Marlin_main.cpp 295 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #ifdef SWSPI
  73. #include "swspi.h"
  74. #endif //SWSPI
  75. #ifdef NEW_SPI
  76. #include "spi.h"
  77. #endif //NEW_SPI
  78. #ifdef SWI2C
  79. #include "swi2c.h"
  80. #endif //SWI2C
  81. #ifdef PAT9125
  82. #include "pat9125.h"
  83. #include "fsensor.h"
  84. #endif //PAT9125
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M80 - Turn on Power Supply
  162. // M81 - Turn off Power Supply
  163. // M82 - Set E codes absolute (default)
  164. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  165. // M84 - Disable steppers until next move,
  166. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  167. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  168. // M92 - Set axis_steps_per_unit - same syntax as G92
  169. // M104 - Set extruder target temp
  170. // M105 - Read current temp
  171. // M106 - Fan on
  172. // M107 - Fan off
  173. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  174. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  175. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  176. // M112 - Emergency stop
  177. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  178. // M114 - Output current position to serial port
  179. // M115 - Capabilities string
  180. // M117 - display message
  181. // M119 - Output Endstop status to serial port
  182. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  183. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  184. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  185. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  186. // M140 - Set bed target temp
  187. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  188. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  189. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  190. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  191. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  192. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  193. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  194. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  195. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  196. // M206 - set additional homing offset
  197. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  198. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  199. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  200. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  201. // M220 S<factor in percent>- set speed factor override percentage
  202. // M221 S<factor in percent>- set extrude factor override percentage
  203. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  204. // M240 - Trigger a camera to take a photograph
  205. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  206. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  207. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  208. // M301 - Set PID parameters P I and D
  209. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  210. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  211. // M304 - Set bed PID parameters P I and D
  212. // M400 - Finish all moves
  213. // M401 - Lower z-probe if present
  214. // M402 - Raise z-probe if present
  215. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  216. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  217. // M406 - Turn off Filament Sensor extrusion control
  218. // M407 - Displays measured filament diameter
  219. // M500 - stores parameters in EEPROM
  220. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  221. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  222. // M503 - print the current settings (from memory not from EEPROM)
  223. // M509 - force language selection on next restart
  224. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  227. // M860 - Wait for PINDA thermistor to reach target temperature.
  228. // M861 - Set / Read PINDA temperature compensation offsets
  229. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  230. // M907 - Set digital trimpot motor current using axis codes.
  231. // M908 - Control digital trimpot directly.
  232. // M350 - Set microstepping mode.
  233. // M351 - Toggle MS1 MS2 pins directly.
  234. // M928 - Start SD logging (M928 filename.g) - ended by M29
  235. // M999 - Restart after being stopped by error
  236. //Stepper Movement Variables
  237. //===========================================================================
  238. //=============================imported variables============================
  239. //===========================================================================
  240. //===========================================================================
  241. //=============================public variables=============================
  242. //===========================================================================
  243. #ifdef SDSUPPORT
  244. CardReader card;
  245. #endif
  246. unsigned long PingTime = millis();
  247. unsigned long NcTime;
  248. union Data
  249. {
  250. byte b[2];
  251. int value;
  252. };
  253. float homing_feedrate[] = HOMING_FEEDRATE;
  254. // Currently only the extruder axis may be switched to a relative mode.
  255. // Other axes are always absolute or relative based on the common relative_mode flag.
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedmultiply=100; //100->1 200->2
  258. int saved_feedmultiply;
  259. int extrudemultiply=100; //100->1 200->2
  260. int extruder_multiply[EXTRUDERS] = {100
  261. #if EXTRUDERS > 1
  262. , 100
  263. #if EXTRUDERS > 2
  264. , 100
  265. #endif
  266. #endif
  267. };
  268. int bowden_length[4] = {385, 385, 385, 385};
  269. bool is_usb_printing = false;
  270. bool homing_flag = false;
  271. bool temp_cal_active = false;
  272. unsigned long kicktime = millis()+100000;
  273. unsigned int usb_printing_counter;
  274. int lcd_change_fil_state = 0;
  275. int feedmultiplyBckp = 100;
  276. float HotendTempBckp = 0;
  277. int fanSpeedBckp = 0;
  278. float pause_lastpos[4];
  279. unsigned long pause_time = 0;
  280. unsigned long start_pause_print = millis();
  281. unsigned long t_fan_rising_edge = millis();
  282. static LongTimer safetyTimer;
  283. static LongTimer crashDetTimer;
  284. //unsigned long load_filament_time;
  285. bool mesh_bed_leveling_flag = false;
  286. bool mesh_bed_run_from_menu = false;
  287. //unsigned char lang_selected = 0;
  288. int8_t FarmMode = 0;
  289. bool prusa_sd_card_upload = false;
  290. unsigned int status_number = 0;
  291. unsigned long total_filament_used;
  292. unsigned int heating_status;
  293. unsigned int heating_status_counter;
  294. bool custom_message;
  295. bool loading_flag = false;
  296. unsigned int custom_message_type;
  297. unsigned int custom_message_state;
  298. char snmm_filaments_used = 0;
  299. bool fan_state[2];
  300. int fan_edge_counter[2];
  301. int fan_speed[2];
  302. char dir_names[3][9];
  303. bool sortAlpha = false;
  304. bool volumetric_enabled = false;
  305. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  306. #if EXTRUDERS > 1
  307. , DEFAULT_NOMINAL_FILAMENT_DIA
  308. #if EXTRUDERS > 2
  309. , DEFAULT_NOMINAL_FILAMENT_DIA
  310. #endif
  311. #endif
  312. };
  313. float extruder_multiplier[EXTRUDERS] = {1.0
  314. #if EXTRUDERS > 1
  315. , 1.0
  316. #if EXTRUDERS > 2
  317. , 1.0
  318. #endif
  319. #endif
  320. };
  321. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  322. float add_homing[3]={0,0,0};
  323. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  324. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  325. bool axis_known_position[3] = {false, false, false};
  326. float zprobe_zoffset;
  327. // Extruder offset
  328. #if EXTRUDERS > 1
  329. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  330. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  331. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  332. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  333. #endif
  334. };
  335. #endif
  336. uint8_t active_extruder = 0;
  337. int fanSpeed=0;
  338. #ifdef FWRETRACT
  339. bool autoretract_enabled=false;
  340. bool retracted[EXTRUDERS]={false
  341. #if EXTRUDERS > 1
  342. , false
  343. #if EXTRUDERS > 2
  344. , false
  345. #endif
  346. #endif
  347. };
  348. bool retracted_swap[EXTRUDERS]={false
  349. #if EXTRUDERS > 1
  350. , false
  351. #if EXTRUDERS > 2
  352. , false
  353. #endif
  354. #endif
  355. };
  356. float retract_length = RETRACT_LENGTH;
  357. float retract_length_swap = RETRACT_LENGTH_SWAP;
  358. float retract_feedrate = RETRACT_FEEDRATE;
  359. float retract_zlift = RETRACT_ZLIFT;
  360. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  361. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  362. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  363. #endif
  364. #ifdef ULTIPANEL
  365. #ifdef PS_DEFAULT_OFF
  366. bool powersupply = false;
  367. #else
  368. bool powersupply = true;
  369. #endif
  370. #endif
  371. bool cancel_heatup = false ;
  372. #ifdef HOST_KEEPALIVE_FEATURE
  373. int busy_state = NOT_BUSY;
  374. static long prev_busy_signal_ms = -1;
  375. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  376. #else
  377. #define host_keepalive();
  378. #define KEEPALIVE_STATE(n);
  379. #endif
  380. const char errormagic[] PROGMEM = "Error:";
  381. const char echomagic[] PROGMEM = "echo:";
  382. bool no_response = false;
  383. uint8_t important_status;
  384. uint8_t saved_filament_type;
  385. // save/restore printing
  386. bool saved_printing = false;
  387. //===========================================================================
  388. //=============================Private Variables=============================
  389. //===========================================================================
  390. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  391. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  392. static float delta[3] = {0.0, 0.0, 0.0};
  393. // For tracing an arc
  394. static float offset[3] = {0.0, 0.0, 0.0};
  395. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  396. // Determines Absolute or Relative Coordinates.
  397. // Also there is bool axis_relative_modes[] per axis flag.
  398. static bool relative_mode = false;
  399. #ifndef _DISABLE_M42_M226
  400. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  401. #endif //_DISABLE_M42_M226
  402. //static float tt = 0;
  403. //static float bt = 0;
  404. //Inactivity shutdown variables
  405. static unsigned long previous_millis_cmd = 0;
  406. unsigned long max_inactive_time = 0;
  407. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  408. unsigned long starttime=0;
  409. unsigned long stoptime=0;
  410. unsigned long _usb_timer = 0;
  411. static uint8_t tmp_extruder;
  412. bool extruder_under_pressure = true;
  413. bool Stopped=false;
  414. #if NUM_SERVOS > 0
  415. Servo servos[NUM_SERVOS];
  416. #endif
  417. bool CooldownNoWait = true;
  418. bool target_direction;
  419. //Insert variables if CHDK is defined
  420. #ifdef CHDK
  421. unsigned long chdkHigh = 0;
  422. boolean chdkActive = false;
  423. #endif
  424. // save/restore printing
  425. static uint32_t saved_sdpos = 0;
  426. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  427. static float saved_pos[4] = { 0, 0, 0, 0 };
  428. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  429. static float saved_feedrate2 = 0;
  430. static uint8_t saved_active_extruder = 0;
  431. static bool saved_extruder_under_pressure = false;
  432. //===========================================================================
  433. //=============================Routines======================================
  434. //===========================================================================
  435. void get_arc_coordinates();
  436. bool setTargetedHotend(int code);
  437. void serial_echopair_P(const char *s_P, float v)
  438. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  439. void serial_echopair_P(const char *s_P, double v)
  440. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  441. void serial_echopair_P(const char *s_P, unsigned long v)
  442. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  443. #ifdef SDSUPPORT
  444. #include "SdFatUtil.h"
  445. int freeMemory() { return SdFatUtil::FreeRam(); }
  446. #else
  447. extern "C" {
  448. extern unsigned int __bss_end;
  449. extern unsigned int __heap_start;
  450. extern void *__brkval;
  451. int freeMemory() {
  452. int free_memory;
  453. if ((int)__brkval == 0)
  454. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  455. else
  456. free_memory = ((int)&free_memory) - ((int)__brkval);
  457. return free_memory;
  458. }
  459. }
  460. #endif //!SDSUPPORT
  461. void setup_killpin()
  462. {
  463. #if defined(KILL_PIN) && KILL_PIN > -1
  464. SET_INPUT(KILL_PIN);
  465. WRITE(KILL_PIN,HIGH);
  466. #endif
  467. }
  468. // Set home pin
  469. void setup_homepin(void)
  470. {
  471. #if defined(HOME_PIN) && HOME_PIN > -1
  472. SET_INPUT(HOME_PIN);
  473. WRITE(HOME_PIN,HIGH);
  474. #endif
  475. }
  476. void setup_photpin()
  477. {
  478. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  479. SET_OUTPUT(PHOTOGRAPH_PIN);
  480. WRITE(PHOTOGRAPH_PIN, LOW);
  481. #endif
  482. }
  483. void setup_powerhold()
  484. {
  485. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  486. SET_OUTPUT(SUICIDE_PIN);
  487. WRITE(SUICIDE_PIN, HIGH);
  488. #endif
  489. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  490. SET_OUTPUT(PS_ON_PIN);
  491. #if defined(PS_DEFAULT_OFF)
  492. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  493. #else
  494. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  495. #endif
  496. #endif
  497. }
  498. void suicide()
  499. {
  500. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  501. SET_OUTPUT(SUICIDE_PIN);
  502. WRITE(SUICIDE_PIN, LOW);
  503. #endif
  504. }
  505. void servo_init()
  506. {
  507. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  508. servos[0].attach(SERVO0_PIN);
  509. #endif
  510. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  511. servos[1].attach(SERVO1_PIN);
  512. #endif
  513. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  514. servos[2].attach(SERVO2_PIN);
  515. #endif
  516. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  517. servos[3].attach(SERVO3_PIN);
  518. #endif
  519. #if (NUM_SERVOS >= 5)
  520. #error "TODO: enter initalisation code for more servos"
  521. #endif
  522. }
  523. static void lcd_language_menu();
  524. void stop_and_save_print_to_ram(float z_move, float e_move);
  525. void restore_print_from_ram_and_continue(float e_move);
  526. bool fans_check_enabled = true;
  527. bool filament_autoload_enabled = true;
  528. #ifdef TMC2130
  529. extern int8_t CrashDetectMenu;
  530. void crashdet_enable()
  531. {
  532. // MYSERIAL.println("crashdet_enable");
  533. tmc2130_sg_stop_on_crash = true;
  534. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  535. CrashDetectMenu = 1;
  536. }
  537. void crashdet_disable()
  538. {
  539. // MYSERIAL.println("crashdet_disable");
  540. tmc2130_sg_stop_on_crash = false;
  541. tmc2130_sg_crash = 0;
  542. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  543. CrashDetectMenu = 0;
  544. }
  545. void crashdet_stop_and_save_print()
  546. {
  547. stop_and_save_print_to_ram(10, -2); //XY - no change, Z 10mm up, E -2mm retract
  548. }
  549. void crashdet_restore_print_and_continue()
  550. {
  551. restore_print_from_ram_and_continue(2); //XYZ = orig, E +2mm unretract
  552. // babystep_apply();
  553. }
  554. void crashdet_stop_and_save_print2()
  555. {
  556. cli();
  557. planner_abort_hard(); //abort printing
  558. cmdqueue_reset(); //empty cmdqueue
  559. card.sdprinting = false;
  560. card.closefile();
  561. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  562. st_reset_timer();
  563. sei();
  564. }
  565. void crashdet_detected(uint8_t mask)
  566. {
  567. // printf("CRASH_DETECTED");
  568. /* while (!is_buffer_empty())
  569. {
  570. process_commands();
  571. cmdqueue_pop_front();
  572. }*/
  573. st_synchronize();
  574. static uint8_t crashDet_counter = 0;
  575. bool automatic_recovery_after_crash = true;
  576. bool yesno;
  577. if (crashDet_counter++ == 0) {
  578. crashDetTimer.start();
  579. }
  580. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  581. crashDetTimer.stop();
  582. crashDet_counter = 0;
  583. }
  584. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  585. automatic_recovery_after_crash = false;
  586. crashDetTimer.stop();
  587. crashDet_counter = 0;
  588. }
  589. else {
  590. crashDetTimer.start();
  591. }
  592. lcd_update_enable(true);
  593. lcd_implementation_clear();
  594. lcd_update(2);
  595. if (mask & X_AXIS_MASK)
  596. {
  597. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  598. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  599. }
  600. if (mask & Y_AXIS_MASK)
  601. {
  602. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  603. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  604. }
  605. lcd_update_enable(true);
  606. lcd_update(2);
  607. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  608. gcode_G28(true, true, false, false); //home X and Y
  609. st_synchronize();
  610. if(automatic_recovery_after_crash)
  611. yesno = true;
  612. else
  613. yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  614. lcd_update_enable(true);
  615. if (yesno)
  616. {
  617. enquecommand_P(PSTR("CRASH_RECOVER"));
  618. }
  619. else
  620. {
  621. enquecommand_P(PSTR("CRASH_CANCEL"));
  622. }
  623. }
  624. void crashdet_recover()
  625. {
  626. crashdet_restore_print_and_continue();
  627. tmc2130_sg_stop_on_crash = true;
  628. }
  629. void crashdet_cancel()
  630. {
  631. tmc2130_sg_stop_on_crash = true;
  632. if (saved_printing_type == PRINTING_TYPE_SD) {
  633. lcd_print_stop();
  634. }else if(saved_printing_type == PRINTING_TYPE_USB){
  635. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  636. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  637. }
  638. }
  639. #endif //TMC2130
  640. void failstats_reset_print()
  641. {
  642. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  643. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  644. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  645. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  646. }
  647. #ifdef MESH_BED_LEVELING
  648. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  649. #endif
  650. // Factory reset function
  651. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  652. // Level input parameter sets depth of reset
  653. // Quiet parameter masks all waitings for user interact.
  654. int er_progress = 0;
  655. void factory_reset(char level, bool quiet)
  656. {
  657. lcd_implementation_clear();
  658. int cursor_pos = 0;
  659. switch (level) {
  660. // Level 0: Language reset
  661. case 0:
  662. WRITE(BEEPER, HIGH);
  663. _delay_ms(100);
  664. WRITE(BEEPER, LOW);
  665. lcd_force_language_selection();
  666. break;
  667. //Level 1: Reset statistics
  668. case 1:
  669. WRITE(BEEPER, HIGH);
  670. _delay_ms(100);
  671. WRITE(BEEPER, LOW);
  672. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  673. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  674. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  675. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  676. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  677. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  678. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  679. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  680. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  681. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  682. lcd_menu_statistics();
  683. break;
  684. // Level 2: Prepare for shipping
  685. case 2:
  686. //lcd_printPGM(PSTR("Factory RESET"));
  687. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  688. // Force language selection at the next boot up.
  689. lcd_force_language_selection();
  690. // Force the "Follow calibration flow" message at the next boot up.
  691. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  692. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  693. farm_no = 0;
  694. //*** MaR::180501_01
  695. farm_mode = false;
  696. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  697. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  698. WRITE(BEEPER, HIGH);
  699. _delay_ms(100);
  700. WRITE(BEEPER, LOW);
  701. //_delay_ms(2000);
  702. break;
  703. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  704. case 3:
  705. lcd_printPGM(PSTR("Factory RESET"));
  706. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  707. WRITE(BEEPER, HIGH);
  708. _delay_ms(100);
  709. WRITE(BEEPER, LOW);
  710. er_progress = 0;
  711. lcd_print_at_PGM(3, 3, PSTR(" "));
  712. lcd_implementation_print_at(3, 3, er_progress);
  713. // Erase EEPROM
  714. for (int i = 0; i < 4096; i++) {
  715. eeprom_write_byte((uint8_t*)i, 0xFF);
  716. if (i % 41 == 0) {
  717. er_progress++;
  718. lcd_print_at_PGM(3, 3, PSTR(" "));
  719. lcd_implementation_print_at(3, 3, er_progress);
  720. lcd_printPGM(PSTR("%"));
  721. }
  722. }
  723. break;
  724. case 4:
  725. bowden_menu();
  726. break;
  727. default:
  728. break;
  729. }
  730. }
  731. #include "LiquidCrystal_Prusa.h"
  732. extern LiquidCrystal_Prusa lcd;
  733. FILE _lcdout = {0};
  734. int lcd_putchar(char c, FILE *stream)
  735. {
  736. lcd.write(c);
  737. return 0;
  738. }
  739. FILE _uartout = {0};
  740. int uart_putchar(char c, FILE *stream)
  741. {
  742. MYSERIAL.write(c);
  743. return 0;
  744. }
  745. void lcd_splash()
  746. {
  747. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  748. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  749. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  750. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  751. }
  752. void factory_reset()
  753. {
  754. KEEPALIVE_STATE(PAUSED_FOR_USER);
  755. if (!READ(BTN_ENC))
  756. {
  757. _delay_ms(1000);
  758. if (!READ(BTN_ENC))
  759. {
  760. lcd_implementation_clear();
  761. lcd_printPGM(PSTR("Factory RESET"));
  762. SET_OUTPUT(BEEPER);
  763. WRITE(BEEPER, HIGH);
  764. while (!READ(BTN_ENC));
  765. WRITE(BEEPER, LOW);
  766. _delay_ms(2000);
  767. char level = reset_menu();
  768. factory_reset(level, false);
  769. switch (level) {
  770. case 0: _delay_ms(0); break;
  771. case 1: _delay_ms(0); break;
  772. case 2: _delay_ms(0); break;
  773. case 3: _delay_ms(0); break;
  774. }
  775. // _delay_ms(100);
  776. /*
  777. #ifdef MESH_BED_LEVELING
  778. _delay_ms(2000);
  779. if (!READ(BTN_ENC))
  780. {
  781. WRITE(BEEPER, HIGH);
  782. _delay_ms(100);
  783. WRITE(BEEPER, LOW);
  784. _delay_ms(200);
  785. WRITE(BEEPER, HIGH);
  786. _delay_ms(100);
  787. WRITE(BEEPER, LOW);
  788. int _z = 0;
  789. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  790. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  791. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  792. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  793. }
  794. else
  795. {
  796. WRITE(BEEPER, HIGH);
  797. _delay_ms(100);
  798. WRITE(BEEPER, LOW);
  799. }
  800. #endif // mesh */
  801. }
  802. }
  803. else
  804. {
  805. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  806. }
  807. KEEPALIVE_STATE(IN_HANDLER);
  808. }
  809. void show_fw_version_warnings() {
  810. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  811. switch (FW_DEV_VERSION) {
  812. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  813. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  814. case(FW_VERSION_DEVEL):
  815. case(FW_VERSION_DEBUG):
  816. lcd_update_enable(false);
  817. lcd_implementation_clear();
  818. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  819. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  820. #else
  821. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  822. #endif
  823. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  824. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  825. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  826. lcd_wait_for_click();
  827. break;
  828. default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  829. }
  830. lcd_update_enable(true);
  831. }
  832. uint8_t check_printer_version()
  833. {
  834. uint8_t version_changed = 0;
  835. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  836. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  837. if (printer_type != PRINTER_TYPE) {
  838. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  839. else version_changed |= 0b10;
  840. }
  841. if (motherboard != MOTHERBOARD) {
  842. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  843. else version_changed |= 0b01;
  844. }
  845. return version_changed;
  846. }
  847. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  848. {
  849. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  850. }
  851. #include "bootapp.h"
  852. void __test()
  853. {
  854. cli();
  855. boot_app_magic = 0x55aa55aa;
  856. boot_app_flags = BOOT_APP_FLG_USER0;
  857. boot_reserved = 0x00;
  858. wdt_enable(WDTO_15MS);
  859. while(1);
  860. }
  861. #ifdef W25X20CL
  862. void upgrade_sec_lang_from_external_flash()
  863. {
  864. if ((boot_app_magic == 0x55aa55aa) && (boot_app_flags & BOOT_APP_FLG_USER0))
  865. {
  866. fprintf_P(lcdout, PSTR(ESC_2J ESC_H(1,1) "TEST %d"), boot_reserved);
  867. boot_reserved++;
  868. if (boot_reserved < 4)
  869. {
  870. _delay_ms(1000);
  871. cli();
  872. wdt_enable(WDTO_15MS);
  873. while(1);
  874. }
  875. }
  876. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  877. }
  878. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  879. {
  880. lang_table_header_t header;
  881. uint8_t count = 0;
  882. uint32_t addr = 0x00000;
  883. while (1)
  884. {
  885. printf_P(_n("LANGTABLE%d:"), count);
  886. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  887. if (header.magic != LANG_MAGIC)
  888. {
  889. printf_P(_n("NG!\n"));
  890. break;
  891. }
  892. printf_P(_n("OK\n"));
  893. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  894. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  895. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  896. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  897. printf_P(_n(" _lt_code = 0x%04x\n"), header.code);
  898. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), header.reserved1);
  899. addr += header.size;
  900. codes[count] = header.code;
  901. count ++;
  902. }
  903. return count;
  904. }
  905. void list_sec_lang_from_external_flash()
  906. {
  907. uint16_t codes[8];
  908. uint8_t count = lang_xflash_enum_codes(codes);
  909. printf_P(_n("XFlash lang count = %hhd\n"), count);
  910. }
  911. #endif //W25X20CL
  912. // "Setup" function is called by the Arduino framework on startup.
  913. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  914. // are initialized by the main() routine provided by the Arduino framework.
  915. void setup()
  916. {
  917. #ifdef NEW_SPI
  918. spi_init();
  919. #endif //NEW_SPI
  920. lcd_init();
  921. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  922. upgrade_sec_lang_from_external_flash();
  923. lcd_splash();
  924. setup_killpin();
  925. setup_powerhold();
  926. //*** MaR::180501_02b
  927. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  928. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  929. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  930. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  931. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  932. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  933. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  934. if (farm_mode)
  935. {
  936. no_response = true; //we need confirmation by recieving PRUSA thx
  937. important_status = 8;
  938. prusa_statistics(8);
  939. selectedSerialPort = 1;
  940. }
  941. MYSERIAL.begin(BAUDRATE);
  942. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  943. stdout = uartout;
  944. SERIAL_PROTOCOLLNPGM("start");
  945. SERIAL_ECHO_START;
  946. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  947. #if 0
  948. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  949. for (int i = 0; i < 4096; ++i) {
  950. int b = eeprom_read_byte((unsigned char*)i);
  951. if (b != 255) {
  952. SERIAL_ECHO(i);
  953. SERIAL_ECHO(":");
  954. SERIAL_ECHO(b);
  955. SERIAL_ECHOLN("");
  956. }
  957. }
  958. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  959. #endif
  960. // Check startup - does nothing if bootloader sets MCUSR to 0
  961. byte mcu = MCUSR;
  962. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  963. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  964. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  965. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  966. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  967. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  968. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  969. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  970. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  971. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  972. MCUSR = 0;
  973. //SERIAL_ECHORPGM(MSG_MARLIN);
  974. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  975. #ifdef STRING_VERSION_CONFIG_H
  976. #ifdef STRING_CONFIG_H_AUTHOR
  977. SERIAL_ECHO_START;
  978. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  979. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  980. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  981. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  982. SERIAL_ECHOPGM("Compiled: ");
  983. SERIAL_ECHOLNPGM(__DATE__);
  984. #endif
  985. #endif
  986. SERIAL_ECHO_START;
  987. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  988. SERIAL_ECHO(freeMemory());
  989. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  990. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  991. //lcd_update_enable(false); // why do we need this?? - andre
  992. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  993. bool previous_settings_retrieved = false;
  994. uint8_t hw_changed = check_printer_version();
  995. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  996. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  997. }
  998. else { //printer version was changed so use default settings
  999. Config_ResetDefault();
  1000. }
  1001. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1002. tp_init(); // Initialize temperature loop
  1003. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1004. plan_init(); // Initialize planner;
  1005. factory_reset();
  1006. #ifdef TMC2130
  1007. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1008. if (silentMode == 0xff) silentMode = 0;
  1009. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1010. tmc2130_mode = TMC2130_MODE_NORMAL;
  1011. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1012. if (crashdet && !farm_mode)
  1013. {
  1014. crashdet_enable();
  1015. MYSERIAL.println("CrashDetect ENABLED!");
  1016. }
  1017. else
  1018. {
  1019. crashdet_disable();
  1020. MYSERIAL.println("CrashDetect DISABLED");
  1021. }
  1022. #ifdef TMC2130_LINEARITY_CORRECTION
  1023. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1024. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1025. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1026. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1027. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1028. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1029. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1030. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1031. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1032. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1033. #endif //TMC2130_LINEARITY_CORRECTION
  1034. #ifdef TMC2130_VARIABLE_RESOLUTION
  1035. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1036. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1037. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1038. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1039. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1040. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1041. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1042. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1043. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1044. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1045. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1046. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1047. #else //TMC2130_VARIABLE_RESOLUTION
  1048. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1049. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1050. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1051. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1052. #endif //TMC2130_VARIABLE_RESOLUTION
  1053. #endif //TMC2130
  1054. st_init(); // Initialize stepper, this enables interrupts!
  1055. #ifdef TMC2130
  1056. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1057. tmc2130_init();
  1058. #endif //TMC2130
  1059. setup_photpin();
  1060. servo_init();
  1061. // Reset the machine correction matrix.
  1062. // It does not make sense to load the correction matrix until the machine is homed.
  1063. world2machine_reset();
  1064. #ifdef PAT9125
  1065. fsensor_init();
  1066. #endif //PAT9125
  1067. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1068. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1069. #endif
  1070. setup_homepin();
  1071. #ifdef TMC2130
  1072. if (1) {
  1073. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1074. // try to run to zero phase before powering the Z motor.
  1075. // Move in negative direction
  1076. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1077. // Round the current micro-micro steps to micro steps.
  1078. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1079. // Until the phase counter is reset to zero.
  1080. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1081. delay(2);
  1082. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1083. delay(2);
  1084. }
  1085. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  1086. }
  1087. #endif //TMC2130
  1088. #if defined(Z_AXIS_ALWAYS_ON)
  1089. enable_z();
  1090. #endif
  1091. //*** MaR::180501_02
  1092. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1093. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1094. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1095. if (farm_no == 0xFFFF) farm_no = 0;
  1096. if (farm_mode)
  1097. {
  1098. prusa_statistics(8);
  1099. }
  1100. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1101. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1102. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1103. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1104. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1105. // where all the EEPROM entries are set to 0x0ff.
  1106. // Once a firmware boots up, it forces at least a language selection, which changes
  1107. // EEPROM_LANG to number lower than 0x0ff.
  1108. // 1) Set a high power mode.
  1109. #ifdef TMC2130
  1110. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1111. tmc2130_mode = TMC2130_MODE_NORMAL;
  1112. #endif //TMC2130
  1113. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1114. }
  1115. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1116. // but this times out if a blocking dialog is shown in setup().
  1117. card.initsd();
  1118. #ifdef DEBUG_SD_SPEED_TEST
  1119. if (card.cardOK)
  1120. {
  1121. uint8_t* buff = (uint8_t*)block_buffer;
  1122. uint32_t block = 0;
  1123. uint32_t sumr = 0;
  1124. uint32_t sumw = 0;
  1125. for (int i = 0; i < 1024; i++)
  1126. {
  1127. uint32_t u = micros();
  1128. bool res = card.card.readBlock(i, buff);
  1129. u = micros() - u;
  1130. if (res)
  1131. {
  1132. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1133. sumr += u;
  1134. u = micros();
  1135. res = card.card.writeBlock(i, buff);
  1136. u = micros() - u;
  1137. if (res)
  1138. {
  1139. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1140. sumw += u;
  1141. }
  1142. else
  1143. {
  1144. printf_P(PSTR("writeBlock %4d error\n"), i);
  1145. break;
  1146. }
  1147. }
  1148. else
  1149. {
  1150. printf_P(PSTR("readBlock %4d error\n"), i);
  1151. break;
  1152. }
  1153. }
  1154. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1155. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1156. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1157. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1158. }
  1159. else
  1160. printf_P(PSTR("Card NG!\n"));
  1161. #endif //DEBUG_SD_SPEED_TEST
  1162. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1163. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1164. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1165. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1166. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1167. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1168. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1169. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1170. #ifdef SNMM
  1171. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1172. int _z = BOWDEN_LENGTH;
  1173. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1174. }
  1175. #endif
  1176. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1177. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1178. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1179. spi_setup(TMC2130_SPCR, TMC2130_SPSR);
  1180. puts_P(_n("w25x20cl init: "));
  1181. if (w25x20cl_ini())
  1182. {
  1183. uint8_t uid[8]; // 64bit unique id
  1184. w25x20cl_rd_uid(uid);
  1185. puts_P(_n("OK, UID="));
  1186. for (uint8_t i = 0; i < 8; i ++)
  1187. printf_P(PSTR("%02hhx"), uid[i]);
  1188. putchar('\n');
  1189. list_sec_lang_from_external_flash();
  1190. }
  1191. else
  1192. puts_P(_n("NG!\n"));
  1193. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1194. if (lang_selected >= LANG_NUM)
  1195. {
  1196. // lcd_mylang();
  1197. lang_selected = 0;
  1198. }
  1199. lang_select(lang_selected);
  1200. uint16_t sec_lang_code = lang_get_code(1);
  1201. printf_P(_n("SEC_LANG_CODE=0x%04x (%c%c)\n"), sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1202. #ifdef DEBUG_SEC_LANG
  1203. lang_print_sec_lang(uartout);
  1204. #endif //DEBUG_SEC_LANG
  1205. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1206. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1207. temp_cal_active = false;
  1208. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1209. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1210. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1211. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1212. int16_t z_shift = 0;
  1213. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1214. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1215. temp_cal_active = false;
  1216. }
  1217. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1218. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1219. }
  1220. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1221. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1222. }
  1223. check_babystep(); //checking if Z babystep is in allowed range
  1224. #ifdef UVLO_SUPPORT
  1225. setup_uvlo_interrupt();
  1226. #endif //UVLO_SUPPORT
  1227. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1228. setup_fan_interrupt();
  1229. #endif //DEBUG_DISABLE_FANCHECK
  1230. #ifdef PAT9125
  1231. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1232. fsensor_setup_interrupt();
  1233. #endif //DEBUG_DISABLE_FSENSORCHECK
  1234. #endif //PAT9125
  1235. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1236. #ifndef DEBUG_DISABLE_STARTMSGS
  1237. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1238. show_fw_version_warnings();
  1239. switch (hw_changed) {
  1240. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1241. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1242. case(0b01):
  1243. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1244. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1245. break;
  1246. case(0b10):
  1247. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1248. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1249. break;
  1250. case(0b11):
  1251. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1252. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1253. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1254. break;
  1255. default: break; //no change, show no message
  1256. }
  1257. if (!previous_settings_retrieved) {
  1258. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1259. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1260. }
  1261. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1262. lcd_wizard(0);
  1263. }
  1264. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1265. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1266. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1267. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1268. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1269. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1270. // Show the message.
  1271. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1272. }
  1273. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1274. // Show the message.
  1275. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1276. lcd_update_enable(true);
  1277. }
  1278. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1279. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1280. lcd_update_enable(true);
  1281. }
  1282. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1283. // Show the message.
  1284. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1285. }
  1286. }
  1287. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1288. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1289. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1290. update_current_firmware_version_to_eeprom();
  1291. lcd_selftest();
  1292. }
  1293. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1294. KEEPALIVE_STATE(IN_PROCESS);
  1295. #endif //DEBUG_DISABLE_STARTMSGS
  1296. lcd_update_enable(true);
  1297. lcd_implementation_clear();
  1298. lcd_update(2);
  1299. // Store the currently running firmware into an eeprom,
  1300. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1301. update_current_firmware_version_to_eeprom();
  1302. #ifdef TMC2130
  1303. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1304. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1305. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1306. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1307. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1308. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1309. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1310. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1311. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1312. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1313. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1314. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1315. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1316. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1317. #endif //TMC2130
  1318. #ifdef UVLO_SUPPORT
  1319. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1320. /*
  1321. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1322. else {
  1323. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1324. lcd_update_enable(true);
  1325. lcd_update(2);
  1326. lcd_setstatuspgm(_T(WELCOME_MSG));
  1327. }
  1328. */
  1329. manage_heater(); // Update temperatures
  1330. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1331. MYSERIAL.println("Power panic detected!");
  1332. MYSERIAL.print("Current bed temp:");
  1333. MYSERIAL.println(degBed());
  1334. MYSERIAL.print("Saved bed temp:");
  1335. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1336. #endif
  1337. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1338. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1339. MYSERIAL.println("Automatic recovery!");
  1340. #endif
  1341. recover_print(1);
  1342. }
  1343. else{
  1344. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1345. MYSERIAL.println("Normal recovery!");
  1346. #endif
  1347. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1348. else {
  1349. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1350. lcd_update_enable(true);
  1351. lcd_update(2);
  1352. lcd_setstatuspgm(_T(WELCOME_MSG));
  1353. }
  1354. }
  1355. }
  1356. #endif //UVLO_SUPPORT
  1357. KEEPALIVE_STATE(NOT_BUSY);
  1358. #ifdef WATCHDOG
  1359. wdt_enable(WDTO_4S);
  1360. #endif //WATCHDOG
  1361. }
  1362. #ifdef PAT9125
  1363. void fsensor_init() {
  1364. int pat9125 = pat9125_init();
  1365. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1366. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1367. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1368. if (!pat9125)
  1369. {
  1370. fsensor = 0; //disable sensor
  1371. fsensor_not_responding = true;
  1372. }
  1373. else {
  1374. fsensor_not_responding = false;
  1375. }
  1376. puts_P(PSTR("FSensor "));
  1377. if (fsensor)
  1378. {
  1379. puts_P(PSTR("ENABLED\n"));
  1380. fsensor_enable();
  1381. }
  1382. else
  1383. {
  1384. puts_P(PSTR("DISABLED\n"));
  1385. fsensor_disable();
  1386. }
  1387. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1388. filament_autoload_enabled = false;
  1389. fsensor_disable();
  1390. #endif //DEBUG_DISABLE_FSENSORCHECK
  1391. }
  1392. #endif //PAT9125
  1393. void trace();
  1394. #define CHUNK_SIZE 64 // bytes
  1395. #define SAFETY_MARGIN 1
  1396. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1397. int chunkHead = 0;
  1398. int serial_read_stream() {
  1399. setTargetHotend(0, 0);
  1400. setTargetBed(0);
  1401. lcd_implementation_clear();
  1402. lcd_printPGM(PSTR(" Upload in progress"));
  1403. // first wait for how many bytes we will receive
  1404. uint32_t bytesToReceive;
  1405. // receive the four bytes
  1406. char bytesToReceiveBuffer[4];
  1407. for (int i=0; i<4; i++) {
  1408. int data;
  1409. while ((data = MYSERIAL.read()) == -1) {};
  1410. bytesToReceiveBuffer[i] = data;
  1411. }
  1412. // make it a uint32
  1413. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1414. // we're ready, notify the sender
  1415. MYSERIAL.write('+');
  1416. // lock in the routine
  1417. uint32_t receivedBytes = 0;
  1418. while (prusa_sd_card_upload) {
  1419. int i;
  1420. for (i=0; i<CHUNK_SIZE; i++) {
  1421. int data;
  1422. // check if we're not done
  1423. if (receivedBytes == bytesToReceive) {
  1424. break;
  1425. }
  1426. // read the next byte
  1427. while ((data = MYSERIAL.read()) == -1) {};
  1428. receivedBytes++;
  1429. // save it to the chunk
  1430. chunk[i] = data;
  1431. }
  1432. // write the chunk to SD
  1433. card.write_command_no_newline(&chunk[0]);
  1434. // notify the sender we're ready for more data
  1435. MYSERIAL.write('+');
  1436. // for safety
  1437. manage_heater();
  1438. // check if we're done
  1439. if(receivedBytes == bytesToReceive) {
  1440. trace(); // beep
  1441. card.closefile();
  1442. prusa_sd_card_upload = false;
  1443. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1444. return 0;
  1445. }
  1446. }
  1447. }
  1448. #ifdef HOST_KEEPALIVE_FEATURE
  1449. /**
  1450. * Output a "busy" message at regular intervals
  1451. * while the machine is not accepting commands.
  1452. */
  1453. void host_keepalive() {
  1454. if (farm_mode) return;
  1455. long ms = millis();
  1456. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1457. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1458. switch (busy_state) {
  1459. case IN_HANDLER:
  1460. case IN_PROCESS:
  1461. SERIAL_ECHO_START;
  1462. SERIAL_ECHOLNPGM("busy: processing");
  1463. break;
  1464. case PAUSED_FOR_USER:
  1465. SERIAL_ECHO_START;
  1466. SERIAL_ECHOLNPGM("busy: paused for user");
  1467. break;
  1468. case PAUSED_FOR_INPUT:
  1469. SERIAL_ECHO_START;
  1470. SERIAL_ECHOLNPGM("busy: paused for input");
  1471. break;
  1472. default:
  1473. break;
  1474. }
  1475. }
  1476. prev_busy_signal_ms = ms;
  1477. }
  1478. #endif
  1479. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1480. // Before loop(), the setup() function is called by the main() routine.
  1481. void loop()
  1482. {
  1483. KEEPALIVE_STATE(NOT_BUSY);
  1484. bool stack_integrity = true;
  1485. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1486. {
  1487. is_usb_printing = true;
  1488. usb_printing_counter--;
  1489. _usb_timer = millis();
  1490. }
  1491. if (usb_printing_counter == 0)
  1492. {
  1493. is_usb_printing = false;
  1494. }
  1495. if (prusa_sd_card_upload)
  1496. {
  1497. //we read byte-by byte
  1498. serial_read_stream();
  1499. } else
  1500. {
  1501. get_command();
  1502. #ifdef SDSUPPORT
  1503. card.checkautostart(false);
  1504. #endif
  1505. if(buflen)
  1506. {
  1507. cmdbuffer_front_already_processed = false;
  1508. #ifdef SDSUPPORT
  1509. if(card.saving)
  1510. {
  1511. // Saving a G-code file onto an SD-card is in progress.
  1512. // Saving starts with M28, saving until M29 is seen.
  1513. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1514. card.write_command(CMDBUFFER_CURRENT_STRING);
  1515. if(card.logging)
  1516. process_commands();
  1517. else
  1518. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1519. } else {
  1520. card.closefile();
  1521. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1522. }
  1523. } else {
  1524. process_commands();
  1525. }
  1526. #else
  1527. process_commands();
  1528. #endif //SDSUPPORT
  1529. if (! cmdbuffer_front_already_processed && buflen)
  1530. {
  1531. // ptr points to the start of the block currently being processed.
  1532. // The first character in the block is the block type.
  1533. char *ptr = cmdbuffer + bufindr;
  1534. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1535. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1536. union {
  1537. struct {
  1538. char lo;
  1539. char hi;
  1540. } lohi;
  1541. uint16_t value;
  1542. } sdlen;
  1543. sdlen.value = 0;
  1544. {
  1545. // This block locks the interrupts globally for 3.25 us,
  1546. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1547. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1548. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1549. cli();
  1550. // Reset the command to something, which will be ignored by the power panic routine,
  1551. // so this buffer length will not be counted twice.
  1552. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1553. // Extract the current buffer length.
  1554. sdlen.lohi.lo = *ptr ++;
  1555. sdlen.lohi.hi = *ptr;
  1556. // and pass it to the planner queue.
  1557. planner_add_sd_length(sdlen.value);
  1558. sei();
  1559. }
  1560. }
  1561. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1562. cli();
  1563. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1564. // and one for each command to previous block in the planner queue.
  1565. planner_add_sd_length(1);
  1566. sei();
  1567. }
  1568. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1569. // this block's SD card length will not be counted twice as its command type has been replaced
  1570. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1571. cmdqueue_pop_front();
  1572. }
  1573. host_keepalive();
  1574. }
  1575. }
  1576. //check heater every n milliseconds
  1577. manage_heater();
  1578. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1579. checkHitEndstops();
  1580. lcd_update();
  1581. #ifdef PAT9125
  1582. fsensor_update();
  1583. #endif //PAT9125
  1584. #ifdef TMC2130
  1585. tmc2130_check_overtemp();
  1586. if (tmc2130_sg_crash)
  1587. {
  1588. uint8_t crash = tmc2130_sg_crash;
  1589. tmc2130_sg_crash = 0;
  1590. // crashdet_stop_and_save_print();
  1591. switch (crash)
  1592. {
  1593. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1594. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1595. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1596. }
  1597. }
  1598. #endif //TMC2130
  1599. }
  1600. #define DEFINE_PGM_READ_ANY(type, reader) \
  1601. static inline type pgm_read_any(const type *p) \
  1602. { return pgm_read_##reader##_near(p); }
  1603. DEFINE_PGM_READ_ANY(float, float);
  1604. DEFINE_PGM_READ_ANY(signed char, byte);
  1605. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1606. static const PROGMEM type array##_P[3] = \
  1607. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1608. static inline type array(int axis) \
  1609. { return pgm_read_any(&array##_P[axis]); } \
  1610. type array##_ext(int axis) \
  1611. { return pgm_read_any(&array##_P[axis]); }
  1612. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1613. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1614. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1615. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1616. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1617. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1618. static void axis_is_at_home(int axis) {
  1619. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1620. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1621. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1622. }
  1623. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1624. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1625. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1626. saved_feedrate = feedrate;
  1627. saved_feedmultiply = feedmultiply;
  1628. feedmultiply = 100;
  1629. previous_millis_cmd = millis();
  1630. enable_endstops(enable_endstops_now);
  1631. }
  1632. static void clean_up_after_endstop_move() {
  1633. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1634. enable_endstops(false);
  1635. #endif
  1636. feedrate = saved_feedrate;
  1637. feedmultiply = saved_feedmultiply;
  1638. previous_millis_cmd = millis();
  1639. }
  1640. #ifdef ENABLE_AUTO_BED_LEVELING
  1641. #ifdef AUTO_BED_LEVELING_GRID
  1642. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1643. {
  1644. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1645. planeNormal.debug("planeNormal");
  1646. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1647. //bedLevel.debug("bedLevel");
  1648. //plan_bed_level_matrix.debug("bed level before");
  1649. //vector_3 uncorrected_position = plan_get_position_mm();
  1650. //uncorrected_position.debug("position before");
  1651. vector_3 corrected_position = plan_get_position();
  1652. // corrected_position.debug("position after");
  1653. current_position[X_AXIS] = corrected_position.x;
  1654. current_position[Y_AXIS] = corrected_position.y;
  1655. current_position[Z_AXIS] = corrected_position.z;
  1656. // put the bed at 0 so we don't go below it.
  1657. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1658. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1659. }
  1660. #else // not AUTO_BED_LEVELING_GRID
  1661. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1662. plan_bed_level_matrix.set_to_identity();
  1663. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1664. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1665. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1666. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1667. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1668. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1669. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1670. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1671. vector_3 corrected_position = plan_get_position();
  1672. current_position[X_AXIS] = corrected_position.x;
  1673. current_position[Y_AXIS] = corrected_position.y;
  1674. current_position[Z_AXIS] = corrected_position.z;
  1675. // put the bed at 0 so we don't go below it.
  1676. current_position[Z_AXIS] = zprobe_zoffset;
  1677. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1678. }
  1679. #endif // AUTO_BED_LEVELING_GRID
  1680. static void run_z_probe() {
  1681. plan_bed_level_matrix.set_to_identity();
  1682. feedrate = homing_feedrate[Z_AXIS];
  1683. // move down until you find the bed
  1684. float zPosition = -10;
  1685. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1686. st_synchronize();
  1687. // we have to let the planner know where we are right now as it is not where we said to go.
  1688. zPosition = st_get_position_mm(Z_AXIS);
  1689. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1690. // move up the retract distance
  1691. zPosition += home_retract_mm(Z_AXIS);
  1692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1693. st_synchronize();
  1694. // move back down slowly to find bed
  1695. feedrate = homing_feedrate[Z_AXIS]/4;
  1696. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1698. st_synchronize();
  1699. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1700. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1701. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1702. }
  1703. static void do_blocking_move_to(float x, float y, float z) {
  1704. float oldFeedRate = feedrate;
  1705. feedrate = homing_feedrate[Z_AXIS];
  1706. current_position[Z_AXIS] = z;
  1707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1708. st_synchronize();
  1709. feedrate = XY_TRAVEL_SPEED;
  1710. current_position[X_AXIS] = x;
  1711. current_position[Y_AXIS] = y;
  1712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1713. st_synchronize();
  1714. feedrate = oldFeedRate;
  1715. }
  1716. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1717. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1718. }
  1719. /// Probe bed height at position (x,y), returns the measured z value
  1720. static float probe_pt(float x, float y, float z_before) {
  1721. // move to right place
  1722. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1723. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1724. run_z_probe();
  1725. float measured_z = current_position[Z_AXIS];
  1726. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1727. SERIAL_PROTOCOLPGM(" x: ");
  1728. SERIAL_PROTOCOL(x);
  1729. SERIAL_PROTOCOLPGM(" y: ");
  1730. SERIAL_PROTOCOL(y);
  1731. SERIAL_PROTOCOLPGM(" z: ");
  1732. SERIAL_PROTOCOL(measured_z);
  1733. SERIAL_PROTOCOLPGM("\n");
  1734. return measured_z;
  1735. }
  1736. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1737. #ifdef LIN_ADVANCE
  1738. /**
  1739. * M900: Set and/or Get advance K factor and WH/D ratio
  1740. *
  1741. * K<factor> Set advance K factor
  1742. * R<ratio> Set ratio directly (overrides WH/D)
  1743. * W<width> H<height> D<diam> Set ratio from WH/D
  1744. */
  1745. inline void gcode_M900() {
  1746. st_synchronize();
  1747. const float newK = code_seen('K') ? code_value_float() : -1;
  1748. if (newK >= 0) extruder_advance_k = newK;
  1749. float newR = code_seen('R') ? code_value_float() : -1;
  1750. if (newR < 0) {
  1751. const float newD = code_seen('D') ? code_value_float() : -1,
  1752. newW = code_seen('W') ? code_value_float() : -1,
  1753. newH = code_seen('H') ? code_value_float() : -1;
  1754. if (newD >= 0 && newW >= 0 && newH >= 0)
  1755. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1756. }
  1757. if (newR >= 0) advance_ed_ratio = newR;
  1758. SERIAL_ECHO_START;
  1759. SERIAL_ECHOPGM("Advance K=");
  1760. SERIAL_ECHOLN(extruder_advance_k);
  1761. SERIAL_ECHOPGM(" E/D=");
  1762. const float ratio = advance_ed_ratio;
  1763. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1764. }
  1765. #endif // LIN_ADVANCE
  1766. bool check_commands() {
  1767. bool end_command_found = false;
  1768. while (buflen)
  1769. {
  1770. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1771. if (!cmdbuffer_front_already_processed)
  1772. cmdqueue_pop_front();
  1773. cmdbuffer_front_already_processed = false;
  1774. }
  1775. return end_command_found;
  1776. }
  1777. #ifdef TMC2130
  1778. bool calibrate_z_auto()
  1779. {
  1780. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1781. lcd_implementation_clear();
  1782. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1783. bool endstops_enabled = enable_endstops(true);
  1784. int axis_up_dir = -home_dir(Z_AXIS);
  1785. tmc2130_home_enter(Z_AXIS_MASK);
  1786. current_position[Z_AXIS] = 0;
  1787. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1788. set_destination_to_current();
  1789. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1790. feedrate = homing_feedrate[Z_AXIS];
  1791. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1792. st_synchronize();
  1793. // current_position[axis] = 0;
  1794. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1795. tmc2130_home_exit();
  1796. enable_endstops(false);
  1797. current_position[Z_AXIS] = 0;
  1798. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1799. set_destination_to_current();
  1800. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1801. feedrate = homing_feedrate[Z_AXIS] / 2;
  1802. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1803. st_synchronize();
  1804. enable_endstops(endstops_enabled);
  1805. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1806. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1807. return true;
  1808. }
  1809. #endif //TMC2130
  1810. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1811. {
  1812. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1813. #define HOMEAXIS_DO(LETTER) \
  1814. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1815. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1816. {
  1817. int axis_home_dir = home_dir(axis);
  1818. feedrate = homing_feedrate[axis];
  1819. #ifdef TMC2130
  1820. tmc2130_home_enter(X_AXIS_MASK << axis);
  1821. #endif //TMC2130
  1822. // Move right a bit, so that the print head does not touch the left end position,
  1823. // and the following left movement has a chance to achieve the required velocity
  1824. // for the stall guard to work.
  1825. current_position[axis] = 0;
  1826. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1827. set_destination_to_current();
  1828. // destination[axis] = 11.f;
  1829. destination[axis] = 3.f;
  1830. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1831. st_synchronize();
  1832. // Move left away from the possible collision with the collision detection disabled.
  1833. endstops_hit_on_purpose();
  1834. enable_endstops(false);
  1835. current_position[axis] = 0;
  1836. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1837. destination[axis] = - 1.;
  1838. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1839. st_synchronize();
  1840. // Now continue to move up to the left end stop with the collision detection enabled.
  1841. enable_endstops(true);
  1842. destination[axis] = - 1.1 * max_length(axis);
  1843. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1844. st_synchronize();
  1845. for (uint8_t i = 0; i < cnt; i++)
  1846. {
  1847. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1848. endstops_hit_on_purpose();
  1849. enable_endstops(false);
  1850. current_position[axis] = 0;
  1851. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1852. destination[axis] = 10.f;
  1853. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1854. st_synchronize();
  1855. endstops_hit_on_purpose();
  1856. // Now move left up to the collision, this time with a repeatable velocity.
  1857. enable_endstops(true);
  1858. destination[axis] = - 11.f;
  1859. #ifdef TMC2130
  1860. feedrate = homing_feedrate[axis];
  1861. #else //TMC2130
  1862. feedrate = homing_feedrate[axis] / 2;
  1863. #endif //TMC2130
  1864. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1865. st_synchronize();
  1866. #ifdef TMC2130
  1867. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1868. if (pstep) pstep[i] = mscnt >> 4;
  1869. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1870. #endif //TMC2130
  1871. }
  1872. endstops_hit_on_purpose();
  1873. enable_endstops(false);
  1874. #ifdef TMC2130
  1875. uint8_t orig = tmc2130_home_origin[axis];
  1876. uint8_t back = tmc2130_home_bsteps[axis];
  1877. if (tmc2130_home_enabled && (orig <= 63))
  1878. {
  1879. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1880. if (back > 0)
  1881. tmc2130_do_steps(axis, back, 1, 1000);
  1882. }
  1883. else
  1884. tmc2130_do_steps(axis, 8, 2, 1000);
  1885. tmc2130_home_exit();
  1886. #endif //TMC2130
  1887. axis_is_at_home(axis);
  1888. axis_known_position[axis] = true;
  1889. // Move from minimum
  1890. #ifdef TMC2130
  1891. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1892. #else //TMC2130
  1893. float dist = 0.01f * 64;
  1894. #endif //TMC2130
  1895. current_position[axis] -= dist;
  1896. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1897. current_position[axis] += dist;
  1898. destination[axis] = current_position[axis];
  1899. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1900. st_synchronize();
  1901. feedrate = 0.0;
  1902. }
  1903. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1904. {
  1905. #ifdef TMC2130
  1906. FORCE_HIGH_POWER_START;
  1907. #endif
  1908. int axis_home_dir = home_dir(axis);
  1909. current_position[axis] = 0;
  1910. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1911. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1912. feedrate = homing_feedrate[axis];
  1913. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1914. st_synchronize();
  1915. #ifdef TMC2130
  1916. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1917. FORCE_HIGH_POWER_END;
  1918. kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
  1919. return;
  1920. }
  1921. #endif //TMC2130
  1922. current_position[axis] = 0;
  1923. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1924. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1925. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1926. st_synchronize();
  1927. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1928. feedrate = homing_feedrate[axis]/2 ;
  1929. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1930. st_synchronize();
  1931. #ifdef TMC2130
  1932. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1933. FORCE_HIGH_POWER_END;
  1934. kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
  1935. return;
  1936. }
  1937. #endif //TMC2130
  1938. axis_is_at_home(axis);
  1939. destination[axis] = current_position[axis];
  1940. feedrate = 0.0;
  1941. endstops_hit_on_purpose();
  1942. axis_known_position[axis] = true;
  1943. #ifdef TMC2130
  1944. FORCE_HIGH_POWER_END;
  1945. #endif
  1946. }
  1947. enable_endstops(endstops_enabled);
  1948. }
  1949. /**/
  1950. void home_xy()
  1951. {
  1952. set_destination_to_current();
  1953. homeaxis(X_AXIS);
  1954. homeaxis(Y_AXIS);
  1955. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1956. endstops_hit_on_purpose();
  1957. }
  1958. void refresh_cmd_timeout(void)
  1959. {
  1960. previous_millis_cmd = millis();
  1961. }
  1962. #ifdef FWRETRACT
  1963. void retract(bool retracting, bool swapretract = false) {
  1964. if(retracting && !retracted[active_extruder]) {
  1965. destination[X_AXIS]=current_position[X_AXIS];
  1966. destination[Y_AXIS]=current_position[Y_AXIS];
  1967. destination[Z_AXIS]=current_position[Z_AXIS];
  1968. destination[E_AXIS]=current_position[E_AXIS];
  1969. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1970. plan_set_e_position(current_position[E_AXIS]);
  1971. float oldFeedrate = feedrate;
  1972. feedrate=retract_feedrate*60;
  1973. retracted[active_extruder]=true;
  1974. prepare_move();
  1975. current_position[Z_AXIS]-=retract_zlift;
  1976. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1977. prepare_move();
  1978. feedrate = oldFeedrate;
  1979. } else if(!retracting && retracted[active_extruder]) {
  1980. destination[X_AXIS]=current_position[X_AXIS];
  1981. destination[Y_AXIS]=current_position[Y_AXIS];
  1982. destination[Z_AXIS]=current_position[Z_AXIS];
  1983. destination[E_AXIS]=current_position[E_AXIS];
  1984. current_position[Z_AXIS]+=retract_zlift;
  1985. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1986. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1987. plan_set_e_position(current_position[E_AXIS]);
  1988. float oldFeedrate = feedrate;
  1989. feedrate=retract_recover_feedrate*60;
  1990. retracted[active_extruder]=false;
  1991. prepare_move();
  1992. feedrate = oldFeedrate;
  1993. }
  1994. } //retract
  1995. #endif //FWRETRACT
  1996. void trace() {
  1997. tone(BEEPER, 440);
  1998. delay(25);
  1999. noTone(BEEPER);
  2000. delay(20);
  2001. }
  2002. /*
  2003. void ramming() {
  2004. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2005. if (current_temperature[0] < 230) {
  2006. //PLA
  2007. max_feedrate[E_AXIS] = 50;
  2008. //current_position[E_AXIS] -= 8;
  2009. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2010. //current_position[E_AXIS] += 8;
  2011. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2012. current_position[E_AXIS] += 5.4;
  2013. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2014. current_position[E_AXIS] += 3.2;
  2015. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2016. current_position[E_AXIS] += 3;
  2017. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2018. st_synchronize();
  2019. max_feedrate[E_AXIS] = 80;
  2020. current_position[E_AXIS] -= 82;
  2021. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2022. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2023. current_position[E_AXIS] -= 20;
  2024. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2025. current_position[E_AXIS] += 5;
  2026. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2027. current_position[E_AXIS] += 5;
  2028. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2029. current_position[E_AXIS] -= 10;
  2030. st_synchronize();
  2031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2032. current_position[E_AXIS] += 10;
  2033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2034. current_position[E_AXIS] -= 10;
  2035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2036. current_position[E_AXIS] += 10;
  2037. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2038. current_position[E_AXIS] -= 10;
  2039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2040. st_synchronize();
  2041. }
  2042. else {
  2043. //ABS
  2044. max_feedrate[E_AXIS] = 50;
  2045. //current_position[E_AXIS] -= 8;
  2046. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2047. //current_position[E_AXIS] += 8;
  2048. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2049. current_position[E_AXIS] += 3.1;
  2050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2051. current_position[E_AXIS] += 3.1;
  2052. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2053. current_position[E_AXIS] += 4;
  2054. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2055. st_synchronize();
  2056. //current_position[X_AXIS] += 23; //delay
  2057. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2058. //current_position[X_AXIS] -= 23; //delay
  2059. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2060. delay(4700);
  2061. max_feedrate[E_AXIS] = 80;
  2062. current_position[E_AXIS] -= 92;
  2063. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2064. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2065. current_position[E_AXIS] -= 5;
  2066. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2067. current_position[E_AXIS] += 5;
  2068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2069. current_position[E_AXIS] -= 5;
  2070. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2071. st_synchronize();
  2072. current_position[E_AXIS] += 5;
  2073. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2074. current_position[E_AXIS] -= 5;
  2075. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2076. current_position[E_AXIS] += 5;
  2077. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2078. current_position[E_AXIS] -= 5;
  2079. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2080. st_synchronize();
  2081. }
  2082. }
  2083. */
  2084. #ifdef TMC2130
  2085. void force_high_power_mode(bool start_high_power_section) {
  2086. uint8_t silent;
  2087. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2088. if (silent == 1) {
  2089. //we are in silent mode, set to normal mode to enable crash detection
  2090. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2091. st_synchronize();
  2092. cli();
  2093. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2094. tmc2130_init();
  2095. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2096. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2097. st_reset_timer();
  2098. sei();
  2099. }
  2100. }
  2101. #endif //TMC2130
  2102. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib){
  2103. st_synchronize();
  2104. #if 0
  2105. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2106. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2107. #endif
  2108. // Flag for the display update routine and to disable the print cancelation during homing.
  2109. homing_flag = true;
  2110. // Either all X,Y,Z codes are present, or none of them.
  2111. bool home_all_axes = home_x == home_y && home_x == home_z;
  2112. if (home_all_axes)
  2113. // No X/Y/Z code provided means to home all axes.
  2114. home_x = home_y = home_z = true;
  2115. #ifdef ENABLE_AUTO_BED_LEVELING
  2116. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2117. #endif //ENABLE_AUTO_BED_LEVELING
  2118. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2119. // the planner will not perform any adjustments in the XY plane.
  2120. // Wait for the motors to stop and update the current position with the absolute values.
  2121. world2machine_revert_to_uncorrected();
  2122. // For mesh bed leveling deactivate the matrix temporarily.
  2123. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2124. // in a single axis only.
  2125. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2126. #ifdef MESH_BED_LEVELING
  2127. uint8_t mbl_was_active = mbl.active;
  2128. mbl.active = 0;
  2129. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2130. #endif
  2131. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2132. // consumed during the first movements following this statement.
  2133. if (home_z)
  2134. babystep_undo();
  2135. saved_feedrate = feedrate;
  2136. saved_feedmultiply = feedmultiply;
  2137. feedmultiply = 100;
  2138. previous_millis_cmd = millis();
  2139. enable_endstops(true);
  2140. memcpy(destination, current_position, sizeof(destination));
  2141. feedrate = 0.0;
  2142. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2143. if(home_z)
  2144. homeaxis(Z_AXIS);
  2145. #endif
  2146. #ifdef QUICK_HOME
  2147. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2148. if(home_x && home_y) //first diagonal move
  2149. {
  2150. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2151. int x_axis_home_dir = home_dir(X_AXIS);
  2152. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2153. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2154. feedrate = homing_feedrate[X_AXIS];
  2155. if(homing_feedrate[Y_AXIS]<feedrate)
  2156. feedrate = homing_feedrate[Y_AXIS];
  2157. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2158. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2159. } else {
  2160. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2161. }
  2162. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2163. st_synchronize();
  2164. axis_is_at_home(X_AXIS);
  2165. axis_is_at_home(Y_AXIS);
  2166. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2167. destination[X_AXIS] = current_position[X_AXIS];
  2168. destination[Y_AXIS] = current_position[Y_AXIS];
  2169. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2170. feedrate = 0.0;
  2171. st_synchronize();
  2172. endstops_hit_on_purpose();
  2173. current_position[X_AXIS] = destination[X_AXIS];
  2174. current_position[Y_AXIS] = destination[Y_AXIS];
  2175. current_position[Z_AXIS] = destination[Z_AXIS];
  2176. }
  2177. #endif /* QUICK_HOME */
  2178. #ifdef TMC2130
  2179. if(home_x)
  2180. {
  2181. if (!calib)
  2182. homeaxis(X_AXIS);
  2183. else
  2184. tmc2130_home_calibrate(X_AXIS);
  2185. }
  2186. if(home_y)
  2187. {
  2188. if (!calib)
  2189. homeaxis(Y_AXIS);
  2190. else
  2191. tmc2130_home_calibrate(Y_AXIS);
  2192. }
  2193. #endif //TMC2130
  2194. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2195. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2196. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2197. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2198. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2199. #ifndef Z_SAFE_HOMING
  2200. if(home_z) {
  2201. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2202. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2203. feedrate = max_feedrate[Z_AXIS];
  2204. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2205. st_synchronize();
  2206. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2207. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2208. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2209. {
  2210. homeaxis(X_AXIS);
  2211. homeaxis(Y_AXIS);
  2212. }
  2213. // 1st mesh bed leveling measurement point, corrected.
  2214. world2machine_initialize();
  2215. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2216. world2machine_reset();
  2217. if (destination[Y_AXIS] < Y_MIN_POS)
  2218. destination[Y_AXIS] = Y_MIN_POS;
  2219. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2220. feedrate = homing_feedrate[Z_AXIS]/10;
  2221. current_position[Z_AXIS] = 0;
  2222. enable_endstops(false);
  2223. #ifdef DEBUG_BUILD
  2224. SERIAL_ECHOLNPGM("plan_set_position()");
  2225. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2226. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2227. #endif
  2228. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2229. #ifdef DEBUG_BUILD
  2230. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2231. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2232. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2233. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2234. #endif
  2235. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2236. st_synchronize();
  2237. current_position[X_AXIS] = destination[X_AXIS];
  2238. current_position[Y_AXIS] = destination[Y_AXIS];
  2239. enable_endstops(true);
  2240. endstops_hit_on_purpose();
  2241. homeaxis(Z_AXIS);
  2242. #else // MESH_BED_LEVELING
  2243. homeaxis(Z_AXIS);
  2244. #endif // MESH_BED_LEVELING
  2245. }
  2246. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2247. if(home_all_axes) {
  2248. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2249. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2250. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2251. feedrate = XY_TRAVEL_SPEED/60;
  2252. current_position[Z_AXIS] = 0;
  2253. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2254. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2255. st_synchronize();
  2256. current_position[X_AXIS] = destination[X_AXIS];
  2257. current_position[Y_AXIS] = destination[Y_AXIS];
  2258. homeaxis(Z_AXIS);
  2259. }
  2260. // Let's see if X and Y are homed and probe is inside bed area.
  2261. if(home_z) {
  2262. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2263. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2264. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2265. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2266. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2267. current_position[Z_AXIS] = 0;
  2268. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2269. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2270. feedrate = max_feedrate[Z_AXIS];
  2271. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2272. st_synchronize();
  2273. homeaxis(Z_AXIS);
  2274. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2275. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2276. SERIAL_ECHO_START;
  2277. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2278. } else {
  2279. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2280. SERIAL_ECHO_START;
  2281. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2282. }
  2283. }
  2284. #endif // Z_SAFE_HOMING
  2285. #endif // Z_HOME_DIR < 0
  2286. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2287. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2288. #ifdef ENABLE_AUTO_BED_LEVELING
  2289. if(home_z)
  2290. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2291. #endif
  2292. // Set the planner and stepper routine positions.
  2293. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2294. // contains the machine coordinates.
  2295. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2296. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2297. enable_endstops(false);
  2298. #endif
  2299. feedrate = saved_feedrate;
  2300. feedmultiply = saved_feedmultiply;
  2301. previous_millis_cmd = millis();
  2302. endstops_hit_on_purpose();
  2303. #ifndef MESH_BED_LEVELING
  2304. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2305. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2306. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2307. lcd_adjust_z();
  2308. #endif
  2309. // Load the machine correction matrix
  2310. world2machine_initialize();
  2311. // and correct the current_position XY axes to match the transformed coordinate system.
  2312. world2machine_update_current();
  2313. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2314. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2315. {
  2316. if (! home_z && mbl_was_active) {
  2317. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2318. mbl.active = true;
  2319. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2320. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2321. }
  2322. }
  2323. else
  2324. {
  2325. st_synchronize();
  2326. homing_flag = false;
  2327. // Push the commands to the front of the message queue in the reverse order!
  2328. // There shall be always enough space reserved for these commands.
  2329. enquecommand_front_P((PSTR("G80")));
  2330. //goto case_G80;
  2331. }
  2332. #endif
  2333. if (farm_mode) { prusa_statistics(20); };
  2334. homing_flag = false;
  2335. #if 0
  2336. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2337. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2338. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2339. #endif
  2340. }
  2341. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2342. {
  2343. bool final_result = false;
  2344. #ifdef TMC2130
  2345. FORCE_HIGH_POWER_START;
  2346. #endif // TMC2130
  2347. // Only Z calibration?
  2348. if (!onlyZ)
  2349. {
  2350. setTargetBed(0);
  2351. setTargetHotend(0, 0);
  2352. setTargetHotend(0, 1);
  2353. setTargetHotend(0, 2);
  2354. adjust_bed_reset(); //reset bed level correction
  2355. }
  2356. // Disable the default update procedure of the display. We will do a modal dialog.
  2357. lcd_update_enable(false);
  2358. // Let the planner use the uncorrected coordinates.
  2359. mbl.reset();
  2360. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2361. // the planner will not perform any adjustments in the XY plane.
  2362. // Wait for the motors to stop and update the current position with the absolute values.
  2363. world2machine_revert_to_uncorrected();
  2364. // Reset the baby step value applied without moving the axes.
  2365. babystep_reset();
  2366. // Mark all axes as in a need for homing.
  2367. memset(axis_known_position, 0, sizeof(axis_known_position));
  2368. // Home in the XY plane.
  2369. //set_destination_to_current();
  2370. setup_for_endstop_move();
  2371. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2372. home_xy();
  2373. enable_endstops(false);
  2374. current_position[X_AXIS] += 5;
  2375. current_position[Y_AXIS] += 5;
  2376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2377. st_synchronize();
  2378. // Let the user move the Z axes up to the end stoppers.
  2379. #ifdef TMC2130
  2380. if (calibrate_z_auto())
  2381. {
  2382. #else //TMC2130
  2383. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2384. {
  2385. #endif //TMC2130
  2386. refresh_cmd_timeout();
  2387. #ifndef STEEL_SHEET
  2388. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2389. {
  2390. lcd_wait_for_cool_down();
  2391. }
  2392. #endif //STEEL_SHEET
  2393. if(!onlyZ)
  2394. {
  2395. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2396. #ifdef STEEL_SHEET
  2397. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2398. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2399. #endif //STEEL_SHEET
  2400. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2401. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2402. KEEPALIVE_STATE(IN_HANDLER);
  2403. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2404. lcd_implementation_print_at(0, 2, 1);
  2405. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2406. }
  2407. // Move the print head close to the bed.
  2408. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2409. bool endstops_enabled = enable_endstops(true);
  2410. #ifdef TMC2130
  2411. tmc2130_home_enter(Z_AXIS_MASK);
  2412. #endif //TMC2130
  2413. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2414. st_synchronize();
  2415. #ifdef TMC2130
  2416. tmc2130_home_exit();
  2417. #endif //TMC2130
  2418. enable_endstops(endstops_enabled);
  2419. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2420. {
  2421. int8_t verbosity_level = 0;
  2422. if (code_seen('V'))
  2423. {
  2424. // Just 'V' without a number counts as V1.
  2425. char c = strchr_pointer[1];
  2426. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2427. }
  2428. if (onlyZ)
  2429. {
  2430. clean_up_after_endstop_move();
  2431. // Z only calibration.
  2432. // Load the machine correction matrix
  2433. world2machine_initialize();
  2434. // and correct the current_position to match the transformed coordinate system.
  2435. world2machine_update_current();
  2436. //FIXME
  2437. bool result = sample_mesh_and_store_reference();
  2438. if (result)
  2439. {
  2440. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2441. // Shipped, the nozzle height has been set already. The user can start printing now.
  2442. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2443. final_result = true;
  2444. // babystep_apply();
  2445. }
  2446. }
  2447. else
  2448. {
  2449. // Reset the baby step value and the baby step applied flag.
  2450. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2451. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2452. // Complete XYZ calibration.
  2453. uint8_t point_too_far_mask = 0;
  2454. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2455. clean_up_after_endstop_move();
  2456. // Print head up.
  2457. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2458. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2459. st_synchronize();
  2460. //#ifndef NEW_XYZCAL
  2461. if (result >= 0)
  2462. {
  2463. #ifdef HEATBED_V2
  2464. sample_z();
  2465. #else //HEATBED_V2
  2466. point_too_far_mask = 0;
  2467. // Second half: The fine adjustment.
  2468. // Let the planner use the uncorrected coordinates.
  2469. mbl.reset();
  2470. world2machine_reset();
  2471. // Home in the XY plane.
  2472. setup_for_endstop_move();
  2473. home_xy();
  2474. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2475. clean_up_after_endstop_move();
  2476. // Print head up.
  2477. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2478. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2479. st_synchronize();
  2480. // if (result >= 0) babystep_apply();
  2481. #endif //HEATBED_V2
  2482. }
  2483. //#endif //NEW_XYZCAL
  2484. lcd_update_enable(true);
  2485. lcd_update(2);
  2486. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2487. if (result >= 0)
  2488. {
  2489. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2490. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2491. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2492. final_result = true;
  2493. }
  2494. }
  2495. #ifdef TMC2130
  2496. tmc2130_home_exit();
  2497. #endif
  2498. }
  2499. else
  2500. {
  2501. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2502. final_result = false;
  2503. }
  2504. }
  2505. else
  2506. {
  2507. // Timeouted.
  2508. }
  2509. lcd_update_enable(true);
  2510. #ifdef TMC2130
  2511. FORCE_HIGH_POWER_END;
  2512. #endif // TMC2130
  2513. return final_result;
  2514. }
  2515. void gcode_M114()
  2516. {
  2517. SERIAL_PROTOCOLPGM("X:");
  2518. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2519. SERIAL_PROTOCOLPGM(" Y:");
  2520. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2521. SERIAL_PROTOCOLPGM(" Z:");
  2522. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2523. SERIAL_PROTOCOLPGM(" E:");
  2524. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2525. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2526. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2527. SERIAL_PROTOCOLPGM(" Y:");
  2528. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2529. SERIAL_PROTOCOLPGM(" Z:");
  2530. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2531. SERIAL_PROTOCOLPGM(" E:");
  2532. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2533. SERIAL_PROTOCOLLN("");
  2534. }
  2535. void gcode_M701()
  2536. {
  2537. #ifdef SNMM
  2538. extr_adj(snmm_extruder);//loads current extruder
  2539. #else
  2540. enable_z();
  2541. custom_message = true;
  2542. custom_message_type = 2;
  2543. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2544. current_position[E_AXIS] += 70;
  2545. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2546. current_position[E_AXIS] += 25;
  2547. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2548. st_synchronize();
  2549. tone(BEEPER, 500);
  2550. delay_keep_alive(50);
  2551. noTone(BEEPER);
  2552. if (!farm_mode && loading_flag) {
  2553. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2554. while (!clean) {
  2555. lcd_update_enable(true);
  2556. lcd_update(2);
  2557. current_position[E_AXIS] += 25;
  2558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2559. st_synchronize();
  2560. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2561. }
  2562. }
  2563. lcd_update_enable(true);
  2564. lcd_update(2);
  2565. lcd_setstatuspgm(_T(WELCOME_MSG));
  2566. disable_z();
  2567. loading_flag = false;
  2568. custom_message = false;
  2569. custom_message_type = 0;
  2570. #endif
  2571. }
  2572. /**
  2573. * @brief Get serial number from 32U2 processor
  2574. *
  2575. * Typical format of S/N is:CZPX0917X003XC13518
  2576. *
  2577. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2578. *
  2579. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2580. * reply is transmitted to serial port 1 character by character.
  2581. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2582. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2583. * in any case.
  2584. */
  2585. static void gcode_PRUSA_SN()
  2586. {
  2587. if (farm_mode) {
  2588. selectedSerialPort = 0;
  2589. MSerial.write(";S");
  2590. int numbersRead = 0;
  2591. ShortTimer timeout;
  2592. timeout.start();
  2593. while (numbersRead < 19) {
  2594. while (MSerial.available() > 0) {
  2595. uint8_t serial_char = MSerial.read();
  2596. selectedSerialPort = 1;
  2597. MSerial.write(serial_char);
  2598. numbersRead++;
  2599. selectedSerialPort = 0;
  2600. }
  2601. if (timeout.expired(100u)) break;
  2602. }
  2603. selectedSerialPort = 1;
  2604. MSerial.write('\n');
  2605. #if 0
  2606. for (int b = 0; b < 3; b++) {
  2607. tone(BEEPER, 110);
  2608. delay(50);
  2609. noTone(BEEPER);
  2610. delay(50);
  2611. }
  2612. #endif
  2613. } else {
  2614. MYSERIAL.println("Not in farm mode.");
  2615. }
  2616. }
  2617. void process_commands()
  2618. {
  2619. if (!buflen) return; //empty command
  2620. #ifdef FILAMENT_RUNOUT_SUPPORT
  2621. SET_INPUT(FR_SENS);
  2622. #endif
  2623. #ifdef CMDBUFFER_DEBUG
  2624. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2625. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2626. SERIAL_ECHOLNPGM("");
  2627. SERIAL_ECHOPGM("In cmdqueue: ");
  2628. SERIAL_ECHO(buflen);
  2629. SERIAL_ECHOLNPGM("");
  2630. #endif /* CMDBUFFER_DEBUG */
  2631. unsigned long codenum; //throw away variable
  2632. char *starpos = NULL;
  2633. #ifdef ENABLE_AUTO_BED_LEVELING
  2634. float x_tmp, y_tmp, z_tmp, real_z;
  2635. #endif
  2636. // PRUSA GCODES
  2637. KEEPALIVE_STATE(IN_HANDLER);
  2638. #ifdef SNMM
  2639. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2640. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2641. int8_t SilentMode;
  2642. #endif
  2643. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2644. starpos = (strchr(strchr_pointer + 5, '*'));
  2645. if (starpos != NULL)
  2646. *(starpos) = '\0';
  2647. lcd_setstatus(strchr_pointer + 5);
  2648. }
  2649. #ifdef TMC2130
  2650. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2651. {
  2652. if(code_seen("CRASH_DETECTED"))
  2653. {
  2654. uint8_t mask = 0;
  2655. if (code_seen("X")) mask |= X_AXIS_MASK;
  2656. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2657. crashdet_detected(mask);
  2658. }
  2659. else if(code_seen("CRASH_RECOVER"))
  2660. crashdet_recover();
  2661. else if(code_seen("CRASH_CANCEL"))
  2662. crashdet_cancel();
  2663. }
  2664. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2665. {
  2666. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2667. {
  2668. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2669. tmc2130_set_wave(E_AXIS, 247, fac);
  2670. }
  2671. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2672. {
  2673. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2674. uint16_t res = tmc2130_get_res(E_AXIS);
  2675. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2676. }
  2677. }
  2678. #endif //TMC2130
  2679. else if(code_seen("PRUSA")){
  2680. if (code_seen("Ping")) { //PRUSA Ping
  2681. if (farm_mode) {
  2682. PingTime = millis();
  2683. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2684. }
  2685. }
  2686. else if (code_seen("PRN")) {
  2687. MYSERIAL.println(status_number);
  2688. }else if (code_seen("FAN")) {
  2689. MYSERIAL.print("E0:");
  2690. MYSERIAL.print(60*fan_speed[0]);
  2691. MYSERIAL.println(" RPM");
  2692. MYSERIAL.print("PRN0:");
  2693. MYSERIAL.print(60*fan_speed[1]);
  2694. MYSERIAL.println(" RPM");
  2695. }else if (code_seen("fn")) {
  2696. if (farm_mode) {
  2697. MYSERIAL.println(farm_no);
  2698. }
  2699. else {
  2700. MYSERIAL.println("Not in farm mode.");
  2701. }
  2702. }
  2703. else if (code_seen("thx")) {
  2704. no_response = false;
  2705. }else if (code_seen("fv")) {
  2706. // get file version
  2707. #ifdef SDSUPPORT
  2708. card.openFile(strchr_pointer + 3,true);
  2709. while (true) {
  2710. uint16_t readByte = card.get();
  2711. MYSERIAL.write(readByte);
  2712. if (readByte=='\n') {
  2713. break;
  2714. }
  2715. }
  2716. card.closefile();
  2717. #endif // SDSUPPORT
  2718. } else if (code_seen("M28")) {
  2719. trace();
  2720. prusa_sd_card_upload = true;
  2721. card.openFile(strchr_pointer+4,false);
  2722. } else if (code_seen("SN")) {
  2723. gcode_PRUSA_SN();
  2724. } else if(code_seen("Fir")){
  2725. SERIAL_PROTOCOLLN(FW_VERSION);
  2726. } else if(code_seen("Rev")){
  2727. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2728. } else if(code_seen("Lang")) {
  2729. lcd_force_language_selection();
  2730. } else if(code_seen("Lz")) {
  2731. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2732. } else if (code_seen("SERIAL LOW")) {
  2733. MYSERIAL.println("SERIAL LOW");
  2734. MYSERIAL.begin(BAUDRATE);
  2735. return;
  2736. } else if (code_seen("SERIAL HIGH")) {
  2737. MYSERIAL.println("SERIAL HIGH");
  2738. MYSERIAL.begin(1152000);
  2739. return;
  2740. } else if(code_seen("Beat")) {
  2741. // Kick farm link timer
  2742. kicktime = millis();
  2743. } else if(code_seen("FR")) {
  2744. // Factory full reset
  2745. factory_reset(0,true);
  2746. }
  2747. //else if (code_seen('Cal')) {
  2748. // lcd_calibration();
  2749. // }
  2750. }
  2751. else if (code_seen('^')) {
  2752. // nothing, this is a version line
  2753. } else if(code_seen('G'))
  2754. {
  2755. switch((int)code_value())
  2756. {
  2757. case 0: // G0 -> G1
  2758. case 1: // G1
  2759. if(Stopped == false) {
  2760. #ifdef FILAMENT_RUNOUT_SUPPORT
  2761. if(READ(FR_SENS)){
  2762. feedmultiplyBckp=feedmultiply;
  2763. float target[4];
  2764. float lastpos[4];
  2765. target[X_AXIS]=current_position[X_AXIS];
  2766. target[Y_AXIS]=current_position[Y_AXIS];
  2767. target[Z_AXIS]=current_position[Z_AXIS];
  2768. target[E_AXIS]=current_position[E_AXIS];
  2769. lastpos[X_AXIS]=current_position[X_AXIS];
  2770. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2771. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2772. lastpos[E_AXIS]=current_position[E_AXIS];
  2773. //retract by E
  2774. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2775. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2776. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2777. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2778. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2779. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2780. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2781. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2782. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2783. //finish moves
  2784. st_synchronize();
  2785. //disable extruder steppers so filament can be removed
  2786. disable_e0();
  2787. disable_e1();
  2788. disable_e2();
  2789. delay(100);
  2790. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2791. uint8_t cnt=0;
  2792. int counterBeep = 0;
  2793. lcd_wait_interact();
  2794. while(!lcd_clicked()){
  2795. cnt++;
  2796. manage_heater();
  2797. manage_inactivity(true);
  2798. //lcd_update();
  2799. if(cnt==0)
  2800. {
  2801. #if BEEPER > 0
  2802. if (counterBeep== 500){
  2803. counterBeep = 0;
  2804. }
  2805. SET_OUTPUT(BEEPER);
  2806. if (counterBeep== 0){
  2807. WRITE(BEEPER,HIGH);
  2808. }
  2809. if (counterBeep== 20){
  2810. WRITE(BEEPER,LOW);
  2811. }
  2812. counterBeep++;
  2813. #else
  2814. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2815. lcd_buzz(1000/6,100);
  2816. #else
  2817. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2818. #endif
  2819. #endif
  2820. }
  2821. }
  2822. WRITE(BEEPER,LOW);
  2823. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2824. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2825. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2826. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2827. lcd_change_fil_state = 0;
  2828. lcd_loading_filament();
  2829. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2830. lcd_change_fil_state = 0;
  2831. lcd_alright();
  2832. switch(lcd_change_fil_state){
  2833. case 2:
  2834. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2835. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2836. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2837. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2838. lcd_loading_filament();
  2839. break;
  2840. case 3:
  2841. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2842. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2843. lcd_loading_color();
  2844. break;
  2845. default:
  2846. lcd_change_success();
  2847. break;
  2848. }
  2849. }
  2850. target[E_AXIS]+= 5;
  2851. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2852. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2853. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2854. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2855. //plan_set_e_position(current_position[E_AXIS]);
  2856. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2857. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2858. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2859. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2860. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2861. plan_set_e_position(lastpos[E_AXIS]);
  2862. feedmultiply=feedmultiplyBckp;
  2863. char cmd[9];
  2864. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2865. enquecommand(cmd);
  2866. }
  2867. #endif
  2868. get_coordinates(); // For X Y Z E F
  2869. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2870. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2871. }
  2872. #ifdef FWRETRACT
  2873. if(autoretract_enabled)
  2874. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2875. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2876. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2877. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2878. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2879. retract(!retracted[active_extruder]);
  2880. return;
  2881. }
  2882. }
  2883. #endif //FWRETRACT
  2884. prepare_move();
  2885. //ClearToSend();
  2886. }
  2887. break;
  2888. case 2: // G2 - CW ARC
  2889. if(Stopped == false) {
  2890. get_arc_coordinates();
  2891. prepare_arc_move(true);
  2892. }
  2893. break;
  2894. case 3: // G3 - CCW ARC
  2895. if(Stopped == false) {
  2896. get_arc_coordinates();
  2897. prepare_arc_move(false);
  2898. }
  2899. break;
  2900. case 4: // G4 dwell
  2901. codenum = 0;
  2902. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2903. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2904. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  2905. st_synchronize();
  2906. codenum += millis(); // keep track of when we started waiting
  2907. previous_millis_cmd = millis();
  2908. while(millis() < codenum) {
  2909. manage_heater();
  2910. manage_inactivity();
  2911. lcd_update();
  2912. }
  2913. break;
  2914. #ifdef FWRETRACT
  2915. case 10: // G10 retract
  2916. #if EXTRUDERS > 1
  2917. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2918. retract(true,retracted_swap[active_extruder]);
  2919. #else
  2920. retract(true);
  2921. #endif
  2922. break;
  2923. case 11: // G11 retract_recover
  2924. #if EXTRUDERS > 1
  2925. retract(false,retracted_swap[active_extruder]);
  2926. #else
  2927. retract(false);
  2928. #endif
  2929. break;
  2930. #endif //FWRETRACT
  2931. case 28: //G28 Home all Axis one at a time
  2932. {
  2933. // Which axes should be homed?
  2934. bool home_x = code_seen(axis_codes[X_AXIS]);
  2935. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2936. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2937. // calibrate?
  2938. bool calib = code_seen('C');
  2939. gcode_G28(home_x, home_y, home_z, calib);
  2940. break;
  2941. }
  2942. #ifdef ENABLE_AUTO_BED_LEVELING
  2943. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2944. {
  2945. #if Z_MIN_PIN == -1
  2946. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2947. #endif
  2948. // Prevent user from running a G29 without first homing in X and Y
  2949. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2950. {
  2951. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2952. SERIAL_ECHO_START;
  2953. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2954. break; // abort G29, since we don't know where we are
  2955. }
  2956. st_synchronize();
  2957. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2958. //vector_3 corrected_position = plan_get_position_mm();
  2959. //corrected_position.debug("position before G29");
  2960. plan_bed_level_matrix.set_to_identity();
  2961. vector_3 uncorrected_position = plan_get_position();
  2962. //uncorrected_position.debug("position durring G29");
  2963. current_position[X_AXIS] = uncorrected_position.x;
  2964. current_position[Y_AXIS] = uncorrected_position.y;
  2965. current_position[Z_AXIS] = uncorrected_position.z;
  2966. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2967. setup_for_endstop_move();
  2968. feedrate = homing_feedrate[Z_AXIS];
  2969. #ifdef AUTO_BED_LEVELING_GRID
  2970. // probe at the points of a lattice grid
  2971. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2972. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2973. // solve the plane equation ax + by + d = z
  2974. // A is the matrix with rows [x y 1] for all the probed points
  2975. // B is the vector of the Z positions
  2976. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2977. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2978. // "A" matrix of the linear system of equations
  2979. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2980. // "B" vector of Z points
  2981. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2982. int probePointCounter = 0;
  2983. bool zig = true;
  2984. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2985. {
  2986. int xProbe, xInc;
  2987. if (zig)
  2988. {
  2989. xProbe = LEFT_PROBE_BED_POSITION;
  2990. //xEnd = RIGHT_PROBE_BED_POSITION;
  2991. xInc = xGridSpacing;
  2992. zig = false;
  2993. } else // zag
  2994. {
  2995. xProbe = RIGHT_PROBE_BED_POSITION;
  2996. //xEnd = LEFT_PROBE_BED_POSITION;
  2997. xInc = -xGridSpacing;
  2998. zig = true;
  2999. }
  3000. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3001. {
  3002. float z_before;
  3003. if (probePointCounter == 0)
  3004. {
  3005. // raise before probing
  3006. z_before = Z_RAISE_BEFORE_PROBING;
  3007. } else
  3008. {
  3009. // raise extruder
  3010. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3011. }
  3012. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3013. eqnBVector[probePointCounter] = measured_z;
  3014. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3015. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3016. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3017. probePointCounter++;
  3018. xProbe += xInc;
  3019. }
  3020. }
  3021. clean_up_after_endstop_move();
  3022. // solve lsq problem
  3023. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3024. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3025. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3026. SERIAL_PROTOCOLPGM(" b: ");
  3027. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3028. SERIAL_PROTOCOLPGM(" d: ");
  3029. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3030. set_bed_level_equation_lsq(plane_equation_coefficients);
  3031. free(plane_equation_coefficients);
  3032. #else // AUTO_BED_LEVELING_GRID not defined
  3033. // Probe at 3 arbitrary points
  3034. // probe 1
  3035. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3036. // probe 2
  3037. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3038. // probe 3
  3039. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3040. clean_up_after_endstop_move();
  3041. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3042. #endif // AUTO_BED_LEVELING_GRID
  3043. st_synchronize();
  3044. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3045. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3046. // When the bed is uneven, this height must be corrected.
  3047. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3048. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3049. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3050. z_tmp = current_position[Z_AXIS];
  3051. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3052. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3053. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3054. }
  3055. break;
  3056. #ifndef Z_PROBE_SLED
  3057. case 30: // G30 Single Z Probe
  3058. {
  3059. st_synchronize();
  3060. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3061. setup_for_endstop_move();
  3062. feedrate = homing_feedrate[Z_AXIS];
  3063. run_z_probe();
  3064. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3065. SERIAL_PROTOCOLPGM(" X: ");
  3066. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3067. SERIAL_PROTOCOLPGM(" Y: ");
  3068. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3069. SERIAL_PROTOCOLPGM(" Z: ");
  3070. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3071. SERIAL_PROTOCOLPGM("\n");
  3072. clean_up_after_endstop_move();
  3073. }
  3074. break;
  3075. #else
  3076. case 31: // dock the sled
  3077. dock_sled(true);
  3078. break;
  3079. case 32: // undock the sled
  3080. dock_sled(false);
  3081. break;
  3082. #endif // Z_PROBE_SLED
  3083. #endif // ENABLE_AUTO_BED_LEVELING
  3084. #ifdef MESH_BED_LEVELING
  3085. case 30: // G30 Single Z Probe
  3086. {
  3087. st_synchronize();
  3088. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3089. setup_for_endstop_move();
  3090. feedrate = homing_feedrate[Z_AXIS];
  3091. find_bed_induction_sensor_point_z(-10.f, 3);
  3092. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  3093. SERIAL_PROTOCOLPGM(" X: ");
  3094. MYSERIAL.print(current_position[X_AXIS], 5);
  3095. SERIAL_PROTOCOLPGM(" Y: ");
  3096. MYSERIAL.print(current_position[Y_AXIS], 5);
  3097. SERIAL_PROTOCOLPGM(" Z: ");
  3098. MYSERIAL.print(current_position[Z_AXIS], 5);
  3099. SERIAL_PROTOCOLPGM("\n");
  3100. clean_up_after_endstop_move();
  3101. }
  3102. break;
  3103. case 75:
  3104. {
  3105. for (int i = 40; i <= 110; i++) {
  3106. MYSERIAL.print(i);
  3107. MYSERIAL.print(" ");
  3108. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  3109. }
  3110. }
  3111. break;
  3112. case 76: //PINDA probe temperature calibration
  3113. {
  3114. #ifdef PINDA_THERMISTOR
  3115. if (true)
  3116. {
  3117. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3118. //we need to know accurate position of first calibration point
  3119. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3120. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3121. break;
  3122. }
  3123. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3124. {
  3125. // We don't know where we are! HOME!
  3126. // Push the commands to the front of the message queue in the reverse order!
  3127. // There shall be always enough space reserved for these commands.
  3128. repeatcommand_front(); // repeat G76 with all its parameters
  3129. enquecommand_front_P((PSTR("G28 W0")));
  3130. break;
  3131. }
  3132. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3133. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3134. if (result)
  3135. {
  3136. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3138. current_position[Z_AXIS] = 50;
  3139. current_position[Y_AXIS] = 180;
  3140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3141. st_synchronize();
  3142. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3143. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3144. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3145. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3146. st_synchronize();
  3147. gcode_G28(false, false, true, false);
  3148. }
  3149. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3150. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3151. current_position[Z_AXIS] = 100;
  3152. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3153. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3154. lcd_temp_cal_show_result(false);
  3155. break;
  3156. }
  3157. }
  3158. lcd_update_enable(true);
  3159. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3160. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3161. float zero_z;
  3162. int z_shift = 0; //unit: steps
  3163. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3164. if (start_temp < 35) start_temp = 35;
  3165. if (start_temp < current_temperature_pinda) start_temp += 5;
  3166. SERIAL_ECHOPGM("start temperature: ");
  3167. MYSERIAL.println(start_temp);
  3168. // setTargetHotend(200, 0);
  3169. setTargetBed(70 + (start_temp - 30));
  3170. custom_message = true;
  3171. custom_message_type = 4;
  3172. custom_message_state = 1;
  3173. custom_message = _T(MSG_TEMP_CALIBRATION);
  3174. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3176. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3177. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3179. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3180. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3181. st_synchronize();
  3182. while (current_temperature_pinda < start_temp)
  3183. {
  3184. delay_keep_alive(1000);
  3185. serialecho_temperatures();
  3186. }
  3187. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3188. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3189. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3190. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3191. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3193. st_synchronize();
  3194. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3195. if (find_z_result == false) {
  3196. lcd_temp_cal_show_result(find_z_result);
  3197. break;
  3198. }
  3199. zero_z = current_position[Z_AXIS];
  3200. //current_position[Z_AXIS]
  3201. SERIAL_ECHOLNPGM("");
  3202. SERIAL_ECHOPGM("ZERO: ");
  3203. MYSERIAL.print(current_position[Z_AXIS]);
  3204. SERIAL_ECHOLNPGM("");
  3205. int i = -1; for (; i < 5; i++)
  3206. {
  3207. float temp = (40 + i * 5);
  3208. SERIAL_ECHOPGM("Step: ");
  3209. MYSERIAL.print(i + 2);
  3210. SERIAL_ECHOLNPGM("/6 (skipped)");
  3211. SERIAL_ECHOPGM("PINDA temperature: ");
  3212. MYSERIAL.print((40 + i*5));
  3213. SERIAL_ECHOPGM(" Z shift (mm):");
  3214. MYSERIAL.print(0);
  3215. SERIAL_ECHOLNPGM("");
  3216. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3217. if (start_temp <= temp) break;
  3218. }
  3219. for (i++; i < 5; i++)
  3220. {
  3221. float temp = (40 + i * 5);
  3222. SERIAL_ECHOPGM("Step: ");
  3223. MYSERIAL.print(i + 2);
  3224. SERIAL_ECHOLNPGM("/6");
  3225. custom_message_state = i + 2;
  3226. setTargetBed(50 + 10 * (temp - 30) / 5);
  3227. // setTargetHotend(255, 0);
  3228. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3229. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3230. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3231. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3232. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3233. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3234. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3235. st_synchronize();
  3236. while (current_temperature_pinda < temp)
  3237. {
  3238. delay_keep_alive(1000);
  3239. serialecho_temperatures();
  3240. }
  3241. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3242. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3243. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3244. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3245. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3246. st_synchronize();
  3247. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3248. if (find_z_result == false) {
  3249. lcd_temp_cal_show_result(find_z_result);
  3250. break;
  3251. }
  3252. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3253. SERIAL_ECHOLNPGM("");
  3254. SERIAL_ECHOPGM("PINDA temperature: ");
  3255. MYSERIAL.print(current_temperature_pinda);
  3256. SERIAL_ECHOPGM(" Z shift (mm):");
  3257. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3258. SERIAL_ECHOLNPGM("");
  3259. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3260. }
  3261. lcd_temp_cal_show_result(true);
  3262. break;
  3263. }
  3264. #endif //PINDA_THERMISTOR
  3265. setTargetBed(PINDA_MIN_T);
  3266. float zero_z;
  3267. int z_shift = 0; //unit: steps
  3268. int t_c; // temperature
  3269. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3270. // We don't know where we are! HOME!
  3271. // Push the commands to the front of the message queue in the reverse order!
  3272. // There shall be always enough space reserved for these commands.
  3273. repeatcommand_front(); // repeat G76 with all its parameters
  3274. enquecommand_front_P((PSTR("G28 W0")));
  3275. break;
  3276. }
  3277. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3278. custom_message = true;
  3279. custom_message_type = 4;
  3280. custom_message_state = 1;
  3281. custom_message = _T(MSG_TEMP_CALIBRATION);
  3282. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3283. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3284. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3285. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3286. st_synchronize();
  3287. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3288. delay_keep_alive(1000);
  3289. serialecho_temperatures();
  3290. }
  3291. //enquecommand_P(PSTR("M190 S50"));
  3292. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3293. delay_keep_alive(1000);
  3294. serialecho_temperatures();
  3295. }
  3296. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3297. current_position[Z_AXIS] = 5;
  3298. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3299. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3300. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3301. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3302. st_synchronize();
  3303. find_bed_induction_sensor_point_z(-1.f);
  3304. zero_z = current_position[Z_AXIS];
  3305. //current_position[Z_AXIS]
  3306. SERIAL_ECHOLNPGM("");
  3307. SERIAL_ECHOPGM("ZERO: ");
  3308. MYSERIAL.print(current_position[Z_AXIS]);
  3309. SERIAL_ECHOLNPGM("");
  3310. for (int i = 0; i<5; i++) {
  3311. SERIAL_ECHOPGM("Step: ");
  3312. MYSERIAL.print(i+2);
  3313. SERIAL_ECHOLNPGM("/6");
  3314. custom_message_state = i + 2;
  3315. t_c = 60 + i * 10;
  3316. setTargetBed(t_c);
  3317. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3318. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3319. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3320. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3321. st_synchronize();
  3322. while (degBed() < t_c) {
  3323. delay_keep_alive(1000);
  3324. serialecho_temperatures();
  3325. }
  3326. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3327. delay_keep_alive(1000);
  3328. serialecho_temperatures();
  3329. }
  3330. current_position[Z_AXIS] = 5;
  3331. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3332. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3333. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3334. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3335. st_synchronize();
  3336. find_bed_induction_sensor_point_z(-1.f);
  3337. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3338. SERIAL_ECHOLNPGM("");
  3339. SERIAL_ECHOPGM("Temperature: ");
  3340. MYSERIAL.print(t_c);
  3341. SERIAL_ECHOPGM(" Z shift (mm):");
  3342. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3343. SERIAL_ECHOLNPGM("");
  3344. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3345. }
  3346. custom_message_type = 0;
  3347. custom_message = false;
  3348. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3349. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3350. disable_x();
  3351. disable_y();
  3352. disable_z();
  3353. disable_e0();
  3354. disable_e1();
  3355. disable_e2();
  3356. setTargetBed(0); //set bed target temperature back to 0
  3357. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3358. temp_cal_active = true;
  3359. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3360. lcd_update_enable(true);
  3361. lcd_update(2);
  3362. }
  3363. break;
  3364. #ifdef DIS
  3365. case 77:
  3366. {
  3367. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3368. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3369. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3370. float dimension_x = 40;
  3371. float dimension_y = 40;
  3372. int points_x = 40;
  3373. int points_y = 40;
  3374. float offset_x = 74;
  3375. float offset_y = 33;
  3376. if (code_seen('X')) dimension_x = code_value();
  3377. if (code_seen('Y')) dimension_y = code_value();
  3378. if (code_seen('XP')) points_x = code_value();
  3379. if (code_seen('YP')) points_y = code_value();
  3380. if (code_seen('XO')) offset_x = code_value();
  3381. if (code_seen('YO')) offset_y = code_value();
  3382. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3383. } break;
  3384. #endif
  3385. case 79: {
  3386. for (int i = 255; i > 0; i = i - 5) {
  3387. fanSpeed = i;
  3388. //delay_keep_alive(2000);
  3389. for (int j = 0; j < 100; j++) {
  3390. delay_keep_alive(100);
  3391. }
  3392. fan_speed[1];
  3393. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3394. }
  3395. }break;
  3396. /**
  3397. * G80: Mesh-based Z probe, probes a grid and produces a
  3398. * mesh to compensate for variable bed height
  3399. *
  3400. * The S0 report the points as below
  3401. *
  3402. * +----> X-axis
  3403. * |
  3404. * |
  3405. * v Y-axis
  3406. *
  3407. */
  3408. case 80:
  3409. #ifdef MK1BP
  3410. break;
  3411. #endif //MK1BP
  3412. case_G80:
  3413. {
  3414. mesh_bed_leveling_flag = true;
  3415. int8_t verbosity_level = 0;
  3416. static bool run = false;
  3417. if (code_seen('V')) {
  3418. // Just 'V' without a number counts as V1.
  3419. char c = strchr_pointer[1];
  3420. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3421. }
  3422. // Firstly check if we know where we are
  3423. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3424. // We don't know where we are! HOME!
  3425. // Push the commands to the front of the message queue in the reverse order!
  3426. // There shall be always enough space reserved for these commands.
  3427. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3428. repeatcommand_front(); // repeat G80 with all its parameters
  3429. enquecommand_front_P((PSTR("G28 W0")));
  3430. }
  3431. else {
  3432. mesh_bed_leveling_flag = false;
  3433. }
  3434. break;
  3435. }
  3436. bool temp_comp_start = true;
  3437. #ifdef PINDA_THERMISTOR
  3438. temp_comp_start = false;
  3439. #endif //PINDA_THERMISTOR
  3440. if (temp_comp_start)
  3441. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3442. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3443. temp_compensation_start();
  3444. run = true;
  3445. repeatcommand_front(); // repeat G80 with all its parameters
  3446. enquecommand_front_P((PSTR("G28 W0")));
  3447. }
  3448. else {
  3449. mesh_bed_leveling_flag = false;
  3450. }
  3451. break;
  3452. }
  3453. run = false;
  3454. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3455. mesh_bed_leveling_flag = false;
  3456. break;
  3457. }
  3458. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3459. bool custom_message_old = custom_message;
  3460. unsigned int custom_message_type_old = custom_message_type;
  3461. unsigned int custom_message_state_old = custom_message_state;
  3462. custom_message = true;
  3463. custom_message_type = 1;
  3464. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3465. lcd_update(1);
  3466. mbl.reset(); //reset mesh bed leveling
  3467. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3468. // consumed during the first movements following this statement.
  3469. babystep_undo();
  3470. // Cycle through all points and probe them
  3471. // First move up. During this first movement, the babystepping will be reverted.
  3472. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3473. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3474. // The move to the first calibration point.
  3475. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3476. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3477. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3478. #ifdef SUPPORT_VERBOSITY
  3479. if (verbosity_level >= 1) {
  3480. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3481. }
  3482. #endif //SUPPORT_VERBOSITY
  3483. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3485. // Wait until the move is finished.
  3486. st_synchronize();
  3487. int mesh_point = 0; //index number of calibration point
  3488. int ix = 0;
  3489. int iy = 0;
  3490. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3491. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3492. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3493. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3494. #ifdef SUPPORT_VERBOSITY
  3495. if (verbosity_level >= 1) {
  3496. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3497. }
  3498. #endif // SUPPORT_VERBOSITY
  3499. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3500. const char *kill_message = NULL;
  3501. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3502. // Get coords of a measuring point.
  3503. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3504. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3505. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3506. float z0 = 0.f;
  3507. if (has_z && mesh_point > 0) {
  3508. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3509. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3510. //#if 0
  3511. #ifdef SUPPORT_VERBOSITY
  3512. if (verbosity_level >= 1) {
  3513. SERIAL_ECHOLNPGM("");
  3514. SERIAL_ECHOPGM("Bed leveling, point: ");
  3515. MYSERIAL.print(mesh_point);
  3516. SERIAL_ECHOPGM(", calibration z: ");
  3517. MYSERIAL.print(z0, 5);
  3518. SERIAL_ECHOLNPGM("");
  3519. }
  3520. #endif // SUPPORT_VERBOSITY
  3521. //#endif
  3522. }
  3523. // Move Z up to MESH_HOME_Z_SEARCH.
  3524. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3525. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3526. st_synchronize();
  3527. // Move to XY position of the sensor point.
  3528. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3529. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3530. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3531. #ifdef SUPPORT_VERBOSITY
  3532. if (verbosity_level >= 1) {
  3533. SERIAL_PROTOCOL(mesh_point);
  3534. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3535. }
  3536. #endif // SUPPORT_VERBOSITY
  3537. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3538. st_synchronize();
  3539. // Go down until endstop is hit
  3540. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3541. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3542. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3543. break;
  3544. }
  3545. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3546. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3547. break;
  3548. }
  3549. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3550. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3551. break;
  3552. }
  3553. #ifdef SUPPORT_VERBOSITY
  3554. if (verbosity_level >= 10) {
  3555. SERIAL_ECHOPGM("X: ");
  3556. MYSERIAL.print(current_position[X_AXIS], 5);
  3557. SERIAL_ECHOLNPGM("");
  3558. SERIAL_ECHOPGM("Y: ");
  3559. MYSERIAL.print(current_position[Y_AXIS], 5);
  3560. SERIAL_PROTOCOLPGM("\n");
  3561. }
  3562. #endif // SUPPORT_VERBOSITY
  3563. float offset_z = 0;
  3564. #ifdef PINDA_THERMISTOR
  3565. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3566. #endif //PINDA_THERMISTOR
  3567. // #ifdef SUPPORT_VERBOSITY
  3568. /* if (verbosity_level >= 1)
  3569. {
  3570. SERIAL_ECHOPGM("mesh bed leveling: ");
  3571. MYSERIAL.print(current_position[Z_AXIS], 5);
  3572. SERIAL_ECHOPGM(" offset: ");
  3573. MYSERIAL.print(offset_z, 5);
  3574. SERIAL_ECHOLNPGM("");
  3575. }*/
  3576. // #endif // SUPPORT_VERBOSITY
  3577. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3578. custom_message_state--;
  3579. mesh_point++;
  3580. lcd_update(1);
  3581. }
  3582. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3583. #ifdef SUPPORT_VERBOSITY
  3584. if (verbosity_level >= 20) {
  3585. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3586. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3587. MYSERIAL.print(current_position[Z_AXIS], 5);
  3588. }
  3589. #endif // SUPPORT_VERBOSITY
  3590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3591. st_synchronize();
  3592. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3593. kill(kill_message);
  3594. SERIAL_ECHOLNPGM("killed");
  3595. }
  3596. clean_up_after_endstop_move();
  3597. // SERIAL_ECHOLNPGM("clean up finished ");
  3598. bool apply_temp_comp = true;
  3599. #ifdef PINDA_THERMISTOR
  3600. apply_temp_comp = false;
  3601. #endif
  3602. if (apply_temp_comp)
  3603. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3604. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3605. // SERIAL_ECHOLNPGM("babystep applied");
  3606. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3607. #ifdef SUPPORT_VERBOSITY
  3608. if (verbosity_level >= 1) {
  3609. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3610. }
  3611. #endif // SUPPORT_VERBOSITY
  3612. for (uint8_t i = 0; i < 4; ++i) {
  3613. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3614. long correction = 0;
  3615. if (code_seen(codes[i]))
  3616. correction = code_value_long();
  3617. else if (eeprom_bed_correction_valid) {
  3618. unsigned char *addr = (i < 2) ?
  3619. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3620. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3621. correction = eeprom_read_int8(addr);
  3622. }
  3623. if (correction == 0)
  3624. continue;
  3625. float offset = float(correction) * 0.001f;
  3626. if (fabs(offset) > 0.101f) {
  3627. SERIAL_ERROR_START;
  3628. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3629. SERIAL_ECHO(offset);
  3630. SERIAL_ECHOLNPGM(" microns");
  3631. }
  3632. else {
  3633. switch (i) {
  3634. case 0:
  3635. for (uint8_t row = 0; row < 3; ++row) {
  3636. mbl.z_values[row][1] += 0.5f * offset;
  3637. mbl.z_values[row][0] += offset;
  3638. }
  3639. break;
  3640. case 1:
  3641. for (uint8_t row = 0; row < 3; ++row) {
  3642. mbl.z_values[row][1] += 0.5f * offset;
  3643. mbl.z_values[row][2] += offset;
  3644. }
  3645. break;
  3646. case 2:
  3647. for (uint8_t col = 0; col < 3; ++col) {
  3648. mbl.z_values[1][col] += 0.5f * offset;
  3649. mbl.z_values[0][col] += offset;
  3650. }
  3651. break;
  3652. case 3:
  3653. for (uint8_t col = 0; col < 3; ++col) {
  3654. mbl.z_values[1][col] += 0.5f * offset;
  3655. mbl.z_values[2][col] += offset;
  3656. }
  3657. break;
  3658. }
  3659. }
  3660. }
  3661. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3662. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3663. // SERIAL_ECHOLNPGM("Upsample finished");
  3664. mbl.active = 1; //activate mesh bed leveling
  3665. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3666. go_home_with_z_lift();
  3667. // SERIAL_ECHOLNPGM("Go home finished");
  3668. //unretract (after PINDA preheat retraction)
  3669. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3670. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3671. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3672. }
  3673. KEEPALIVE_STATE(NOT_BUSY);
  3674. // Restore custom message state
  3675. custom_message = custom_message_old;
  3676. custom_message_type = custom_message_type_old;
  3677. custom_message_state = custom_message_state_old;
  3678. mesh_bed_leveling_flag = false;
  3679. mesh_bed_run_from_menu = false;
  3680. lcd_update(2);
  3681. }
  3682. break;
  3683. /**
  3684. * G81: Print mesh bed leveling status and bed profile if activated
  3685. */
  3686. case 81:
  3687. if (mbl.active) {
  3688. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3689. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3690. SERIAL_PROTOCOLPGM(",");
  3691. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3692. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3693. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3694. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3695. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3696. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3697. SERIAL_PROTOCOLPGM(" ");
  3698. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3699. }
  3700. SERIAL_PROTOCOLPGM("\n");
  3701. }
  3702. }
  3703. else
  3704. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3705. break;
  3706. #if 0
  3707. /**
  3708. * G82: Single Z probe at current location
  3709. *
  3710. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3711. *
  3712. */
  3713. case 82:
  3714. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3715. setup_for_endstop_move();
  3716. find_bed_induction_sensor_point_z();
  3717. clean_up_after_endstop_move();
  3718. SERIAL_PROTOCOLPGM("Bed found at: ");
  3719. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3720. SERIAL_PROTOCOLPGM("\n");
  3721. break;
  3722. /**
  3723. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3724. */
  3725. case 83:
  3726. {
  3727. int babystepz = code_seen('S') ? code_value() : 0;
  3728. int BabyPosition = code_seen('P') ? code_value() : 0;
  3729. if (babystepz != 0) {
  3730. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3731. // Is the axis indexed starting with zero or one?
  3732. if (BabyPosition > 4) {
  3733. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3734. }else{
  3735. // Save it to the eeprom
  3736. babystepLoadZ = babystepz;
  3737. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3738. // adjust the Z
  3739. babystepsTodoZadd(babystepLoadZ);
  3740. }
  3741. }
  3742. }
  3743. break;
  3744. /**
  3745. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3746. */
  3747. case 84:
  3748. babystepsTodoZsubtract(babystepLoadZ);
  3749. // babystepLoadZ = 0;
  3750. break;
  3751. /**
  3752. * G85: Prusa3D specific: Pick best babystep
  3753. */
  3754. case 85:
  3755. lcd_pick_babystep();
  3756. break;
  3757. #endif
  3758. /**
  3759. * G86: Prusa3D specific: Disable babystep correction after home.
  3760. * This G-code will be performed at the start of a calibration script.
  3761. */
  3762. case 86:
  3763. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3764. break;
  3765. /**
  3766. * G87: Prusa3D specific: Enable babystep correction after home
  3767. * This G-code will be performed at the end of a calibration script.
  3768. */
  3769. case 87:
  3770. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3771. break;
  3772. /**
  3773. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3774. */
  3775. case 88:
  3776. break;
  3777. #endif // ENABLE_MESH_BED_LEVELING
  3778. case 90: // G90
  3779. relative_mode = false;
  3780. break;
  3781. case 91: // G91
  3782. relative_mode = true;
  3783. break;
  3784. case 92: // G92
  3785. if(!code_seen(axis_codes[E_AXIS]))
  3786. st_synchronize();
  3787. for(int8_t i=0; i < NUM_AXIS; i++) {
  3788. if(code_seen(axis_codes[i])) {
  3789. if(i == E_AXIS) {
  3790. current_position[i] = code_value();
  3791. plan_set_e_position(current_position[E_AXIS]);
  3792. }
  3793. else {
  3794. current_position[i] = code_value()+add_homing[i];
  3795. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3796. }
  3797. }
  3798. }
  3799. break;
  3800. case 98: // G98 (activate farm mode)
  3801. farm_mode = 1;
  3802. PingTime = millis();
  3803. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3804. SilentModeMenu = SILENT_MODE_OFF;
  3805. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3806. break;
  3807. case 99: // G99 (deactivate farm mode)
  3808. farm_mode = 0;
  3809. lcd_printer_connected();
  3810. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3811. lcd_update(2);
  3812. break;
  3813. default:
  3814. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3815. }
  3816. } // end if(code_seen('G'))
  3817. else if(code_seen('M'))
  3818. {
  3819. int index;
  3820. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3821. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3822. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3823. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3824. } else
  3825. switch((int)code_value())
  3826. {
  3827. #ifdef ULTIPANEL
  3828. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3829. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3830. {
  3831. char *src = strchr_pointer + 2;
  3832. codenum = 0;
  3833. bool hasP = false, hasS = false;
  3834. if (code_seen('P')) {
  3835. codenum = code_value(); // milliseconds to wait
  3836. hasP = codenum > 0;
  3837. }
  3838. if (code_seen('S')) {
  3839. codenum = code_value() * 1000; // seconds to wait
  3840. hasS = codenum > 0;
  3841. }
  3842. starpos = strchr(src, '*');
  3843. if (starpos != NULL) *(starpos) = '\0';
  3844. while (*src == ' ') ++src;
  3845. if (!hasP && !hasS && *src != '\0') {
  3846. lcd_setstatus(src);
  3847. } else {
  3848. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3849. }
  3850. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3851. st_synchronize();
  3852. previous_millis_cmd = millis();
  3853. if (codenum > 0){
  3854. codenum += millis(); // keep track of when we started waiting
  3855. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3856. while(millis() < codenum && !lcd_clicked()){
  3857. manage_heater();
  3858. manage_inactivity(true);
  3859. lcd_update();
  3860. }
  3861. KEEPALIVE_STATE(IN_HANDLER);
  3862. lcd_ignore_click(false);
  3863. }else{
  3864. if (!lcd_detected())
  3865. break;
  3866. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3867. while(!lcd_clicked()){
  3868. manage_heater();
  3869. manage_inactivity(true);
  3870. lcd_update();
  3871. }
  3872. KEEPALIVE_STATE(IN_HANDLER);
  3873. }
  3874. if (IS_SD_PRINTING)
  3875. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3876. else
  3877. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3878. }
  3879. break;
  3880. #endif
  3881. case 17:
  3882. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3883. enable_x();
  3884. enable_y();
  3885. enable_z();
  3886. enable_e0();
  3887. enable_e1();
  3888. enable_e2();
  3889. break;
  3890. #ifdef SDSUPPORT
  3891. case 20: // M20 - list SD card
  3892. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3893. card.ls();
  3894. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3895. break;
  3896. case 21: // M21 - init SD card
  3897. card.initsd();
  3898. break;
  3899. case 22: //M22 - release SD card
  3900. card.release();
  3901. break;
  3902. case 23: //M23 - Select file
  3903. starpos = (strchr(strchr_pointer + 4,'*'));
  3904. if(starpos!=NULL)
  3905. *(starpos)='\0';
  3906. card.openFile(strchr_pointer + 4,true);
  3907. break;
  3908. case 24: //M24 - Start SD print
  3909. if (!card.paused)
  3910. failstats_reset_print();
  3911. card.startFileprint();
  3912. starttime=millis();
  3913. break;
  3914. case 25: //M25 - Pause SD print
  3915. card.pauseSDPrint();
  3916. break;
  3917. case 26: //M26 - Set SD index
  3918. if(card.cardOK && code_seen('S')) {
  3919. card.setIndex(code_value_long());
  3920. }
  3921. break;
  3922. case 27: //M27 - Get SD status
  3923. card.getStatus();
  3924. break;
  3925. case 28: //M28 - Start SD write
  3926. starpos = (strchr(strchr_pointer + 4,'*'));
  3927. if(starpos != NULL){
  3928. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3929. strchr_pointer = strchr(npos,' ') + 1;
  3930. *(starpos) = '\0';
  3931. }
  3932. card.openFile(strchr_pointer+4,false);
  3933. break;
  3934. case 29: //M29 - Stop SD write
  3935. //processed in write to file routine above
  3936. //card,saving = false;
  3937. break;
  3938. case 30: //M30 <filename> Delete File
  3939. if (card.cardOK){
  3940. card.closefile();
  3941. starpos = (strchr(strchr_pointer + 4,'*'));
  3942. if(starpos != NULL){
  3943. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3944. strchr_pointer = strchr(npos,' ') + 1;
  3945. *(starpos) = '\0';
  3946. }
  3947. card.removeFile(strchr_pointer + 4);
  3948. }
  3949. break;
  3950. case 32: //M32 - Select file and start SD print
  3951. {
  3952. if(card.sdprinting) {
  3953. st_synchronize();
  3954. }
  3955. starpos = (strchr(strchr_pointer + 4,'*'));
  3956. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3957. if(namestartpos==NULL)
  3958. {
  3959. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3960. }
  3961. else
  3962. namestartpos++; //to skip the '!'
  3963. if(starpos!=NULL)
  3964. *(starpos)='\0';
  3965. bool call_procedure=(code_seen('P'));
  3966. if(strchr_pointer>namestartpos)
  3967. call_procedure=false; //false alert, 'P' found within filename
  3968. if( card.cardOK )
  3969. {
  3970. card.openFile(namestartpos,true,!call_procedure);
  3971. if(code_seen('S'))
  3972. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3973. card.setIndex(code_value_long());
  3974. card.startFileprint();
  3975. if(!call_procedure)
  3976. starttime=millis(); //procedure calls count as normal print time.
  3977. }
  3978. } break;
  3979. case 928: //M928 - Start SD write
  3980. starpos = (strchr(strchr_pointer + 5,'*'));
  3981. if(starpos != NULL){
  3982. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3983. strchr_pointer = strchr(npos,' ') + 1;
  3984. *(starpos) = '\0';
  3985. }
  3986. card.openLogFile(strchr_pointer+5);
  3987. break;
  3988. #endif //SDSUPPORT
  3989. case 31: //M31 take time since the start of the SD print or an M109 command
  3990. {
  3991. stoptime=millis();
  3992. char time[30];
  3993. unsigned long t=(stoptime-starttime)/1000;
  3994. int sec,min;
  3995. min=t/60;
  3996. sec=t%60;
  3997. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3998. SERIAL_ECHO_START;
  3999. SERIAL_ECHOLN(time);
  4000. lcd_setstatus(time);
  4001. autotempShutdown();
  4002. }
  4003. break;
  4004. #ifndef _DISABLE_M42_M226
  4005. case 42: //M42 -Change pin status via gcode
  4006. if (code_seen('S'))
  4007. {
  4008. int pin_status = code_value();
  4009. int pin_number = LED_PIN;
  4010. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4011. pin_number = code_value();
  4012. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4013. {
  4014. if (sensitive_pins[i] == pin_number)
  4015. {
  4016. pin_number = -1;
  4017. break;
  4018. }
  4019. }
  4020. #if defined(FAN_PIN) && FAN_PIN > -1
  4021. if (pin_number == FAN_PIN)
  4022. fanSpeed = pin_status;
  4023. #endif
  4024. if (pin_number > -1)
  4025. {
  4026. pinMode(pin_number, OUTPUT);
  4027. digitalWrite(pin_number, pin_status);
  4028. analogWrite(pin_number, pin_status);
  4029. }
  4030. }
  4031. break;
  4032. #endif //_DISABLE_M42_M226
  4033. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4034. // Reset the baby step value and the baby step applied flag.
  4035. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4036. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4037. // Reset the skew and offset in both RAM and EEPROM.
  4038. reset_bed_offset_and_skew();
  4039. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4040. // the planner will not perform any adjustments in the XY plane.
  4041. // Wait for the motors to stop and update the current position with the absolute values.
  4042. world2machine_revert_to_uncorrected();
  4043. break;
  4044. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4045. {
  4046. int8_t verbosity_level = 0;
  4047. bool only_Z = code_seen('Z');
  4048. #ifdef SUPPORT_VERBOSITY
  4049. if (code_seen('V'))
  4050. {
  4051. // Just 'V' without a number counts as V1.
  4052. char c = strchr_pointer[1];
  4053. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4054. }
  4055. #endif //SUPPORT_VERBOSITY
  4056. gcode_M45(only_Z, verbosity_level);
  4057. }
  4058. break;
  4059. /*
  4060. case 46:
  4061. {
  4062. // M46: Prusa3D: Show the assigned IP address.
  4063. uint8_t ip[4];
  4064. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4065. if (hasIP) {
  4066. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4067. SERIAL_ECHO(int(ip[0]));
  4068. SERIAL_ECHOPGM(".");
  4069. SERIAL_ECHO(int(ip[1]));
  4070. SERIAL_ECHOPGM(".");
  4071. SERIAL_ECHO(int(ip[2]));
  4072. SERIAL_ECHOPGM(".");
  4073. SERIAL_ECHO(int(ip[3]));
  4074. SERIAL_ECHOLNPGM("");
  4075. } else {
  4076. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4077. }
  4078. break;
  4079. }
  4080. */
  4081. case 47:
  4082. // M47: Prusa3D: Show end stops dialog on the display.
  4083. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4084. lcd_diag_show_end_stops();
  4085. KEEPALIVE_STATE(IN_HANDLER);
  4086. break;
  4087. #if 0
  4088. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4089. {
  4090. // Disable the default update procedure of the display. We will do a modal dialog.
  4091. lcd_update_enable(false);
  4092. // Let the planner use the uncorrected coordinates.
  4093. mbl.reset();
  4094. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4095. // the planner will not perform any adjustments in the XY plane.
  4096. // Wait for the motors to stop and update the current position with the absolute values.
  4097. world2machine_revert_to_uncorrected();
  4098. // Move the print head close to the bed.
  4099. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4100. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4101. st_synchronize();
  4102. // Home in the XY plane.
  4103. set_destination_to_current();
  4104. setup_for_endstop_move();
  4105. home_xy();
  4106. int8_t verbosity_level = 0;
  4107. if (code_seen('V')) {
  4108. // Just 'V' without a number counts as V1.
  4109. char c = strchr_pointer[1];
  4110. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4111. }
  4112. bool success = scan_bed_induction_points(verbosity_level);
  4113. clean_up_after_endstop_move();
  4114. // Print head up.
  4115. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4116. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4117. st_synchronize();
  4118. lcd_update_enable(true);
  4119. break;
  4120. }
  4121. #endif
  4122. // M48 Z-Probe repeatability measurement function.
  4123. //
  4124. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4125. //
  4126. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4127. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4128. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4129. // regenerated.
  4130. //
  4131. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4132. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4133. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4134. //
  4135. #ifdef ENABLE_AUTO_BED_LEVELING
  4136. #ifdef Z_PROBE_REPEATABILITY_TEST
  4137. case 48: // M48 Z-Probe repeatability
  4138. {
  4139. #if Z_MIN_PIN == -1
  4140. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4141. #endif
  4142. double sum=0.0;
  4143. double mean=0.0;
  4144. double sigma=0.0;
  4145. double sample_set[50];
  4146. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4147. double X_current, Y_current, Z_current;
  4148. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4149. if (code_seen('V') || code_seen('v')) {
  4150. verbose_level = code_value();
  4151. if (verbose_level<0 || verbose_level>4 ) {
  4152. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4153. goto Sigma_Exit;
  4154. }
  4155. }
  4156. if (verbose_level > 0) {
  4157. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4158. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4159. }
  4160. if (code_seen('n')) {
  4161. n_samples = code_value();
  4162. if (n_samples<4 || n_samples>50 ) {
  4163. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4164. goto Sigma_Exit;
  4165. }
  4166. }
  4167. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4168. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4169. Z_current = st_get_position_mm(Z_AXIS);
  4170. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4171. ext_position = st_get_position_mm(E_AXIS);
  4172. if (code_seen('X') || code_seen('x') ) {
  4173. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4174. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4175. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4176. goto Sigma_Exit;
  4177. }
  4178. }
  4179. if (code_seen('Y') || code_seen('y') ) {
  4180. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4181. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4182. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4183. goto Sigma_Exit;
  4184. }
  4185. }
  4186. if (code_seen('L') || code_seen('l') ) {
  4187. n_legs = code_value();
  4188. if ( n_legs==1 )
  4189. n_legs = 2;
  4190. if ( n_legs<0 || n_legs>15 ) {
  4191. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4192. goto Sigma_Exit;
  4193. }
  4194. }
  4195. //
  4196. // Do all the preliminary setup work. First raise the probe.
  4197. //
  4198. st_synchronize();
  4199. plan_bed_level_matrix.set_to_identity();
  4200. plan_buffer_line( X_current, Y_current, Z_start_location,
  4201. ext_position,
  4202. homing_feedrate[Z_AXIS]/60,
  4203. active_extruder);
  4204. st_synchronize();
  4205. //
  4206. // Now get everything to the specified probe point So we can safely do a probe to
  4207. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4208. // use that as a starting point for each probe.
  4209. //
  4210. if (verbose_level > 2)
  4211. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4212. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4213. ext_position,
  4214. homing_feedrate[X_AXIS]/60,
  4215. active_extruder);
  4216. st_synchronize();
  4217. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4218. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4219. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4220. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4221. //
  4222. // OK, do the inital probe to get us close to the bed.
  4223. // Then retrace the right amount and use that in subsequent probes
  4224. //
  4225. setup_for_endstop_move();
  4226. run_z_probe();
  4227. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4228. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4229. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4230. ext_position,
  4231. homing_feedrate[X_AXIS]/60,
  4232. active_extruder);
  4233. st_synchronize();
  4234. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4235. for( n=0; n<n_samples; n++) {
  4236. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4237. if ( n_legs) {
  4238. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4239. int rotational_direction, l;
  4240. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4241. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4242. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4243. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4244. //SERIAL_ECHOPAIR(" theta: ",theta);
  4245. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4246. //SERIAL_PROTOCOLLNPGM("");
  4247. for( l=0; l<n_legs-1; l++) {
  4248. if (rotational_direction==1)
  4249. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4250. else
  4251. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4252. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4253. if ( radius<0.0 )
  4254. radius = -radius;
  4255. X_current = X_probe_location + cos(theta) * radius;
  4256. Y_current = Y_probe_location + sin(theta) * radius;
  4257. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4258. X_current = X_MIN_POS;
  4259. if ( X_current>X_MAX_POS)
  4260. X_current = X_MAX_POS;
  4261. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4262. Y_current = Y_MIN_POS;
  4263. if ( Y_current>Y_MAX_POS)
  4264. Y_current = Y_MAX_POS;
  4265. if (verbose_level>3 ) {
  4266. SERIAL_ECHOPAIR("x: ", X_current);
  4267. SERIAL_ECHOPAIR("y: ", Y_current);
  4268. SERIAL_PROTOCOLLNPGM("");
  4269. }
  4270. do_blocking_move_to( X_current, Y_current, Z_current );
  4271. }
  4272. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4273. }
  4274. setup_for_endstop_move();
  4275. run_z_probe();
  4276. sample_set[n] = current_position[Z_AXIS];
  4277. //
  4278. // Get the current mean for the data points we have so far
  4279. //
  4280. sum=0.0;
  4281. for( j=0; j<=n; j++) {
  4282. sum = sum + sample_set[j];
  4283. }
  4284. mean = sum / (double (n+1));
  4285. //
  4286. // Now, use that mean to calculate the standard deviation for the
  4287. // data points we have so far
  4288. //
  4289. sum=0.0;
  4290. for( j=0; j<=n; j++) {
  4291. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4292. }
  4293. sigma = sqrt( sum / (double (n+1)) );
  4294. if (verbose_level > 1) {
  4295. SERIAL_PROTOCOL(n+1);
  4296. SERIAL_PROTOCOL(" of ");
  4297. SERIAL_PROTOCOL(n_samples);
  4298. SERIAL_PROTOCOLPGM(" z: ");
  4299. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4300. }
  4301. if (verbose_level > 2) {
  4302. SERIAL_PROTOCOL(" mean: ");
  4303. SERIAL_PROTOCOL_F(mean,6);
  4304. SERIAL_PROTOCOL(" sigma: ");
  4305. SERIAL_PROTOCOL_F(sigma,6);
  4306. }
  4307. if (verbose_level > 0)
  4308. SERIAL_PROTOCOLPGM("\n");
  4309. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4310. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4311. st_synchronize();
  4312. }
  4313. delay(1000);
  4314. clean_up_after_endstop_move();
  4315. // enable_endstops(true);
  4316. if (verbose_level > 0) {
  4317. SERIAL_PROTOCOLPGM("Mean: ");
  4318. SERIAL_PROTOCOL_F(mean, 6);
  4319. SERIAL_PROTOCOLPGM("\n");
  4320. }
  4321. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4322. SERIAL_PROTOCOL_F(sigma, 6);
  4323. SERIAL_PROTOCOLPGM("\n\n");
  4324. Sigma_Exit:
  4325. break;
  4326. }
  4327. #endif // Z_PROBE_REPEATABILITY_TEST
  4328. #endif // ENABLE_AUTO_BED_LEVELING
  4329. case 104: // M104
  4330. if(setTargetedHotend(104)){
  4331. break;
  4332. }
  4333. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4334. setWatch();
  4335. break;
  4336. case 112: // M112 -Emergency Stop
  4337. kill("", 3);
  4338. break;
  4339. case 140: // M140 set bed temp
  4340. if (code_seen('S')) setTargetBed(code_value());
  4341. break;
  4342. case 105 : // M105
  4343. if(setTargetedHotend(105)){
  4344. break;
  4345. }
  4346. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4347. SERIAL_PROTOCOLPGM("ok T:");
  4348. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4349. SERIAL_PROTOCOLPGM(" /");
  4350. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4351. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4352. SERIAL_PROTOCOLPGM(" B:");
  4353. SERIAL_PROTOCOL_F(degBed(),1);
  4354. SERIAL_PROTOCOLPGM(" /");
  4355. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4356. #endif //TEMP_BED_PIN
  4357. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4358. SERIAL_PROTOCOLPGM(" T");
  4359. SERIAL_PROTOCOL(cur_extruder);
  4360. SERIAL_PROTOCOLPGM(":");
  4361. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4362. SERIAL_PROTOCOLPGM(" /");
  4363. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4364. }
  4365. #else
  4366. SERIAL_ERROR_START;
  4367. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4368. #endif
  4369. SERIAL_PROTOCOLPGM(" @:");
  4370. #ifdef EXTRUDER_WATTS
  4371. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4372. SERIAL_PROTOCOLPGM("W");
  4373. #else
  4374. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4375. #endif
  4376. SERIAL_PROTOCOLPGM(" B@:");
  4377. #ifdef BED_WATTS
  4378. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4379. SERIAL_PROTOCOLPGM("W");
  4380. #else
  4381. SERIAL_PROTOCOL(getHeaterPower(-1));
  4382. #endif
  4383. #ifdef PINDA_THERMISTOR
  4384. SERIAL_PROTOCOLPGM(" P:");
  4385. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4386. #endif //PINDA_THERMISTOR
  4387. #ifdef AMBIENT_THERMISTOR
  4388. SERIAL_PROTOCOLPGM(" A:");
  4389. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4390. #endif //AMBIENT_THERMISTOR
  4391. #ifdef SHOW_TEMP_ADC_VALUES
  4392. {float raw = 0.0;
  4393. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4394. SERIAL_PROTOCOLPGM(" ADC B:");
  4395. SERIAL_PROTOCOL_F(degBed(),1);
  4396. SERIAL_PROTOCOLPGM("C->");
  4397. raw = rawBedTemp();
  4398. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4399. SERIAL_PROTOCOLPGM(" Rb->");
  4400. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4401. SERIAL_PROTOCOLPGM(" Rxb->");
  4402. SERIAL_PROTOCOL_F(raw, 5);
  4403. #endif
  4404. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4405. SERIAL_PROTOCOLPGM(" T");
  4406. SERIAL_PROTOCOL(cur_extruder);
  4407. SERIAL_PROTOCOLPGM(":");
  4408. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4409. SERIAL_PROTOCOLPGM("C->");
  4410. raw = rawHotendTemp(cur_extruder);
  4411. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4412. SERIAL_PROTOCOLPGM(" Rt");
  4413. SERIAL_PROTOCOL(cur_extruder);
  4414. SERIAL_PROTOCOLPGM("->");
  4415. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4416. SERIAL_PROTOCOLPGM(" Rx");
  4417. SERIAL_PROTOCOL(cur_extruder);
  4418. SERIAL_PROTOCOLPGM("->");
  4419. SERIAL_PROTOCOL_F(raw, 5);
  4420. }}
  4421. #endif
  4422. SERIAL_PROTOCOLLN("");
  4423. KEEPALIVE_STATE(NOT_BUSY);
  4424. return;
  4425. break;
  4426. case 109:
  4427. {// M109 - Wait for extruder heater to reach target.
  4428. if(setTargetedHotend(109)){
  4429. break;
  4430. }
  4431. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4432. heating_status = 1;
  4433. if (farm_mode) { prusa_statistics(1); };
  4434. #ifdef AUTOTEMP
  4435. autotemp_enabled=false;
  4436. #endif
  4437. if (code_seen('S')) {
  4438. setTargetHotend(code_value(), tmp_extruder);
  4439. CooldownNoWait = true;
  4440. } else if (code_seen('R')) {
  4441. setTargetHotend(code_value(), tmp_extruder);
  4442. CooldownNoWait = false;
  4443. }
  4444. #ifdef AUTOTEMP
  4445. if (code_seen('S')) autotemp_min=code_value();
  4446. if (code_seen('B')) autotemp_max=code_value();
  4447. if (code_seen('F'))
  4448. {
  4449. autotemp_factor=code_value();
  4450. autotemp_enabled=true;
  4451. }
  4452. #endif
  4453. setWatch();
  4454. codenum = millis();
  4455. /* See if we are heating up or cooling down */
  4456. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4457. KEEPALIVE_STATE(NOT_BUSY);
  4458. cancel_heatup = false;
  4459. wait_for_heater(codenum); //loops until target temperature is reached
  4460. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4461. KEEPALIVE_STATE(IN_HANDLER);
  4462. heating_status = 2;
  4463. if (farm_mode) { prusa_statistics(2); };
  4464. //starttime=millis();
  4465. previous_millis_cmd = millis();
  4466. }
  4467. break;
  4468. case 190: // M190 - Wait for bed heater to reach target.
  4469. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4470. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4471. heating_status = 3;
  4472. if (farm_mode) { prusa_statistics(1); };
  4473. if (code_seen('S'))
  4474. {
  4475. setTargetBed(code_value());
  4476. CooldownNoWait = true;
  4477. }
  4478. else if (code_seen('R'))
  4479. {
  4480. setTargetBed(code_value());
  4481. CooldownNoWait = false;
  4482. }
  4483. codenum = millis();
  4484. cancel_heatup = false;
  4485. target_direction = isHeatingBed(); // true if heating, false if cooling
  4486. KEEPALIVE_STATE(NOT_BUSY);
  4487. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4488. {
  4489. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4490. {
  4491. if (!farm_mode) {
  4492. float tt = degHotend(active_extruder);
  4493. SERIAL_PROTOCOLPGM("T:");
  4494. SERIAL_PROTOCOL(tt);
  4495. SERIAL_PROTOCOLPGM(" E:");
  4496. SERIAL_PROTOCOL((int)active_extruder);
  4497. SERIAL_PROTOCOLPGM(" B:");
  4498. SERIAL_PROTOCOL_F(degBed(), 1);
  4499. SERIAL_PROTOCOLLN("");
  4500. }
  4501. codenum = millis();
  4502. }
  4503. manage_heater();
  4504. manage_inactivity();
  4505. lcd_update();
  4506. }
  4507. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4508. KEEPALIVE_STATE(IN_HANDLER);
  4509. heating_status = 4;
  4510. previous_millis_cmd = millis();
  4511. #endif
  4512. break;
  4513. #if defined(FAN_PIN) && FAN_PIN > -1
  4514. case 106: //M106 Fan On
  4515. if (code_seen('S')){
  4516. fanSpeed=constrain(code_value(),0,255);
  4517. }
  4518. else {
  4519. fanSpeed=255;
  4520. }
  4521. break;
  4522. case 107: //M107 Fan Off
  4523. fanSpeed = 0;
  4524. break;
  4525. #endif //FAN_PIN
  4526. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4527. case 80: // M80 - Turn on Power Supply
  4528. SET_OUTPUT(PS_ON_PIN); //GND
  4529. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4530. // If you have a switch on suicide pin, this is useful
  4531. // if you want to start another print with suicide feature after
  4532. // a print without suicide...
  4533. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4534. SET_OUTPUT(SUICIDE_PIN);
  4535. WRITE(SUICIDE_PIN, HIGH);
  4536. #endif
  4537. #ifdef ULTIPANEL
  4538. powersupply = true;
  4539. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4540. lcd_update();
  4541. #endif
  4542. break;
  4543. #endif
  4544. case 81: // M81 - Turn off Power Supply
  4545. disable_heater();
  4546. st_synchronize();
  4547. disable_e0();
  4548. disable_e1();
  4549. disable_e2();
  4550. finishAndDisableSteppers();
  4551. fanSpeed = 0;
  4552. delay(1000); // Wait a little before to switch off
  4553. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4554. st_synchronize();
  4555. suicide();
  4556. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4557. SET_OUTPUT(PS_ON_PIN);
  4558. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4559. #endif
  4560. #ifdef ULTIPANEL
  4561. powersupply = false;
  4562. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4563. /*
  4564. MACHNAME = "Prusa i3"
  4565. MSGOFF = "Vypnuto"
  4566. "Prusai3"" ""vypnuto""."
  4567. "Prusa i3"" "_T(MSG_ALL)[lang_selected][50]"."
  4568. */
  4569. lcd_update();
  4570. #endif
  4571. break;
  4572. case 82:
  4573. axis_relative_modes[3] = false;
  4574. break;
  4575. case 83:
  4576. axis_relative_modes[3] = true;
  4577. break;
  4578. case 18: //compatibility
  4579. case 84: // M84
  4580. if(code_seen('S')){
  4581. stepper_inactive_time = code_value() * 1000;
  4582. }
  4583. else
  4584. {
  4585. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4586. if(all_axis)
  4587. {
  4588. st_synchronize();
  4589. disable_e0();
  4590. disable_e1();
  4591. disable_e2();
  4592. finishAndDisableSteppers();
  4593. }
  4594. else
  4595. {
  4596. st_synchronize();
  4597. if (code_seen('X')) disable_x();
  4598. if (code_seen('Y')) disable_y();
  4599. if (code_seen('Z')) disable_z();
  4600. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4601. if (code_seen('E')) {
  4602. disable_e0();
  4603. disable_e1();
  4604. disable_e2();
  4605. }
  4606. #endif
  4607. }
  4608. }
  4609. snmm_filaments_used = 0;
  4610. break;
  4611. case 85: // M85
  4612. if(code_seen('S')) {
  4613. max_inactive_time = code_value() * 1000;
  4614. }
  4615. break;
  4616. case 92: // M92
  4617. for(int8_t i=0; i < NUM_AXIS; i++)
  4618. {
  4619. if(code_seen(axis_codes[i]))
  4620. {
  4621. if(i == 3) { // E
  4622. float value = code_value();
  4623. if(value < 20.0) {
  4624. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4625. max_jerk[E_AXIS] *= factor;
  4626. max_feedrate[i] *= factor;
  4627. axis_steps_per_sqr_second[i] *= factor;
  4628. }
  4629. axis_steps_per_unit[i] = value;
  4630. }
  4631. else {
  4632. axis_steps_per_unit[i] = code_value();
  4633. }
  4634. }
  4635. }
  4636. break;
  4637. case 110: // M110 - reset line pos
  4638. if (code_seen('N'))
  4639. gcode_LastN = code_value_long();
  4640. break;
  4641. #ifdef HOST_KEEPALIVE_FEATURE
  4642. case 113: // M113 - Get or set Host Keepalive interval
  4643. if (code_seen('S')) {
  4644. host_keepalive_interval = (uint8_t)code_value_short();
  4645. // NOMORE(host_keepalive_interval, 60);
  4646. }
  4647. else {
  4648. SERIAL_ECHO_START;
  4649. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4650. SERIAL_PROTOCOLLN("");
  4651. }
  4652. break;
  4653. #endif
  4654. case 115: // M115
  4655. if (code_seen('V')) {
  4656. // Report the Prusa version number.
  4657. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4658. } else if (code_seen('U')) {
  4659. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4660. // pause the print and ask the user to upgrade the firmware.
  4661. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4662. } else {
  4663. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4664. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4665. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4666. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4667. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4668. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4669. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4670. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4671. SERIAL_ECHOPGM(" UUID:");
  4672. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4673. }
  4674. break;
  4675. /* case 117: // M117 display message
  4676. starpos = (strchr(strchr_pointer + 5,'*'));
  4677. if(starpos!=NULL)
  4678. *(starpos)='\0';
  4679. lcd_setstatus(strchr_pointer + 5);
  4680. break;*/
  4681. case 114: // M114
  4682. gcode_M114();
  4683. break;
  4684. case 120: // M120
  4685. enable_endstops(false) ;
  4686. break;
  4687. case 121: // M121
  4688. enable_endstops(true) ;
  4689. break;
  4690. case 119: // M119
  4691. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4692. SERIAL_PROTOCOLLN("");
  4693. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4694. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4695. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4696. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4697. }else{
  4698. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4699. }
  4700. SERIAL_PROTOCOLLN("");
  4701. #endif
  4702. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4703. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4704. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4705. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4706. }else{
  4707. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4708. }
  4709. SERIAL_PROTOCOLLN("");
  4710. #endif
  4711. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4712. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4713. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4714. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4715. }else{
  4716. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4717. }
  4718. SERIAL_PROTOCOLLN("");
  4719. #endif
  4720. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4721. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4722. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4723. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4724. }else{
  4725. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4726. }
  4727. SERIAL_PROTOCOLLN("");
  4728. #endif
  4729. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4730. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4731. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4732. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4733. }else{
  4734. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4735. }
  4736. SERIAL_PROTOCOLLN("");
  4737. #endif
  4738. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4739. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4740. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4741. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4742. }else{
  4743. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4744. }
  4745. SERIAL_PROTOCOLLN("");
  4746. #endif
  4747. break;
  4748. //TODO: update for all axis, use for loop
  4749. #ifdef BLINKM
  4750. case 150: // M150
  4751. {
  4752. byte red;
  4753. byte grn;
  4754. byte blu;
  4755. if(code_seen('R')) red = code_value();
  4756. if(code_seen('U')) grn = code_value();
  4757. if(code_seen('B')) blu = code_value();
  4758. SendColors(red,grn,blu);
  4759. }
  4760. break;
  4761. #endif //BLINKM
  4762. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4763. {
  4764. tmp_extruder = active_extruder;
  4765. if(code_seen('T')) {
  4766. tmp_extruder = code_value();
  4767. if(tmp_extruder >= EXTRUDERS) {
  4768. SERIAL_ECHO_START;
  4769. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4770. break;
  4771. }
  4772. }
  4773. float area = .0;
  4774. if(code_seen('D')) {
  4775. float diameter = (float)code_value();
  4776. if (diameter == 0.0) {
  4777. // setting any extruder filament size disables volumetric on the assumption that
  4778. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4779. // for all extruders
  4780. volumetric_enabled = false;
  4781. } else {
  4782. filament_size[tmp_extruder] = (float)code_value();
  4783. // make sure all extruders have some sane value for the filament size
  4784. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4785. #if EXTRUDERS > 1
  4786. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4787. #if EXTRUDERS > 2
  4788. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4789. #endif
  4790. #endif
  4791. volumetric_enabled = true;
  4792. }
  4793. } else {
  4794. //reserved for setting filament diameter via UFID or filament measuring device
  4795. break;
  4796. }
  4797. calculate_extruder_multipliers();
  4798. }
  4799. break;
  4800. case 201: // M201
  4801. for(int8_t i=0; i < NUM_AXIS; i++)
  4802. {
  4803. if(code_seen(axis_codes[i]))
  4804. {
  4805. max_acceleration_units_per_sq_second[i] = code_value();
  4806. }
  4807. }
  4808. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4809. reset_acceleration_rates();
  4810. break;
  4811. #if 0 // Not used for Sprinter/grbl gen6
  4812. case 202: // M202
  4813. for(int8_t i=0; i < NUM_AXIS; i++) {
  4814. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4815. }
  4816. break;
  4817. #endif
  4818. case 203: // M203 max feedrate mm/sec
  4819. for(int8_t i=0; i < NUM_AXIS; i++) {
  4820. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4821. }
  4822. break;
  4823. case 204: // M204 acclereration S normal moves T filmanent only moves
  4824. {
  4825. if(code_seen('S')) acceleration = code_value() ;
  4826. if(code_seen('T')) retract_acceleration = code_value() ;
  4827. }
  4828. break;
  4829. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4830. {
  4831. if(code_seen('S')) minimumfeedrate = code_value();
  4832. if(code_seen('T')) mintravelfeedrate = code_value();
  4833. if(code_seen('B')) minsegmenttime = code_value() ;
  4834. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4835. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4836. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4837. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4838. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4839. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4840. }
  4841. break;
  4842. case 206: // M206 additional homing offset
  4843. for(int8_t i=0; i < 3; i++)
  4844. {
  4845. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4846. }
  4847. break;
  4848. #ifdef FWRETRACT
  4849. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4850. {
  4851. if(code_seen('S'))
  4852. {
  4853. retract_length = code_value() ;
  4854. }
  4855. if(code_seen('F'))
  4856. {
  4857. retract_feedrate = code_value()/60 ;
  4858. }
  4859. if(code_seen('Z'))
  4860. {
  4861. retract_zlift = code_value() ;
  4862. }
  4863. }break;
  4864. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4865. {
  4866. if(code_seen('S'))
  4867. {
  4868. retract_recover_length = code_value() ;
  4869. }
  4870. if(code_seen('F'))
  4871. {
  4872. retract_recover_feedrate = code_value()/60 ;
  4873. }
  4874. }break;
  4875. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4876. {
  4877. if(code_seen('S'))
  4878. {
  4879. int t= code_value() ;
  4880. switch(t)
  4881. {
  4882. case 0:
  4883. {
  4884. autoretract_enabled=false;
  4885. retracted[0]=false;
  4886. #if EXTRUDERS > 1
  4887. retracted[1]=false;
  4888. #endif
  4889. #if EXTRUDERS > 2
  4890. retracted[2]=false;
  4891. #endif
  4892. }break;
  4893. case 1:
  4894. {
  4895. autoretract_enabled=true;
  4896. retracted[0]=false;
  4897. #if EXTRUDERS > 1
  4898. retracted[1]=false;
  4899. #endif
  4900. #if EXTRUDERS > 2
  4901. retracted[2]=false;
  4902. #endif
  4903. }break;
  4904. default:
  4905. SERIAL_ECHO_START;
  4906. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4907. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4908. SERIAL_ECHOLNPGM("\"(1)");
  4909. }
  4910. }
  4911. }break;
  4912. #endif // FWRETRACT
  4913. #if EXTRUDERS > 1
  4914. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4915. {
  4916. if(setTargetedHotend(218)){
  4917. break;
  4918. }
  4919. if(code_seen('X'))
  4920. {
  4921. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4922. }
  4923. if(code_seen('Y'))
  4924. {
  4925. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4926. }
  4927. SERIAL_ECHO_START;
  4928. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4929. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4930. {
  4931. SERIAL_ECHO(" ");
  4932. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4933. SERIAL_ECHO(",");
  4934. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4935. }
  4936. SERIAL_ECHOLN("");
  4937. }break;
  4938. #endif
  4939. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4940. {
  4941. if(code_seen('S'))
  4942. {
  4943. feedmultiply = code_value() ;
  4944. }
  4945. }
  4946. break;
  4947. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4948. {
  4949. if(code_seen('S'))
  4950. {
  4951. int tmp_code = code_value();
  4952. if (code_seen('T'))
  4953. {
  4954. if(setTargetedHotend(221)){
  4955. break;
  4956. }
  4957. extruder_multiply[tmp_extruder] = tmp_code;
  4958. }
  4959. else
  4960. {
  4961. extrudemultiply = tmp_code ;
  4962. }
  4963. }
  4964. calculate_extruder_multipliers();
  4965. }
  4966. break;
  4967. #ifndef _DISABLE_M42_M226
  4968. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4969. {
  4970. if(code_seen('P')){
  4971. int pin_number = code_value(); // pin number
  4972. int pin_state = -1; // required pin state - default is inverted
  4973. if(code_seen('S')) pin_state = code_value(); // required pin state
  4974. if(pin_state >= -1 && pin_state <= 1){
  4975. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4976. {
  4977. if (sensitive_pins[i] == pin_number)
  4978. {
  4979. pin_number = -1;
  4980. break;
  4981. }
  4982. }
  4983. if (pin_number > -1)
  4984. {
  4985. int target = LOW;
  4986. st_synchronize();
  4987. pinMode(pin_number, INPUT);
  4988. switch(pin_state){
  4989. case 1:
  4990. target = HIGH;
  4991. break;
  4992. case 0:
  4993. target = LOW;
  4994. break;
  4995. case -1:
  4996. target = !digitalRead(pin_number);
  4997. break;
  4998. }
  4999. while(digitalRead(pin_number) != target){
  5000. manage_heater();
  5001. manage_inactivity();
  5002. lcd_update();
  5003. }
  5004. }
  5005. }
  5006. }
  5007. }
  5008. break;
  5009. #endif //_DISABLE_M42_M226
  5010. #if NUM_SERVOS > 0
  5011. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5012. {
  5013. int servo_index = -1;
  5014. int servo_position = 0;
  5015. if (code_seen('P'))
  5016. servo_index = code_value();
  5017. if (code_seen('S')) {
  5018. servo_position = code_value();
  5019. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5020. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5021. servos[servo_index].attach(0);
  5022. #endif
  5023. servos[servo_index].write(servo_position);
  5024. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5025. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5026. servos[servo_index].detach();
  5027. #endif
  5028. }
  5029. else {
  5030. SERIAL_ECHO_START;
  5031. SERIAL_ECHO("Servo ");
  5032. SERIAL_ECHO(servo_index);
  5033. SERIAL_ECHOLN(" out of range");
  5034. }
  5035. }
  5036. else if (servo_index >= 0) {
  5037. SERIAL_PROTOCOL(_T(MSG_OK));
  5038. SERIAL_PROTOCOL(" Servo ");
  5039. SERIAL_PROTOCOL(servo_index);
  5040. SERIAL_PROTOCOL(": ");
  5041. SERIAL_PROTOCOL(servos[servo_index].read());
  5042. SERIAL_PROTOCOLLN("");
  5043. }
  5044. }
  5045. break;
  5046. #endif // NUM_SERVOS > 0
  5047. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5048. case 300: // M300
  5049. {
  5050. int beepS = code_seen('S') ? code_value() : 110;
  5051. int beepP = code_seen('P') ? code_value() : 1000;
  5052. if (beepS > 0)
  5053. {
  5054. #if BEEPER > 0
  5055. tone(BEEPER, beepS);
  5056. delay(beepP);
  5057. noTone(BEEPER);
  5058. #elif defined(ULTRALCD)
  5059. lcd_buzz(beepS, beepP);
  5060. #elif defined(LCD_USE_I2C_BUZZER)
  5061. lcd_buzz(beepP, beepS);
  5062. #endif
  5063. }
  5064. else
  5065. {
  5066. delay(beepP);
  5067. }
  5068. }
  5069. break;
  5070. #endif // M300
  5071. #ifdef PIDTEMP
  5072. case 301: // M301
  5073. {
  5074. if(code_seen('P')) Kp = code_value();
  5075. if(code_seen('I')) Ki = scalePID_i(code_value());
  5076. if(code_seen('D')) Kd = scalePID_d(code_value());
  5077. #ifdef PID_ADD_EXTRUSION_RATE
  5078. if(code_seen('C')) Kc = code_value();
  5079. #endif
  5080. updatePID();
  5081. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5082. SERIAL_PROTOCOL(" p:");
  5083. SERIAL_PROTOCOL(Kp);
  5084. SERIAL_PROTOCOL(" i:");
  5085. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5086. SERIAL_PROTOCOL(" d:");
  5087. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5088. #ifdef PID_ADD_EXTRUSION_RATE
  5089. SERIAL_PROTOCOL(" c:");
  5090. //Kc does not have scaling applied above, or in resetting defaults
  5091. SERIAL_PROTOCOL(Kc);
  5092. #endif
  5093. SERIAL_PROTOCOLLN("");
  5094. }
  5095. break;
  5096. #endif //PIDTEMP
  5097. #ifdef PIDTEMPBED
  5098. case 304: // M304
  5099. {
  5100. if(code_seen('P')) bedKp = code_value();
  5101. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5102. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5103. updatePID();
  5104. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5105. SERIAL_PROTOCOL(" p:");
  5106. SERIAL_PROTOCOL(bedKp);
  5107. SERIAL_PROTOCOL(" i:");
  5108. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5109. SERIAL_PROTOCOL(" d:");
  5110. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5111. SERIAL_PROTOCOLLN("");
  5112. }
  5113. break;
  5114. #endif //PIDTEMP
  5115. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5116. {
  5117. #ifdef CHDK
  5118. SET_OUTPUT(CHDK);
  5119. WRITE(CHDK, HIGH);
  5120. chdkHigh = millis();
  5121. chdkActive = true;
  5122. #else
  5123. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5124. const uint8_t NUM_PULSES=16;
  5125. const float PULSE_LENGTH=0.01524;
  5126. for(int i=0; i < NUM_PULSES; i++) {
  5127. WRITE(PHOTOGRAPH_PIN, HIGH);
  5128. _delay_ms(PULSE_LENGTH);
  5129. WRITE(PHOTOGRAPH_PIN, LOW);
  5130. _delay_ms(PULSE_LENGTH);
  5131. }
  5132. delay(7.33);
  5133. for(int i=0; i < NUM_PULSES; i++) {
  5134. WRITE(PHOTOGRAPH_PIN, HIGH);
  5135. _delay_ms(PULSE_LENGTH);
  5136. WRITE(PHOTOGRAPH_PIN, LOW);
  5137. _delay_ms(PULSE_LENGTH);
  5138. }
  5139. #endif
  5140. #endif //chdk end if
  5141. }
  5142. break;
  5143. #ifdef DOGLCD
  5144. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5145. {
  5146. if (code_seen('C')) {
  5147. lcd_setcontrast( ((int)code_value())&63 );
  5148. }
  5149. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5150. SERIAL_PROTOCOL(lcd_contrast);
  5151. SERIAL_PROTOCOLLN("");
  5152. }
  5153. break;
  5154. #endif
  5155. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5156. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5157. {
  5158. float temp = .0;
  5159. if (code_seen('S')) temp=code_value();
  5160. set_extrude_min_temp(temp);
  5161. }
  5162. break;
  5163. #endif
  5164. case 303: // M303 PID autotune
  5165. {
  5166. float temp = 150.0;
  5167. int e=0;
  5168. int c=5;
  5169. if (code_seen('E')) e=code_value();
  5170. if (e<0)
  5171. temp=70;
  5172. if (code_seen('S')) temp=code_value();
  5173. if (code_seen('C')) c=code_value();
  5174. PID_autotune(temp, e, c);
  5175. }
  5176. break;
  5177. case 400: // M400 finish all moves
  5178. {
  5179. st_synchronize();
  5180. }
  5181. break;
  5182. case 500: // M500 Store settings in EEPROM
  5183. {
  5184. Config_StoreSettings(EEPROM_OFFSET);
  5185. }
  5186. break;
  5187. case 501: // M501 Read settings from EEPROM
  5188. {
  5189. Config_RetrieveSettings(EEPROM_OFFSET);
  5190. }
  5191. break;
  5192. case 502: // M502 Revert to default settings
  5193. {
  5194. Config_ResetDefault();
  5195. }
  5196. break;
  5197. case 503: // M503 print settings currently in memory
  5198. {
  5199. Config_PrintSettings();
  5200. }
  5201. break;
  5202. case 509: //M509 Force language selection
  5203. {
  5204. lcd_force_language_selection();
  5205. SERIAL_ECHO_START;
  5206. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5207. }
  5208. break;
  5209. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5210. case 540:
  5211. {
  5212. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5213. }
  5214. break;
  5215. #endif
  5216. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5217. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5218. {
  5219. float value;
  5220. if (code_seen('Z'))
  5221. {
  5222. value = code_value();
  5223. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5224. {
  5225. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5226. SERIAL_ECHO_START;
  5227. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5228. SERIAL_PROTOCOLLN("");
  5229. }
  5230. else
  5231. {
  5232. SERIAL_ECHO_START;
  5233. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5234. SERIAL_ECHORPGM(MSG_Z_MIN);
  5235. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5236. SERIAL_ECHORPGM(MSG_Z_MAX);
  5237. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5238. SERIAL_PROTOCOLLN("");
  5239. }
  5240. }
  5241. else
  5242. {
  5243. SERIAL_ECHO_START;
  5244. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5245. SERIAL_ECHO(-zprobe_zoffset);
  5246. SERIAL_PROTOCOLLN("");
  5247. }
  5248. break;
  5249. }
  5250. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5251. #ifdef FILAMENTCHANGEENABLE
  5252. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5253. {
  5254. #ifdef PAT9125
  5255. bool old_fsensor_enabled = fsensor_enabled;
  5256. fsensor_enabled = false; //temporary solution for unexpected restarting
  5257. #endif //PAT9125
  5258. st_synchronize();
  5259. float target[4];
  5260. float lastpos[4];
  5261. if (farm_mode)
  5262. {
  5263. prusa_statistics(22);
  5264. }
  5265. feedmultiplyBckp=feedmultiply;
  5266. int8_t TooLowZ = 0;
  5267. float HotendTempBckp = degTargetHotend(active_extruder);
  5268. int fanSpeedBckp = fanSpeed;
  5269. target[X_AXIS]=current_position[X_AXIS];
  5270. target[Y_AXIS]=current_position[Y_AXIS];
  5271. target[Z_AXIS]=current_position[Z_AXIS];
  5272. target[E_AXIS]=current_position[E_AXIS];
  5273. lastpos[X_AXIS]=current_position[X_AXIS];
  5274. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5275. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5276. lastpos[E_AXIS]=current_position[E_AXIS];
  5277. //Restract extruder
  5278. if(code_seen('E'))
  5279. {
  5280. target[E_AXIS]+= code_value();
  5281. }
  5282. else
  5283. {
  5284. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5285. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5286. #endif
  5287. }
  5288. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5289. //Lift Z
  5290. if(code_seen('Z'))
  5291. {
  5292. target[Z_AXIS]+= code_value();
  5293. }
  5294. else
  5295. {
  5296. #ifdef FILAMENTCHANGE_ZADD
  5297. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5298. if(target[Z_AXIS] < 10){
  5299. target[Z_AXIS]+= 10 ;
  5300. TooLowZ = 1;
  5301. }else{
  5302. TooLowZ = 0;
  5303. }
  5304. #endif
  5305. }
  5306. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5307. //Move XY to side
  5308. if(code_seen('X'))
  5309. {
  5310. target[X_AXIS]+= code_value();
  5311. }
  5312. else
  5313. {
  5314. #ifdef FILAMENTCHANGE_XPOS
  5315. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5316. #endif
  5317. }
  5318. if(code_seen('Y'))
  5319. {
  5320. target[Y_AXIS]= code_value();
  5321. }
  5322. else
  5323. {
  5324. #ifdef FILAMENTCHANGE_YPOS
  5325. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5326. #endif
  5327. }
  5328. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5329. st_synchronize();
  5330. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5331. uint8_t cnt = 0;
  5332. int counterBeep = 0;
  5333. fanSpeed = 0;
  5334. unsigned long waiting_start_time = millis();
  5335. uint8_t wait_for_user_state = 0;
  5336. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5337. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5338. //cnt++;
  5339. manage_heater();
  5340. manage_inactivity(true);
  5341. /*#ifdef SNMM
  5342. target[E_AXIS] += 0.002;
  5343. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5344. #endif // SNMM*/
  5345. //if (cnt == 0)
  5346. {
  5347. #if BEEPER > 0
  5348. if (counterBeep == 500) {
  5349. counterBeep = 0;
  5350. }
  5351. SET_OUTPUT(BEEPER);
  5352. if (counterBeep == 0) {
  5353. WRITE(BEEPER, HIGH);
  5354. }
  5355. if (counterBeep == 20) {
  5356. WRITE(BEEPER, LOW);
  5357. }
  5358. counterBeep++;
  5359. #else
  5360. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5361. lcd_buzz(1000 / 6, 100);
  5362. #else
  5363. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5364. #endif
  5365. #endif
  5366. }
  5367. switch (wait_for_user_state) {
  5368. case 0:
  5369. delay_keep_alive(4);
  5370. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5371. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5372. wait_for_user_state = 1;
  5373. setTargetHotend(0, 0);
  5374. setTargetHotend(0, 1);
  5375. setTargetHotend(0, 2);
  5376. st_synchronize();
  5377. disable_e0();
  5378. disable_e1();
  5379. disable_e2();
  5380. }
  5381. break;
  5382. case 1:
  5383. delay_keep_alive(4);
  5384. if (lcd_clicked()) {
  5385. setTargetHotend(HotendTempBckp, active_extruder);
  5386. lcd_wait_for_heater();
  5387. wait_for_user_state = 2;
  5388. }
  5389. break;
  5390. case 2:
  5391. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5392. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5393. waiting_start_time = millis();
  5394. wait_for_user_state = 0;
  5395. }
  5396. else {
  5397. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5398. lcd.setCursor(1, 4);
  5399. lcd.print(ftostr3(degHotend(active_extruder)));
  5400. }
  5401. break;
  5402. }
  5403. }
  5404. WRITE(BEEPER, LOW);
  5405. lcd_change_fil_state = 0;
  5406. // Unload filament
  5407. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5408. KEEPALIVE_STATE(IN_HANDLER);
  5409. custom_message = true;
  5410. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5411. if (code_seen('L'))
  5412. {
  5413. target[E_AXIS] += code_value();
  5414. }
  5415. else
  5416. {
  5417. #ifdef SNMM
  5418. #else
  5419. #ifdef FILAMENTCHANGE_FINALRETRACT
  5420. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5421. #endif
  5422. #endif // SNMM
  5423. }
  5424. #ifdef SNMM
  5425. target[E_AXIS] += 12;
  5426. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5427. target[E_AXIS] += 6;
  5428. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5429. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5430. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5431. st_synchronize();
  5432. target[E_AXIS] += (FIL_COOLING);
  5433. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5434. target[E_AXIS] += (FIL_COOLING*-1);
  5435. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5436. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5437. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5438. st_synchronize();
  5439. #else
  5440. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5441. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5442. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5443. st_synchronize();
  5444. #ifdef TMC2130
  5445. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5446. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5447. #else
  5448. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5449. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5450. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5451. #endif //TMC2130
  5452. target[E_AXIS] -= 45;
  5453. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5454. st_synchronize();
  5455. target[E_AXIS] -= 15;
  5456. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5457. st_synchronize();
  5458. target[E_AXIS] -= 20;
  5459. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5460. st_synchronize();
  5461. #ifdef TMC2130
  5462. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5463. #else
  5464. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5465. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5466. else st_current_set(2, tmp_motor_loud[2]);
  5467. #endif //TMC2130
  5468. #endif // SNMM
  5469. //finish moves
  5470. st_synchronize();
  5471. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5472. //disable extruder steppers so filament can be removed
  5473. disable_e0();
  5474. disable_e1();
  5475. disable_e2();
  5476. delay(100);
  5477. WRITE(BEEPER, HIGH);
  5478. counterBeep = 0;
  5479. while(!lcd_clicked() && (counterBeep < 50)) {
  5480. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5481. delay_keep_alive(100);
  5482. counterBeep++;
  5483. }
  5484. WRITE(BEEPER, LOW);
  5485. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5486. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5487. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5488. //lcd_return_to_status();
  5489. lcd_update_enable(true);
  5490. //Wait for user to insert filament
  5491. lcd_wait_interact();
  5492. //load_filament_time = millis();
  5493. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5494. #ifdef PAT9125
  5495. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5496. #endif //PAT9125
  5497. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5498. while(!lcd_clicked())
  5499. {
  5500. manage_heater();
  5501. manage_inactivity(true);
  5502. #ifdef PAT9125
  5503. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5504. {
  5505. tone(BEEPER, 1000);
  5506. delay_keep_alive(50);
  5507. noTone(BEEPER);
  5508. break;
  5509. }
  5510. #endif //PAT9125
  5511. /*#ifdef SNMM
  5512. target[E_AXIS] += 0.002;
  5513. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5514. #endif // SNMM*/
  5515. }
  5516. #ifdef PAT9125
  5517. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5518. #endif //PAT9125
  5519. //WRITE(BEEPER, LOW);
  5520. KEEPALIVE_STATE(IN_HANDLER);
  5521. #ifdef SNMM
  5522. display_loading();
  5523. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5524. do {
  5525. target[E_AXIS] += 0.002;
  5526. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5527. delay_keep_alive(2);
  5528. } while (!lcd_clicked());
  5529. KEEPALIVE_STATE(IN_HANDLER);
  5530. /*if (millis() - load_filament_time > 2) {
  5531. load_filament_time = millis();
  5532. target[E_AXIS] += 0.001;
  5533. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5534. }*/
  5535. //Filament inserted
  5536. //Feed the filament to the end of nozzle quickly
  5537. st_synchronize();
  5538. target[E_AXIS] += bowden_length[snmm_extruder];
  5539. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5540. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5541. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5542. target[E_AXIS] += 40;
  5543. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5544. target[E_AXIS] += 10;
  5545. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5546. #else
  5547. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5548. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5549. #endif // SNMM
  5550. //Extrude some filament
  5551. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5552. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5553. //Wait for user to check the state
  5554. lcd_change_fil_state = 0;
  5555. lcd_loading_filament();
  5556. tone(BEEPER, 500);
  5557. delay_keep_alive(50);
  5558. noTone(BEEPER);
  5559. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5560. lcd_change_fil_state = 0;
  5561. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5562. lcd_alright();
  5563. KEEPALIVE_STATE(IN_HANDLER);
  5564. switch(lcd_change_fil_state){
  5565. // Filament failed to load so load it again
  5566. case 2:
  5567. #ifdef SNMM
  5568. display_loading();
  5569. do {
  5570. target[E_AXIS] += 0.002;
  5571. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5572. delay_keep_alive(2);
  5573. } while (!lcd_clicked());
  5574. st_synchronize();
  5575. target[E_AXIS] += bowden_length[snmm_extruder];
  5576. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5577. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5578. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5579. target[E_AXIS] += 40;
  5580. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5581. target[E_AXIS] += 10;
  5582. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5583. #else
  5584. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5585. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5586. #endif
  5587. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5588. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5589. lcd_loading_filament();
  5590. break;
  5591. // Filament loaded properly but color is not clear
  5592. case 3:
  5593. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5594. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5595. lcd_loading_color();
  5596. break;
  5597. // Everything good
  5598. default:
  5599. lcd_change_success();
  5600. lcd_update_enable(true);
  5601. break;
  5602. }
  5603. }
  5604. //Not let's go back to print
  5605. fanSpeed = fanSpeedBckp;
  5606. //Feed a little of filament to stabilize pressure
  5607. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5608. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5609. //Retract
  5610. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5611. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5612. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5613. //Move XY back
  5614. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5615. //Move Z back
  5616. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5617. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5618. //Unretract
  5619. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5620. //Set E position to original
  5621. plan_set_e_position(lastpos[E_AXIS]);
  5622. //Recover feed rate
  5623. feedmultiply=feedmultiplyBckp;
  5624. char cmd[9];
  5625. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5626. enquecommand(cmd);
  5627. lcd_setstatuspgm(_T(WELCOME_MSG));
  5628. custom_message = false;
  5629. custom_message_type = 0;
  5630. #ifdef PAT9125
  5631. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5632. if (fsensor_M600)
  5633. {
  5634. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5635. st_synchronize();
  5636. while (!is_buffer_empty())
  5637. {
  5638. process_commands();
  5639. cmdqueue_pop_front();
  5640. }
  5641. fsensor_enable();
  5642. fsensor_restore_print_and_continue();
  5643. }
  5644. #endif //PAT9125
  5645. }
  5646. break;
  5647. #endif //FILAMENTCHANGEENABLE
  5648. case 601: {
  5649. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5650. }
  5651. break;
  5652. case 602: {
  5653. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5654. }
  5655. break;
  5656. #ifdef PINDA_THERMISTOR
  5657. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5658. {
  5659. int set_target_pinda = 0;
  5660. if (code_seen('S')) {
  5661. set_target_pinda = code_value();
  5662. }
  5663. else {
  5664. break;
  5665. }
  5666. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5667. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5668. SERIAL_PROTOCOL(set_target_pinda);
  5669. SERIAL_PROTOCOLLN("");
  5670. codenum = millis();
  5671. cancel_heatup = false;
  5672. bool is_pinda_cooling = false;
  5673. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5674. is_pinda_cooling = true;
  5675. }
  5676. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5677. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5678. {
  5679. SERIAL_PROTOCOLPGM("P:");
  5680. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5681. SERIAL_PROTOCOLPGM("/");
  5682. SERIAL_PROTOCOL(set_target_pinda);
  5683. SERIAL_PROTOCOLLN("");
  5684. codenum = millis();
  5685. }
  5686. manage_heater();
  5687. manage_inactivity();
  5688. lcd_update();
  5689. }
  5690. LCD_MESSAGERPGM(_T(MSG_OK));
  5691. break;
  5692. }
  5693. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5694. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5695. uint8_t cal_status = calibration_status_pinda();
  5696. int16_t usteps = 0;
  5697. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5698. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5699. for (uint8_t i = 0; i < 6; i++)
  5700. {
  5701. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5702. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5703. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5704. SERIAL_PROTOCOLPGM(", ");
  5705. SERIAL_PROTOCOL(35 + (i * 5));
  5706. SERIAL_PROTOCOLPGM(", ");
  5707. SERIAL_PROTOCOL(usteps);
  5708. SERIAL_PROTOCOLPGM(", ");
  5709. SERIAL_PROTOCOL(mm * 1000);
  5710. SERIAL_PROTOCOLLN("");
  5711. }
  5712. }
  5713. else if (code_seen('!')) { // ! - Set factory default values
  5714. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5715. int16_t z_shift = 8; //40C - 20um - 8usteps
  5716. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5717. z_shift = 24; //45C - 60um - 24usteps
  5718. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5719. z_shift = 48; //50C - 120um - 48usteps
  5720. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5721. z_shift = 80; //55C - 200um - 80usteps
  5722. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5723. z_shift = 120; //60C - 300um - 120usteps
  5724. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5725. SERIAL_PROTOCOLLN("factory restored");
  5726. }
  5727. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5728. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5729. int16_t z_shift = 0;
  5730. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5731. SERIAL_PROTOCOLLN("zerorized");
  5732. }
  5733. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5734. int16_t usteps = code_value();
  5735. if (code_seen('I')) {
  5736. byte index = code_value();
  5737. if ((index >= 0) && (index < 5)) {
  5738. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5739. SERIAL_PROTOCOLLN("OK");
  5740. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5741. for (uint8_t i = 0; i < 6; i++)
  5742. {
  5743. usteps = 0;
  5744. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5745. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5746. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5747. SERIAL_PROTOCOLPGM(", ");
  5748. SERIAL_PROTOCOL(35 + (i * 5));
  5749. SERIAL_PROTOCOLPGM(", ");
  5750. SERIAL_PROTOCOL(usteps);
  5751. SERIAL_PROTOCOLPGM(", ");
  5752. SERIAL_PROTOCOL(mm * 1000);
  5753. SERIAL_PROTOCOLLN("");
  5754. }
  5755. }
  5756. }
  5757. }
  5758. else {
  5759. SERIAL_PROTOCOLPGM("no valid command");
  5760. }
  5761. break;
  5762. #endif //PINDA_THERMISTOR
  5763. #ifdef LIN_ADVANCE
  5764. case 900: // M900: Set LIN_ADVANCE options.
  5765. gcode_M900();
  5766. break;
  5767. #endif
  5768. case 907: // M907 Set digital trimpot motor current using axis codes.
  5769. {
  5770. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5771. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5772. if(code_seen('B')) st_current_set(4,code_value());
  5773. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5774. #endif
  5775. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5776. if(code_seen('X')) st_current_set(0, code_value());
  5777. #endif
  5778. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5779. if(code_seen('Z')) st_current_set(1, code_value());
  5780. #endif
  5781. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5782. if(code_seen('E')) st_current_set(2, code_value());
  5783. #endif
  5784. }
  5785. break;
  5786. case 908: // M908 Control digital trimpot directly.
  5787. {
  5788. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5789. uint8_t channel,current;
  5790. if(code_seen('P')) channel=code_value();
  5791. if(code_seen('S')) current=code_value();
  5792. digitalPotWrite(channel, current);
  5793. #endif
  5794. }
  5795. break;
  5796. #ifdef TMC2130
  5797. case 910: // M910 TMC2130 init
  5798. {
  5799. tmc2130_init();
  5800. }
  5801. break;
  5802. case 911: // M911 Set TMC2130 holding currents
  5803. {
  5804. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5805. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5806. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5807. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5808. }
  5809. break;
  5810. case 912: // M912 Set TMC2130 running currents
  5811. {
  5812. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5813. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5814. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5815. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5816. }
  5817. break;
  5818. case 913: // M913 Print TMC2130 currents
  5819. {
  5820. tmc2130_print_currents();
  5821. }
  5822. break;
  5823. case 914: // M914 Set normal mode
  5824. {
  5825. tmc2130_mode = TMC2130_MODE_NORMAL;
  5826. tmc2130_init();
  5827. }
  5828. break;
  5829. case 915: // M915 Set silent mode
  5830. {
  5831. tmc2130_mode = TMC2130_MODE_SILENT;
  5832. tmc2130_init();
  5833. }
  5834. break;
  5835. case 916: // M916 Set sg_thrs
  5836. {
  5837. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5838. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5839. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5840. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5841. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5842. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5843. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5844. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5845. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5846. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5847. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5848. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5849. }
  5850. break;
  5851. case 917: // M917 Set TMC2130 pwm_ampl
  5852. {
  5853. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5854. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5855. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5856. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5857. }
  5858. break;
  5859. case 918: // M918 Set TMC2130 pwm_grad
  5860. {
  5861. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5862. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5863. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5864. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5865. }
  5866. break;
  5867. #endif //TMC2130
  5868. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5869. {
  5870. #ifdef TMC2130
  5871. if(code_seen('E'))
  5872. {
  5873. uint16_t res_new = code_value();
  5874. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5875. {
  5876. st_synchronize();
  5877. uint8_t axis = E_AXIS;
  5878. uint16_t res = tmc2130_get_res(axis);
  5879. tmc2130_set_res(axis, res_new);
  5880. if (res_new > res)
  5881. {
  5882. uint16_t fac = (res_new / res);
  5883. axis_steps_per_unit[axis] *= fac;
  5884. position[E_AXIS] *= fac;
  5885. }
  5886. else
  5887. {
  5888. uint16_t fac = (res / res_new);
  5889. axis_steps_per_unit[axis] /= fac;
  5890. position[E_AXIS] /= fac;
  5891. }
  5892. }
  5893. }
  5894. #else //TMC2130
  5895. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5896. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5897. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5898. if(code_seen('B')) microstep_mode(4,code_value());
  5899. microstep_readings();
  5900. #endif
  5901. #endif //TMC2130
  5902. }
  5903. break;
  5904. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5905. {
  5906. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5907. if(code_seen('S')) switch((int)code_value())
  5908. {
  5909. case 1:
  5910. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5911. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5912. break;
  5913. case 2:
  5914. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5915. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5916. break;
  5917. }
  5918. microstep_readings();
  5919. #endif
  5920. }
  5921. break;
  5922. case 701: //M701: load filament
  5923. {
  5924. gcode_M701();
  5925. }
  5926. break;
  5927. case 702:
  5928. {
  5929. #ifdef SNMM
  5930. if (code_seen('U')) {
  5931. extr_unload_used(); //unload all filaments which were used in current print
  5932. }
  5933. else if (code_seen('C')) {
  5934. extr_unload(); //unload just current filament
  5935. }
  5936. else {
  5937. extr_unload_all(); //unload all filaments
  5938. }
  5939. #else
  5940. #ifdef PAT9125
  5941. bool old_fsensor_enabled = fsensor_enabled;
  5942. fsensor_enabled = false;
  5943. #endif //PAT9125
  5944. custom_message = true;
  5945. custom_message_type = 2;
  5946. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5947. // extr_unload2();
  5948. current_position[E_AXIS] -= 45;
  5949. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5950. st_synchronize();
  5951. current_position[E_AXIS] -= 15;
  5952. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5953. st_synchronize();
  5954. current_position[E_AXIS] -= 20;
  5955. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5956. st_synchronize();
  5957. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5958. //disable extruder steppers so filament can be removed
  5959. disable_e0();
  5960. disable_e1();
  5961. disable_e2();
  5962. delay(100);
  5963. WRITE(BEEPER, HIGH);
  5964. uint8_t counterBeep = 0;
  5965. while (!lcd_clicked() && (counterBeep < 50)) {
  5966. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5967. delay_keep_alive(100);
  5968. counterBeep++;
  5969. }
  5970. WRITE(BEEPER, LOW);
  5971. st_synchronize();
  5972. while (lcd_clicked()) delay_keep_alive(100);
  5973. lcd_update_enable(true);
  5974. lcd_setstatuspgm(_T(WELCOME_MSG));
  5975. custom_message = false;
  5976. custom_message_type = 0;
  5977. #ifdef PAT9125
  5978. fsensor_enabled = old_fsensor_enabled;
  5979. #endif //PAT9125
  5980. #endif
  5981. }
  5982. break;
  5983. case 999: // M999: Restart after being stopped
  5984. Stopped = false;
  5985. lcd_reset_alert_level();
  5986. gcode_LastN = Stopped_gcode_LastN;
  5987. FlushSerialRequestResend();
  5988. break;
  5989. default:
  5990. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5991. }
  5992. } // end if(code_seen('M')) (end of M codes)
  5993. else if(code_seen('T'))
  5994. {
  5995. int index;
  5996. st_synchronize();
  5997. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5998. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5999. SERIAL_ECHOLNPGM("Invalid T code.");
  6000. }
  6001. else {
  6002. if (*(strchr_pointer + index) == '?') {
  6003. tmp_extruder = choose_extruder_menu();
  6004. }
  6005. else {
  6006. tmp_extruder = code_value();
  6007. }
  6008. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6009. #ifdef SNMM
  6010. #ifdef LIN_ADVANCE
  6011. if (snmm_extruder != tmp_extruder)
  6012. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6013. #endif
  6014. snmm_extruder = tmp_extruder;
  6015. delay(100);
  6016. disable_e0();
  6017. disable_e1();
  6018. disable_e2();
  6019. pinMode(E_MUX0_PIN, OUTPUT);
  6020. pinMode(E_MUX1_PIN, OUTPUT);
  6021. delay(100);
  6022. SERIAL_ECHO_START;
  6023. SERIAL_ECHO("T:");
  6024. SERIAL_ECHOLN((int)tmp_extruder);
  6025. switch (tmp_extruder) {
  6026. case 1:
  6027. WRITE(E_MUX0_PIN, HIGH);
  6028. WRITE(E_MUX1_PIN, LOW);
  6029. break;
  6030. case 2:
  6031. WRITE(E_MUX0_PIN, LOW);
  6032. WRITE(E_MUX1_PIN, HIGH);
  6033. break;
  6034. case 3:
  6035. WRITE(E_MUX0_PIN, HIGH);
  6036. WRITE(E_MUX1_PIN, HIGH);
  6037. break;
  6038. default:
  6039. WRITE(E_MUX0_PIN, LOW);
  6040. WRITE(E_MUX1_PIN, LOW);
  6041. break;
  6042. }
  6043. delay(100);
  6044. #else
  6045. if (tmp_extruder >= EXTRUDERS) {
  6046. SERIAL_ECHO_START;
  6047. SERIAL_ECHOPGM("T");
  6048. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6049. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6050. }
  6051. else {
  6052. boolean make_move = false;
  6053. if (code_seen('F')) {
  6054. make_move = true;
  6055. next_feedrate = code_value();
  6056. if (next_feedrate > 0.0) {
  6057. feedrate = next_feedrate;
  6058. }
  6059. }
  6060. #if EXTRUDERS > 1
  6061. if (tmp_extruder != active_extruder) {
  6062. // Save current position to return to after applying extruder offset
  6063. memcpy(destination, current_position, sizeof(destination));
  6064. // Offset extruder (only by XY)
  6065. int i;
  6066. for (i = 0; i < 2; i++) {
  6067. current_position[i] = current_position[i] -
  6068. extruder_offset[i][active_extruder] +
  6069. extruder_offset[i][tmp_extruder];
  6070. }
  6071. // Set the new active extruder and position
  6072. active_extruder = tmp_extruder;
  6073. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6074. // Move to the old position if 'F' was in the parameters
  6075. if (make_move && Stopped == false) {
  6076. prepare_move();
  6077. }
  6078. }
  6079. #endif
  6080. SERIAL_ECHO_START;
  6081. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6082. SERIAL_PROTOCOLLN((int)active_extruder);
  6083. }
  6084. #endif
  6085. }
  6086. } // end if(code_seen('T')) (end of T codes)
  6087. #ifdef DEBUG_DCODES
  6088. else if (code_seen('D')) // D codes (debug)
  6089. {
  6090. switch((int)code_value())
  6091. {
  6092. case -1: // D-1 - Endless loop
  6093. dcode__1(); break;
  6094. case 0: // D0 - Reset
  6095. dcode_0(); break;
  6096. case 1: // D1 - Clear EEPROM
  6097. dcode_1(); break;
  6098. case 2: // D2 - Read/Write RAM
  6099. dcode_2(); break;
  6100. case 3: // D3 - Read/Write EEPROM
  6101. dcode_3(); break;
  6102. case 4: // D4 - Read/Write PIN
  6103. dcode_4(); break;
  6104. case 5: // D5 - Read/Write FLASH
  6105. // dcode_5(); break;
  6106. break;
  6107. case 6: // D6 - Read/Write external FLASH
  6108. dcode_6(); break;
  6109. case 7: // D7 - Read/Write Bootloader
  6110. dcode_7(); break;
  6111. case 8: // D8 - Read/Write PINDA
  6112. dcode_8(); break;
  6113. case 9: // D9 - Read/Write ADC
  6114. dcode_9(); break;
  6115. case 10: // D10 - XYZ calibration = OK
  6116. dcode_10(); break;
  6117. #ifdef TMC2130
  6118. case 2130: // D9125 - TMC2130
  6119. dcode_2130(); break;
  6120. #endif //TMC2130
  6121. #ifdef PAT9125
  6122. case 9125: // D9125 - PAT9125
  6123. dcode_9125(); break;
  6124. #endif //PAT9125
  6125. }
  6126. }
  6127. #endif //DEBUG_DCODES
  6128. else
  6129. {
  6130. SERIAL_ECHO_START;
  6131. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6132. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6133. SERIAL_ECHOLNPGM("\"(2)");
  6134. }
  6135. KEEPALIVE_STATE(NOT_BUSY);
  6136. ClearToSend();
  6137. }
  6138. void FlushSerialRequestResend()
  6139. {
  6140. //char cmdbuffer[bufindr][100]="Resend:";
  6141. MYSERIAL.flush();
  6142. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6143. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6144. previous_millis_cmd = millis();
  6145. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6146. }
  6147. // Confirm the execution of a command, if sent from a serial line.
  6148. // Execution of a command from a SD card will not be confirmed.
  6149. void ClearToSend()
  6150. {
  6151. previous_millis_cmd = millis();
  6152. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6153. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6154. }
  6155. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6156. void update_currents() {
  6157. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6158. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6159. float tmp_motor[3];
  6160. //SERIAL_ECHOLNPGM("Currents updated: ");
  6161. if (destination[Z_AXIS] < Z_SILENT) {
  6162. //SERIAL_ECHOLNPGM("LOW");
  6163. for (uint8_t i = 0; i < 3; i++) {
  6164. st_current_set(i, current_low[i]);
  6165. /*MYSERIAL.print(int(i));
  6166. SERIAL_ECHOPGM(": ");
  6167. MYSERIAL.println(current_low[i]);*/
  6168. }
  6169. }
  6170. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6171. //SERIAL_ECHOLNPGM("HIGH");
  6172. for (uint8_t i = 0; i < 3; i++) {
  6173. st_current_set(i, current_high[i]);
  6174. /*MYSERIAL.print(int(i));
  6175. SERIAL_ECHOPGM(": ");
  6176. MYSERIAL.println(current_high[i]);*/
  6177. }
  6178. }
  6179. else {
  6180. for (uint8_t i = 0; i < 3; i++) {
  6181. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6182. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6183. st_current_set(i, tmp_motor[i]);
  6184. /*MYSERIAL.print(int(i));
  6185. SERIAL_ECHOPGM(": ");
  6186. MYSERIAL.println(tmp_motor[i]);*/
  6187. }
  6188. }
  6189. }
  6190. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6191. void get_coordinates()
  6192. {
  6193. bool seen[4]={false,false,false,false};
  6194. for(int8_t i=0; i < NUM_AXIS; i++) {
  6195. if(code_seen(axis_codes[i]))
  6196. {
  6197. bool relative = axis_relative_modes[i] || relative_mode;
  6198. destination[i] = (float)code_value();
  6199. if (i == E_AXIS) {
  6200. float emult = extruder_multiplier[active_extruder];
  6201. if (emult != 1.) {
  6202. if (! relative) {
  6203. destination[i] -= current_position[i];
  6204. relative = true;
  6205. }
  6206. destination[i] *= emult;
  6207. }
  6208. }
  6209. if (relative)
  6210. destination[i] += current_position[i];
  6211. seen[i]=true;
  6212. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6213. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6214. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6215. }
  6216. else destination[i] = current_position[i]; //Are these else lines really needed?
  6217. }
  6218. if(code_seen('F')) {
  6219. next_feedrate = code_value();
  6220. #ifdef MAX_SILENT_FEEDRATE
  6221. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6222. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6223. #endif //MAX_SILENT_FEEDRATE
  6224. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6225. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6226. {
  6227. // float e_max_speed =
  6228. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6229. }
  6230. }
  6231. }
  6232. void get_arc_coordinates()
  6233. {
  6234. #ifdef SF_ARC_FIX
  6235. bool relative_mode_backup = relative_mode;
  6236. relative_mode = true;
  6237. #endif
  6238. get_coordinates();
  6239. #ifdef SF_ARC_FIX
  6240. relative_mode=relative_mode_backup;
  6241. #endif
  6242. if(code_seen('I')) {
  6243. offset[0] = code_value();
  6244. }
  6245. else {
  6246. offset[0] = 0.0;
  6247. }
  6248. if(code_seen('J')) {
  6249. offset[1] = code_value();
  6250. }
  6251. else {
  6252. offset[1] = 0.0;
  6253. }
  6254. }
  6255. void clamp_to_software_endstops(float target[3])
  6256. {
  6257. #ifdef DEBUG_DISABLE_SWLIMITS
  6258. return;
  6259. #endif //DEBUG_DISABLE_SWLIMITS
  6260. world2machine_clamp(target[0], target[1]);
  6261. // Clamp the Z coordinate.
  6262. if (min_software_endstops) {
  6263. float negative_z_offset = 0;
  6264. #ifdef ENABLE_AUTO_BED_LEVELING
  6265. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6266. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6267. #endif
  6268. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6269. }
  6270. if (max_software_endstops) {
  6271. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6272. }
  6273. }
  6274. #ifdef MESH_BED_LEVELING
  6275. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6276. float dx = x - current_position[X_AXIS];
  6277. float dy = y - current_position[Y_AXIS];
  6278. float dz = z - current_position[Z_AXIS];
  6279. int n_segments = 0;
  6280. if (mbl.active) {
  6281. float len = abs(dx) + abs(dy);
  6282. if (len > 0)
  6283. // Split to 3cm segments or shorter.
  6284. n_segments = int(ceil(len / 30.f));
  6285. }
  6286. if (n_segments > 1) {
  6287. float de = e - current_position[E_AXIS];
  6288. for (int i = 1; i < n_segments; ++ i) {
  6289. float t = float(i) / float(n_segments);
  6290. plan_buffer_line(
  6291. current_position[X_AXIS] + t * dx,
  6292. current_position[Y_AXIS] + t * dy,
  6293. current_position[Z_AXIS] + t * dz,
  6294. current_position[E_AXIS] + t * de,
  6295. feed_rate, extruder);
  6296. }
  6297. }
  6298. // The rest of the path.
  6299. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6300. current_position[X_AXIS] = x;
  6301. current_position[Y_AXIS] = y;
  6302. current_position[Z_AXIS] = z;
  6303. current_position[E_AXIS] = e;
  6304. }
  6305. #endif // MESH_BED_LEVELING
  6306. void prepare_move()
  6307. {
  6308. clamp_to_software_endstops(destination);
  6309. previous_millis_cmd = millis();
  6310. // Do not use feedmultiply for E or Z only moves
  6311. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6312. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6313. }
  6314. else {
  6315. #ifdef MESH_BED_LEVELING
  6316. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6317. #else
  6318. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6319. #endif
  6320. }
  6321. for(int8_t i=0; i < NUM_AXIS; i++) {
  6322. current_position[i] = destination[i];
  6323. }
  6324. }
  6325. void prepare_arc_move(char isclockwise) {
  6326. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6327. // Trace the arc
  6328. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6329. // As far as the parser is concerned, the position is now == target. In reality the
  6330. // motion control system might still be processing the action and the real tool position
  6331. // in any intermediate location.
  6332. for(int8_t i=0; i < NUM_AXIS; i++) {
  6333. current_position[i] = destination[i];
  6334. }
  6335. previous_millis_cmd = millis();
  6336. }
  6337. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6338. #if defined(FAN_PIN)
  6339. #if CONTROLLERFAN_PIN == FAN_PIN
  6340. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6341. #endif
  6342. #endif
  6343. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6344. unsigned long lastMotorCheck = 0;
  6345. void controllerFan()
  6346. {
  6347. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6348. {
  6349. lastMotorCheck = millis();
  6350. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6351. #if EXTRUDERS > 2
  6352. || !READ(E2_ENABLE_PIN)
  6353. #endif
  6354. #if EXTRUDER > 1
  6355. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6356. || !READ(X2_ENABLE_PIN)
  6357. #endif
  6358. || !READ(E1_ENABLE_PIN)
  6359. #endif
  6360. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6361. {
  6362. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6363. }
  6364. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6365. {
  6366. digitalWrite(CONTROLLERFAN_PIN, 0);
  6367. analogWrite(CONTROLLERFAN_PIN, 0);
  6368. }
  6369. else
  6370. {
  6371. // allows digital or PWM fan output to be used (see M42 handling)
  6372. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6373. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6374. }
  6375. }
  6376. }
  6377. #endif
  6378. #ifdef TEMP_STAT_LEDS
  6379. static bool blue_led = false;
  6380. static bool red_led = false;
  6381. static uint32_t stat_update = 0;
  6382. void handle_status_leds(void) {
  6383. float max_temp = 0.0;
  6384. if(millis() > stat_update) {
  6385. stat_update += 500; // Update every 0.5s
  6386. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6387. max_temp = max(max_temp, degHotend(cur_extruder));
  6388. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6389. }
  6390. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6391. max_temp = max(max_temp, degTargetBed());
  6392. max_temp = max(max_temp, degBed());
  6393. #endif
  6394. if((max_temp > 55.0) && (red_led == false)) {
  6395. digitalWrite(STAT_LED_RED, 1);
  6396. digitalWrite(STAT_LED_BLUE, 0);
  6397. red_led = true;
  6398. blue_led = false;
  6399. }
  6400. if((max_temp < 54.0) && (blue_led == false)) {
  6401. digitalWrite(STAT_LED_RED, 0);
  6402. digitalWrite(STAT_LED_BLUE, 1);
  6403. red_led = false;
  6404. blue_led = true;
  6405. }
  6406. }
  6407. }
  6408. #endif
  6409. #ifdef SAFETYTIMER
  6410. /**
  6411. * @brief Turn off heating after 30 minutes of inactivity
  6412. *
  6413. * Full screen blocking notification message is shown after heater turning off.
  6414. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6415. * damage print.
  6416. */
  6417. static void handleSafetyTimer()
  6418. {
  6419. #if (EXTRUDERS > 1)
  6420. #error Implemented only for one extruder.
  6421. #endif //(EXTRUDERS > 1)
  6422. if (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4) || saved_printing
  6423. || (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0)))
  6424. {
  6425. safetyTimer.stop();
  6426. }
  6427. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6428. {
  6429. safetyTimer.start();
  6430. }
  6431. else if (safetyTimer.expired(1800000ul)) //30 min
  6432. {
  6433. setTargetBed(0);
  6434. setTargetHotend(0, 0);
  6435. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6436. }
  6437. }
  6438. #endif //SAFETYTIMER
  6439. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6440. {
  6441. #ifdef PAT9125
  6442. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6443. {
  6444. if (fsensor_autoload_enabled)
  6445. {
  6446. if (fsensor_check_autoload())
  6447. {
  6448. if (degHotend0() > EXTRUDE_MINTEMP)
  6449. {
  6450. fsensor_autoload_check_stop();
  6451. tone(BEEPER, 1000);
  6452. delay_keep_alive(50);
  6453. noTone(BEEPER);
  6454. loading_flag = true;
  6455. enquecommand_front_P((PSTR("M701")));
  6456. }
  6457. else
  6458. {
  6459. lcd_update_enable(false);
  6460. lcd_implementation_clear();
  6461. lcd.setCursor(0, 0);
  6462. lcd_printPGM(_T(MSG_ERROR));
  6463. lcd.setCursor(0, 2);
  6464. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6465. delay(2000);
  6466. lcd_implementation_clear();
  6467. lcd_update_enable(true);
  6468. }
  6469. }
  6470. }
  6471. else
  6472. fsensor_autoload_check_start();
  6473. }
  6474. else
  6475. if (fsensor_autoload_enabled)
  6476. fsensor_autoload_check_stop();
  6477. #endif //PAT9125
  6478. #ifdef SAFETYTIMER
  6479. handleSafetyTimer();
  6480. #endif //SAFETYTIMER
  6481. #if defined(KILL_PIN) && KILL_PIN > -1
  6482. static int killCount = 0; // make the inactivity button a bit less responsive
  6483. const int KILL_DELAY = 10000;
  6484. #endif
  6485. if(buflen < (BUFSIZE-1)){
  6486. get_command();
  6487. }
  6488. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6489. if(max_inactive_time)
  6490. kill("", 4);
  6491. if(stepper_inactive_time) {
  6492. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6493. {
  6494. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6495. disable_x();
  6496. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6497. disable_y();
  6498. disable_z();
  6499. disable_e0();
  6500. disable_e1();
  6501. disable_e2();
  6502. }
  6503. }
  6504. }
  6505. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6506. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6507. {
  6508. chdkActive = false;
  6509. WRITE(CHDK, LOW);
  6510. }
  6511. #endif
  6512. #if defined(KILL_PIN) && KILL_PIN > -1
  6513. // Check if the kill button was pressed and wait just in case it was an accidental
  6514. // key kill key press
  6515. // -------------------------------------------------------------------------------
  6516. if( 0 == READ(KILL_PIN) )
  6517. {
  6518. killCount++;
  6519. }
  6520. else if (killCount > 0)
  6521. {
  6522. killCount--;
  6523. }
  6524. // Exceeded threshold and we can confirm that it was not accidental
  6525. // KILL the machine
  6526. // ----------------------------------------------------------------
  6527. if ( killCount >= KILL_DELAY)
  6528. {
  6529. kill("", 5);
  6530. }
  6531. #endif
  6532. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6533. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6534. #endif
  6535. #ifdef EXTRUDER_RUNOUT_PREVENT
  6536. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6537. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6538. {
  6539. bool oldstatus=READ(E0_ENABLE_PIN);
  6540. enable_e0();
  6541. float oldepos=current_position[E_AXIS];
  6542. float oldedes=destination[E_AXIS];
  6543. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6544. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6545. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6546. current_position[E_AXIS]=oldepos;
  6547. destination[E_AXIS]=oldedes;
  6548. plan_set_e_position(oldepos);
  6549. previous_millis_cmd=millis();
  6550. st_synchronize();
  6551. WRITE(E0_ENABLE_PIN,oldstatus);
  6552. }
  6553. #endif
  6554. #ifdef TEMP_STAT_LEDS
  6555. handle_status_leds();
  6556. #endif
  6557. check_axes_activity();
  6558. }
  6559. void kill(const char *full_screen_message, unsigned char id)
  6560. {
  6561. SERIAL_ECHOPGM("KILL: ");
  6562. MYSERIAL.println(int(id));
  6563. //return;
  6564. cli(); // Stop interrupts
  6565. disable_heater();
  6566. disable_x();
  6567. // SERIAL_ECHOLNPGM("kill - disable Y");
  6568. disable_y();
  6569. disable_z();
  6570. disable_e0();
  6571. disable_e1();
  6572. disable_e2();
  6573. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6574. pinMode(PS_ON_PIN,INPUT);
  6575. #endif
  6576. SERIAL_ERROR_START;
  6577. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6578. if (full_screen_message != NULL) {
  6579. SERIAL_ERRORLNRPGM(full_screen_message);
  6580. lcd_display_message_fullscreen_P(full_screen_message);
  6581. } else {
  6582. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6583. }
  6584. // FMC small patch to update the LCD before ending
  6585. sei(); // enable interrupts
  6586. for ( int i=5; i--; lcd_update())
  6587. {
  6588. delay(200);
  6589. }
  6590. cli(); // disable interrupts
  6591. suicide();
  6592. while(1)
  6593. {
  6594. #ifdef WATCHDOG
  6595. wdt_reset();
  6596. #endif //WATCHDOG
  6597. /* Intentionally left empty */
  6598. } // Wait for reset
  6599. }
  6600. void Stop()
  6601. {
  6602. disable_heater();
  6603. if(Stopped == false) {
  6604. Stopped = true;
  6605. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6606. SERIAL_ERROR_START;
  6607. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6608. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6609. }
  6610. }
  6611. bool IsStopped() { return Stopped; };
  6612. #ifdef FAST_PWM_FAN
  6613. void setPwmFrequency(uint8_t pin, int val)
  6614. {
  6615. val &= 0x07;
  6616. switch(digitalPinToTimer(pin))
  6617. {
  6618. #if defined(TCCR0A)
  6619. case TIMER0A:
  6620. case TIMER0B:
  6621. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6622. // TCCR0B |= val;
  6623. break;
  6624. #endif
  6625. #if defined(TCCR1A)
  6626. case TIMER1A:
  6627. case TIMER1B:
  6628. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6629. // TCCR1B |= val;
  6630. break;
  6631. #endif
  6632. #if defined(TCCR2)
  6633. case TIMER2:
  6634. case TIMER2:
  6635. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6636. TCCR2 |= val;
  6637. break;
  6638. #endif
  6639. #if defined(TCCR2A)
  6640. case TIMER2A:
  6641. case TIMER2B:
  6642. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6643. TCCR2B |= val;
  6644. break;
  6645. #endif
  6646. #if defined(TCCR3A)
  6647. case TIMER3A:
  6648. case TIMER3B:
  6649. case TIMER3C:
  6650. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6651. TCCR3B |= val;
  6652. break;
  6653. #endif
  6654. #if defined(TCCR4A)
  6655. case TIMER4A:
  6656. case TIMER4B:
  6657. case TIMER4C:
  6658. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6659. TCCR4B |= val;
  6660. break;
  6661. #endif
  6662. #if defined(TCCR5A)
  6663. case TIMER5A:
  6664. case TIMER5B:
  6665. case TIMER5C:
  6666. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6667. TCCR5B |= val;
  6668. break;
  6669. #endif
  6670. }
  6671. }
  6672. #endif //FAST_PWM_FAN
  6673. bool setTargetedHotend(int code){
  6674. tmp_extruder = active_extruder;
  6675. if(code_seen('T')) {
  6676. tmp_extruder = code_value();
  6677. if(tmp_extruder >= EXTRUDERS) {
  6678. SERIAL_ECHO_START;
  6679. switch(code){
  6680. case 104:
  6681. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6682. break;
  6683. case 105:
  6684. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6685. break;
  6686. case 109:
  6687. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6688. break;
  6689. case 218:
  6690. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6691. break;
  6692. case 221:
  6693. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6694. break;
  6695. }
  6696. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6697. return true;
  6698. }
  6699. }
  6700. return false;
  6701. }
  6702. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6703. {
  6704. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6705. {
  6706. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6707. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6708. }
  6709. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6710. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6711. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6712. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6713. total_filament_used = 0;
  6714. }
  6715. float calculate_extruder_multiplier(float diameter) {
  6716. float out = 1.f;
  6717. if (volumetric_enabled && diameter > 0.f) {
  6718. float area = M_PI * diameter * diameter * 0.25;
  6719. out = 1.f / area;
  6720. }
  6721. if (extrudemultiply != 100)
  6722. out *= float(extrudemultiply) * 0.01f;
  6723. return out;
  6724. }
  6725. void calculate_extruder_multipliers() {
  6726. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6727. #if EXTRUDERS > 1
  6728. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6729. #if EXTRUDERS > 2
  6730. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6731. #endif
  6732. #endif
  6733. }
  6734. void delay_keep_alive(unsigned int ms)
  6735. {
  6736. for (;;) {
  6737. manage_heater();
  6738. // Manage inactivity, but don't disable steppers on timeout.
  6739. manage_inactivity(true);
  6740. lcd_update();
  6741. if (ms == 0)
  6742. break;
  6743. else if (ms >= 50) {
  6744. delay(50);
  6745. ms -= 50;
  6746. } else {
  6747. delay(ms);
  6748. ms = 0;
  6749. }
  6750. }
  6751. }
  6752. void wait_for_heater(long codenum) {
  6753. #ifdef TEMP_RESIDENCY_TIME
  6754. long residencyStart;
  6755. residencyStart = -1;
  6756. /* continue to loop until we have reached the target temp
  6757. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6758. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6759. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6760. #else
  6761. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6762. #endif //TEMP_RESIDENCY_TIME
  6763. if ((millis() - codenum) > 1000UL)
  6764. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6765. if (!farm_mode) {
  6766. SERIAL_PROTOCOLPGM("T:");
  6767. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6768. SERIAL_PROTOCOLPGM(" E:");
  6769. SERIAL_PROTOCOL((int)tmp_extruder);
  6770. #ifdef TEMP_RESIDENCY_TIME
  6771. SERIAL_PROTOCOLPGM(" W:");
  6772. if (residencyStart > -1)
  6773. {
  6774. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6775. SERIAL_PROTOCOLLN(codenum);
  6776. }
  6777. else
  6778. {
  6779. SERIAL_PROTOCOLLN("?");
  6780. }
  6781. }
  6782. #else
  6783. SERIAL_PROTOCOLLN("");
  6784. #endif
  6785. codenum = millis();
  6786. }
  6787. manage_heater();
  6788. manage_inactivity();
  6789. lcd_update();
  6790. #ifdef TEMP_RESIDENCY_TIME
  6791. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6792. or when current temp falls outside the hysteresis after target temp was reached */
  6793. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6794. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6795. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6796. {
  6797. residencyStart = millis();
  6798. }
  6799. #endif //TEMP_RESIDENCY_TIME
  6800. }
  6801. }
  6802. void check_babystep() {
  6803. int babystep_z;
  6804. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6805. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6806. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6807. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6808. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6809. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6810. lcd_update_enable(true);
  6811. }
  6812. }
  6813. #ifdef DIS
  6814. void d_setup()
  6815. {
  6816. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6817. pinMode(D_DATA, INPUT_PULLUP);
  6818. pinMode(D_REQUIRE, OUTPUT);
  6819. digitalWrite(D_REQUIRE, HIGH);
  6820. }
  6821. float d_ReadData()
  6822. {
  6823. int digit[13];
  6824. String mergeOutput;
  6825. float output;
  6826. digitalWrite(D_REQUIRE, HIGH);
  6827. for (int i = 0; i<13; i++)
  6828. {
  6829. for (int j = 0; j < 4; j++)
  6830. {
  6831. while (digitalRead(D_DATACLOCK) == LOW) {}
  6832. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6833. bitWrite(digit[i], j, digitalRead(D_DATA));
  6834. }
  6835. }
  6836. digitalWrite(D_REQUIRE, LOW);
  6837. mergeOutput = "";
  6838. output = 0;
  6839. for (int r = 5; r <= 10; r++) //Merge digits
  6840. {
  6841. mergeOutput += digit[r];
  6842. }
  6843. output = mergeOutput.toFloat();
  6844. if (digit[4] == 8) //Handle sign
  6845. {
  6846. output *= -1;
  6847. }
  6848. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6849. {
  6850. output /= 10;
  6851. }
  6852. return output;
  6853. }
  6854. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6855. int t1 = 0;
  6856. int t_delay = 0;
  6857. int digit[13];
  6858. int m;
  6859. char str[3];
  6860. //String mergeOutput;
  6861. char mergeOutput[15];
  6862. float output;
  6863. int mesh_point = 0; //index number of calibration point
  6864. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6865. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6866. float mesh_home_z_search = 4;
  6867. float row[x_points_num];
  6868. int ix = 0;
  6869. int iy = 0;
  6870. char* filename_wldsd = "wldsd.txt";
  6871. char data_wldsd[70];
  6872. char numb_wldsd[10];
  6873. d_setup();
  6874. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6875. // We don't know where we are! HOME!
  6876. // Push the commands to the front of the message queue in the reverse order!
  6877. // There shall be always enough space reserved for these commands.
  6878. repeatcommand_front(); // repeat G80 with all its parameters
  6879. enquecommand_front_P((PSTR("G28 W0")));
  6880. enquecommand_front_P((PSTR("G1 Z5")));
  6881. return;
  6882. }
  6883. bool custom_message_old = custom_message;
  6884. unsigned int custom_message_type_old = custom_message_type;
  6885. unsigned int custom_message_state_old = custom_message_state;
  6886. custom_message = true;
  6887. custom_message_type = 1;
  6888. custom_message_state = (x_points_num * y_points_num) + 10;
  6889. lcd_update(1);
  6890. mbl.reset();
  6891. babystep_undo();
  6892. card.openFile(filename_wldsd, false);
  6893. current_position[Z_AXIS] = mesh_home_z_search;
  6894. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6895. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6896. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6897. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6898. setup_for_endstop_move(false);
  6899. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6900. SERIAL_PROTOCOL(x_points_num);
  6901. SERIAL_PROTOCOLPGM(",");
  6902. SERIAL_PROTOCOL(y_points_num);
  6903. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6904. SERIAL_PROTOCOL(mesh_home_z_search);
  6905. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6906. SERIAL_PROTOCOL(x_dimension);
  6907. SERIAL_PROTOCOLPGM(",");
  6908. SERIAL_PROTOCOL(y_dimension);
  6909. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6910. while (mesh_point != x_points_num * y_points_num) {
  6911. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6912. iy = mesh_point / x_points_num;
  6913. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6914. float z0 = 0.f;
  6915. current_position[Z_AXIS] = mesh_home_z_search;
  6916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6917. st_synchronize();
  6918. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6919. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6920. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6921. st_synchronize();
  6922. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6923. break;
  6924. card.closefile();
  6925. }
  6926. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6927. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6928. //strcat(data_wldsd, numb_wldsd);
  6929. //MYSERIAL.println(data_wldsd);
  6930. //delay(1000);
  6931. //delay(3000);
  6932. //t1 = millis();
  6933. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6934. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6935. memset(digit, 0, sizeof(digit));
  6936. //cli();
  6937. digitalWrite(D_REQUIRE, LOW);
  6938. for (int i = 0; i<13; i++)
  6939. {
  6940. //t1 = millis();
  6941. for (int j = 0; j < 4; j++)
  6942. {
  6943. while (digitalRead(D_DATACLOCK) == LOW) {}
  6944. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6945. bitWrite(digit[i], j, digitalRead(D_DATA));
  6946. }
  6947. //t_delay = (millis() - t1);
  6948. //SERIAL_PROTOCOLPGM(" ");
  6949. //SERIAL_PROTOCOL_F(t_delay, 5);
  6950. //SERIAL_PROTOCOLPGM(" ");
  6951. }
  6952. //sei();
  6953. digitalWrite(D_REQUIRE, HIGH);
  6954. mergeOutput[0] = '\0';
  6955. output = 0;
  6956. for (int r = 5; r <= 10; r++) //Merge digits
  6957. {
  6958. sprintf(str, "%d", digit[r]);
  6959. strcat(mergeOutput, str);
  6960. }
  6961. output = atof(mergeOutput);
  6962. if (digit[4] == 8) //Handle sign
  6963. {
  6964. output *= -1;
  6965. }
  6966. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6967. {
  6968. output *= 0.1;
  6969. }
  6970. //output = d_ReadData();
  6971. //row[ix] = current_position[Z_AXIS];
  6972. memset(data_wldsd, 0, sizeof(data_wldsd));
  6973. for (int i = 0; i <3; i++) {
  6974. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6975. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6976. strcat(data_wldsd, numb_wldsd);
  6977. strcat(data_wldsd, ";");
  6978. }
  6979. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6980. dtostrf(output, 8, 5, numb_wldsd);
  6981. strcat(data_wldsd, numb_wldsd);
  6982. //strcat(data_wldsd, ";");
  6983. card.write_command(data_wldsd);
  6984. //row[ix] = d_ReadData();
  6985. row[ix] = output; // current_position[Z_AXIS];
  6986. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6987. for (int i = 0; i < x_points_num; i++) {
  6988. SERIAL_PROTOCOLPGM(" ");
  6989. SERIAL_PROTOCOL_F(row[i], 5);
  6990. }
  6991. SERIAL_PROTOCOLPGM("\n");
  6992. }
  6993. custom_message_state--;
  6994. mesh_point++;
  6995. lcd_update(1);
  6996. }
  6997. card.closefile();
  6998. }
  6999. #endif
  7000. void temp_compensation_start() {
  7001. custom_message = true;
  7002. custom_message_type = 5;
  7003. custom_message_state = PINDA_HEAT_T + 1;
  7004. lcd_update(2);
  7005. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7006. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7007. }
  7008. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7009. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7010. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7011. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7013. st_synchronize();
  7014. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7015. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7016. delay_keep_alive(1000);
  7017. custom_message_state = PINDA_HEAT_T - i;
  7018. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7019. else lcd_update(1);
  7020. }
  7021. custom_message_type = 0;
  7022. custom_message_state = 0;
  7023. custom_message = false;
  7024. }
  7025. void temp_compensation_apply() {
  7026. int i_add;
  7027. int compensation_value;
  7028. int z_shift = 0;
  7029. float z_shift_mm;
  7030. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7031. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7032. i_add = (target_temperature_bed - 60) / 10;
  7033. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7034. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7035. }else {
  7036. //interpolation
  7037. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7038. }
  7039. SERIAL_PROTOCOLPGM("\n");
  7040. SERIAL_PROTOCOLPGM("Z shift applied:");
  7041. MYSERIAL.print(z_shift_mm);
  7042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7043. st_synchronize();
  7044. plan_set_z_position(current_position[Z_AXIS]);
  7045. }
  7046. else {
  7047. //we have no temp compensation data
  7048. }
  7049. }
  7050. float temp_comp_interpolation(float inp_temperature) {
  7051. //cubic spline interpolation
  7052. int n, i, j, k;
  7053. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7054. int shift[10];
  7055. int temp_C[10];
  7056. n = 6; //number of measured points
  7057. shift[0] = 0;
  7058. for (i = 0; i < n; i++) {
  7059. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7060. temp_C[i] = 50 + i * 10; //temperature in C
  7061. #ifdef PINDA_THERMISTOR
  7062. temp_C[i] = 35 + i * 5; //temperature in C
  7063. #else
  7064. temp_C[i] = 50 + i * 10; //temperature in C
  7065. #endif
  7066. x[i] = (float)temp_C[i];
  7067. f[i] = (float)shift[i];
  7068. }
  7069. if (inp_temperature < x[0]) return 0;
  7070. for (i = n - 1; i>0; i--) {
  7071. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7072. h[i - 1] = x[i] - x[i - 1];
  7073. }
  7074. //*********** formation of h, s , f matrix **************
  7075. for (i = 1; i<n - 1; i++) {
  7076. m[i][i] = 2 * (h[i - 1] + h[i]);
  7077. if (i != 1) {
  7078. m[i][i - 1] = h[i - 1];
  7079. m[i - 1][i] = h[i - 1];
  7080. }
  7081. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7082. }
  7083. //*********** forward elimination **************
  7084. for (i = 1; i<n - 2; i++) {
  7085. temp = (m[i + 1][i] / m[i][i]);
  7086. for (j = 1; j <= n - 1; j++)
  7087. m[i + 1][j] -= temp*m[i][j];
  7088. }
  7089. //*********** backward substitution *********
  7090. for (i = n - 2; i>0; i--) {
  7091. sum = 0;
  7092. for (j = i; j <= n - 2; j++)
  7093. sum += m[i][j] * s[j];
  7094. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7095. }
  7096. for (i = 0; i<n - 1; i++)
  7097. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7098. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7099. b = s[i] / 2;
  7100. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7101. d = f[i];
  7102. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7103. }
  7104. return sum;
  7105. }
  7106. #ifdef PINDA_THERMISTOR
  7107. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7108. {
  7109. if (!temp_cal_active) return 0;
  7110. if (!calibration_status_pinda()) return 0;
  7111. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7112. }
  7113. #endif //PINDA_THERMISTOR
  7114. void long_pause() //long pause print
  7115. {
  7116. st_synchronize();
  7117. //save currently set parameters to global variables
  7118. saved_feedmultiply = feedmultiply;
  7119. HotendTempBckp = degTargetHotend(active_extruder);
  7120. fanSpeedBckp = fanSpeed;
  7121. start_pause_print = millis();
  7122. //save position
  7123. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7124. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7125. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7126. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7127. //retract
  7128. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7130. //lift z
  7131. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7132. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7133. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7134. //set nozzle target temperature to 0
  7135. setTargetHotend(0, 0);
  7136. setTargetHotend(0, 1);
  7137. setTargetHotend(0, 2);
  7138. //Move XY to side
  7139. current_position[X_AXIS] = X_PAUSE_POS;
  7140. current_position[Y_AXIS] = Y_PAUSE_POS;
  7141. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7142. // Turn off the print fan
  7143. fanSpeed = 0;
  7144. st_synchronize();
  7145. }
  7146. void serialecho_temperatures() {
  7147. float tt = degHotend(active_extruder);
  7148. SERIAL_PROTOCOLPGM("T:");
  7149. SERIAL_PROTOCOL(tt);
  7150. SERIAL_PROTOCOLPGM(" E:");
  7151. SERIAL_PROTOCOL((int)active_extruder);
  7152. SERIAL_PROTOCOLPGM(" B:");
  7153. SERIAL_PROTOCOL_F(degBed(), 1);
  7154. SERIAL_PROTOCOLLN("");
  7155. }
  7156. extern uint32_t sdpos_atomic;
  7157. #ifdef UVLO_SUPPORT
  7158. void uvlo_()
  7159. {
  7160. unsigned long time_start = millis();
  7161. bool sd_print = card.sdprinting;
  7162. // Conserve power as soon as possible.
  7163. disable_x();
  7164. disable_y();
  7165. #ifdef TMC2130
  7166. tmc2130_set_current_h(Z_AXIS, 20);
  7167. tmc2130_set_current_r(Z_AXIS, 20);
  7168. tmc2130_set_current_h(E_AXIS, 20);
  7169. tmc2130_set_current_r(E_AXIS, 20);
  7170. #endif //TMC2130
  7171. // Indicate that the interrupt has been triggered.
  7172. // SERIAL_ECHOLNPGM("UVLO");
  7173. // Read out the current Z motor microstep counter. This will be later used
  7174. // for reaching the zero full step before powering off.
  7175. uint16_t z_microsteps = 0;
  7176. #ifdef TMC2130
  7177. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7178. #endif //TMC2130
  7179. // Calculate the file position, from which to resume this print.
  7180. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7181. {
  7182. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7183. sd_position -= sdlen_planner;
  7184. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7185. sd_position -= sdlen_cmdqueue;
  7186. if (sd_position < 0) sd_position = 0;
  7187. }
  7188. // Backup the feedrate in mm/min.
  7189. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7190. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7191. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7192. // are in action.
  7193. planner_abort_hard();
  7194. // Store the current extruder position.
  7195. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7196. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7197. // Clean the input command queue.
  7198. cmdqueue_reset();
  7199. card.sdprinting = false;
  7200. // card.closefile();
  7201. // Enable stepper driver interrupt to move Z axis.
  7202. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7203. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7204. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7205. sei();
  7206. plan_buffer_line(
  7207. current_position[X_AXIS],
  7208. current_position[Y_AXIS],
  7209. current_position[Z_AXIS],
  7210. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7211. 95, active_extruder);
  7212. st_synchronize();
  7213. disable_e0();
  7214. plan_buffer_line(
  7215. current_position[X_AXIS],
  7216. current_position[Y_AXIS],
  7217. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7218. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7219. 40, active_extruder);
  7220. st_synchronize();
  7221. disable_e0();
  7222. plan_buffer_line(
  7223. current_position[X_AXIS],
  7224. current_position[Y_AXIS],
  7225. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7226. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7227. 40, active_extruder);
  7228. st_synchronize();
  7229. disable_e0();
  7230. disable_z();
  7231. // Move Z up to the next 0th full step.
  7232. // Write the file position.
  7233. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7234. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7235. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7236. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7237. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7238. // Scale the z value to 1u resolution.
  7239. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7240. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7241. }
  7242. // Read out the current Z motor microstep counter. This will be later used
  7243. // for reaching the zero full step before powering off.
  7244. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7245. // Store the current position.
  7246. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7247. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7248. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7249. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7250. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7251. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7252. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7253. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7254. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7255. #if EXTRUDERS > 1
  7256. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7257. #if EXTRUDERS > 2
  7258. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7259. #endif
  7260. #endif
  7261. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7262. // Finaly store the "power outage" flag.
  7263. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7264. st_synchronize();
  7265. SERIAL_ECHOPGM("stps");
  7266. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7267. disable_z();
  7268. // Increment power failure counter
  7269. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7270. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7271. SERIAL_ECHOLNPGM("UVLO - end");
  7272. MYSERIAL.println(millis() - time_start);
  7273. #if 0
  7274. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7275. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7276. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7277. st_synchronize();
  7278. #endif
  7279. cli();
  7280. volatile unsigned int ppcount = 0;
  7281. SET_OUTPUT(BEEPER);
  7282. WRITE(BEEPER, HIGH);
  7283. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7284. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7285. }
  7286. WRITE(BEEPER, LOW);
  7287. while(1){
  7288. #if 1
  7289. WRITE(BEEPER, LOW);
  7290. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7291. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7292. }
  7293. #endif
  7294. };
  7295. }
  7296. #endif //UVLO_SUPPORT
  7297. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7298. void setup_fan_interrupt() {
  7299. //INT7
  7300. DDRE &= ~(1 << 7); //input pin
  7301. PORTE &= ~(1 << 7); //no internal pull-up
  7302. //start with sensing rising edge
  7303. EICRB &= ~(1 << 6);
  7304. EICRB |= (1 << 7);
  7305. //enable INT7 interrupt
  7306. EIMSK |= (1 << 7);
  7307. }
  7308. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7309. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7310. ISR(INT7_vect) {
  7311. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7312. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7313. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7314. t_fan_rising_edge = millis_nc();
  7315. }
  7316. else { //interrupt was triggered by falling edge
  7317. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7318. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7319. }
  7320. }
  7321. EICRB ^= (1 << 6); //change edge
  7322. }
  7323. #endif
  7324. #ifdef UVLO_SUPPORT
  7325. void setup_uvlo_interrupt() {
  7326. DDRE &= ~(1 << 4); //input pin
  7327. PORTE &= ~(1 << 4); //no internal pull-up
  7328. //sensing falling edge
  7329. EICRB |= (1 << 0);
  7330. EICRB &= ~(1 << 1);
  7331. //enable INT4 interrupt
  7332. EIMSK |= (1 << 4);
  7333. }
  7334. ISR(INT4_vect) {
  7335. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7336. SERIAL_ECHOLNPGM("INT4");
  7337. if (IS_SD_PRINTING) uvlo_();
  7338. }
  7339. void recover_print(uint8_t automatic) {
  7340. char cmd[30];
  7341. lcd_update_enable(true);
  7342. lcd_update(2);
  7343. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7344. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7345. // Lift the print head, so one may remove the excess priming material.
  7346. if (current_position[Z_AXIS] < 25)
  7347. enquecommand_P(PSTR("G1 Z25 F800"));
  7348. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7349. enquecommand_P(PSTR("G28 X Y"));
  7350. // Set the target bed and nozzle temperatures and wait.
  7351. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7352. enquecommand(cmd);
  7353. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7354. enquecommand(cmd);
  7355. enquecommand_P(PSTR("M83")); //E axis relative mode
  7356. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7357. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7358. if(automatic == 0){
  7359. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7360. }
  7361. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7362. // Mark the power panic status as inactive.
  7363. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7364. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7365. delay_keep_alive(1000);
  7366. }*/
  7367. SERIAL_ECHOPGM("After waiting for temp:");
  7368. SERIAL_ECHOPGM("Current position X_AXIS:");
  7369. MYSERIAL.println(current_position[X_AXIS]);
  7370. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7371. MYSERIAL.println(current_position[Y_AXIS]);
  7372. // Restart the print.
  7373. restore_print_from_eeprom();
  7374. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7375. MYSERIAL.print(current_position[Z_AXIS]);
  7376. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7377. MYSERIAL.print(current_position[E_AXIS]);
  7378. }
  7379. void recover_machine_state_after_power_panic()
  7380. {
  7381. char cmd[30];
  7382. // 1) Recover the logical cordinates at the time of the power panic.
  7383. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7384. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7385. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7386. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7387. // The current position after power panic is moved to the next closest 0th full step.
  7388. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7389. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7390. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7391. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7392. sprintf_P(cmd, PSTR("G92 E"));
  7393. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7394. enquecommand(cmd);
  7395. }
  7396. memcpy(destination, current_position, sizeof(destination));
  7397. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7398. print_world_coordinates();
  7399. // 2) Initialize the logical to physical coordinate system transformation.
  7400. world2machine_initialize();
  7401. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7402. mbl.active = false;
  7403. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7404. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7405. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7406. // Scale the z value to 10u resolution.
  7407. int16_t v;
  7408. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7409. if (v != 0)
  7410. mbl.active = true;
  7411. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7412. }
  7413. if (mbl.active)
  7414. mbl.upsample_3x3();
  7415. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7416. // print_mesh_bed_leveling_table();
  7417. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7418. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7419. babystep_load();
  7420. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7421. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7422. // 6) Power up the motors, mark their positions as known.
  7423. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7424. axis_known_position[X_AXIS] = true; enable_x();
  7425. axis_known_position[Y_AXIS] = true; enable_y();
  7426. axis_known_position[Z_AXIS] = true; enable_z();
  7427. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7428. print_physical_coordinates();
  7429. // 7) Recover the target temperatures.
  7430. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7431. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7432. // 8) Recover extruder multipilers
  7433. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7434. #if EXTRUDERS > 1
  7435. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7436. #if EXTRUDERS > 2
  7437. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7438. #endif
  7439. #endif
  7440. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7441. }
  7442. void restore_print_from_eeprom() {
  7443. float x_rec, y_rec, z_pos;
  7444. int feedrate_rec;
  7445. uint8_t fan_speed_rec;
  7446. char cmd[30];
  7447. char* c;
  7448. char filename[13];
  7449. uint8_t depth = 0;
  7450. char dir_name[9];
  7451. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7452. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7453. SERIAL_ECHOPGM("Feedrate:");
  7454. MYSERIAL.println(feedrate_rec);
  7455. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7456. MYSERIAL.println(int(depth));
  7457. for (int i = 0; i < depth; i++) {
  7458. for (int j = 0; j < 8; j++) {
  7459. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7460. }
  7461. dir_name[8] = '\0';
  7462. MYSERIAL.println(dir_name);
  7463. card.chdir(dir_name);
  7464. }
  7465. for (int i = 0; i < 8; i++) {
  7466. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7467. }
  7468. filename[8] = '\0';
  7469. MYSERIAL.print(filename);
  7470. strcat_P(filename, PSTR(".gco"));
  7471. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7472. for (c = &cmd[4]; *c; c++)
  7473. *c = tolower(*c);
  7474. enquecommand(cmd);
  7475. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7476. SERIAL_ECHOPGM("Position read from eeprom:");
  7477. MYSERIAL.println(position);
  7478. // E axis relative mode.
  7479. enquecommand_P(PSTR("M83"));
  7480. // Move to the XY print position in logical coordinates, where the print has been killed.
  7481. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7482. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7483. strcat_P(cmd, PSTR(" F2000"));
  7484. enquecommand(cmd);
  7485. // Move the Z axis down to the print, in logical coordinates.
  7486. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7487. enquecommand(cmd);
  7488. // Unretract.
  7489. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7490. // Set the feedrate saved at the power panic.
  7491. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7492. enquecommand(cmd);
  7493. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7494. {
  7495. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7496. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7497. }
  7498. // Set the fan speed saved at the power panic.
  7499. strcpy_P(cmd, PSTR("M106 S"));
  7500. strcat(cmd, itostr3(int(fan_speed_rec)));
  7501. enquecommand(cmd);
  7502. // Set a position in the file.
  7503. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7504. enquecommand(cmd);
  7505. // Start SD print.
  7506. enquecommand_P(PSTR("M24"));
  7507. }
  7508. #endif //UVLO_SUPPORT
  7509. ////////////////////////////////////////////////////////////////////////////////
  7510. // save/restore printing
  7511. void stop_and_save_print_to_ram(float z_move, float e_move)
  7512. {
  7513. if (saved_printing) return;
  7514. unsigned char nplanner_blocks;
  7515. unsigned char nlines;
  7516. uint16_t sdlen_planner;
  7517. uint16_t sdlen_cmdqueue;
  7518. cli();
  7519. if (card.sdprinting) {
  7520. nplanner_blocks = number_of_blocks();
  7521. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7522. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7523. saved_sdpos -= sdlen_planner;
  7524. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7525. saved_sdpos -= sdlen_cmdqueue;
  7526. saved_printing_type = PRINTING_TYPE_SD;
  7527. }
  7528. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7529. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7530. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7531. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7532. saved_sdpos -= nlines;
  7533. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7534. saved_printing_type = PRINTING_TYPE_USB;
  7535. }
  7536. else {
  7537. //not sd printing nor usb printing
  7538. }
  7539. #if 0
  7540. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7541. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7542. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7543. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7544. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7545. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7546. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7547. {
  7548. card.setIndex(saved_sdpos);
  7549. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7550. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7551. MYSERIAL.print(char(card.get()));
  7552. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7553. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7554. MYSERIAL.print(char(card.get()));
  7555. SERIAL_ECHOLNPGM("End of command buffer");
  7556. }
  7557. {
  7558. // Print the content of the planner buffer, line by line:
  7559. card.setIndex(saved_sdpos);
  7560. int8_t iline = 0;
  7561. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7562. SERIAL_ECHOPGM("Planner line (from file): ");
  7563. MYSERIAL.print(int(iline), DEC);
  7564. SERIAL_ECHOPGM(", length: ");
  7565. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7566. SERIAL_ECHOPGM(", steps: (");
  7567. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7568. SERIAL_ECHOPGM(",");
  7569. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7570. SERIAL_ECHOPGM(",");
  7571. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7572. SERIAL_ECHOPGM(",");
  7573. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7574. SERIAL_ECHOPGM("), events: ");
  7575. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7576. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7577. MYSERIAL.print(char(card.get()));
  7578. }
  7579. }
  7580. {
  7581. // Print the content of the command buffer, line by line:
  7582. int8_t iline = 0;
  7583. union {
  7584. struct {
  7585. char lo;
  7586. char hi;
  7587. } lohi;
  7588. uint16_t value;
  7589. } sdlen_single;
  7590. int _bufindr = bufindr;
  7591. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7592. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7593. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7594. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7595. }
  7596. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7597. MYSERIAL.print(int(iline), DEC);
  7598. SERIAL_ECHOPGM(", type: ");
  7599. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7600. SERIAL_ECHOPGM(", len: ");
  7601. MYSERIAL.println(sdlen_single.value, DEC);
  7602. // Print the content of the buffer line.
  7603. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7604. SERIAL_ECHOPGM("Buffer line (from file): ");
  7605. MYSERIAL.print(int(iline), DEC);
  7606. MYSERIAL.println(int(iline), DEC);
  7607. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7608. MYSERIAL.print(char(card.get()));
  7609. if (-- _buflen == 0)
  7610. break;
  7611. // First skip the current command ID and iterate up to the end of the string.
  7612. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7613. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7614. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7615. // If the end of the buffer was empty,
  7616. if (_bufindr == sizeof(cmdbuffer)) {
  7617. // skip to the start and find the nonzero command.
  7618. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7619. }
  7620. }
  7621. }
  7622. #endif
  7623. #if 0
  7624. saved_feedrate2 = feedrate; //save feedrate
  7625. #else
  7626. // Try to deduce the feedrate from the first block of the planner.
  7627. // Speed is in mm/min.
  7628. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7629. #endif
  7630. planner_abort_hard(); //abort printing
  7631. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7632. saved_active_extruder = active_extruder; //save active_extruder
  7633. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7634. cmdqueue_reset(); //empty cmdqueue
  7635. card.sdprinting = false;
  7636. // card.closefile();
  7637. saved_printing = true;
  7638. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7639. st_reset_timer();
  7640. sei();
  7641. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7642. #if 1
  7643. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7644. char buf[48];
  7645. // First unretract (relative extrusion)
  7646. strcpy_P(buf, PSTR("G1 E"));
  7647. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7648. strcat_P(buf, PSTR(" F"));
  7649. dtostrf(retract_feedrate*60, 8, 3, buf + strlen(buf));
  7650. enquecommand(buf, false);
  7651. // Then lift Z axis
  7652. strcpy_P(buf, PSTR("G1 Z"));
  7653. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7654. strcat_P(buf, PSTR(" F"));
  7655. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7656. // At this point the command queue is empty.
  7657. enquecommand(buf, false);
  7658. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7659. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7660. repeatcommand_front();
  7661. #else
  7662. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7663. st_synchronize(); //wait moving
  7664. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7665. memcpy(destination, current_position, sizeof(destination));
  7666. #endif
  7667. }
  7668. }
  7669. void restore_print_from_ram_and_continue(float e_move)
  7670. {
  7671. if (!saved_printing) return;
  7672. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7673. // current_position[axis] = st_get_position_mm(axis);
  7674. active_extruder = saved_active_extruder; //restore active_extruder
  7675. feedrate = saved_feedrate2; //restore feedrate
  7676. float e = saved_pos[E_AXIS] - e_move;
  7677. plan_set_e_position(e);
  7678. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7679. st_synchronize();
  7680. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7681. memcpy(destination, current_position, sizeof(destination));
  7682. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7683. card.setIndex(saved_sdpos);
  7684. sdpos_atomic = saved_sdpos;
  7685. card.sdprinting = true;
  7686. }
  7687. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7688. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7689. FlushSerialRequestResend();
  7690. }
  7691. else {
  7692. //not sd printing nor usb printing
  7693. }
  7694. saved_printing = false;
  7695. }
  7696. void print_world_coordinates()
  7697. {
  7698. SERIAL_ECHOPGM("world coordinates: (");
  7699. MYSERIAL.print(current_position[X_AXIS], 3);
  7700. SERIAL_ECHOPGM(", ");
  7701. MYSERIAL.print(current_position[Y_AXIS], 3);
  7702. SERIAL_ECHOPGM(", ");
  7703. MYSERIAL.print(current_position[Z_AXIS], 3);
  7704. SERIAL_ECHOLNPGM(")");
  7705. }
  7706. void print_physical_coordinates()
  7707. {
  7708. SERIAL_ECHOPGM("physical coordinates: (");
  7709. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7710. SERIAL_ECHOPGM(", ");
  7711. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7712. SERIAL_ECHOPGM(", ");
  7713. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7714. SERIAL_ECHOLNPGM(")");
  7715. }
  7716. void print_mesh_bed_leveling_table()
  7717. {
  7718. SERIAL_ECHOPGM("mesh bed leveling: ");
  7719. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7720. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7721. MYSERIAL.print(mbl.z_values[y][x], 3);
  7722. SERIAL_ECHOPGM(" ");
  7723. }
  7724. SERIAL_ECHOLNPGM("");
  7725. }
  7726. #define FIL_LOAD_LENGTH 60