tmc2130.cpp 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074
  1. #include "Marlin.h"
  2. #ifdef TMC2130
  3. #include "tmc2130.h"
  4. #include "LiquidCrystal_Prusa.h"
  5. #include "ultralcd.h"
  6. #ifndef NEW_SPI
  7. #include <SPI.h>
  8. #else //NEW_SPI
  9. #include "spi.h"
  10. #endif //NEW_SPI
  11. extern LiquidCrystal_Prusa lcd;
  12. #define TMC2130_GCONF_NORMAL 0x00000000 // spreadCycle
  13. #define TMC2130_GCONF_SGSENS 0x00003180 // spreadCycle with stallguard (stall activates DIAG0 and DIAG1 [pushpull])
  14. #define TMC2130_GCONF_SILENT 0x00000004 // stealthChop
  15. //externals for debuging
  16. extern float current_position[4];
  17. extern void st_get_position_xy(long &x, long &y);
  18. extern long st_get_position(uint8_t axis);
  19. extern void crashdet_stop_and_save_print();
  20. extern void crashdet_stop_and_save_print2();
  21. //mode
  22. uint8_t tmc2130_mode = TMC2130_MODE_NORMAL;
  23. //holding currents
  24. uint8_t tmc2130_current_h[4] = TMC2130_CURRENTS_H;
  25. //running currents
  26. uint8_t tmc2130_current_r[4] = TMC2130_CURRENTS_R;
  27. //running currents for homing
  28. uint8_t tmc2130_current_r_home[4] = {8, 10, 20, 18};
  29. //pwm_ampl
  30. uint8_t tmc2130_pwm_ampl[4] = {TMC2130_PWM_AMPL_X, TMC2130_PWM_AMPL_Y, TMC2130_PWM_AMPL_Z, TMC2130_PWM_AMPL_E};
  31. //pwm_grad
  32. uint8_t tmc2130_pwm_grad[4] = {TMC2130_PWM_GRAD_X, TMC2130_PWM_GRAD_Y, TMC2130_PWM_GRAD_Z, TMC2130_PWM_GRAD_E};
  33. //pwm_auto
  34. uint8_t tmc2130_pwm_auto[4] = {TMC2130_PWM_AUTO_X, TMC2130_PWM_AUTO_Y, TMC2130_PWM_AUTO_Z, TMC2130_PWM_AUTO_E};
  35. //pwm_freq
  36. uint8_t tmc2130_pwm_freq[4] = {TMC2130_PWM_FREQ_X, TMC2130_PWM_FREQ_Y, TMC2130_PWM_FREQ_Z, TMC2130_PWM_FREQ_E};
  37. uint8_t tmc2130_mres[4] = {0, 0, 0, 0}; //will be filed at begin of init
  38. uint8_t tmc2130_sg_thr[4] = {TMC2130_SG_THRS_X, TMC2130_SG_THRS_Y, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E};
  39. uint8_t tmc2130_sg_thr_home[4] = {3, 3, TMC2130_SG_THRS_Z, TMC2130_SG_THRS_E};
  40. uint8_t tmc2130_sg_homing_axes_mask = 0x00;
  41. uint8_t tmc2130_sg_meassure = 0xff;
  42. uint32_t tmc2130_sg_meassure_cnt = 0;
  43. uint32_t tmc2130_sg_meassure_val = 0;
  44. uint8_t tmc2130_home_enabled = 0;
  45. uint8_t tmc2130_home_origin[2] = {0, 0};
  46. uint8_t tmc2130_home_bsteps[2] = {48, 48};
  47. uint8_t tmc2130_home_fsteps[2] = {48, 48};
  48. uint8_t tmc2130_wave_fac[4] = {0, 0, 0, 0};
  49. bool tmc2130_sg_stop_on_crash = true;
  50. uint8_t tmc2130_sg_diag_mask = 0x00;
  51. uint8_t tmc2130_sg_crash = 0;
  52. uint16_t tmc2130_sg_err[4] = {0, 0, 0, 0};
  53. uint16_t tmc2130_sg_cnt[4] = {0, 0, 0, 0};
  54. bool tmc2130_sg_change = false;
  55. bool skip_debug_msg = false;
  56. #define DBG(args...) printf_P(args)
  57. #ifndef _n
  58. #define _n PSTR
  59. #endif //_n
  60. #ifndef _i
  61. #define _i PSTR
  62. #endif //_i
  63. //TMC2130 registers
  64. #define TMC2130_REG_GCONF 0x00 // 17 bits
  65. #define TMC2130_REG_GSTAT 0x01 // 3 bits
  66. #define TMC2130_REG_IOIN 0x04 // 8+8 bits
  67. #define TMC2130_REG_IHOLD_IRUN 0x10 // 5+5+4 bits
  68. #define TMC2130_REG_TPOWERDOWN 0x11 // 8 bits
  69. #define TMC2130_REG_TSTEP 0x12 // 20 bits
  70. #define TMC2130_REG_TPWMTHRS 0x13 // 20 bits
  71. #define TMC2130_REG_TCOOLTHRS 0x14 // 20 bits
  72. #define TMC2130_REG_THIGH 0x15 // 20 bits
  73. #define TMC2130_REG_XDIRECT 0x2d // 32 bits
  74. #define TMC2130_REG_VDCMIN 0x33 // 23 bits
  75. #define TMC2130_REG_MSLUT0 0x60 // 32 bits
  76. #define TMC2130_REG_MSLUT1 0x61 // 32 bits
  77. #define TMC2130_REG_MSLUT2 0x62 // 32 bits
  78. #define TMC2130_REG_MSLUT3 0x63 // 32 bits
  79. #define TMC2130_REG_MSLUT4 0x64 // 32 bits
  80. #define TMC2130_REG_MSLUT5 0x65 // 32 bits
  81. #define TMC2130_REG_MSLUT6 0x66 // 32 bits
  82. #define TMC2130_REG_MSLUT7 0x67 // 32 bits
  83. #define TMC2130_REG_MSLUTSEL 0x68 // 32 bits
  84. #define TMC2130_REG_MSLUTSTART 0x69 // 8+8 bits
  85. #define TMC2130_REG_MSCNT 0x6a // 10 bits
  86. #define TMC2130_REG_MSCURACT 0x6b // 9+9 bits
  87. #define TMC2130_REG_CHOPCONF 0x6c // 32 bits
  88. #define TMC2130_REG_COOLCONF 0x6d // 25 bits
  89. #define TMC2130_REG_DCCTRL 0x6e // 24 bits
  90. #define TMC2130_REG_DRV_STATUS 0x6f // 32 bits
  91. #define TMC2130_REG_PWMCONF 0x70 // 22 bits
  92. #define TMC2130_REG_PWM_SCALE 0x71 // 8 bits
  93. #define TMC2130_REG_ENCM_CTRL 0x72 // 2 bits
  94. #define TMC2130_REG_LOST_STEPS 0x73 // 20 bits
  95. uint16_t tmc2130_rd_TSTEP(uint8_t axis);
  96. uint16_t tmc2130_rd_MSCNT(uint8_t axis);
  97. uint32_t tmc2130_rd_MSCURACT(uint8_t axis);
  98. void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff = 3, uint8_t hstrt = 4, uint8_t hend = 1, uint8_t fd3 = 0, uint8_t disfdcc = 0, uint8_t rndtf = 0, uint8_t chm = 0, uint8_t tbl = 2, uint8_t vsense = 0, uint8_t vhighfs = 0, uint8_t vhighchm = 0, uint8_t sync = 0, uint8_t mres = 0b0100, uint8_t intpol = 1, uint8_t dedge = 0, uint8_t diss2g = 0);
  99. void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel);
  100. void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32);
  101. void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32);
  102. #define tmc2130_rd(axis, addr, rval) tmc2130_rx(axis, addr, rval)
  103. #define tmc2130_wr(axis, addr, wval) tmc2130_tx(axis, addr | 0x80, wval)
  104. uint8_t tmc2130_tx(uint8_t axis, uint8_t addr, uint32_t wval);
  105. uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval);
  106. void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r);
  107. uint16_t __tcoolthrs(uint8_t axis)
  108. {
  109. switch (axis)
  110. {
  111. case X_AXIS: return TMC2130_TCOOLTHRS_X;
  112. case Y_AXIS: return TMC2130_TCOOLTHRS_Y;
  113. case Z_AXIS: return TMC2130_TCOOLTHRS_Z;
  114. }
  115. return 0;
  116. }
  117. void tmc2130_init()
  118. {
  119. DBG(_n("tmc2130_init(), mode=%S\n"), tmc2130_mode?_n("STEALTH"):_n("NORMAL"));
  120. WRITE(X_TMC2130_CS, HIGH);
  121. WRITE(Y_TMC2130_CS, HIGH);
  122. WRITE(Z_TMC2130_CS, HIGH);
  123. WRITE(E0_TMC2130_CS, HIGH);
  124. SET_OUTPUT(X_TMC2130_CS);
  125. SET_OUTPUT(Y_TMC2130_CS);
  126. SET_OUTPUT(Z_TMC2130_CS);
  127. SET_OUTPUT(E0_TMC2130_CS);
  128. SET_INPUT(X_TMC2130_DIAG);
  129. SET_INPUT(Y_TMC2130_DIAG);
  130. SET_INPUT(Z_TMC2130_DIAG);
  131. SET_INPUT(E0_TMC2130_DIAG);
  132. #ifndef NEW_SPI
  133. SPI.begin();
  134. #endif //NEW_SPI
  135. for (int axis = 0; axis < 2; axis++) // X Y axes
  136. {
  137. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  138. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  139. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  140. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:__tcoolthrs(axis));
  141. tmc2130_wr(axis, TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
  142. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  143. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  144. //tmc2130_wr_THIGH(axis, TMC2130_THIGH);
  145. }
  146. for (int axis = 2; axis < 3; axis++) // Z axis
  147. {
  148. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  149. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  150. #ifndef TMC2130_STEALTH_Z
  151. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  152. #else //TMC2130_STEALTH_Z
  153. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  154. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, (tmc2130_mode == TMC2130_MODE_SILENT)?0:__tcoolthrs(axis));
  155. tmc2130_wr(axis, TMC2130_REG_GCONF, (tmc2130_mode == TMC2130_MODE_SILENT)?TMC2130_GCONF_SILENT:TMC2130_GCONF_SGSENS);
  156. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  157. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  158. #endif //TMC2130_STEALTH_Z
  159. }
  160. for (int axis = 3; axis < 4; axis++) // E axis
  161. {
  162. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  163. tmc2130_wr(axis, TMC2130_REG_TPOWERDOWN, 0x00000000);
  164. #ifndef TMC2130_STEALTH_E
  165. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  166. #else //TMC2130_STEALTH_E
  167. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  168. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
  169. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT);
  170. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  171. tmc2130_wr_TPWMTHRS(axis, TMC2130_TPWMTHRS);
  172. #endif //TMC2130_STEALTH_E
  173. }
  174. tmc2130_sg_err[0] = 0;
  175. tmc2130_sg_err[1] = 0;
  176. tmc2130_sg_err[2] = 0;
  177. tmc2130_sg_err[3] = 0;
  178. tmc2130_sg_cnt[0] = 0;
  179. tmc2130_sg_cnt[1] = 0;
  180. tmc2130_sg_cnt[2] = 0;
  181. tmc2130_sg_cnt[3] = 0;
  182. #ifdef TMC2130_LINEARITY_CORRECTION
  183. // tmc2130_set_wave(X_AXIS, 247, tmc2130_wave_fac[X_AXIS]);
  184. // tmc2130_set_wave(Y_AXIS, 247, tmc2130_wave_fac[Y_AXIS]);
  185. // tmc2130_set_wave(Z_AXIS, 247, tmc2130_wave_fac[Z_AXIS]);
  186. tmc2130_set_wave(E_AXIS, 247, tmc2130_wave_fac[E_AXIS]);
  187. #endif //TMC2130_LINEARITY_CORRECTION
  188. }
  189. uint8_t tmc2130_sample_diag()
  190. {
  191. uint8_t mask = 0;
  192. if (READ(X_TMC2130_DIAG)) mask |= X_AXIS_MASK;
  193. if (READ(Y_TMC2130_DIAG)) mask |= Y_AXIS_MASK;
  194. // if (READ(Z_TMC2130_DIAG)) mask |= Z_AXIS_MASK;
  195. // if (READ(E0_TMC2130_DIAG)) mask |= E_AXIS_MASK;
  196. return mask;
  197. }
  198. extern bool is_usb_printing;
  199. void tmc2130_st_isr(uint8_t last_step_mask)
  200. {
  201. if (tmc2130_mode == TMC2130_MODE_SILENT || tmc2130_sg_stop_on_crash == false) return;
  202. uint8_t crash = 0;
  203. uint8_t diag_mask = tmc2130_sample_diag();
  204. // for (uint8_t axis = X_AXIS; axis <= E_AXIS; axis++)
  205. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++)
  206. {
  207. uint8_t mask = (X_AXIS_MASK << axis);
  208. if (diag_mask & mask) tmc2130_sg_err[axis]++;
  209. else
  210. if (tmc2130_sg_err[axis] > 0) tmc2130_sg_err[axis]--;
  211. if (tmc2130_sg_cnt[axis] < tmc2130_sg_err[axis])
  212. {
  213. tmc2130_sg_cnt[axis] = tmc2130_sg_err[axis];
  214. tmc2130_sg_change = true;
  215. uint8_t sg_thr = 64;
  216. // if (axis == Y_AXIS) sg_thr = 64;
  217. if (tmc2130_sg_err[axis] >= sg_thr)
  218. {
  219. tmc2130_sg_err[axis] = 0;
  220. crash |= mask;
  221. }
  222. }
  223. }
  224. if (tmc2130_sg_homing_axes_mask == 0)
  225. {
  226. if (tmc2130_sg_stop_on_crash && crash)
  227. {
  228. tmc2130_sg_crash = crash;
  229. tmc2130_sg_stop_on_crash = false;
  230. crashdet_stop_and_save_print();
  231. }
  232. }
  233. }
  234. bool tmc2130_update_sg()
  235. {
  236. if (tmc2130_sg_meassure <= E_AXIS)
  237. {
  238. uint32_t val32 = 0;
  239. tmc2130_rd(tmc2130_sg_meassure, TMC2130_REG_DRV_STATUS, &val32);
  240. tmc2130_sg_meassure_val += (val32 & 0x3ff);
  241. tmc2130_sg_meassure_cnt++;
  242. return true;
  243. }
  244. return false;
  245. }
  246. void tmc2130_home_enter(uint8_t axes_mask)
  247. {
  248. printf_P(PSTR("tmc2130_home_enter(axes_mask=0x%02x)\n"), axes_mask);
  249. #ifdef TMC2130_SG_HOMING
  250. if (axes_mask & 0x03) //X or Y
  251. tmc2130_wait_standstill_xy(1000);
  252. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
  253. {
  254. uint8_t mask = (X_AXIS_MASK << axis);
  255. if (axes_mask & mask)
  256. {
  257. tmc2130_sg_homing_axes_mask |= mask;
  258. //Configuration to spreadCycle
  259. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
  260. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr_home[axis]) << 16));
  261. // tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
  262. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, __tcoolthrs(axis));
  263. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r_home[axis]);
  264. if (mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK))
  265. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS); //stallguard output DIAG1, DIAG1 = pushpull
  266. }
  267. }
  268. #endif //TMC2130_SG_HOMING
  269. }
  270. void tmc2130_home_exit()
  271. {
  272. printf_P(PSTR("tmc2130_home_exit tmc2130_sg_homing_axes_mask=0x%02x\n"), tmc2130_sg_homing_axes_mask);
  273. #ifdef TMC2130_SG_HOMING
  274. if (tmc2130_sg_homing_axes_mask & 0x03) //X or Y
  275. tmc2130_wait_standstill_xy(1000);
  276. if (tmc2130_sg_homing_axes_mask)
  277. {
  278. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) //X Y and Z axes
  279. {
  280. uint8_t mask = (X_AXIS_MASK << axis);
  281. if (tmc2130_sg_homing_axes_mask & mask & (X_AXIS_MASK | Y_AXIS_MASK | Z_AXIS_MASK))
  282. {
  283. #ifndef TMC2130_STEALTH_Z
  284. if ((tmc2130_mode == TMC2130_MODE_SILENT) && (axis != Z_AXIS))
  285. #else //TMC2130_STEALTH_Z
  286. if (tmc2130_mode == TMC2130_MODE_SILENT)
  287. #endif //TMC2130_STEALTH_Z
  288. {
  289. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SILENT); // Configuration back to stealthChop
  290. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, 0);
  291. // tmc2130_wr_PWMCONF(i, tmc2130_pwm_ampl[i], tmc2130_pwm_grad[i], tmc2130_pwm_freq[i], tmc2130_pwm_auto[i], 0, 0);
  292. }
  293. else
  294. {
  295. // tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_NORMAL);
  296. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  297. // tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16) | ((uint32_t)1 << 24));
  298. tmc2130_wr(axis, TMC2130_REG_COOLCONF, (((uint32_t)tmc2130_sg_thr[axis]) << 16));
  299. tmc2130_wr(axis, TMC2130_REG_TCOOLTHRS, __tcoolthrs(axis));
  300. tmc2130_wr(axis, TMC2130_REG_GCONF, TMC2130_GCONF_SGSENS);
  301. }
  302. }
  303. }
  304. tmc2130_sg_homing_axes_mask = 0x00;
  305. }
  306. tmc2130_sg_crash = false;
  307. #endif
  308. }
  309. void tmc2130_sg_meassure_start(uint8_t axis)
  310. {
  311. tmc2130_sg_meassure = axis;
  312. tmc2130_sg_meassure_cnt = 0;
  313. tmc2130_sg_meassure_val = 0;
  314. }
  315. uint16_t tmc2130_sg_meassure_stop()
  316. {
  317. tmc2130_sg_meassure = 0xff;
  318. return tmc2130_sg_meassure_val / tmc2130_sg_meassure_cnt;
  319. }
  320. bool tmc2130_wait_standstill_xy(int timeout)
  321. {
  322. // DBG(_n("tmc2130_wait_standstill_xy(timeout=%d)\n"), timeout);
  323. bool standstill = false;
  324. while (!standstill && (timeout > 0))
  325. {
  326. uint32_t drv_status_x = 0;
  327. uint32_t drv_status_y = 0;
  328. tmc2130_rd(X_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_x);
  329. tmc2130_rd(Y_AXIS, TMC2130_REG_DRV_STATUS, &drv_status_y);
  330. // DBG(_n("\tdrv_status_x=0x%08x drv_status_x=0x%08x\n"), drv_status_x, drv_status_y);
  331. standstill = (drv_status_x & 0x80000000) && (drv_status_y & 0x80000000);
  332. tmc2130_check_overtemp();
  333. timeout--;
  334. }
  335. return standstill;
  336. }
  337. void tmc2130_check_overtemp()
  338. {
  339. const static char TMC_OVERTEMP_MSG[] PROGMEM = "TMC DRIVER OVERTEMP ";
  340. static uint32_t checktime = 0;
  341. if (millis() - checktime > 1000 )
  342. {
  343. for (int i = 0; i < 4; i++)
  344. {
  345. uint32_t drv_status = 0;
  346. skip_debug_msg = true;
  347. tmc2130_rd(i, TMC2130_REG_DRV_STATUS, &drv_status);
  348. if (drv_status & ((uint32_t)1 << 26))
  349. { // BIT 26 - over temp prewarning ~120C (+-20C)
  350. SERIAL_ERRORRPGM(TMC_OVERTEMP_MSG);
  351. SERIAL_ECHOLN(i);
  352. for (int j = 0; j < 4; j++)
  353. tmc2130_wr(j, TMC2130_REG_CHOPCONF, 0x00010000);
  354. kill(TMC_OVERTEMP_MSG);
  355. }
  356. }
  357. checktime = millis();
  358. tmc2130_sg_change = true;
  359. }
  360. #ifdef DEBUG_CRASHDET_COUNTERS
  361. if (tmc2130_sg_change)
  362. {
  363. for (int i = 0; i < 4; i++)
  364. {
  365. tmc2130_sg_change = false;
  366. lcd.setCursor(0 + i*4, 3);
  367. lcd.print(itostr3(tmc2130_sg_cnt[i]));
  368. lcd.print(' ');
  369. }
  370. }
  371. #endif DEBUG_CRASHDET_COUNTERS
  372. }
  373. void tmc2130_setup_chopper(uint8_t axis, uint8_t mres, uint8_t current_h, uint8_t current_r)
  374. {
  375. uint8_t intpol = 1;
  376. uint8_t toff = TMC2130_TOFF_XYZ; // toff = 3 (fchop = 27.778kHz)
  377. uint8_t hstrt = 5; //initial 4, modified to 5
  378. uint8_t hend = 1;
  379. uint8_t fd3 = 0;
  380. uint8_t rndtf = 0; //random off time
  381. uint8_t chm = 0; //spreadCycle
  382. uint8_t tbl = 2; //blanking time
  383. if (axis == E_AXIS)
  384. {
  385. #ifdef TMC2130_CNSTOFF_E
  386. // fd = 0 (slow decay only)
  387. hstrt = 0; //fd0..2
  388. fd3 = 0; //fd3
  389. hend = 0; //sine wave offset
  390. chm = 1; // constant off time mod
  391. #endif //TMC2130_CNSTOFF_E
  392. toff = TMC2130_TOFF_E; // toff = 3-5
  393. // rndtf = 1;
  394. }
  395. if (current_r <= 31)
  396. {
  397. tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, rndtf, chm, tbl, 1, 0, 0, 0, mres, intpol, 0, 0);
  398. tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | ((current_r & 0x1f) << 8) | (current_h & 0x1f));
  399. }
  400. else
  401. {
  402. tmc2130_wr_CHOPCONF(axis, toff, hstrt, hend, fd3, 0, 0, 0, tbl, 0, 0, 0, 0, mres, intpol, 0, 0);
  403. tmc2130_wr(axis, TMC2130_REG_IHOLD_IRUN, 0x000f0000 | (((current_r >> 1) & 0x1f) << 8) | ((current_h >> 1) & 0x1f));
  404. }
  405. }
  406. void tmc2130_set_current_h(uint8_t axis, uint8_t current)
  407. {
  408. DBG(_n("tmc2130_set_current_h(axis=%d, current=%d\n"), axis, current);
  409. tmc2130_current_h[axis] = current;
  410. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  411. }
  412. void tmc2130_set_current_r(uint8_t axis, uint8_t current)
  413. {
  414. DBG(_n("tmc2130_set_current_r(axis=%d, current=%d\n"), axis, current);
  415. tmc2130_current_r[axis] = current;
  416. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  417. }
  418. void tmc2130_print_currents()
  419. {
  420. DBG(_n("tmc2130_print_currents()\n\tH\tR\nX\t%d\t%d\nY\t%d\t%d\nZ\t%d\t%d\nE\t%d\t%d\n"),
  421. tmc2130_current_h[0], tmc2130_current_r[0],
  422. tmc2130_current_h[1], tmc2130_current_r[1],
  423. tmc2130_current_h[2], tmc2130_current_r[2],
  424. tmc2130_current_h[3], tmc2130_current_r[3]
  425. );
  426. }
  427. void tmc2130_set_pwm_ampl(uint8_t axis, uint8_t pwm_ampl)
  428. {
  429. MYSERIAL.print("tmc2130_set_pwm_ampl ");
  430. MYSERIAL.print((int)axis);
  431. MYSERIAL.print(" ");
  432. MYSERIAL.println((int)pwm_ampl);
  433. tmc2130_pwm_ampl[axis] = pwm_ampl;
  434. if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
  435. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  436. }
  437. void tmc2130_set_pwm_grad(uint8_t axis, uint8_t pwm_grad)
  438. {
  439. MYSERIAL.print("tmc2130_set_pwm_grad ");
  440. MYSERIAL.print((int)axis);
  441. MYSERIAL.print(" ");
  442. MYSERIAL.println((int)pwm_grad);
  443. tmc2130_pwm_grad[axis] = pwm_grad;
  444. if (((axis == 0) || (axis == 1)) && (tmc2130_mode == TMC2130_MODE_SILENT))
  445. tmc2130_wr_PWMCONF(axis, tmc2130_pwm_ampl[axis], tmc2130_pwm_grad[axis], tmc2130_pwm_freq[axis], tmc2130_pwm_auto[axis], 0, 0);
  446. }
  447. uint16_t tmc2130_rd_TSTEP(uint8_t axis)
  448. {
  449. uint32_t val32 = 0;
  450. tmc2130_rd(axis, TMC2130_REG_TSTEP, &val32);
  451. if (val32 & 0x000f0000) return 0xffff;
  452. return val32 & 0xffff;
  453. }
  454. uint16_t tmc2130_rd_MSCNT(uint8_t axis)
  455. {
  456. uint32_t val32 = 0;
  457. tmc2130_rd(axis, TMC2130_REG_MSCNT, &val32);
  458. return val32 & 0x3ff;
  459. }
  460. uint32_t tmc2130_rd_MSCURACT(uint8_t axis)
  461. {
  462. uint32_t val32 = 0;
  463. tmc2130_rd(axis, TMC2130_REG_MSCURACT, &val32);
  464. return val32;
  465. }
  466. void tmc2130_wr_MSLUTSTART(uint8_t axis, uint8_t start_sin, uint8_t start_sin90)
  467. {
  468. uint32_t val = 0;
  469. val |= (uint32_t)start_sin;
  470. val |= ((uint32_t)start_sin90) << 16;
  471. tmc2130_wr(axis, TMC2130_REG_MSLUTSTART, val);
  472. //printf_P(PSTR("MSLUTSTART=%08lx (start_sin=%d start_sin90=%d)\n"), val, start_sin, start_sin90);
  473. }
  474. void tmc2130_wr_MSLUTSEL(uint8_t axis, uint8_t x1, uint8_t x2, uint8_t x3, uint8_t w0, uint8_t w1, uint8_t w2, uint8_t w3)
  475. {
  476. uint32_t val = 0;
  477. val |= ((uint32_t)w0);
  478. val |= ((uint32_t)w1) << 2;
  479. val |= ((uint32_t)w2) << 4;
  480. val |= ((uint32_t)w3) << 6;
  481. val |= ((uint32_t)x1) << 8;
  482. val |= ((uint32_t)x2) << 16;
  483. val |= ((uint32_t)x3) << 24;
  484. tmc2130_wr(axis, TMC2130_REG_MSLUTSEL, val);
  485. //printf_P(PSTR("MSLUTSEL=%08lx (x1=%d x2=%d x3=%d w0=%d w1=%d w2=%d w3=%d)\n"), val, x1, x2, x3, w0, w1, w2, w3);
  486. }
  487. void tmc2130_wr_MSLUT(uint8_t axis, uint8_t i, uint32_t val)
  488. {
  489. tmc2130_wr(axis, TMC2130_REG_MSLUT0 + (i & 7), val);
  490. //printf_P(PSTR("MSLUT[%d]=%08lx\n"), i, val);
  491. }
  492. void tmc2130_wr_CHOPCONF(uint8_t axis, uint8_t toff, uint8_t hstrt, uint8_t hend, uint8_t fd3, uint8_t disfdcc, uint8_t rndtf, uint8_t chm, uint8_t tbl, uint8_t vsense, uint8_t vhighfs, uint8_t vhighchm, uint8_t sync, uint8_t mres, uint8_t intpol, uint8_t dedge, uint8_t diss2g)
  493. {
  494. uint32_t val = 0;
  495. val |= (uint32_t)(toff & 15);
  496. val |= (uint32_t)(hstrt & 7) << 4;
  497. val |= (uint32_t)(hend & 15) << 7;
  498. val |= (uint32_t)(fd3 & 1) << 11;
  499. val |= (uint32_t)(disfdcc & 1) << 12;
  500. val |= (uint32_t)(rndtf & 1) << 13;
  501. val |= (uint32_t)(chm & 1) << 14;
  502. val |= (uint32_t)(tbl & 3) << 15;
  503. val |= (uint32_t)(vsense & 1) << 17;
  504. val |= (uint32_t)(vhighfs & 1) << 18;
  505. val |= (uint32_t)(vhighchm & 1) << 19;
  506. val |= (uint32_t)(sync & 15) << 20;
  507. val |= (uint32_t)(mres & 15) << 24;
  508. val |= (uint32_t)(intpol & 1) << 28;
  509. val |= (uint32_t)(dedge & 1) << 29;
  510. val |= (uint32_t)(diss2g & 1) << 30;
  511. tmc2130_wr(axis, TMC2130_REG_CHOPCONF, val);
  512. }
  513. //void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t PWMautoScale, uint8_t PWMfreq, uint8_t PWMgrad, uint8_t PWMampl)
  514. void tmc2130_wr_PWMCONF(uint8_t axis, uint8_t pwm_ampl, uint8_t pwm_grad, uint8_t pwm_freq, uint8_t pwm_auto, uint8_t pwm_symm, uint8_t freewheel)
  515. {
  516. uint32_t val = 0;
  517. val |= (uint32_t)(pwm_ampl & 255);
  518. val |= (uint32_t)(pwm_grad & 255) << 8;
  519. val |= (uint32_t)(pwm_freq & 3) << 16;
  520. val |= (uint32_t)(pwm_auto & 1) << 18;
  521. val |= (uint32_t)(pwm_symm & 1) << 19;
  522. val |= (uint32_t)(freewheel & 3) << 20;
  523. tmc2130_wr(axis, TMC2130_REG_PWMCONF, val);
  524. // tmc2130_wr(axis, TMC2130_REG_PWMCONF, ((uint32_t)(PWMautoScale+PWMfreq) << 16) | ((uint32_t)PWMgrad << 8) | PWMampl); // TMC LJ -> For better readability changed to 0x00 and added PWMautoScale and PWMfreq
  525. }
  526. void tmc2130_wr_TPWMTHRS(uint8_t axis, uint32_t val32)
  527. {
  528. tmc2130_wr(axis, TMC2130_REG_TPWMTHRS, val32);
  529. }
  530. void tmc2130_wr_THIGH(uint8_t axis, uint32_t val32)
  531. {
  532. tmc2130_wr(axis, TMC2130_REG_THIGH, val32);
  533. }
  534. uint8_t tmc2130_usteps2mres(uint16_t usteps)
  535. {
  536. uint8_t mres = 8; while (mres && (usteps >>= 1)) mres--;
  537. return mres;
  538. }
  539. inline void tmc2130_cs_low(uint8_t axis)
  540. {
  541. switch (axis)
  542. {
  543. case X_AXIS: WRITE(X_TMC2130_CS, LOW); break;
  544. case Y_AXIS: WRITE(Y_TMC2130_CS, LOW); break;
  545. case Z_AXIS: WRITE(Z_TMC2130_CS, LOW); break;
  546. case E_AXIS: WRITE(E0_TMC2130_CS, LOW); break;
  547. }
  548. }
  549. inline void tmc2130_cs_high(uint8_t axis)
  550. {
  551. switch (axis)
  552. {
  553. case X_AXIS: WRITE(X_TMC2130_CS, HIGH); break;
  554. case Y_AXIS: WRITE(Y_TMC2130_CS, HIGH); break;
  555. case Z_AXIS: WRITE(Z_TMC2130_CS, HIGH); break;
  556. case E_AXIS: WRITE(E0_TMC2130_CS, HIGH); break;
  557. }
  558. }
  559. #ifndef NEW_SPI
  560. uint8_t tmc2130_tx(uint8_t axis, uint8_t addr, uint32_t wval)
  561. {
  562. //datagram1 - request
  563. printf_P(PSTR("tmc2130_tx %d 0x%02hhx, 0x%08lx\n"), axis, addr, wval);
  564. SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
  565. printf_P(PSTR(" SPCR = 0x%02hhx\n"), SPCR);
  566. printf_P(PSTR(" SPSR = 0x%02hhx\n"), SPSR);
  567. tmc2130_cs_low(axis);
  568. SPI.transfer(addr); // address
  569. SPI.transfer((wval >> 24) & 0xff); // MSB
  570. SPI.transfer((wval >> 16) & 0xff);
  571. SPI.transfer((wval >> 8) & 0xff);
  572. SPI.transfer(wval & 0xff); // LSB
  573. tmc2130_cs_high(axis);
  574. SPI.endTransaction();
  575. }
  576. uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval)
  577. {
  578. //datagram1 - request
  579. SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
  580. tmc2130_cs_low(axis);
  581. SPI.transfer(addr); // address
  582. SPI.transfer(0); // MSB
  583. SPI.transfer(0);
  584. SPI.transfer(0);
  585. SPI.transfer(0); // LSB
  586. tmc2130_cs_high(axis);
  587. SPI.endTransaction();
  588. //datagram2 - response
  589. SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3));
  590. tmc2130_cs_low(axis);
  591. uint8_t stat = SPI.transfer(0); // status
  592. uint32_t val32 = 0;
  593. val32 = SPI.transfer(0); // MSB
  594. val32 = (val32 << 8) | SPI.transfer(0);
  595. val32 = (val32 << 8) | SPI.transfer(0);
  596. val32 = (val32 << 8) | SPI.transfer(0); // LSB
  597. tmc2130_cs_high(axis);
  598. SPI.endTransaction();
  599. if (rval != 0) *rval = val32;
  600. return stat;
  601. }
  602. #else //NEW_SPI
  603. //Arduino SPI
  604. //#define TMC2130_SPI_ENTER() SPI.beginTransaction(SPISettings(4000000, MSBFIRST, SPI_MODE3))
  605. //#define TMC2130_SPI_TXRX SPI.transfer
  606. //#define TMC2130_SPI_LEAVE SPI.endTransaction
  607. //spi
  608. #define TMC2130_SPI_ENTER() spi_setup(TMC2130_SPCR, TMC2130_SPSR)
  609. #define TMC2130_SPI_TXRX spi_txrx
  610. #define TMC2130_SPI_LEAVE()
  611. uint8_t tmc2130_tx(uint8_t axis, uint8_t addr, uint32_t wval)
  612. {
  613. //datagram1 - request
  614. TMC2130_SPI_ENTER();
  615. tmc2130_cs_low(axis);
  616. TMC2130_SPI_TXRX(addr); // address
  617. TMC2130_SPI_TXRX((wval >> 24) & 0xff); // MSB
  618. TMC2130_SPI_TXRX((wval >> 16) & 0xff);
  619. TMC2130_SPI_TXRX((wval >> 8) & 0xff);
  620. TMC2130_SPI_TXRX(wval & 0xff); // LSB
  621. tmc2130_cs_high(axis);
  622. TMC2130_SPI_LEAVE();
  623. }
  624. uint8_t tmc2130_rx(uint8_t axis, uint8_t addr, uint32_t* rval)
  625. {
  626. //datagram1 - request
  627. TMC2130_SPI_ENTER();
  628. tmc2130_cs_low(axis);
  629. TMC2130_SPI_TXRX(addr); // address
  630. TMC2130_SPI_TXRX(0); // MSB
  631. TMC2130_SPI_TXRX(0);
  632. TMC2130_SPI_TXRX(0);
  633. TMC2130_SPI_TXRX(0); // LSB
  634. tmc2130_cs_high(axis);
  635. TMC2130_SPI_LEAVE();
  636. //datagram2 - response
  637. TMC2130_SPI_ENTER();
  638. tmc2130_cs_low(axis);
  639. uint8_t stat = TMC2130_SPI_TXRX(0); // status
  640. uint32_t val32 = 0;
  641. val32 = TMC2130_SPI_TXRX(0); // MSB
  642. val32 = (val32 << 8) | TMC2130_SPI_TXRX(0);
  643. val32 = (val32 << 8) | TMC2130_SPI_TXRX(0);
  644. val32 = (val32 << 8) | TMC2130_SPI_TXRX(0); // LSB
  645. tmc2130_cs_high(axis);
  646. TMC2130_SPI_LEAVE();
  647. if (rval != 0) *rval = val32;
  648. return stat;
  649. }
  650. #endif //NEW_SPI
  651. void tmc2130_eeprom_load_config()
  652. {
  653. }
  654. void tmc2130_eeprom_save_config()
  655. {
  656. }
  657. #define _GET_PWR_X (READ(X_ENABLE_PIN) == X_ENABLE_ON)
  658. #define _GET_PWR_Y (READ(Y_ENABLE_PIN) == Y_ENABLE_ON)
  659. #define _GET_PWR_Z (READ(Z_ENABLE_PIN) == Z_ENABLE_ON)
  660. #define _GET_PWR_E (READ(E0_ENABLE_PIN) == E_ENABLE_ON)
  661. #define _SET_PWR_X(ena) { WRITE(X_ENABLE_PIN, ena?X_ENABLE_ON:!X_ENABLE_ON); asm("nop"); }
  662. #define _SET_PWR_Y(ena) { WRITE(Y_ENABLE_PIN, ena?Y_ENABLE_ON:!Y_ENABLE_ON); asm("nop"); }
  663. #define _SET_PWR_Z(ena) { WRITE(Z_ENABLE_PIN, ena?Z_ENABLE_ON:!Z_ENABLE_ON); asm("nop"); }
  664. #define _SET_PWR_E(ena) { WRITE(E0_ENABLE_PIN, ena?E_ENABLE_ON:!E_ENABLE_ON); asm("nop"); }
  665. #define _GET_DIR_X (READ(X_DIR_PIN) == INVERT_X_DIR)
  666. #define _GET_DIR_Y (READ(Y_DIR_PIN) == INVERT_Y_DIR)
  667. #define _GET_DIR_Z (READ(Z_DIR_PIN) == INVERT_Z_DIR)
  668. #define _GET_DIR_E (READ(E0_DIR_PIN) == INVERT_E0_DIR)
  669. #define _SET_DIR_X(dir) { WRITE(X_DIR_PIN, dir?INVERT_X_DIR:!INVERT_X_DIR); asm("nop"); }
  670. #define _SET_DIR_Y(dir) { WRITE(Y_DIR_PIN, dir?INVERT_Y_DIR:!INVERT_Y_DIR); asm("nop"); }
  671. #define _SET_DIR_Z(dir) { WRITE(Z_DIR_PIN, dir?INVERT_Z_DIR:!INVERT_Z_DIR); asm("nop"); }
  672. #define _SET_DIR_E(dir) { WRITE(E0_DIR_PIN, dir?INVERT_E0_DIR:!INVERT_E0_DIR); asm("nop"); }
  673. #define _DO_STEP_X { WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); asm("nop"); WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); asm("nop"); }
  674. #define _DO_STEP_Y { WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); asm("nop"); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); asm("nop"); }
  675. #define _DO_STEP_Z { WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); asm("nop"); WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); asm("nop"); }
  676. #define _DO_STEP_E { WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); asm("nop"); WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN); asm("nop"); }
  677. uint16_t tmc2130_get_res(uint8_t axis)
  678. {
  679. return tmc2130_mres2usteps(tmc2130_mres[axis]);
  680. }
  681. void tmc2130_set_res(uint8_t axis, uint16_t res)
  682. {
  683. tmc2130_mres[axis] = tmc2130_usteps2mres(res);
  684. // uint32_t u = micros();
  685. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  686. // u = micros() - u;
  687. // printf_P(PSTR("tmc2130_setup_chopper %c %lu us"), "XYZE"[axis], u);
  688. }
  689. uint8_t tmc2130_get_pwr(uint8_t axis)
  690. {
  691. switch (axis)
  692. {
  693. case X_AXIS: return _GET_PWR_X;
  694. case Y_AXIS: return _GET_PWR_Y;
  695. case Z_AXIS: return _GET_PWR_Z;
  696. case E_AXIS: return _GET_PWR_E;
  697. }
  698. return 0;
  699. }
  700. void tmc2130_set_pwr(uint8_t axis, uint8_t pwr)
  701. {
  702. switch (axis)
  703. {
  704. case X_AXIS: _SET_PWR_X(pwr); break;
  705. case Y_AXIS: _SET_PWR_Y(pwr); break;
  706. case Z_AXIS: _SET_PWR_Z(pwr); break;
  707. case E_AXIS: _SET_PWR_E(pwr); break;
  708. }
  709. }
  710. uint8_t tmc2130_get_inv(uint8_t axis)
  711. {
  712. switch (axis)
  713. {
  714. case X_AXIS: return INVERT_X_DIR;
  715. case Y_AXIS: return INVERT_Y_DIR;
  716. case Z_AXIS: return INVERT_Z_DIR;
  717. case E_AXIS: return INVERT_E0_DIR;
  718. }
  719. return 0;
  720. }
  721. uint8_t tmc2130_get_dir(uint8_t axis)
  722. {
  723. switch (axis)
  724. {
  725. case X_AXIS: return _GET_DIR_X;
  726. case Y_AXIS: return _GET_DIR_Y;
  727. case Z_AXIS: return _GET_DIR_Z;
  728. case E_AXIS: return _GET_DIR_E;
  729. }
  730. return 0;
  731. }
  732. void tmc2130_set_dir(uint8_t axis, uint8_t dir)
  733. {
  734. switch (axis)
  735. {
  736. case X_AXIS: _SET_DIR_X(dir); break;
  737. case Y_AXIS: _SET_DIR_Y(dir); break;
  738. case Z_AXIS: _SET_DIR_Z(dir); break;
  739. case E_AXIS: _SET_DIR_E(dir); break;
  740. }
  741. }
  742. void tmc2130_do_step(uint8_t axis)
  743. {
  744. switch (axis)
  745. {
  746. case X_AXIS: _DO_STEP_X; break;
  747. case Y_AXIS: _DO_STEP_Y; break;
  748. case Z_AXIS: _DO_STEP_Z; break;
  749. case E_AXIS: _DO_STEP_E; break;
  750. }
  751. }
  752. void tmc2130_do_steps(uint8_t axis, uint16_t steps, uint8_t dir, uint16_t delay_us)
  753. {
  754. tmc2130_set_dir(axis, dir);
  755. delayMicroseconds(100);
  756. while (steps--)
  757. {
  758. tmc2130_do_step(axis);
  759. delayMicroseconds(delay_us);
  760. }
  761. }
  762. void tmc2130_goto_step(uint8_t axis, uint8_t step, uint8_t dir, uint16_t delay_us, uint16_t microstep_resolution)
  763. {
  764. printf_P(PSTR("tmc2130_goto_step %d %d %d %d \n"), axis, step, dir, delay_us, microstep_resolution);
  765. uint8_t shift; for (shift = 0; shift < 8; shift++) if (microstep_resolution == (256 >> shift)) break;
  766. uint16_t cnt = 4 * (1 << (8 - shift));
  767. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  768. if (dir == 2)
  769. {
  770. dir = tmc2130_get_inv(axis)?0:1;
  771. int steps = (int)step - (int)(mscnt >> shift);
  772. if (steps < 0)
  773. {
  774. dir ^= 1;
  775. steps = -steps;
  776. }
  777. if (steps > (cnt / 2))
  778. {
  779. dir ^= 1;
  780. steps = cnt - steps;
  781. }
  782. cnt = steps;
  783. }
  784. tmc2130_set_dir(axis, dir);
  785. delayMicroseconds(100);
  786. mscnt = tmc2130_rd_MSCNT(axis);
  787. while ((cnt--) && ((mscnt >> shift) != step))
  788. {
  789. tmc2130_do_step(axis);
  790. delayMicroseconds(delay_us);
  791. mscnt = tmc2130_rd_MSCNT(axis);
  792. }
  793. }
  794. void tmc2130_get_wave(uint8_t axis, uint8_t* data, FILE* stream)
  795. {
  796. uint8_t pwr = tmc2130_get_pwr(axis);
  797. tmc2130_set_pwr(axis, 0);
  798. tmc2130_setup_chopper(axis, tmc2130_usteps2mres(256), tmc2130_current_h[axis], tmc2130_current_r[axis]);
  799. tmc2130_goto_step(axis, 0, 2, 100, 256);
  800. tmc2130_set_dir(axis, tmc2130_get_inv(axis)?0:1);
  801. for (int i = 0; i <= 255; i++)
  802. {
  803. uint32_t val = tmc2130_rd_MSCURACT(axis);
  804. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  805. int curA = (val & 0xff) | ((val << 7) & 0x8000);
  806. if (stream)
  807. {
  808. if (mscnt == i)
  809. fprintf_P(stream, PSTR("%d\t%d\n"), i, curA);
  810. else //TODO - remove this check
  811. fprintf_P(stream, PSTR("!! (i=%d MSCNT=%d)\n"), i, mscnt);
  812. }
  813. if (data) *(data++) = curA;
  814. tmc2130_do_step(axis);
  815. delayMicroseconds(100);
  816. }
  817. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  818. }
  819. void tmc2130_set_wave(uint8_t axis, uint8_t amp, uint8_t fac1000)
  820. {
  821. // TMC2130 wave compression algorithm
  822. // optimized for minimal memory requirements
  823. printf_P(PSTR("tmc2130_set_wave %hhd %hhd\n"), axis, fac1000);
  824. if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0;
  825. if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX;
  826. float fac = 0;
  827. if (fac1000) fac = (float)((uint16_t)fac1000 + 1000) / 1000; //correction factor
  828. printf_P(PSTR(" factor: %s\n"), ftostr43(fac));
  829. uint8_t vA = 0; //value of currentA
  830. uint8_t va = 0; //previous vA
  831. uint8_t d0 = 0; //delta0
  832. uint8_t d1 = 1; //delta1
  833. uint8_t w[4] = {1,1,1,1}; //W bits (MSLUTSEL)
  834. uint8_t x[3] = {255,255,255}; //X segment bounds (MSLUTSEL)
  835. uint8_t s = 0; //current segment
  836. int8_t b; //encoded bit value
  837. uint8_t dA; //delta value
  838. int i; //microstep index
  839. uint32_t reg; //tmc2130 register
  840. tmc2130_wr_MSLUTSTART(axis, 0, amp);
  841. for (i = 0; i < 256; i++)
  842. {
  843. if ((i & 31) == 0)
  844. reg = 0;
  845. // calculate value
  846. if (fac == 0) // default TMC wave
  847. vA = (uint8_t)((amp+1) * sin((2*PI*i + PI)/1024) + 0.5) - 1;
  848. else // corrected wave
  849. vA = (uint8_t)(amp * pow(sin(2*PI*i/1024), fac) + 0.5);
  850. dA = vA - va; // calculate delta
  851. va = vA;
  852. b = -1;
  853. if (dA == d0) b = 0; //delta == delta0 => bit=0
  854. else if (dA == d1) b = 1; //delta == delta1 => bit=1
  855. else
  856. {
  857. if (dA < d0) // delta < delta0 => switch wbit down
  858. {
  859. //printf("dn\n");
  860. b = 0;
  861. switch (dA)
  862. {
  863. case -1: d0 = -1; d1 = 0; w[s+1] = 0; break;
  864. case 0: d0 = 0; d1 = 1; w[s+1] = 1; break;
  865. case 1: d0 = 1; d1 = 2; w[s+1] = 2; break;
  866. default: b = -1; break;
  867. }
  868. if (b >= 0) { x[s] = i; s++; }
  869. }
  870. else if (dA > d1) // delta > delta0 => switch wbit up
  871. {
  872. //printf("up\n");
  873. b = 1;
  874. switch (dA)
  875. {
  876. case 1: d0 = 0; d1 = 1; w[s+1] = 1; break;
  877. case 2: d0 = 1; d1 = 2; w[s+1] = 2; break;
  878. case 3: d0 = 2; d1 = 3; w[s+1] = 3; break;
  879. default: b = -1; break;
  880. }
  881. if (b >= 0) { x[s] = i; s++; }
  882. }
  883. }
  884. if (b < 0) break; // delta out of range (<-1 or >3)
  885. if (s > 3) break; // segment out of range (> 3)
  886. //printf("%d\n", vA);
  887. if (b == 1) reg |= 0x80000000;
  888. if ((i & 31) == 31)
  889. tmc2130_wr_MSLUT(axis, (uint8_t)(i >> 5), reg);
  890. else
  891. reg >>= 1;
  892. // printf("%3d\t%3d\t%2d\t%2d\t%2d\t%2d %08x\n", i, vA, dA, b, w[s], s, reg);
  893. }
  894. tmc2130_wr_MSLUTSEL(axis, x[0], x[1], x[2], w[0], w[1], w[2], w[3]);
  895. }
  896. void bubblesort_uint8(uint8_t* data, uint8_t size, uint8_t* data2)
  897. {
  898. uint8_t changed = 1;
  899. while (changed)
  900. {
  901. changed = 0;
  902. for (uint8_t i = 0; i < (size - 1); i++)
  903. if (data[i] > data[i+1])
  904. {
  905. uint8_t register d = data[i];
  906. data[i] = data[i+1];
  907. data[i+1] = d;
  908. if (data2)
  909. {
  910. d = data2[i];
  911. data2[i] = data2[i+1];
  912. data2[i+1] = d;
  913. }
  914. changed = 1;
  915. }
  916. }
  917. }
  918. uint8_t clusterize_uint8(uint8_t* data, uint8_t size, uint8_t* ccnt, uint8_t* cval, uint8_t tol)
  919. {
  920. uint8_t cnt = 1;
  921. uint16_t sum = data[0];
  922. uint8_t cl = 0;
  923. for (uint8_t i = 1; i < size; i++)
  924. {
  925. uint8_t d = data[i];
  926. uint8_t val = sum / cnt;
  927. uint8_t dif = 0;
  928. if (val > d) dif = val - d;
  929. else dif = d - val;
  930. if (dif <= tol)
  931. {
  932. cnt += 1;
  933. sum += d;
  934. }
  935. else
  936. {
  937. if (ccnt) ccnt[cl] = cnt;
  938. if (cval) cval[cl] = val;
  939. cnt = 1;
  940. sum = d;
  941. cl += 1;
  942. }
  943. }
  944. if (ccnt) ccnt[cl] = cnt;
  945. if (cval) cval[cl] = sum / cnt;
  946. return ++cl;
  947. }
  948. bool tmc2130_home_calibrate(uint8_t axis)
  949. {
  950. uint8_t step[16];
  951. uint8_t cnt[16];
  952. uint8_t val[16];
  953. homeaxis(axis, 16, step);
  954. bubblesort_uint8(step, 16, 0);
  955. printf_P(PSTR("sorted samples:\n"));
  956. for (uint8_t i = 0; i < 16; i++)
  957. printf_P(PSTR(" i=%2d step=%2d\n"), i, step[i]);
  958. uint8_t cl = clusterize_uint8(step, 16, cnt, val, 1);
  959. printf_P(PSTR("clusters:\n"));
  960. for (uint8_t i = 0; i < cl; i++)
  961. printf_P(PSTR(" i=%2d cnt=%2d val=%2d\n"), i, cnt[i], val[i]);
  962. bubblesort_uint8(cnt, cl, val);
  963. tmc2130_home_origin[axis] = val[cl-1];
  964. printf_P(PSTR("result value: %d\n"), tmc2130_home_origin[axis]);
  965. if (axis == X_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN, tmc2130_home_origin[X_AXIS]);
  966. else if (axis == Y_AXIS) eeprom_update_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN, tmc2130_home_origin[Y_AXIS]);
  967. return true;
  968. }
  969. #endif //TMC2130