. #endif
  760. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  761. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  762. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  763. lcd_wait_for_click();
  764. break;
  765. default: lcd_show_fullscreen_message_and_wait_P(MSG_FW_VERSION_UNKNOWN); break;
  766. }
  767. lcd_update_enable(true);
  768. }
  769. // "Setup" function is called by the Arduino framework on startup.
  770. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  771. // are initialized by the main() routine provided by the Arduino framework.
  772. void setup()
  773. {
  774. lcd_init();
  775. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  776. lcd_splash();
  777. setup_killpin();
  778. setup_powerhold();
  779. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  780. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  781. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  782. if (farm_no == 0xFFFF) farm_no = 0;
  783. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  784. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  785. if (farm_mode)
  786. {
  787. prusa_statistics(8);
  788. selectedSerialPort = 1;
  789. }
  790. MYSERIAL.begin(BAUDRATE);
  791. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  792. stdout = uartout;
  793. SERIAL_PROTOCOLLNPGM("start");
  794. SERIAL_ECHO_START;
  795. printf_P(PSTR(" "FW_VERSION_FULL"\n"));
  796. #if 0
  797. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  798. for (int i = 0; i < 4096; ++i) {
  799. int b = eeprom_read_byte((unsigned char*)i);
  800. if (b != 255) {
  801. SERIAL_ECHO(i);
  802. SERIAL_ECHO(":");
  803. SERIAL_ECHO(b);
  804. SERIAL_ECHOLN("");
  805. }
  806. }
  807. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  808. #endif
  809. // Check startup - does nothing if bootloader sets MCUSR to 0
  810. byte mcu = MCUSR;
  811. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  812. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  813. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  814. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  815. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  816. if (mcu & 1) puts_P(MSG_POWERUP);
  817. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  818. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  819. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  820. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  821. MCUSR = 0;
  822. //SERIAL_ECHORPGM(MSG_MARLIN);
  823. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  824. #ifdef STRING_VERSION_CONFIG_H
  825. #ifdef STRING_CONFIG_H_AUTHOR
  826. SERIAL_ECHO_START;
  827. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  828. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  829. SERIAL_ECHORPGM(MSG_AUTHOR);
  830. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  831. SERIAL_ECHOPGM("Compiled: ");
  832. SERIAL_ECHOLNPGM(__DATE__);
  833. #endif
  834. #endif
  835. SERIAL_ECHO_START;
  836. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  837. SERIAL_ECHO(freeMemory());
  838. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  839. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  840. //lcd_update_enable(false); // why do we need this?? - andre
  841. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  842. bool previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  843. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  844. tp_init(); // Initialize temperature loop
  845. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  846. plan_init(); // Initialize planner;
  847. watchdog_init();
  848. factory_reset();
  849. #ifdef TMC2130
  850. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  851. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  852. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  853. if (crashdet)
  854. {
  855. crashdet_enable();
  856. MYSERIAL.println("CrashDetect ENABLED!");
  857. }
  858. else
  859. {
  860. crashdet_disable();
  861. MYSERIAL.println("CrashDetect DISABLED");
  862. }
  863. #endif //TMC2130
  864. st_init(); // Initialize stepper, this enables interrupts!
  865. setup_photpin();
  866. servo_init();
  867. // Reset the machine correction matrix.
  868. // It does not make sense to load the correction matrix until the machine is homed.
  869. world2machine_reset();
  870. #ifdef PAT9125
  871. fsensor_init();
  872. #endif //PAT9125
  873. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  874. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  875. #endif
  876. #ifdef DIGIPOT_I2C
  877. digipot_i2c_init();
  878. #endif
  879. setup_homepin();
  880. if (1) {
  881. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  882. // try to run to zero phase before powering the Z motor.
  883. // Move in negative direction
  884. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  885. // Round the current micro-micro steps to micro steps.
  886. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_TMC2130_CS) + 8) >> 4; phase > 0; -- phase) {
  887. // Until the phase counter is reset to zero.
  888. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  889. delay(2);
  890. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  891. delay(2);
  892. }
  893. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  894. }
  895. #if defined(Z_AXIS_ALWAYS_ON)
  896. enable_z();
  897. #endif
  898. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  899. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  900. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  901. if (farm_no == 0xFFFF) farm_no = 0;
  902. if (farm_mode)
  903. {
  904. prusa_statistics(8);
  905. }
  906. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  907. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  908. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  909. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  910. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  911. // where all the EEPROM entries are set to 0x0ff.
  912. // Once a firmware boots up, it forces at least a language selection, which changes
  913. // EEPROM_LANG to number lower than 0x0ff.
  914. // 1) Set a high power mode.
  915. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  916. tmc2130_mode = TMC2130_MODE_NORMAL;
  917. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  918. }
  919. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  920. // but this times out if a blocking dialog is shown in setup().
  921. card.initsd();
  922. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  923. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  924. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  925. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  926. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  927. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  928. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  929. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  930. #ifdef SNMM
  931. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  932. int _z = BOWDEN_LENGTH;
  933. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  934. }
  935. #endif
  936. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  937. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  938. // is being written into the EEPROM, so the update procedure will be triggered only once.
  939. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  940. if (lang_selected >= LANG_NUM){
  941. lcd_mylang();
  942. }
  943. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  944. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  945. temp_cal_active = false;
  946. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  947. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  948. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  949. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  950. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0, 8); //40C - 20um - 8usteps
  951. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1, 24); //45C - 60um - 24usteps
  952. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2, 48); //50C - 120um - 48usteps
  953. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3, 80); //55C - 200um - 80usteps
  954. eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps
  955. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 1);
  956. temp_cal_active = true;
  957. }
  958. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  959. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  960. }
  961. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  962. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  963. }
  964. check_babystep(); //checking if Z babystep is in allowed range
  965. setup_uvlo_interrupt();
  966. #ifndef DEBUG_DISABLE_FANCHECK
  967. setup_fan_interrupt();
  968. #endif //DEBUG_DISABLE_FANCHECK
  969. #ifndef DEBUG_DISABLE_FSENSORCHECK
  970. fsensor_setup_interrupt();
  971. #endif //DEBUG_DISABLE_FSENSORCHECK
  972. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  973. #ifndef DEBUG_DISABLE_STARTMSGS
  974. KEEPALIVE_STATE(PAUSED_FOR_USER);
  975. show_fw_version_warnings();
  976. if (!previous_settings_retrieved) lcd_show_fullscreen_message_and_wait_P(MSG_DEFAULT_SETTINGS_LOADED); //if EEPROM version was changed, inform user that default setting were loaded
  977. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  978. lcd_wizard(0);
  979. }
  980. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  981. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  982. calibration_status() == CALIBRATION_STATUS_UNKNOWN) {
  983. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  984. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  985. // Show the message.
  986. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  987. }
  988. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  989. // Show the message.
  990. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  991. lcd_update_enable(true);
  992. }
  993. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  994. //lcd_show_fullscreen_message_and_wait_P(MSG_PINDA_NOT_CALIBRATED);
  995. lcd_update_enable(true);
  996. }
  997. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  998. // Show the message.
  999. lcd_show_fullscreen_message_and_wait_P(MSG_FOLLOW_CALIBRATION_FLOW);
  1000. }
  1001. }
  1002. KEEPALIVE_STATE(IN_PROCESS);
  1003. #endif //DEBUG_DISABLE_STARTMSGS
  1004. lcd_update_enable(true);
  1005. lcd_implementation_clear();
  1006. lcd_update(2);
  1007. // Store the currently running firmware into an eeprom,
  1008. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1009. update_current_firmware_version_to_eeprom();
  1010. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1011. /*
  1012. if (lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false)) recover_print();
  1013. else {
  1014. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1015. lcd_update_enable(true);
  1016. lcd_update(2);
  1017. lcd_setstatuspgm(WELCOME_MSG);
  1018. }
  1019. */
  1020. manage_heater(); // Update temperatures
  1021. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1022. MYSERIAL.println("Power panic detected!");
  1023. MYSERIAL.print("Current bed temp:");
  1024. MYSERIAL.println(degBed());
  1025. MYSERIAL.print("Saved bed temp:");
  1026. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1027. #endif
  1028. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1029. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1030. MYSERIAL.println("Automatic recovery!");
  1031. #endif
  1032. recover_print(1);
  1033. }
  1034. else{
  1035. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1036. MYSERIAL.println("Normal recovery!");
  1037. #endif
  1038. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_RECOVER_PRINT, false) ) recover_print(0);
  1039. else {
  1040. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1041. lcd_update_enable(true);
  1042. lcd_update(2);
  1043. lcd_setstatuspgm(WELCOME_MSG);
  1044. }
  1045. }
  1046. }
  1047. KEEPALIVE_STATE(NOT_BUSY);
  1048. wdt_enable(WDTO_4S);
  1049. }
  1050. #ifdef PAT9125
  1051. void fsensor_init() {
  1052. int pat9125 = pat9125_init();
  1053. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1054. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1055. if (!pat9125)
  1056. {
  1057. fsensor = 0; //disable sensor
  1058. fsensor_not_responding = true;
  1059. }
  1060. else {
  1061. fsensor_not_responding = false;
  1062. }
  1063. puts_P(PSTR("FSensor "));
  1064. if (fsensor)
  1065. {
  1066. puts_P(PSTR("ENABLED\n"));
  1067. fsensor_enable();
  1068. }
  1069. else
  1070. {
  1071. puts_P(PSTR("DISABLED\n"));
  1072. fsensor_disable();
  1073. }
  1074. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1075. filament_autoload_enabled = false;
  1076. fsensor_disable();
  1077. #endif //DEBUG_DISABLE_FSENSORCHECK
  1078. }
  1079. #endif //PAT9125
  1080. void trace();
  1081. #define CHUNK_SIZE 64 // bytes
  1082. #define SAFETY_MARGIN 1
  1083. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1084. int chunkHead = 0;
  1085. int serial_read_stream() {
  1086. setTargetHotend(0, 0);
  1087. setTargetBed(0);
  1088. lcd_implementation_clear();
  1089. lcd_printPGM(PSTR(" Upload in progress"));
  1090. // first wait for how many bytes we will receive
  1091. uint32_t bytesToReceive;
  1092. // receive the four bytes
  1093. char bytesToReceiveBuffer[4];
  1094. for (int i=0; i<4; i++) {
  1095. int data;
  1096. while ((data = MYSERIAL.read()) == -1) {};
  1097. bytesToReceiveBuffer[i] = data;
  1098. }
  1099. // make it a uint32
  1100. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1101. // we're ready, notify the sender
  1102. MYSERIAL.write('+');
  1103. // lock in the routine
  1104. uint32_t receivedBytes = 0;
  1105. while (prusa_sd_card_upload) {
  1106. int i;
  1107. for (i=0; i<CHUNK_SIZE; i++) {
  1108. int data;
  1109. // check if we're not done
  1110. if (receivedBytes == bytesToReceive) {
  1111. break;
  1112. }
  1113. // read the next byte
  1114. while ((data = MYSERIAL.read()) == -1) {};
  1115. receivedBytes++;
  1116. // save it to the chunk
  1117. chunk[i] = data;
  1118. }
  1119. // write the chunk to SD
  1120. card.write_command_no_newline(&chunk[0]);
  1121. // notify the sender we're ready for more data
  1122. MYSERIAL.write('+');
  1123. // for safety
  1124. manage_heater();
  1125. // check if we're done
  1126. if(receivedBytes == bytesToReceive) {
  1127. trace(); // beep
  1128. card.closefile();
  1129. prusa_sd_card_upload = false;
  1130. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1131. return 0;
  1132. }
  1133. }
  1134. }
  1135. #ifdef HOST_KEEPALIVE_FEATURE
  1136. /**
  1137. * Output a "busy" message at regular intervals
  1138. * while the machine is not accepting commands.
  1139. */
  1140. void host_keepalive() {
  1141. if (farm_mode) return;
  1142. long ms = millis();
  1143. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1144. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1145. switch (busy_state) {
  1146. case IN_HANDLER:
  1147. case IN_PROCESS:
  1148. SERIAL_ECHO_START;
  1149. SERIAL_ECHOLNPGM("busy: processing");
  1150. break;
  1151. case PAUSED_FOR_USER:
  1152. SERIAL_ECHO_START;
  1153. SERIAL_ECHOLNPGM("busy: paused for user");
  1154. break;
  1155. case PAUSED_FOR_INPUT:
  1156. SERIAL_ECHO_START;
  1157. SERIAL_ECHOLNPGM("busy: paused for input");
  1158. break;
  1159. default:
  1160. break;
  1161. }
  1162. }
  1163. prev_busy_signal_ms = ms;
  1164. }
  1165. #endif
  1166. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1167. // Before loop(), the setup() function is called by the main() routine.
  1168. void loop()
  1169. {
  1170. KEEPALIVE_STATE(NOT_BUSY);
  1171. bool stack_integrity = true;
  1172. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1173. {
  1174. is_usb_printing = true;
  1175. usb_printing_counter--;
  1176. _usb_timer = millis();
  1177. }
  1178. if (usb_printing_counter == 0)
  1179. {
  1180. is_usb_printing = false;
  1181. }
  1182. if (prusa_sd_card_upload)
  1183. {
  1184. //we read byte-by byte
  1185. serial_read_stream();
  1186. } else
  1187. {
  1188. get_command();
  1189. #ifdef SDSUPPORT
  1190. card.checkautostart(false);
  1191. #endif
  1192. if(buflen)
  1193. {
  1194. cmdbuffer_front_already_processed = false;
  1195. #ifdef SDSUPPORT
  1196. if(card.saving)
  1197. {
  1198. // Saving a G-code file onto an SD-card is in progress.
  1199. // Saving starts with M28, saving until M29 is seen.
  1200. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1201. card.write_command(CMDBUFFER_CURRENT_STRING);
  1202. if(card.logging)
  1203. process_commands();
  1204. else
  1205. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1206. } else {
  1207. card.closefile();
  1208. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1209. }
  1210. } else {
  1211. process_commands();
  1212. }
  1213. #else
  1214. process_commands();
  1215. #endif //SDSUPPORT
  1216. if (! cmdbuffer_front_already_processed && buflen)
  1217. {
  1218. // ptr points to the start of the block currently being processed.
  1219. // The first character in the block is the block type.
  1220. char *ptr = cmdbuffer + bufindr;
  1221. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1222. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1223. union {
  1224. struct {
  1225. char lo;
  1226. char hi;
  1227. } lohi;
  1228. uint16_t value;
  1229. } sdlen;
  1230. sdlen.value = 0;
  1231. {
  1232. // This block locks the interrupts globally for 3.25 us,
  1233. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1234. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1235. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1236. cli();
  1237. // Reset the command to something, which will be ignored by the power panic routine,
  1238. // so this buffer length will not be counted twice.
  1239. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1240. // Extract the current buffer length.
  1241. sdlen.lohi.lo = *ptr ++;
  1242. sdlen.lohi.hi = *ptr;
  1243. // and pass it to the planner queue.
  1244. planner_add_sd_length(sdlen.value);
  1245. sei();
  1246. }
  1247. }
  1248. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1249. // this block's SD card length will not be counted twice as its command type has been replaced
  1250. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1251. cmdqueue_pop_front();
  1252. }
  1253. host_keepalive();
  1254. }
  1255. }
  1256. //check heater every n milliseconds
  1257. manage_heater();
  1258. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1259. checkHitEndstops();
  1260. lcd_update();
  1261. #ifdef PAT9125
  1262. fsensor_update();
  1263. #endif //PAT9125
  1264. #ifdef TMC2130
  1265. tmc2130_check_overtemp();
  1266. if (tmc2130_sg_crash)
  1267. {
  1268. uint8_t crash = tmc2130_sg_crash;
  1269. tmc2130_sg_crash = 0;
  1270. // crashdet_stop_and_save_print();
  1271. switch (crash)
  1272. {
  1273. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1274. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1275. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1276. }
  1277. }
  1278. #endif //TMC2130
  1279. }
  1280. #define DEFINE_PGM_READ_ANY(type, reader) \
  1281. static inline type pgm_read_any(const type *p) \
  1282. { return pgm_read_##reader##_near(p); }
  1283. DEFINE_PGM_READ_ANY(float, float);
  1284. DEFINE_PGM_READ_ANY(signed char, byte);
  1285. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1286. static const PROGMEM type array##_P[3] = \
  1287. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1288. static inline type array(int axis) \
  1289. { return pgm_read_any(&array##_P[axis]); } \
  1290. type array##_ext(int axis) \
  1291. { return pgm_read_any(&array##_P[axis]); }
  1292. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1293. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1294. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1295. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1296. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1297. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1298. static void axis_is_at_home(int axis) {
  1299. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1300. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1301. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1302. }
  1303. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1304. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1305. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1306. saved_feedrate = feedrate;
  1307. saved_feedmultiply = feedmultiply;
  1308. feedmultiply = 100;
  1309. previous_millis_cmd = millis();
  1310. enable_endstops(enable_endstops_now);
  1311. }
  1312. static void clean_up_after_endstop_move() {
  1313. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1314. enable_endstops(false);
  1315. #endif
  1316. feedrate = saved_feedrate;
  1317. feedmultiply = saved_feedmultiply;
  1318. previous_millis_cmd = millis();
  1319. }
  1320. #ifdef ENABLE_AUTO_BED_LEVELING
  1321. #ifdef AUTO_BED_LEVELING_GRID
  1322. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1323. {
  1324. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1325. planeNormal.debug("planeNormal");
  1326. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1327. //bedLevel.debug("bedLevel");
  1328. //plan_bed_level_matrix.debug("bed level before");
  1329. //vector_3 uncorrected_position = plan_get_position_mm();
  1330. //uncorrected_position.debug("position before");
  1331. vector_3 corrected_position = plan_get_position();
  1332. // corrected_position.debug("position after");
  1333. current_position[X_AXIS] = corrected_position.x;
  1334. current_position[Y_AXIS] = corrected_position.y;
  1335. current_position[Z_AXIS] = corrected_position.z;
  1336. // put the bed at 0 so we don't go below it.
  1337. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1338. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1339. }
  1340. #else // not AUTO_BED_LEVELING_GRID
  1341. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1342. plan_bed_level_matrix.set_to_identity();
  1343. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1344. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1345. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1346. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1347. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1348. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1349. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1350. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1351. vector_3 corrected_position = plan_get_position();
  1352. current_position[X_AXIS] = corrected_position.x;
  1353. current_position[Y_AXIS] = corrected_position.y;
  1354. current_position[Z_AXIS] = corrected_position.z;
  1355. // put the bed at 0 so we don't go below it.
  1356. current_position[Z_AXIS] = zprobe_zoffset;
  1357. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1358. }
  1359. #endif // AUTO_BED_LEVELING_GRID
  1360. static void run_z_probe() {
  1361. plan_bed_level_matrix.set_to_identity();
  1362. feedrate = homing_feedrate[Z_AXIS];
  1363. // move down until you find the bed
  1364. float zPosition = -10;
  1365. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1366. st_synchronize();
  1367. // we have to let the planner know where we are right now as it is not where we said to go.
  1368. zPosition = st_get_position_mm(Z_AXIS);
  1369. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1370. // move up the retract distance
  1371. zPosition += home_retract_mm(Z_AXIS);
  1372. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1373. st_synchronize();
  1374. // move back down slowly to find bed
  1375. feedrate = homing_feedrate[Z_AXIS]/4;
  1376. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1377. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1378. st_synchronize();
  1379. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1380. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1381. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1382. }
  1383. static void do_blocking_move_to(float x, float y, float z) {
  1384. float oldFeedRate = feedrate;
  1385. feedrate = homing_feedrate[Z_AXIS];
  1386. current_position[Z_AXIS] = z;
  1387. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1388. st_synchronize();
  1389. feedrate = XY_TRAVEL_SPEED;
  1390. current_position[X_AXIS] = x;
  1391. current_position[Y_AXIS] = y;
  1392. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1393. st_synchronize();
  1394. feedrate = oldFeedRate;
  1395. }
  1396. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1397. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1398. }
  1399. /// Probe bed height at position (x,y), returns the measured z value
  1400. static float probe_pt(float x, float y, float z_before) {
  1401. // move to right place
  1402. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1403. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1404. run_z_probe();
  1405. float measured_z = current_position[Z_AXIS];
  1406. SERIAL_PROTOCOLRPGM(MSG_BED);
  1407. SERIAL_PROTOCOLPGM(" x: ");
  1408. SERIAL_PROTOCOL(x);
  1409. SERIAL_PROTOCOLPGM(" y: ");
  1410. SERIAL_PROTOCOL(y);
  1411. SERIAL_PROTOCOLPGM(" z: ");
  1412. SERIAL_PROTOCOL(measured_z);
  1413. SERIAL_PROTOCOLPGM("\n");
  1414. return measured_z;
  1415. }
  1416. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1417. #ifdef LIN_ADVANCE
  1418. /**
  1419. * M900: Set and/or Get advance K factor and WH/D ratio
  1420. *
  1421. * K<factor> Set advance K factor
  1422. * R<ratio> Set ratio directly (overrides WH/D)
  1423. * W<width> H<height> D<diam> Set ratio from WH/D
  1424. */
  1425. inline void gcode_M900() {
  1426. st_synchronize();
  1427. const float newK = code_seen('K') ? code_value_float() : -1;
  1428. if (newK >= 0) extruder_advance_k = newK;
  1429. float newR = code_seen('R') ? code_value_float() : -1;
  1430. if (newR < 0) {
  1431. const float newD = code_seen('D') ? code_value_float() : -1,
  1432. newW = code_seen('W') ? code_value_float() : -1,
  1433. newH = code_seen('H') ? code_value_float() : -1;
  1434. if (newD >= 0 && newW >= 0 && newH >= 0)
  1435. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1436. }
  1437. if (newR >= 0) advance_ed_ratio = newR;
  1438. SERIAL_ECHO_START;
  1439. SERIAL_ECHOPGM("Advance K=");
  1440. SERIAL_ECHOLN(extruder_advance_k);
  1441. SERIAL_ECHOPGM(" E/D=");
  1442. const float ratio = advance_ed_ratio;
  1443. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1444. }
  1445. #endif // LIN_ADVANCE
  1446. bool check_commands() {
  1447. bool end_command_found = false;
  1448. while (buflen)
  1449. {
  1450. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1451. if (!cmdbuffer_front_already_processed)
  1452. cmdqueue_pop_front();
  1453. cmdbuffer_front_already_processed = false;
  1454. }
  1455. return end_command_found;
  1456. }
  1457. #ifdef TMC2130
  1458. bool calibrate_z_auto()
  1459. {
  1460. //lcd_display_message_fullscreen_P(MSG_CALIBRATE_Z_AUTO);
  1461. lcd_implementation_clear();
  1462. lcd_print_at_PGM(0,1, MSG_CALIBRATE_Z_AUTO);
  1463. bool endstops_enabled = enable_endstops(true);
  1464. int axis_up_dir = -home_dir(Z_AXIS);
  1465. tmc2130_home_enter(Z_AXIS_MASK);
  1466. current_position[Z_AXIS] = 0;
  1467. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1468. set_destination_to_current();
  1469. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1470. feedrate = homing_feedrate[Z_AXIS];
  1471. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1472. st_synchronize();
  1473. // current_position[axis] = 0;
  1474. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1475. tmc2130_home_exit();
  1476. enable_endstops(false);
  1477. current_position[Z_AXIS] = 0;
  1478. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1479. set_destination_to_current();
  1480. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1481. feedrate = homing_feedrate[Z_AXIS] / 2;
  1482. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1483. st_synchronize();
  1484. enable_endstops(endstops_enabled);
  1485. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1486. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1487. return true;
  1488. }
  1489. #endif //TMC2130
  1490. void homeaxis(int axis)
  1491. {
  1492. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homming
  1493. #define HOMEAXIS_DO(LETTER) \
  1494. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1495. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1496. {
  1497. int axis_home_dir = home_dir(axis);
  1498. feedrate = homing_feedrate[axis];
  1499. #ifdef TMC2130
  1500. tmc2130_home_enter(X_AXIS_MASK << axis);
  1501. #endif
  1502. // Move right a bit, so that the print head does not touch the left end position,
  1503. // and the following left movement has a chance to achieve the required velocity
  1504. // for the stall guard to work.
  1505. current_position[axis] = 0;
  1506. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1507. // destination[axis] = 11.f;
  1508. destination[axis] = 3.f;
  1509. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1510. st_synchronize();
  1511. // Move left away from the possible collision with the collision detection disabled.
  1512. endstops_hit_on_purpose();
  1513. enable_endstops(false);
  1514. current_position[axis] = 0;
  1515. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1516. destination[axis] = - 1.;
  1517. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1518. st_synchronize();
  1519. // Now continue to move up to the left end stop with the collision detection enabled.
  1520. enable_endstops(true);
  1521. destination[axis] = - 1.1 * max_length(axis);
  1522. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1523. st_synchronize();
  1524. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1525. endstops_hit_on_purpose();
  1526. enable_endstops(false);
  1527. current_position[axis] = 0;
  1528. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1529. destination[axis] = 10.f;
  1530. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1531. st_synchronize();
  1532. endstops_hit_on_purpose();
  1533. // Now move left up to the collision, this time with a repeatable velocity.
  1534. enable_endstops(true);
  1535. destination[axis] = - 15.f;
  1536. feedrate = homing_feedrate[axis]/2;
  1537. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1538. st_synchronize();
  1539. axis_is_at_home(axis);
  1540. axis_known_position[axis] = true;
  1541. #ifdef TMC2130
  1542. tmc2130_home_exit();
  1543. #endif
  1544. // Move the X carriage away from the collision.
  1545. // If this is not done, the X cariage will jump from the collision at the instant the Trinamic driver reduces power on idle.
  1546. endstops_hit_on_purpose();
  1547. enable_endstops(false);
  1548. {
  1549. // Two full periods (4 full steps).
  1550. float gap = 0.32f * 2.f;
  1551. current_position[axis] -= gap;
  1552. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1553. current_position[axis] += gap;
  1554. }
  1555. destination[axis] = current_position[axis];
  1556. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.3f*feedrate/60, active_extruder);
  1557. st_synchronize();
  1558. feedrate = 0.0;
  1559. }
  1560. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1561. {
  1562. int axis_home_dir = home_dir(axis);
  1563. current_position[axis] = 0;
  1564. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1565. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1566. feedrate = homing_feedrate[axis];
  1567. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1568. st_synchronize();
  1569. current_position[axis] = 0;
  1570. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1571. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1572. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1573. st_synchronize();
  1574. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1575. feedrate = homing_feedrate[axis]/2 ;
  1576. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1577. st_synchronize();
  1578. axis_is_at_home(axis);
  1579. destination[axis] = current_position[axis];
  1580. feedrate = 0.0;
  1581. endstops_hit_on_purpose();
  1582. axis_known_position[axis] = true;
  1583. }
  1584. enable_endstops(endstops_enabled);
  1585. }
  1586. /**/
  1587. void home_xy()
  1588. {
  1589. set_destination_to_current();
  1590. homeaxis(X_AXIS);
  1591. homeaxis(Y_AXIS);
  1592. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1593. endstops_hit_on_purpose();
  1594. }
  1595. void refresh_cmd_timeout(void)
  1596. {
  1597. previous_millis_cmd = millis();
  1598. }
  1599. #ifdef FWRETRACT
  1600. void retract(bool retracting, bool swapretract = false) {
  1601. if(retracting && !retracted[active_extruder]) {
  1602. destination[X_AXIS]=current_position[X_AXIS];
  1603. destination[Y_AXIS]=current_position[Y_AXIS];
  1604. destination[Z_AXIS]=current_position[Z_AXIS];
  1605. destination[E_AXIS]=current_position[E_AXIS];
  1606. if (swapretract) {
  1607. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1608. } else {
  1609. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1610. }
  1611. plan_set_e_position(current_position[E_AXIS]);
  1612. float oldFeedrate = feedrate;
  1613. feedrate=retract_feedrate*60;
  1614. retracted[active_extruder]=true;
  1615. prepare_move();
  1616. current_position[Z_AXIS]-=retract_zlift;
  1617. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1618. prepare_move();
  1619. feedrate = oldFeedrate;
  1620. } else if(!retracting && retracted[active_extruder]) {
  1621. destination[X_AXIS]=current_position[X_AXIS];
  1622. destination[Y_AXIS]=current_position[Y_AXIS];
  1623. destination[Z_AXIS]=current_position[Z_AXIS];
  1624. destination[E_AXIS]=current_position[E_AXIS];
  1625. current_position[Z_AXIS]+=retract_zlift;
  1626. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1627. //prepare_move();
  1628. if (swapretract) {
  1629. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1630. } else {
  1631. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1632. }
  1633. plan_set_e_position(current_position[E_AXIS]);
  1634. float oldFeedrate = feedrate;
  1635. feedrate=retract_recover_feedrate*60;
  1636. retracted[active_extruder]=false;
  1637. prepare_move();
  1638. feedrate = oldFeedrate;
  1639. }
  1640. } //retract
  1641. #endif //FWRETRACT
  1642. void trace() {
  1643. tone(BEEPER, 440);
  1644. delay(25);
  1645. noTone(BEEPER);
  1646. delay(20);
  1647. }
  1648. /*
  1649. void ramming() {
  1650. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1651. if (current_temperature[0] < 230) {
  1652. //PLA
  1653. max_feedrate[E_AXIS] = 50;
  1654. //current_position[E_AXIS] -= 8;
  1655. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1656. //current_position[E_AXIS] += 8;
  1657. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1658. current_position[E_AXIS] += 5.4;
  1659. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1660. current_position[E_AXIS] += 3.2;
  1661. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1662. current_position[E_AXIS] += 3;
  1663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1664. st_synchronize();
  1665. max_feedrate[E_AXIS] = 80;
  1666. current_position[E_AXIS] -= 82;
  1667. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1668. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1669. current_position[E_AXIS] -= 20;
  1670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1671. current_position[E_AXIS] += 5;
  1672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1673. current_position[E_AXIS] += 5;
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1675. current_position[E_AXIS] -= 10;
  1676. st_synchronize();
  1677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1678. current_position[E_AXIS] += 10;
  1679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1680. current_position[E_AXIS] -= 10;
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1682. current_position[E_AXIS] += 10;
  1683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1684. current_position[E_AXIS] -= 10;
  1685. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1686. st_synchronize();
  1687. }
  1688. else {
  1689. //ABS
  1690. max_feedrate[E_AXIS] = 50;
  1691. //current_position[E_AXIS] -= 8;
  1692. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1693. //current_position[E_AXIS] += 8;
  1694. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1695. current_position[E_AXIS] += 3.1;
  1696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1697. current_position[E_AXIS] += 3.1;
  1698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1699. current_position[E_AXIS] += 4;
  1700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1701. st_synchronize();
  1702. //current_position[X_AXIS] += 23; //delay
  1703. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1704. //current_position[X_AXIS] -= 23; //delay
  1705. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1706. delay(4700);
  1707. max_feedrate[E_AXIS] = 80;
  1708. current_position[E_AXIS] -= 92;
  1709. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1710. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1711. current_position[E_AXIS] -= 5;
  1712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1713. current_position[E_AXIS] += 5;
  1714. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1715. current_position[E_AXIS] -= 5;
  1716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1717. st_synchronize();
  1718. current_position[E_AXIS] += 5;
  1719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1720. current_position[E_AXIS] -= 5;
  1721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1722. current_position[E_AXIS] += 5;
  1723. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1724. current_position[E_AXIS] -= 5;
  1725. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1726. st_synchronize();
  1727. }
  1728. }
  1729. */
  1730. #ifdef TMC2130
  1731. void force_high_power_mode(bool start_high_power_section) {
  1732. uint8_t silent;
  1733. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1734. if (silent == 1) {
  1735. //we are in silent mode, set to normal mode to enable crash detection
  1736. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1737. st_synchronize();
  1738. cli();
  1739. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1740. tmc2130_init();
  1741. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  1742. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  1743. st_reset_timer();
  1744. sei();
  1745. digipot_init();
  1746. }
  1747. }
  1748. #endif //TMC2130
  1749. bool gcode_M45(bool onlyZ)
  1750. {
  1751. bool final_result = false;
  1752. #ifdef TMC2130
  1753. FORCE_HIGH_POWER_START;
  1754. #endif // TMC2130
  1755. // Only Z calibration?
  1756. if (!onlyZ)
  1757. {
  1758. setTargetBed(0);
  1759. setTargetHotend(0, 0);
  1760. setTargetHotend(0, 1);
  1761. setTargetHotend(0, 2);
  1762. adjust_bed_reset(); //reset bed level correction
  1763. }
  1764. // Disable the default update procedure of the display. We will do a modal dialog.
  1765. lcd_update_enable(false);
  1766. // Let the planner use the uncorrected coordinates.
  1767. mbl.reset();
  1768. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1769. // the planner will not perform any adjustments in the XY plane.
  1770. // Wait for the motors to stop and update the current position with the absolute values.
  1771. world2machine_revert_to_uncorrected();
  1772. // Reset the baby step value applied without moving the axes.
  1773. babystep_reset();
  1774. // Mark all axes as in a need for homing.
  1775. memset(axis_known_position, 0, sizeof(axis_known_position));
  1776. // Home in the XY plane.
  1777. //set_destination_to_current();
  1778. setup_for_endstop_move();
  1779. lcd_display_message_fullscreen_P(MSG_AUTO_HOME);
  1780. home_xy();
  1781. enable_endstops(false);
  1782. current_position[X_AXIS] += 5;
  1783. current_position[Y_AXIS] += 5;
  1784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1785. st_synchronize();
  1786. // Let the user move the Z axes up to the end stoppers.
  1787. #ifdef TMC2130
  1788. if (calibrate_z_auto())
  1789. {
  1790. #else //TMC2130
  1791. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  1792. {
  1793. #endif //TMC2130
  1794. refresh_cmd_timeout();
  1795. //if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  1796. //{
  1797. // lcd_wait_for_cool_down();
  1798. //}
  1799. if(!onlyZ)
  1800. {
  1801. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1802. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  1803. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  1804. lcd_show_fullscreen_message_and_wait_P(MSG_CONFIRM_NOZZLE_CLEAN);
  1805. lcd_show_fullscreen_message_and_wait_P(MSG_PAPER);
  1806. KEEPALIVE_STATE(IN_HANDLER);
  1807. lcd_display_message_fullscreen_P(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1);
  1808. lcd_implementation_print_at(0, 2, 1);
  1809. lcd_printPGM(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2);
  1810. }
  1811. // Move the print head close to the bed.
  1812. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1813. bool endstops_enabled = enable_endstops(true);
  1814. tmc2130_home_enter(Z_AXIS_MASK);
  1815. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1816. st_synchronize();
  1817. tmc2130_home_exit();
  1818. enable_endstops(endstops_enabled);
  1819. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  1820. {
  1821. //#ifdef TMC2130
  1822. // tmc2130_home_enter(X_AXIS_MASK | Y_AXIS_MASK);
  1823. //#endif
  1824. int8_t verbosity_level = 0;
  1825. if (code_seen('V'))
  1826. {
  1827. // Just 'V' without a number counts as V1.
  1828. char c = strchr_pointer[1];
  1829. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  1830. }
  1831. if (onlyZ)
  1832. {
  1833. clean_up_after_endstop_move();
  1834. // Z only calibration.
  1835. // Load the machine correction matrix
  1836. world2machine_initialize();
  1837. // and correct the current_position to match the transformed coordinate system.
  1838. world2machine_update_current();
  1839. //FIXME
  1840. bool result = sample_mesh_and_store_reference();
  1841. if (result)
  1842. {
  1843. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  1844. // Shipped, the nozzle height has been set already. The user can start printing now.
  1845. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  1846. final_result = true;
  1847. // babystep_apply();
  1848. }
  1849. }
  1850. else
  1851. {
  1852. // Reset the baby step value and the baby step applied flag.
  1853. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  1854. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1855. // Complete XYZ calibration.
  1856. uint8_t point_too_far_mask = 0;
  1857. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  1858. clean_up_after_endstop_move();
  1859. // Print head up.
  1860. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1861. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1862. st_synchronize();
  1863. if (result >= 0)
  1864. {
  1865. point_too_far_mask = 0;
  1866. // Second half: The fine adjustment.
  1867. // Let the planner use the uncorrected coordinates.
  1868. mbl.reset();
  1869. world2machine_reset();
  1870. // Home in the XY plane.
  1871. setup_for_endstop_move();
  1872. home_xy();
  1873. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  1874. clean_up_after_endstop_move();
  1875. // Print head up.
  1876. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1877. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  1878. st_synchronize();
  1879. // if (result >= 0) babystep_apply();
  1880. }
  1881. lcd_bed_calibration_show_result(result, point_too_far_mask);
  1882. if (result >= 0)
  1883. {
  1884. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  1885. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  1886. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  1887. final_result = true;
  1888. }
  1889. }
  1890. #ifdef TMC2130
  1891. tmc2130_home_exit();
  1892. #endif
  1893. }
  1894. else
  1895. {
  1896. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  1897. final_result = false;
  1898. }
  1899. }
  1900. else
  1901. {
  1902. // Timeouted.
  1903. }
  1904. lcd_update_enable(true);
  1905. #ifdef TMC2130
  1906. FORCE_HIGH_POWER_END;
  1907. #endif // TMC2130
  1908. return final_result;
  1909. }
  1910. void gcode_M701()
  1911. {
  1912. #ifdef SNMM
  1913. extr_adj(snmm_extruder);//loads current extruder
  1914. #else
  1915. enable_z();
  1916. custom_message = true;
  1917. custom_message_type = 2;
  1918. lcd_setstatuspgm(MSG_LOADING_FILAMENT);
  1919. current_position[E_AXIS] += 70;
  1920. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  1921. current_position[E_AXIS] += 25;
  1922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1923. st_synchronize();
  1924. tone(BEEPER, 500);
  1925. delay_keep_alive(50);
  1926. noTone(BEEPER);
  1927. if (!farm_mode && loading_flag) {
  1928. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1929. while (!clean) {
  1930. lcd_update_enable(true);
  1931. lcd_update(2);
  1932. current_position[E_AXIS] += 25;
  1933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  1934. st_synchronize();
  1935. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_FILAMENT_CLEAN, false, true);
  1936. }
  1937. }
  1938. lcd_update_enable(true);
  1939. lcd_update(2);
  1940. lcd_setstatuspgm(WELCOME_MSG);
  1941. disable_z();
  1942. loading_flag = false;
  1943. custom_message = false;
  1944. custom_message_type = 0;
  1945. #endif
  1946. }
  1947. void process_commands()
  1948. {
  1949. #ifdef FILAMENT_RUNOUT_SUPPORT
  1950. SET_INPUT(FR_SENS);
  1951. #endif
  1952. #ifdef CMDBUFFER_DEBUG
  1953. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1954. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  1955. SERIAL_ECHOLNPGM("");
  1956. SERIAL_ECHOPGM("In cmdqueue: ");
  1957. SERIAL_ECHO(buflen);
  1958. SERIAL_ECHOLNPGM("");
  1959. #endif /* CMDBUFFER_DEBUG */
  1960. unsigned long codenum; //throw away variable
  1961. char *starpos = NULL;
  1962. #ifdef ENABLE_AUTO_BED_LEVELING
  1963. float x_tmp, y_tmp, z_tmp, real_z;
  1964. #endif
  1965. // PRUSA GCODES
  1966. KEEPALIVE_STATE(IN_HANDLER);
  1967. #ifdef SNMM
  1968. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  1969. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  1970. int8_t SilentMode;
  1971. #endif
  1972. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  1973. starpos = (strchr(strchr_pointer + 5, '*'));
  1974. if (starpos != NULL)
  1975. *(starpos) = '\0';
  1976. lcd_setstatus(strchr_pointer + 5);
  1977. }
  1978. else if(code_seen("CRASH_DETECTED"))
  1979. {
  1980. uint8_t mask = 0;
  1981. if (code_seen("X")) mask |= X_AXIS_MASK;
  1982. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  1983. crashdet_detected(mask);
  1984. }
  1985. else if(code_seen("CRASH_RECOVER"))
  1986. crashdet_recover();
  1987. else if(code_seen("CRASH_CANCEL"))
  1988. crashdet_cancel();
  1989. else if(code_seen("PRUSA")){
  1990. if (code_seen("Ping")) { //PRUSA Ping
  1991. if (farm_mode) {
  1992. PingTime = millis();
  1993. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  1994. }
  1995. }
  1996. else if (code_seen("PRN")) {
  1997. MYSERIAL.println(status_number);
  1998. }else if (code_seen("FAN")) {
  1999. MYSERIAL.print("E0:");
  2000. MYSERIAL.print(60*fan_speed[0]);
  2001. MYSERIAL.println(" RPM");
  2002. MYSERIAL.print("PRN0:");
  2003. MYSERIAL.print(60*fan_speed[1]);
  2004. MYSERIAL.println(" RPM");
  2005. }else if (code_seen("fn")) {
  2006. if (farm_mode) {
  2007. MYSERIAL.println(farm_no);
  2008. }
  2009. else {
  2010. MYSERIAL.println("Not in farm mode.");
  2011. }
  2012. }else if (code_seen("fv")) {
  2013. // get file version
  2014. #ifdef SDSUPPORT
  2015. card.openFile(strchr_pointer + 3,true);
  2016. while (true) {
  2017. uint16_t readByte = card.get();
  2018. MYSERIAL.write(readByte);
  2019. if (readByte=='\n') {
  2020. break;
  2021. }
  2022. }
  2023. card.closefile();
  2024. #endif // SDSUPPORT
  2025. } else if (code_seen("M28")) {
  2026. trace();
  2027. prusa_sd_card_upload = true;
  2028. card.openFile(strchr_pointer+4,false);
  2029. } else if (code_seen("SN")) {
  2030. if (farm_mode) {
  2031. selectedSerialPort = 0;
  2032. MSerial.write(";S");
  2033. // S/N is:CZPX0917X003XC13518
  2034. int numbersRead = 0;
  2035. while (numbersRead < 19) {
  2036. while (MSerial.available() > 0) {
  2037. uint8_t serial_char = MSerial.read();
  2038. selectedSerialPort = 1;
  2039. MSerial.write(serial_char);
  2040. numbersRead++;
  2041. selectedSerialPort = 0;
  2042. }
  2043. }
  2044. selectedSerialPort = 1;
  2045. MSerial.write('\n');
  2046. /*for (int b = 0; b < 3; b++) {
  2047. tone(BEEPER, 110);
  2048. delay(50);
  2049. noTone(BEEPER);
  2050. delay(50);
  2051. }*/
  2052. } else {
  2053. MYSERIAL.println("Not in farm mode.");
  2054. }
  2055. } else if(code_seen("Fir")){
  2056. SERIAL_PROTOCOLLN(FW_VERSION);
  2057. } else if(code_seen("Rev")){
  2058. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2059. } else if(code_seen("Lang")) {
  2060. lcd_force_language_selection();
  2061. } else if(code_seen("Lz")) {
  2062. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2063. } else if (code_seen("SERIAL LOW")) {
  2064. MYSERIAL.println("SERIAL LOW");
  2065. MYSERIAL.begin(BAUDRATE);
  2066. return;
  2067. } else if (code_seen("SERIAL HIGH")) {
  2068. MYSERIAL.println("SERIAL HIGH");
  2069. MYSERIAL.begin(1152000);
  2070. return;
  2071. } else if(code_seen("Beat")) {
  2072. // Kick farm link timer
  2073. kicktime = millis();
  2074. } else if(code_seen("FR")) {
  2075. // Factory full reset
  2076. factory_reset(0,true);
  2077. }
  2078. //else if (code_seen('Cal')) {
  2079. // lcd_calibration();
  2080. // }
  2081. }
  2082. else if (code_seen('^')) {
  2083. // nothing, this is a version line
  2084. } else if(code_seen('G'))
  2085. {
  2086. switch((int)code_value())
  2087. {
  2088. case 0: // G0 -> G1
  2089. case 1: // G1
  2090. if(Stopped == false) {
  2091. #ifdef FILAMENT_RUNOUT_SUPPORT
  2092. if(READ(FR_SENS)){
  2093. feedmultiplyBckp=feedmultiply;
  2094. float target[4];
  2095. float lastpos[4];
  2096. target[X_AXIS]=current_position[X_AXIS];
  2097. target[Y_AXIS]=current_position[Y_AXIS];
  2098. target[Z_AXIS]=current_position[Z_AXIS];
  2099. target[E_AXIS]=current_position[E_AXIS];
  2100. lastpos[X_AXIS]=current_position[X_AXIS];
  2101. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2102. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2103. lastpos[E_AXIS]=current_position[E_AXIS];
  2104. //retract by E
  2105. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2106. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2107. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2108. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2109. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2110. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2111. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2112. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2113. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2114. //finish moves
  2115. st_synchronize();
  2116. //disable extruder steppers so filament can be removed
  2117. disable_e0();
  2118. disable_e1();
  2119. disable_e2();
  2120. delay(100);
  2121. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2122. uint8_t cnt=0;
  2123. int counterBeep = 0;
  2124. lcd_wait_interact();
  2125. while(!lcd_clicked()){
  2126. cnt++;
  2127. manage_heater();
  2128. manage_inactivity(true);
  2129. //lcd_update();
  2130. if(cnt==0)
  2131. {
  2132. #if BEEPER > 0
  2133. if (counterBeep== 500){
  2134. counterBeep = 0;
  2135. }
  2136. SET_OUTPUT(BEEPER);
  2137. if (counterBeep== 0){
  2138. WRITE(BEEPER,HIGH);
  2139. }
  2140. if (counterBeep== 20){
  2141. WRITE(BEEPER,LOW);
  2142. }
  2143. counterBeep++;
  2144. #else
  2145. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2146. lcd_buzz(1000/6,100);
  2147. #else
  2148. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2149. #endif
  2150. #endif
  2151. }
  2152. }
  2153. WRITE(BEEPER,LOW);
  2154. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2155. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2156. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2157. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2158. lcd_change_fil_state = 0;
  2159. lcd_loading_filament();
  2160. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2161. lcd_change_fil_state = 0;
  2162. lcd_alright();
  2163. switch(lcd_change_fil_state){
  2164. case 2:
  2165. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2166. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2167. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2168. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2169. lcd_loading_filament();
  2170. break;
  2171. case 3:
  2172. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2173. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2174. lcd_loading_color();
  2175. break;
  2176. default:
  2177. lcd_change_success();
  2178. break;
  2179. }
  2180. }
  2181. target[E_AXIS]+= 5;
  2182. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2183. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2184. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2185. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2186. //plan_set_e_position(current_position[E_AXIS]);
  2187. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2188. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2189. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2190. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2191. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2192. plan_set_e_position(lastpos[E_AXIS]);
  2193. feedmultiply=feedmultiplyBckp;
  2194. char cmd[9];
  2195. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2196. enquecommand(cmd);
  2197. }
  2198. #endif
  2199. get_coordinates(); // For X Y Z E F
  2200. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2201. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2202. }
  2203. #ifdef FWRETRACT
  2204. if(autoretract_enabled)
  2205. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2206. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2207. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  2208. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2209. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2210. retract(!retracted);
  2211. return;
  2212. }
  2213. }
  2214. #endif //FWRETRACT
  2215. prepare_move();
  2216. //ClearToSend();
  2217. }
  2218. break;
  2219. case 2: // G2 - CW ARC
  2220. if(Stopped == false) {
  2221. get_arc_coordinates();
  2222. prepare_arc_move(true);
  2223. }
  2224. break;
  2225. case 3: // G3 - CCW ARC
  2226. if(Stopped == false) {
  2227. get_arc_coordinates();
  2228. prepare_arc_move(false);
  2229. }
  2230. break;
  2231. case 4: // G4 dwell
  2232. codenum = 0;
  2233. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2234. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2235. if(codenum != 0) LCD_MESSAGERPGM(MSG_DWELL);
  2236. st_synchronize();
  2237. codenum += millis(); // keep track of when we started waiting
  2238. previous_millis_cmd = millis();
  2239. while(millis() < codenum) {
  2240. manage_heater();
  2241. manage_inactivity();
  2242. lcd_update();
  2243. }
  2244. break;
  2245. #ifdef FWRETRACT
  2246. case 10: // G10 retract
  2247. #if EXTRUDERS > 1
  2248. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2249. retract(true,retracted_swap[active_extruder]);
  2250. #else
  2251. retract(true);
  2252. #endif
  2253. break;
  2254. case 11: // G11 retract_recover
  2255. #if EXTRUDERS > 1
  2256. retract(false,retracted_swap[active_extruder]);
  2257. #else
  2258. retract(false);
  2259. #endif
  2260. break;
  2261. #endif //FWRETRACT
  2262. case 28: //G28 Home all Axis one at a time
  2263. {
  2264. st_synchronize();
  2265. #if 0
  2266. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2267. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2268. #endif
  2269. // Flag for the display update routine and to disable the print cancelation during homing.
  2270. homing_flag = true;
  2271. // Which axes should be homed?
  2272. bool home_x = code_seen(axis_codes[X_AXIS]);
  2273. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2274. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2275. // Either all X,Y,Z codes are present, or none of them.
  2276. bool home_all_axes = home_x == home_y && home_x == home_z;
  2277. if (home_all_axes)
  2278. // No X/Y/Z code provided means to home all axes.
  2279. home_x = home_y = home_z = true;
  2280. #ifdef ENABLE_AUTO_BED_LEVELING
  2281. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2282. #endif //ENABLE_AUTO_BED_LEVELING
  2283. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2284. // the planner will not perform any adjustments in the XY plane.
  2285. // Wait for the motors to stop and update the current position with the absolute values.
  2286. world2machine_revert_to_uncorrected();
  2287. // For mesh bed leveling deactivate the matrix temporarily.
  2288. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2289. // in a single axis only.
  2290. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2291. #ifdef MESH_BED_LEVELING
  2292. uint8_t mbl_was_active = mbl.active;
  2293. mbl.active = 0;
  2294. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2295. #endif
  2296. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2297. // consumed during the first movements following this statement.
  2298. if (home_z)
  2299. babystep_undo();
  2300. saved_feedrate = feedrate;
  2301. saved_feedmultiply = feedmultiply;
  2302. feedmultiply = 100;
  2303. previous_millis_cmd = millis();
  2304. enable_endstops(true);
  2305. memcpy(destination, current_position, sizeof(destination));
  2306. feedrate = 0.0;
  2307. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2308. if(home_z)
  2309. homeaxis(Z_AXIS);
  2310. #endif
  2311. #ifdef QUICK_HOME
  2312. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2313. if(home_x && home_y) //first diagonal move
  2314. {
  2315. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2316. int x_axis_home_dir = home_dir(X_AXIS);
  2317. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2318. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2319. feedrate = homing_feedrate[X_AXIS];
  2320. if(homing_feedrate[Y_AXIS]<feedrate)
  2321. feedrate = homing_feedrate[Y_AXIS];
  2322. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2323. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2324. } else {
  2325. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2326. }
  2327. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2328. st_synchronize();
  2329. axis_is_at_home(X_AXIS);
  2330. axis_is_at_home(Y_AXIS);
  2331. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2332. destination[X_AXIS] = current_position[X_AXIS];
  2333. destination[Y_AXIS] = current_position[Y_AXIS];
  2334. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2335. feedrate = 0.0;
  2336. st_synchronize();
  2337. endstops_hit_on_purpose();
  2338. current_position[X_AXIS] = destination[X_AXIS];
  2339. current_position[Y_AXIS] = destination[Y_AXIS];
  2340. current_position[Z_AXIS] = destination[Z_AXIS];
  2341. }
  2342. #endif /* QUICK_HOME */
  2343. if(home_x)
  2344. homeaxis(X_AXIS);
  2345. if(home_y)
  2346. homeaxis(Y_AXIS);
  2347. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2348. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2349. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2350. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2351. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2352. #ifndef Z_SAFE_HOMING
  2353. if(home_z) {
  2354. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2355. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2356. feedrate = max_feedrate[Z_AXIS];
  2357. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2358. st_synchronize();
  2359. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2360. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, moxve X&Y to safe position for home
  2361. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2362. {
  2363. homeaxis(X_AXIS);
  2364. homeaxis(Y_AXIS);
  2365. }
  2366. // 1st mesh bed leveling measurement point, corrected.
  2367. world2machine_initialize();
  2368. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  2369. world2machine_reset();
  2370. if (destination[Y_AXIS] < Y_MIN_POS)
  2371. destination[Y_AXIS] = Y_MIN_POS;
  2372. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2373. feedrate = homing_feedrate[Z_AXIS]/10;
  2374. current_position[Z_AXIS] = 0;
  2375. enable_endstops(false);
  2376. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2377. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2378. st_synchronize();
  2379. current_position[X_AXIS] = destination[X_AXIS];
  2380. current_position[Y_AXIS] = destination[Y_AXIS];
  2381. enable_endstops(true);
  2382. endstops_hit_on_purpose();
  2383. homeaxis(Z_AXIS);
  2384. #else // MESH_BED_LEVELING
  2385. homeaxis(Z_AXIS);
  2386. #endif // MESH_BED_LEVELING
  2387. }
  2388. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2389. if(home_all_axes) {
  2390. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2391. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2392. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2393. feedrate = XY_TRAVEL_SPEED/60;
  2394. current_position[Z_AXIS] = 0;
  2395. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2396. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2397. st_synchronize();
  2398. current_position[X_AXIS] = destination[X_AXIS];
  2399. current_position[Y_AXIS] = destination[Y_AXIS];
  2400. homeaxis(Z_AXIS);
  2401. }
  2402. // Let's see if X and Y are homed and probe is inside bed area.
  2403. if(home_z) {
  2404. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2405. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2406. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2407. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2408. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2409. current_position[Z_AXIS] = 0;
  2410. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2411. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2412. feedrate = max_feedrate[Z_AXIS];
  2413. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2414. st_synchronize();
  2415. homeaxis(Z_AXIS);
  2416. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2417. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2418. SERIAL_ECHO_START;
  2419. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2420. } else {
  2421. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2422. SERIAL_ECHO_START;
  2423. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2424. }
  2425. }
  2426. #endif // Z_SAFE_HOMING
  2427. #endif // Z_HOME_DIR < 0
  2428. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2429. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2430. #ifdef ENABLE_AUTO_BED_LEVELING
  2431. if(home_z)
  2432. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2433. #endif
  2434. // Set the planner and stepper routine positions.
  2435. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2436. // contains the machine coordinates.
  2437. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2438. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2439. enable_endstops(false);
  2440. #endif
  2441. feedrate = saved_feedrate;
  2442. feedmultiply = saved_feedmultiply;
  2443. previous_millis_cmd = millis();
  2444. endstops_hit_on_purpose();
  2445. #ifndef MESH_BED_LEVELING
  2446. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2447. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2448. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2449. lcd_adjust_z();
  2450. #endif
  2451. // Load the machine correction matrix
  2452. world2machine_initialize();
  2453. // and correct the current_position XY axes to match the transformed coordinate system.
  2454. world2machine_update_current();
  2455. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2456. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2457. {
  2458. if (! home_z && mbl_was_active) {
  2459. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2460. mbl.active = true;
  2461. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2462. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2463. }
  2464. }
  2465. else
  2466. {
  2467. st_synchronize();
  2468. homing_flag = false;
  2469. // Push the commands to the front of the message queue in the reverse order!
  2470. // There shall be always enough space reserved for these commands.
  2471. // enquecommand_front_P((PSTR("G80")));
  2472. goto case_G80;
  2473. }
  2474. #endif
  2475. if (farm_mode) { prusa_statistics(20); };
  2476. homing_flag = false;
  2477. #if 0
  2478. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2479. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2480. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2481. #endif
  2482. break;
  2483. }
  2484. #ifdef ENABLE_AUTO_BED_LEVELING
  2485. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2486. {
  2487. #if Z_MIN_PIN == -1
  2488. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2489. #endif
  2490. // Prevent user from running a G29 without first homing in X and Y
  2491. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2492. {
  2493. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2494. SERIAL_ECHO_START;
  2495. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2496. break; // abort G29, since we don't know where we are
  2497. }
  2498. st_synchronize();
  2499. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2500. //vector_3 corrected_position = plan_get_position_mm();
  2501. //corrected_position.debug("position before G29");
  2502. plan_bed_level_matrix.set_to_identity();
  2503. vector_3 uncorrected_position = plan_get_position();
  2504. //uncorrected_position.debug("position durring G29");
  2505. current_position[X_AXIS] = uncorrected_position.x;
  2506. current_position[Y_AXIS] = uncorrected_position.y;
  2507. current_position[Z_AXIS] = uncorrected_position.z;
  2508. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2509. setup_for_endstop_move();
  2510. feedrate = homing_feedrate[Z_AXIS];
  2511. #ifdef AUTO_BED_LEVELING_GRID
  2512. // probe at the points of a lattice grid
  2513. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2514. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2515. // solve the plane equation ax + by + d = z
  2516. // A is the matrix with rows [x y 1] for all the probed points
  2517. // B is the vector of the Z positions
  2518. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2519. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2520. // "A" matrix of the linear system of equations
  2521. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2522. // "B" vector of Z points
  2523. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2524. int probePointCounter = 0;
  2525. bool zig = true;
  2526. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2527. {
  2528. int xProbe, xInc;
  2529. if (zig)
  2530. {
  2531. xProbe = LEFT_PROBE_BED_POSITION;
  2532. //xEnd = RIGHT_PROBE_BED_POSITION;
  2533. xInc = xGridSpacing;
  2534. zig = false;
  2535. } else // zag
  2536. {
  2537. xProbe = RIGHT_PROBE_BED_POSITION;
  2538. //xEnd = LEFT_PROBE_BED_POSITION;
  2539. xInc = -xGridSpacing;
  2540. zig = true;
  2541. }
  2542. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2543. {
  2544. float z_before;
  2545. if (probePointCounter == 0)
  2546. {
  2547. // raise before probing
  2548. z_before = Z_RAISE_BEFORE_PROBING;
  2549. } else
  2550. {
  2551. // raise extruder
  2552. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2553. }
  2554. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2555. eqnBVector[probePointCounter] = measured_z;
  2556. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2557. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2558. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2559. probePointCounter++;
  2560. xProbe += xInc;
  2561. }
  2562. }
  2563. clean_up_after_endstop_move();
  2564. // solve lsq problem
  2565. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2566. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2567. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2568. SERIAL_PROTOCOLPGM(" b: ");
  2569. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2570. SERIAL_PROTOCOLPGM(" d: ");
  2571. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2572. set_bed_level_equation_lsq(plane_equation_coefficients);
  2573. free(plane_equation_coefficients);
  2574. #else // AUTO_BED_LEVELING_GRID not defined
  2575. // Probe at 3 arbitrary points
  2576. // probe 1
  2577. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2578. // probe 2
  2579. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2580. // probe 3
  2581. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2582. clean_up_after_endstop_move();
  2583. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2584. #endif // AUTO_BED_LEVELING_GRID
  2585. st_synchronize();
  2586. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2587. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2588. // When the bed is uneven, this height must be corrected.
  2589. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2590. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2591. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2592. z_tmp = current_position[Z_AXIS];
  2593. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2594. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2595. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2596. }
  2597. break;
  2598. #ifndef Z_PROBE_SLED
  2599. case 30: // G30 Single Z Probe
  2600. {
  2601. st_synchronize();
  2602. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2603. setup_for_endstop_move();
  2604. feedrate = homing_feedrate[Z_AXIS];
  2605. run_z_probe();
  2606. SERIAL_PROTOCOLPGM(MSG_BED);
  2607. SERIAL_PROTOCOLPGM(" X: ");
  2608. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2609. SERIAL_PROTOCOLPGM(" Y: ");
  2610. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2611. SERIAL_PROTOCOLPGM(" Z: ");
  2612. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2613. SERIAL_PROTOCOLPGM("\n");
  2614. clean_up_after_endstop_move();
  2615. }
  2616. break;
  2617. #else
  2618. case 31: // dock the sled
  2619. dock_sled(true);
  2620. break;
  2621. case 32: // undock the sled
  2622. dock_sled(false);
  2623. break;
  2624. #endif // Z_PROBE_SLED
  2625. #endif // ENABLE_AUTO_BED_LEVELING
  2626. #ifdef MESH_BED_LEVELING
  2627. case 30: // G30 Single Z Probe
  2628. {
  2629. st_synchronize();
  2630. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2631. setup_for_endstop_move();
  2632. feedrate = homing_feedrate[Z_AXIS];
  2633. find_bed_induction_sensor_point_z(-10.f, 3);
  2634. SERIAL_PROTOCOLRPGM(MSG_BED);
  2635. SERIAL_PROTOCOLPGM(" X: ");
  2636. MYSERIAL.print(current_position[X_AXIS], 5);
  2637. SERIAL_PROTOCOLPGM(" Y: ");
  2638. MYSERIAL.print(current_position[Y_AXIS], 5);
  2639. SERIAL_PROTOCOLPGM(" Z: ");
  2640. MYSERIAL.print(current_position[Z_AXIS], 5);
  2641. SERIAL_PROTOCOLPGM("\n");
  2642. clean_up_after_endstop_move();
  2643. }
  2644. break;
  2645. case 75:
  2646. {
  2647. for (int i = 40; i <= 110; i++) {
  2648. MYSERIAL.print(i);
  2649. MYSERIAL.print(" ");
  2650. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  2651. }
  2652. }
  2653. break;
  2654. case 76: //PINDA probe temperature calibration
  2655. {
  2656. #ifdef PINDA_THERMISTOR
  2657. if (true)
  2658. {
  2659. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CAL_WARNING);
  2660. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_STEEL_SHEET_CHECK, false, false);
  2661. if(result) lcd_show_fullscreen_message_and_wait_P(MSG_REMOVE_STEEL_SHEET);
  2662. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2663. // We don't know where we are! HOME!
  2664. // Push the commands to the front of the message queue in the reverse order!
  2665. // There shall be always enough space reserved for these commands.
  2666. repeatcommand_front(); // repeat G76 with all its parameters
  2667. enquecommand_front_P((PSTR("G28 W0")));
  2668. break;
  2669. }
  2670. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  2671. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2672. float zero_z;
  2673. int z_shift = 0; //unit: steps
  2674. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  2675. if (start_temp < 35) start_temp = 35;
  2676. if (start_temp < current_temperature_pinda) start_temp += 5;
  2677. SERIAL_ECHOPGM("start temperature: ");
  2678. MYSERIAL.println(start_temp);
  2679. // setTargetHotend(200, 0);
  2680. setTargetBed(70 + (start_temp - 30));
  2681. custom_message = true;
  2682. custom_message_type = 4;
  2683. custom_message_state = 1;
  2684. custom_message = MSG_TEMP_CALIBRATION;
  2685. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2686. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2687. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2688. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2689. st_synchronize();
  2690. while (current_temperature_pinda < start_temp)
  2691. {
  2692. delay_keep_alive(1000);
  2693. serialecho_temperatures();
  2694. }
  2695. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2696. current_position[Z_AXIS] = 5;
  2697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2698. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2699. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2700. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2701. st_synchronize();
  2702. find_bed_induction_sensor_point_z(-1.f);
  2703. zero_z = current_position[Z_AXIS];
  2704. //current_position[Z_AXIS]
  2705. SERIAL_ECHOLNPGM("");
  2706. SERIAL_ECHOPGM("ZERO: ");
  2707. MYSERIAL.print(current_position[Z_AXIS]);
  2708. SERIAL_ECHOLNPGM("");
  2709. int i = -1; for (; i < 5; i++)
  2710. {
  2711. float temp = (40 + i * 5);
  2712. SERIAL_ECHOPGM("Step: ");
  2713. MYSERIAL.print(i + 2);
  2714. SERIAL_ECHOLNPGM("/6 (skipped)");
  2715. SERIAL_ECHOPGM("PINDA temperature: ");
  2716. MYSERIAL.print((40 + i*5));
  2717. SERIAL_ECHOPGM(" Z shift (mm):");
  2718. MYSERIAL.print(0);
  2719. SERIAL_ECHOLNPGM("");
  2720. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2721. if (start_temp <= temp) break;
  2722. }
  2723. for (i++; i < 5; i++)
  2724. {
  2725. float temp = (40 + i * 5);
  2726. SERIAL_ECHOPGM("Step: ");
  2727. MYSERIAL.print(i + 2);
  2728. SERIAL_ECHOLNPGM("/6");
  2729. custom_message_state = i + 2;
  2730. setTargetBed(50 + 10 * (temp - 30) / 5);
  2731. // setTargetHotend(255, 0);
  2732. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2733. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2734. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2735. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2736. st_synchronize();
  2737. while (current_temperature_pinda < temp)
  2738. {
  2739. delay_keep_alive(1000);
  2740. serialecho_temperatures();
  2741. }
  2742. current_position[Z_AXIS] = 5;
  2743. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2744. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2745. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2747. st_synchronize();
  2748. find_bed_induction_sensor_point_z(-1.f);
  2749. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2750. SERIAL_ECHOLNPGM("");
  2751. SERIAL_ECHOPGM("PINDA temperature: ");
  2752. MYSERIAL.print(current_temperature_pinda);
  2753. SERIAL_ECHOPGM(" Z shift (mm):");
  2754. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2755. SERIAL_ECHOLNPGM("");
  2756. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  2757. }
  2758. custom_message_type = 0;
  2759. custom_message = false;
  2760. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2761. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2762. disable_x();
  2763. disable_y();
  2764. disable_z();
  2765. disable_e0();
  2766. disable_e1();
  2767. disable_e2();
  2768. setTargetBed(0); //set bed target temperature back to 0
  2769. // setTargetHotend(0,0); //set hotend target temperature back to 0
  2770. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2771. lcd_update_enable(true);
  2772. lcd_update(2);
  2773. break;
  2774. }
  2775. #endif //PINDA_THERMISTOR
  2776. setTargetBed(PINDA_MIN_T);
  2777. float zero_z;
  2778. int z_shift = 0; //unit: steps
  2779. int t_c; // temperature
  2780. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2781. // We don't know where we are! HOME!
  2782. // Push the commands to the front of the message queue in the reverse order!
  2783. // There shall be always enough space reserved for these commands.
  2784. repeatcommand_front(); // repeat G76 with all its parameters
  2785. enquecommand_front_P((PSTR("G28 W0")));
  2786. break;
  2787. }
  2788. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  2789. custom_message = true;
  2790. custom_message_type = 4;
  2791. custom_message_state = 1;
  2792. custom_message = MSG_TEMP_CALIBRATION;
  2793. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2794. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2795. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2797. st_synchronize();
  2798. while (abs(degBed() - PINDA_MIN_T) > 1) {
  2799. delay_keep_alive(1000);
  2800. serialecho_temperatures();
  2801. }
  2802. //enquecommand_P(PSTR("M190 S50"));
  2803. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2804. delay_keep_alive(1000);
  2805. serialecho_temperatures();
  2806. }
  2807. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  2808. current_position[Z_AXIS] = 5;
  2809. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2810. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2811. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2812. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2813. st_synchronize();
  2814. find_bed_induction_sensor_point_z(-1.f);
  2815. zero_z = current_position[Z_AXIS];
  2816. //current_position[Z_AXIS]
  2817. SERIAL_ECHOLNPGM("");
  2818. SERIAL_ECHOPGM("ZERO: ");
  2819. MYSERIAL.print(current_position[Z_AXIS]);
  2820. SERIAL_ECHOLNPGM("");
  2821. for (int i = 0; i<5; i++) {
  2822. SERIAL_ECHOPGM("Step: ");
  2823. MYSERIAL.print(i+2);
  2824. SERIAL_ECHOLNPGM("/6");
  2825. custom_message_state = i + 2;
  2826. t_c = 60 + i * 10;
  2827. setTargetBed(t_c);
  2828. current_position[X_AXIS] = PINDA_PREHEAT_X;
  2829. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  2830. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  2831. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2832. st_synchronize();
  2833. while (degBed() < t_c) {
  2834. delay_keep_alive(1000);
  2835. serialecho_temperatures();
  2836. }
  2837. for (int i = 0; i < PINDA_HEAT_T; i++) {
  2838. delay_keep_alive(1000);
  2839. serialecho_temperatures();
  2840. }
  2841. current_position[Z_AXIS] = 5;
  2842. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2843. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2844. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2846. st_synchronize();
  2847. find_bed_induction_sensor_point_z(-1.f);
  2848. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  2849. SERIAL_ECHOLNPGM("");
  2850. SERIAL_ECHOPGM("Temperature: ");
  2851. MYSERIAL.print(t_c);
  2852. SERIAL_ECHOPGM(" Z shift (mm):");
  2853. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  2854. SERIAL_ECHOLNPGM("");
  2855. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  2856. }
  2857. custom_message_type = 0;
  2858. custom_message = false;
  2859. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  2860. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  2861. disable_x();
  2862. disable_y();
  2863. disable_z();
  2864. disable_e0();
  2865. disable_e1();
  2866. disable_e2();
  2867. setTargetBed(0); //set bed target temperature back to 0
  2868. lcd_show_fullscreen_message_and_wait_P(MSG_TEMP_CALIBRATION_DONE);
  2869. lcd_update_enable(true);
  2870. lcd_update(2);
  2871. }
  2872. break;
  2873. #ifdef DIS
  2874. case 77:
  2875. {
  2876. //G77 X200 Y150 XP100 YP15 XO10 Y015
  2877. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  2878. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  2879. float dimension_x = 40;
  2880. float dimension_y = 40;
  2881. int points_x = 40;
  2882. int points_y = 40;
  2883. float offset_x = 74;
  2884. float offset_y = 33;
  2885. if (code_seen('X')) dimension_x = code_value();
  2886. if (code_seen('Y')) dimension_y = code_value();
  2887. if (code_seen('XP')) points_x = code_value();
  2888. if (code_seen('YP')) points_y = code_value();
  2889. if (code_seen('XO')) offset_x = code_value();
  2890. if (code_seen('YO')) offset_y = code_value();
  2891. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  2892. } break;
  2893. #endif
  2894. case 79: {
  2895. for (int i = 255; i > 0; i = i - 5) {
  2896. fanSpeed = i;
  2897. //delay_keep_alive(2000);
  2898. for (int j = 0; j < 100; j++) {
  2899. delay_keep_alive(100);
  2900. }
  2901. fan_speed[1];
  2902. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  2903. }
  2904. }break;
  2905. /**
  2906. * G80: Mesh-based Z probe, probes a grid and produces a
  2907. * mesh to compensate for variable bed height
  2908. *
  2909. * The S0 report the points as below
  2910. *
  2911. * +----> X-axis
  2912. * |
  2913. * |
  2914. * v Y-axis
  2915. *
  2916. */
  2917. case 80:
  2918. #ifdef MK1BP
  2919. break;
  2920. #endif //MK1BP
  2921. case_G80:
  2922. {
  2923. mesh_bed_leveling_flag = true;
  2924. int8_t verbosity_level = 0;
  2925. static bool run = false;
  2926. if (code_seen('V')) {
  2927. // Just 'V' without a number counts as V1.
  2928. char c = strchr_pointer[1];
  2929. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2930. }
  2931. // Firstly check if we know where we are
  2932. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  2933. // We don't know where we are! HOME!
  2934. // Push the commands to the front of the message queue in the reverse order!
  2935. // There shall be always enough space reserved for these commands.
  2936. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2937. repeatcommand_front(); // repeat G80 with all its parameters
  2938. enquecommand_front_P((PSTR("G28 W0")));
  2939. }
  2940. else {
  2941. mesh_bed_leveling_flag = false;
  2942. }
  2943. break;
  2944. }
  2945. bool temp_comp_start = true;
  2946. #ifdef PINDA_THERMISTOR
  2947. temp_comp_start = false;
  2948. #endif //PINDA_THERMISTOR
  2949. if (temp_comp_start)
  2950. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  2951. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  2952. temp_compensation_start();
  2953. run = true;
  2954. repeatcommand_front(); // repeat G80 with all its parameters
  2955. enquecommand_front_P((PSTR("G28 W0")));
  2956. }
  2957. else {
  2958. mesh_bed_leveling_flag = false;
  2959. }
  2960. break;
  2961. }
  2962. run = false;
  2963. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  2964. mesh_bed_leveling_flag = false;
  2965. break;
  2966. }
  2967. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  2968. bool custom_message_old = custom_message;
  2969. unsigned int custom_message_type_old = custom_message_type;
  2970. unsigned int custom_message_state_old = custom_message_state;
  2971. custom_message = true;
  2972. custom_message_type = 1;
  2973. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  2974. lcd_update(1);
  2975. mbl.reset(); //reset mesh bed leveling
  2976. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2977. // consumed during the first movements following this statement.
  2978. babystep_undo();
  2979. // Cycle through all points and probe them
  2980. // First move up. During this first movement, the babystepping will be reverted.
  2981. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  2983. // The move to the first calibration point.
  2984. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  2985. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  2986. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2987. #ifdef SUPPORT_VERBOSITY
  2988. if (verbosity_level >= 1) {
  2989. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  2990. }
  2991. #endif //SUPPORT_VERBOSITY
  2992. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  2994. // Wait until the move is finished.
  2995. st_synchronize();
  2996. int mesh_point = 0; //index number of calibration point
  2997. int ix = 0;
  2998. int iy = 0;
  2999. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3000. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3001. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3002. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3003. #ifdef SUPPORT_VERBOSITY
  3004. if (verbosity_level >= 1) {
  3005. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3006. }
  3007. #endif // SUPPORT_VERBOSITY
  3008. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3009. const char *kill_message = NULL;
  3010. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3011. // Get coords of a measuring point.
  3012. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3013. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3014. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3015. float z0 = 0.f;
  3016. if (has_z && mesh_point > 0) {
  3017. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3018. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3019. //#if 0
  3020. #ifdef SUPPORT_VERBOSITY
  3021. if (verbosity_level >= 1) {
  3022. SERIAL_ECHOLNPGM("");
  3023. SERIAL_ECHOPGM("Bed leveling, point: ");
  3024. MYSERIAL.print(mesh_point);
  3025. SERIAL_ECHOPGM(", calibration z: ");
  3026. MYSERIAL.print(z0, 5);
  3027. SERIAL_ECHOLNPGM("");
  3028. }
  3029. #endif // SUPPORT_VERBOSITY
  3030. //#endif
  3031. }
  3032. // Move Z up to MESH_HOME_Z_SEARCH.
  3033. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3035. st_synchronize();
  3036. // Move to XY position of the sensor point.
  3037. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3038. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3039. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3040. #ifdef SUPPORT_VERBOSITY
  3041. if (verbosity_level >= 1) {
  3042. SERIAL_PROTOCOL(mesh_point);
  3043. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3044. }
  3045. #endif // SUPPORT_VERBOSITY
  3046. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3047. st_synchronize();
  3048. // Go down until endstop is hit
  3049. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3050. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3051. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  3052. break;
  3053. }
  3054. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3055. kill_message = MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED;
  3056. break;
  3057. }
  3058. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3059. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  3060. break;
  3061. }
  3062. #ifdef SUPPORT_VERBOSITY
  3063. if (verbosity_level >= 10) {
  3064. SERIAL_ECHOPGM("X: ");
  3065. MYSERIAL.print(current_position[X_AXIS], 5);
  3066. SERIAL_ECHOLNPGM("");
  3067. SERIAL_ECHOPGM("Y: ");
  3068. MYSERIAL.print(current_position[Y_AXIS], 5);
  3069. SERIAL_PROTOCOLPGM("\n");
  3070. }
  3071. #endif // SUPPORT_VERBOSITY
  3072. float offset_z = 0;
  3073. #ifdef PINDA_THERMISTOR
  3074. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3075. #endif //PINDA_THERMISTOR
  3076. // #ifdef SUPPORT_VERBOSITY
  3077. /* if (verbosity_level >= 1)
  3078. {
  3079. SERIAL_ECHOPGM("mesh bed leveling: ");
  3080. MYSERIAL.print(current_position[Z_AXIS], 5);
  3081. SERIAL_ECHOPGM(" offset: ");
  3082. MYSERIAL.print(offset_z, 5);
  3083. SERIAL_ECHOLNPGM("");
  3084. }*/
  3085. // #endif // SUPPORT_VERBOSITY
  3086. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3087. custom_message_state--;
  3088. mesh_point++;
  3089. lcd_update(1);
  3090. }
  3091. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3092. #ifdef SUPPORT_VERBOSITY
  3093. if (verbosity_level >= 20) {
  3094. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3095. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3096. MYSERIAL.print(current_position[Z_AXIS], 5);
  3097. }
  3098. #endif // SUPPORT_VERBOSITY
  3099. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3100. st_synchronize();
  3101. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3102. kill(kill_message);
  3103. SERIAL_ECHOLNPGM("killed");
  3104. }
  3105. clean_up_after_endstop_move();
  3106. // SERIAL_ECHOLNPGM("clean up finished ");
  3107. bool apply_temp_comp = true;
  3108. #ifdef PINDA_THERMISTOR
  3109. apply_temp_comp = false;
  3110. #endif
  3111. if (apply_temp_comp)
  3112. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3113. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3114. // SERIAL_ECHOLNPGM("babystep applied");
  3115. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3116. #ifdef SUPPORT_VERBOSITY
  3117. if (verbosity_level >= 1) {
  3118. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3119. }
  3120. #endif // SUPPORT_VERBOSITY
  3121. for (uint8_t i = 0; i < 4; ++i) {
  3122. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3123. long correction = 0;
  3124. if (code_seen(codes[i]))
  3125. correction = code_value_long();
  3126. else if (eeprom_bed_correction_valid) {
  3127. unsigned char *addr = (i < 2) ?
  3128. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3129. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3130. correction = eeprom_read_int8(addr);
  3131. }
  3132. if (correction == 0)
  3133. continue;
  3134. float offset = float(correction) * 0.001f;
  3135. if (fabs(offset) > 0.101f) {
  3136. SERIAL_ERROR_START;
  3137. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3138. SERIAL_ECHO(offset);
  3139. SERIAL_ECHOLNPGM(" microns");
  3140. }
  3141. else {
  3142. switch (i) {
  3143. case 0:
  3144. for (uint8_t row = 0; row < 3; ++row) {
  3145. mbl.z_values[row][1] += 0.5f * offset;
  3146. mbl.z_values[row][0] += offset;
  3147. }
  3148. break;
  3149. case 1:
  3150. for (uint8_t row = 0; row < 3; ++row) {
  3151. mbl.z_values[row][1] += 0.5f * offset;
  3152. mbl.z_values[row][2] += offset;
  3153. }
  3154. break;
  3155. case 2:
  3156. for (uint8_t col = 0; col < 3; ++col) {
  3157. mbl.z_values[1][col] += 0.5f * offset;
  3158. mbl.z_values[0][col] += offset;
  3159. }
  3160. break;
  3161. case 3:
  3162. for (uint8_t col = 0; col < 3; ++col) {
  3163. mbl.z_values[1][col] += 0.5f * offset;
  3164. mbl.z_values[2][col] += offset;
  3165. }
  3166. break;
  3167. }
  3168. }
  3169. }
  3170. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3171. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3172. // SERIAL_ECHOLNPGM("Upsample finished");
  3173. mbl.active = 1; //activate mesh bed leveling
  3174. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3175. go_home_with_z_lift();
  3176. // SERIAL_ECHOLNPGM("Go home finished");
  3177. //unretract (after PINDA preheat retraction)
  3178. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3179. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3181. }
  3182. KEEPALIVE_STATE(NOT_BUSY);
  3183. // Restore custom message state
  3184. custom_message = custom_message_old;
  3185. custom_message_type = custom_message_type_old;
  3186. custom_message_state = custom_message_state_old;
  3187. mesh_bed_leveling_flag = false;
  3188. mesh_bed_run_from_menu = false;
  3189. lcd_update(2);
  3190. }
  3191. break;
  3192. /**
  3193. * G81: Print mesh bed leveling status and bed profile if activated
  3194. */
  3195. case 81:
  3196. if (mbl.active) {
  3197. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3198. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3199. SERIAL_PROTOCOLPGM(",");
  3200. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3201. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3202. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3203. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3204. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3205. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3206. SERIAL_PROTOCOLPGM(" ");
  3207. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3208. }
  3209. SERIAL_PROTOCOLPGM("\n");
  3210. }
  3211. }
  3212. else
  3213. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3214. break;
  3215. #if 0
  3216. /**
  3217. * G82: Single Z probe at current location
  3218. *
  3219. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3220. *
  3221. */
  3222. case 82:
  3223. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3224. setup_for_endstop_move();
  3225. find_bed_induction_sensor_point_z();
  3226. clean_up_after_endstop_move();
  3227. SERIAL_PROTOCOLPGM("Bed found at: ");
  3228. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3229. SERIAL_PROTOCOLPGM("\n");
  3230. break;
  3231. /**
  3232. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3233. */
  3234. case 83:
  3235. {
  3236. int babystepz = code_seen('S') ? code_value() : 0;
  3237. int BabyPosition = code_seen('P') ? code_value() : 0;
  3238. if (babystepz != 0) {
  3239. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3240. // Is the axis indexed starting with zero or one?
  3241. if (BabyPosition > 4) {
  3242. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3243. }else{
  3244. // Save it to the eeprom
  3245. babystepLoadZ = babystepz;
  3246. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3247. // adjust the Z
  3248. babystepsTodoZadd(babystepLoadZ);
  3249. }
  3250. }
  3251. }
  3252. break;
  3253. /**
  3254. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3255. */
  3256. case 84:
  3257. babystepsTodoZsubtract(babystepLoadZ);
  3258. // babystepLoadZ = 0;
  3259. break;
  3260. /**
  3261. * G85: Prusa3D specific: Pick best babystep
  3262. */
  3263. case 85:
  3264. lcd_pick_babystep();
  3265. break;
  3266. #endif
  3267. /**
  3268. * G86: Prusa3D specific: Disable babystep correction after home.
  3269. * This G-code will be performed at the start of a calibration script.
  3270. */
  3271. case 86:
  3272. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3273. break;
  3274. /**
  3275. * G87: Prusa3D specific: Enable babystep correction after home
  3276. * This G-code will be performed at the end of a calibration script.
  3277. */
  3278. case 87:
  3279. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3280. break;
  3281. /**
  3282. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3283. */
  3284. case 88:
  3285. break;
  3286. #endif // ENABLE_MESH_BED_LEVELING
  3287. case 90: // G90
  3288. relative_mode = false;
  3289. break;
  3290. case 91: // G91
  3291. relative_mode = true;
  3292. break;
  3293. case 92: // G92
  3294. if(!code_seen(axis_codes[E_AXIS]))
  3295. st_synchronize();
  3296. for(int8_t i=0; i < NUM_AXIS; i++) {
  3297. if(code_seen(axis_codes[i])) {
  3298. if(i == E_AXIS) {
  3299. current_position[i] = code_value();
  3300. plan_set_e_position(current_position[E_AXIS]);
  3301. }
  3302. else {
  3303. current_position[i] = code_value()+add_homing[i];
  3304. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3305. }
  3306. }
  3307. }
  3308. break;
  3309. case 98: //activate farm mode
  3310. farm_mode = 1;
  3311. PingTime = millis();
  3312. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3313. break;
  3314. case 99: //deactivate farm mode
  3315. farm_mode = 0;
  3316. lcd_printer_connected();
  3317. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3318. lcd_update(2);
  3319. break;
  3320. default:
  3321. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3322. }
  3323. } // end if(code_seen('G'))
  3324. else if(code_seen('M'))
  3325. {
  3326. int index;
  3327. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3328. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3329. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3330. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3331. } else
  3332. switch((int)code_value())
  3333. {
  3334. #ifdef ULTIPANEL
  3335. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3336. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3337. {
  3338. char *src = strchr_pointer + 2;
  3339. codenum = 0;
  3340. bool hasP = false, hasS = false;
  3341. if (code_seen('P')) {
  3342. codenum = code_value(); // milliseconds to wait
  3343. hasP = codenum > 0;
  3344. }
  3345. if (code_seen('S')) {
  3346. codenum = code_value() * 1000; // seconds to wait
  3347. hasS = codenum > 0;
  3348. }
  3349. starpos = strchr(src, '*');
  3350. if (starpos != NULL) *(starpos) = '\0';
  3351. while (*src == ' ') ++src;
  3352. if (!hasP && !hasS && *src != '\0') {
  3353. lcd_setstatus(src);
  3354. } else {
  3355. LCD_MESSAGERPGM(MSG_USERWAIT);
  3356. }
  3357. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3358. st_synchronize();
  3359. previous_millis_cmd = millis();
  3360. if (codenum > 0){
  3361. codenum += millis(); // keep track of when we started waiting
  3362. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3363. while(millis() < codenum && !lcd_clicked()){
  3364. manage_heater();
  3365. manage_inactivity(true);
  3366. lcd_update();
  3367. }
  3368. KEEPALIVE_STATE(IN_HANDLER);
  3369. lcd_ignore_click(false);
  3370. }else{
  3371. if (!lcd_detected())
  3372. break;
  3373. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3374. while(!lcd_clicked()){
  3375. manage_heater();
  3376. manage_inactivity(true);
  3377. lcd_update();
  3378. }
  3379. KEEPALIVE_STATE(IN_HANDLER);
  3380. }
  3381. if (IS_SD_PRINTING)
  3382. LCD_MESSAGERPGM(MSG_RESUMING);
  3383. else
  3384. LCD_MESSAGERPGM(WELCOME_MSG);
  3385. }
  3386. break;
  3387. #endif
  3388. case 17:
  3389. LCD_MESSAGERPGM(MSG_NO_MOVE);
  3390. enable_x();
  3391. enable_y();
  3392. enable_z();
  3393. enable_e0();
  3394. enable_e1();
  3395. enable_e2();
  3396. break;
  3397. #ifdef SDSUPPORT
  3398. case 20: // M20 - list SD card
  3399. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  3400. card.ls();
  3401. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  3402. break;
  3403. case 21: // M21 - init SD card
  3404. card.initsd();
  3405. break;
  3406. case 22: //M22 - release SD card
  3407. card.release();
  3408. break;
  3409. case 23: //M23 - Select file
  3410. starpos = (strchr(strchr_pointer + 4,'*'));
  3411. if(starpos!=NULL)
  3412. *(starpos)='\0';
  3413. card.openFile(strchr_pointer + 4,true);
  3414. break;
  3415. case 24: //M24 - Start SD print
  3416. if (!card.paused)
  3417. failstats_reset_print();
  3418. card.startFileprint();
  3419. starttime=millis();
  3420. break;
  3421. case 25: //M25 - Pause SD print
  3422. card.pauseSDPrint();
  3423. break;
  3424. case 26: //M26 - Set SD index
  3425. if(card.cardOK && code_seen('S')) {
  3426. card.setIndex(code_value_long());
  3427. }
  3428. break;
  3429. case 27: //M27 - Get SD status
  3430. card.getStatus();
  3431. break;
  3432. case 28: //M28 - Start SD write
  3433. starpos = (strchr(strchr_pointer + 4,'*'));
  3434. if(starpos != NULL){
  3435. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3436. strchr_pointer = strchr(npos,' ') + 1;
  3437. *(starpos) = '\0';
  3438. }
  3439. card.openFile(strchr_pointer+4,false);
  3440. break;
  3441. case 29: //M29 - Stop SD write
  3442. //processed in write to file routine above
  3443. //card,saving = false;
  3444. break;
  3445. case 30: //M30 <filename> Delete File
  3446. if (card.cardOK){
  3447. card.closefile();
  3448. starpos = (strchr(strchr_pointer + 4,'*'));
  3449. if(starpos != NULL){
  3450. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3451. strchr_pointer = strchr(npos,' ') + 1;
  3452. *(starpos) = '\0';
  3453. }
  3454. card.removeFile(strchr_pointer + 4);
  3455. }
  3456. break;
  3457. case 32: //M32 - Select file and start SD print
  3458. {
  3459. if(card.sdprinting) {
  3460. st_synchronize();
  3461. }
  3462. starpos = (strchr(strchr_pointer + 4,'*'));
  3463. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3464. if(namestartpos==NULL)
  3465. {
  3466. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3467. }
  3468. else
  3469. namestartpos++; //to skip the '!'
  3470. if(starpos!=NULL)
  3471. *(starpos)='\0';
  3472. bool call_procedure=(code_seen('P'));
  3473. if(strchr_pointer>namestartpos)
  3474. call_procedure=false; //false alert, 'P' found within filename
  3475. if( card.cardOK )
  3476. {
  3477. card.openFile(namestartpos,true,!call_procedure);
  3478. if(code_seen('S'))
  3479. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3480. card.setIndex(code_value_long());
  3481. card.startFileprint();
  3482. if(!call_procedure)
  3483. starttime=millis(); //procedure calls count as normal print time.
  3484. }
  3485. } break;
  3486. case 928: //M928 - Start SD write
  3487. starpos = (strchr(strchr_pointer + 5,'*'));
  3488. if(starpos != NULL){
  3489. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3490. strchr_pointer = strchr(npos,' ') + 1;
  3491. *(starpos) = '\0';
  3492. }
  3493. card.openLogFile(strchr_pointer+5);
  3494. break;
  3495. #endif //SDSUPPORT
  3496. case 31: //M31 take time since the start of the SD print or an M109 command
  3497. {
  3498. stoptime=millis();
  3499. char time[30];
  3500. unsigned long t=(stoptime-starttime)/1000;
  3501. int sec,min;
  3502. min=t/60;
  3503. sec=t%60;
  3504. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3505. SERIAL_ECHO_START;
  3506. SERIAL_ECHOLN(time);
  3507. lcd_setstatus(time);
  3508. autotempShutdown();
  3509. }
  3510. break;
  3511. #ifndef _DISABLE_M42_M226
  3512. case 42: //M42 -Change pin status via gcode
  3513. if (code_seen('S'))
  3514. {
  3515. int pin_status = code_value();
  3516. int pin_number = LED_PIN;
  3517. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3518. pin_number = code_value();
  3519. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3520. {
  3521. if (sensitive_pins[i] == pin_number)
  3522. {
  3523. pin_number = -1;
  3524. break;
  3525. }
  3526. }
  3527. #if defined(FAN_PIN) && FAN_PIN > -1
  3528. if (pin_number == FAN_PIN)
  3529. fanSpeed = pin_status;
  3530. #endif
  3531. if (pin_number > -1)
  3532. {
  3533. pinMode(pin_number, OUTPUT);
  3534. digitalWrite(pin_number, pin_status);
  3535. analogWrite(pin_number, pin_status);
  3536. }
  3537. }
  3538. break;
  3539. #endif //_DISABLE_M42_M226
  3540. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3541. // Reset the baby step value and the baby step applied flag.
  3542. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3543. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3544. // Reset the skew and offset in both RAM and EEPROM.
  3545. reset_bed_offset_and_skew();
  3546. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3547. // the planner will not perform any adjustments in the XY plane.
  3548. // Wait for the motors to stop and update the current position with the absolute values.
  3549. world2machine_revert_to_uncorrected();
  3550. break;
  3551. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3552. {
  3553. bool only_Z = code_seen('Z');
  3554. gcode_M45(only_Z);
  3555. }
  3556. break;
  3557. /*
  3558. case 46:
  3559. {
  3560. // M46: Prusa3D: Show the assigned IP address.
  3561. uint8_t ip[4];
  3562. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3563. if (hasIP) {
  3564. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3565. SERIAL_ECHO(int(ip[0]));
  3566. SERIAL_ECHOPGM(".");
  3567. SERIAL_ECHO(int(ip[1]));
  3568. SERIAL_ECHOPGM(".");
  3569. SERIAL_ECHO(int(ip[2]));
  3570. SERIAL_ECHOPGM(".");
  3571. SERIAL_ECHO(int(ip[3]));
  3572. SERIAL_ECHOLNPGM("");
  3573. } else {
  3574. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3575. }
  3576. break;
  3577. }
  3578. */
  3579. case 47:
  3580. // M47: Prusa3D: Show end stops dialog on the display.
  3581. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3582. lcd_diag_show_end_stops();
  3583. KEEPALIVE_STATE(IN_HANDLER);
  3584. break;
  3585. #if 0
  3586. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3587. {
  3588. // Disable the default update procedure of the display. We will do a modal dialog.
  3589. lcd_update_enable(false);
  3590. // Let the planner use the uncorrected coordinates.
  3591. mbl.reset();
  3592. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3593. // the planner will not perform any adjustments in the XY plane.
  3594. // Wait for the motors to stop and update the current position with the absolute values.
  3595. world2machine_revert_to_uncorrected();
  3596. // Move the print head close to the bed.
  3597. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3598. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3599. st_synchronize();
  3600. // Home in the XY plane.
  3601. set_destination_to_current();
  3602. setup_for_endstop_move();
  3603. home_xy();
  3604. int8_t verbosity_level = 0;
  3605. if (code_seen('V')) {
  3606. // Just 'V' without a number counts as V1.
  3607. char c = strchr_pointer[1];
  3608. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3609. }
  3610. bool success = scan_bed_induction_points(verbosity_level);
  3611. clean_up_after_endstop_move();
  3612. // Print head up.
  3613. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  3615. st_synchronize();
  3616. lcd_update_enable(true);
  3617. break;
  3618. }
  3619. #endif
  3620. // M48 Z-Probe repeatability measurement function.
  3621. //
  3622. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  3623. //
  3624. // This function assumes the bed has been homed. Specificaly, that a G28 command
  3625. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  3626. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3627. // regenerated.
  3628. //
  3629. // The number of samples will default to 10 if not specified. You can use upper or lower case
  3630. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  3631. // N for its communication protocol and will get horribly confused if you send it a capital N.
  3632. //
  3633. #ifdef ENABLE_AUTO_BED_LEVELING
  3634. #ifdef Z_PROBE_REPEATABILITY_TEST
  3635. case 48: // M48 Z-Probe repeatability
  3636. {
  3637. #if Z_MIN_PIN == -1
  3638. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  3639. #endif
  3640. double sum=0.0;
  3641. double mean=0.0;
  3642. double sigma=0.0;
  3643. double sample_set[50];
  3644. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  3645. double X_current, Y_current, Z_current;
  3646. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  3647. if (code_seen('V') || code_seen('v')) {
  3648. verbose_level = code_value();
  3649. if (verbose_level<0 || verbose_level>4 ) {
  3650. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  3651. goto Sigma_Exit;
  3652. }
  3653. }
  3654. if (verbose_level > 0) {
  3655. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  3656. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  3657. }
  3658. if (code_seen('n')) {
  3659. n_samples = code_value();
  3660. if (n_samples<4 || n_samples>50 ) {
  3661. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  3662. goto Sigma_Exit;
  3663. }
  3664. }
  3665. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  3666. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  3667. Z_current = st_get_position_mm(Z_AXIS);
  3668. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3669. ext_position = st_get_position_mm(E_AXIS);
  3670. if (code_seen('X') || code_seen('x') ) {
  3671. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  3672. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  3673. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  3674. goto Sigma_Exit;
  3675. }
  3676. }
  3677. if (code_seen('Y') || code_seen('y') ) {
  3678. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  3679. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  3680. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  3681. goto Sigma_Exit;
  3682. }
  3683. }
  3684. if (code_seen('L') || code_seen('l') ) {
  3685. n_legs = code_value();
  3686. if ( n_legs==1 )
  3687. n_legs = 2;
  3688. if ( n_legs<0 || n_legs>15 ) {
  3689. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  3690. goto Sigma_Exit;
  3691. }
  3692. }
  3693. //
  3694. // Do all the preliminary setup work. First raise the probe.
  3695. //
  3696. st_synchronize();
  3697. plan_bed_level_matrix.set_to_identity();
  3698. plan_buffer_line( X_current, Y_current, Z_start_location,
  3699. ext_position,
  3700. homing_feedrate[Z_AXIS]/60,
  3701. active_extruder);
  3702. st_synchronize();
  3703. //
  3704. // Now get everything to the specified probe point So we can safely do a probe to
  3705. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  3706. // use that as a starting point for each probe.
  3707. //
  3708. if (verbose_level > 2)
  3709. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  3710. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3711. ext_position,
  3712. homing_feedrate[X_AXIS]/60,
  3713. active_extruder);
  3714. st_synchronize();
  3715. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  3716. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  3717. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3718. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  3719. //
  3720. // OK, do the inital probe to get us close to the bed.
  3721. // Then retrace the right amount and use that in subsequent probes
  3722. //
  3723. setup_for_endstop_move();
  3724. run_z_probe();
  3725. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3726. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  3727. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3728. ext_position,
  3729. homing_feedrate[X_AXIS]/60,
  3730. active_extruder);
  3731. st_synchronize();
  3732. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  3733. for( n=0; n<n_samples; n++) {
  3734. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  3735. if ( n_legs) {
  3736. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  3737. int rotational_direction, l;
  3738. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  3739. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  3740. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  3741. //SERIAL_ECHOPAIR("starting radius: ",radius);
  3742. //SERIAL_ECHOPAIR(" theta: ",theta);
  3743. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  3744. //SERIAL_PROTOCOLLNPGM("");
  3745. for( l=0; l<n_legs-1; l++) {
  3746. if (rotational_direction==1)
  3747. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3748. else
  3749. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  3750. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  3751. if ( radius<0.0 )
  3752. radius = -radius;
  3753. X_current = X_probe_location + cos(theta) * radius;
  3754. Y_current = Y_probe_location + sin(theta) * radius;
  3755. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  3756. X_current = X_MIN_POS;
  3757. if ( X_current>X_MAX_POS)
  3758. X_current = X_MAX_POS;
  3759. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  3760. Y_current = Y_MIN_POS;
  3761. if ( Y_current>Y_MAX_POS)
  3762. Y_current = Y_MAX_POS;
  3763. if (verbose_level>3 ) {
  3764. SERIAL_ECHOPAIR("x: ", X_current);
  3765. SERIAL_ECHOPAIR("y: ", Y_current);
  3766. SERIAL_PROTOCOLLNPGM("");
  3767. }
  3768. do_blocking_move_to( X_current, Y_current, Z_current );
  3769. }
  3770. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  3771. }
  3772. setup_for_endstop_move();
  3773. run_z_probe();
  3774. sample_set[n] = current_position[Z_AXIS];
  3775. //
  3776. // Get the current mean for the data points we have so far
  3777. //
  3778. sum=0.0;
  3779. for( j=0; j<=n; j++) {
  3780. sum = sum + sample_set[j];
  3781. }
  3782. mean = sum / (double (n+1));
  3783. //
  3784. // Now, use that mean to calculate the standard deviation for the
  3785. // data points we have so far
  3786. //
  3787. sum=0.0;
  3788. for( j=0; j<=n; j++) {
  3789. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  3790. }
  3791. sigma = sqrt( sum / (double (n+1)) );
  3792. if (verbose_level > 1) {
  3793. SERIAL_PROTOCOL(n+1);
  3794. SERIAL_PROTOCOL(" of ");
  3795. SERIAL_PROTOCOL(n_samples);
  3796. SERIAL_PROTOCOLPGM(" z: ");
  3797. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3798. }
  3799. if (verbose_level > 2) {
  3800. SERIAL_PROTOCOL(" mean: ");
  3801. SERIAL_PROTOCOL_F(mean,6);
  3802. SERIAL_PROTOCOL(" sigma: ");
  3803. SERIAL_PROTOCOL_F(sigma,6);
  3804. }
  3805. if (verbose_level > 0)
  3806. SERIAL_PROTOCOLPGM("\n");
  3807. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  3808. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  3809. st_synchronize();
  3810. }
  3811. delay(1000);
  3812. clean_up_after_endstop_move();
  3813. // enable_endstops(true);
  3814. if (verbose_level > 0) {
  3815. SERIAL_PROTOCOLPGM("Mean: ");
  3816. SERIAL_PROTOCOL_F(mean, 6);
  3817. SERIAL_PROTOCOLPGM("\n");
  3818. }
  3819. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3820. SERIAL_PROTOCOL_F(sigma, 6);
  3821. SERIAL_PROTOCOLPGM("\n\n");
  3822. Sigma_Exit:
  3823. break;
  3824. }
  3825. #endif // Z_PROBE_REPEATABILITY_TEST
  3826. #endif // ENABLE_AUTO_BED_LEVELING
  3827. case 104: // M104
  3828. if(setTargetedHotend(104)){
  3829. break;
  3830. }
  3831. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  3832. setWatch();
  3833. break;
  3834. case 112: // M112 -Emergency Stop
  3835. kill("", 3);
  3836. break;
  3837. case 140: // M140 set bed temp
  3838. if (code_seen('S')) setTargetBed(code_value());
  3839. break;
  3840. case 105 : // M105
  3841. if(setTargetedHotend(105)){
  3842. break;
  3843. }
  3844. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  3845. SERIAL_PROTOCOLPGM("ok T:");
  3846. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  3847. SERIAL_PROTOCOLPGM(" /");
  3848. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  3849. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3850. SERIAL_PROTOCOLPGM(" B:");
  3851. SERIAL_PROTOCOL_F(degBed(),1);
  3852. SERIAL_PROTOCOLPGM(" /");
  3853. SERIAL_PROTOCOL_F(degTargetBed(),1);
  3854. #endif //TEMP_BED_PIN
  3855. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3856. SERIAL_PROTOCOLPGM(" T");
  3857. SERIAL_PROTOCOL(cur_extruder);
  3858. SERIAL_PROTOCOLPGM(":");
  3859. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3860. SERIAL_PROTOCOLPGM(" /");
  3861. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  3862. }
  3863. #else
  3864. SERIAL_ERROR_START;
  3865. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  3866. #endif
  3867. SERIAL_PROTOCOLPGM(" @:");
  3868. #ifdef EXTRUDER_WATTS
  3869. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  3870. SERIAL_PROTOCOLPGM("W");
  3871. #else
  3872. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  3873. #endif
  3874. SERIAL_PROTOCOLPGM(" B@:");
  3875. #ifdef BED_WATTS
  3876. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  3877. SERIAL_PROTOCOLPGM("W");
  3878. #else
  3879. SERIAL_PROTOCOL(getHeaterPower(-1));
  3880. #endif
  3881. #ifdef PINDA_THERMISTOR
  3882. SERIAL_PROTOCOLPGM(" P:");
  3883. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  3884. #endif //PINDA_THERMISTOR
  3885. #ifdef AMBIENT_THERMISTOR
  3886. SERIAL_PROTOCOLPGM(" A:");
  3887. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  3888. #endif //AMBIENT_THERMISTOR
  3889. #ifdef SHOW_TEMP_ADC_VALUES
  3890. {float raw = 0.0;
  3891. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3892. SERIAL_PROTOCOLPGM(" ADC B:");
  3893. SERIAL_PROTOCOL_F(degBed(),1);
  3894. SERIAL_PROTOCOLPGM("C->");
  3895. raw = rawBedTemp();
  3896. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3897. SERIAL_PROTOCOLPGM(" Rb->");
  3898. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3899. SERIAL_PROTOCOLPGM(" Rxb->");
  3900. SERIAL_PROTOCOL_F(raw, 5);
  3901. #endif
  3902. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3903. SERIAL_PROTOCOLPGM(" T");
  3904. SERIAL_PROTOCOL(cur_extruder);
  3905. SERIAL_PROTOCOLPGM(":");
  3906. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  3907. SERIAL_PROTOCOLPGM("C->");
  3908. raw = rawHotendTemp(cur_extruder);
  3909. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  3910. SERIAL_PROTOCOLPGM(" Rt");
  3911. SERIAL_PROTOCOL(cur_extruder);
  3912. SERIAL_PROTOCOLPGM("->");
  3913. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  3914. SERIAL_PROTOCOLPGM(" Rx");
  3915. SERIAL_PROTOCOL(cur_extruder);
  3916. SERIAL_PROTOCOLPGM("->");
  3917. SERIAL_PROTOCOL_F(raw, 5);
  3918. }}
  3919. #endif
  3920. SERIAL_PROTOCOLLN("");
  3921. KEEPALIVE_STATE(NOT_BUSY);
  3922. return;
  3923. break;
  3924. case 109:
  3925. {// M109 - Wait for extruder heater to reach target.
  3926. if(setTargetedHotend(109)){
  3927. break;
  3928. }
  3929. LCD_MESSAGERPGM(MSG_HEATING);
  3930. heating_status = 1;
  3931. if (farm_mode) { prusa_statistics(1); };
  3932. #ifdef AUTOTEMP
  3933. autotemp_enabled=false;
  3934. #endif
  3935. if (code_seen('S')) {
  3936. setTargetHotend(code_value(), tmp_extruder);
  3937. CooldownNoWait = true;
  3938. } else if (code_seen('R')) {
  3939. setTargetHotend(code_value(), tmp_extruder);
  3940. CooldownNoWait = false;
  3941. }
  3942. #ifdef AUTOTEMP
  3943. if (code_seen('S')) autotemp_min=code_value();
  3944. if (code_seen('B')) autotemp_max=code_value();
  3945. if (code_seen('F'))
  3946. {
  3947. autotemp_factor=code_value();
  3948. autotemp_enabled=true;
  3949. }
  3950. #endif
  3951. setWatch();
  3952. codenum = millis();
  3953. /* See if we are heating up or cooling down */
  3954. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  3955. KEEPALIVE_STATE(NOT_BUSY);
  3956. cancel_heatup = false;
  3957. wait_for_heater(codenum); //loops until target temperature is reached
  3958. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  3959. KEEPALIVE_STATE(IN_HANDLER);
  3960. heating_status = 2;
  3961. if (farm_mode) { prusa_statistics(2); };
  3962. //starttime=millis();
  3963. previous_millis_cmd = millis();
  3964. }
  3965. break;
  3966. case 190: // M190 - Wait for bed heater to reach target.
  3967. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3968. LCD_MESSAGERPGM(MSG_BED_HEATING);
  3969. heating_status = 3;
  3970. if (farm_mode) { prusa_statistics(1); };
  3971. if (code_seen('S'))
  3972. {
  3973. setTargetBed(code_value());
  3974. CooldownNoWait = true;
  3975. }
  3976. else if (code_seen('R'))
  3977. {
  3978. setTargetBed(code_value());
  3979. CooldownNoWait = false;
  3980. }
  3981. codenum = millis();
  3982. cancel_heatup = false;
  3983. target_direction = isHeatingBed(); // true if heating, false if cooling
  3984. KEEPALIVE_STATE(NOT_BUSY);
  3985. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  3986. {
  3987. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  3988. {
  3989. if (!farm_mode) {
  3990. float tt = degHotend(active_extruder);
  3991. SERIAL_PROTOCOLPGM("T:");
  3992. SERIAL_PROTOCOL(tt);
  3993. SERIAL_PROTOCOLPGM(" E:");
  3994. SERIAL_PROTOCOL((int)active_extruder);
  3995. SERIAL_PROTOCOLPGM(" B:");
  3996. SERIAL_PROTOCOL_F(degBed(), 1);
  3997. SERIAL_PROTOCOLLN("");
  3998. }
  3999. codenum = millis();
  4000. }
  4001. manage_heater();
  4002. manage_inactivity();
  4003. lcd_update();
  4004. }
  4005. LCD_MESSAGERPGM(MSG_BED_DONE);
  4006. KEEPALIVE_STATE(IN_HANDLER);
  4007. heating_status = 4;
  4008. previous_millis_cmd = millis();
  4009. #endif
  4010. break;
  4011. #if defined(FAN_PIN) && FAN_PIN > -1
  4012. case 106: //M106 Fan On
  4013. if (code_seen('S')){
  4014. fanSpeed=constrain(code_value(),0,255);
  4015. }
  4016. else {
  4017. fanSpeed=255;
  4018. }
  4019. break;
  4020. case 107: //M107 Fan Off
  4021. fanSpeed = 0;
  4022. break;
  4023. #endif //FAN_PIN
  4024. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4025. case 80: // M80 - Turn on Power Supply
  4026. SET_OUTPUT(PS_ON_PIN); //GND
  4027. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4028. // If you have a switch on suicide pin, this is useful
  4029. // if you want to start another print with suicide feature after
  4030. // a print without suicide...
  4031. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4032. SET_OUTPUT(SUICIDE_PIN);
  4033. WRITE(SUICIDE_PIN, HIGH);
  4034. #endif
  4035. #ifdef ULTIPANEL
  4036. powersupply = true;
  4037. LCD_MESSAGERPGM(WELCOME_MSG);
  4038. lcd_update();
  4039. #endif
  4040. break;
  4041. #endif
  4042. case 81: // M81 - Turn off Power Supply
  4043. disable_heater();
  4044. st_synchronize();
  4045. disable_e0();
  4046. disable_e1();
  4047. disable_e2();
  4048. finishAndDisableSteppers();
  4049. fanSpeed = 0;
  4050. delay(1000); // Wait a little before to switch off
  4051. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4052. st_synchronize();
  4053. suicide();
  4054. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4055. SET_OUTPUT(PS_ON_PIN);
  4056. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4057. #endif
  4058. #ifdef ULTIPANEL
  4059. powersupply = false;
  4060. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4061. /*
  4062. MACHNAME = "Prusa i3"
  4063. MSGOFF = "Vypnuto"
  4064. "Prusai3"" ""vypnuto""."
  4065. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  4066. */
  4067. lcd_update();
  4068. #endif
  4069. break;
  4070. case 82:
  4071. axis_relative_modes[3] = false;
  4072. break;
  4073. case 83:
  4074. axis_relative_modes[3] = true;
  4075. break;
  4076. case 18: //compatibility
  4077. case 84: // M84
  4078. if(code_seen('S')){
  4079. stepper_inactive_time = code_value() * 1000;
  4080. }
  4081. else
  4082. {
  4083. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4084. if(all_axis)
  4085. {
  4086. st_synchronize();
  4087. disable_e0();
  4088. disable_e1();
  4089. disable_e2();
  4090. finishAndDisableSteppers();
  4091. }
  4092. else
  4093. {
  4094. st_synchronize();
  4095. if (code_seen('X')) disable_x();
  4096. if (code_seen('Y')) disable_y();
  4097. if (code_seen('Z')) disable_z();
  4098. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4099. if (code_seen('E')) {
  4100. disable_e0();
  4101. disable_e1();
  4102. disable_e2();
  4103. }
  4104. #endif
  4105. }
  4106. }
  4107. snmm_filaments_used = 0;
  4108. break;
  4109. case 85: // M85
  4110. if(code_seen('S')) {
  4111. max_inactive_time = code_value() * 1000;
  4112. }
  4113. break;
  4114. case 92: // M92
  4115. for(int8_t i=0; i < NUM_AXIS; i++)
  4116. {
  4117. if(code_seen(axis_codes[i]))
  4118. {
  4119. if(i == 3) { // E
  4120. float value = code_value();
  4121. if(value < 20.0) {
  4122. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4123. max_jerk[E_AXIS] *= factor;
  4124. max_feedrate[i] *= factor;
  4125. axis_steps_per_sqr_second[i] *= factor;
  4126. }
  4127. axis_steps_per_unit[i] = value;
  4128. }
  4129. else {
  4130. axis_steps_per_unit[i] = code_value();
  4131. }
  4132. }
  4133. }
  4134. break;
  4135. case 110: // M110 - reset line pos
  4136. if (code_seen('N'))
  4137. gcode_LastN = code_value_long();
  4138. break;
  4139. #ifdef HOST_KEEPALIVE_FEATURE
  4140. case 113: // M113 - Get or set Host Keepalive interval
  4141. if (code_seen('S')) {
  4142. host_keepalive_interval = (uint8_t)code_value_short();
  4143. // NOMORE(host_keepalive_interval, 60);
  4144. }
  4145. else {
  4146. SERIAL_ECHO_START;
  4147. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4148. SERIAL_PROTOCOLLN("");
  4149. }
  4150. break;
  4151. #endif
  4152. case 115: // M115
  4153. if (code_seen('V')) {
  4154. // Report the Prusa version number.
  4155. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4156. } else if (code_seen('U')) {
  4157. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4158. // pause the print and ask the user to upgrade the firmware.
  4159. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4160. } else {
  4161. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  4162. }
  4163. break;
  4164. /* case 117: // M117 display message
  4165. starpos = (strchr(strchr_pointer + 5,'*'));
  4166. if(starpos!=NULL)
  4167. *(starpos)='\0';
  4168. lcd_setstatus(strchr_pointer + 5);
  4169. break;*/
  4170. case 114: // M114
  4171. SERIAL_PROTOCOLPGM("X:");
  4172. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4173. SERIAL_PROTOCOLPGM(" Y:");
  4174. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4175. SERIAL_PROTOCOLPGM(" Z:");
  4176. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4177. SERIAL_PROTOCOLPGM(" E:");
  4178. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4179. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  4180. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  4181. SERIAL_PROTOCOLPGM(" Y:");
  4182. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  4183. SERIAL_PROTOCOLPGM(" Z:");
  4184. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  4185. SERIAL_PROTOCOLPGM(" E:");
  4186. SERIAL_PROTOCOL(float(st_get_position(E_AXIS))/axis_steps_per_unit[E_AXIS]);
  4187. SERIAL_PROTOCOLLN("");
  4188. break;
  4189. case 120: // M120
  4190. enable_endstops(false) ;
  4191. break;
  4192. case 121: // M121
  4193. enable_endstops(true) ;
  4194. break;
  4195. case 119: // M119
  4196. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  4197. SERIAL_PROTOCOLLN("");
  4198. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4199. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  4200. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4201. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4202. }else{
  4203. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4204. }
  4205. SERIAL_PROTOCOLLN("");
  4206. #endif
  4207. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4208. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  4209. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4210. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4211. }else{
  4212. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4213. }
  4214. SERIAL_PROTOCOLLN("");
  4215. #endif
  4216. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4217. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  4218. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4219. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4220. }else{
  4221. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4222. }
  4223. SERIAL_PROTOCOLLN("");
  4224. #endif
  4225. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4226. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  4227. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4228. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4229. }else{
  4230. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4231. }
  4232. SERIAL_PROTOCOLLN("");
  4233. #endif
  4234. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4235. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4236. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4237. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4238. }else{
  4239. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4240. }
  4241. SERIAL_PROTOCOLLN("");
  4242. #endif
  4243. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4244. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4245. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4246. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  4247. }else{
  4248. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  4249. }
  4250. SERIAL_PROTOCOLLN("");
  4251. #endif
  4252. break;
  4253. //TODO: update for all axis, use for loop
  4254. #ifdef BLINKM
  4255. case 150: // M150
  4256. {
  4257. byte red;
  4258. byte grn;
  4259. byte blu;
  4260. if(code_seen('R')) red = code_value();
  4261. if(code_seen('U')) grn = code_value();
  4262. if(code_seen('B')) blu = code_value();
  4263. SendColors(red,grn,blu);
  4264. }
  4265. break;
  4266. #endif //BLINKM
  4267. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4268. {
  4269. tmp_extruder = active_extruder;
  4270. if(code_seen('T')) {
  4271. tmp_extruder = code_value();
  4272. if(tmp_extruder >= EXTRUDERS) {
  4273. SERIAL_ECHO_START;
  4274. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  4275. break;
  4276. }
  4277. }
  4278. float area = .0;
  4279. if(code_seen('D')) {
  4280. float diameter = (float)code_value();
  4281. if (diameter == 0.0) {
  4282. // setting any extruder filament size disables volumetric on the assumption that
  4283. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4284. // for all extruders
  4285. volumetric_enabled = false;
  4286. } else {
  4287. filament_size[tmp_extruder] = (float)code_value();
  4288. // make sure all extruders have some sane value for the filament size
  4289. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4290. #if EXTRUDERS > 1
  4291. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4292. #if EXTRUDERS > 2
  4293. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4294. #endif
  4295. #endif
  4296. volumetric_enabled = true;
  4297. }
  4298. } else {
  4299. //reserved for setting filament diameter via UFID or filament measuring device
  4300. break;
  4301. }
  4302. calculate_volumetric_multipliers();
  4303. }
  4304. break;
  4305. case 201: // M201
  4306. for(int8_t i=0; i < NUM_AXIS; i++)
  4307. {
  4308. if(code_seen(axis_codes[i]))
  4309. {
  4310. max_acceleration_units_per_sq_second[i] = code_value();
  4311. }
  4312. }
  4313. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4314. reset_acceleration_rates();
  4315. break;
  4316. #if 0 // Not used for Sprinter/grbl gen6
  4317. case 202: // M202
  4318. for(int8_t i=0; i < NUM_AXIS; i++) {
  4319. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4320. }
  4321. break;
  4322. #endif
  4323. case 203: // M203 max feedrate mm/sec
  4324. for(int8_t i=0; i < NUM_AXIS; i++) {
  4325. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4326. }
  4327. break;
  4328. case 204: // M204 acclereration S normal moves T filmanent only moves
  4329. {
  4330. if(code_seen('S')) acceleration = code_value() ;
  4331. if(code_seen('T')) retract_acceleration = code_value() ;
  4332. }
  4333. break;
  4334. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4335. {
  4336. if(code_seen('S')) minimumfeedrate = code_value();
  4337. if(code_seen('T')) mintravelfeedrate = code_value();
  4338. if(code_seen('B')) minsegmenttime = code_value() ;
  4339. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4340. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4341. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4342. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4343. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4344. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4345. }
  4346. break;
  4347. case 206: // M206 additional homing offset
  4348. for(int8_t i=0; i < 3; i++)
  4349. {
  4350. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4351. }
  4352. break;
  4353. #ifdef FWRETRACT
  4354. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4355. {
  4356. if(code_seen('S'))
  4357. {
  4358. retract_length = code_value() ;
  4359. }
  4360. if(code_seen('F'))
  4361. {
  4362. retract_feedrate = code_value()/60 ;
  4363. }
  4364. if(code_seen('Z'))
  4365. {
  4366. retract_zlift = code_value() ;
  4367. }
  4368. }break;
  4369. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4370. {
  4371. if(code_seen('S'))
  4372. {
  4373. retract_recover_length = code_value() ;
  4374. }
  4375. if(code_seen('F'))
  4376. {
  4377. retract_recover_feedrate = code_value()/60 ;
  4378. }
  4379. }break;
  4380. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4381. {
  4382. if(code_seen('S'))
  4383. {
  4384. int t= code_value() ;
  4385. switch(t)
  4386. {
  4387. case 0:
  4388. {
  4389. autoretract_enabled=false;
  4390. retracted[0]=false;
  4391. #if EXTRUDERS > 1
  4392. retracted[1]=false;
  4393. #endif
  4394. #if EXTRUDERS > 2
  4395. retracted[2]=false;
  4396. #endif
  4397. }break;
  4398. case 1:
  4399. {
  4400. autoretract_enabled=true;
  4401. retracted[0]=false;
  4402. #if EXTRUDERS > 1
  4403. retracted[1]=false;
  4404. #endif
  4405. #if EXTRUDERS > 2
  4406. retracted[2]=false;
  4407. #endif
  4408. }break;
  4409. default:
  4410. SERIAL_ECHO_START;
  4411. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4412. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4413. SERIAL_ECHOLNPGM("\"(1)");
  4414. }
  4415. }
  4416. }break;
  4417. #endif // FWRETRACT
  4418. #if EXTRUDERS > 1
  4419. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4420. {
  4421. if(setTargetedHotend(218)){
  4422. break;
  4423. }
  4424. if(code_seen('X'))
  4425. {
  4426. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4427. }
  4428. if(code_seen('Y'))
  4429. {
  4430. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4431. }
  4432. SERIAL_ECHO_START;
  4433. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4434. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4435. {
  4436. SERIAL_ECHO(" ");
  4437. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4438. SERIAL_ECHO(",");
  4439. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4440. }
  4441. SERIAL_ECHOLN("");
  4442. }break;
  4443. #endif
  4444. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4445. {
  4446. if(code_seen('S'))
  4447. {
  4448. feedmultiply = code_value() ;
  4449. }
  4450. }
  4451. break;
  4452. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4453. {
  4454. if(code_seen('S'))
  4455. {
  4456. int tmp_code = code_value();
  4457. if (code_seen('T'))
  4458. {
  4459. if(setTargetedHotend(221)){
  4460. break;
  4461. }
  4462. extruder_multiply[tmp_extruder] = tmp_code;
  4463. }
  4464. else
  4465. {
  4466. extrudemultiply = tmp_code ;
  4467. }
  4468. }
  4469. }
  4470. break;
  4471. #ifndef _DISABLE_M42_M226
  4472. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4473. {
  4474. if(code_seen('P')){
  4475. int pin_number = code_value(); // pin number
  4476. int pin_state = -1; // required pin state - default is inverted
  4477. if(code_seen('S')) pin_state = code_value(); // required pin state
  4478. if(pin_state >= -1 && pin_state <= 1){
  4479. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4480. {
  4481. if (sensitive_pins[i] == pin_number)
  4482. {
  4483. pin_number = -1;
  4484. break;
  4485. }
  4486. }
  4487. if (pin_number > -1)
  4488. {
  4489. int target = LOW;
  4490. st_synchronize();
  4491. pinMode(pin_number, INPUT);
  4492. switch(pin_state){
  4493. case 1:
  4494. target = HIGH;
  4495. break;
  4496. case 0:
  4497. target = LOW;
  4498. break;
  4499. case -1:
  4500. target = !digitalRead(pin_number);
  4501. break;
  4502. }
  4503. while(digitalRead(pin_number) != target){
  4504. manage_heater();
  4505. manage_inactivity();
  4506. lcd_update();
  4507. }
  4508. }
  4509. }
  4510. }
  4511. }
  4512. break;
  4513. #endif //_DISABLE_M42_M226
  4514. #if NUM_SERVOS > 0
  4515. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4516. {
  4517. int servo_index = -1;
  4518. int servo_position = 0;
  4519. if (code_seen('P'))
  4520. servo_index = code_value();
  4521. if (code_seen('S')) {
  4522. servo_position = code_value();
  4523. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4524. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4525. servos[servo_index].attach(0);
  4526. #endif
  4527. servos[servo_index].write(servo_position);
  4528. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4529. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4530. servos[servo_index].detach();
  4531. #endif
  4532. }
  4533. else {
  4534. SERIAL_ECHO_START;
  4535. SERIAL_ECHO("Servo ");
  4536. SERIAL_ECHO(servo_index);
  4537. SERIAL_ECHOLN(" out of range");
  4538. }
  4539. }
  4540. else if (servo_index >= 0) {
  4541. SERIAL_PROTOCOL(MSG_OK);
  4542. SERIAL_PROTOCOL(" Servo ");
  4543. SERIAL_PROTOCOL(servo_index);
  4544. SERIAL_PROTOCOL(": ");
  4545. SERIAL_PROTOCOL(servos[servo_index].read());
  4546. SERIAL_PROTOCOLLN("");
  4547. }
  4548. }
  4549. break;
  4550. #endif // NUM_SERVOS > 0
  4551. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4552. case 300: // M300
  4553. {
  4554. int beepS = code_seen('S') ? code_value() : 110;
  4555. int beepP = code_seen('P') ? code_value() : 1000;
  4556. if (beepS > 0)
  4557. {
  4558. #if BEEPER > 0
  4559. tone(BEEPER, beepS);
  4560. delay(beepP);
  4561. noTone(BEEPER);
  4562. #elif defined(ULTRALCD)
  4563. lcd_buzz(beepS, beepP);
  4564. #elif defined(LCD_USE_I2C_BUZZER)
  4565. lcd_buzz(beepP, beepS);
  4566. #endif
  4567. }
  4568. else
  4569. {
  4570. delay(beepP);
  4571. }
  4572. }
  4573. break;
  4574. #endif // M300
  4575. #ifdef PIDTEMP
  4576. case 301: // M301
  4577. {
  4578. if(code_seen('P')) Kp = code_value();
  4579. if(code_seen('I')) Ki = scalePID_i(code_value());
  4580. if(code_seen('D')) Kd = scalePID_d(code_value());
  4581. #ifdef PID_ADD_EXTRUSION_RATE
  4582. if(code_seen('C')) Kc = code_value();
  4583. #endif
  4584. updatePID();
  4585. SERIAL_PROTOCOLRPGM(MSG_OK);
  4586. SERIAL_PROTOCOL(" p:");
  4587. SERIAL_PROTOCOL(Kp);
  4588. SERIAL_PROTOCOL(" i:");
  4589. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4590. SERIAL_PROTOCOL(" d:");
  4591. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4592. #ifdef PID_ADD_EXTRUSION_RATE
  4593. SERIAL_PROTOCOL(" c:");
  4594. //Kc does not have scaling applied above, or in resetting defaults
  4595. SERIAL_PROTOCOL(Kc);
  4596. #endif
  4597. SERIAL_PROTOCOLLN("");
  4598. }
  4599. break;
  4600. #endif //PIDTEMP
  4601. #ifdef PIDTEMPBED
  4602. case 304: // M304
  4603. {
  4604. if(code_seen('P')) bedKp = code_value();
  4605. if(code_seen('I')) bedKi = scalePID_i(code_value());
  4606. if(code_seen('D')) bedKd = scalePID_d(code_value());
  4607. updatePID();
  4608. SERIAL_PROTOCOLRPGM(MSG_OK);
  4609. SERIAL_PROTOCOL(" p:");
  4610. SERIAL_PROTOCOL(bedKp);
  4611. SERIAL_PROTOCOL(" i:");
  4612. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  4613. SERIAL_PROTOCOL(" d:");
  4614. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  4615. SERIAL_PROTOCOLLN("");
  4616. }
  4617. break;
  4618. #endif //PIDTEMP
  4619. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4620. {
  4621. #ifdef CHDK
  4622. SET_OUTPUT(CHDK);
  4623. WRITE(CHDK, HIGH);
  4624. chdkHigh = millis();
  4625. chdkActive = true;
  4626. #else
  4627. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  4628. const uint8_t NUM_PULSES=16;
  4629. const float PULSE_LENGTH=0.01524;
  4630. for(int i=0; i < NUM_PULSES; i++) {
  4631. WRITE(PHOTOGRAPH_PIN, HIGH);
  4632. _delay_ms(PULSE_LENGTH);
  4633. WRITE(PHOTOGRAPH_PIN, LOW);
  4634. _delay_ms(PULSE_LENGTH);
  4635. }
  4636. delay(7.33);
  4637. for(int i=0; i < NUM_PULSES; i++) {
  4638. WRITE(PHOTOGRAPH_PIN, HIGH);
  4639. _delay_ms(PULSE_LENGTH);
  4640. WRITE(PHOTOGRAPH_PIN, LOW);
  4641. _delay_ms(PULSE_LENGTH);
  4642. }
  4643. #endif
  4644. #endif //chdk end if
  4645. }
  4646. break;
  4647. #ifdef DOGLCD
  4648. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4649. {
  4650. if (code_seen('C')) {
  4651. lcd_setcontrast( ((int)code_value())&63 );
  4652. }
  4653. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4654. SERIAL_PROTOCOL(lcd_contrast);
  4655. SERIAL_PROTOCOLLN("");
  4656. }
  4657. break;
  4658. #endif
  4659. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4660. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4661. {
  4662. float temp = .0;
  4663. if (code_seen('S')) temp=code_value();
  4664. set_extrude_min_temp(temp);
  4665. }
  4666. break;
  4667. #endif
  4668. case 303: // M303 PID autotune
  4669. {
  4670. float temp = 150.0;
  4671. int e=0;
  4672. int c=5;
  4673. if (code_seen('E')) e=code_value();
  4674. if (e<0)
  4675. temp=70;
  4676. if (code_seen('S')) temp=code_value();
  4677. if (code_seen('C')) c=code_value();
  4678. PID_autotune(temp, e, c);
  4679. }
  4680. break;
  4681. case 400: // M400 finish all moves
  4682. {
  4683. st_synchronize();
  4684. }
  4685. break;
  4686. #ifdef FILAMENT_SENSOR
  4687. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4688. {
  4689. #if (FILWIDTH_PIN > -1)
  4690. if(code_seen('N')) filament_width_nominal=code_value();
  4691. else{
  4692. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4693. SERIAL_PROTOCOLLN(filament_width_nominal);
  4694. }
  4695. #endif
  4696. }
  4697. break;
  4698. case 405: //M405 Turn on filament sensor for control
  4699. {
  4700. if(code_seen('D')) meas_delay_cm=code_value();
  4701. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  4702. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  4703. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  4704. {
  4705. int temp_ratio = widthFil_to_size_ratio();
  4706. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  4707. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  4708. }
  4709. delay_index1=0;
  4710. delay_index2=0;
  4711. }
  4712. filament_sensor = true ;
  4713. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4714. //SERIAL_PROTOCOL(filament_width_meas);
  4715. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4716. //SERIAL_PROTOCOL(extrudemultiply);
  4717. }
  4718. break;
  4719. case 406: //M406 Turn off filament sensor for control
  4720. {
  4721. filament_sensor = false ;
  4722. }
  4723. break;
  4724. case 407: //M407 Display measured filament diameter
  4725. {
  4726. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4727. SERIAL_PROTOCOLLN(filament_width_meas);
  4728. }
  4729. break;
  4730. #endif
  4731. case 500: // M500 Store settings in EEPROM
  4732. {
  4733. Config_StoreSettings(EEPROM_OFFSET);
  4734. }
  4735. break;
  4736. case 501: // M501 Read settings from EEPROM
  4737. {
  4738. Config_RetrieveSettings(EEPROM_OFFSET);
  4739. }
  4740. break;
  4741. case 502: // M502 Revert to default settings
  4742. {
  4743. Config_ResetDefault();
  4744. }
  4745. break;
  4746. case 503: // M503 print settings currently in memory
  4747. {
  4748. Config_PrintSettings();
  4749. }
  4750. break;
  4751. case 509: //M509 Force language selection
  4752. {
  4753. lcd_force_language_selection();
  4754. SERIAL_ECHO_START;
  4755. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  4756. }
  4757. break;
  4758. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4759. case 540:
  4760. {
  4761. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  4762. }
  4763. break;
  4764. #endif
  4765. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4766. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4767. {
  4768. float value;
  4769. if (code_seen('Z'))
  4770. {
  4771. value = code_value();
  4772. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  4773. {
  4774. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  4775. SERIAL_ECHO_START;
  4776. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  4777. SERIAL_PROTOCOLLN("");
  4778. }
  4779. else
  4780. {
  4781. SERIAL_ECHO_START;
  4782. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  4783. SERIAL_ECHORPGM(MSG_Z_MIN);
  4784. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4785. SERIAL_ECHORPGM(MSG_Z_MAX);
  4786. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4787. SERIAL_PROTOCOLLN("");
  4788. }
  4789. }
  4790. else
  4791. {
  4792. SERIAL_ECHO_START;
  4793. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  4794. SERIAL_ECHO(-zprobe_zoffset);
  4795. SERIAL_PROTOCOLLN("");
  4796. }
  4797. break;
  4798. }
  4799. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4800. #ifdef FILAMENTCHANGEENABLE
  4801. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4802. {
  4803. bool old_fsensor_enabled = fsensor_enabled;
  4804. fsensor_enabled = false; //temporary solution for unexpected restarting
  4805. st_synchronize();
  4806. float target[4];
  4807. float lastpos[4];
  4808. if (farm_mode)
  4809. {
  4810. prusa_statistics(22);
  4811. }
  4812. feedmultiplyBckp=feedmultiply;
  4813. int8_t TooLowZ = 0;
  4814. float HotendTempBckp = degTargetHotend(active_extruder);
  4815. int fanSpeedBckp = fanSpeed;
  4816. target[X_AXIS]=current_position[X_AXIS];
  4817. target[Y_AXIS]=current_position[Y_AXIS];
  4818. target[Z_AXIS]=current_position[Z_AXIS];
  4819. target[E_AXIS]=current_position[E_AXIS];
  4820. lastpos[X_AXIS]=current_position[X_AXIS];
  4821. lastpos[Y_AXIS]=current_position[Y_AXIS];
  4822. lastpos[Z_AXIS]=current_position[Z_AXIS];
  4823. lastpos[E_AXIS]=current_position[E_AXIS];
  4824. //Restract extruder
  4825. if(code_seen('E'))
  4826. {
  4827. target[E_AXIS]+= code_value();
  4828. }
  4829. else
  4830. {
  4831. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4832. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  4833. #endif
  4834. }
  4835. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4836. //Lift Z
  4837. if(code_seen('Z'))
  4838. {
  4839. target[Z_AXIS]+= code_value();
  4840. }
  4841. else
  4842. {
  4843. #ifdef FILAMENTCHANGE_ZADD
  4844. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  4845. if(target[Z_AXIS] < 10){
  4846. target[Z_AXIS]+= 10 ;
  4847. TooLowZ = 1;
  4848. }else{
  4849. TooLowZ = 0;
  4850. }
  4851. #endif
  4852. }
  4853. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  4854. //Move XY to side
  4855. if(code_seen('X'))
  4856. {
  4857. target[X_AXIS]+= code_value();
  4858. }
  4859. else
  4860. {
  4861. #ifdef FILAMENTCHANGE_XPOS
  4862. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  4863. #endif
  4864. }
  4865. if(code_seen('Y'))
  4866. {
  4867. target[Y_AXIS]= code_value();
  4868. }
  4869. else
  4870. {
  4871. #ifdef FILAMENTCHANGE_YPOS
  4872. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  4873. #endif
  4874. }
  4875. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  4876. st_synchronize();
  4877. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4878. uint8_t cnt = 0;
  4879. int counterBeep = 0;
  4880. fanSpeed = 0;
  4881. unsigned long waiting_start_time = millis();
  4882. uint8_t wait_for_user_state = 0;
  4883. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4884. while (!(wait_for_user_state == 0 && lcd_clicked())){
  4885. //cnt++;
  4886. manage_heater();
  4887. manage_inactivity(true);
  4888. /*#ifdef SNMM
  4889. target[E_AXIS] += 0.002;
  4890. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  4891. #endif // SNMM*/
  4892. //if (cnt == 0)
  4893. {
  4894. #if BEEPER > 0
  4895. if (counterBeep == 500) {
  4896. counterBeep = 0;
  4897. }
  4898. SET_OUTPUT(BEEPER);
  4899. if (counterBeep == 0) {
  4900. WRITE(BEEPER, HIGH);
  4901. }
  4902. if (counterBeep == 20) {
  4903. WRITE(BEEPER, LOW);
  4904. }
  4905. counterBeep++;
  4906. #else
  4907. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  4908. lcd_buzz(1000 / 6, 100);
  4909. #else
  4910. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  4911. #endif
  4912. #endif
  4913. }
  4914. switch (wait_for_user_state) {
  4915. case 0:
  4916. delay_keep_alive(4);
  4917. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  4918. lcd_display_message_fullscreen_P(MSG_PRESS_TO_PREHEAT);
  4919. wait_for_user_state = 1;
  4920. setTargetHotend(0, 0);
  4921. setTargetHotend(0, 1);
  4922. setTargetHotend(0, 2);
  4923. st_synchronize();
  4924. disable_e0();
  4925. disable_e1();
  4926. disable_e2();
  4927. }
  4928. break;
  4929. case 1:
  4930. delay_keep_alive(4);
  4931. if (lcd_clicked()) {
  4932. setTargetHotend(HotendTempBckp, active_extruder);
  4933. lcd_wait_for_heater();
  4934. wait_for_user_state = 2;
  4935. }
  4936. break;
  4937. case 2:
  4938. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  4939. lcd_display_message_fullscreen_P(MSG_PRESS_TO_UNLOAD);
  4940. waiting_start_time = millis();
  4941. wait_for_user_state = 0;
  4942. }
  4943. else {
  4944. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  4945. lcd.setCursor(1, 4);
  4946. lcd.print(ftostr3(degHotend(active_extruder)));
  4947. }
  4948. break;
  4949. }
  4950. }
  4951. WRITE(BEEPER, LOW);
  4952. lcd_change_fil_state = 0;
  4953. // Unload filament
  4954. lcd_display_message_fullscreen_P(MSG_UNLOADING_FILAMENT);
  4955. KEEPALIVE_STATE(IN_HANDLER);
  4956. custom_message = true;
  4957. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  4958. if (code_seen('L'))
  4959. {
  4960. target[E_AXIS] += code_value();
  4961. }
  4962. else
  4963. {
  4964. #ifdef SNMM
  4965. #else
  4966. #ifdef FILAMENTCHANGE_FINALRETRACT
  4967. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4968. #endif
  4969. #endif // SNMM
  4970. }
  4971. #ifdef SNMM
  4972. target[E_AXIS] += 12;
  4973. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  4974. target[E_AXIS] += 6;
  4975. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4976. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  4977. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  4978. st_synchronize();
  4979. target[E_AXIS] += (FIL_COOLING);
  4980. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4981. target[E_AXIS] += (FIL_COOLING*-1);
  4982. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  4983. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  4984. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  4985. st_synchronize();
  4986. #else
  4987. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  4988. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  4989. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4990. st_synchronize();
  4991. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  4992. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  4993. target[E_AXIS] -= 45;
  4994. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  4995. st_synchronize();
  4996. target[E_AXIS] -= 15;
  4997. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  4998. st_synchronize();
  4999. target[E_AXIS] -= 20;
  5000. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5001. st_synchronize();
  5002. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5003. #endif // SNMM
  5004. //finish moves
  5005. st_synchronize();
  5006. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5007. //disable extruder steppers so filament can be removed
  5008. disable_e0();
  5009. disable_e1();
  5010. disable_e2();
  5011. delay(100);
  5012. WRITE(BEEPER, HIGH);
  5013. counterBeep = 0;
  5014. while(!lcd_clicked() && (counterBeep < 50)) {
  5015. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5016. delay_keep_alive(100);
  5017. counterBeep++;
  5018. }
  5019. WRITE(BEEPER, LOW);
  5020. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5021. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(MSG_UNLOAD_SUCCESSFUL, false, true);
  5022. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(MSG_CHECK_IDLER);
  5023. //lcd_return_to_status();
  5024. lcd_update_enable(true);
  5025. //Wait for user to insert filament
  5026. lcd_wait_interact();
  5027. //load_filament_time = millis();
  5028. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5029. #ifdef PAT9125
  5030. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5031. #endif //PAT9125
  5032. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5033. while(!lcd_clicked())
  5034. {
  5035. manage_heater();
  5036. manage_inactivity(true);
  5037. #ifdef PAT9125
  5038. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5039. {
  5040. tone(BEEPER, 1000);
  5041. delay_keep_alive(50);
  5042. noTone(BEEPER);
  5043. break;
  5044. }
  5045. #endif //PAT9125
  5046. /*#ifdef SNMM
  5047. target[E_AXIS] += 0.002;
  5048. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5049. #endif // SNMM*/
  5050. }
  5051. #ifdef PAT9125
  5052. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5053. #endif //PAT9125
  5054. //WRITE(BEEPER, LOW);
  5055. KEEPALIVE_STATE(IN_HANDLER);
  5056. #ifdef SNMM
  5057. display_loading();
  5058. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5059. do {
  5060. target[E_AXIS] += 0.002;
  5061. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5062. delay_keep_alive(2);
  5063. } while (!lcd_clicked());
  5064. KEEPALIVE_STATE(IN_HANDLER);
  5065. /*if (millis() - load_filament_time > 2) {
  5066. load_filament_time = millis();
  5067. target[E_AXIS] += 0.001;
  5068. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5069. }*/
  5070. //Filament inserted
  5071. //Feed the filament to the end of nozzle quickly
  5072. st_synchronize();
  5073. target[E_AXIS] += bowden_length[snmm_extruder];
  5074. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5075. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5076. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5077. target[E_AXIS] += 40;
  5078. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5079. target[E_AXIS] += 10;
  5080. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5081. #else
  5082. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5083. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5084. #endif // SNMM
  5085. //Extrude some filament
  5086. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5087. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5088. //Wait for user to check the state
  5089. lcd_change_fil_state = 0;
  5090. lcd_loading_filament();
  5091. tone(BEEPER, 500);
  5092. delay_keep_alive(50);
  5093. noTone(BEEPER);
  5094. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5095. lcd_change_fil_state = 0;
  5096. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5097. lcd_alright();
  5098. KEEPALIVE_STATE(IN_HANDLER);
  5099. switch(lcd_change_fil_state){
  5100. // Filament failed to load so load it again
  5101. case 2:
  5102. #ifdef SNMM
  5103. display_loading();
  5104. do {
  5105. target[E_AXIS] += 0.002;
  5106. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5107. delay_keep_alive(2);
  5108. } while (!lcd_clicked());
  5109. st_synchronize();
  5110. target[E_AXIS] += bowden_length[snmm_extruder];
  5111. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5112. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5113. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5114. target[E_AXIS] += 40;
  5115. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5116. target[E_AXIS] += 10;
  5117. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5118. #else
  5119. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5120. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5121. #endif
  5122. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5123. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5124. lcd_loading_filament();
  5125. break;
  5126. // Filament loaded properly but color is not clear
  5127. case 3:
  5128. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5129. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5130. lcd_loading_color();
  5131. break;
  5132. // Everything good
  5133. default:
  5134. lcd_change_success();
  5135. lcd_update_enable(true);
  5136. break;
  5137. }
  5138. }
  5139. //Not let's go back to print
  5140. fanSpeed = fanSpeedBckp;
  5141. //Feed a little of filament to stabilize pressure
  5142. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5143. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5144. //Retract
  5145. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5146. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5147. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5148. //Move XY back
  5149. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5150. //Move Z back
  5151. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5152. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5153. //Unretract
  5154. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5155. //Set E position to original
  5156. plan_set_e_position(lastpos[E_AXIS]);
  5157. //Recover feed rate
  5158. feedmultiply=feedmultiplyBckp;
  5159. char cmd[9];
  5160. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5161. enquecommand(cmd);
  5162. lcd_setstatuspgm(WELCOME_MSG);
  5163. custom_message = false;
  5164. custom_message_type = 0;
  5165. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5166. #ifdef PAT9125
  5167. if (fsensor_M600)
  5168. {
  5169. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5170. st_synchronize();
  5171. while (!is_buffer_empty())
  5172. {
  5173. process_commands();
  5174. cmdqueue_pop_front();
  5175. }
  5176. fsensor_enable();
  5177. fsensor_restore_print_and_continue();
  5178. }
  5179. #endif //PAT9125
  5180. }
  5181. break;
  5182. #endif //FILAMENTCHANGEENABLE
  5183. case 601: {
  5184. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5185. }
  5186. break;
  5187. case 602: {
  5188. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5189. }
  5190. break;
  5191. #ifdef LIN_ADVANCE
  5192. case 900: // M900: Set LIN_ADVANCE options.
  5193. gcode_M900();
  5194. break;
  5195. #endif
  5196. case 907: // M907 Set digital trimpot motor current using axis codes.
  5197. {
  5198. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5199. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  5200. if(code_seen('B')) digipot_current(4,code_value());
  5201. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  5202. #endif
  5203. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5204. if(code_seen('X')) digipot_current(0, code_value());
  5205. #endif
  5206. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5207. if(code_seen('Z')) digipot_current(1, code_value());
  5208. #endif
  5209. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5210. if(code_seen('E')) digipot_current(2, code_value());
  5211. #endif
  5212. #ifdef DIGIPOT_I2C
  5213. // this one uses actual amps in floating point
  5214. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5215. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5216. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  5217. #endif
  5218. }
  5219. break;
  5220. case 908: // M908 Control digital trimpot directly.
  5221. {
  5222. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5223. uint8_t channel,current;
  5224. if(code_seen('P')) channel=code_value();
  5225. if(code_seen('S')) current=code_value();
  5226. digitalPotWrite(channel, current);
  5227. #endif
  5228. }
  5229. break;
  5230. case 910: // M910 TMC2130 init
  5231. {
  5232. tmc2130_init();
  5233. }
  5234. break;
  5235. case 911: // M911 Set TMC2130 holding currents
  5236. {
  5237. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5238. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5239. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5240. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5241. }
  5242. break;
  5243. case 912: // M912 Set TMC2130 running currents
  5244. {
  5245. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5246. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5247. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5248. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5249. }
  5250. break;
  5251. case 913: // M913 Print TMC2130 currents
  5252. {
  5253. tmc2130_print_currents();
  5254. }
  5255. break;
  5256. case 914: // M914 Set normal mode
  5257. {
  5258. tmc2130_mode = TMC2130_MODE_NORMAL;
  5259. tmc2130_init();
  5260. }
  5261. break;
  5262. case 915: // M915 Set silent mode
  5263. {
  5264. tmc2130_mode = TMC2130_MODE_SILENT;
  5265. tmc2130_init();
  5266. }
  5267. break;
  5268. case 916: // M916 Set sg_thrs
  5269. {
  5270. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5271. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5272. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5273. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5274. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5275. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5276. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5277. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5278. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5279. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5280. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5281. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5282. }
  5283. break;
  5284. case 917: // M917 Set TMC2130 pwm_ampl
  5285. {
  5286. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5287. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5288. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5289. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5290. }
  5291. break;
  5292. case 918: // M918 Set TMC2130 pwm_grad
  5293. {
  5294. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5295. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5296. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5297. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5298. }
  5299. break;
  5300. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5301. {
  5302. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5303. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5304. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5305. if(code_seen('B')) microstep_mode(4,code_value());
  5306. microstep_readings();
  5307. #endif
  5308. }
  5309. break;
  5310. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5311. {
  5312. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5313. if(code_seen('S')) switch((int)code_value())
  5314. {
  5315. case 1:
  5316. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5317. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5318. break;
  5319. case 2:
  5320. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5321. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5322. break;
  5323. }
  5324. microstep_readings();
  5325. #endif
  5326. }
  5327. break;
  5328. case 701: //M701: load filament
  5329. {
  5330. gcode_M701();
  5331. }
  5332. break;
  5333. case 702:
  5334. {
  5335. #ifdef SNMM
  5336. if (code_seen('U')) {
  5337. extr_unload_used(); //unload all filaments which were used in current print
  5338. }
  5339. else if (code_seen('C')) {
  5340. extr_unload(); //unload just current filament
  5341. }
  5342. else {
  5343. extr_unload_all(); //unload all filaments
  5344. }
  5345. #else
  5346. bool old_fsensor_enabled = fsensor_enabled;
  5347. fsensor_enabled = false;
  5348. custom_message = true;
  5349. custom_message_type = 2;
  5350. lcd_setstatuspgm(MSG_UNLOADING_FILAMENT);
  5351. // extr_unload2();
  5352. current_position[E_AXIS] -= 45;
  5353. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5354. st_synchronize();
  5355. current_position[E_AXIS] -= 15;
  5356. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5357. st_synchronize();
  5358. current_position[E_AXIS] -= 20;
  5359. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5360. st_synchronize();
  5361. lcd_display_message_fullscreen_P(MSG_PULL_OUT_FILAMENT);
  5362. //disable extruder steppers so filament can be removed
  5363. disable_e0();
  5364. disable_e1();
  5365. disable_e2();
  5366. delay(100);
  5367. WRITE(BEEPER, HIGH);
  5368. uint8_t counterBeep = 0;
  5369. while (!lcd_clicked() && (counterBeep < 50)) {
  5370. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5371. delay_keep_alive(100);
  5372. counterBeep++;
  5373. }
  5374. WRITE(BEEPER, LOW);
  5375. st_synchronize();
  5376. while (lcd_clicked()) delay_keep_alive(100);
  5377. lcd_update_enable(true);
  5378. lcd_setstatuspgm(WELCOME_MSG);
  5379. custom_message = false;
  5380. custom_message_type = 0;
  5381. fsensor_enabled = old_fsensor_enabled;
  5382. #endif
  5383. }
  5384. break;
  5385. case 999: // M999: Restart after being stopped
  5386. Stopped = false;
  5387. lcd_reset_alert_level();
  5388. gcode_LastN = Stopped_gcode_LastN;
  5389. FlushSerialRequestResend();
  5390. break;
  5391. default:
  5392. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5393. }
  5394. } // end if(code_seen('M')) (end of M codes)
  5395. else if(code_seen('T'))
  5396. {
  5397. int index;
  5398. st_synchronize();
  5399. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5400. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5401. SERIAL_ECHOLNPGM("Invalid T code.");
  5402. }
  5403. else {
  5404. if (*(strchr_pointer + index) == '?') {
  5405. tmp_extruder = choose_extruder_menu();
  5406. }
  5407. else {
  5408. tmp_extruder = code_value();
  5409. }
  5410. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5411. #ifdef SNMM
  5412. #ifdef LIN_ADVANCE
  5413. if (snmm_extruder != tmp_extruder)
  5414. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5415. #endif
  5416. snmm_extruder = tmp_extruder;
  5417. delay(100);
  5418. disable_e0();
  5419. disable_e1();
  5420. disable_e2();
  5421. pinMode(E_MUX0_PIN, OUTPUT);
  5422. pinMode(E_MUX1_PIN, OUTPUT);
  5423. pinMode(E_MUX2_PIN, OUTPUT);
  5424. delay(100);
  5425. SERIAL_ECHO_START;
  5426. SERIAL_ECHO("T:");
  5427. SERIAL_ECHOLN((int)tmp_extruder);
  5428. switch (tmp_extruder) {
  5429. case 1:
  5430. WRITE(E_MUX0_PIN, HIGH);
  5431. WRITE(E_MUX1_PIN, LOW);
  5432. WRITE(E_MUX2_PIN, LOW);
  5433. break;
  5434. case 2:
  5435. WRITE(E_MUX0_PIN, LOW);
  5436. WRITE(E_MUX1_PIN, HIGH);
  5437. WRITE(E_MUX2_PIN, LOW);
  5438. break;
  5439. case 3:
  5440. WRITE(E_MUX0_PIN, HIGH);
  5441. WRITE(E_MUX1_PIN, HIGH);
  5442. WRITE(E_MUX2_PIN, LOW);
  5443. break;
  5444. default:
  5445. WRITE(E_MUX0_PIN, LOW);
  5446. WRITE(E_MUX1_PIN, LOW);
  5447. WRITE(E_MUX2_PIN, LOW);
  5448. break;
  5449. }
  5450. delay(100);
  5451. #else
  5452. if (tmp_extruder >= EXTRUDERS) {
  5453. SERIAL_ECHO_START;
  5454. SERIAL_ECHOPGM("T");
  5455. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5456. SERIAL_ECHOLNRPGM(MSG_INVALID_EXTRUDER);
  5457. }
  5458. else {
  5459. boolean make_move = false;
  5460. if (code_seen('F')) {
  5461. make_move = true;
  5462. next_feedrate = code_value();
  5463. if (next_feedrate > 0.0) {
  5464. feedrate = next_feedrate;
  5465. }
  5466. }
  5467. #if EXTRUDERS > 1
  5468. if (tmp_extruder != active_extruder) {
  5469. // Save current position to return to after applying extruder offset
  5470. memcpy(destination, current_position, sizeof(destination));
  5471. // Offset extruder (only by XY)
  5472. int i;
  5473. for (i = 0; i < 2; i++) {
  5474. current_position[i] = current_position[i] -
  5475. extruder_offset[i][active_extruder] +
  5476. extruder_offset[i][tmp_extruder];
  5477. }
  5478. // Set the new active extruder and position
  5479. active_extruder = tmp_extruder;
  5480. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5481. // Move to the old position if 'F' was in the parameters
  5482. if (make_move && Stopped == false) {
  5483. prepare_move();
  5484. }
  5485. }
  5486. #endif
  5487. SERIAL_ECHO_START;
  5488. SERIAL_ECHORPGM(MSG_ACTIVE_EXTRUDER);
  5489. SERIAL_PROTOCOLLN((int)active_extruder);
  5490. }
  5491. #endif
  5492. }
  5493. } // end if(code_seen('T')) (end of T codes)
  5494. #ifdef DEBUG_DCODES
  5495. else if (code_seen('D')) // D codes (debug)
  5496. {
  5497. switch((int)code_value())
  5498. {
  5499. case -1: // D-1 - Endless loop
  5500. dcode__1(); break;
  5501. case 0: // D0 - Reset
  5502. dcode_0(); break;
  5503. case 1: // D1 - Clear EEPROM
  5504. dcode_1(); break;
  5505. case 2: // D2 - Read/Write RAM
  5506. dcode_2(); break;
  5507. case 3: // D3 - Read/Write EEPROM
  5508. dcode_3(); break;
  5509. case 4: // D4 - Read/Write PIN
  5510. dcode_4(); break;
  5511. case 5: // D5 - Read/Write FLASH
  5512. // dcode_5(); break;
  5513. break;
  5514. case 6: // D6 - Read/Write external FLASH
  5515. dcode_6(); break;
  5516. case 7: // D7 - Read/Write Bootloader
  5517. dcode_7(); break;
  5518. case 8: // D8 - Read/Write PINDA
  5519. dcode_8(); break;
  5520. case 9: // D9 - Read/Write ADC
  5521. dcode_9(); break;
  5522. case 10: // D10 - XYZ calibration = OK
  5523. dcode_10(); break;
  5524. case 12: //D12 - Reset failstat counters
  5525. dcode_12(); break;
  5526. case 2130: // D9125 - TMC2130
  5527. dcode_2130(); break;
  5528. case 9125: // D9125 - PAT9125
  5529. dcode_9125(); break;
  5530. }
  5531. }
  5532. #endif //DEBUG_DCODES
  5533. else
  5534. {
  5535. SERIAL_ECHO_START;
  5536. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5537. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5538. SERIAL_ECHOLNPGM("\"(2)");
  5539. }
  5540. KEEPALIVE_STATE(NOT_BUSY);
  5541. ClearToSend();
  5542. }
  5543. void FlushSerialRequestResend()
  5544. {
  5545. //char cmdbuffer[bufindr][100]="Resend:";
  5546. MYSERIAL.flush();
  5547. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  5548. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5549. previous_millis_cmd = millis();
  5550. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5551. }
  5552. // Confirm the execution of a command, if sent from a serial line.
  5553. // Execution of a command from a SD card will not be confirmed.
  5554. void ClearToSend()
  5555. {
  5556. previous_millis_cmd = millis();
  5557. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  5558. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  5559. }
  5560. void get_coordinates()
  5561. {
  5562. bool seen[4]={false,false,false,false};
  5563. for(int8_t i=0; i < NUM_AXIS; i++) {
  5564. if(code_seen(axis_codes[i]))
  5565. {
  5566. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  5567. seen[i]=true;
  5568. }
  5569. else destination[i] = current_position[i]; //Are these else lines really needed?
  5570. }
  5571. if(code_seen('F')) {
  5572. next_feedrate = code_value();
  5573. #ifdef MAX_SILENT_FEEDRATE
  5574. if (tmc2130_mode == TMC2130_MODE_SILENT)
  5575. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  5576. #endif //MAX_SILENT_FEEDRATE
  5577. if(next_feedrate > 0.0) feedrate = next_feedrate;
  5578. }
  5579. }
  5580. void get_arc_coordinates()
  5581. {
  5582. #ifdef SF_ARC_FIX
  5583. bool relative_mode_backup = relative_mode;
  5584. relative_mode = true;
  5585. #endif
  5586. get_coordinates();
  5587. #ifdef SF_ARC_FIX
  5588. relative_mode=relative_mode_backup;
  5589. #endif
  5590. if(code_seen('I')) {
  5591. offset[0] = code_value();
  5592. }
  5593. else {
  5594. offset[0] = 0.0;
  5595. }
  5596. if(code_seen('J')) {
  5597. offset[1] = code_value();
  5598. }
  5599. else {
  5600. offset[1] = 0.0;
  5601. }
  5602. }
  5603. void clamp_to_software_endstops(float target[3])
  5604. {
  5605. #ifdef DEBUG_DISABLE_SWLIMITS
  5606. return;
  5607. #endif //DEBUG_DISABLE_SWLIMITS
  5608. world2machine_clamp(target[0], target[1]);
  5609. // Clamp the Z coordinate.
  5610. if (min_software_endstops) {
  5611. float negative_z_offset = 0;
  5612. #ifdef ENABLE_AUTO_BED_LEVELING
  5613. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  5614. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  5615. #endif
  5616. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  5617. }
  5618. if (max_software_endstops) {
  5619. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  5620. }
  5621. }
  5622. #ifdef MESH_BED_LEVELING
  5623. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  5624. float dx = x - current_position[X_AXIS];
  5625. float dy = y - current_position[Y_AXIS];
  5626. float dz = z - current_position[Z_AXIS];
  5627. int n_segments = 0;
  5628. if (mbl.active) {
  5629. float len = abs(dx) + abs(dy);
  5630. if (len > 0)
  5631. // Split to 3cm segments or shorter.
  5632. n_segments = int(ceil(len / 30.f));
  5633. }
  5634. if (n_segments > 1) {
  5635. float de = e - current_position[E_AXIS];
  5636. for (int i = 1; i < n_segments; ++ i) {
  5637. float t = float(i) / float(n_segments);
  5638. plan_buffer_line(
  5639. current_position[X_AXIS] + t * dx,
  5640. current_position[Y_AXIS] + t * dy,
  5641. current_position[Z_AXIS] + t * dz,
  5642. current_position[E_AXIS] + t * de,
  5643. feed_rate, extruder);
  5644. }
  5645. }
  5646. // The rest of the path.
  5647. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5648. current_position[X_AXIS] = x;
  5649. current_position[Y_AXIS] = y;
  5650. current_position[Z_AXIS] = z;
  5651. current_position[E_AXIS] = e;
  5652. }
  5653. #endif // MESH_BED_LEVELING
  5654. void prepare_move()
  5655. {
  5656. clamp_to_software_endstops(destination);
  5657. previous_millis_cmd = millis();
  5658. // Do not use feedmultiply for E or Z only moves
  5659. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  5660. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  5661. }
  5662. else {
  5663. #ifdef MESH_BED_LEVELING
  5664. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5665. #else
  5666. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  5667. #endif
  5668. }
  5669. for(int8_t i=0; i < NUM_AXIS; i++) {
  5670. current_position[i] = destination[i];
  5671. }
  5672. }
  5673. void prepare_arc_move(char isclockwise) {
  5674. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  5675. // Trace the arc
  5676. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  5677. // As far as the parser is concerned, the position is now == target. In reality the
  5678. // motion control system might still be processing the action and the real tool position
  5679. // in any intermediate location.
  5680. for(int8_t i=0; i < NUM_AXIS; i++) {
  5681. current_position[i] = destination[i];
  5682. }
  5683. previous_millis_cmd = millis();
  5684. }
  5685. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5686. #if defined(FAN_PIN)
  5687. #if CONTROLLERFAN_PIN == FAN_PIN
  5688. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  5689. #endif
  5690. #endif
  5691. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  5692. unsigned long lastMotorCheck = 0;
  5693. void controllerFan()
  5694. {
  5695. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  5696. {
  5697. lastMotorCheck = millis();
  5698. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  5699. #if EXTRUDERS > 2
  5700. || !READ(E2_ENABLE_PIN)
  5701. #endif
  5702. #if EXTRUDER > 1
  5703. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  5704. || !READ(X2_ENABLE_PIN)
  5705. #endif
  5706. || !READ(E1_ENABLE_PIN)
  5707. #endif
  5708. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  5709. {
  5710. lastMotor = millis(); //... set time to NOW so the fan will turn on
  5711. }
  5712. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  5713. {
  5714. digitalWrite(CONTROLLERFAN_PIN, 0);
  5715. analogWrite(CONTROLLERFAN_PIN, 0);
  5716. }
  5717. else
  5718. {
  5719. // allows digital or PWM fan output to be used (see M42 handling)
  5720. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5721. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  5722. }
  5723. }
  5724. }
  5725. #endif
  5726. #ifdef TEMP_STAT_LEDS
  5727. static bool blue_led = false;
  5728. static bool red_led = false;
  5729. static uint32_t stat_update = 0;
  5730. void handle_status_leds(void) {
  5731. float max_temp = 0.0;
  5732. if(millis() > stat_update) {
  5733. stat_update += 500; // Update every 0.5s
  5734. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5735. max_temp = max(max_temp, degHotend(cur_extruder));
  5736. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  5737. }
  5738. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5739. max_temp = max(max_temp, degTargetBed());
  5740. max_temp = max(max_temp, degBed());
  5741. #endif
  5742. if((max_temp > 55.0) && (red_led == false)) {
  5743. digitalWrite(STAT_LED_RED, 1);
  5744. digitalWrite(STAT_LED_BLUE, 0);
  5745. red_led = true;
  5746. blue_led = false;
  5747. }
  5748. if((max_temp < 54.0) && (blue_led == false)) {
  5749. digitalWrite(STAT_LED_RED, 0);
  5750. digitalWrite(STAT_LED_BLUE, 1);
  5751. red_led = false;
  5752. blue_led = true;
  5753. }
  5754. }
  5755. }
  5756. #endif
  5757. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  5758. {
  5759. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  5760. {
  5761. if (fsensor_autoload_enabled)
  5762. {
  5763. if (fsensor_check_autoload())
  5764. {
  5765. if (degHotend0() > EXTRUDE_MINTEMP)
  5766. {
  5767. fsensor_autoload_check_stop();
  5768. tone(BEEPER, 1000);
  5769. delay_keep_alive(50);
  5770. noTone(BEEPER);
  5771. loading_flag = true;
  5772. enquecommand_front_P((PSTR("M701")));
  5773. }
  5774. else
  5775. {
  5776. lcd_update_enable(false);
  5777. lcd_implementation_clear();
  5778. lcd.setCursor(0, 0);
  5779. lcd_printPGM(MSG_ERROR);
  5780. lcd.setCursor(0, 2);
  5781. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  5782. delay(2000);
  5783. lcd_implementation_clear();
  5784. lcd_update_enable(true);
  5785. }
  5786. }
  5787. }
  5788. else
  5789. fsensor_autoload_check_start();
  5790. }
  5791. else
  5792. if (fsensor_autoload_enabled)
  5793. fsensor_autoload_check_stop();
  5794. #if defined(KILL_PIN) && KILL_PIN > -1
  5795. static int killCount = 0; // make the inactivity button a bit less responsive
  5796. const int KILL_DELAY = 10000;
  5797. #endif
  5798. if(buflen < (BUFSIZE-1)){
  5799. get_command();
  5800. }
  5801. if( (millis() - previous_millis_cmd) > max_inactive_time )
  5802. if(max_inactive_time)
  5803. kill("", 4);
  5804. if(stepper_inactive_time) {
  5805. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  5806. {
  5807. if(blocks_queued() == false && ignore_stepper_queue == false) {
  5808. disable_x();
  5809. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  5810. disable_y();
  5811. disable_z();
  5812. disable_e0();
  5813. disable_e1();
  5814. disable_e2();
  5815. }
  5816. }
  5817. }
  5818. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  5819. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  5820. {
  5821. chdkActive = false;
  5822. WRITE(CHDK, LOW);
  5823. }
  5824. #endif
  5825. #if defined(KILL_PIN) && KILL_PIN > -1
  5826. // Check if the kill button was pressed and wait just in case it was an accidental
  5827. // key kill key press
  5828. // -------------------------------------------------------------------------------
  5829. if( 0 == READ(KILL_PIN) )
  5830. {
  5831. killCount++;
  5832. }
  5833. else if (killCount > 0)
  5834. {
  5835. killCount--;
  5836. }
  5837. // Exceeded threshold and we can confirm that it was not accidental
  5838. // KILL the machine
  5839. // ----------------------------------------------------------------
  5840. if ( killCount >= KILL_DELAY)
  5841. {
  5842. kill("", 5);
  5843. }
  5844. #endif
  5845. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  5846. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  5847. #endif
  5848. #ifdef EXTRUDER_RUNOUT_PREVENT
  5849. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  5850. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  5851. {
  5852. bool oldstatus=READ(E0_ENABLE_PIN);
  5853. enable_e0();
  5854. float oldepos=current_position[E_AXIS];
  5855. float oldedes=destination[E_AXIS];
  5856. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5857. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  5858. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  5859. current_position[E_AXIS]=oldepos;
  5860. destination[E_AXIS]=oldedes;
  5861. plan_set_e_position(oldepos);
  5862. previous_millis_cmd=millis();
  5863. st_synchronize();
  5864. WRITE(E0_ENABLE_PIN,oldstatus);
  5865. }
  5866. #endif
  5867. #ifdef TEMP_STAT_LEDS
  5868. handle_status_leds();
  5869. #endif
  5870. check_axes_activity();
  5871. }
  5872. void kill(const char *full_screen_message, unsigned char id)
  5873. {
  5874. SERIAL_ECHOPGM("KILL: ");
  5875. MYSERIAL.println(int(id));
  5876. //return;
  5877. cli(); // Stop interrupts
  5878. disable_heater();
  5879. disable_x();
  5880. // SERIAL_ECHOLNPGM("kill - disable Y");
  5881. disable_y();
  5882. disable_z();
  5883. disable_e0();
  5884. disable_e1();
  5885. disable_e2();
  5886. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5887. pinMode(PS_ON_PIN,INPUT);
  5888. #endif
  5889. SERIAL_ERROR_START;
  5890. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  5891. if (full_screen_message != NULL) {
  5892. SERIAL_ERRORLNRPGM(full_screen_message);
  5893. lcd_display_message_fullscreen_P(full_screen_message);
  5894. } else {
  5895. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  5896. }
  5897. // FMC small patch to update the LCD before ending
  5898. sei(); // enable interrupts
  5899. for ( int i=5; i--; lcd_update())
  5900. {
  5901. delay(200);
  5902. }
  5903. cli(); // disable interrupts
  5904. suicide();
  5905. while(1)
  5906. {
  5907. wdt_reset();
  5908. /* Intentionally left empty */
  5909. } // Wait for reset
  5910. }
  5911. void Stop()
  5912. {
  5913. disable_heater();
  5914. if(Stopped == false) {
  5915. Stopped = true;
  5916. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5917. SERIAL_ERROR_START;
  5918. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  5919. LCD_MESSAGERPGM(MSG_STOPPED);
  5920. }
  5921. }
  5922. bool IsStopped() { return Stopped; };
  5923. #ifdef FAST_PWM_FAN
  5924. void setPwmFrequency(uint8_t pin, int val)
  5925. {
  5926. val &= 0x07;
  5927. switch(digitalPinToTimer(pin))
  5928. {
  5929. #if defined(TCCR0A)
  5930. case TIMER0A:
  5931. case TIMER0B:
  5932. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5933. // TCCR0B |= val;
  5934. break;
  5935. #endif
  5936. #if defined(TCCR1A)
  5937. case TIMER1A:
  5938. case TIMER1B:
  5939. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5940. // TCCR1B |= val;
  5941. break;
  5942. #endif
  5943. #if defined(TCCR2)
  5944. case TIMER2:
  5945. case TIMER2:
  5946. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5947. TCCR2 |= val;
  5948. break;
  5949. #endif
  5950. #if defined(TCCR2A)
  5951. case TIMER2A:
  5952. case TIMER2B:
  5953. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5954. TCCR2B |= val;
  5955. break;
  5956. #endif
  5957. #if defined(TCCR3A)
  5958. case TIMER3A:
  5959. case TIMER3B:
  5960. case TIMER3C:
  5961. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5962. TCCR3B |= val;
  5963. break;
  5964. #endif
  5965. #if defined(TCCR4A)
  5966. case TIMER4A:
  5967. case TIMER4B:
  5968. case TIMER4C:
  5969. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5970. TCCR4B |= val;
  5971. break;
  5972. #endif
  5973. #if defined(TCCR5A)
  5974. case TIMER5A:
  5975. case TIMER5B:
  5976. case TIMER5C:
  5977. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5978. TCCR5B |= val;
  5979. break;
  5980. #endif
  5981. }
  5982. }
  5983. #endif //FAST_PWM_FAN
  5984. bool setTargetedHotend(int code){
  5985. tmp_extruder = active_extruder;
  5986. if(code_seen('T')) {
  5987. tmp_extruder = code_value();
  5988. if(tmp_extruder >= EXTRUDERS) {
  5989. SERIAL_ECHO_START;
  5990. switch(code){
  5991. case 104:
  5992. SERIAL_ECHORPGM(MSG_M104_INVALID_EXTRUDER);
  5993. break;
  5994. case 105:
  5995. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5996. break;
  5997. case 109:
  5998. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5999. break;
  6000. case 218:
  6001. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  6002. break;
  6003. case 221:
  6004. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  6005. break;
  6006. }
  6007. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6008. return true;
  6009. }
  6010. }
  6011. return false;
  6012. }
  6013. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6014. {
  6015. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6016. {
  6017. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6018. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6019. }
  6020. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6021. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6022. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6023. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6024. total_filament_used = 0;
  6025. }
  6026. float calculate_volumetric_multiplier(float diameter) {
  6027. float area = .0;
  6028. float radius = .0;
  6029. radius = diameter * .5;
  6030. if (! volumetric_enabled || radius == 0) {
  6031. area = 1;
  6032. }
  6033. else {
  6034. area = M_PI * pow(radius, 2);
  6035. }
  6036. return 1.0 / area;
  6037. }
  6038. void calculate_volumetric_multipliers() {
  6039. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  6040. #if EXTRUDERS > 1
  6041. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  6042. #if EXTRUDERS > 2
  6043. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  6044. #endif
  6045. #endif
  6046. }
  6047. void delay_keep_alive(unsigned int ms)
  6048. {
  6049. for (;;) {
  6050. manage_heater();
  6051. // Manage inactivity, but don't disable steppers on timeout.
  6052. manage_inactivity(true);
  6053. lcd_update();
  6054. if (ms == 0)
  6055. break;
  6056. else if (ms >= 50) {
  6057. delay(50);
  6058. ms -= 50;
  6059. } else {
  6060. delay(ms);
  6061. ms = 0;
  6062. }
  6063. }
  6064. }
  6065. void wait_for_heater(long codenum) {
  6066. #ifdef TEMP_RESIDENCY_TIME
  6067. long residencyStart;
  6068. residencyStart = -1;
  6069. /* continue to loop until we have reached the target temp
  6070. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6071. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6072. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6073. #else
  6074. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6075. #endif //TEMP_RESIDENCY_TIME
  6076. if ((millis() - codenum) > 1000UL)
  6077. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6078. if (!farm_mode) {
  6079. SERIAL_PROTOCOLPGM("T:");
  6080. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6081. SERIAL_PROTOCOLPGM(" E:");
  6082. SERIAL_PROTOCOL((int)tmp_extruder);
  6083. #ifdef TEMP_RESIDENCY_TIME
  6084. SERIAL_PROTOCOLPGM(" W:");
  6085. if (residencyStart > -1)
  6086. {
  6087. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6088. SERIAL_PROTOCOLLN(codenum);
  6089. }
  6090. else
  6091. {
  6092. SERIAL_PROTOCOLLN("?");
  6093. }
  6094. }
  6095. #else
  6096. SERIAL_PROTOCOLLN("");
  6097. #endif
  6098. codenum = millis();
  6099. }
  6100. manage_heater();
  6101. manage_inactivity();
  6102. lcd_update();
  6103. #ifdef TEMP_RESIDENCY_TIME
  6104. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6105. or when current temp falls outside the hysteresis after target temp was reached */
  6106. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6107. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6108. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6109. {
  6110. residencyStart = millis();
  6111. }
  6112. #endif //TEMP_RESIDENCY_TIME
  6113. }
  6114. }
  6115. void check_babystep() {
  6116. int babystep_z;
  6117. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6118. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6119. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6120. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6121. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6122. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6123. lcd_update_enable(true);
  6124. }
  6125. }
  6126. #ifdef DIS
  6127. void d_setup()
  6128. {
  6129. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6130. pinMode(D_DATA, INPUT_PULLUP);
  6131. pinMode(D_REQUIRE, OUTPUT);
  6132. digitalWrite(D_REQUIRE, HIGH);
  6133. }
  6134. float d_ReadData()
  6135. {
  6136. int digit[13];
  6137. String mergeOutput;
  6138. float output;
  6139. digitalWrite(D_REQUIRE, HIGH);
  6140. for (int i = 0; i<13; i++)
  6141. {
  6142. for (int j = 0; j < 4; j++)
  6143. {
  6144. while (digitalRead(D_DATACLOCK) == LOW) {}
  6145. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6146. bitWrite(digit[i], j, digitalRead(D_DATA));
  6147. }
  6148. }
  6149. digitalWrite(D_REQUIRE, LOW);
  6150. mergeOutput = "";
  6151. output = 0;
  6152. for (int r = 5; r <= 10; r++) //Merge digits
  6153. {
  6154. mergeOutput += digit[r];
  6155. }
  6156. output = mergeOutput.toFloat();
  6157. if (digit[4] == 8) //Handle sign
  6158. {
  6159. output *= -1;
  6160. }
  6161. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6162. {
  6163. output /= 10;
  6164. }
  6165. return output;
  6166. }
  6167. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6168. int t1 = 0;
  6169. int t_delay = 0;
  6170. int digit[13];
  6171. int m;
  6172. char str[3];
  6173. //String mergeOutput;
  6174. char mergeOutput[15];
  6175. float output;
  6176. int mesh_point = 0; //index number of calibration point
  6177. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6178. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6179. float mesh_home_z_search = 4;
  6180. float row[x_points_num];
  6181. int ix = 0;
  6182. int iy = 0;
  6183. char* filename_wldsd = "wldsd.txt";
  6184. char data_wldsd[70];
  6185. char numb_wldsd[10];
  6186. d_setup();
  6187. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6188. // We don't know where we are! HOME!
  6189. // Push the commands to the front of the message queue in the reverse order!
  6190. // There shall be always enough space reserved for these commands.
  6191. repeatcommand_front(); // repeat G80 with all its parameters
  6192. enquecommand_front_P((PSTR("G28 W0")));
  6193. enquecommand_front_P((PSTR("G1 Z5")));
  6194. return;
  6195. }
  6196. bool custom_message_old = custom_message;
  6197. unsigned int custom_message_type_old = custom_message_type;
  6198. unsigned int custom_message_state_old = custom_message_state;
  6199. custom_message = true;
  6200. custom_message_type = 1;
  6201. custom_message_state = (x_points_num * y_points_num) + 10;
  6202. lcd_update(1);
  6203. mbl.reset();
  6204. babystep_undo();
  6205. card.openFile(filename_wldsd, false);
  6206. current_position[Z_AXIS] = mesh_home_z_search;
  6207. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6208. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6209. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6210. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6211. setup_for_endstop_move(false);
  6212. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6213. SERIAL_PROTOCOL(x_points_num);
  6214. SERIAL_PROTOCOLPGM(",");
  6215. SERIAL_PROTOCOL(y_points_num);
  6216. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6217. SERIAL_PROTOCOL(mesh_home_z_search);
  6218. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6219. SERIAL_PROTOCOL(x_dimension);
  6220. SERIAL_PROTOCOLPGM(",");
  6221. SERIAL_PROTOCOL(y_dimension);
  6222. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6223. while (mesh_point != x_points_num * y_points_num) {
  6224. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6225. iy = mesh_point / x_points_num;
  6226. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6227. float z0 = 0.f;
  6228. current_position[Z_AXIS] = mesh_home_z_search;
  6229. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6230. st_synchronize();
  6231. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6232. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6233. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6234. st_synchronize();
  6235. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6236. break;
  6237. card.closefile();
  6238. }
  6239. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6240. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6241. //strcat(data_wldsd, numb_wldsd);
  6242. //MYSERIAL.println(data_wldsd);
  6243. //delay(1000);
  6244. //delay(3000);
  6245. //t1 = millis();
  6246. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6247. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6248. memset(digit, 0, sizeof(digit));
  6249. //cli();
  6250. digitalWrite(D_REQUIRE, LOW);
  6251. for (int i = 0; i<13; i++)
  6252. {
  6253. //t1 = millis();
  6254. for (int j = 0; j < 4; j++)
  6255. {
  6256. while (digitalRead(D_DATACLOCK) == LOW) {}
  6257. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6258. bitWrite(digit[i], j, digitalRead(D_DATA));
  6259. }
  6260. //t_delay = (millis() - t1);
  6261. //SERIAL_PROTOCOLPGM(" ");
  6262. //SERIAL_PROTOCOL_F(t_delay, 5);
  6263. //SERIAL_PROTOCOLPGM(" ");
  6264. }
  6265. //sei();
  6266. digitalWrite(D_REQUIRE, HIGH);
  6267. mergeOutput[0] = '\0';
  6268. output = 0;
  6269. for (int r = 5; r <= 10; r++) //Merge digits
  6270. {
  6271. sprintf(str, "%d", digit[r]);
  6272. strcat(mergeOutput, str);
  6273. }
  6274. output = atof(mergeOutput);
  6275. if (digit[4] == 8) //Handle sign
  6276. {
  6277. output *= -1;
  6278. }
  6279. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6280. {
  6281. output *= 0.1;
  6282. }
  6283. //output = d_ReadData();
  6284. //row[ix] = current_position[Z_AXIS];
  6285. memset(data_wldsd, 0, sizeof(data_wldsd));
  6286. for (int i = 0; i <3; i++) {
  6287. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6288. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6289. strcat(data_wldsd, numb_wldsd);
  6290. strcat(data_wldsd, ";");
  6291. }
  6292. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6293. dtostrf(output, 8, 5, numb_wldsd);
  6294. strcat(data_wldsd, numb_wldsd);
  6295. //strcat(data_wldsd, ";");
  6296. card.write_command(data_wldsd);
  6297. //row[ix] = d_ReadData();
  6298. row[ix] = output; // current_position[Z_AXIS];
  6299. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6300. for (int i = 0; i < x_points_num; i++) {
  6301. SERIAL_PROTOCOLPGM(" ");
  6302. SERIAL_PROTOCOL_F(row[i], 5);
  6303. }
  6304. SERIAL_PROTOCOLPGM("\n");
  6305. }
  6306. custom_message_state--;
  6307. mesh_point++;
  6308. lcd_update(1);
  6309. }
  6310. card.closefile();
  6311. }
  6312. #endif
  6313. void temp_compensation_start() {
  6314. custom_message = true;
  6315. custom_message_type = 5;
  6316. custom_message_state = PINDA_HEAT_T + 1;
  6317. lcd_update(2);
  6318. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6319. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6320. }
  6321. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6322. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6323. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6324. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6325. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6326. st_synchronize();
  6327. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6328. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6329. delay_keep_alive(1000);
  6330. custom_message_state = PINDA_HEAT_T - i;
  6331. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6332. else lcd_update(1);
  6333. }
  6334. custom_message_type = 0;
  6335. custom_message_state = 0;
  6336. custom_message = false;
  6337. }
  6338. void temp_compensation_apply() {
  6339. int i_add;
  6340. int compensation_value;
  6341. int z_shift = 0;
  6342. float z_shift_mm;
  6343. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6344. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6345. i_add = (target_temperature_bed - 60) / 10;
  6346. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6347. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6348. }else {
  6349. //interpolation
  6350. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6351. }
  6352. SERIAL_PROTOCOLPGM("\n");
  6353. SERIAL_PROTOCOLPGM("Z shift applied:");
  6354. MYSERIAL.print(z_shift_mm);
  6355. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6356. st_synchronize();
  6357. plan_set_z_position(current_position[Z_AXIS]);
  6358. }
  6359. else {
  6360. //we have no temp compensation data
  6361. }
  6362. }
  6363. float temp_comp_interpolation(float inp_temperature) {
  6364. //cubic spline interpolation
  6365. int n, i, j, k;
  6366. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6367. int shift[10];
  6368. int temp_C[10];
  6369. n = 6; //number of measured points
  6370. shift[0] = 0;
  6371. for (i = 0; i < n; i++) {
  6372. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6373. temp_C[i] = 50 + i * 10; //temperature in C
  6374. #ifdef PINDA_THERMISTOR
  6375. temp_C[i] = 35 + i * 5; //temperature in C
  6376. #else
  6377. temp_C[i] = 50 + i * 10; //temperature in C
  6378. #endif
  6379. x[i] = (float)temp_C[i];
  6380. f[i] = (float)shift[i];
  6381. }
  6382. if (inp_temperature < x[0]) return 0;
  6383. for (i = n - 1; i>0; i--) {
  6384. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6385. h[i - 1] = x[i] - x[i - 1];
  6386. }
  6387. //*********** formation of h, s , f matrix **************
  6388. for (i = 1; i<n - 1; i++) {
  6389. m[i][i] = 2 * (h[i - 1] + h[i]);
  6390. if (i != 1) {
  6391. m[i][i - 1] = h[i - 1];
  6392. m[i - 1][i] = h[i - 1];
  6393. }
  6394. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6395. }
  6396. //*********** forward elimination **************
  6397. for (i = 1; i<n - 2; i++) {
  6398. temp = (m[i + 1][i] / m[i][i]);
  6399. for (j = 1; j <= n - 1; j++)
  6400. m[i + 1][j] -= temp*m[i][j];
  6401. }
  6402. //*********** backward substitution *********
  6403. for (i = n - 2; i>0; i--) {
  6404. sum = 0;
  6405. for (j = i; j <= n - 2; j++)
  6406. sum += m[i][j] * s[j];
  6407. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6408. }
  6409. for (i = 0; i<n - 1; i++)
  6410. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  6411. a = (s[i + 1] - s[i]) / (6 * h[i]);
  6412. b = s[i] / 2;
  6413. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  6414. d = f[i];
  6415. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  6416. }
  6417. return sum;
  6418. }
  6419. #ifdef PINDA_THERMISTOR
  6420. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  6421. {
  6422. if (!temp_cal_active) return 0;
  6423. if (!calibration_status_pinda()) return 0;
  6424. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  6425. }
  6426. #endif //PINDA_THERMISTOR
  6427. void long_pause() //long pause print
  6428. {
  6429. st_synchronize();
  6430. //save currently set parameters to global variables
  6431. saved_feedmultiply = feedmultiply;
  6432. HotendTempBckp = degTargetHotend(active_extruder);
  6433. fanSpeedBckp = fanSpeed;
  6434. start_pause_print = millis();
  6435. //save position
  6436. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  6437. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  6438. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  6439. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  6440. //retract
  6441. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6442. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6443. //lift z
  6444. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  6445. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  6446. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  6447. //set nozzle target temperature to 0
  6448. setTargetHotend(0, 0);
  6449. setTargetHotend(0, 1);
  6450. setTargetHotend(0, 2);
  6451. //Move XY to side
  6452. current_position[X_AXIS] = X_PAUSE_POS;
  6453. current_position[Y_AXIS] = Y_PAUSE_POS;
  6454. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  6455. // Turn off the print fan
  6456. fanSpeed = 0;
  6457. st_synchronize();
  6458. }
  6459. void serialecho_temperatures() {
  6460. float tt = degHotend(active_extruder);
  6461. SERIAL_PROTOCOLPGM("T:");
  6462. SERIAL_PROTOCOL(tt);
  6463. SERIAL_PROTOCOLPGM(" E:");
  6464. SERIAL_PROTOCOL((int)active_extruder);
  6465. SERIAL_PROTOCOLPGM(" B:");
  6466. SERIAL_PROTOCOL_F(degBed(), 1);
  6467. SERIAL_PROTOCOLLN("");
  6468. }
  6469. extern uint32_t sdpos_atomic;
  6470. void uvlo_()
  6471. {
  6472. unsigned long time_start = millis();
  6473. bool sd_print = card.sdprinting;
  6474. // Conserve power as soon as possible.
  6475. disable_x();
  6476. disable_y();
  6477. disable_e0();
  6478. tmc2130_set_current_h(Z_AXIS, 20);
  6479. tmc2130_set_current_r(Z_AXIS, 20);
  6480. tmc2130_set_current_h(E_AXIS, 20);
  6481. tmc2130_set_current_r(E_AXIS, 20);
  6482. // Indicate that the interrupt has been triggered.
  6483. // SERIAL_ECHOLNPGM("UVLO");
  6484. // Read out the current Z motor microstep counter. This will be later used
  6485. // for reaching the zero full step before powering off.
  6486. uint16_t z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  6487. // Calculate the file position, from which to resume this print.
  6488. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  6489. {
  6490. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6491. sd_position -= sdlen_planner;
  6492. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6493. sd_position -= sdlen_cmdqueue;
  6494. if (sd_position < 0) sd_position = 0;
  6495. }
  6496. // Backup the feedrate in mm/min.
  6497. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6498. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  6499. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  6500. // are in action.
  6501. planner_abort_hard();
  6502. // Store the current extruder position.
  6503. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  6504. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  6505. // Clean the input command queue.
  6506. cmdqueue_reset();
  6507. card.sdprinting = false;
  6508. // card.closefile();
  6509. // Enable stepper driver interrupt to move Z axis.
  6510. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  6511. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  6512. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  6513. sei();
  6514. plan_buffer_line(
  6515. current_position[X_AXIS],
  6516. current_position[Y_AXIS],
  6517. current_position[Z_AXIS],
  6518. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6519. 95, active_extruder);
  6520. st_synchronize();
  6521. disable_e0();
  6522. plan_buffer_line(
  6523. current_position[X_AXIS],
  6524. current_position[Y_AXIS],
  6525. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6526. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6527. 40, active_extruder);
  6528. st_synchronize();
  6529. disable_e0();
  6530. plan_buffer_line(
  6531. current_position[X_AXIS],
  6532. current_position[Y_AXIS],
  6533. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  6534. current_position[E_AXIS] - DEFAULT_RETRACTION,
  6535. 40, active_extruder);
  6536. st_synchronize();
  6537. disable_e0();
  6538. disable_z();
  6539. // Move Z up to the next 0th full step.
  6540. // Write the file position.
  6541. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  6542. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6543. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6544. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6545. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6546. // Scale the z value to 1u resolution.
  6547. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  6548. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  6549. }
  6550. // Read out the current Z motor microstep counter. This will be later used
  6551. // for reaching the zero full step before powering off.
  6552. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  6553. // Store the current position.
  6554. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  6555. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  6556. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  6557. // Store the current feed rate, temperatures and fan speed.
  6558. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  6559. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  6560. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  6561. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  6562. // Finaly store the "power outage" flag.
  6563. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  6564. st_synchronize();
  6565. SERIAL_ECHOPGM("stps");
  6566. MYSERIAL.println(tmc2130_rd_MSCNT(Z_TMC2130_CS));
  6567. disable_z();
  6568. // Increment power failure counter
  6569. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  6570. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  6571. SERIAL_ECHOLNPGM("UVLO - end");
  6572. MYSERIAL.println(millis() - time_start);
  6573. #if 0
  6574. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  6575. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  6576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  6577. st_synchronize();
  6578. #endif
  6579. cli();
  6580. volatile unsigned int ppcount = 0;
  6581. SET_OUTPUT(BEEPER);
  6582. WRITE(BEEPER, HIGH);
  6583. for(ppcount = 0; ppcount < 2000; ppcount ++){
  6584. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6585. }
  6586. WRITE(BEEPER, LOW);
  6587. while(1){
  6588. #if 1
  6589. WRITE(BEEPER, LOW);
  6590. for(ppcount = 0; ppcount < 8000; ppcount ++){
  6591. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  6592. }
  6593. #endif
  6594. };
  6595. }
  6596. void setup_fan_interrupt() {
  6597. //INT7
  6598. DDRE &= ~(1 << 7); //input pin
  6599. PORTE &= ~(1 << 7); //no internal pull-up
  6600. //start with sensing rising edge
  6601. EICRB &= ~(1 << 6);
  6602. EICRB |= (1 << 7);
  6603. //enable INT7 interrupt
  6604. EIMSK |= (1 << 7);
  6605. }
  6606. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  6607. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  6608. ISR(INT7_vect) {
  6609. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  6610. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  6611. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  6612. t_fan_rising_edge = millis_nc();
  6613. }
  6614. else { //interrupt was triggered by falling edge
  6615. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  6616. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  6617. }
  6618. }
  6619. EICRB ^= (1 << 6); //change edge
  6620. }
  6621. void setup_uvlo_interrupt() {
  6622. DDRE &= ~(1 << 4); //input pin
  6623. PORTE &= ~(1 << 4); //no internal pull-up
  6624. //sensing falling edge
  6625. EICRB |= (1 << 0);
  6626. EICRB &= ~(1 << 1);
  6627. //enable INT4 interrupt
  6628. EIMSK |= (1 << 4);
  6629. }
  6630. ISR(INT4_vect) {
  6631. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  6632. SERIAL_ECHOLNPGM("INT4");
  6633. if (IS_SD_PRINTING) uvlo_();
  6634. }
  6635. void recover_print(uint8_t automatic) {
  6636. char cmd[30];
  6637. lcd_update_enable(true);
  6638. lcd_update(2);
  6639. lcd_setstatuspgm(MSG_RECOVERING_PRINT);
  6640. recover_machine_state_after_power_panic();
  6641. // Set the target bed and nozzle temperatures.
  6642. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  6643. enquecommand(cmd);
  6644. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  6645. enquecommand(cmd);
  6646. // Lift the print head, so one may remove the excess priming material.
  6647. if (current_position[Z_AXIS] < 25)
  6648. enquecommand_P(PSTR("G1 Z25 F800"));
  6649. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  6650. enquecommand_P(PSTR("G28 X Y"));
  6651. // Set the target bed and nozzle temperatures and wait.
  6652. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  6653. enquecommand(cmd);
  6654. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  6655. enquecommand(cmd);
  6656. enquecommand_P(PSTR("M83")); //E axis relative mode
  6657. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6658. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  6659. if(automatic == 0){
  6660. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  6661. }
  6662. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  6663. // Mark the power panic status as inactive.
  6664. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  6665. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  6666. delay_keep_alive(1000);
  6667. }*/
  6668. SERIAL_ECHOPGM("After waiting for temp:");
  6669. SERIAL_ECHOPGM("Current position X_AXIS:");
  6670. MYSERIAL.println(current_position[X_AXIS]);
  6671. SERIAL_ECHOPGM("Current position Y_AXIS:");
  6672. MYSERIAL.println(current_position[Y_AXIS]);
  6673. // Restart the print.
  6674. restore_print_from_eeprom();
  6675. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  6676. MYSERIAL.print(current_position[Z_AXIS]);
  6677. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  6678. MYSERIAL.print(current_position[E_AXIS]);
  6679. }
  6680. void recover_machine_state_after_power_panic()
  6681. {
  6682. char cmd[30];
  6683. // 1) Recover the logical cordinates at the time of the power panic.
  6684. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  6685. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  6686. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  6687. // Recover the logical coordinate of the Z axis at the time of the power panic.
  6688. // The current position after power panic is moved to the next closest 0th full step.
  6689. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  6690. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  6691. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  6692. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6693. sprintf_P(cmd, PSTR("G92 E"));
  6694. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  6695. enquecommand(cmd);
  6696. }
  6697. memcpy(destination, current_position, sizeof(destination));
  6698. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6699. print_world_coordinates();
  6700. // 2) Initialize the logical to physical coordinate system transformation.
  6701. world2machine_initialize();
  6702. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  6703. mbl.active = false;
  6704. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  6705. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  6706. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  6707. // Scale the z value to 10u resolution.
  6708. int16_t v;
  6709. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  6710. if (v != 0)
  6711. mbl.active = true;
  6712. mbl.z_values[iy][ix] = float(v) * 0.001f;
  6713. }
  6714. if (mbl.active)
  6715. mbl.upsample_3x3();
  6716. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6717. // print_mesh_bed_leveling_table();
  6718. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  6719. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  6720. babystep_load();
  6721. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  6722. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6723. // 6) Power up the motors, mark their positions as known.
  6724. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  6725. axis_known_position[X_AXIS] = true; enable_x();
  6726. axis_known_position[Y_AXIS] = true; enable_y();
  6727. axis_known_position[Z_AXIS] = true; enable_z();
  6728. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  6729. print_physical_coordinates();
  6730. // 7) Recover the target temperatures.
  6731. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  6732. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  6733. }
  6734. void restore_print_from_eeprom() {
  6735. float x_rec, y_rec, z_pos;
  6736. int feedrate_rec;
  6737. uint8_t fan_speed_rec;
  6738. char cmd[30];
  6739. char* c;
  6740. char filename[13];
  6741. uint8_t depth = 0;
  6742. char dir_name[9];
  6743. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  6744. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  6745. SERIAL_ECHOPGM("Feedrate:");
  6746. MYSERIAL.println(feedrate_rec);
  6747. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  6748. MYSERIAL.println(int(depth));
  6749. for (int i = 0; i < depth; i++) {
  6750. for (int j = 0; j < 8; j++) {
  6751. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  6752. }
  6753. dir_name[8] = '\0';
  6754. MYSERIAL.println(dir_name);
  6755. card.chdir(dir_name);
  6756. }
  6757. for (int i = 0; i < 8; i++) {
  6758. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  6759. }
  6760. filename[8] = '\0';
  6761. MYSERIAL.print(filename);
  6762. strcat_P(filename, PSTR(".gco"));
  6763. sprintf_P(cmd, PSTR("M23 %s"), filename);
  6764. for (c = &cmd[4]; *c; c++)
  6765. *c = tolower(*c);
  6766. enquecommand(cmd);
  6767. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  6768. SERIAL_ECHOPGM("Position read from eeprom:");
  6769. MYSERIAL.println(position);
  6770. // E axis relative mode.
  6771. enquecommand_P(PSTR("M83"));
  6772. // Move to the XY print position in logical coordinates, where the print has been killed.
  6773. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  6774. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  6775. strcat_P(cmd, PSTR(" F2000"));
  6776. enquecommand(cmd);
  6777. // Move the Z axis down to the print, in logical coordinates.
  6778. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  6779. enquecommand(cmd);
  6780. // Unretract.
  6781. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  6782. // Set the feedrate saved at the power panic.
  6783. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  6784. enquecommand(cmd);
  6785. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  6786. {
  6787. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  6788. enquecommand_P(PSTR("M82")); //E axis abslute mode
  6789. }
  6790. // Set the fan speed saved at the power panic.
  6791. strcpy_P(cmd, PSTR("M106 S"));
  6792. strcat(cmd, itostr3(int(fan_speed_rec)));
  6793. enquecommand(cmd);
  6794. // Set a position in the file.
  6795. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  6796. enquecommand(cmd);
  6797. // Start SD print.
  6798. enquecommand_P(PSTR("M24"));
  6799. }
  6800. ////////////////////////////////////////////////////////////////////////////////
  6801. // new save/restore printing
  6802. //extern uint32_t sdpos_atomic;
  6803. bool saved_printing = false;
  6804. uint32_t saved_sdpos = 0;
  6805. float saved_pos[4] = {0, 0, 0, 0};
  6806. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  6807. float saved_feedrate2 = 0;
  6808. uint8_t saved_active_extruder = 0;
  6809. bool saved_extruder_under_pressure = false;
  6810. void stop_and_save_print_to_ram(float z_move, float e_move)
  6811. {
  6812. if (saved_printing) return;
  6813. cli();
  6814. unsigned char nplanner_blocks = number_of_blocks();
  6815. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  6816. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  6817. saved_sdpos -= sdlen_planner;
  6818. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  6819. saved_sdpos -= sdlen_cmdqueue;
  6820. #if 0
  6821. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  6822. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  6823. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  6824. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  6825. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  6826. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  6827. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  6828. {
  6829. card.setIndex(saved_sdpos);
  6830. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  6831. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  6832. MYSERIAL.print(char(card.get()));
  6833. SERIAL_ECHOLNPGM("Content of command buffer: ");
  6834. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  6835. MYSERIAL.print(char(card.get()));
  6836. SERIAL_ECHOLNPGM("End of command buffer");
  6837. }
  6838. {
  6839. // Print the content of the planner buffer, line by line:
  6840. card.setIndex(saved_sdpos);
  6841. int8_t iline = 0;
  6842. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  6843. SERIAL_ECHOPGM("Planner line (from file): ");
  6844. MYSERIAL.print(int(iline), DEC);
  6845. SERIAL_ECHOPGM(", length: ");
  6846. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  6847. SERIAL_ECHOPGM(", steps: (");
  6848. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  6849. SERIAL_ECHOPGM(",");
  6850. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  6851. SERIAL_ECHOPGM(",");
  6852. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  6853. SERIAL_ECHOPGM(",");
  6854. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  6855. SERIAL_ECHOPGM("), events: ");
  6856. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  6857. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  6858. MYSERIAL.print(char(card.get()));
  6859. }
  6860. }
  6861. {
  6862. // Print the content of the command buffer, line by line:
  6863. int8_t iline = 0;
  6864. union {
  6865. struct {
  6866. char lo;
  6867. char hi;
  6868. } lohi;
  6869. uint16_t value;
  6870. } sdlen_single;
  6871. int _bufindr = bufindr;
  6872. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  6873. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  6874. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  6875. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  6876. }
  6877. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  6878. MYSERIAL.print(int(iline), DEC);
  6879. SERIAL_ECHOPGM(", type: ");
  6880. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  6881. SERIAL_ECHOPGM(", len: ");
  6882. MYSERIAL.println(sdlen_single.value, DEC);
  6883. // Print the content of the buffer line.
  6884. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  6885. SERIAL_ECHOPGM("Buffer line (from file): ");
  6886. MYSERIAL.print(int(iline), DEC);
  6887. MYSERIAL.println(int(iline), DEC);
  6888. for (; sdlen_single.value > 0; -- sdlen_single.value)
  6889. MYSERIAL.print(char(card.get()));
  6890. if (-- _buflen == 0)
  6891. break;
  6892. // First skip the current command ID and iterate up to the end of the string.
  6893. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  6894. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  6895. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6896. // If the end of the buffer was empty,
  6897. if (_bufindr == sizeof(cmdbuffer)) {
  6898. // skip to the start and find the nonzero command.
  6899. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  6900. }
  6901. }
  6902. }
  6903. #endif
  6904. #if 0
  6905. saved_feedrate2 = feedrate; //save feedrate
  6906. #else
  6907. // Try to deduce the feedrate from the first block of the planner.
  6908. // Speed is in mm/min.
  6909. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  6910. #endif
  6911. planner_abort_hard(); //abort printing
  6912. memcpy(saved_pos, current_position, sizeof(saved_pos));
  6913. saved_active_extruder = active_extruder; //save active_extruder
  6914. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  6915. cmdqueue_reset(); //empty cmdqueue
  6916. card.sdprinting = false;
  6917. // card.closefile();
  6918. saved_printing = true;
  6919. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  6920. st_reset_timer();
  6921. sei();
  6922. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  6923. #if 1
  6924. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  6925. char buf[48];
  6926. strcpy_P(buf, PSTR("G1 Z"));
  6927. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  6928. strcat_P(buf, PSTR(" E"));
  6929. // Relative extrusion
  6930. dtostrf(e_move, 6, 3, buf + strlen(buf));
  6931. strcat_P(buf, PSTR(" F"));
  6932. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  6933. // At this point the command queue is empty.
  6934. enquecommand(buf, false);
  6935. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  6936. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  6937. repeatcommand_front();
  6938. #else
  6939. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  6940. st_synchronize(); //wait moving
  6941. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6942. memcpy(destination, current_position, sizeof(destination));
  6943. #endif
  6944. }
  6945. }
  6946. void restore_print_from_ram_and_continue(float e_move)
  6947. {
  6948. if (!saved_printing) return;
  6949. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  6950. // current_position[axis] = st_get_position_mm(axis);
  6951. active_extruder = saved_active_extruder; //restore active_extruder
  6952. feedrate = saved_feedrate2; //restore feedrate
  6953. float e = saved_pos[E_AXIS] - e_move;
  6954. plan_set_e_position(e);
  6955. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  6956. st_synchronize();
  6957. memcpy(current_position, saved_pos, sizeof(saved_pos));
  6958. memcpy(destination, current_position, sizeof(destination));
  6959. card.setIndex(saved_sdpos);
  6960. sdpos_atomic = saved_sdpos;
  6961. card.sdprinting = true;
  6962. saved_printing = false;
  6963. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  6964. }
  6965. void print_world_coordinates()
  6966. {
  6967. SERIAL_ECHOPGM("world coordinates: (");
  6968. MYSERIAL.print(current_position[X_AXIS], 3);
  6969. SERIAL_ECHOPGM(", ");
  6970. MYSERIAL.print(current_position[Y_AXIS], 3);
  6971. SERIAL_ECHOPGM(", ");
  6972. MYSERIAL.print(current_position[Z_AXIS], 3);
  6973. SERIAL_ECHOLNPGM(")");
  6974. }
  6975. void print_physical_coordinates()
  6976. {
  6977. SERIAL_ECHOPGM("physical coordinates: (");
  6978. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  6979. SERIAL_ECHOPGM(", ");
  6980. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  6981. SERIAL_ECHOPGM(", ");
  6982. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  6983. SERIAL_ECHOLNPGM(")");
  6984. }
  6985. void print_mesh_bed_leveling_table()
  6986. {
  6987. SERIAL_ECHOPGM("mesh bed leveling: ");
  6988. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  6989. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  6990. MYSERIAL.print(mbl.z_values[y][x], 3);
  6991. SERIAL_ECHOPGM(" ");
  6992. }
  6993. SERIAL_ECHOLNPGM("");
  6994. }
  6995. #define FIL_LOAD_LENGTH 60
  6996. void extr_unload2() { //unloads filament
  6997. // float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6998. // float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6999. // int8_t SilentMode;
  7000. uint8_t snmm_extruder = 0;
  7001. if (degHotend0() > EXTRUDE_MINTEMP) {
  7002. lcd_implementation_clear();
  7003. lcd_display_message_fullscreen_P(PSTR(""));
  7004. max_feedrate[E_AXIS] = 50;
  7005. lcd.setCursor(0, 0); lcd_printPGM(MSG_UNLOADING_FILAMENT);
  7006. // lcd.print(" ");
  7007. // lcd.print(snmm_extruder + 1);
  7008. lcd.setCursor(0, 2); lcd_printPGM(MSG_PLEASE_WAIT);
  7009. if (current_position[Z_AXIS] < 15) {
  7010. current_position[Z_AXIS] += 15; //lifting in Z direction to make space for extrusion
  7011. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 25, active_extruder);
  7012. }
  7013. current_position[E_AXIS] += 10; //extrusion
  7014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 10, active_extruder);
  7015. // digipot_current(2, E_MOTOR_HIGH_CURRENT);
  7016. if (current_temperature[0] < 230) { //PLA & all other filaments
  7017. current_position[E_AXIS] += 5.4;
  7018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  7019. current_position[E_AXIS] += 3.2;
  7020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7021. current_position[E_AXIS] += 3;
  7022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  7023. }
  7024. else { //ABS
  7025. current_position[E_AXIS] += 3.1;
  7026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  7027. current_position[E_AXIS] += 3.1;
  7028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  7029. current_position[E_AXIS] += 4;
  7030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7031. /*current_position[X_AXIS] += 23; //delay
  7032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay
  7033. current_position[X_AXIS] -= 23; //delay
  7034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder); //delay*/
  7035. delay_keep_alive(4700);
  7036. }
  7037. max_feedrate[E_AXIS] = 80;
  7038. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7040. current_position[E_AXIS] -= (bowden_length[snmm_extruder] + 60 + FIL_LOAD_LENGTH) / 2;
  7041. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7042. st_synchronize();
  7043. //digipot_init();
  7044. // if (SilentMode == 1) digipot_current(2, tmp_motor[2]); //set back to normal operation currents
  7045. // else digipot_current(2, tmp_motor_loud[2]);
  7046. lcd_update_enable(true);
  7047. // lcd_return_to_status();
  7048. max_feedrate[E_AXIS] = 50;
  7049. }
  7050. else {
  7051. lcd_implementation_clear();
  7052. lcd.setCursor(0, 0);
  7053. lcd_printPGM(MSG_ERROR);
  7054. lcd.setCursor(0, 2);
  7055. lcd_printPGM(MSG_PREHEAT_NOZZLE);
  7056. delay(2000);
  7057. lcd_implementation_clear();
  7058. }
  7059. // lcd_return_to_status();
  7060. }