Marlin_main.cpp 291 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "printers.h"
  35. #include "ultralcd.h"
  36. #include "Configuration_prusa.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "motion_control.h"
  41. #include "cardreader.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #include "Timer.h"
  48. #include <avr/wdt.h>
  49. #include <avr/pgmspace.h>
  50. #include "Dcodes.h"
  51. #ifdef SWSPI
  52. #include "swspi.h"
  53. #endif //SWSPI
  54. #ifdef NEW_SPI
  55. #include "spi.h"
  56. #endif //NEW_SPI
  57. #ifdef SWI2C
  58. #include "swi2c.h"
  59. #endif //SWI2C
  60. #ifdef PAT9125
  61. #include "pat9125.h"
  62. #include "fsensor.h"
  63. #endif //PAT9125
  64. #ifdef TMC2130
  65. #include "tmc2130.h"
  66. #endif //TMC2130
  67. #ifdef BLINKM
  68. #include "BlinkM.h"
  69. #include "Wire.h"
  70. #endif
  71. #ifdef ULTRALCD
  72. #include "ultralcd.h"
  73. #endif
  74. #if NUM_SERVOS > 0
  75. #include "Servo.h"
  76. #endif
  77. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  78. #include <SPI.h>
  79. #endif
  80. #define VERSION_STRING "1.0.2"
  81. #include "ultralcd.h"
  82. #include "cmdqueue.h"
  83. // Macros for bit masks
  84. #define BIT(b) (1<<(b))
  85. #define TEST(n,b) (((n)&BIT(b))!=0)
  86. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  87. //Macro for print fan speed
  88. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  89. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  90. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  91. //Implemented Codes
  92. //-------------------
  93. // PRUSA CODES
  94. // P F - Returns FW versions
  95. // P R - Returns revision of printer
  96. // G0 -> G1
  97. // G1 - Coordinated Movement X Y Z E
  98. // G2 - CW ARC
  99. // G3 - CCW ARC
  100. // G4 - Dwell S<seconds> or P<milliseconds>
  101. // G10 - retract filament according to settings of M207
  102. // G11 - retract recover filament according to settings of M208
  103. // G28 - Home all Axis
  104. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. // G30 - Single Z Probe, probes bed at current XY location.
  106. // G31 - Dock sled (Z_PROBE_SLED only)
  107. // G32 - Undock sled (Z_PROBE_SLED only)
  108. // G80 - Automatic mesh bed leveling
  109. // G81 - Print bed profile
  110. // G90 - Use Absolute Coordinates
  111. // G91 - Use Relative Coordinates
  112. // G92 - Set current position to coordinates given
  113. // M Codes
  114. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. // M1 - Same as M0
  116. // M17 - Enable/Power all stepper motors
  117. // M18 - Disable all stepper motors; same as M84
  118. // M20 - List SD card
  119. // M21 - Init SD card
  120. // M22 - Release SD card
  121. // M23 - Select SD file (M23 filename.g)
  122. // M24 - Start/resume SD print
  123. // M25 - Pause SD print
  124. // M26 - Set SD position in bytes (M26 S12345)
  125. // M27 - Report SD print status
  126. // M28 - Start SD write (M28 filename.g)
  127. // M29 - Stop SD write
  128. // M30 - Delete file from SD (M30 filename.g)
  129. // M31 - Output time since last M109 or SD card start to serial
  130. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  135. // M80 - Turn on Power Supply
  136. // M81 - Turn off Power Supply
  137. // M82 - Set E codes absolute (default)
  138. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  139. // M84 - Disable steppers until next move,
  140. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  141. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  142. // M92 - Set axis_steps_per_unit - same syntax as G92
  143. // M104 - Set extruder target temp
  144. // M105 - Read current temp
  145. // M106 - Fan on
  146. // M107 - Fan off
  147. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  148. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  149. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  150. // M112 - Emergency stop
  151. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  152. // M114 - Output current position to serial port
  153. // M115 - Capabilities string
  154. // M117 - display message
  155. // M119 - Output Endstop status to serial port
  156. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  157. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  158. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  159. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  160. // M140 - Set bed target temp
  161. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  162. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  163. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  164. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  165. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  166. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  167. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  168. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  169. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  170. // M206 - set additional homing offset
  171. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  172. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  173. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  174. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  175. // M220 S<factor in percent>- set speed factor override percentage
  176. // M221 S<factor in percent>- set extrude factor override percentage
  177. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  178. // M240 - Trigger a camera to take a photograph
  179. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  180. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  181. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  182. // M301 - Set PID parameters P I and D
  183. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  184. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  185. // M304 - Set bed PID parameters P I and D
  186. // M400 - Finish all moves
  187. // M401 - Lower z-probe if present
  188. // M402 - Raise z-probe if present
  189. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. // M406 - Turn off Filament Sensor extrusion control
  192. // M407 - Displays measured filament diameter
  193. // M500 - stores parameters in EEPROM
  194. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  195. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  196. // M503 - print the current settings (from memory not from EEPROM)
  197. // M509 - force language selection on next restart
  198. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  199. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  200. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  201. // M860 - Wait for PINDA thermistor to reach target temperature.
  202. // M861 - Set / Read PINDA temperature compensation offsets
  203. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  204. // M907 - Set digital trimpot motor current using axis codes.
  205. // M908 - Control digital trimpot directly.
  206. // M350 - Set microstepping mode.
  207. // M351 - Toggle MS1 MS2 pins directly.
  208. // M928 - Start SD logging (M928 filename.g) - ended by M29
  209. // M999 - Restart after being stopped by error
  210. //Stepper Movement Variables
  211. //===========================================================================
  212. //=============================imported variables============================
  213. //===========================================================================
  214. //===========================================================================
  215. //=============================public variables=============================
  216. //===========================================================================
  217. #ifdef SDSUPPORT
  218. CardReader card;
  219. #endif
  220. unsigned long PingTime = millis();
  221. unsigned long NcTime;
  222. union Data
  223. {
  224. byte b[2];
  225. int value;
  226. };
  227. float homing_feedrate[] = HOMING_FEEDRATE;
  228. // Currently only the extruder axis may be switched to a relative mode.
  229. // Other axes are always absolute or relative based on the common relative_mode flag.
  230. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  231. int feedmultiply=100; //100->1 200->2
  232. int saved_feedmultiply;
  233. int extrudemultiply=100; //100->1 200->2
  234. int extruder_multiply[EXTRUDERS] = {100
  235. #if EXTRUDERS > 1
  236. , 100
  237. #if EXTRUDERS > 2
  238. , 100
  239. #endif
  240. #endif
  241. };
  242. int bowden_length[4] = {385, 385, 385, 385};
  243. bool is_usb_printing = false;
  244. bool homing_flag = false;
  245. bool temp_cal_active = false;
  246. unsigned long kicktime = millis()+100000;
  247. unsigned int usb_printing_counter;
  248. int lcd_change_fil_state = 0;
  249. int feedmultiplyBckp = 100;
  250. float HotendTempBckp = 0;
  251. int fanSpeedBckp = 0;
  252. float pause_lastpos[4];
  253. unsigned long pause_time = 0;
  254. unsigned long start_pause_print = millis();
  255. unsigned long t_fan_rising_edge = millis();
  256. //unsigned long load_filament_time;
  257. bool mesh_bed_leveling_flag = false;
  258. bool mesh_bed_run_from_menu = false;
  259. //unsigned char lang_selected = 0;
  260. int8_t FarmMode = 0;
  261. bool prusa_sd_card_upload = false;
  262. unsigned int status_number = 0;
  263. unsigned long total_filament_used;
  264. unsigned int heating_status;
  265. unsigned int heating_status_counter;
  266. bool custom_message;
  267. bool loading_flag = false;
  268. unsigned int custom_message_type;
  269. unsigned int custom_message_state;
  270. char snmm_filaments_used = 0;
  271. bool fan_state[2];
  272. int fan_edge_counter[2];
  273. int fan_speed[2];
  274. char dir_names[3][9];
  275. bool sortAlpha = false;
  276. bool volumetric_enabled = false;
  277. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  278. #if EXTRUDERS > 1
  279. , DEFAULT_NOMINAL_FILAMENT_DIA
  280. #if EXTRUDERS > 2
  281. , DEFAULT_NOMINAL_FILAMENT_DIA
  282. #endif
  283. #endif
  284. };
  285. float extruder_multiplier[EXTRUDERS] = {1.0
  286. #if EXTRUDERS > 1
  287. , 1.0
  288. #if EXTRUDERS > 2
  289. , 1.0
  290. #endif
  291. #endif
  292. };
  293. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  294. float add_homing[3]={0,0,0};
  295. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  296. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  297. bool axis_known_position[3] = {false, false, false};
  298. float zprobe_zoffset;
  299. // Extruder offset
  300. #if EXTRUDERS > 1
  301. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  302. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  303. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  304. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  305. #endif
  306. };
  307. #endif
  308. uint8_t active_extruder = 0;
  309. int fanSpeed=0;
  310. #ifdef FWRETRACT
  311. bool autoretract_enabled=false;
  312. bool retracted[EXTRUDERS]={false
  313. #if EXTRUDERS > 1
  314. , false
  315. #if EXTRUDERS > 2
  316. , false
  317. #endif
  318. #endif
  319. };
  320. bool retracted_swap[EXTRUDERS]={false
  321. #if EXTRUDERS > 1
  322. , false
  323. #if EXTRUDERS > 2
  324. , false
  325. #endif
  326. #endif
  327. };
  328. float retract_length = RETRACT_LENGTH;
  329. float retract_length_swap = RETRACT_LENGTH_SWAP;
  330. float retract_feedrate = RETRACT_FEEDRATE;
  331. float retract_zlift = RETRACT_ZLIFT;
  332. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  333. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  334. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  335. #endif
  336. #ifdef ULTIPANEL
  337. #ifdef PS_DEFAULT_OFF
  338. bool powersupply = false;
  339. #else
  340. bool powersupply = true;
  341. #endif
  342. #endif
  343. bool cancel_heatup = false ;
  344. #ifdef HOST_KEEPALIVE_FEATURE
  345. int busy_state = NOT_BUSY;
  346. static long prev_busy_signal_ms = -1;
  347. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  348. #else
  349. #define host_keepalive();
  350. #define KEEPALIVE_STATE(n);
  351. #endif
  352. const char errormagic[] PROGMEM = "Error:";
  353. const char echomagic[] PROGMEM = "echo:";
  354. bool no_response = false;
  355. uint8_t important_status;
  356. uint8_t saved_filament_type;
  357. // save/restore printing
  358. bool saved_printing = false;
  359. //===========================================================================
  360. //=============================Private Variables=============================
  361. //===========================================================================
  362. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  363. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  364. static float delta[3] = {0.0, 0.0, 0.0};
  365. // For tracing an arc
  366. static float offset[3] = {0.0, 0.0, 0.0};
  367. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  368. // Determines Absolute or Relative Coordinates.
  369. // Also there is bool axis_relative_modes[] per axis flag.
  370. static bool relative_mode = false;
  371. #ifndef _DISABLE_M42_M226
  372. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  373. #endif //_DISABLE_M42_M226
  374. //static float tt = 0;
  375. //static float bt = 0;
  376. //Inactivity shutdown variables
  377. static unsigned long previous_millis_cmd = 0;
  378. unsigned long max_inactive_time = 0;
  379. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  380. unsigned long starttime=0;
  381. unsigned long stoptime=0;
  382. unsigned long _usb_timer = 0;
  383. static uint8_t tmp_extruder;
  384. bool extruder_under_pressure = true;
  385. bool Stopped=false;
  386. #if NUM_SERVOS > 0
  387. Servo servos[NUM_SERVOS];
  388. #endif
  389. bool CooldownNoWait = true;
  390. bool target_direction;
  391. //Insert variables if CHDK is defined
  392. #ifdef CHDK
  393. unsigned long chdkHigh = 0;
  394. boolean chdkActive = false;
  395. #endif
  396. // save/restore printing
  397. static uint32_t saved_sdpos = 0;
  398. static float saved_pos[4] = { 0, 0, 0, 0 };
  399. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  400. static float saved_feedrate2 = 0;
  401. static uint8_t saved_active_extruder = 0;
  402. static bool saved_extruder_under_pressure = false;
  403. //===========================================================================
  404. //=============================Routines======================================
  405. //===========================================================================
  406. void get_arc_coordinates();
  407. bool setTargetedHotend(int code);
  408. void serial_echopair_P(const char *s_P, float v)
  409. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  410. void serial_echopair_P(const char *s_P, double v)
  411. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  412. void serial_echopair_P(const char *s_P, unsigned long v)
  413. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  414. #ifdef SDSUPPORT
  415. #include "SdFatUtil.h"
  416. int freeMemory() { return SdFatUtil::FreeRam(); }
  417. #else
  418. extern "C" {
  419. extern unsigned int __bss_end;
  420. extern unsigned int __heap_start;
  421. extern void *__brkval;
  422. int freeMemory() {
  423. int free_memory;
  424. if ((int)__brkval == 0)
  425. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  426. else
  427. free_memory = ((int)&free_memory) - ((int)__brkval);
  428. return free_memory;
  429. }
  430. }
  431. #endif //!SDSUPPORT
  432. void setup_killpin()
  433. {
  434. #if defined(KILL_PIN) && KILL_PIN > -1
  435. SET_INPUT(KILL_PIN);
  436. WRITE(KILL_PIN,HIGH);
  437. #endif
  438. }
  439. // Set home pin
  440. void setup_homepin(void)
  441. {
  442. #if defined(HOME_PIN) && HOME_PIN > -1
  443. SET_INPUT(HOME_PIN);
  444. WRITE(HOME_PIN,HIGH);
  445. #endif
  446. }
  447. void setup_photpin()
  448. {
  449. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  450. SET_OUTPUT(PHOTOGRAPH_PIN);
  451. WRITE(PHOTOGRAPH_PIN, LOW);
  452. #endif
  453. }
  454. void setup_powerhold()
  455. {
  456. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  457. SET_OUTPUT(SUICIDE_PIN);
  458. WRITE(SUICIDE_PIN, HIGH);
  459. #endif
  460. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  461. SET_OUTPUT(PS_ON_PIN);
  462. #if defined(PS_DEFAULT_OFF)
  463. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  464. #else
  465. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  466. #endif
  467. #endif
  468. }
  469. void suicide()
  470. {
  471. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  472. SET_OUTPUT(SUICIDE_PIN);
  473. WRITE(SUICIDE_PIN, LOW);
  474. #endif
  475. }
  476. void servo_init()
  477. {
  478. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  479. servos[0].attach(SERVO0_PIN);
  480. #endif
  481. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  482. servos[1].attach(SERVO1_PIN);
  483. #endif
  484. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  485. servos[2].attach(SERVO2_PIN);
  486. #endif
  487. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  488. servos[3].attach(SERVO3_PIN);
  489. #endif
  490. #if (NUM_SERVOS >= 5)
  491. #error "TODO: enter initalisation code for more servos"
  492. #endif
  493. }
  494. static void lcd_language_menu();
  495. void stop_and_save_print_to_ram(float z_move, float e_move);
  496. void restore_print_from_ram_and_continue(float e_move);
  497. bool fans_check_enabled = true;
  498. bool filament_autoload_enabled = true;
  499. #ifdef TMC2130
  500. extern int8_t CrashDetectMenu;
  501. void crashdet_enable()
  502. {
  503. // MYSERIAL.println("crashdet_enable");
  504. tmc2130_sg_stop_on_crash = true;
  505. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  506. CrashDetectMenu = 1;
  507. }
  508. void crashdet_disable()
  509. {
  510. // MYSERIAL.println("crashdet_disable");
  511. tmc2130_sg_stop_on_crash = false;
  512. tmc2130_sg_crash = 0;
  513. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  514. CrashDetectMenu = 0;
  515. }
  516. void crashdet_stop_and_save_print()
  517. {
  518. stop_and_save_print_to_ram(10, 0); //XY - no change, Z 10mm up, E - no change
  519. }
  520. void crashdet_restore_print_and_continue()
  521. {
  522. restore_print_from_ram_and_continue(0); //XYZ = orig, E - no change
  523. // babystep_apply();
  524. }
  525. void crashdet_stop_and_save_print2()
  526. {
  527. cli();
  528. planner_abort_hard(); //abort printing
  529. cmdqueue_reset(); //empty cmdqueue
  530. card.sdprinting = false;
  531. card.closefile();
  532. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  533. st_reset_timer();
  534. sei();
  535. }
  536. void crashdet_detected(uint8_t mask)
  537. {
  538. // printf("CRASH_DETECTED");
  539. /* while (!is_buffer_empty())
  540. {
  541. process_commands();
  542. cmdqueue_pop_front();
  543. }*/
  544. st_synchronize();
  545. lcd_update_enable(true);
  546. lcd_implementation_clear();
  547. lcd_update(2);
  548. if (mask & X_AXIS_MASK)
  549. {
  550. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  551. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  552. }
  553. if (mask & Y_AXIS_MASK)
  554. {
  555. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  556. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  557. }
  558. #ifdef AUTOMATIC_RECOVERY_AFTER_CRASH
  559. bool yesno = true;
  560. #else
  561. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_CRASH_DETECTED), false);
  562. #endif
  563. lcd_update_enable(true);
  564. lcd_update(2);
  565. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  566. if (yesno)
  567. {
  568. enquecommand_P(PSTR("G28 X Y"));
  569. enquecommand_P(PSTR("CRASH_RECOVER"));
  570. }
  571. else
  572. {
  573. enquecommand_P(PSTR("CRASH_CANCEL"));
  574. }
  575. }
  576. void crashdet_recover()
  577. {
  578. crashdet_restore_print_and_continue();
  579. tmc2130_sg_stop_on_crash = true;
  580. }
  581. void crashdet_cancel()
  582. {
  583. card.sdprinting = false;
  584. card.closefile();
  585. tmc2130_sg_stop_on_crash = true;
  586. }
  587. #endif //TMC2130
  588. void failstats_reset_print()
  589. {
  590. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  591. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  592. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  593. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  594. }
  595. #ifdef MESH_BED_LEVELING
  596. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  597. #endif
  598. // Factory reset function
  599. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  600. // Level input parameter sets depth of reset
  601. // Quiet parameter masks all waitings for user interact.
  602. int er_progress = 0;
  603. void factory_reset(char level, bool quiet)
  604. {
  605. lcd_implementation_clear();
  606. int cursor_pos = 0;
  607. switch (level) {
  608. // Level 0: Language reset
  609. case 0:
  610. WRITE(BEEPER, HIGH);
  611. _delay_ms(100);
  612. WRITE(BEEPER, LOW);
  613. lcd_force_language_selection();
  614. break;
  615. //Level 1: Reset statistics
  616. case 1:
  617. WRITE(BEEPER, HIGH);
  618. _delay_ms(100);
  619. WRITE(BEEPER, LOW);
  620. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  621. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  622. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  623. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  624. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  625. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  626. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  627. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  628. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  629. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  630. lcd_menu_statistics();
  631. break;
  632. // Level 2: Prepare for shipping
  633. case 2:
  634. //lcd_printPGM(PSTR("Factory RESET"));
  635. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  636. // Force language selection at the next boot up.
  637. lcd_force_language_selection();
  638. // Force the "Follow calibration flow" message at the next boot up.
  639. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  640. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  641. farm_no = 0;
  642. //*** MaR::180501_01
  643. farm_mode = false;
  644. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  645. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  646. WRITE(BEEPER, HIGH);
  647. _delay_ms(100);
  648. WRITE(BEEPER, LOW);
  649. //_delay_ms(2000);
  650. break;
  651. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  652. case 3:
  653. lcd_printPGM(PSTR("Factory RESET"));
  654. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  655. WRITE(BEEPER, HIGH);
  656. _delay_ms(100);
  657. WRITE(BEEPER, LOW);
  658. er_progress = 0;
  659. lcd_print_at_PGM(3, 3, PSTR(" "));
  660. lcd_implementation_print_at(3, 3, er_progress);
  661. // Erase EEPROM
  662. for (int i = 0; i < 4096; i++) {
  663. eeprom_write_byte((uint8_t*)i, 0xFF);
  664. if (i % 41 == 0) {
  665. er_progress++;
  666. lcd_print_at_PGM(3, 3, PSTR(" "));
  667. lcd_implementation_print_at(3, 3, er_progress);
  668. lcd_printPGM(PSTR("%"));
  669. }
  670. }
  671. break;
  672. case 4:
  673. bowden_menu();
  674. break;
  675. default:
  676. break;
  677. }
  678. }
  679. #include "LiquidCrystal_Prusa.h"
  680. extern LiquidCrystal_Prusa lcd;
  681. FILE _lcdout = {0};
  682. int lcd_putchar(char c, FILE *stream)
  683. {
  684. lcd.write(c);
  685. return 0;
  686. }
  687. FILE _uartout = {0};
  688. int uart_putchar(char c, FILE *stream)
  689. {
  690. MYSERIAL.write(c);
  691. return 0;
  692. }
  693. void lcd_splash()
  694. {
  695. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  696. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  697. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  698. fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  699. }
  700. void factory_reset()
  701. {
  702. KEEPALIVE_STATE(PAUSED_FOR_USER);
  703. if (!READ(BTN_ENC))
  704. {
  705. _delay_ms(1000);
  706. if (!READ(BTN_ENC))
  707. {
  708. lcd_implementation_clear();
  709. lcd_printPGM(PSTR("Factory RESET"));
  710. SET_OUTPUT(BEEPER);
  711. WRITE(BEEPER, HIGH);
  712. while (!READ(BTN_ENC));
  713. WRITE(BEEPER, LOW);
  714. _delay_ms(2000);
  715. char level = reset_menu();
  716. factory_reset(level, false);
  717. switch (level) {
  718. case 0: _delay_ms(0); break;
  719. case 1: _delay_ms(0); break;
  720. case 2: _delay_ms(0); break;
  721. case 3: _delay_ms(0); break;
  722. }
  723. // _delay_ms(100);
  724. /*
  725. #ifdef MESH_BED_LEVELING
  726. _delay_ms(2000);
  727. if (!READ(BTN_ENC))
  728. {
  729. WRITE(BEEPER, HIGH);
  730. _delay_ms(100);
  731. WRITE(BEEPER, LOW);
  732. _delay_ms(200);
  733. WRITE(BEEPER, HIGH);
  734. _delay_ms(100);
  735. WRITE(BEEPER, LOW);
  736. int _z = 0;
  737. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  738. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  739. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  740. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  741. }
  742. else
  743. {
  744. WRITE(BEEPER, HIGH);
  745. _delay_ms(100);
  746. WRITE(BEEPER, LOW);
  747. }
  748. #endif // mesh */
  749. }
  750. }
  751. else
  752. {
  753. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  754. }
  755. KEEPALIVE_STATE(IN_HANDLER);
  756. }
  757. void show_fw_version_warnings() {
  758. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  759. switch (FW_DEV_VERSION) {
  760. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  761. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  762. case(FW_VERSION_DEVEL):
  763. case(FW_VERSION_DEBUG):
  764. lcd_update_enable(false);
  765. lcd_implementation_clear();
  766. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  767. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  768. #else
  769. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  770. #endif
  771. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  772. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  773. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  774. lcd_wait_for_click();
  775. break;
  776. default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  777. }
  778. lcd_update_enable(true);
  779. }
  780. uint8_t check_printer_version()
  781. {
  782. uint8_t version_changed = 0;
  783. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  784. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  785. if (printer_type != PRINTER_TYPE) {
  786. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  787. else version_changed |= 0b10;
  788. }
  789. if (motherboard != MOTHERBOARD) {
  790. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  791. else version_changed |= 0b01;
  792. }
  793. return version_changed;
  794. }
  795. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  796. {
  797. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  798. }
  799. #include "bootapp.h"
  800. void __test()
  801. {
  802. cli();
  803. boot_app_magic = 0x55aa55aa;
  804. boot_app_flags = BOOT_APP_FLG_USER0;
  805. boot_reserved = 0x00;
  806. wdt_enable(WDTO_15MS);
  807. while(1);
  808. }
  809. void upgrade_sec_lang_from_external_flash()
  810. {
  811. if ((boot_app_magic == 0x55aa55aa) && (boot_app_flags & BOOT_APP_FLG_USER0))
  812. {
  813. fprintf_P(lcdout, PSTR(ESC_2J ESC_H(1,1) "TEST %d"), boot_reserved);
  814. boot_reserved++;
  815. if (boot_reserved < 4)
  816. {
  817. _delay_ms(1000);
  818. cli();
  819. wdt_enable(WDTO_15MS);
  820. while(1);
  821. }
  822. }
  823. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  824. }
  825. // "Setup" function is called by the Arduino framework on startup.
  826. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  827. // are initialized by the main() routine provided by the Arduino framework.
  828. void setup()
  829. {
  830. lcd_init();
  831. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  832. // upgrade_sec_lang_from_external_flash();
  833. lcd_splash();
  834. setup_killpin();
  835. setup_powerhold();
  836. //*** MaR::180501_02b
  837. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  838. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  839. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  840. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  841. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  842. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  843. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  844. if (farm_mode)
  845. {
  846. no_response = true; //we need confirmation by recieving PRUSA thx
  847. important_status = 8;
  848. prusa_statistics(8);
  849. selectedSerialPort = 1;
  850. }
  851. MYSERIAL.begin(BAUDRATE);
  852. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  853. stdout = uartout;
  854. SERIAL_PROTOCOLLNPGM("start");
  855. SERIAL_ECHO_START;
  856. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  857. #if 0
  858. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  859. for (int i = 0; i < 4096; ++i) {
  860. int b = eeprom_read_byte((unsigned char*)i);
  861. if (b != 255) {
  862. SERIAL_ECHO(i);
  863. SERIAL_ECHO(":");
  864. SERIAL_ECHO(b);
  865. SERIAL_ECHOLN("");
  866. }
  867. }
  868. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  869. #endif
  870. // Check startup - does nothing if bootloader sets MCUSR to 0
  871. byte mcu = MCUSR;
  872. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  873. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  874. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  875. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  876. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  877. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  878. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  879. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  880. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  881. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  882. MCUSR = 0;
  883. //SERIAL_ECHORPGM(MSG_MARLIN);
  884. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  885. #ifdef STRING_VERSION_CONFIG_H
  886. #ifdef STRING_CONFIG_H_AUTHOR
  887. SERIAL_ECHO_START;
  888. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  889. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  890. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  891. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  892. SERIAL_ECHOPGM("Compiled: ");
  893. SERIAL_ECHOLNPGM(__DATE__);
  894. #endif
  895. #endif
  896. SERIAL_ECHO_START;
  897. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  898. SERIAL_ECHO(freeMemory());
  899. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  900. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  901. //lcd_update_enable(false); // why do we need this?? - andre
  902. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  903. bool previous_settings_retrieved = false;
  904. uint8_t hw_changed = check_printer_version();
  905. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  906. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  907. }
  908. else { //printer version was changed so use default settings
  909. Config_ResetDefault();
  910. }
  911. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  912. tp_init(); // Initialize temperature loop
  913. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  914. plan_init(); // Initialize planner;
  915. factory_reset();
  916. #ifdef TMC2130
  917. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  918. if (silentMode == 0xff) silentMode = 0;
  919. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  920. tmc2130_mode = TMC2130_MODE_NORMAL;
  921. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  922. if (crashdet && !farm_mode)
  923. {
  924. crashdet_enable();
  925. MYSERIAL.println("CrashDetect ENABLED!");
  926. }
  927. else
  928. {
  929. crashdet_disable();
  930. MYSERIAL.println("CrashDetect DISABLED");
  931. }
  932. #ifdef TMC2130_LINEARITY_CORRECTION
  933. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  934. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  935. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  936. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  937. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  938. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  939. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  940. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  941. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  942. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  943. #endif //TMC2130_LINEARITY_CORRECTION
  944. #ifdef TMC2130_VARIABLE_RESOLUTION
  945. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  946. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  947. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  948. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  949. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  950. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  951. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  952. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  953. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  954. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  955. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  956. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  957. #else //TMC2130_VARIABLE_RESOLUTION
  958. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  959. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  960. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  961. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  962. #endif //TMC2130_VARIABLE_RESOLUTION
  963. #endif //TMC2130
  964. #ifdef NEW_SPI
  965. spi_init();
  966. #endif //NEW_SPI
  967. st_init(); // Initialize stepper, this enables interrupts!
  968. #ifdef TMC2130
  969. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  970. tmc2130_init();
  971. #endif //TMC2130
  972. setup_photpin();
  973. servo_init();
  974. // Reset the machine correction matrix.
  975. // It does not make sense to load the correction matrix until the machine is homed.
  976. world2machine_reset();
  977. #ifdef PAT9125
  978. fsensor_init();
  979. #endif //PAT9125
  980. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  981. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  982. #endif
  983. setup_homepin();
  984. #ifdef TMC2130
  985. if (1) {
  986. /// SERIAL_ECHOPGM("initial zsteps on power up: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  987. // try to run to zero phase before powering the Z motor.
  988. // Move in negative direction
  989. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  990. // Round the current micro-micro steps to micro steps.
  991. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  992. // Until the phase counter is reset to zero.
  993. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  994. delay(2);
  995. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  996. delay(2);
  997. }
  998. // SERIAL_ECHOPGM("initial zsteps after reset: "); MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  999. }
  1000. #endif //TMC2130
  1001. #if defined(Z_AXIS_ALWAYS_ON)
  1002. enable_z();
  1003. #endif
  1004. //*** MaR::180501_02
  1005. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1006. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1007. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1008. if (farm_no == 0xFFFF) farm_no = 0;
  1009. if (farm_mode)
  1010. {
  1011. prusa_statistics(8);
  1012. }
  1013. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1014. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1015. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1016. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1017. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1018. // where all the EEPROM entries are set to 0x0ff.
  1019. // Once a firmware boots up, it forces at least a language selection, which changes
  1020. // EEPROM_LANG to number lower than 0x0ff.
  1021. // 1) Set a high power mode.
  1022. #ifdef TMC2130
  1023. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1024. tmc2130_mode = TMC2130_MODE_NORMAL;
  1025. #endif //TMC2130
  1026. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1027. }
  1028. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1029. // but this times out if a blocking dialog is shown in setup().
  1030. card.initsd();
  1031. #ifdef DEBUG_SD_SPEED_TEST
  1032. if (card.cardOK)
  1033. {
  1034. uint8_t* buff = (uint8_t*)block_buffer;
  1035. uint32_t block = 0;
  1036. uint32_t sumr = 0;
  1037. uint32_t sumw = 0;
  1038. for (int i = 0; i < 1024; i++)
  1039. {
  1040. uint32_t u = micros();
  1041. bool res = card.card.readBlock(i, buff);
  1042. u = micros() - u;
  1043. if (res)
  1044. {
  1045. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1046. sumr += u;
  1047. u = micros();
  1048. res = card.card.writeBlock(i, buff);
  1049. u = micros() - u;
  1050. if (res)
  1051. {
  1052. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1053. sumw += u;
  1054. }
  1055. else
  1056. {
  1057. printf_P(PSTR("writeBlock %4d error\n"), i);
  1058. break;
  1059. }
  1060. }
  1061. else
  1062. {
  1063. printf_P(PSTR("readBlock %4d error\n"), i);
  1064. break;
  1065. }
  1066. }
  1067. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1068. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1069. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1070. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1071. }
  1072. else
  1073. printf_P(PSTR("Card NG!\n"));
  1074. #endif //DEBUG_SD_SPEED_TEST
  1075. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1076. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1077. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1078. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1079. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1080. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1081. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1082. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1083. #ifdef SNMM
  1084. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1085. int _z = BOWDEN_LENGTH;
  1086. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1087. }
  1088. #endif
  1089. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1090. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1091. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1092. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  1093. if (lang_selected >= LANG_NUM)
  1094. {
  1095. lcd_mylang();
  1096. }
  1097. lang_select(lang_selected);
  1098. puts_P(_n("\nNew ML support"));
  1099. printf_P(_n(" lang_selected = %d\n"), lang_selected);
  1100. printf_P(_n(" &_SEC_LANG = 0x%04x\n"), &_SEC_LANG);
  1101. printf_P(_n(" sizeof(_SEC_LANG) = 0x%04x\n"), sizeof(_SEC_LANG));
  1102. uint16_t ptr_lang_table0 = ((uint16_t)(&_SEC_LANG) + 0xff) & 0xff00;
  1103. printf_P(_n(" &_lang_table0 = 0x%04x\n"), ptr_lang_table0);
  1104. uint32_t _lt_magic = pgm_read_dword(((uint32_t*)(ptr_lang_table0 + 0)));
  1105. uint16_t _lt_size = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 4)));
  1106. uint16_t _lt_count = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 6)));
  1107. uint16_t _lt_chsum = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 8)));
  1108. uint16_t _lt_resv0 = pgm_read_word(((uint16_t*)(ptr_lang_table0 + 10)));
  1109. uint32_t _lt_resv1 = pgm_read_dword(((uint32_t*)(ptr_lang_table0 + 12)));
  1110. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), _lt_magic, (_lt_magic==0x4bb45aa5)?_n("OK"):_n("NA"));
  1111. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), _lt_size, _lt_size);
  1112. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), _lt_count, _lt_count);
  1113. printf_P(_n(" _lt_chsum = 0x%04x\n"), _lt_chsum);
  1114. printf_P(_n(" _lt_resv0 = 0x%04x\n"), _lt_resv0);
  1115. printf_P(_n(" _lt_resv1 = 0x%08lx\n"), _lt_resv1);
  1116. puts_P(_n("\n"));
  1117. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1118. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1119. temp_cal_active = false;
  1120. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1121. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1122. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1123. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1124. int16_t z_shift = 0;
  1125. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1126. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1127. temp_cal_active = false;
  1128. }
  1129. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1130. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1131. }
  1132. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1133. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1134. }
  1135. check_babystep(); //checking if Z babystep is in allowed range
  1136. #ifdef UVLO_SUPPORT
  1137. setup_uvlo_interrupt();
  1138. #endif //UVLO_SUPPORT
  1139. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1140. setup_fan_interrupt();
  1141. #endif //DEBUG_DISABLE_FANCHECK
  1142. #ifdef PAT9125
  1143. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1144. fsensor_setup_interrupt();
  1145. #endif //DEBUG_DISABLE_FSENSORCHECK
  1146. #endif //PAT9125
  1147. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1148. #ifndef DEBUG_DISABLE_STARTMSGS
  1149. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1150. show_fw_version_warnings();
  1151. switch (hw_changed) {
  1152. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1153. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1154. case(0b01):
  1155. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1156. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1157. break;
  1158. case(0b10):
  1159. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1160. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1161. break;
  1162. case(0b11):
  1163. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1164. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1165. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1166. break;
  1167. default: break; //no change, show no message
  1168. }
  1169. if (!previous_settings_retrieved) {
  1170. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1171. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1172. }
  1173. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1174. lcd_wizard(0);
  1175. }
  1176. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1177. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1178. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1179. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1180. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1181. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1182. // Show the message.
  1183. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1184. }
  1185. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1186. // Show the message.
  1187. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1188. lcd_update_enable(true);
  1189. }
  1190. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1191. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1192. lcd_update_enable(true);
  1193. }
  1194. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1195. // Show the message.
  1196. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1197. }
  1198. }
  1199. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1200. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1201. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1202. update_current_firmware_version_to_eeprom();
  1203. lcd_selftest();
  1204. }
  1205. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1206. KEEPALIVE_STATE(IN_PROCESS);
  1207. #endif //DEBUG_DISABLE_STARTMSGS
  1208. lcd_update_enable(true);
  1209. lcd_implementation_clear();
  1210. lcd_update(2);
  1211. // Store the currently running firmware into an eeprom,
  1212. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1213. update_current_firmware_version_to_eeprom();
  1214. #ifdef TMC2130
  1215. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1216. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1217. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1218. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1219. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1220. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1221. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1222. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1223. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1224. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1225. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1226. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1227. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1228. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1229. #endif //TMC2130
  1230. #ifdef UVLO_SUPPORT
  1231. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1232. /*
  1233. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1234. else {
  1235. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1236. lcd_update_enable(true);
  1237. lcd_update(2);
  1238. lcd_setstatuspgm(_T(WELCOME_MSG));
  1239. }
  1240. */
  1241. manage_heater(); // Update temperatures
  1242. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1243. MYSERIAL.println("Power panic detected!");
  1244. MYSERIAL.print("Current bed temp:");
  1245. MYSERIAL.println(degBed());
  1246. MYSERIAL.print("Saved bed temp:");
  1247. MYSERIAL.println((float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1248. #endif
  1249. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1250. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1251. MYSERIAL.println("Automatic recovery!");
  1252. #endif
  1253. recover_print(1);
  1254. }
  1255. else{
  1256. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1257. MYSERIAL.println("Normal recovery!");
  1258. #endif
  1259. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1260. else {
  1261. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1262. lcd_update_enable(true);
  1263. lcd_update(2);
  1264. lcd_setstatuspgm(_T(WELCOME_MSG));
  1265. }
  1266. }
  1267. }
  1268. #endif //UVLO_SUPPORT
  1269. KEEPALIVE_STATE(NOT_BUSY);
  1270. #ifdef WATCHDOG
  1271. wdt_enable(WDTO_4S);
  1272. #endif //WATCHDOG
  1273. }
  1274. #ifdef PAT9125
  1275. void fsensor_init() {
  1276. int pat9125 = pat9125_init();
  1277. printf_P(PSTR("PAT9125_init:%d\n"), pat9125);
  1278. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1279. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1280. if (!pat9125)
  1281. {
  1282. fsensor = 0; //disable sensor
  1283. fsensor_not_responding = true;
  1284. }
  1285. else {
  1286. fsensor_not_responding = false;
  1287. }
  1288. puts_P(PSTR("FSensor "));
  1289. if (fsensor)
  1290. {
  1291. puts_P(PSTR("ENABLED\n"));
  1292. fsensor_enable();
  1293. }
  1294. else
  1295. {
  1296. puts_P(PSTR("DISABLED\n"));
  1297. fsensor_disable();
  1298. }
  1299. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1300. filament_autoload_enabled = false;
  1301. fsensor_disable();
  1302. #endif //DEBUG_DISABLE_FSENSORCHECK
  1303. }
  1304. #endif //PAT9125
  1305. void trace();
  1306. #define CHUNK_SIZE 64 // bytes
  1307. #define SAFETY_MARGIN 1
  1308. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1309. int chunkHead = 0;
  1310. int serial_read_stream() {
  1311. setTargetHotend(0, 0);
  1312. setTargetBed(0);
  1313. lcd_implementation_clear();
  1314. lcd_printPGM(PSTR(" Upload in progress"));
  1315. // first wait for how many bytes we will receive
  1316. uint32_t bytesToReceive;
  1317. // receive the four bytes
  1318. char bytesToReceiveBuffer[4];
  1319. for (int i=0; i<4; i++) {
  1320. int data;
  1321. while ((data = MYSERIAL.read()) == -1) {};
  1322. bytesToReceiveBuffer[i] = data;
  1323. }
  1324. // make it a uint32
  1325. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1326. // we're ready, notify the sender
  1327. MYSERIAL.write('+');
  1328. // lock in the routine
  1329. uint32_t receivedBytes = 0;
  1330. while (prusa_sd_card_upload) {
  1331. int i;
  1332. for (i=0; i<CHUNK_SIZE; i++) {
  1333. int data;
  1334. // check if we're not done
  1335. if (receivedBytes == bytesToReceive) {
  1336. break;
  1337. }
  1338. // read the next byte
  1339. while ((data = MYSERIAL.read()) == -1) {};
  1340. receivedBytes++;
  1341. // save it to the chunk
  1342. chunk[i] = data;
  1343. }
  1344. // write the chunk to SD
  1345. card.write_command_no_newline(&chunk[0]);
  1346. // notify the sender we're ready for more data
  1347. MYSERIAL.write('+');
  1348. // for safety
  1349. manage_heater();
  1350. // check if we're done
  1351. if(receivedBytes == bytesToReceive) {
  1352. trace(); // beep
  1353. card.closefile();
  1354. prusa_sd_card_upload = false;
  1355. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1356. return 0;
  1357. }
  1358. }
  1359. }
  1360. #ifdef HOST_KEEPALIVE_FEATURE
  1361. /**
  1362. * Output a "busy" message at regular intervals
  1363. * while the machine is not accepting commands.
  1364. */
  1365. void host_keepalive() {
  1366. if (farm_mode) return;
  1367. long ms = millis();
  1368. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1369. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1370. switch (busy_state) {
  1371. case IN_HANDLER:
  1372. case IN_PROCESS:
  1373. SERIAL_ECHO_START;
  1374. SERIAL_ECHOLNPGM("busy: processing");
  1375. break;
  1376. case PAUSED_FOR_USER:
  1377. SERIAL_ECHO_START;
  1378. SERIAL_ECHOLNPGM("busy: paused for user");
  1379. break;
  1380. case PAUSED_FOR_INPUT:
  1381. SERIAL_ECHO_START;
  1382. SERIAL_ECHOLNPGM("busy: paused for input");
  1383. break;
  1384. default:
  1385. break;
  1386. }
  1387. }
  1388. prev_busy_signal_ms = ms;
  1389. }
  1390. #endif
  1391. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1392. // Before loop(), the setup() function is called by the main() routine.
  1393. void loop()
  1394. {
  1395. KEEPALIVE_STATE(NOT_BUSY);
  1396. bool stack_integrity = true;
  1397. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1398. {
  1399. is_usb_printing = true;
  1400. usb_printing_counter--;
  1401. _usb_timer = millis();
  1402. }
  1403. if (usb_printing_counter == 0)
  1404. {
  1405. is_usb_printing = false;
  1406. }
  1407. if (prusa_sd_card_upload)
  1408. {
  1409. //we read byte-by byte
  1410. serial_read_stream();
  1411. } else
  1412. {
  1413. get_command();
  1414. #ifdef SDSUPPORT
  1415. card.checkautostart(false);
  1416. #endif
  1417. if(buflen)
  1418. {
  1419. cmdbuffer_front_already_processed = false;
  1420. #ifdef SDSUPPORT
  1421. if(card.saving)
  1422. {
  1423. // Saving a G-code file onto an SD-card is in progress.
  1424. // Saving starts with M28, saving until M29 is seen.
  1425. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1426. card.write_command(CMDBUFFER_CURRENT_STRING);
  1427. if(card.logging)
  1428. process_commands();
  1429. else
  1430. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1431. } else {
  1432. card.closefile();
  1433. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1434. }
  1435. } else {
  1436. process_commands();
  1437. }
  1438. #else
  1439. process_commands();
  1440. #endif //SDSUPPORT
  1441. if (! cmdbuffer_front_already_processed && buflen)
  1442. {
  1443. // ptr points to the start of the block currently being processed.
  1444. // The first character in the block is the block type.
  1445. char *ptr = cmdbuffer + bufindr;
  1446. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1447. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1448. union {
  1449. struct {
  1450. char lo;
  1451. char hi;
  1452. } lohi;
  1453. uint16_t value;
  1454. } sdlen;
  1455. sdlen.value = 0;
  1456. {
  1457. // This block locks the interrupts globally for 3.25 us,
  1458. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1459. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1460. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1461. cli();
  1462. // Reset the command to something, which will be ignored by the power panic routine,
  1463. // so this buffer length will not be counted twice.
  1464. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1465. // Extract the current buffer length.
  1466. sdlen.lohi.lo = *ptr ++;
  1467. sdlen.lohi.hi = *ptr;
  1468. // and pass it to the planner queue.
  1469. planner_add_sd_length(sdlen.value);
  1470. sei();
  1471. }
  1472. }
  1473. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1474. // this block's SD card length will not be counted twice as its command type has been replaced
  1475. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1476. cmdqueue_pop_front();
  1477. }
  1478. host_keepalive();
  1479. }
  1480. }
  1481. //check heater every n milliseconds
  1482. manage_heater();
  1483. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1484. checkHitEndstops();
  1485. lcd_update();
  1486. #ifdef PAT9125
  1487. fsensor_update();
  1488. #endif //PAT9125
  1489. #ifdef TMC2130
  1490. tmc2130_check_overtemp();
  1491. if (tmc2130_sg_crash)
  1492. {
  1493. uint8_t crash = tmc2130_sg_crash;
  1494. tmc2130_sg_crash = 0;
  1495. // crashdet_stop_and_save_print();
  1496. switch (crash)
  1497. {
  1498. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1499. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1500. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1501. }
  1502. }
  1503. #endif //TMC2130
  1504. }
  1505. #define DEFINE_PGM_READ_ANY(type, reader) \
  1506. static inline type pgm_read_any(const type *p) \
  1507. { return pgm_read_##reader##_near(p); }
  1508. DEFINE_PGM_READ_ANY(float, float);
  1509. DEFINE_PGM_READ_ANY(signed char, byte);
  1510. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1511. static const PROGMEM type array##_P[3] = \
  1512. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1513. static inline type array(int axis) \
  1514. { return pgm_read_any(&array##_P[axis]); } \
  1515. type array##_ext(int axis) \
  1516. { return pgm_read_any(&array##_P[axis]); }
  1517. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1518. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1519. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1520. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1521. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1522. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1523. static void axis_is_at_home(int axis) {
  1524. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1525. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1526. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1527. }
  1528. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1529. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1530. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1531. saved_feedrate = feedrate;
  1532. saved_feedmultiply = feedmultiply;
  1533. feedmultiply = 100;
  1534. previous_millis_cmd = millis();
  1535. enable_endstops(enable_endstops_now);
  1536. }
  1537. static void clean_up_after_endstop_move() {
  1538. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1539. enable_endstops(false);
  1540. #endif
  1541. feedrate = saved_feedrate;
  1542. feedmultiply = saved_feedmultiply;
  1543. previous_millis_cmd = millis();
  1544. }
  1545. #ifdef ENABLE_AUTO_BED_LEVELING
  1546. #ifdef AUTO_BED_LEVELING_GRID
  1547. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1548. {
  1549. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1550. planeNormal.debug("planeNormal");
  1551. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1552. //bedLevel.debug("bedLevel");
  1553. //plan_bed_level_matrix.debug("bed level before");
  1554. //vector_3 uncorrected_position = plan_get_position_mm();
  1555. //uncorrected_position.debug("position before");
  1556. vector_3 corrected_position = plan_get_position();
  1557. // corrected_position.debug("position after");
  1558. current_position[X_AXIS] = corrected_position.x;
  1559. current_position[Y_AXIS] = corrected_position.y;
  1560. current_position[Z_AXIS] = corrected_position.z;
  1561. // put the bed at 0 so we don't go below it.
  1562. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1563. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1564. }
  1565. #else // not AUTO_BED_LEVELING_GRID
  1566. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1567. plan_bed_level_matrix.set_to_identity();
  1568. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1569. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1570. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1571. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1572. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1573. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1574. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1575. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1576. vector_3 corrected_position = plan_get_position();
  1577. current_position[X_AXIS] = corrected_position.x;
  1578. current_position[Y_AXIS] = corrected_position.y;
  1579. current_position[Z_AXIS] = corrected_position.z;
  1580. // put the bed at 0 so we don't go below it.
  1581. current_position[Z_AXIS] = zprobe_zoffset;
  1582. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1583. }
  1584. #endif // AUTO_BED_LEVELING_GRID
  1585. static void run_z_probe() {
  1586. plan_bed_level_matrix.set_to_identity();
  1587. feedrate = homing_feedrate[Z_AXIS];
  1588. // move down until you find the bed
  1589. float zPosition = -10;
  1590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1591. st_synchronize();
  1592. // we have to let the planner know where we are right now as it is not where we said to go.
  1593. zPosition = st_get_position_mm(Z_AXIS);
  1594. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1595. // move up the retract distance
  1596. zPosition += home_retract_mm(Z_AXIS);
  1597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1598. st_synchronize();
  1599. // move back down slowly to find bed
  1600. feedrate = homing_feedrate[Z_AXIS]/4;
  1601. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1603. st_synchronize();
  1604. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1605. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1606. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1607. }
  1608. static void do_blocking_move_to(float x, float y, float z) {
  1609. float oldFeedRate = feedrate;
  1610. feedrate = homing_feedrate[Z_AXIS];
  1611. current_position[Z_AXIS] = z;
  1612. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1613. st_synchronize();
  1614. feedrate = XY_TRAVEL_SPEED;
  1615. current_position[X_AXIS] = x;
  1616. current_position[Y_AXIS] = y;
  1617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1618. st_synchronize();
  1619. feedrate = oldFeedRate;
  1620. }
  1621. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1622. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1623. }
  1624. /// Probe bed height at position (x,y), returns the measured z value
  1625. static float probe_pt(float x, float y, float z_before) {
  1626. // move to right place
  1627. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1628. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1629. run_z_probe();
  1630. float measured_z = current_position[Z_AXIS];
  1631. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1632. SERIAL_PROTOCOLPGM(" x: ");
  1633. SERIAL_PROTOCOL(x);
  1634. SERIAL_PROTOCOLPGM(" y: ");
  1635. SERIAL_PROTOCOL(y);
  1636. SERIAL_PROTOCOLPGM(" z: ");
  1637. SERIAL_PROTOCOL(measured_z);
  1638. SERIAL_PROTOCOLPGM("\n");
  1639. return measured_z;
  1640. }
  1641. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1642. #ifdef LIN_ADVANCE
  1643. /**
  1644. * M900: Set and/or Get advance K factor and WH/D ratio
  1645. *
  1646. * K<factor> Set advance K factor
  1647. * R<ratio> Set ratio directly (overrides WH/D)
  1648. * W<width> H<height> D<diam> Set ratio from WH/D
  1649. */
  1650. inline void gcode_M900() {
  1651. st_synchronize();
  1652. const float newK = code_seen('K') ? code_value_float() : -1;
  1653. if (newK >= 0) extruder_advance_k = newK;
  1654. float newR = code_seen('R') ? code_value_float() : -1;
  1655. if (newR < 0) {
  1656. const float newD = code_seen('D') ? code_value_float() : -1,
  1657. newW = code_seen('W') ? code_value_float() : -1,
  1658. newH = code_seen('H') ? code_value_float() : -1;
  1659. if (newD >= 0 && newW >= 0 && newH >= 0)
  1660. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1661. }
  1662. if (newR >= 0) advance_ed_ratio = newR;
  1663. SERIAL_ECHO_START;
  1664. SERIAL_ECHOPGM("Advance K=");
  1665. SERIAL_ECHOLN(extruder_advance_k);
  1666. SERIAL_ECHOPGM(" E/D=");
  1667. const float ratio = advance_ed_ratio;
  1668. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1669. }
  1670. #endif // LIN_ADVANCE
  1671. bool check_commands() {
  1672. bool end_command_found = false;
  1673. while (buflen)
  1674. {
  1675. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1676. if (!cmdbuffer_front_already_processed)
  1677. cmdqueue_pop_front();
  1678. cmdbuffer_front_already_processed = false;
  1679. }
  1680. return end_command_found;
  1681. }
  1682. #ifdef TMC2130
  1683. bool calibrate_z_auto()
  1684. {
  1685. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1686. lcd_implementation_clear();
  1687. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1688. bool endstops_enabled = enable_endstops(true);
  1689. int axis_up_dir = -home_dir(Z_AXIS);
  1690. tmc2130_home_enter(Z_AXIS_MASK);
  1691. current_position[Z_AXIS] = 0;
  1692. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1693. set_destination_to_current();
  1694. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1695. feedrate = homing_feedrate[Z_AXIS];
  1696. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. // current_position[axis] = 0;
  1699. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1700. tmc2130_home_exit();
  1701. enable_endstops(false);
  1702. current_position[Z_AXIS] = 0;
  1703. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1704. set_destination_to_current();
  1705. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1706. feedrate = homing_feedrate[Z_AXIS] / 2;
  1707. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1708. st_synchronize();
  1709. enable_endstops(endstops_enabled);
  1710. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1711. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1712. return true;
  1713. }
  1714. #endif //TMC2130
  1715. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1716. {
  1717. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1718. #define HOMEAXIS_DO(LETTER) \
  1719. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1720. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1721. {
  1722. int axis_home_dir = home_dir(axis);
  1723. feedrate = homing_feedrate[axis];
  1724. #ifdef TMC2130
  1725. tmc2130_home_enter(X_AXIS_MASK << axis);
  1726. #endif //TMC2130
  1727. // Move right a bit, so that the print head does not touch the left end position,
  1728. // and the following left movement has a chance to achieve the required velocity
  1729. // for the stall guard to work.
  1730. current_position[axis] = 0;
  1731. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1732. set_destination_to_current();
  1733. // destination[axis] = 11.f;
  1734. destination[axis] = 3.f;
  1735. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1736. st_synchronize();
  1737. // Move left away from the possible collision with the collision detection disabled.
  1738. endstops_hit_on_purpose();
  1739. enable_endstops(false);
  1740. current_position[axis] = 0;
  1741. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1742. destination[axis] = - 1.;
  1743. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1744. st_synchronize();
  1745. // Now continue to move up to the left end stop with the collision detection enabled.
  1746. enable_endstops(true);
  1747. destination[axis] = - 1.1 * max_length(axis);
  1748. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1749. st_synchronize();
  1750. for (uint8_t i = 0; i < cnt; i++)
  1751. {
  1752. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1753. endstops_hit_on_purpose();
  1754. enable_endstops(false);
  1755. current_position[axis] = 0;
  1756. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1757. destination[axis] = 10.f;
  1758. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1759. st_synchronize();
  1760. endstops_hit_on_purpose();
  1761. // Now move left up to the collision, this time with a repeatable velocity.
  1762. enable_endstops(true);
  1763. destination[axis] = - 11.f;
  1764. #ifdef TMC2130
  1765. feedrate = homing_feedrate[axis];
  1766. #else //TMC2130
  1767. feedrate = homing_feedrate[axis] / 2;
  1768. #endif //TMC2130
  1769. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1770. st_synchronize();
  1771. #ifdef TMC2130
  1772. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1773. if (pstep) pstep[i] = mscnt >> 4;
  1774. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1775. #endif //TMC2130
  1776. }
  1777. endstops_hit_on_purpose();
  1778. enable_endstops(false);
  1779. #ifdef TMC2130
  1780. uint8_t orig = tmc2130_home_origin[axis];
  1781. uint8_t back = tmc2130_home_bsteps[axis];
  1782. if (tmc2130_home_enabled && (orig <= 63))
  1783. {
  1784. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1785. if (back > 0)
  1786. tmc2130_do_steps(axis, back, 1, 1000);
  1787. }
  1788. else
  1789. tmc2130_do_steps(axis, 8, 2, 1000);
  1790. tmc2130_home_exit();
  1791. #endif //TMC2130
  1792. axis_is_at_home(axis);
  1793. axis_known_position[axis] = true;
  1794. // Move from minimum
  1795. #ifdef TMC2130
  1796. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1797. #else //TMC2130
  1798. float dist = 0.01f * 64;
  1799. #endif //TMC2130
  1800. current_position[axis] -= dist;
  1801. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1802. current_position[axis] += dist;
  1803. destination[axis] = current_position[axis];
  1804. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1805. st_synchronize();
  1806. feedrate = 0.0;
  1807. }
  1808. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1809. {
  1810. #ifdef TMC2130
  1811. FORCE_HIGH_POWER_START;
  1812. #endif
  1813. int axis_home_dir = home_dir(axis);
  1814. current_position[axis] = 0;
  1815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1817. feedrate = homing_feedrate[axis];
  1818. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1819. st_synchronize();
  1820. #ifdef TMC2130
  1821. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1822. FORCE_HIGH_POWER_END;
  1823. kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
  1824. return;
  1825. }
  1826. #endif //TMC2130
  1827. current_position[axis] = 0;
  1828. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1829. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1830. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1831. st_synchronize();
  1832. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1833. feedrate = homing_feedrate[axis]/2 ;
  1834. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1835. st_synchronize();
  1836. #ifdef TMC2130
  1837. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1838. FORCE_HIGH_POWER_END;
  1839. kill(MSG_BED_LEVELING_FAILED_POINT_LOW);
  1840. return;
  1841. }
  1842. #endif //TMC2130
  1843. axis_is_at_home(axis);
  1844. destination[axis] = current_position[axis];
  1845. feedrate = 0.0;
  1846. endstops_hit_on_purpose();
  1847. axis_known_position[axis] = true;
  1848. #ifdef TMC2130
  1849. FORCE_HIGH_POWER_END;
  1850. #endif
  1851. }
  1852. enable_endstops(endstops_enabled);
  1853. }
  1854. /**/
  1855. void home_xy()
  1856. {
  1857. set_destination_to_current();
  1858. homeaxis(X_AXIS);
  1859. homeaxis(Y_AXIS);
  1860. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1861. endstops_hit_on_purpose();
  1862. }
  1863. void refresh_cmd_timeout(void)
  1864. {
  1865. previous_millis_cmd = millis();
  1866. }
  1867. #ifdef FWRETRACT
  1868. void retract(bool retracting, bool swapretract = false) {
  1869. if(retracting && !retracted[active_extruder]) {
  1870. destination[X_AXIS]=current_position[X_AXIS];
  1871. destination[Y_AXIS]=current_position[Y_AXIS];
  1872. destination[Z_AXIS]=current_position[Z_AXIS];
  1873. destination[E_AXIS]=current_position[E_AXIS];
  1874. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  1875. plan_set_e_position(current_position[E_AXIS]);
  1876. float oldFeedrate = feedrate;
  1877. feedrate=retract_feedrate*60;
  1878. retracted[active_extruder]=true;
  1879. prepare_move();
  1880. current_position[Z_AXIS]-=retract_zlift;
  1881. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1882. prepare_move();
  1883. feedrate = oldFeedrate;
  1884. } else if(!retracting && retracted[active_extruder]) {
  1885. destination[X_AXIS]=current_position[X_AXIS];
  1886. destination[Y_AXIS]=current_position[Y_AXIS];
  1887. destination[Z_AXIS]=current_position[Z_AXIS];
  1888. destination[E_AXIS]=current_position[E_AXIS];
  1889. current_position[Z_AXIS]+=retract_zlift;
  1890. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1891. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  1892. plan_set_e_position(current_position[E_AXIS]);
  1893. float oldFeedrate = feedrate;
  1894. feedrate=retract_recover_feedrate*60;
  1895. retracted[active_extruder]=false;
  1896. prepare_move();
  1897. feedrate = oldFeedrate;
  1898. }
  1899. } //retract
  1900. #endif //FWRETRACT
  1901. void trace() {
  1902. tone(BEEPER, 440);
  1903. delay(25);
  1904. noTone(BEEPER);
  1905. delay(20);
  1906. }
  1907. /*
  1908. void ramming() {
  1909. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  1910. if (current_temperature[0] < 230) {
  1911. //PLA
  1912. max_feedrate[E_AXIS] = 50;
  1913. //current_position[E_AXIS] -= 8;
  1914. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1915. //current_position[E_AXIS] += 8;
  1916. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1917. current_position[E_AXIS] += 5.4;
  1918. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  1919. current_position[E_AXIS] += 3.2;
  1920. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1921. current_position[E_AXIS] += 3;
  1922. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  1923. st_synchronize();
  1924. max_feedrate[E_AXIS] = 80;
  1925. current_position[E_AXIS] -= 82;
  1926. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  1927. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1928. current_position[E_AXIS] -= 20;
  1929. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  1930. current_position[E_AXIS] += 5;
  1931. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1932. current_position[E_AXIS] += 5;
  1933. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1934. current_position[E_AXIS] -= 10;
  1935. st_synchronize();
  1936. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1937. current_position[E_AXIS] += 10;
  1938. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1939. current_position[E_AXIS] -= 10;
  1940. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1941. current_position[E_AXIS] += 10;
  1942. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1943. current_position[E_AXIS] -= 10;
  1944. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1945. st_synchronize();
  1946. }
  1947. else {
  1948. //ABS
  1949. max_feedrate[E_AXIS] = 50;
  1950. //current_position[E_AXIS] -= 8;
  1951. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1952. //current_position[E_AXIS] += 8;
  1953. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  1954. current_position[E_AXIS] += 3.1;
  1955. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  1956. current_position[E_AXIS] += 3.1;
  1957. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  1958. current_position[E_AXIS] += 4;
  1959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  1960. st_synchronize();
  1961. //current_position[X_AXIS] += 23; //delay
  1962. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1963. //current_position[X_AXIS] -= 23; //delay
  1964. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  1965. delay(4700);
  1966. max_feedrate[E_AXIS] = 80;
  1967. current_position[E_AXIS] -= 92;
  1968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  1969. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  1970. current_position[E_AXIS] -= 5;
  1971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  1972. current_position[E_AXIS] += 5;
  1973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  1974. current_position[E_AXIS] -= 5;
  1975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1976. st_synchronize();
  1977. current_position[E_AXIS] += 5;
  1978. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1979. current_position[E_AXIS] -= 5;
  1980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1981. current_position[E_AXIS] += 5;
  1982. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1983. current_position[E_AXIS] -= 5;
  1984. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  1985. st_synchronize();
  1986. }
  1987. }
  1988. */
  1989. #ifdef TMC2130
  1990. void force_high_power_mode(bool start_high_power_section) {
  1991. uint8_t silent;
  1992. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1993. if (silent == 1) {
  1994. //we are in silent mode, set to normal mode to enable crash detection
  1995. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  1996. st_synchronize();
  1997. cli();
  1998. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  1999. tmc2130_init();
  2000. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2001. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2002. st_reset_timer();
  2003. sei();
  2004. }
  2005. }
  2006. #endif //TMC2130
  2007. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib){
  2008. st_synchronize();
  2009. #if 0
  2010. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2011. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2012. #endif
  2013. // Flag for the display update routine and to disable the print cancelation during homing.
  2014. homing_flag = true;
  2015. // Either all X,Y,Z codes are present, or none of them.
  2016. bool home_all_axes = home_x == home_y && home_x == home_z;
  2017. if (home_all_axes)
  2018. // No X/Y/Z code provided means to home all axes.
  2019. home_x = home_y = home_z = true;
  2020. #ifdef ENABLE_AUTO_BED_LEVELING
  2021. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2022. #endif //ENABLE_AUTO_BED_LEVELING
  2023. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2024. // the planner will not perform any adjustments in the XY plane.
  2025. // Wait for the motors to stop and update the current position with the absolute values.
  2026. world2machine_revert_to_uncorrected();
  2027. // For mesh bed leveling deactivate the matrix temporarily.
  2028. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2029. // in a single axis only.
  2030. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2031. #ifdef MESH_BED_LEVELING
  2032. uint8_t mbl_was_active = mbl.active;
  2033. mbl.active = 0;
  2034. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2035. #endif
  2036. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2037. // consumed during the first movements following this statement.
  2038. if (home_z)
  2039. babystep_undo();
  2040. saved_feedrate = feedrate;
  2041. saved_feedmultiply = feedmultiply;
  2042. feedmultiply = 100;
  2043. previous_millis_cmd = millis();
  2044. enable_endstops(true);
  2045. memcpy(destination, current_position, sizeof(destination));
  2046. feedrate = 0.0;
  2047. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2048. if(home_z)
  2049. homeaxis(Z_AXIS);
  2050. #endif
  2051. #ifdef QUICK_HOME
  2052. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2053. if(home_x && home_y) //first diagonal move
  2054. {
  2055. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2056. int x_axis_home_dir = home_dir(X_AXIS);
  2057. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2058. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2059. feedrate = homing_feedrate[X_AXIS];
  2060. if(homing_feedrate[Y_AXIS]<feedrate)
  2061. feedrate = homing_feedrate[Y_AXIS];
  2062. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2063. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2064. } else {
  2065. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2066. }
  2067. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2068. st_synchronize();
  2069. axis_is_at_home(X_AXIS);
  2070. axis_is_at_home(Y_AXIS);
  2071. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2072. destination[X_AXIS] = current_position[X_AXIS];
  2073. destination[Y_AXIS] = current_position[Y_AXIS];
  2074. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2075. feedrate = 0.0;
  2076. st_synchronize();
  2077. endstops_hit_on_purpose();
  2078. current_position[X_AXIS] = destination[X_AXIS];
  2079. current_position[Y_AXIS] = destination[Y_AXIS];
  2080. current_position[Z_AXIS] = destination[Z_AXIS];
  2081. }
  2082. #endif /* QUICK_HOME */
  2083. #ifdef TMC2130
  2084. if(home_x)
  2085. {
  2086. if (!calib)
  2087. homeaxis(X_AXIS);
  2088. else
  2089. tmc2130_home_calibrate(X_AXIS);
  2090. }
  2091. if(home_y)
  2092. {
  2093. if (!calib)
  2094. homeaxis(Y_AXIS);
  2095. else
  2096. tmc2130_home_calibrate(Y_AXIS);
  2097. }
  2098. #endif //TMC2130
  2099. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2100. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2101. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2102. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2103. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2104. #ifndef Z_SAFE_HOMING
  2105. if(home_z) {
  2106. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2107. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2108. feedrate = max_feedrate[Z_AXIS];
  2109. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2110. st_synchronize();
  2111. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2112. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2113. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2114. {
  2115. homeaxis(X_AXIS);
  2116. homeaxis(Y_AXIS);
  2117. }
  2118. // 1st mesh bed leveling measurement point, corrected.
  2119. world2machine_initialize();
  2120. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2121. world2machine_reset();
  2122. if (destination[Y_AXIS] < Y_MIN_POS)
  2123. destination[Y_AXIS] = Y_MIN_POS;
  2124. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2125. feedrate = homing_feedrate[Z_AXIS]/10;
  2126. current_position[Z_AXIS] = 0;
  2127. enable_endstops(false);
  2128. #ifdef DEBUG_BUILD
  2129. SERIAL_ECHOLNPGM("plan_set_position()");
  2130. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2131. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2132. #endif
  2133. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2134. #ifdef DEBUG_BUILD
  2135. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2136. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2137. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2138. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2139. #endif
  2140. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2141. st_synchronize();
  2142. current_position[X_AXIS] = destination[X_AXIS];
  2143. current_position[Y_AXIS] = destination[Y_AXIS];
  2144. enable_endstops(true);
  2145. endstops_hit_on_purpose();
  2146. homeaxis(Z_AXIS);
  2147. #else // MESH_BED_LEVELING
  2148. homeaxis(Z_AXIS);
  2149. #endif // MESH_BED_LEVELING
  2150. }
  2151. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2152. if(home_all_axes) {
  2153. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2154. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2155. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2156. feedrate = XY_TRAVEL_SPEED/60;
  2157. current_position[Z_AXIS] = 0;
  2158. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2159. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2160. st_synchronize();
  2161. current_position[X_AXIS] = destination[X_AXIS];
  2162. current_position[Y_AXIS] = destination[Y_AXIS];
  2163. homeaxis(Z_AXIS);
  2164. }
  2165. // Let's see if X and Y are homed and probe is inside bed area.
  2166. if(home_z) {
  2167. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2168. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2169. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2170. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2171. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2172. current_position[Z_AXIS] = 0;
  2173. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2174. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2175. feedrate = max_feedrate[Z_AXIS];
  2176. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2177. st_synchronize();
  2178. homeaxis(Z_AXIS);
  2179. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2180. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2181. SERIAL_ECHO_START;
  2182. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2183. } else {
  2184. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2185. SERIAL_ECHO_START;
  2186. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2187. }
  2188. }
  2189. #endif // Z_SAFE_HOMING
  2190. #endif // Z_HOME_DIR < 0
  2191. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2192. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2193. #ifdef ENABLE_AUTO_BED_LEVELING
  2194. if(home_z)
  2195. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2196. #endif
  2197. // Set the planner and stepper routine positions.
  2198. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2199. // contains the machine coordinates.
  2200. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2201. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2202. enable_endstops(false);
  2203. #endif
  2204. feedrate = saved_feedrate;
  2205. feedmultiply = saved_feedmultiply;
  2206. previous_millis_cmd = millis();
  2207. endstops_hit_on_purpose();
  2208. #ifndef MESH_BED_LEVELING
  2209. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2210. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2211. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2212. lcd_adjust_z();
  2213. #endif
  2214. // Load the machine correction matrix
  2215. world2machine_initialize();
  2216. // and correct the current_position XY axes to match the transformed coordinate system.
  2217. world2machine_update_current();
  2218. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2219. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2220. {
  2221. if (! home_z && mbl_was_active) {
  2222. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2223. mbl.active = true;
  2224. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2225. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2226. }
  2227. }
  2228. else
  2229. {
  2230. st_synchronize();
  2231. homing_flag = false;
  2232. // Push the commands to the front of the message queue in the reverse order!
  2233. // There shall be always enough space reserved for these commands.
  2234. enquecommand_front_P((PSTR("G80")));
  2235. //goto case_G80;
  2236. }
  2237. #endif
  2238. if (farm_mode) { prusa_statistics(20); };
  2239. homing_flag = false;
  2240. #if 0
  2241. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2242. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2243. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2244. #endif
  2245. }
  2246. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2247. {
  2248. bool final_result = false;
  2249. #ifdef TMC2130
  2250. FORCE_HIGH_POWER_START;
  2251. #endif // TMC2130
  2252. // Only Z calibration?
  2253. if (!onlyZ)
  2254. {
  2255. setTargetBed(0);
  2256. setTargetHotend(0, 0);
  2257. setTargetHotend(0, 1);
  2258. setTargetHotend(0, 2);
  2259. adjust_bed_reset(); //reset bed level correction
  2260. }
  2261. // Disable the default update procedure of the display. We will do a modal dialog.
  2262. lcd_update_enable(false);
  2263. // Let the planner use the uncorrected coordinates.
  2264. mbl.reset();
  2265. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2266. // the planner will not perform any adjustments in the XY plane.
  2267. // Wait for the motors to stop and update the current position with the absolute values.
  2268. world2machine_revert_to_uncorrected();
  2269. // Reset the baby step value applied without moving the axes.
  2270. babystep_reset();
  2271. // Mark all axes as in a need for homing.
  2272. memset(axis_known_position, 0, sizeof(axis_known_position));
  2273. // Home in the XY plane.
  2274. //set_destination_to_current();
  2275. setup_for_endstop_move();
  2276. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2277. home_xy();
  2278. enable_endstops(false);
  2279. current_position[X_AXIS] += 5;
  2280. current_position[Y_AXIS] += 5;
  2281. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2282. st_synchronize();
  2283. // Let the user move the Z axes up to the end stoppers.
  2284. #ifdef TMC2130
  2285. if (calibrate_z_auto())
  2286. {
  2287. #else //TMC2130
  2288. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2289. {
  2290. #endif //TMC2130
  2291. refresh_cmd_timeout();
  2292. #ifndef STEEL_SHEET
  2293. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2294. {
  2295. lcd_wait_for_cool_down();
  2296. }
  2297. #endif //STEEL_SHEET
  2298. if(!onlyZ)
  2299. {
  2300. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2301. #ifdef STEEL_SHEET
  2302. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2303. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2304. #endif //STEEL_SHEET
  2305. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2306. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2307. KEEPALIVE_STATE(IN_HANDLER);
  2308. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2309. lcd_implementation_print_at(0, 2, 1);
  2310. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2311. }
  2312. // Move the print head close to the bed.
  2313. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2314. bool endstops_enabled = enable_endstops(true);
  2315. #ifdef TMC2130
  2316. tmc2130_home_enter(Z_AXIS_MASK);
  2317. #endif //TMC2130
  2318. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2319. st_synchronize();
  2320. #ifdef TMC2130
  2321. tmc2130_home_exit();
  2322. #endif //TMC2130
  2323. enable_endstops(endstops_enabled);
  2324. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2325. {
  2326. int8_t verbosity_level = 0;
  2327. if (code_seen('V'))
  2328. {
  2329. // Just 'V' without a number counts as V1.
  2330. char c = strchr_pointer[1];
  2331. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2332. }
  2333. if (onlyZ)
  2334. {
  2335. clean_up_after_endstop_move();
  2336. // Z only calibration.
  2337. // Load the machine correction matrix
  2338. world2machine_initialize();
  2339. // and correct the current_position to match the transformed coordinate system.
  2340. world2machine_update_current();
  2341. //FIXME
  2342. bool result = sample_mesh_and_store_reference();
  2343. if (result)
  2344. {
  2345. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2346. // Shipped, the nozzle height has been set already. The user can start printing now.
  2347. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2348. final_result = true;
  2349. // babystep_apply();
  2350. }
  2351. }
  2352. else
  2353. {
  2354. // Reset the baby step value and the baby step applied flag.
  2355. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2356. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2357. // Complete XYZ calibration.
  2358. uint8_t point_too_far_mask = 0;
  2359. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2360. clean_up_after_endstop_move();
  2361. // Print head up.
  2362. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2363. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2364. st_synchronize();
  2365. //#ifndef NEW_XYZCAL
  2366. if (result >= 0)
  2367. {
  2368. #ifdef HEATBED_V2
  2369. sample_z();
  2370. #else //HEATBED_V2
  2371. point_too_far_mask = 0;
  2372. // Second half: The fine adjustment.
  2373. // Let the planner use the uncorrected coordinates.
  2374. mbl.reset();
  2375. world2machine_reset();
  2376. // Home in the XY plane.
  2377. setup_for_endstop_move();
  2378. home_xy();
  2379. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2380. clean_up_after_endstop_move();
  2381. // Print head up.
  2382. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2383. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2384. st_synchronize();
  2385. // if (result >= 0) babystep_apply();
  2386. #endif //HEATBED_V2
  2387. }
  2388. //#endif //NEW_XYZCAL
  2389. lcd_update_enable(true);
  2390. lcd_update(2);
  2391. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2392. if (result >= 0)
  2393. {
  2394. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2395. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2396. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2397. final_result = true;
  2398. }
  2399. }
  2400. #ifdef TMC2130
  2401. tmc2130_home_exit();
  2402. #endif
  2403. }
  2404. else
  2405. {
  2406. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2407. final_result = false;
  2408. }
  2409. }
  2410. else
  2411. {
  2412. // Timeouted.
  2413. }
  2414. lcd_update_enable(true);
  2415. #ifdef TMC2130
  2416. FORCE_HIGH_POWER_END;
  2417. #endif // TMC2130
  2418. return final_result;
  2419. }
  2420. void gcode_M114()
  2421. {
  2422. SERIAL_PROTOCOLPGM("X:");
  2423. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2424. SERIAL_PROTOCOLPGM(" Y:");
  2425. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2426. SERIAL_PROTOCOLPGM(" Z:");
  2427. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2428. SERIAL_PROTOCOLPGM(" E:");
  2429. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2430. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2431. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2432. SERIAL_PROTOCOLPGM(" Y:");
  2433. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2434. SERIAL_PROTOCOLPGM(" Z:");
  2435. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2436. SERIAL_PROTOCOLPGM(" E:");
  2437. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2438. SERIAL_PROTOCOLLN("");
  2439. }
  2440. void gcode_M701()
  2441. {
  2442. #ifdef SNMM
  2443. extr_adj(snmm_extruder);//loads current extruder
  2444. #else
  2445. enable_z();
  2446. custom_message = true;
  2447. custom_message_type = 2;
  2448. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2449. current_position[E_AXIS] += 70;
  2450. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2451. current_position[E_AXIS] += 25;
  2452. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2453. st_synchronize();
  2454. tone(BEEPER, 500);
  2455. delay_keep_alive(50);
  2456. noTone(BEEPER);
  2457. if (!farm_mode && loading_flag) {
  2458. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2459. while (!clean) {
  2460. lcd_update_enable(true);
  2461. lcd_update(2);
  2462. current_position[E_AXIS] += 25;
  2463. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2464. st_synchronize();
  2465. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2466. }
  2467. }
  2468. lcd_update_enable(true);
  2469. lcd_update(2);
  2470. lcd_setstatuspgm(_T(WELCOME_MSG));
  2471. disable_z();
  2472. loading_flag = false;
  2473. custom_message = false;
  2474. custom_message_type = 0;
  2475. #endif
  2476. }
  2477. /**
  2478. * @brief Get serial number from 32U2 processor
  2479. *
  2480. * Typical format of S/N is:CZPX0917X003XC13518
  2481. *
  2482. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2483. *
  2484. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2485. * reply is transmitted to serial port 1 character by character.
  2486. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2487. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2488. * in any case.
  2489. */
  2490. static void gcode_PRUSA_SN()
  2491. {
  2492. if (farm_mode) {
  2493. selectedSerialPort = 0;
  2494. MSerial.write(";S");
  2495. int numbersRead = 0;
  2496. Timer timeout;
  2497. timeout.start();
  2498. while (numbersRead < 19) {
  2499. while (MSerial.available() > 0) {
  2500. uint8_t serial_char = MSerial.read();
  2501. selectedSerialPort = 1;
  2502. MSerial.write(serial_char);
  2503. numbersRead++;
  2504. selectedSerialPort = 0;
  2505. }
  2506. if (timeout.expired(100)) break;
  2507. }
  2508. selectedSerialPort = 1;
  2509. MSerial.write('\n');
  2510. #if 0
  2511. for (int b = 0; b < 3; b++) {
  2512. tone(BEEPER, 110);
  2513. delay(50);
  2514. noTone(BEEPER);
  2515. delay(50);
  2516. }
  2517. #endif
  2518. } else {
  2519. MYSERIAL.println("Not in farm mode.");
  2520. }
  2521. }
  2522. void process_commands()
  2523. {
  2524. if (!buflen) return; //empty command
  2525. #ifdef FILAMENT_RUNOUT_SUPPORT
  2526. SET_INPUT(FR_SENS);
  2527. #endif
  2528. #ifdef CMDBUFFER_DEBUG
  2529. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2530. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2531. SERIAL_ECHOLNPGM("");
  2532. SERIAL_ECHOPGM("In cmdqueue: ");
  2533. SERIAL_ECHO(buflen);
  2534. SERIAL_ECHOLNPGM("");
  2535. #endif /* CMDBUFFER_DEBUG */
  2536. unsigned long codenum; //throw away variable
  2537. char *starpos = NULL;
  2538. #ifdef ENABLE_AUTO_BED_LEVELING
  2539. float x_tmp, y_tmp, z_tmp, real_z;
  2540. #endif
  2541. // PRUSA GCODES
  2542. KEEPALIVE_STATE(IN_HANDLER);
  2543. #ifdef SNMM
  2544. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2545. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2546. int8_t SilentMode;
  2547. #endif
  2548. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2549. starpos = (strchr(strchr_pointer + 5, '*'));
  2550. if (starpos != NULL)
  2551. *(starpos) = '\0';
  2552. lcd_setstatus(strchr_pointer + 5);
  2553. }
  2554. #ifdef TMC2130
  2555. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2556. {
  2557. if(code_seen("CRASH_DETECTED"))
  2558. {
  2559. uint8_t mask = 0;
  2560. if (code_seen("X")) mask |= X_AXIS_MASK;
  2561. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2562. crashdet_detected(mask);
  2563. }
  2564. else if(code_seen("CRASH_RECOVER"))
  2565. crashdet_recover();
  2566. else if(code_seen("CRASH_CANCEL"))
  2567. crashdet_cancel();
  2568. }
  2569. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2570. {
  2571. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2572. {
  2573. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2574. tmc2130_set_wave(E_AXIS, 247, fac);
  2575. }
  2576. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2577. {
  2578. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2579. uint16_t res = tmc2130_get_res(E_AXIS);
  2580. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2581. }
  2582. }
  2583. #endif //TMC2130
  2584. else if(code_seen("PRUSA")){
  2585. if (code_seen("Ping")) { //PRUSA Ping
  2586. if (farm_mode) {
  2587. PingTime = millis();
  2588. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2589. }
  2590. }
  2591. else if (code_seen("PRN")) {
  2592. MYSERIAL.println(status_number);
  2593. }else if (code_seen("FAN")) {
  2594. MYSERIAL.print("E0:");
  2595. MYSERIAL.print(60*fan_speed[0]);
  2596. MYSERIAL.println(" RPM");
  2597. MYSERIAL.print("PRN0:");
  2598. MYSERIAL.print(60*fan_speed[1]);
  2599. MYSERIAL.println(" RPM");
  2600. }else if (code_seen("fn")) {
  2601. if (farm_mode) {
  2602. MYSERIAL.println(farm_no);
  2603. }
  2604. else {
  2605. MYSERIAL.println("Not in farm mode.");
  2606. }
  2607. }
  2608. else if (code_seen("thx")) {
  2609. no_response = false;
  2610. }else if (code_seen("fv")) {
  2611. // get file version
  2612. #ifdef SDSUPPORT
  2613. card.openFile(strchr_pointer + 3,true);
  2614. while (true) {
  2615. uint16_t readByte = card.get();
  2616. MYSERIAL.write(readByte);
  2617. if (readByte=='\n') {
  2618. break;
  2619. }
  2620. }
  2621. card.closefile();
  2622. #endif // SDSUPPORT
  2623. } else if (code_seen("M28")) {
  2624. trace();
  2625. prusa_sd_card_upload = true;
  2626. card.openFile(strchr_pointer+4,false);
  2627. } else if (code_seen("SN")) {
  2628. gcode_PRUSA_SN();
  2629. } else if(code_seen("Fir")){
  2630. SERIAL_PROTOCOLLN(FW_VERSION);
  2631. } else if(code_seen("Rev")){
  2632. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2633. } else if(code_seen("Lang")) {
  2634. lcd_force_language_selection();
  2635. } else if(code_seen("Lz")) {
  2636. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2637. } else if (code_seen("SERIAL LOW")) {
  2638. MYSERIAL.println("SERIAL LOW");
  2639. MYSERIAL.begin(BAUDRATE);
  2640. return;
  2641. } else if (code_seen("SERIAL HIGH")) {
  2642. MYSERIAL.println("SERIAL HIGH");
  2643. MYSERIAL.begin(1152000);
  2644. return;
  2645. } else if(code_seen("Beat")) {
  2646. // Kick farm link timer
  2647. kicktime = millis();
  2648. } else if(code_seen("FR")) {
  2649. // Factory full reset
  2650. factory_reset(0,true);
  2651. }
  2652. //else if (code_seen('Cal')) {
  2653. // lcd_calibration();
  2654. // }
  2655. }
  2656. else if (code_seen('^')) {
  2657. // nothing, this is a version line
  2658. } else if(code_seen('G'))
  2659. {
  2660. switch((int)code_value())
  2661. {
  2662. case 0: // G0 -> G1
  2663. case 1: // G1
  2664. if(Stopped == false) {
  2665. #ifdef FILAMENT_RUNOUT_SUPPORT
  2666. if(READ(FR_SENS)){
  2667. feedmultiplyBckp=feedmultiply;
  2668. float target[4];
  2669. float lastpos[4];
  2670. target[X_AXIS]=current_position[X_AXIS];
  2671. target[Y_AXIS]=current_position[Y_AXIS];
  2672. target[Z_AXIS]=current_position[Z_AXIS];
  2673. target[E_AXIS]=current_position[E_AXIS];
  2674. lastpos[X_AXIS]=current_position[X_AXIS];
  2675. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2676. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2677. lastpos[E_AXIS]=current_position[E_AXIS];
  2678. //retract by E
  2679. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2680. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2681. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2682. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2683. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2684. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2685. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2686. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2687. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2688. //finish moves
  2689. st_synchronize();
  2690. //disable extruder steppers so filament can be removed
  2691. disable_e0();
  2692. disable_e1();
  2693. disable_e2();
  2694. delay(100);
  2695. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2696. uint8_t cnt=0;
  2697. int counterBeep = 0;
  2698. lcd_wait_interact();
  2699. while(!lcd_clicked()){
  2700. cnt++;
  2701. manage_heater();
  2702. manage_inactivity(true);
  2703. //lcd_update();
  2704. if(cnt==0)
  2705. {
  2706. #if BEEPER > 0
  2707. if (counterBeep== 500){
  2708. counterBeep = 0;
  2709. }
  2710. SET_OUTPUT(BEEPER);
  2711. if (counterBeep== 0){
  2712. WRITE(BEEPER,HIGH);
  2713. }
  2714. if (counterBeep== 20){
  2715. WRITE(BEEPER,LOW);
  2716. }
  2717. counterBeep++;
  2718. #else
  2719. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2720. lcd_buzz(1000/6,100);
  2721. #else
  2722. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2723. #endif
  2724. #endif
  2725. }
  2726. }
  2727. WRITE(BEEPER,LOW);
  2728. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2729. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2730. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2731. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2732. lcd_change_fil_state = 0;
  2733. lcd_loading_filament();
  2734. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2735. lcd_change_fil_state = 0;
  2736. lcd_alright();
  2737. switch(lcd_change_fil_state){
  2738. case 2:
  2739. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2740. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2741. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2742. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2743. lcd_loading_filament();
  2744. break;
  2745. case 3:
  2746. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2747. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2748. lcd_loading_color();
  2749. break;
  2750. default:
  2751. lcd_change_success();
  2752. break;
  2753. }
  2754. }
  2755. target[E_AXIS]+= 5;
  2756. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2757. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  2758. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2759. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2760. //plan_set_e_position(current_position[E_AXIS]);
  2761. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  2762. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  2763. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  2764. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  2765. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  2766. plan_set_e_position(lastpos[E_AXIS]);
  2767. feedmultiply=feedmultiplyBckp;
  2768. char cmd[9];
  2769. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2770. enquecommand(cmd);
  2771. }
  2772. #endif
  2773. get_coordinates(); // For X Y Z E F
  2774. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  2775. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  2776. }
  2777. #ifdef FWRETRACT
  2778. if(autoretract_enabled)
  2779. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2780. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2781. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  2782. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  2783. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  2784. retract(!retracted[active_extruder]);
  2785. return;
  2786. }
  2787. }
  2788. #endif //FWRETRACT
  2789. prepare_move();
  2790. //ClearToSend();
  2791. }
  2792. break;
  2793. case 2: // G2 - CW ARC
  2794. if(Stopped == false) {
  2795. get_arc_coordinates();
  2796. prepare_arc_move(true);
  2797. }
  2798. break;
  2799. case 3: // G3 - CCW ARC
  2800. if(Stopped == false) {
  2801. get_arc_coordinates();
  2802. prepare_arc_move(false);
  2803. }
  2804. break;
  2805. case 4: // G4 dwell
  2806. codenum = 0;
  2807. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  2808. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  2809. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  2810. st_synchronize();
  2811. codenum += millis(); // keep track of when we started waiting
  2812. previous_millis_cmd = millis();
  2813. while(millis() < codenum) {
  2814. manage_heater();
  2815. manage_inactivity();
  2816. lcd_update();
  2817. }
  2818. break;
  2819. #ifdef FWRETRACT
  2820. case 10: // G10 retract
  2821. #if EXTRUDERS > 1
  2822. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  2823. retract(true,retracted_swap[active_extruder]);
  2824. #else
  2825. retract(true);
  2826. #endif
  2827. break;
  2828. case 11: // G11 retract_recover
  2829. #if EXTRUDERS > 1
  2830. retract(false,retracted_swap[active_extruder]);
  2831. #else
  2832. retract(false);
  2833. #endif
  2834. break;
  2835. #endif //FWRETRACT
  2836. case 28: //G28 Home all Axis one at a time
  2837. {
  2838. // Which axes should be homed?
  2839. bool home_x = code_seen(axis_codes[X_AXIS]);
  2840. bool home_y = code_seen(axis_codes[Y_AXIS]);
  2841. bool home_z = code_seen(axis_codes[Z_AXIS]);
  2842. // calibrate?
  2843. bool calib = code_seen('C');
  2844. gcode_G28(home_x, home_y, home_z, calib);
  2845. break;
  2846. }
  2847. #ifdef ENABLE_AUTO_BED_LEVELING
  2848. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  2849. {
  2850. #if Z_MIN_PIN == -1
  2851. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  2852. #endif
  2853. // Prevent user from running a G29 without first homing in X and Y
  2854. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  2855. {
  2856. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2857. SERIAL_ECHO_START;
  2858. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2859. break; // abort G29, since we don't know where we are
  2860. }
  2861. st_synchronize();
  2862. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  2863. //vector_3 corrected_position = plan_get_position_mm();
  2864. //corrected_position.debug("position before G29");
  2865. plan_bed_level_matrix.set_to_identity();
  2866. vector_3 uncorrected_position = plan_get_position();
  2867. //uncorrected_position.debug("position durring G29");
  2868. current_position[X_AXIS] = uncorrected_position.x;
  2869. current_position[Y_AXIS] = uncorrected_position.y;
  2870. current_position[Z_AXIS] = uncorrected_position.z;
  2871. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2872. setup_for_endstop_move();
  2873. feedrate = homing_feedrate[Z_AXIS];
  2874. #ifdef AUTO_BED_LEVELING_GRID
  2875. // probe at the points of a lattice grid
  2876. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2877. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  2878. // solve the plane equation ax + by + d = z
  2879. // A is the matrix with rows [x y 1] for all the probed points
  2880. // B is the vector of the Z positions
  2881. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2882. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2883. // "A" matrix of the linear system of equations
  2884. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  2885. // "B" vector of Z points
  2886. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  2887. int probePointCounter = 0;
  2888. bool zig = true;
  2889. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  2890. {
  2891. int xProbe, xInc;
  2892. if (zig)
  2893. {
  2894. xProbe = LEFT_PROBE_BED_POSITION;
  2895. //xEnd = RIGHT_PROBE_BED_POSITION;
  2896. xInc = xGridSpacing;
  2897. zig = false;
  2898. } else // zag
  2899. {
  2900. xProbe = RIGHT_PROBE_BED_POSITION;
  2901. //xEnd = LEFT_PROBE_BED_POSITION;
  2902. xInc = -xGridSpacing;
  2903. zig = true;
  2904. }
  2905. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  2906. {
  2907. float z_before;
  2908. if (probePointCounter == 0)
  2909. {
  2910. // raise before probing
  2911. z_before = Z_RAISE_BEFORE_PROBING;
  2912. } else
  2913. {
  2914. // raise extruder
  2915. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  2916. }
  2917. float measured_z = probe_pt(xProbe, yProbe, z_before);
  2918. eqnBVector[probePointCounter] = measured_z;
  2919. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  2920. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  2921. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  2922. probePointCounter++;
  2923. xProbe += xInc;
  2924. }
  2925. }
  2926. clean_up_after_endstop_move();
  2927. // solve lsq problem
  2928. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  2929. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2930. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  2931. SERIAL_PROTOCOLPGM(" b: ");
  2932. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  2933. SERIAL_PROTOCOLPGM(" d: ");
  2934. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  2935. set_bed_level_equation_lsq(plane_equation_coefficients);
  2936. free(plane_equation_coefficients);
  2937. #else // AUTO_BED_LEVELING_GRID not defined
  2938. // Probe at 3 arbitrary points
  2939. // probe 1
  2940. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  2941. // probe 2
  2942. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2943. // probe 3
  2944. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  2945. clean_up_after_endstop_move();
  2946. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2947. #endif // AUTO_BED_LEVELING_GRID
  2948. st_synchronize();
  2949. // The following code correct the Z height difference from z-probe position and hotend tip position.
  2950. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2951. // When the bed is uneven, this height must be corrected.
  2952. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2953. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2954. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2955. z_tmp = current_position[Z_AXIS];
  2956. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2957. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2958. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2959. }
  2960. break;
  2961. #ifndef Z_PROBE_SLED
  2962. case 30: // G30 Single Z Probe
  2963. {
  2964. st_synchronize();
  2965. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2966. setup_for_endstop_move();
  2967. feedrate = homing_feedrate[Z_AXIS];
  2968. run_z_probe();
  2969. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  2970. SERIAL_PROTOCOLPGM(" X: ");
  2971. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2972. SERIAL_PROTOCOLPGM(" Y: ");
  2973. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2974. SERIAL_PROTOCOLPGM(" Z: ");
  2975. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2976. SERIAL_PROTOCOLPGM("\n");
  2977. clean_up_after_endstop_move();
  2978. }
  2979. break;
  2980. #else
  2981. case 31: // dock the sled
  2982. dock_sled(true);
  2983. break;
  2984. case 32: // undock the sled
  2985. dock_sled(false);
  2986. break;
  2987. #endif // Z_PROBE_SLED
  2988. #endif // ENABLE_AUTO_BED_LEVELING
  2989. #ifdef MESH_BED_LEVELING
  2990. case 30: // G30 Single Z Probe
  2991. {
  2992. st_synchronize();
  2993. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2994. setup_for_endstop_move();
  2995. feedrate = homing_feedrate[Z_AXIS];
  2996. find_bed_induction_sensor_point_z(-10.f, 3);
  2997. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  2998. SERIAL_PROTOCOLPGM(" X: ");
  2999. MYSERIAL.print(current_position[X_AXIS], 5);
  3000. SERIAL_PROTOCOLPGM(" Y: ");
  3001. MYSERIAL.print(current_position[Y_AXIS], 5);
  3002. SERIAL_PROTOCOLPGM(" Z: ");
  3003. MYSERIAL.print(current_position[Z_AXIS], 5);
  3004. SERIAL_PROTOCOLPGM("\n");
  3005. clean_up_after_endstop_move();
  3006. }
  3007. break;
  3008. case 75:
  3009. {
  3010. for (int i = 40; i <= 110; i++) {
  3011. MYSERIAL.print(i);
  3012. MYSERIAL.print(" ");
  3013. MYSERIAL.println(temp_comp_interpolation(i));// / axis_steps_per_unit[Z_AXIS]);
  3014. }
  3015. }
  3016. break;
  3017. case 76: //PINDA probe temperature calibration
  3018. {
  3019. #ifdef PINDA_THERMISTOR
  3020. if (true)
  3021. {
  3022. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3023. //we need to know accurate position of first calibration point
  3024. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3025. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3026. break;
  3027. }
  3028. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3029. {
  3030. // We don't know where we are! HOME!
  3031. // Push the commands to the front of the message queue in the reverse order!
  3032. // There shall be always enough space reserved for these commands.
  3033. repeatcommand_front(); // repeat G76 with all its parameters
  3034. enquecommand_front_P((PSTR("G28 W0")));
  3035. break;
  3036. }
  3037. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3038. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3039. if (result)
  3040. {
  3041. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3043. current_position[Z_AXIS] = 50;
  3044. current_position[Y_AXIS] = 180;
  3045. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3046. st_synchronize();
  3047. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3048. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3049. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3050. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3051. st_synchronize();
  3052. gcode_G28(false, false, true, false);
  3053. }
  3054. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3055. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3056. current_position[Z_AXIS] = 100;
  3057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3058. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3059. lcd_temp_cal_show_result(false);
  3060. break;
  3061. }
  3062. }
  3063. lcd_update_enable(true);
  3064. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3065. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3066. float zero_z;
  3067. int z_shift = 0; //unit: steps
  3068. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3069. if (start_temp < 35) start_temp = 35;
  3070. if (start_temp < current_temperature_pinda) start_temp += 5;
  3071. SERIAL_ECHOPGM("start temperature: ");
  3072. MYSERIAL.println(start_temp);
  3073. // setTargetHotend(200, 0);
  3074. setTargetBed(70 + (start_temp - 30));
  3075. custom_message = true;
  3076. custom_message_type = 4;
  3077. custom_message_state = 1;
  3078. custom_message = _T(MSG_TEMP_CALIBRATION);
  3079. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3080. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3081. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3082. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3083. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3084. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3085. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3086. st_synchronize();
  3087. while (current_temperature_pinda < start_temp)
  3088. {
  3089. delay_keep_alive(1000);
  3090. serialecho_temperatures();
  3091. }
  3092. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3093. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3094. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3095. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3096. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3097. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3098. st_synchronize();
  3099. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3100. if (find_z_result == false) {
  3101. lcd_temp_cal_show_result(find_z_result);
  3102. break;
  3103. }
  3104. zero_z = current_position[Z_AXIS];
  3105. //current_position[Z_AXIS]
  3106. SERIAL_ECHOLNPGM("");
  3107. SERIAL_ECHOPGM("ZERO: ");
  3108. MYSERIAL.print(current_position[Z_AXIS]);
  3109. SERIAL_ECHOLNPGM("");
  3110. int i = -1; for (; i < 5; i++)
  3111. {
  3112. float temp = (40 + i * 5);
  3113. SERIAL_ECHOPGM("Step: ");
  3114. MYSERIAL.print(i + 2);
  3115. SERIAL_ECHOLNPGM("/6 (skipped)");
  3116. SERIAL_ECHOPGM("PINDA temperature: ");
  3117. MYSERIAL.print((40 + i*5));
  3118. SERIAL_ECHOPGM(" Z shift (mm):");
  3119. MYSERIAL.print(0);
  3120. SERIAL_ECHOLNPGM("");
  3121. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3122. if (start_temp <= temp) break;
  3123. }
  3124. for (i++; i < 5; i++)
  3125. {
  3126. float temp = (40 + i * 5);
  3127. SERIAL_ECHOPGM("Step: ");
  3128. MYSERIAL.print(i + 2);
  3129. SERIAL_ECHOLNPGM("/6");
  3130. custom_message_state = i + 2;
  3131. setTargetBed(50 + 10 * (temp - 30) / 5);
  3132. // setTargetHotend(255, 0);
  3133. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3135. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3136. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3138. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3139. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3140. st_synchronize();
  3141. while (current_temperature_pinda < temp)
  3142. {
  3143. delay_keep_alive(1000);
  3144. serialecho_temperatures();
  3145. }
  3146. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3147. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3148. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3149. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3150. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3151. st_synchronize();
  3152. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3153. if (find_z_result == false) {
  3154. lcd_temp_cal_show_result(find_z_result);
  3155. break;
  3156. }
  3157. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3158. SERIAL_ECHOLNPGM("");
  3159. SERIAL_ECHOPGM("PINDA temperature: ");
  3160. MYSERIAL.print(current_temperature_pinda);
  3161. SERIAL_ECHOPGM(" Z shift (mm):");
  3162. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3163. SERIAL_ECHOLNPGM("");
  3164. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3165. }
  3166. lcd_temp_cal_show_result(true);
  3167. break;
  3168. }
  3169. #endif //PINDA_THERMISTOR
  3170. setTargetBed(PINDA_MIN_T);
  3171. float zero_z;
  3172. int z_shift = 0; //unit: steps
  3173. int t_c; // temperature
  3174. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3175. // We don't know where we are! HOME!
  3176. // Push the commands to the front of the message queue in the reverse order!
  3177. // There shall be always enough space reserved for these commands.
  3178. repeatcommand_front(); // repeat G76 with all its parameters
  3179. enquecommand_front_P((PSTR("G28 W0")));
  3180. break;
  3181. }
  3182. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3183. custom_message = true;
  3184. custom_message_type = 4;
  3185. custom_message_state = 1;
  3186. custom_message = _T(MSG_TEMP_CALIBRATION);
  3187. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3188. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3189. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3190. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3191. st_synchronize();
  3192. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3193. delay_keep_alive(1000);
  3194. serialecho_temperatures();
  3195. }
  3196. //enquecommand_P(PSTR("M190 S50"));
  3197. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3198. delay_keep_alive(1000);
  3199. serialecho_temperatures();
  3200. }
  3201. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3202. current_position[Z_AXIS] = 5;
  3203. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3204. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3205. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3207. st_synchronize();
  3208. find_bed_induction_sensor_point_z(-1.f);
  3209. zero_z = current_position[Z_AXIS];
  3210. //current_position[Z_AXIS]
  3211. SERIAL_ECHOLNPGM("");
  3212. SERIAL_ECHOPGM("ZERO: ");
  3213. MYSERIAL.print(current_position[Z_AXIS]);
  3214. SERIAL_ECHOLNPGM("");
  3215. for (int i = 0; i<5; i++) {
  3216. SERIAL_ECHOPGM("Step: ");
  3217. MYSERIAL.print(i+2);
  3218. SERIAL_ECHOLNPGM("/6");
  3219. custom_message_state = i + 2;
  3220. t_c = 60 + i * 10;
  3221. setTargetBed(t_c);
  3222. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3223. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3224. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3225. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3226. st_synchronize();
  3227. while (degBed() < t_c) {
  3228. delay_keep_alive(1000);
  3229. serialecho_temperatures();
  3230. }
  3231. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3232. delay_keep_alive(1000);
  3233. serialecho_temperatures();
  3234. }
  3235. current_position[Z_AXIS] = 5;
  3236. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3237. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3238. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3239. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3240. st_synchronize();
  3241. find_bed_induction_sensor_point_z(-1.f);
  3242. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3243. SERIAL_ECHOLNPGM("");
  3244. SERIAL_ECHOPGM("Temperature: ");
  3245. MYSERIAL.print(t_c);
  3246. SERIAL_ECHOPGM(" Z shift (mm):");
  3247. MYSERIAL.print(current_position[Z_AXIS] - zero_z);
  3248. SERIAL_ECHOLNPGM("");
  3249. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3250. }
  3251. custom_message_type = 0;
  3252. custom_message = false;
  3253. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3254. SERIAL_ECHOLNPGM("Temperature calibration done. Continue with pressing the knob.");
  3255. disable_x();
  3256. disable_y();
  3257. disable_z();
  3258. disable_e0();
  3259. disable_e1();
  3260. disable_e2();
  3261. setTargetBed(0); //set bed target temperature back to 0
  3262. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3263. temp_cal_active = true;
  3264. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3265. lcd_update_enable(true);
  3266. lcd_update(2);
  3267. }
  3268. break;
  3269. #ifdef DIS
  3270. case 77:
  3271. {
  3272. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3273. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3274. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3275. float dimension_x = 40;
  3276. float dimension_y = 40;
  3277. int points_x = 40;
  3278. int points_y = 40;
  3279. float offset_x = 74;
  3280. float offset_y = 33;
  3281. if (code_seen('X')) dimension_x = code_value();
  3282. if (code_seen('Y')) dimension_y = code_value();
  3283. if (code_seen('XP')) points_x = code_value();
  3284. if (code_seen('YP')) points_y = code_value();
  3285. if (code_seen('XO')) offset_x = code_value();
  3286. if (code_seen('YO')) offset_y = code_value();
  3287. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3288. } break;
  3289. #endif
  3290. case 79: {
  3291. for (int i = 255; i > 0; i = i - 5) {
  3292. fanSpeed = i;
  3293. //delay_keep_alive(2000);
  3294. for (int j = 0; j < 100; j++) {
  3295. delay_keep_alive(100);
  3296. }
  3297. fan_speed[1];
  3298. MYSERIAL.print(i); SERIAL_ECHOPGM(": "); MYSERIAL.println(fan_speed[1]);
  3299. }
  3300. }break;
  3301. /**
  3302. * G80: Mesh-based Z probe, probes a grid and produces a
  3303. * mesh to compensate for variable bed height
  3304. *
  3305. * The S0 report the points as below
  3306. *
  3307. * +----> X-axis
  3308. * |
  3309. * |
  3310. * v Y-axis
  3311. *
  3312. */
  3313. case 80:
  3314. #ifdef MK1BP
  3315. break;
  3316. #endif //MK1BP
  3317. case_G80:
  3318. {
  3319. mesh_bed_leveling_flag = true;
  3320. int8_t verbosity_level = 0;
  3321. static bool run = false;
  3322. if (code_seen('V')) {
  3323. // Just 'V' without a number counts as V1.
  3324. char c = strchr_pointer[1];
  3325. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3326. }
  3327. // Firstly check if we know where we are
  3328. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3329. // We don't know where we are! HOME!
  3330. // Push the commands to the front of the message queue in the reverse order!
  3331. // There shall be always enough space reserved for these commands.
  3332. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3333. repeatcommand_front(); // repeat G80 with all its parameters
  3334. enquecommand_front_P((PSTR("G28 W0")));
  3335. }
  3336. else {
  3337. mesh_bed_leveling_flag = false;
  3338. }
  3339. break;
  3340. }
  3341. bool temp_comp_start = true;
  3342. #ifdef PINDA_THERMISTOR
  3343. temp_comp_start = false;
  3344. #endif //PINDA_THERMISTOR
  3345. if (temp_comp_start)
  3346. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3347. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3348. temp_compensation_start();
  3349. run = true;
  3350. repeatcommand_front(); // repeat G80 with all its parameters
  3351. enquecommand_front_P((PSTR("G28 W0")));
  3352. }
  3353. else {
  3354. mesh_bed_leveling_flag = false;
  3355. }
  3356. break;
  3357. }
  3358. run = false;
  3359. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3360. mesh_bed_leveling_flag = false;
  3361. break;
  3362. }
  3363. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3364. bool custom_message_old = custom_message;
  3365. unsigned int custom_message_type_old = custom_message_type;
  3366. unsigned int custom_message_state_old = custom_message_state;
  3367. custom_message = true;
  3368. custom_message_type = 1;
  3369. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3370. lcd_update(1);
  3371. mbl.reset(); //reset mesh bed leveling
  3372. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3373. // consumed during the first movements following this statement.
  3374. babystep_undo();
  3375. // Cycle through all points and probe them
  3376. // First move up. During this first movement, the babystepping will be reverted.
  3377. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3378. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3379. // The move to the first calibration point.
  3380. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3381. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3382. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3383. #ifdef SUPPORT_VERBOSITY
  3384. if (verbosity_level >= 1) {
  3385. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3386. }
  3387. #endif //SUPPORT_VERBOSITY
  3388. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3389. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3390. // Wait until the move is finished.
  3391. st_synchronize();
  3392. int mesh_point = 0; //index number of calibration point
  3393. int ix = 0;
  3394. int iy = 0;
  3395. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3396. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3397. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3398. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3399. #ifdef SUPPORT_VERBOSITY
  3400. if (verbosity_level >= 1) {
  3401. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3402. }
  3403. #endif // SUPPORT_VERBOSITY
  3404. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3405. const char *kill_message = NULL;
  3406. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3407. // Get coords of a measuring point.
  3408. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3409. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3410. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3411. float z0 = 0.f;
  3412. if (has_z && mesh_point > 0) {
  3413. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3414. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3415. //#if 0
  3416. #ifdef SUPPORT_VERBOSITY
  3417. if (verbosity_level >= 1) {
  3418. SERIAL_ECHOLNPGM("");
  3419. SERIAL_ECHOPGM("Bed leveling, point: ");
  3420. MYSERIAL.print(mesh_point);
  3421. SERIAL_ECHOPGM(", calibration z: ");
  3422. MYSERIAL.print(z0, 5);
  3423. SERIAL_ECHOLNPGM("");
  3424. }
  3425. #endif // SUPPORT_VERBOSITY
  3426. //#endif
  3427. }
  3428. // Move Z up to MESH_HOME_Z_SEARCH.
  3429. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3430. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3431. st_synchronize();
  3432. // Move to XY position of the sensor point.
  3433. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3434. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3435. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3436. #ifdef SUPPORT_VERBOSITY
  3437. if (verbosity_level >= 1) {
  3438. SERIAL_PROTOCOL(mesh_point);
  3439. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3440. }
  3441. #endif // SUPPORT_VERBOSITY
  3442. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3443. st_synchronize();
  3444. // Go down until endstop is hit
  3445. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3446. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3447. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3448. break;
  3449. }
  3450. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3451. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3452. break;
  3453. }
  3454. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3455. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3456. break;
  3457. }
  3458. #ifdef SUPPORT_VERBOSITY
  3459. if (verbosity_level >= 10) {
  3460. SERIAL_ECHOPGM("X: ");
  3461. MYSERIAL.print(current_position[X_AXIS], 5);
  3462. SERIAL_ECHOLNPGM("");
  3463. SERIAL_ECHOPGM("Y: ");
  3464. MYSERIAL.print(current_position[Y_AXIS], 5);
  3465. SERIAL_PROTOCOLPGM("\n");
  3466. }
  3467. #endif // SUPPORT_VERBOSITY
  3468. float offset_z = 0;
  3469. #ifdef PINDA_THERMISTOR
  3470. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3471. #endif //PINDA_THERMISTOR
  3472. // #ifdef SUPPORT_VERBOSITY
  3473. /* if (verbosity_level >= 1)
  3474. {
  3475. SERIAL_ECHOPGM("mesh bed leveling: ");
  3476. MYSERIAL.print(current_position[Z_AXIS], 5);
  3477. SERIAL_ECHOPGM(" offset: ");
  3478. MYSERIAL.print(offset_z, 5);
  3479. SERIAL_ECHOLNPGM("");
  3480. }*/
  3481. // #endif // SUPPORT_VERBOSITY
  3482. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3483. custom_message_state--;
  3484. mesh_point++;
  3485. lcd_update(1);
  3486. }
  3487. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3488. #ifdef SUPPORT_VERBOSITY
  3489. if (verbosity_level >= 20) {
  3490. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3491. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3492. MYSERIAL.print(current_position[Z_AXIS], 5);
  3493. }
  3494. #endif // SUPPORT_VERBOSITY
  3495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3496. st_synchronize();
  3497. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3498. kill(kill_message);
  3499. SERIAL_ECHOLNPGM("killed");
  3500. }
  3501. clean_up_after_endstop_move();
  3502. // SERIAL_ECHOLNPGM("clean up finished ");
  3503. bool apply_temp_comp = true;
  3504. #ifdef PINDA_THERMISTOR
  3505. apply_temp_comp = false;
  3506. #endif
  3507. if (apply_temp_comp)
  3508. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3509. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3510. // SERIAL_ECHOLNPGM("babystep applied");
  3511. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3512. #ifdef SUPPORT_VERBOSITY
  3513. if (verbosity_level >= 1) {
  3514. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3515. }
  3516. #endif // SUPPORT_VERBOSITY
  3517. for (uint8_t i = 0; i < 4; ++i) {
  3518. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3519. long correction = 0;
  3520. if (code_seen(codes[i]))
  3521. correction = code_value_long();
  3522. else if (eeprom_bed_correction_valid) {
  3523. unsigned char *addr = (i < 2) ?
  3524. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3525. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3526. correction = eeprom_read_int8(addr);
  3527. }
  3528. if (correction == 0)
  3529. continue;
  3530. float offset = float(correction) * 0.001f;
  3531. if (fabs(offset) > 0.101f) {
  3532. SERIAL_ERROR_START;
  3533. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3534. SERIAL_ECHO(offset);
  3535. SERIAL_ECHOLNPGM(" microns");
  3536. }
  3537. else {
  3538. switch (i) {
  3539. case 0:
  3540. for (uint8_t row = 0; row < 3; ++row) {
  3541. mbl.z_values[row][1] += 0.5f * offset;
  3542. mbl.z_values[row][0] += offset;
  3543. }
  3544. break;
  3545. case 1:
  3546. for (uint8_t row = 0; row < 3; ++row) {
  3547. mbl.z_values[row][1] += 0.5f * offset;
  3548. mbl.z_values[row][2] += offset;
  3549. }
  3550. break;
  3551. case 2:
  3552. for (uint8_t col = 0; col < 3; ++col) {
  3553. mbl.z_values[1][col] += 0.5f * offset;
  3554. mbl.z_values[0][col] += offset;
  3555. }
  3556. break;
  3557. case 3:
  3558. for (uint8_t col = 0; col < 3; ++col) {
  3559. mbl.z_values[1][col] += 0.5f * offset;
  3560. mbl.z_values[2][col] += offset;
  3561. }
  3562. break;
  3563. }
  3564. }
  3565. }
  3566. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3567. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3568. // SERIAL_ECHOLNPGM("Upsample finished");
  3569. mbl.active = 1; //activate mesh bed leveling
  3570. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3571. go_home_with_z_lift();
  3572. // SERIAL_ECHOLNPGM("Go home finished");
  3573. //unretract (after PINDA preheat retraction)
  3574. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3575. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3576. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3577. }
  3578. KEEPALIVE_STATE(NOT_BUSY);
  3579. // Restore custom message state
  3580. custom_message = custom_message_old;
  3581. custom_message_type = custom_message_type_old;
  3582. custom_message_state = custom_message_state_old;
  3583. mesh_bed_leveling_flag = false;
  3584. mesh_bed_run_from_menu = false;
  3585. lcd_update(2);
  3586. }
  3587. break;
  3588. /**
  3589. * G81: Print mesh bed leveling status and bed profile if activated
  3590. */
  3591. case 81:
  3592. if (mbl.active) {
  3593. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3594. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3595. SERIAL_PROTOCOLPGM(",");
  3596. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3597. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3598. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3599. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3600. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3601. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3602. SERIAL_PROTOCOLPGM(" ");
  3603. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3604. }
  3605. SERIAL_PROTOCOLPGM("\n");
  3606. }
  3607. }
  3608. else
  3609. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3610. break;
  3611. #if 0
  3612. /**
  3613. * G82: Single Z probe at current location
  3614. *
  3615. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3616. *
  3617. */
  3618. case 82:
  3619. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3620. setup_for_endstop_move();
  3621. find_bed_induction_sensor_point_z();
  3622. clean_up_after_endstop_move();
  3623. SERIAL_PROTOCOLPGM("Bed found at: ");
  3624. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3625. SERIAL_PROTOCOLPGM("\n");
  3626. break;
  3627. /**
  3628. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3629. */
  3630. case 83:
  3631. {
  3632. int babystepz = code_seen('S') ? code_value() : 0;
  3633. int BabyPosition = code_seen('P') ? code_value() : 0;
  3634. if (babystepz != 0) {
  3635. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3636. // Is the axis indexed starting with zero or one?
  3637. if (BabyPosition > 4) {
  3638. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3639. }else{
  3640. // Save it to the eeprom
  3641. babystepLoadZ = babystepz;
  3642. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3643. // adjust the Z
  3644. babystepsTodoZadd(babystepLoadZ);
  3645. }
  3646. }
  3647. }
  3648. break;
  3649. /**
  3650. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3651. */
  3652. case 84:
  3653. babystepsTodoZsubtract(babystepLoadZ);
  3654. // babystepLoadZ = 0;
  3655. break;
  3656. /**
  3657. * G85: Prusa3D specific: Pick best babystep
  3658. */
  3659. case 85:
  3660. lcd_pick_babystep();
  3661. break;
  3662. #endif
  3663. /**
  3664. * G86: Prusa3D specific: Disable babystep correction after home.
  3665. * This G-code will be performed at the start of a calibration script.
  3666. */
  3667. case 86:
  3668. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3669. break;
  3670. /**
  3671. * G87: Prusa3D specific: Enable babystep correction after home
  3672. * This G-code will be performed at the end of a calibration script.
  3673. */
  3674. case 87:
  3675. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3676. break;
  3677. /**
  3678. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3679. */
  3680. case 88:
  3681. break;
  3682. #endif // ENABLE_MESH_BED_LEVELING
  3683. case 90: // G90
  3684. relative_mode = false;
  3685. break;
  3686. case 91: // G91
  3687. relative_mode = true;
  3688. break;
  3689. case 92: // G92
  3690. if(!code_seen(axis_codes[E_AXIS]))
  3691. st_synchronize();
  3692. for(int8_t i=0; i < NUM_AXIS; i++) {
  3693. if(code_seen(axis_codes[i])) {
  3694. if(i == E_AXIS) {
  3695. current_position[i] = code_value();
  3696. plan_set_e_position(current_position[E_AXIS]);
  3697. }
  3698. else {
  3699. current_position[i] = code_value()+add_homing[i];
  3700. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3701. }
  3702. }
  3703. }
  3704. break;
  3705. case 98: // G98 (activate farm mode)
  3706. farm_mode = 1;
  3707. PingTime = millis();
  3708. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3709. SilentModeMenu = SILENT_MODE_OFF;
  3710. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3711. break;
  3712. case 99: // G99 (deactivate farm mode)
  3713. farm_mode = 0;
  3714. lcd_printer_connected();
  3715. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3716. lcd_update(2);
  3717. break;
  3718. default:
  3719. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3720. }
  3721. } // end if(code_seen('G'))
  3722. else if(code_seen('M'))
  3723. {
  3724. int index;
  3725. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3726. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3727. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3728. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3729. } else
  3730. switch((int)code_value())
  3731. {
  3732. #ifdef ULTIPANEL
  3733. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3734. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3735. {
  3736. char *src = strchr_pointer + 2;
  3737. codenum = 0;
  3738. bool hasP = false, hasS = false;
  3739. if (code_seen('P')) {
  3740. codenum = code_value(); // milliseconds to wait
  3741. hasP = codenum > 0;
  3742. }
  3743. if (code_seen('S')) {
  3744. codenum = code_value() * 1000; // seconds to wait
  3745. hasS = codenum > 0;
  3746. }
  3747. starpos = strchr(src, '*');
  3748. if (starpos != NULL) *(starpos) = '\0';
  3749. while (*src == ' ') ++src;
  3750. if (!hasP && !hasS && *src != '\0') {
  3751. lcd_setstatus(src);
  3752. } else {
  3753. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3754. }
  3755. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3756. st_synchronize();
  3757. previous_millis_cmd = millis();
  3758. if (codenum > 0){
  3759. codenum += millis(); // keep track of when we started waiting
  3760. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3761. while(millis() < codenum && !lcd_clicked()){
  3762. manage_heater();
  3763. manage_inactivity(true);
  3764. lcd_update();
  3765. }
  3766. KEEPALIVE_STATE(IN_HANDLER);
  3767. lcd_ignore_click(false);
  3768. }else{
  3769. if (!lcd_detected())
  3770. break;
  3771. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3772. while(!lcd_clicked()){
  3773. manage_heater();
  3774. manage_inactivity(true);
  3775. lcd_update();
  3776. }
  3777. KEEPALIVE_STATE(IN_HANDLER);
  3778. }
  3779. if (IS_SD_PRINTING)
  3780. LCD_MESSAGERPGM(_i("Resuming print"));////MSG_RESUMING c=0 r=0
  3781. else
  3782. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3783. }
  3784. break;
  3785. #endif
  3786. case 17:
  3787. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3788. enable_x();
  3789. enable_y();
  3790. enable_z();
  3791. enable_e0();
  3792. enable_e1();
  3793. enable_e2();
  3794. break;
  3795. #ifdef SDSUPPORT
  3796. case 20: // M20 - list SD card
  3797. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  3798. card.ls();
  3799. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  3800. break;
  3801. case 21: // M21 - init SD card
  3802. card.initsd();
  3803. break;
  3804. case 22: //M22 - release SD card
  3805. card.release();
  3806. break;
  3807. case 23: //M23 - Select file
  3808. starpos = (strchr(strchr_pointer + 4,'*'));
  3809. if(starpos!=NULL)
  3810. *(starpos)='\0';
  3811. card.openFile(strchr_pointer + 4,true);
  3812. break;
  3813. case 24: //M24 - Start SD print
  3814. if (!card.paused)
  3815. failstats_reset_print();
  3816. card.startFileprint();
  3817. starttime=millis();
  3818. break;
  3819. case 25: //M25 - Pause SD print
  3820. card.pauseSDPrint();
  3821. break;
  3822. case 26: //M26 - Set SD index
  3823. if(card.cardOK && code_seen('S')) {
  3824. card.setIndex(code_value_long());
  3825. }
  3826. break;
  3827. case 27: //M27 - Get SD status
  3828. card.getStatus();
  3829. break;
  3830. case 28: //M28 - Start SD write
  3831. starpos = (strchr(strchr_pointer + 4,'*'));
  3832. if(starpos != NULL){
  3833. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3834. strchr_pointer = strchr(npos,' ') + 1;
  3835. *(starpos) = '\0';
  3836. }
  3837. card.openFile(strchr_pointer+4,false);
  3838. break;
  3839. case 29: //M29 - Stop SD write
  3840. //processed in write to file routine above
  3841. //card,saving = false;
  3842. break;
  3843. case 30: //M30 <filename> Delete File
  3844. if (card.cardOK){
  3845. card.closefile();
  3846. starpos = (strchr(strchr_pointer + 4,'*'));
  3847. if(starpos != NULL){
  3848. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3849. strchr_pointer = strchr(npos,' ') + 1;
  3850. *(starpos) = '\0';
  3851. }
  3852. card.removeFile(strchr_pointer + 4);
  3853. }
  3854. break;
  3855. case 32: //M32 - Select file and start SD print
  3856. {
  3857. if(card.sdprinting) {
  3858. st_synchronize();
  3859. }
  3860. starpos = (strchr(strchr_pointer + 4,'*'));
  3861. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  3862. if(namestartpos==NULL)
  3863. {
  3864. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  3865. }
  3866. else
  3867. namestartpos++; //to skip the '!'
  3868. if(starpos!=NULL)
  3869. *(starpos)='\0';
  3870. bool call_procedure=(code_seen('P'));
  3871. if(strchr_pointer>namestartpos)
  3872. call_procedure=false; //false alert, 'P' found within filename
  3873. if( card.cardOK )
  3874. {
  3875. card.openFile(namestartpos,true,!call_procedure);
  3876. if(code_seen('S'))
  3877. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  3878. card.setIndex(code_value_long());
  3879. card.startFileprint();
  3880. if(!call_procedure)
  3881. starttime=millis(); //procedure calls count as normal print time.
  3882. }
  3883. } break;
  3884. case 928: //M928 - Start SD write
  3885. starpos = (strchr(strchr_pointer + 5,'*'));
  3886. if(starpos != NULL){
  3887. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  3888. strchr_pointer = strchr(npos,' ') + 1;
  3889. *(starpos) = '\0';
  3890. }
  3891. card.openLogFile(strchr_pointer+5);
  3892. break;
  3893. #endif //SDSUPPORT
  3894. case 31: //M31 take time since the start of the SD print or an M109 command
  3895. {
  3896. stoptime=millis();
  3897. char time[30];
  3898. unsigned long t=(stoptime-starttime)/1000;
  3899. int sec,min;
  3900. min=t/60;
  3901. sec=t%60;
  3902. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3903. SERIAL_ECHO_START;
  3904. SERIAL_ECHOLN(time);
  3905. lcd_setstatus(time);
  3906. autotempShutdown();
  3907. }
  3908. break;
  3909. #ifndef _DISABLE_M42_M226
  3910. case 42: //M42 -Change pin status via gcode
  3911. if (code_seen('S'))
  3912. {
  3913. int pin_status = code_value();
  3914. int pin_number = LED_PIN;
  3915. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  3916. pin_number = code_value();
  3917. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3918. {
  3919. if (sensitive_pins[i] == pin_number)
  3920. {
  3921. pin_number = -1;
  3922. break;
  3923. }
  3924. }
  3925. #if defined(FAN_PIN) && FAN_PIN > -1
  3926. if (pin_number == FAN_PIN)
  3927. fanSpeed = pin_status;
  3928. #endif
  3929. if (pin_number > -1)
  3930. {
  3931. pinMode(pin_number, OUTPUT);
  3932. digitalWrite(pin_number, pin_status);
  3933. analogWrite(pin_number, pin_status);
  3934. }
  3935. }
  3936. break;
  3937. #endif //_DISABLE_M42_M226
  3938. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  3939. // Reset the baby step value and the baby step applied flag.
  3940. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  3941. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  3942. // Reset the skew and offset in both RAM and EEPROM.
  3943. reset_bed_offset_and_skew();
  3944. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  3945. // the planner will not perform any adjustments in the XY plane.
  3946. // Wait for the motors to stop and update the current position with the absolute values.
  3947. world2machine_revert_to_uncorrected();
  3948. break;
  3949. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  3950. {
  3951. int8_t verbosity_level = 0;
  3952. bool only_Z = code_seen('Z');
  3953. #ifdef SUPPORT_VERBOSITY
  3954. if (code_seen('V'))
  3955. {
  3956. // Just 'V' without a number counts as V1.
  3957. char c = strchr_pointer[1];
  3958. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3959. }
  3960. #endif //SUPPORT_VERBOSITY
  3961. gcode_M45(only_Z, verbosity_level);
  3962. }
  3963. break;
  3964. /*
  3965. case 46:
  3966. {
  3967. // M46: Prusa3D: Show the assigned IP address.
  3968. uint8_t ip[4];
  3969. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  3970. if (hasIP) {
  3971. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  3972. SERIAL_ECHO(int(ip[0]));
  3973. SERIAL_ECHOPGM(".");
  3974. SERIAL_ECHO(int(ip[1]));
  3975. SERIAL_ECHOPGM(".");
  3976. SERIAL_ECHO(int(ip[2]));
  3977. SERIAL_ECHOPGM(".");
  3978. SERIAL_ECHO(int(ip[3]));
  3979. SERIAL_ECHOLNPGM("");
  3980. } else {
  3981. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  3982. }
  3983. break;
  3984. }
  3985. */
  3986. case 47:
  3987. // M47: Prusa3D: Show end stops dialog on the display.
  3988. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3989. lcd_diag_show_end_stops();
  3990. KEEPALIVE_STATE(IN_HANDLER);
  3991. break;
  3992. #if 0
  3993. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  3994. {
  3995. // Disable the default update procedure of the display. We will do a modal dialog.
  3996. lcd_update_enable(false);
  3997. // Let the planner use the uncorrected coordinates.
  3998. mbl.reset();
  3999. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4000. // the planner will not perform any adjustments in the XY plane.
  4001. // Wait for the motors to stop and update the current position with the absolute values.
  4002. world2machine_revert_to_uncorrected();
  4003. // Move the print head close to the bed.
  4004. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4005. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4006. st_synchronize();
  4007. // Home in the XY plane.
  4008. set_destination_to_current();
  4009. setup_for_endstop_move();
  4010. home_xy();
  4011. int8_t verbosity_level = 0;
  4012. if (code_seen('V')) {
  4013. // Just 'V' without a number counts as V1.
  4014. char c = strchr_pointer[1];
  4015. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4016. }
  4017. bool success = scan_bed_induction_points(verbosity_level);
  4018. clean_up_after_endstop_move();
  4019. // Print head up.
  4020. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4021. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4022. st_synchronize();
  4023. lcd_update_enable(true);
  4024. break;
  4025. }
  4026. #endif
  4027. // M48 Z-Probe repeatability measurement function.
  4028. //
  4029. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4030. //
  4031. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4032. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4033. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4034. // regenerated.
  4035. //
  4036. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4037. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4038. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4039. //
  4040. #ifdef ENABLE_AUTO_BED_LEVELING
  4041. #ifdef Z_PROBE_REPEATABILITY_TEST
  4042. case 48: // M48 Z-Probe repeatability
  4043. {
  4044. #if Z_MIN_PIN == -1
  4045. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4046. #endif
  4047. double sum=0.0;
  4048. double mean=0.0;
  4049. double sigma=0.0;
  4050. double sample_set[50];
  4051. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4052. double X_current, Y_current, Z_current;
  4053. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4054. if (code_seen('V') || code_seen('v')) {
  4055. verbose_level = code_value();
  4056. if (verbose_level<0 || verbose_level>4 ) {
  4057. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4058. goto Sigma_Exit;
  4059. }
  4060. }
  4061. if (verbose_level > 0) {
  4062. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4063. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4064. }
  4065. if (code_seen('n')) {
  4066. n_samples = code_value();
  4067. if (n_samples<4 || n_samples>50 ) {
  4068. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4069. goto Sigma_Exit;
  4070. }
  4071. }
  4072. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4073. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4074. Z_current = st_get_position_mm(Z_AXIS);
  4075. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4076. ext_position = st_get_position_mm(E_AXIS);
  4077. if (code_seen('X') || code_seen('x') ) {
  4078. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4079. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4080. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4081. goto Sigma_Exit;
  4082. }
  4083. }
  4084. if (code_seen('Y') || code_seen('y') ) {
  4085. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4086. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4087. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4088. goto Sigma_Exit;
  4089. }
  4090. }
  4091. if (code_seen('L') || code_seen('l') ) {
  4092. n_legs = code_value();
  4093. if ( n_legs==1 )
  4094. n_legs = 2;
  4095. if ( n_legs<0 || n_legs>15 ) {
  4096. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4097. goto Sigma_Exit;
  4098. }
  4099. }
  4100. //
  4101. // Do all the preliminary setup work. First raise the probe.
  4102. //
  4103. st_synchronize();
  4104. plan_bed_level_matrix.set_to_identity();
  4105. plan_buffer_line( X_current, Y_current, Z_start_location,
  4106. ext_position,
  4107. homing_feedrate[Z_AXIS]/60,
  4108. active_extruder);
  4109. st_synchronize();
  4110. //
  4111. // Now get everything to the specified probe point So we can safely do a probe to
  4112. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4113. // use that as a starting point for each probe.
  4114. //
  4115. if (verbose_level > 2)
  4116. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4117. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4118. ext_position,
  4119. homing_feedrate[X_AXIS]/60,
  4120. active_extruder);
  4121. st_synchronize();
  4122. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4123. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4124. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4125. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4126. //
  4127. // OK, do the inital probe to get us close to the bed.
  4128. // Then retrace the right amount and use that in subsequent probes
  4129. //
  4130. setup_for_endstop_move();
  4131. run_z_probe();
  4132. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4133. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4134. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4135. ext_position,
  4136. homing_feedrate[X_AXIS]/60,
  4137. active_extruder);
  4138. st_synchronize();
  4139. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4140. for( n=0; n<n_samples; n++) {
  4141. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4142. if ( n_legs) {
  4143. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4144. int rotational_direction, l;
  4145. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4146. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4147. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4148. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4149. //SERIAL_ECHOPAIR(" theta: ",theta);
  4150. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4151. //SERIAL_PROTOCOLLNPGM("");
  4152. for( l=0; l<n_legs-1; l++) {
  4153. if (rotational_direction==1)
  4154. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4155. else
  4156. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4157. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4158. if ( radius<0.0 )
  4159. radius = -radius;
  4160. X_current = X_probe_location + cos(theta) * radius;
  4161. Y_current = Y_probe_location + sin(theta) * radius;
  4162. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4163. X_current = X_MIN_POS;
  4164. if ( X_current>X_MAX_POS)
  4165. X_current = X_MAX_POS;
  4166. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4167. Y_current = Y_MIN_POS;
  4168. if ( Y_current>Y_MAX_POS)
  4169. Y_current = Y_MAX_POS;
  4170. if (verbose_level>3 ) {
  4171. SERIAL_ECHOPAIR("x: ", X_current);
  4172. SERIAL_ECHOPAIR("y: ", Y_current);
  4173. SERIAL_PROTOCOLLNPGM("");
  4174. }
  4175. do_blocking_move_to( X_current, Y_current, Z_current );
  4176. }
  4177. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4178. }
  4179. setup_for_endstop_move();
  4180. run_z_probe();
  4181. sample_set[n] = current_position[Z_AXIS];
  4182. //
  4183. // Get the current mean for the data points we have so far
  4184. //
  4185. sum=0.0;
  4186. for( j=0; j<=n; j++) {
  4187. sum = sum + sample_set[j];
  4188. }
  4189. mean = sum / (double (n+1));
  4190. //
  4191. // Now, use that mean to calculate the standard deviation for the
  4192. // data points we have so far
  4193. //
  4194. sum=0.0;
  4195. for( j=0; j<=n; j++) {
  4196. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4197. }
  4198. sigma = sqrt( sum / (double (n+1)) );
  4199. if (verbose_level > 1) {
  4200. SERIAL_PROTOCOL(n+1);
  4201. SERIAL_PROTOCOL(" of ");
  4202. SERIAL_PROTOCOL(n_samples);
  4203. SERIAL_PROTOCOLPGM(" z: ");
  4204. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4205. }
  4206. if (verbose_level > 2) {
  4207. SERIAL_PROTOCOL(" mean: ");
  4208. SERIAL_PROTOCOL_F(mean,6);
  4209. SERIAL_PROTOCOL(" sigma: ");
  4210. SERIAL_PROTOCOL_F(sigma,6);
  4211. }
  4212. if (verbose_level > 0)
  4213. SERIAL_PROTOCOLPGM("\n");
  4214. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4215. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4216. st_synchronize();
  4217. }
  4218. delay(1000);
  4219. clean_up_after_endstop_move();
  4220. // enable_endstops(true);
  4221. if (verbose_level > 0) {
  4222. SERIAL_PROTOCOLPGM("Mean: ");
  4223. SERIAL_PROTOCOL_F(mean, 6);
  4224. SERIAL_PROTOCOLPGM("\n");
  4225. }
  4226. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4227. SERIAL_PROTOCOL_F(sigma, 6);
  4228. SERIAL_PROTOCOLPGM("\n\n");
  4229. Sigma_Exit:
  4230. break;
  4231. }
  4232. #endif // Z_PROBE_REPEATABILITY_TEST
  4233. #endif // ENABLE_AUTO_BED_LEVELING
  4234. case 104: // M104
  4235. if(setTargetedHotend(104)){
  4236. break;
  4237. }
  4238. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4239. setWatch();
  4240. break;
  4241. case 112: // M112 -Emergency Stop
  4242. kill("", 3);
  4243. break;
  4244. case 140: // M140 set bed temp
  4245. if (code_seen('S')) setTargetBed(code_value());
  4246. break;
  4247. case 105 : // M105
  4248. if(setTargetedHotend(105)){
  4249. break;
  4250. }
  4251. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4252. SERIAL_PROTOCOLPGM("ok T:");
  4253. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4254. SERIAL_PROTOCOLPGM(" /");
  4255. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4256. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4257. SERIAL_PROTOCOLPGM(" B:");
  4258. SERIAL_PROTOCOL_F(degBed(),1);
  4259. SERIAL_PROTOCOLPGM(" /");
  4260. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4261. #endif //TEMP_BED_PIN
  4262. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4263. SERIAL_PROTOCOLPGM(" T");
  4264. SERIAL_PROTOCOL(cur_extruder);
  4265. SERIAL_PROTOCOLPGM(":");
  4266. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4267. SERIAL_PROTOCOLPGM(" /");
  4268. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4269. }
  4270. #else
  4271. SERIAL_ERROR_START;
  4272. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4273. #endif
  4274. SERIAL_PROTOCOLPGM(" @:");
  4275. #ifdef EXTRUDER_WATTS
  4276. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4277. SERIAL_PROTOCOLPGM("W");
  4278. #else
  4279. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4280. #endif
  4281. SERIAL_PROTOCOLPGM(" B@:");
  4282. #ifdef BED_WATTS
  4283. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4284. SERIAL_PROTOCOLPGM("W");
  4285. #else
  4286. SERIAL_PROTOCOL(getHeaterPower(-1));
  4287. #endif
  4288. #ifdef PINDA_THERMISTOR
  4289. SERIAL_PROTOCOLPGM(" P:");
  4290. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4291. #endif //PINDA_THERMISTOR
  4292. #ifdef AMBIENT_THERMISTOR
  4293. SERIAL_PROTOCOLPGM(" A:");
  4294. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4295. #endif //AMBIENT_THERMISTOR
  4296. #ifdef SHOW_TEMP_ADC_VALUES
  4297. {float raw = 0.0;
  4298. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4299. SERIAL_PROTOCOLPGM(" ADC B:");
  4300. SERIAL_PROTOCOL_F(degBed(),1);
  4301. SERIAL_PROTOCOLPGM("C->");
  4302. raw = rawBedTemp();
  4303. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4304. SERIAL_PROTOCOLPGM(" Rb->");
  4305. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4306. SERIAL_PROTOCOLPGM(" Rxb->");
  4307. SERIAL_PROTOCOL_F(raw, 5);
  4308. #endif
  4309. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4310. SERIAL_PROTOCOLPGM(" T");
  4311. SERIAL_PROTOCOL(cur_extruder);
  4312. SERIAL_PROTOCOLPGM(":");
  4313. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4314. SERIAL_PROTOCOLPGM("C->");
  4315. raw = rawHotendTemp(cur_extruder);
  4316. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4317. SERIAL_PROTOCOLPGM(" Rt");
  4318. SERIAL_PROTOCOL(cur_extruder);
  4319. SERIAL_PROTOCOLPGM("->");
  4320. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4321. SERIAL_PROTOCOLPGM(" Rx");
  4322. SERIAL_PROTOCOL(cur_extruder);
  4323. SERIAL_PROTOCOLPGM("->");
  4324. SERIAL_PROTOCOL_F(raw, 5);
  4325. }}
  4326. #endif
  4327. SERIAL_PROTOCOLLN("");
  4328. KEEPALIVE_STATE(NOT_BUSY);
  4329. return;
  4330. break;
  4331. case 109:
  4332. {// M109 - Wait for extruder heater to reach target.
  4333. if(setTargetedHotend(109)){
  4334. break;
  4335. }
  4336. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4337. heating_status = 1;
  4338. if (farm_mode) { prusa_statistics(1); };
  4339. #ifdef AUTOTEMP
  4340. autotemp_enabled=false;
  4341. #endif
  4342. if (code_seen('S')) {
  4343. setTargetHotend(code_value(), tmp_extruder);
  4344. CooldownNoWait = true;
  4345. } else if (code_seen('R')) {
  4346. setTargetHotend(code_value(), tmp_extruder);
  4347. CooldownNoWait = false;
  4348. }
  4349. #ifdef AUTOTEMP
  4350. if (code_seen('S')) autotemp_min=code_value();
  4351. if (code_seen('B')) autotemp_max=code_value();
  4352. if (code_seen('F'))
  4353. {
  4354. autotemp_factor=code_value();
  4355. autotemp_enabled=true;
  4356. }
  4357. #endif
  4358. setWatch();
  4359. codenum = millis();
  4360. /* See if we are heating up or cooling down */
  4361. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4362. KEEPALIVE_STATE(NOT_BUSY);
  4363. cancel_heatup = false;
  4364. wait_for_heater(codenum); //loops until target temperature is reached
  4365. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4366. KEEPALIVE_STATE(IN_HANDLER);
  4367. heating_status = 2;
  4368. if (farm_mode) { prusa_statistics(2); };
  4369. //starttime=millis();
  4370. previous_millis_cmd = millis();
  4371. }
  4372. break;
  4373. case 190: // M190 - Wait for bed heater to reach target.
  4374. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4375. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4376. heating_status = 3;
  4377. if (farm_mode) { prusa_statistics(1); };
  4378. if (code_seen('S'))
  4379. {
  4380. setTargetBed(code_value());
  4381. CooldownNoWait = true;
  4382. }
  4383. else if (code_seen('R'))
  4384. {
  4385. setTargetBed(code_value());
  4386. CooldownNoWait = false;
  4387. }
  4388. codenum = millis();
  4389. cancel_heatup = false;
  4390. target_direction = isHeatingBed(); // true if heating, false if cooling
  4391. KEEPALIVE_STATE(NOT_BUSY);
  4392. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4393. {
  4394. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4395. {
  4396. if (!farm_mode) {
  4397. float tt = degHotend(active_extruder);
  4398. SERIAL_PROTOCOLPGM("T:");
  4399. SERIAL_PROTOCOL(tt);
  4400. SERIAL_PROTOCOLPGM(" E:");
  4401. SERIAL_PROTOCOL((int)active_extruder);
  4402. SERIAL_PROTOCOLPGM(" B:");
  4403. SERIAL_PROTOCOL_F(degBed(), 1);
  4404. SERIAL_PROTOCOLLN("");
  4405. }
  4406. codenum = millis();
  4407. }
  4408. manage_heater();
  4409. manage_inactivity();
  4410. lcd_update();
  4411. }
  4412. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4413. KEEPALIVE_STATE(IN_HANDLER);
  4414. heating_status = 4;
  4415. previous_millis_cmd = millis();
  4416. #endif
  4417. break;
  4418. #if defined(FAN_PIN) && FAN_PIN > -1
  4419. case 106: //M106 Fan On
  4420. if (code_seen('S')){
  4421. fanSpeed=constrain(code_value(),0,255);
  4422. }
  4423. else {
  4424. fanSpeed=255;
  4425. }
  4426. break;
  4427. case 107: //M107 Fan Off
  4428. fanSpeed = 0;
  4429. break;
  4430. #endif //FAN_PIN
  4431. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4432. case 80: // M80 - Turn on Power Supply
  4433. SET_OUTPUT(PS_ON_PIN); //GND
  4434. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4435. // If you have a switch on suicide pin, this is useful
  4436. // if you want to start another print with suicide feature after
  4437. // a print without suicide...
  4438. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4439. SET_OUTPUT(SUICIDE_PIN);
  4440. WRITE(SUICIDE_PIN, HIGH);
  4441. #endif
  4442. #ifdef ULTIPANEL
  4443. powersupply = true;
  4444. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4445. lcd_update();
  4446. #endif
  4447. break;
  4448. #endif
  4449. case 81: // M81 - Turn off Power Supply
  4450. disable_heater();
  4451. st_synchronize();
  4452. disable_e0();
  4453. disable_e1();
  4454. disable_e2();
  4455. finishAndDisableSteppers();
  4456. fanSpeed = 0;
  4457. delay(1000); // Wait a little before to switch off
  4458. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4459. st_synchronize();
  4460. suicide();
  4461. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4462. SET_OUTPUT(PS_ON_PIN);
  4463. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4464. #endif
  4465. #ifdef ULTIPANEL
  4466. powersupply = false;
  4467. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  4468. /*
  4469. MACHNAME = "Prusa i3"
  4470. MSGOFF = "Vypnuto"
  4471. "Prusai3"" ""vypnuto""."
  4472. "Prusa i3"" "_T(MSG_ALL)[lang_selected][50]"."
  4473. */
  4474. lcd_update();
  4475. #endif
  4476. break;
  4477. case 82:
  4478. axis_relative_modes[3] = false;
  4479. break;
  4480. case 83:
  4481. axis_relative_modes[3] = true;
  4482. break;
  4483. case 18: //compatibility
  4484. case 84: // M84
  4485. if(code_seen('S')){
  4486. stepper_inactive_time = code_value() * 1000;
  4487. }
  4488. else
  4489. {
  4490. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4491. if(all_axis)
  4492. {
  4493. st_synchronize();
  4494. disable_e0();
  4495. disable_e1();
  4496. disable_e2();
  4497. finishAndDisableSteppers();
  4498. }
  4499. else
  4500. {
  4501. st_synchronize();
  4502. if (code_seen('X')) disable_x();
  4503. if (code_seen('Y')) disable_y();
  4504. if (code_seen('Z')) disable_z();
  4505. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4506. if (code_seen('E')) {
  4507. disable_e0();
  4508. disable_e1();
  4509. disable_e2();
  4510. }
  4511. #endif
  4512. }
  4513. }
  4514. snmm_filaments_used = 0;
  4515. break;
  4516. case 85: // M85
  4517. if(code_seen('S')) {
  4518. max_inactive_time = code_value() * 1000;
  4519. }
  4520. break;
  4521. case 92: // M92
  4522. for(int8_t i=0; i < NUM_AXIS; i++)
  4523. {
  4524. if(code_seen(axis_codes[i]))
  4525. {
  4526. if(i == 3) { // E
  4527. float value = code_value();
  4528. if(value < 20.0) {
  4529. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4530. max_jerk[E_AXIS] *= factor;
  4531. max_feedrate[i] *= factor;
  4532. axis_steps_per_sqr_second[i] *= factor;
  4533. }
  4534. axis_steps_per_unit[i] = value;
  4535. }
  4536. else {
  4537. axis_steps_per_unit[i] = code_value();
  4538. }
  4539. }
  4540. }
  4541. break;
  4542. case 110: // M110 - reset line pos
  4543. if (code_seen('N'))
  4544. gcode_LastN = code_value_long();
  4545. break;
  4546. #ifdef HOST_KEEPALIVE_FEATURE
  4547. case 113: // M113 - Get or set Host Keepalive interval
  4548. if (code_seen('S')) {
  4549. host_keepalive_interval = (uint8_t)code_value_short();
  4550. // NOMORE(host_keepalive_interval, 60);
  4551. }
  4552. else {
  4553. SERIAL_ECHO_START;
  4554. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4555. SERIAL_PROTOCOLLN("");
  4556. }
  4557. break;
  4558. #endif
  4559. case 115: // M115
  4560. if (code_seen('V')) {
  4561. // Report the Prusa version number.
  4562. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4563. } else if (code_seen('U')) {
  4564. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4565. // pause the print and ask the user to upgrade the firmware.
  4566. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4567. } else {
  4568. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4569. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4570. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4571. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4572. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4573. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4574. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4575. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4576. SERIAL_ECHOPGM(" UUID:");
  4577. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4578. }
  4579. break;
  4580. /* case 117: // M117 display message
  4581. starpos = (strchr(strchr_pointer + 5,'*'));
  4582. if(starpos!=NULL)
  4583. *(starpos)='\0';
  4584. lcd_setstatus(strchr_pointer + 5);
  4585. break;*/
  4586. case 114: // M114
  4587. gcode_M114();
  4588. break;
  4589. case 120: // M120
  4590. enable_endstops(false) ;
  4591. break;
  4592. case 121: // M121
  4593. enable_endstops(true) ;
  4594. break;
  4595. case 119: // M119
  4596. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4597. SERIAL_PROTOCOLLN("");
  4598. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4599. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4600. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4601. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4602. }else{
  4603. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4604. }
  4605. SERIAL_PROTOCOLLN("");
  4606. #endif
  4607. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4608. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4609. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4610. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4611. }else{
  4612. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4613. }
  4614. SERIAL_PROTOCOLLN("");
  4615. #endif
  4616. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4617. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4618. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4619. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4620. }else{
  4621. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4622. }
  4623. SERIAL_PROTOCOLLN("");
  4624. #endif
  4625. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4626. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4627. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4628. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4629. }else{
  4630. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4631. }
  4632. SERIAL_PROTOCOLLN("");
  4633. #endif
  4634. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4635. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4636. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4637. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4638. }else{
  4639. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4640. }
  4641. SERIAL_PROTOCOLLN("");
  4642. #endif
  4643. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4644. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4645. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4646. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4647. }else{
  4648. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4649. }
  4650. SERIAL_PROTOCOLLN("");
  4651. #endif
  4652. break;
  4653. //TODO: update for all axis, use for loop
  4654. #ifdef BLINKM
  4655. case 150: // M150
  4656. {
  4657. byte red;
  4658. byte grn;
  4659. byte blu;
  4660. if(code_seen('R')) red = code_value();
  4661. if(code_seen('U')) grn = code_value();
  4662. if(code_seen('B')) blu = code_value();
  4663. SendColors(red,grn,blu);
  4664. }
  4665. break;
  4666. #endif //BLINKM
  4667. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4668. {
  4669. tmp_extruder = active_extruder;
  4670. if(code_seen('T')) {
  4671. tmp_extruder = code_value();
  4672. if(tmp_extruder >= EXTRUDERS) {
  4673. SERIAL_ECHO_START;
  4674. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4675. break;
  4676. }
  4677. }
  4678. float area = .0;
  4679. if(code_seen('D')) {
  4680. float diameter = (float)code_value();
  4681. if (diameter == 0.0) {
  4682. // setting any extruder filament size disables volumetric on the assumption that
  4683. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4684. // for all extruders
  4685. volumetric_enabled = false;
  4686. } else {
  4687. filament_size[tmp_extruder] = (float)code_value();
  4688. // make sure all extruders have some sane value for the filament size
  4689. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4690. #if EXTRUDERS > 1
  4691. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4692. #if EXTRUDERS > 2
  4693. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4694. #endif
  4695. #endif
  4696. volumetric_enabled = true;
  4697. }
  4698. } else {
  4699. //reserved for setting filament diameter via UFID or filament measuring device
  4700. break;
  4701. }
  4702. calculate_extruder_multipliers();
  4703. }
  4704. break;
  4705. case 201: // M201
  4706. for(int8_t i=0; i < NUM_AXIS; i++)
  4707. {
  4708. if(code_seen(axis_codes[i]))
  4709. {
  4710. max_acceleration_units_per_sq_second[i] = code_value();
  4711. }
  4712. }
  4713. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4714. reset_acceleration_rates();
  4715. break;
  4716. #if 0 // Not used for Sprinter/grbl gen6
  4717. case 202: // M202
  4718. for(int8_t i=0; i < NUM_AXIS; i++) {
  4719. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4720. }
  4721. break;
  4722. #endif
  4723. case 203: // M203 max feedrate mm/sec
  4724. for(int8_t i=0; i < NUM_AXIS; i++) {
  4725. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4726. }
  4727. break;
  4728. case 204: // M204 acclereration S normal moves T filmanent only moves
  4729. {
  4730. if(code_seen('S')) acceleration = code_value() ;
  4731. if(code_seen('T')) retract_acceleration = code_value() ;
  4732. }
  4733. break;
  4734. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4735. {
  4736. if(code_seen('S')) minimumfeedrate = code_value();
  4737. if(code_seen('T')) mintravelfeedrate = code_value();
  4738. if(code_seen('B')) minsegmenttime = code_value() ;
  4739. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4740. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4741. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4742. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4743. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4744. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4745. }
  4746. break;
  4747. case 206: // M206 additional homing offset
  4748. for(int8_t i=0; i < 3; i++)
  4749. {
  4750. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4751. }
  4752. break;
  4753. #ifdef FWRETRACT
  4754. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4755. {
  4756. if(code_seen('S'))
  4757. {
  4758. retract_length = code_value() ;
  4759. }
  4760. if(code_seen('F'))
  4761. {
  4762. retract_feedrate = code_value()/60 ;
  4763. }
  4764. if(code_seen('Z'))
  4765. {
  4766. retract_zlift = code_value() ;
  4767. }
  4768. }break;
  4769. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4770. {
  4771. if(code_seen('S'))
  4772. {
  4773. retract_recover_length = code_value() ;
  4774. }
  4775. if(code_seen('F'))
  4776. {
  4777. retract_recover_feedrate = code_value()/60 ;
  4778. }
  4779. }break;
  4780. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4781. {
  4782. if(code_seen('S'))
  4783. {
  4784. int t= code_value() ;
  4785. switch(t)
  4786. {
  4787. case 0:
  4788. {
  4789. autoretract_enabled=false;
  4790. retracted[0]=false;
  4791. #if EXTRUDERS > 1
  4792. retracted[1]=false;
  4793. #endif
  4794. #if EXTRUDERS > 2
  4795. retracted[2]=false;
  4796. #endif
  4797. }break;
  4798. case 1:
  4799. {
  4800. autoretract_enabled=true;
  4801. retracted[0]=false;
  4802. #if EXTRUDERS > 1
  4803. retracted[1]=false;
  4804. #endif
  4805. #if EXTRUDERS > 2
  4806. retracted[2]=false;
  4807. #endif
  4808. }break;
  4809. default:
  4810. SERIAL_ECHO_START;
  4811. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4812. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4813. SERIAL_ECHOLNPGM("\"(1)");
  4814. }
  4815. }
  4816. }break;
  4817. #endif // FWRETRACT
  4818. #if EXTRUDERS > 1
  4819. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4820. {
  4821. if(setTargetedHotend(218)){
  4822. break;
  4823. }
  4824. if(code_seen('X'))
  4825. {
  4826. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  4827. }
  4828. if(code_seen('Y'))
  4829. {
  4830. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  4831. }
  4832. SERIAL_ECHO_START;
  4833. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  4834. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  4835. {
  4836. SERIAL_ECHO(" ");
  4837. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  4838. SERIAL_ECHO(",");
  4839. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  4840. }
  4841. SERIAL_ECHOLN("");
  4842. }break;
  4843. #endif
  4844. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4845. {
  4846. if(code_seen('S'))
  4847. {
  4848. feedmultiply = code_value() ;
  4849. }
  4850. }
  4851. break;
  4852. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4853. {
  4854. if(code_seen('S'))
  4855. {
  4856. int tmp_code = code_value();
  4857. if (code_seen('T'))
  4858. {
  4859. if(setTargetedHotend(221)){
  4860. break;
  4861. }
  4862. extruder_multiply[tmp_extruder] = tmp_code;
  4863. }
  4864. else
  4865. {
  4866. extrudemultiply = tmp_code ;
  4867. }
  4868. }
  4869. calculate_extruder_multipliers();
  4870. }
  4871. break;
  4872. #ifndef _DISABLE_M42_M226
  4873. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4874. {
  4875. if(code_seen('P')){
  4876. int pin_number = code_value(); // pin number
  4877. int pin_state = -1; // required pin state - default is inverted
  4878. if(code_seen('S')) pin_state = code_value(); // required pin state
  4879. if(pin_state >= -1 && pin_state <= 1){
  4880. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4881. {
  4882. if (sensitive_pins[i] == pin_number)
  4883. {
  4884. pin_number = -1;
  4885. break;
  4886. }
  4887. }
  4888. if (pin_number > -1)
  4889. {
  4890. int target = LOW;
  4891. st_synchronize();
  4892. pinMode(pin_number, INPUT);
  4893. switch(pin_state){
  4894. case 1:
  4895. target = HIGH;
  4896. break;
  4897. case 0:
  4898. target = LOW;
  4899. break;
  4900. case -1:
  4901. target = !digitalRead(pin_number);
  4902. break;
  4903. }
  4904. while(digitalRead(pin_number) != target){
  4905. manage_heater();
  4906. manage_inactivity();
  4907. lcd_update();
  4908. }
  4909. }
  4910. }
  4911. }
  4912. }
  4913. break;
  4914. #endif //_DISABLE_M42_M226
  4915. #if NUM_SERVOS > 0
  4916. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4917. {
  4918. int servo_index = -1;
  4919. int servo_position = 0;
  4920. if (code_seen('P'))
  4921. servo_index = code_value();
  4922. if (code_seen('S')) {
  4923. servo_position = code_value();
  4924. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  4925. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4926. servos[servo_index].attach(0);
  4927. #endif
  4928. servos[servo_index].write(servo_position);
  4929. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  4930. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  4931. servos[servo_index].detach();
  4932. #endif
  4933. }
  4934. else {
  4935. SERIAL_ECHO_START;
  4936. SERIAL_ECHO("Servo ");
  4937. SERIAL_ECHO(servo_index);
  4938. SERIAL_ECHOLN(" out of range");
  4939. }
  4940. }
  4941. else if (servo_index >= 0) {
  4942. SERIAL_PROTOCOL(_T(MSG_OK));
  4943. SERIAL_PROTOCOL(" Servo ");
  4944. SERIAL_PROTOCOL(servo_index);
  4945. SERIAL_PROTOCOL(": ");
  4946. SERIAL_PROTOCOL(servos[servo_index].read());
  4947. SERIAL_PROTOCOLLN("");
  4948. }
  4949. }
  4950. break;
  4951. #endif // NUM_SERVOS > 0
  4952. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  4953. case 300: // M300
  4954. {
  4955. int beepS = code_seen('S') ? code_value() : 110;
  4956. int beepP = code_seen('P') ? code_value() : 1000;
  4957. if (beepS > 0)
  4958. {
  4959. #if BEEPER > 0
  4960. tone(BEEPER, beepS);
  4961. delay(beepP);
  4962. noTone(BEEPER);
  4963. #elif defined(ULTRALCD)
  4964. lcd_buzz(beepS, beepP);
  4965. #elif defined(LCD_USE_I2C_BUZZER)
  4966. lcd_buzz(beepP, beepS);
  4967. #endif
  4968. }
  4969. else
  4970. {
  4971. delay(beepP);
  4972. }
  4973. }
  4974. break;
  4975. #endif // M300
  4976. #ifdef PIDTEMP
  4977. case 301: // M301
  4978. {
  4979. if(code_seen('P')) Kp = code_value();
  4980. if(code_seen('I')) Ki = scalePID_i(code_value());
  4981. if(code_seen('D')) Kd = scalePID_d(code_value());
  4982. #ifdef PID_ADD_EXTRUSION_RATE
  4983. if(code_seen('C')) Kc = code_value();
  4984. #endif
  4985. updatePID();
  4986. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  4987. SERIAL_PROTOCOL(" p:");
  4988. SERIAL_PROTOCOL(Kp);
  4989. SERIAL_PROTOCOL(" i:");
  4990. SERIAL_PROTOCOL(unscalePID_i(Ki));
  4991. SERIAL_PROTOCOL(" d:");
  4992. SERIAL_PROTOCOL(unscalePID_d(Kd));
  4993. #ifdef PID_ADD_EXTRUSION_RATE
  4994. SERIAL_PROTOCOL(" c:");
  4995. //Kc does not have scaling applied above, or in resetting defaults
  4996. SERIAL_PROTOCOL(Kc);
  4997. #endif
  4998. SERIAL_PROTOCOLLN("");
  4999. }
  5000. break;
  5001. #endif //PIDTEMP
  5002. #ifdef PIDTEMPBED
  5003. case 304: // M304
  5004. {
  5005. if(code_seen('P')) bedKp = code_value();
  5006. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5007. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5008. updatePID();
  5009. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5010. SERIAL_PROTOCOL(" p:");
  5011. SERIAL_PROTOCOL(bedKp);
  5012. SERIAL_PROTOCOL(" i:");
  5013. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5014. SERIAL_PROTOCOL(" d:");
  5015. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5016. SERIAL_PROTOCOLLN("");
  5017. }
  5018. break;
  5019. #endif //PIDTEMP
  5020. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5021. {
  5022. #ifdef CHDK
  5023. SET_OUTPUT(CHDK);
  5024. WRITE(CHDK, HIGH);
  5025. chdkHigh = millis();
  5026. chdkActive = true;
  5027. #else
  5028. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5029. const uint8_t NUM_PULSES=16;
  5030. const float PULSE_LENGTH=0.01524;
  5031. for(int i=0; i < NUM_PULSES; i++) {
  5032. WRITE(PHOTOGRAPH_PIN, HIGH);
  5033. _delay_ms(PULSE_LENGTH);
  5034. WRITE(PHOTOGRAPH_PIN, LOW);
  5035. _delay_ms(PULSE_LENGTH);
  5036. }
  5037. delay(7.33);
  5038. for(int i=0; i < NUM_PULSES; i++) {
  5039. WRITE(PHOTOGRAPH_PIN, HIGH);
  5040. _delay_ms(PULSE_LENGTH);
  5041. WRITE(PHOTOGRAPH_PIN, LOW);
  5042. _delay_ms(PULSE_LENGTH);
  5043. }
  5044. #endif
  5045. #endif //chdk end if
  5046. }
  5047. break;
  5048. #ifdef DOGLCD
  5049. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5050. {
  5051. if (code_seen('C')) {
  5052. lcd_setcontrast( ((int)code_value())&63 );
  5053. }
  5054. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5055. SERIAL_PROTOCOL(lcd_contrast);
  5056. SERIAL_PROTOCOLLN("");
  5057. }
  5058. break;
  5059. #endif
  5060. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5061. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5062. {
  5063. float temp = .0;
  5064. if (code_seen('S')) temp=code_value();
  5065. set_extrude_min_temp(temp);
  5066. }
  5067. break;
  5068. #endif
  5069. case 303: // M303 PID autotune
  5070. {
  5071. float temp = 150.0;
  5072. int e=0;
  5073. int c=5;
  5074. if (code_seen('E')) e=code_value();
  5075. if (e<0)
  5076. temp=70;
  5077. if (code_seen('S')) temp=code_value();
  5078. if (code_seen('C')) c=code_value();
  5079. PID_autotune(temp, e, c);
  5080. }
  5081. break;
  5082. case 400: // M400 finish all moves
  5083. {
  5084. st_synchronize();
  5085. }
  5086. break;
  5087. case 500: // M500 Store settings in EEPROM
  5088. {
  5089. Config_StoreSettings(EEPROM_OFFSET);
  5090. }
  5091. break;
  5092. case 501: // M501 Read settings from EEPROM
  5093. {
  5094. Config_RetrieveSettings(EEPROM_OFFSET);
  5095. }
  5096. break;
  5097. case 502: // M502 Revert to default settings
  5098. {
  5099. Config_ResetDefault();
  5100. }
  5101. break;
  5102. case 503: // M503 print settings currently in memory
  5103. {
  5104. Config_PrintSettings();
  5105. }
  5106. break;
  5107. case 509: //M509 Force language selection
  5108. {
  5109. lcd_force_language_selection();
  5110. SERIAL_ECHO_START;
  5111. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5112. }
  5113. break;
  5114. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5115. case 540:
  5116. {
  5117. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5118. }
  5119. break;
  5120. #endif
  5121. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5122. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5123. {
  5124. float value;
  5125. if (code_seen('Z'))
  5126. {
  5127. value = code_value();
  5128. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5129. {
  5130. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5131. SERIAL_ECHO_START;
  5132. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5133. SERIAL_PROTOCOLLN("");
  5134. }
  5135. else
  5136. {
  5137. SERIAL_ECHO_START;
  5138. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5139. SERIAL_ECHORPGM(MSG_Z_MIN);
  5140. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5141. SERIAL_ECHORPGM(MSG_Z_MAX);
  5142. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5143. SERIAL_PROTOCOLLN("");
  5144. }
  5145. }
  5146. else
  5147. {
  5148. SERIAL_ECHO_START;
  5149. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5150. SERIAL_ECHO(-zprobe_zoffset);
  5151. SERIAL_PROTOCOLLN("");
  5152. }
  5153. break;
  5154. }
  5155. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5156. #ifdef FILAMENTCHANGEENABLE
  5157. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5158. {
  5159. #ifdef PAT9125
  5160. bool old_fsensor_enabled = fsensor_enabled;
  5161. fsensor_enabled = false; //temporary solution for unexpected restarting
  5162. #endif //PAT9125
  5163. st_synchronize();
  5164. float target[4];
  5165. float lastpos[4];
  5166. if (farm_mode)
  5167. {
  5168. prusa_statistics(22);
  5169. }
  5170. feedmultiplyBckp=feedmultiply;
  5171. int8_t TooLowZ = 0;
  5172. float HotendTempBckp = degTargetHotend(active_extruder);
  5173. int fanSpeedBckp = fanSpeed;
  5174. target[X_AXIS]=current_position[X_AXIS];
  5175. target[Y_AXIS]=current_position[Y_AXIS];
  5176. target[Z_AXIS]=current_position[Z_AXIS];
  5177. target[E_AXIS]=current_position[E_AXIS];
  5178. lastpos[X_AXIS]=current_position[X_AXIS];
  5179. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5180. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5181. lastpos[E_AXIS]=current_position[E_AXIS];
  5182. //Restract extruder
  5183. if(code_seen('E'))
  5184. {
  5185. target[E_AXIS]+= code_value();
  5186. }
  5187. else
  5188. {
  5189. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5190. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5191. #endif
  5192. }
  5193. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5194. //Lift Z
  5195. if(code_seen('Z'))
  5196. {
  5197. target[Z_AXIS]+= code_value();
  5198. }
  5199. else
  5200. {
  5201. #ifdef FILAMENTCHANGE_ZADD
  5202. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5203. if(target[Z_AXIS] < 10){
  5204. target[Z_AXIS]+= 10 ;
  5205. TooLowZ = 1;
  5206. }else{
  5207. TooLowZ = 0;
  5208. }
  5209. #endif
  5210. }
  5211. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5212. //Move XY to side
  5213. if(code_seen('X'))
  5214. {
  5215. target[X_AXIS]+= code_value();
  5216. }
  5217. else
  5218. {
  5219. #ifdef FILAMENTCHANGE_XPOS
  5220. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5221. #endif
  5222. }
  5223. if(code_seen('Y'))
  5224. {
  5225. target[Y_AXIS]= code_value();
  5226. }
  5227. else
  5228. {
  5229. #ifdef FILAMENTCHANGE_YPOS
  5230. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5231. #endif
  5232. }
  5233. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5234. st_synchronize();
  5235. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5236. uint8_t cnt = 0;
  5237. int counterBeep = 0;
  5238. fanSpeed = 0;
  5239. unsigned long waiting_start_time = millis();
  5240. uint8_t wait_for_user_state = 0;
  5241. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5242. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5243. //cnt++;
  5244. manage_heater();
  5245. manage_inactivity(true);
  5246. /*#ifdef SNMM
  5247. target[E_AXIS] += 0.002;
  5248. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5249. #endif // SNMM*/
  5250. //if (cnt == 0)
  5251. {
  5252. #if BEEPER > 0
  5253. if (counterBeep == 500) {
  5254. counterBeep = 0;
  5255. }
  5256. SET_OUTPUT(BEEPER);
  5257. if (counterBeep == 0) {
  5258. WRITE(BEEPER, HIGH);
  5259. }
  5260. if (counterBeep == 20) {
  5261. WRITE(BEEPER, LOW);
  5262. }
  5263. counterBeep++;
  5264. #else
  5265. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5266. lcd_buzz(1000 / 6, 100);
  5267. #else
  5268. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5269. #endif
  5270. #endif
  5271. }
  5272. switch (wait_for_user_state) {
  5273. case 0:
  5274. delay_keep_alive(4);
  5275. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5276. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5277. wait_for_user_state = 1;
  5278. setTargetHotend(0, 0);
  5279. setTargetHotend(0, 1);
  5280. setTargetHotend(0, 2);
  5281. st_synchronize();
  5282. disable_e0();
  5283. disable_e1();
  5284. disable_e2();
  5285. }
  5286. break;
  5287. case 1:
  5288. delay_keep_alive(4);
  5289. if (lcd_clicked()) {
  5290. setTargetHotend(HotendTempBckp, active_extruder);
  5291. lcd_wait_for_heater();
  5292. wait_for_user_state = 2;
  5293. }
  5294. break;
  5295. case 2:
  5296. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5297. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5298. waiting_start_time = millis();
  5299. wait_for_user_state = 0;
  5300. }
  5301. else {
  5302. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5303. lcd.setCursor(1, 4);
  5304. lcd.print(ftostr3(degHotend(active_extruder)));
  5305. }
  5306. break;
  5307. }
  5308. }
  5309. WRITE(BEEPER, LOW);
  5310. lcd_change_fil_state = 0;
  5311. // Unload filament
  5312. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5313. KEEPALIVE_STATE(IN_HANDLER);
  5314. custom_message = true;
  5315. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5316. if (code_seen('L'))
  5317. {
  5318. target[E_AXIS] += code_value();
  5319. }
  5320. else
  5321. {
  5322. #ifdef SNMM
  5323. #else
  5324. #ifdef FILAMENTCHANGE_FINALRETRACT
  5325. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5326. #endif
  5327. #endif // SNMM
  5328. }
  5329. #ifdef SNMM
  5330. target[E_AXIS] += 12;
  5331. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5332. target[E_AXIS] += 6;
  5333. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5334. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5335. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5336. st_synchronize();
  5337. target[E_AXIS] += (FIL_COOLING);
  5338. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5339. target[E_AXIS] += (FIL_COOLING*-1);
  5340. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5341. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5342. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5343. st_synchronize();
  5344. #else
  5345. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5346. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5347. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5348. st_synchronize();
  5349. #ifdef TMC2130
  5350. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5351. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5352. #else
  5353. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5354. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5355. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5356. #endif //TMC2130
  5357. target[E_AXIS] -= 45;
  5358. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5359. st_synchronize();
  5360. target[E_AXIS] -= 15;
  5361. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5362. st_synchronize();
  5363. target[E_AXIS] -= 20;
  5364. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5365. st_synchronize();
  5366. #ifdef TMC2130
  5367. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5368. #else
  5369. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5370. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5371. else st_current_set(2, tmp_motor_loud[2]);
  5372. #endif //TMC2130
  5373. #endif // SNMM
  5374. //finish moves
  5375. st_synchronize();
  5376. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5377. //disable extruder steppers so filament can be removed
  5378. disable_e0();
  5379. disable_e1();
  5380. disable_e2();
  5381. delay(100);
  5382. WRITE(BEEPER, HIGH);
  5383. counterBeep = 0;
  5384. while(!lcd_clicked() && (counterBeep < 50)) {
  5385. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5386. delay_keep_alive(100);
  5387. counterBeep++;
  5388. }
  5389. WRITE(BEEPER, LOW);
  5390. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5391. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5392. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5393. //lcd_return_to_status();
  5394. lcd_update_enable(true);
  5395. //Wait for user to insert filament
  5396. lcd_wait_interact();
  5397. //load_filament_time = millis();
  5398. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5399. #ifdef PAT9125
  5400. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5401. #endif //PAT9125
  5402. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5403. while(!lcd_clicked())
  5404. {
  5405. manage_heater();
  5406. manage_inactivity(true);
  5407. #ifdef PAT9125
  5408. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5409. {
  5410. tone(BEEPER, 1000);
  5411. delay_keep_alive(50);
  5412. noTone(BEEPER);
  5413. break;
  5414. }
  5415. #endif //PAT9125
  5416. /*#ifdef SNMM
  5417. target[E_AXIS] += 0.002;
  5418. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5419. #endif // SNMM*/
  5420. }
  5421. #ifdef PAT9125
  5422. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5423. #endif //PAT9125
  5424. //WRITE(BEEPER, LOW);
  5425. KEEPALIVE_STATE(IN_HANDLER);
  5426. #ifdef SNMM
  5427. display_loading();
  5428. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5429. do {
  5430. target[E_AXIS] += 0.002;
  5431. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5432. delay_keep_alive(2);
  5433. } while (!lcd_clicked());
  5434. KEEPALIVE_STATE(IN_HANDLER);
  5435. /*if (millis() - load_filament_time > 2) {
  5436. load_filament_time = millis();
  5437. target[E_AXIS] += 0.001;
  5438. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5439. }*/
  5440. //Filament inserted
  5441. //Feed the filament to the end of nozzle quickly
  5442. st_synchronize();
  5443. target[E_AXIS] += bowden_length[snmm_extruder];
  5444. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5445. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5446. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5447. target[E_AXIS] += 40;
  5448. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5449. target[E_AXIS] += 10;
  5450. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5451. #else
  5452. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5453. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5454. #endif // SNMM
  5455. //Extrude some filament
  5456. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5457. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5458. //Wait for user to check the state
  5459. lcd_change_fil_state = 0;
  5460. lcd_loading_filament();
  5461. tone(BEEPER, 500);
  5462. delay_keep_alive(50);
  5463. noTone(BEEPER);
  5464. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5465. lcd_change_fil_state = 0;
  5466. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5467. lcd_alright();
  5468. KEEPALIVE_STATE(IN_HANDLER);
  5469. switch(lcd_change_fil_state){
  5470. // Filament failed to load so load it again
  5471. case 2:
  5472. #ifdef SNMM
  5473. display_loading();
  5474. do {
  5475. target[E_AXIS] += 0.002;
  5476. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5477. delay_keep_alive(2);
  5478. } while (!lcd_clicked());
  5479. st_synchronize();
  5480. target[E_AXIS] += bowden_length[snmm_extruder];
  5481. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5482. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5483. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5484. target[E_AXIS] += 40;
  5485. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5486. target[E_AXIS] += 10;
  5487. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5488. #else
  5489. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5490. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5491. #endif
  5492. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5493. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5494. lcd_loading_filament();
  5495. break;
  5496. // Filament loaded properly but color is not clear
  5497. case 3:
  5498. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5499. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5500. lcd_loading_color();
  5501. break;
  5502. // Everything good
  5503. default:
  5504. lcd_change_success();
  5505. lcd_update_enable(true);
  5506. break;
  5507. }
  5508. }
  5509. //Not let's go back to print
  5510. fanSpeed = fanSpeedBckp;
  5511. //Feed a little of filament to stabilize pressure
  5512. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5513. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5514. //Retract
  5515. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5516. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5517. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5518. //Move XY back
  5519. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5520. //Move Z back
  5521. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5522. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5523. //Unretract
  5524. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5525. //Set E position to original
  5526. plan_set_e_position(lastpos[E_AXIS]);
  5527. //Recover feed rate
  5528. feedmultiply=feedmultiplyBckp;
  5529. char cmd[9];
  5530. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5531. enquecommand(cmd);
  5532. lcd_setstatuspgm(_T(WELCOME_MSG));
  5533. custom_message = false;
  5534. custom_message_type = 0;
  5535. #ifdef PAT9125
  5536. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5537. if (fsensor_M600)
  5538. {
  5539. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5540. st_synchronize();
  5541. while (!is_buffer_empty())
  5542. {
  5543. process_commands();
  5544. cmdqueue_pop_front();
  5545. }
  5546. fsensor_enable();
  5547. fsensor_restore_print_and_continue();
  5548. }
  5549. #endif //PAT9125
  5550. }
  5551. break;
  5552. #endif //FILAMENTCHANGEENABLE
  5553. case 601: {
  5554. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5555. }
  5556. break;
  5557. case 602: {
  5558. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5559. }
  5560. break;
  5561. #ifdef PINDA_THERMISTOR
  5562. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5563. {
  5564. int setTargetPinda = 0;
  5565. if (code_seen('S')) {
  5566. setTargetPinda = code_value();
  5567. }
  5568. else {
  5569. break;
  5570. }
  5571. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5572. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5573. SERIAL_PROTOCOL(setTargetPinda);
  5574. SERIAL_PROTOCOLLN("");
  5575. codenum = millis();
  5576. cancel_heatup = false;
  5577. while ((!cancel_heatup) && current_temperature_pinda < setTargetPinda) {
  5578. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5579. {
  5580. SERIAL_PROTOCOLPGM("P:");
  5581. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5582. SERIAL_PROTOCOLPGM("/");
  5583. SERIAL_PROTOCOL(setTargetPinda);
  5584. SERIAL_PROTOCOLLN("");
  5585. codenum = millis();
  5586. }
  5587. manage_heater();
  5588. manage_inactivity();
  5589. lcd_update();
  5590. }
  5591. LCD_MESSAGERPGM(_T(MSG_OK));
  5592. break;
  5593. }
  5594. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5595. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5596. uint8_t cal_status = calibration_status_pinda();
  5597. int16_t usteps = 0;
  5598. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5599. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5600. for (uint8_t i = 0; i < 6; i++)
  5601. {
  5602. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5603. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5604. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5605. SERIAL_PROTOCOLPGM(", ");
  5606. SERIAL_PROTOCOL(35 + (i * 5));
  5607. SERIAL_PROTOCOLPGM(", ");
  5608. SERIAL_PROTOCOL(usteps);
  5609. SERIAL_PROTOCOLPGM(", ");
  5610. SERIAL_PROTOCOL(mm * 1000);
  5611. SERIAL_PROTOCOLLN("");
  5612. }
  5613. }
  5614. else if (code_seen('!')) { // ! - Set factory default values
  5615. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5616. int16_t z_shift = 8; //40C - 20um - 8usteps
  5617. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5618. z_shift = 24; //45C - 60um - 24usteps
  5619. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5620. z_shift = 48; //50C - 120um - 48usteps
  5621. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5622. z_shift = 80; //55C - 200um - 80usteps
  5623. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5624. z_shift = 120; //60C - 300um - 120usteps
  5625. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5626. SERIAL_PROTOCOLLN("factory restored");
  5627. }
  5628. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5629. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5630. int16_t z_shift = 0;
  5631. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5632. SERIAL_PROTOCOLLN("zerorized");
  5633. }
  5634. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5635. int16_t usteps = code_value();
  5636. if (code_seen('I')) {
  5637. byte index = code_value();
  5638. if ((index >= 0) && (index < 5)) {
  5639. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5640. SERIAL_PROTOCOLLN("OK");
  5641. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5642. for (uint8_t i = 0; i < 6; i++)
  5643. {
  5644. usteps = 0;
  5645. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5646. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5647. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5648. SERIAL_PROTOCOLPGM(", ");
  5649. SERIAL_PROTOCOL(35 + (i * 5));
  5650. SERIAL_PROTOCOLPGM(", ");
  5651. SERIAL_PROTOCOL(usteps);
  5652. SERIAL_PROTOCOLPGM(", ");
  5653. SERIAL_PROTOCOL(mm * 1000);
  5654. SERIAL_PROTOCOLLN("");
  5655. }
  5656. }
  5657. }
  5658. }
  5659. else {
  5660. SERIAL_PROTOCOLPGM("no valid command");
  5661. }
  5662. break;
  5663. #endif //PINDA_THERMISTOR
  5664. #ifdef LIN_ADVANCE
  5665. case 900: // M900: Set LIN_ADVANCE options.
  5666. gcode_M900();
  5667. break;
  5668. #endif
  5669. case 907: // M907 Set digital trimpot motor current using axis codes.
  5670. {
  5671. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5672. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5673. if(code_seen('B')) st_current_set(4,code_value());
  5674. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5675. #endif
  5676. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5677. if(code_seen('X')) st_current_set(0, code_value());
  5678. #endif
  5679. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5680. if(code_seen('Z')) st_current_set(1, code_value());
  5681. #endif
  5682. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5683. if(code_seen('E')) st_current_set(2, code_value());
  5684. #endif
  5685. }
  5686. break;
  5687. case 908: // M908 Control digital trimpot directly.
  5688. {
  5689. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5690. uint8_t channel,current;
  5691. if(code_seen('P')) channel=code_value();
  5692. if(code_seen('S')) current=code_value();
  5693. digitalPotWrite(channel, current);
  5694. #endif
  5695. }
  5696. break;
  5697. #ifdef TMC2130
  5698. case 910: // M910 TMC2130 init
  5699. {
  5700. tmc2130_init();
  5701. }
  5702. break;
  5703. case 911: // M911 Set TMC2130 holding currents
  5704. {
  5705. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5706. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5707. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5708. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5709. }
  5710. break;
  5711. case 912: // M912 Set TMC2130 running currents
  5712. {
  5713. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5714. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5715. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5716. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5717. }
  5718. break;
  5719. case 913: // M913 Print TMC2130 currents
  5720. {
  5721. tmc2130_print_currents();
  5722. }
  5723. break;
  5724. case 914: // M914 Set normal mode
  5725. {
  5726. tmc2130_mode = TMC2130_MODE_NORMAL;
  5727. tmc2130_init();
  5728. }
  5729. break;
  5730. case 915: // M915 Set silent mode
  5731. {
  5732. tmc2130_mode = TMC2130_MODE_SILENT;
  5733. tmc2130_init();
  5734. }
  5735. break;
  5736. case 916: // M916 Set sg_thrs
  5737. {
  5738. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5739. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5740. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5741. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5742. MYSERIAL.print("tmc2130_sg_thr[X]=");
  5743. MYSERIAL.println(tmc2130_sg_thr[X_AXIS], DEC);
  5744. MYSERIAL.print("tmc2130_sg_thr[Y]=");
  5745. MYSERIAL.println(tmc2130_sg_thr[Y_AXIS], DEC);
  5746. MYSERIAL.print("tmc2130_sg_thr[Z]=");
  5747. MYSERIAL.println(tmc2130_sg_thr[Z_AXIS], DEC);
  5748. MYSERIAL.print("tmc2130_sg_thr[E]=");
  5749. MYSERIAL.println(tmc2130_sg_thr[E_AXIS], DEC);
  5750. }
  5751. break;
  5752. case 917: // M917 Set TMC2130 pwm_ampl
  5753. {
  5754. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5755. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5756. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5757. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5758. }
  5759. break;
  5760. case 918: // M918 Set TMC2130 pwm_grad
  5761. {
  5762. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5763. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5764. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5765. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5766. }
  5767. break;
  5768. #endif //TMC2130
  5769. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5770. {
  5771. #ifdef TMC2130
  5772. if(code_seen('E'))
  5773. {
  5774. uint16_t res_new = code_value();
  5775. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5776. {
  5777. st_synchronize();
  5778. uint8_t axis = E_AXIS;
  5779. uint16_t res = tmc2130_get_res(axis);
  5780. tmc2130_set_res(axis, res_new);
  5781. if (res_new > res)
  5782. {
  5783. uint16_t fac = (res_new / res);
  5784. axis_steps_per_unit[axis] *= fac;
  5785. position[E_AXIS] *= fac;
  5786. }
  5787. else
  5788. {
  5789. uint16_t fac = (res / res_new);
  5790. axis_steps_per_unit[axis] /= fac;
  5791. position[E_AXIS] /= fac;
  5792. }
  5793. }
  5794. }
  5795. #else //TMC2130
  5796. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5797. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5798. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5799. if(code_seen('B')) microstep_mode(4,code_value());
  5800. microstep_readings();
  5801. #endif
  5802. #endif //TMC2130
  5803. }
  5804. break;
  5805. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5806. {
  5807. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5808. if(code_seen('S')) switch((int)code_value())
  5809. {
  5810. case 1:
  5811. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  5812. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  5813. break;
  5814. case 2:
  5815. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  5816. if(code_seen('B')) microstep_ms(4,-1,code_value());
  5817. break;
  5818. }
  5819. microstep_readings();
  5820. #endif
  5821. }
  5822. break;
  5823. case 701: //M701: load filament
  5824. {
  5825. gcode_M701();
  5826. }
  5827. break;
  5828. case 702:
  5829. {
  5830. #ifdef SNMM
  5831. if (code_seen('U')) {
  5832. extr_unload_used(); //unload all filaments which were used in current print
  5833. }
  5834. else if (code_seen('C')) {
  5835. extr_unload(); //unload just current filament
  5836. }
  5837. else {
  5838. extr_unload_all(); //unload all filaments
  5839. }
  5840. #else
  5841. #ifdef PAT9125
  5842. bool old_fsensor_enabled = fsensor_enabled;
  5843. fsensor_enabled = false;
  5844. #endif //PAT9125
  5845. custom_message = true;
  5846. custom_message_type = 2;
  5847. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5848. // extr_unload2();
  5849. current_position[E_AXIS] -= 45;
  5850. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5851. st_synchronize();
  5852. current_position[E_AXIS] -= 15;
  5853. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5854. st_synchronize();
  5855. current_position[E_AXIS] -= 20;
  5856. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5857. st_synchronize();
  5858. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5859. //disable extruder steppers so filament can be removed
  5860. disable_e0();
  5861. disable_e1();
  5862. disable_e2();
  5863. delay(100);
  5864. WRITE(BEEPER, HIGH);
  5865. uint8_t counterBeep = 0;
  5866. while (!lcd_clicked() && (counterBeep < 50)) {
  5867. if (counterBeep > 5) WRITE(BEEPER, LOW);
  5868. delay_keep_alive(100);
  5869. counterBeep++;
  5870. }
  5871. WRITE(BEEPER, LOW);
  5872. st_synchronize();
  5873. while (lcd_clicked()) delay_keep_alive(100);
  5874. lcd_update_enable(true);
  5875. lcd_setstatuspgm(_T(WELCOME_MSG));
  5876. custom_message = false;
  5877. custom_message_type = 0;
  5878. #ifdef PAT9125
  5879. fsensor_enabled = old_fsensor_enabled;
  5880. #endif //PAT9125
  5881. #endif
  5882. }
  5883. break;
  5884. case 999: // M999: Restart after being stopped
  5885. Stopped = false;
  5886. lcd_reset_alert_level();
  5887. gcode_LastN = Stopped_gcode_LastN;
  5888. FlushSerialRequestResend();
  5889. break;
  5890. default:
  5891. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  5892. }
  5893. } // end if(code_seen('M')) (end of M codes)
  5894. else if(code_seen('T'))
  5895. {
  5896. int index;
  5897. st_synchronize();
  5898. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  5899. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  5900. SERIAL_ECHOLNPGM("Invalid T code.");
  5901. }
  5902. else {
  5903. if (*(strchr_pointer + index) == '?') {
  5904. tmp_extruder = choose_extruder_menu();
  5905. }
  5906. else {
  5907. tmp_extruder = code_value();
  5908. }
  5909. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  5910. #ifdef SNMM
  5911. #ifdef LIN_ADVANCE
  5912. if (snmm_extruder != tmp_extruder)
  5913. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  5914. #endif
  5915. snmm_extruder = tmp_extruder;
  5916. delay(100);
  5917. disable_e0();
  5918. disable_e1();
  5919. disable_e2();
  5920. pinMode(E_MUX0_PIN, OUTPUT);
  5921. pinMode(E_MUX1_PIN, OUTPUT);
  5922. delay(100);
  5923. SERIAL_ECHO_START;
  5924. SERIAL_ECHO("T:");
  5925. SERIAL_ECHOLN((int)tmp_extruder);
  5926. switch (tmp_extruder) {
  5927. case 1:
  5928. WRITE(E_MUX0_PIN, HIGH);
  5929. WRITE(E_MUX1_PIN, LOW);
  5930. break;
  5931. case 2:
  5932. WRITE(E_MUX0_PIN, LOW);
  5933. WRITE(E_MUX1_PIN, HIGH);
  5934. break;
  5935. case 3:
  5936. WRITE(E_MUX0_PIN, HIGH);
  5937. WRITE(E_MUX1_PIN, HIGH);
  5938. break;
  5939. default:
  5940. WRITE(E_MUX0_PIN, LOW);
  5941. WRITE(E_MUX1_PIN, LOW);
  5942. break;
  5943. }
  5944. delay(100);
  5945. #else
  5946. if (tmp_extruder >= EXTRUDERS) {
  5947. SERIAL_ECHO_START;
  5948. SERIAL_ECHOPGM("T");
  5949. SERIAL_PROTOCOLLN((int)tmp_extruder);
  5950. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  5951. }
  5952. else {
  5953. boolean make_move = false;
  5954. if (code_seen('F')) {
  5955. make_move = true;
  5956. next_feedrate = code_value();
  5957. if (next_feedrate > 0.0) {
  5958. feedrate = next_feedrate;
  5959. }
  5960. }
  5961. #if EXTRUDERS > 1
  5962. if (tmp_extruder != active_extruder) {
  5963. // Save current position to return to after applying extruder offset
  5964. memcpy(destination, current_position, sizeof(destination));
  5965. // Offset extruder (only by XY)
  5966. int i;
  5967. for (i = 0; i < 2; i++) {
  5968. current_position[i] = current_position[i] -
  5969. extruder_offset[i][active_extruder] +
  5970. extruder_offset[i][tmp_extruder];
  5971. }
  5972. // Set the new active extruder and position
  5973. active_extruder = tmp_extruder;
  5974. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5975. // Move to the old position if 'F' was in the parameters
  5976. if (make_move && Stopped == false) {
  5977. prepare_move();
  5978. }
  5979. }
  5980. #endif
  5981. SERIAL_ECHO_START;
  5982. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  5983. SERIAL_PROTOCOLLN((int)active_extruder);
  5984. }
  5985. #endif
  5986. }
  5987. } // end if(code_seen('T')) (end of T codes)
  5988. #ifdef DEBUG_DCODES
  5989. else if (code_seen('D')) // D codes (debug)
  5990. {
  5991. switch((int)code_value())
  5992. {
  5993. case -1: // D-1 - Endless loop
  5994. dcode__1(); break;
  5995. case 0: // D0 - Reset
  5996. dcode_0(); break;
  5997. case 1: // D1 - Clear EEPROM
  5998. dcode_1(); break;
  5999. case 2: // D2 - Read/Write RAM
  6000. dcode_2(); break;
  6001. case 3: // D3 - Read/Write EEPROM
  6002. dcode_3(); break;
  6003. case 4: // D4 - Read/Write PIN
  6004. dcode_4(); break;
  6005. case 5: // D5 - Read/Write FLASH
  6006. // dcode_5(); break;
  6007. break;
  6008. case 6: // D6 - Read/Write external FLASH
  6009. dcode_6(); break;
  6010. case 7: // D7 - Read/Write Bootloader
  6011. dcode_7(); break;
  6012. case 8: // D8 - Read/Write PINDA
  6013. dcode_8(); break;
  6014. case 9: // D9 - Read/Write ADC
  6015. dcode_9(); break;
  6016. case 10: // D10 - XYZ calibration = OK
  6017. dcode_10(); break;
  6018. #ifdef TMC2130
  6019. case 2130: // D9125 - TMC2130
  6020. dcode_2130(); break;
  6021. #endif //TMC2130
  6022. #ifdef PAT9125
  6023. case 9125: // D9125 - PAT9125
  6024. dcode_9125(); break;
  6025. #endif //PAT9125
  6026. }
  6027. }
  6028. #endif //DEBUG_DCODES
  6029. else
  6030. {
  6031. SERIAL_ECHO_START;
  6032. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6033. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6034. SERIAL_ECHOLNPGM("\"(2)");
  6035. }
  6036. KEEPALIVE_STATE(NOT_BUSY);
  6037. ClearToSend();
  6038. }
  6039. void FlushSerialRequestResend()
  6040. {
  6041. //char cmdbuffer[bufindr][100]="Resend:";
  6042. MYSERIAL.flush();
  6043. SERIAL_PROTOCOLRPGM(_i("Resend: "));////MSG_RESEND c=0 r=0
  6044. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6045. previous_millis_cmd = millis();
  6046. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6047. }
  6048. // Confirm the execution of a command, if sent from a serial line.
  6049. // Execution of a command from a SD card will not be confirmed.
  6050. void ClearToSend()
  6051. {
  6052. previous_millis_cmd = millis();
  6053. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  6054. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6055. }
  6056. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6057. void update_currents() {
  6058. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6059. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6060. float tmp_motor[3];
  6061. //SERIAL_ECHOLNPGM("Currents updated: ");
  6062. if (destination[Z_AXIS] < Z_SILENT) {
  6063. //SERIAL_ECHOLNPGM("LOW");
  6064. for (uint8_t i = 0; i < 3; i++) {
  6065. st_current_set(i, current_low[i]);
  6066. /*MYSERIAL.print(int(i));
  6067. SERIAL_ECHOPGM(": ");
  6068. MYSERIAL.println(current_low[i]);*/
  6069. }
  6070. }
  6071. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6072. //SERIAL_ECHOLNPGM("HIGH");
  6073. for (uint8_t i = 0; i < 3; i++) {
  6074. st_current_set(i, current_high[i]);
  6075. /*MYSERIAL.print(int(i));
  6076. SERIAL_ECHOPGM(": ");
  6077. MYSERIAL.println(current_high[i]);*/
  6078. }
  6079. }
  6080. else {
  6081. for (uint8_t i = 0; i < 3; i++) {
  6082. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6083. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6084. st_current_set(i, tmp_motor[i]);
  6085. /*MYSERIAL.print(int(i));
  6086. SERIAL_ECHOPGM(": ");
  6087. MYSERIAL.println(tmp_motor[i]);*/
  6088. }
  6089. }
  6090. }
  6091. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6092. void get_coordinates()
  6093. {
  6094. bool seen[4]={false,false,false,false};
  6095. for(int8_t i=0; i < NUM_AXIS; i++) {
  6096. if(code_seen(axis_codes[i]))
  6097. {
  6098. bool relative = axis_relative_modes[i] || relative_mode;
  6099. destination[i] = (float)code_value();
  6100. if (i == E_AXIS) {
  6101. float emult = extruder_multiplier[active_extruder];
  6102. if (emult != 1.) {
  6103. if (! relative) {
  6104. destination[i] -= current_position[i];
  6105. relative = true;
  6106. }
  6107. destination[i] *= emult;
  6108. }
  6109. }
  6110. if (relative)
  6111. destination[i] += current_position[i];
  6112. seen[i]=true;
  6113. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6114. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6115. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6116. }
  6117. else destination[i] = current_position[i]; //Are these else lines really needed?
  6118. }
  6119. if(code_seen('F')) {
  6120. next_feedrate = code_value();
  6121. #ifdef MAX_SILENT_FEEDRATE
  6122. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6123. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6124. #endif //MAX_SILENT_FEEDRATE
  6125. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6126. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6127. {
  6128. // float e_max_speed =
  6129. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6130. }
  6131. }
  6132. }
  6133. void get_arc_coordinates()
  6134. {
  6135. #ifdef SF_ARC_FIX
  6136. bool relative_mode_backup = relative_mode;
  6137. relative_mode = true;
  6138. #endif
  6139. get_coordinates();
  6140. #ifdef SF_ARC_FIX
  6141. relative_mode=relative_mode_backup;
  6142. #endif
  6143. if(code_seen('I')) {
  6144. offset[0] = code_value();
  6145. }
  6146. else {
  6147. offset[0] = 0.0;
  6148. }
  6149. if(code_seen('J')) {
  6150. offset[1] = code_value();
  6151. }
  6152. else {
  6153. offset[1] = 0.0;
  6154. }
  6155. }
  6156. void clamp_to_software_endstops(float target[3])
  6157. {
  6158. #ifdef DEBUG_DISABLE_SWLIMITS
  6159. return;
  6160. #endif //DEBUG_DISABLE_SWLIMITS
  6161. world2machine_clamp(target[0], target[1]);
  6162. // Clamp the Z coordinate.
  6163. if (min_software_endstops) {
  6164. float negative_z_offset = 0;
  6165. #ifdef ENABLE_AUTO_BED_LEVELING
  6166. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6167. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6168. #endif
  6169. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6170. }
  6171. if (max_software_endstops) {
  6172. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6173. }
  6174. }
  6175. #ifdef MESH_BED_LEVELING
  6176. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6177. float dx = x - current_position[X_AXIS];
  6178. float dy = y - current_position[Y_AXIS];
  6179. float dz = z - current_position[Z_AXIS];
  6180. int n_segments = 0;
  6181. if (mbl.active) {
  6182. float len = abs(dx) + abs(dy);
  6183. if (len > 0)
  6184. // Split to 3cm segments or shorter.
  6185. n_segments = int(ceil(len / 30.f));
  6186. }
  6187. if (n_segments > 1) {
  6188. float de = e - current_position[E_AXIS];
  6189. for (int i = 1; i < n_segments; ++ i) {
  6190. float t = float(i) / float(n_segments);
  6191. plan_buffer_line(
  6192. current_position[X_AXIS] + t * dx,
  6193. current_position[Y_AXIS] + t * dy,
  6194. current_position[Z_AXIS] + t * dz,
  6195. current_position[E_AXIS] + t * de,
  6196. feed_rate, extruder);
  6197. }
  6198. }
  6199. // The rest of the path.
  6200. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6201. current_position[X_AXIS] = x;
  6202. current_position[Y_AXIS] = y;
  6203. current_position[Z_AXIS] = z;
  6204. current_position[E_AXIS] = e;
  6205. }
  6206. #endif // MESH_BED_LEVELING
  6207. void prepare_move()
  6208. {
  6209. clamp_to_software_endstops(destination);
  6210. previous_millis_cmd = millis();
  6211. // Do not use feedmultiply for E or Z only moves
  6212. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6213. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6214. }
  6215. else {
  6216. #ifdef MESH_BED_LEVELING
  6217. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6218. #else
  6219. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6220. #endif
  6221. }
  6222. for(int8_t i=0; i < NUM_AXIS; i++) {
  6223. current_position[i] = destination[i];
  6224. }
  6225. }
  6226. void prepare_arc_move(char isclockwise) {
  6227. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6228. // Trace the arc
  6229. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6230. // As far as the parser is concerned, the position is now == target. In reality the
  6231. // motion control system might still be processing the action and the real tool position
  6232. // in any intermediate location.
  6233. for(int8_t i=0; i < NUM_AXIS; i++) {
  6234. current_position[i] = destination[i];
  6235. }
  6236. previous_millis_cmd = millis();
  6237. }
  6238. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6239. #if defined(FAN_PIN)
  6240. #if CONTROLLERFAN_PIN == FAN_PIN
  6241. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6242. #endif
  6243. #endif
  6244. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6245. unsigned long lastMotorCheck = 0;
  6246. void controllerFan()
  6247. {
  6248. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6249. {
  6250. lastMotorCheck = millis();
  6251. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6252. #if EXTRUDERS > 2
  6253. || !READ(E2_ENABLE_PIN)
  6254. #endif
  6255. #if EXTRUDER > 1
  6256. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6257. || !READ(X2_ENABLE_PIN)
  6258. #endif
  6259. || !READ(E1_ENABLE_PIN)
  6260. #endif
  6261. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6262. {
  6263. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6264. }
  6265. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6266. {
  6267. digitalWrite(CONTROLLERFAN_PIN, 0);
  6268. analogWrite(CONTROLLERFAN_PIN, 0);
  6269. }
  6270. else
  6271. {
  6272. // allows digital or PWM fan output to be used (see M42 handling)
  6273. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6274. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6275. }
  6276. }
  6277. }
  6278. #endif
  6279. #ifdef TEMP_STAT_LEDS
  6280. static bool blue_led = false;
  6281. static bool red_led = false;
  6282. static uint32_t stat_update = 0;
  6283. void handle_status_leds(void) {
  6284. float max_temp = 0.0;
  6285. if(millis() > stat_update) {
  6286. stat_update += 500; // Update every 0.5s
  6287. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6288. max_temp = max(max_temp, degHotend(cur_extruder));
  6289. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6290. }
  6291. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6292. max_temp = max(max_temp, degTargetBed());
  6293. max_temp = max(max_temp, degBed());
  6294. #endif
  6295. if((max_temp > 55.0) && (red_led == false)) {
  6296. digitalWrite(STAT_LED_RED, 1);
  6297. digitalWrite(STAT_LED_BLUE, 0);
  6298. red_led = true;
  6299. blue_led = false;
  6300. }
  6301. if((max_temp < 54.0) && (blue_led == false)) {
  6302. digitalWrite(STAT_LED_RED, 0);
  6303. digitalWrite(STAT_LED_BLUE, 1);
  6304. red_led = false;
  6305. blue_led = true;
  6306. }
  6307. }
  6308. }
  6309. #endif
  6310. #ifdef SAFETYTIMER
  6311. /**
  6312. * @brief Turn off heating after 30 minutes of inactivity
  6313. *
  6314. * Full screen blocking notification message is shown after heater turning off.
  6315. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6316. * damage print.
  6317. */
  6318. static void handleSafetyTimer()
  6319. {
  6320. #if (EXTRUDERS > 1)
  6321. #error Implemented only for one extruder.
  6322. #endif //(EXTRUDERS > 1)
  6323. static Timer safetyTimer;
  6324. if (IS_SD_PRINTING || is_usb_printing || isPrintPaused || (custom_message_type == 4) || saved_printing
  6325. || (lcd_commands_type == LCD_COMMAND_V2_CAL) || (!degTargetBed() && !degTargetHotend(0)))
  6326. {
  6327. safetyTimer.stop();
  6328. }
  6329. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6330. {
  6331. safetyTimer.start();
  6332. }
  6333. else if (safetyTimer.expired(1800000ul)) //30 min
  6334. {
  6335. setTargetBed(0);
  6336. setTargetHotend(0, 0);
  6337. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6338. }
  6339. }
  6340. #endif //SAFETYTIMER
  6341. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6342. {
  6343. #ifdef PAT9125
  6344. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6345. {
  6346. if (fsensor_autoload_enabled)
  6347. {
  6348. if (fsensor_check_autoload())
  6349. {
  6350. if (degHotend0() > EXTRUDE_MINTEMP)
  6351. {
  6352. fsensor_autoload_check_stop();
  6353. tone(BEEPER, 1000);
  6354. delay_keep_alive(50);
  6355. noTone(BEEPER);
  6356. loading_flag = true;
  6357. enquecommand_front_P((PSTR("M701")));
  6358. }
  6359. else
  6360. {
  6361. lcd_update_enable(false);
  6362. lcd_implementation_clear();
  6363. lcd.setCursor(0, 0);
  6364. lcd_printPGM(_T(MSG_ERROR));
  6365. lcd.setCursor(0, 2);
  6366. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6367. delay(2000);
  6368. lcd_implementation_clear();
  6369. lcd_update_enable(true);
  6370. }
  6371. }
  6372. }
  6373. else
  6374. fsensor_autoload_check_start();
  6375. }
  6376. else
  6377. if (fsensor_autoload_enabled)
  6378. fsensor_autoload_check_stop();
  6379. #endif //PAT9125
  6380. #ifdef SAFETYTIMER
  6381. handleSafetyTimer();
  6382. #endif //SAFETYTIMER
  6383. #if defined(KILL_PIN) && KILL_PIN > -1
  6384. static int killCount = 0; // make the inactivity button a bit less responsive
  6385. const int KILL_DELAY = 10000;
  6386. #endif
  6387. if(buflen < (BUFSIZE-1)){
  6388. get_command();
  6389. }
  6390. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6391. if(max_inactive_time)
  6392. kill("", 4);
  6393. if(stepper_inactive_time) {
  6394. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6395. {
  6396. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6397. disable_x();
  6398. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6399. disable_y();
  6400. disable_z();
  6401. disable_e0();
  6402. disable_e1();
  6403. disable_e2();
  6404. }
  6405. }
  6406. }
  6407. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6408. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6409. {
  6410. chdkActive = false;
  6411. WRITE(CHDK, LOW);
  6412. }
  6413. #endif
  6414. #if defined(KILL_PIN) && KILL_PIN > -1
  6415. // Check if the kill button was pressed and wait just in case it was an accidental
  6416. // key kill key press
  6417. // -------------------------------------------------------------------------------
  6418. if( 0 == READ(KILL_PIN) )
  6419. {
  6420. killCount++;
  6421. }
  6422. else if (killCount > 0)
  6423. {
  6424. killCount--;
  6425. }
  6426. // Exceeded threshold and we can confirm that it was not accidental
  6427. // KILL the machine
  6428. // ----------------------------------------------------------------
  6429. if ( killCount >= KILL_DELAY)
  6430. {
  6431. kill("", 5);
  6432. }
  6433. #endif
  6434. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6435. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6436. #endif
  6437. #ifdef EXTRUDER_RUNOUT_PREVENT
  6438. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6439. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6440. {
  6441. bool oldstatus=READ(E0_ENABLE_PIN);
  6442. enable_e0();
  6443. float oldepos=current_position[E_AXIS];
  6444. float oldedes=destination[E_AXIS];
  6445. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6446. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6447. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6448. current_position[E_AXIS]=oldepos;
  6449. destination[E_AXIS]=oldedes;
  6450. plan_set_e_position(oldepos);
  6451. previous_millis_cmd=millis();
  6452. st_synchronize();
  6453. WRITE(E0_ENABLE_PIN,oldstatus);
  6454. }
  6455. #endif
  6456. #ifdef TEMP_STAT_LEDS
  6457. handle_status_leds();
  6458. #endif
  6459. check_axes_activity();
  6460. }
  6461. void kill(const char *full_screen_message, unsigned char id)
  6462. {
  6463. SERIAL_ECHOPGM("KILL: ");
  6464. MYSERIAL.println(int(id));
  6465. //return;
  6466. cli(); // Stop interrupts
  6467. disable_heater();
  6468. disable_x();
  6469. // SERIAL_ECHOLNPGM("kill - disable Y");
  6470. disable_y();
  6471. disable_z();
  6472. disable_e0();
  6473. disable_e1();
  6474. disable_e2();
  6475. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6476. pinMode(PS_ON_PIN,INPUT);
  6477. #endif
  6478. SERIAL_ERROR_START;
  6479. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6480. if (full_screen_message != NULL) {
  6481. SERIAL_ERRORLNRPGM(full_screen_message);
  6482. lcd_display_message_fullscreen_P(full_screen_message);
  6483. } else {
  6484. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6485. }
  6486. // FMC small patch to update the LCD before ending
  6487. sei(); // enable interrupts
  6488. for ( int i=5; i--; lcd_update())
  6489. {
  6490. delay(200);
  6491. }
  6492. cli(); // disable interrupts
  6493. suicide();
  6494. while(1)
  6495. {
  6496. #ifdef WATCHDOG
  6497. wdt_reset();
  6498. #endif //WATCHDOG
  6499. /* Intentionally left empty */
  6500. } // Wait for reset
  6501. }
  6502. void Stop()
  6503. {
  6504. disable_heater();
  6505. if(Stopped == false) {
  6506. Stopped = true;
  6507. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6508. SERIAL_ERROR_START;
  6509. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6510. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6511. }
  6512. }
  6513. bool IsStopped() { return Stopped; };
  6514. #ifdef FAST_PWM_FAN
  6515. void setPwmFrequency(uint8_t pin, int val)
  6516. {
  6517. val &= 0x07;
  6518. switch(digitalPinToTimer(pin))
  6519. {
  6520. #if defined(TCCR0A)
  6521. case TIMER0A:
  6522. case TIMER0B:
  6523. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6524. // TCCR0B |= val;
  6525. break;
  6526. #endif
  6527. #if defined(TCCR1A)
  6528. case TIMER1A:
  6529. case TIMER1B:
  6530. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6531. // TCCR1B |= val;
  6532. break;
  6533. #endif
  6534. #if defined(TCCR2)
  6535. case TIMER2:
  6536. case TIMER2:
  6537. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6538. TCCR2 |= val;
  6539. break;
  6540. #endif
  6541. #if defined(TCCR2A)
  6542. case TIMER2A:
  6543. case TIMER2B:
  6544. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6545. TCCR2B |= val;
  6546. break;
  6547. #endif
  6548. #if defined(TCCR3A)
  6549. case TIMER3A:
  6550. case TIMER3B:
  6551. case TIMER3C:
  6552. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6553. TCCR3B |= val;
  6554. break;
  6555. #endif
  6556. #if defined(TCCR4A)
  6557. case TIMER4A:
  6558. case TIMER4B:
  6559. case TIMER4C:
  6560. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6561. TCCR4B |= val;
  6562. break;
  6563. #endif
  6564. #if defined(TCCR5A)
  6565. case TIMER5A:
  6566. case TIMER5B:
  6567. case TIMER5C:
  6568. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6569. TCCR5B |= val;
  6570. break;
  6571. #endif
  6572. }
  6573. }
  6574. #endif //FAST_PWM_FAN
  6575. bool setTargetedHotend(int code){
  6576. tmp_extruder = active_extruder;
  6577. if(code_seen('T')) {
  6578. tmp_extruder = code_value();
  6579. if(tmp_extruder >= EXTRUDERS) {
  6580. SERIAL_ECHO_START;
  6581. switch(code){
  6582. case 104:
  6583. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6584. break;
  6585. case 105:
  6586. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6587. break;
  6588. case 109:
  6589. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6590. break;
  6591. case 218:
  6592. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6593. break;
  6594. case 221:
  6595. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6596. break;
  6597. }
  6598. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6599. return true;
  6600. }
  6601. }
  6602. return false;
  6603. }
  6604. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6605. {
  6606. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6607. {
  6608. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6609. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6610. }
  6611. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6612. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6613. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6614. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6615. total_filament_used = 0;
  6616. }
  6617. float calculate_extruder_multiplier(float diameter) {
  6618. float out = 1.f;
  6619. if (volumetric_enabled && diameter > 0.f) {
  6620. float area = M_PI * diameter * diameter * 0.25;
  6621. out = 1.f / area;
  6622. }
  6623. if (extrudemultiply != 100)
  6624. out *= float(extrudemultiply) * 0.01f;
  6625. return out;
  6626. }
  6627. void calculate_extruder_multipliers() {
  6628. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6629. #if EXTRUDERS > 1
  6630. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6631. #if EXTRUDERS > 2
  6632. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6633. #endif
  6634. #endif
  6635. }
  6636. void delay_keep_alive(unsigned int ms)
  6637. {
  6638. for (;;) {
  6639. manage_heater();
  6640. // Manage inactivity, but don't disable steppers on timeout.
  6641. manage_inactivity(true);
  6642. lcd_update();
  6643. if (ms == 0)
  6644. break;
  6645. else if (ms >= 50) {
  6646. delay(50);
  6647. ms -= 50;
  6648. } else {
  6649. delay(ms);
  6650. ms = 0;
  6651. }
  6652. }
  6653. }
  6654. void wait_for_heater(long codenum) {
  6655. #ifdef TEMP_RESIDENCY_TIME
  6656. long residencyStart;
  6657. residencyStart = -1;
  6658. /* continue to loop until we have reached the target temp
  6659. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6660. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6661. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6662. #else
  6663. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6664. #endif //TEMP_RESIDENCY_TIME
  6665. if ((millis() - codenum) > 1000UL)
  6666. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6667. if (!farm_mode) {
  6668. SERIAL_PROTOCOLPGM("T:");
  6669. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6670. SERIAL_PROTOCOLPGM(" E:");
  6671. SERIAL_PROTOCOL((int)tmp_extruder);
  6672. #ifdef TEMP_RESIDENCY_TIME
  6673. SERIAL_PROTOCOLPGM(" W:");
  6674. if (residencyStart > -1)
  6675. {
  6676. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6677. SERIAL_PROTOCOLLN(codenum);
  6678. }
  6679. else
  6680. {
  6681. SERIAL_PROTOCOLLN("?");
  6682. }
  6683. }
  6684. #else
  6685. SERIAL_PROTOCOLLN("");
  6686. #endif
  6687. codenum = millis();
  6688. }
  6689. manage_heater();
  6690. manage_inactivity();
  6691. lcd_update();
  6692. #ifdef TEMP_RESIDENCY_TIME
  6693. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6694. or when current temp falls outside the hysteresis after target temp was reached */
  6695. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6696. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6697. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6698. {
  6699. residencyStart = millis();
  6700. }
  6701. #endif //TEMP_RESIDENCY_TIME
  6702. }
  6703. }
  6704. void check_babystep() {
  6705. int babystep_z;
  6706. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6707. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6708. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6709. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6710. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6711. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6712. lcd_update_enable(true);
  6713. }
  6714. }
  6715. #ifdef DIS
  6716. void d_setup()
  6717. {
  6718. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6719. pinMode(D_DATA, INPUT_PULLUP);
  6720. pinMode(D_REQUIRE, OUTPUT);
  6721. digitalWrite(D_REQUIRE, HIGH);
  6722. }
  6723. float d_ReadData()
  6724. {
  6725. int digit[13];
  6726. String mergeOutput;
  6727. float output;
  6728. digitalWrite(D_REQUIRE, HIGH);
  6729. for (int i = 0; i<13; i++)
  6730. {
  6731. for (int j = 0; j < 4; j++)
  6732. {
  6733. while (digitalRead(D_DATACLOCK) == LOW) {}
  6734. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6735. bitWrite(digit[i], j, digitalRead(D_DATA));
  6736. }
  6737. }
  6738. digitalWrite(D_REQUIRE, LOW);
  6739. mergeOutput = "";
  6740. output = 0;
  6741. for (int r = 5; r <= 10; r++) //Merge digits
  6742. {
  6743. mergeOutput += digit[r];
  6744. }
  6745. output = mergeOutput.toFloat();
  6746. if (digit[4] == 8) //Handle sign
  6747. {
  6748. output *= -1;
  6749. }
  6750. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6751. {
  6752. output /= 10;
  6753. }
  6754. return output;
  6755. }
  6756. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6757. int t1 = 0;
  6758. int t_delay = 0;
  6759. int digit[13];
  6760. int m;
  6761. char str[3];
  6762. //String mergeOutput;
  6763. char mergeOutput[15];
  6764. float output;
  6765. int mesh_point = 0; //index number of calibration point
  6766. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6767. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6768. float mesh_home_z_search = 4;
  6769. float row[x_points_num];
  6770. int ix = 0;
  6771. int iy = 0;
  6772. char* filename_wldsd = "wldsd.txt";
  6773. char data_wldsd[70];
  6774. char numb_wldsd[10];
  6775. d_setup();
  6776. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6777. // We don't know where we are! HOME!
  6778. // Push the commands to the front of the message queue in the reverse order!
  6779. // There shall be always enough space reserved for these commands.
  6780. repeatcommand_front(); // repeat G80 with all its parameters
  6781. enquecommand_front_P((PSTR("G28 W0")));
  6782. enquecommand_front_P((PSTR("G1 Z5")));
  6783. return;
  6784. }
  6785. bool custom_message_old = custom_message;
  6786. unsigned int custom_message_type_old = custom_message_type;
  6787. unsigned int custom_message_state_old = custom_message_state;
  6788. custom_message = true;
  6789. custom_message_type = 1;
  6790. custom_message_state = (x_points_num * y_points_num) + 10;
  6791. lcd_update(1);
  6792. mbl.reset();
  6793. babystep_undo();
  6794. card.openFile(filename_wldsd, false);
  6795. current_position[Z_AXIS] = mesh_home_z_search;
  6796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6797. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6798. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  6799. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6800. setup_for_endstop_move(false);
  6801. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6802. SERIAL_PROTOCOL(x_points_num);
  6803. SERIAL_PROTOCOLPGM(",");
  6804. SERIAL_PROTOCOL(y_points_num);
  6805. SERIAL_PROTOCOLPGM("\nZ search height: ");
  6806. SERIAL_PROTOCOL(mesh_home_z_search);
  6807. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  6808. SERIAL_PROTOCOL(x_dimension);
  6809. SERIAL_PROTOCOLPGM(",");
  6810. SERIAL_PROTOCOL(y_dimension);
  6811. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  6812. while (mesh_point != x_points_num * y_points_num) {
  6813. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  6814. iy = mesh_point / x_points_num;
  6815. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  6816. float z0 = 0.f;
  6817. current_position[Z_AXIS] = mesh_home_z_search;
  6818. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  6819. st_synchronize();
  6820. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  6821. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  6822. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  6823. st_synchronize();
  6824. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  6825. break;
  6826. card.closefile();
  6827. }
  6828. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6829. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  6830. //strcat(data_wldsd, numb_wldsd);
  6831. //MYSERIAL.println(data_wldsd);
  6832. //delay(1000);
  6833. //delay(3000);
  6834. //t1 = millis();
  6835. //while (digitalRead(D_DATACLOCK) == LOW) {}
  6836. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  6837. memset(digit, 0, sizeof(digit));
  6838. //cli();
  6839. digitalWrite(D_REQUIRE, LOW);
  6840. for (int i = 0; i<13; i++)
  6841. {
  6842. //t1 = millis();
  6843. for (int j = 0; j < 4; j++)
  6844. {
  6845. while (digitalRead(D_DATACLOCK) == LOW) {}
  6846. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6847. bitWrite(digit[i], j, digitalRead(D_DATA));
  6848. }
  6849. //t_delay = (millis() - t1);
  6850. //SERIAL_PROTOCOLPGM(" ");
  6851. //SERIAL_PROTOCOL_F(t_delay, 5);
  6852. //SERIAL_PROTOCOLPGM(" ");
  6853. }
  6854. //sei();
  6855. digitalWrite(D_REQUIRE, HIGH);
  6856. mergeOutput[0] = '\0';
  6857. output = 0;
  6858. for (int r = 5; r <= 10; r++) //Merge digits
  6859. {
  6860. sprintf(str, "%d", digit[r]);
  6861. strcat(mergeOutput, str);
  6862. }
  6863. output = atof(mergeOutput);
  6864. if (digit[4] == 8) //Handle sign
  6865. {
  6866. output *= -1;
  6867. }
  6868. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6869. {
  6870. output *= 0.1;
  6871. }
  6872. //output = d_ReadData();
  6873. //row[ix] = current_position[Z_AXIS];
  6874. memset(data_wldsd, 0, sizeof(data_wldsd));
  6875. for (int i = 0; i <3; i++) {
  6876. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6877. dtostrf(current_position[i], 8, 5, numb_wldsd);
  6878. strcat(data_wldsd, numb_wldsd);
  6879. strcat(data_wldsd, ";");
  6880. }
  6881. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  6882. dtostrf(output, 8, 5, numb_wldsd);
  6883. strcat(data_wldsd, numb_wldsd);
  6884. //strcat(data_wldsd, ";");
  6885. card.write_command(data_wldsd);
  6886. //row[ix] = d_ReadData();
  6887. row[ix] = output; // current_position[Z_AXIS];
  6888. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  6889. for (int i = 0; i < x_points_num; i++) {
  6890. SERIAL_PROTOCOLPGM(" ");
  6891. SERIAL_PROTOCOL_F(row[i], 5);
  6892. }
  6893. SERIAL_PROTOCOLPGM("\n");
  6894. }
  6895. custom_message_state--;
  6896. mesh_point++;
  6897. lcd_update(1);
  6898. }
  6899. card.closefile();
  6900. }
  6901. #endif
  6902. void temp_compensation_start() {
  6903. custom_message = true;
  6904. custom_message_type = 5;
  6905. custom_message_state = PINDA_HEAT_T + 1;
  6906. lcd_update(2);
  6907. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  6908. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  6909. }
  6910. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  6911. current_position[X_AXIS] = PINDA_PREHEAT_X;
  6912. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  6913. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  6914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  6915. st_synchronize();
  6916. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  6917. for (int i = 0; i < PINDA_HEAT_T; i++) {
  6918. delay_keep_alive(1000);
  6919. custom_message_state = PINDA_HEAT_T - i;
  6920. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  6921. else lcd_update(1);
  6922. }
  6923. custom_message_type = 0;
  6924. custom_message_state = 0;
  6925. custom_message = false;
  6926. }
  6927. void temp_compensation_apply() {
  6928. int i_add;
  6929. int compensation_value;
  6930. int z_shift = 0;
  6931. float z_shift_mm;
  6932. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  6933. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  6934. i_add = (target_temperature_bed - 60) / 10;
  6935. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  6936. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  6937. }else {
  6938. //interpolation
  6939. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  6940. }
  6941. SERIAL_PROTOCOLPGM("\n");
  6942. SERIAL_PROTOCOLPGM("Z shift applied:");
  6943. MYSERIAL.print(z_shift_mm);
  6944. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  6945. st_synchronize();
  6946. plan_set_z_position(current_position[Z_AXIS]);
  6947. }
  6948. else {
  6949. //we have no temp compensation data
  6950. }
  6951. }
  6952. float temp_comp_interpolation(float inp_temperature) {
  6953. //cubic spline interpolation
  6954. int n, i, j, k;
  6955. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  6956. int shift[10];
  6957. int temp_C[10];
  6958. n = 6; //number of measured points
  6959. shift[0] = 0;
  6960. for (i = 0; i < n; i++) {
  6961. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  6962. temp_C[i] = 50 + i * 10; //temperature in C
  6963. #ifdef PINDA_THERMISTOR
  6964. temp_C[i] = 35 + i * 5; //temperature in C
  6965. #else
  6966. temp_C[i] = 50 + i * 10; //temperature in C
  6967. #endif
  6968. x[i] = (float)temp_C[i];
  6969. f[i] = (float)shift[i];
  6970. }
  6971. if (inp_temperature < x[0]) return 0;
  6972. for (i = n - 1; i>0; i--) {
  6973. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  6974. h[i - 1] = x[i] - x[i - 1];
  6975. }
  6976. //*********** formation of h, s , f matrix **************
  6977. for (i = 1; i<n - 1; i++) {
  6978. m[i][i] = 2 * (h[i - 1] + h[i]);
  6979. if (i != 1) {
  6980. m[i][i - 1] = h[i - 1];
  6981. m[i - 1][i] = h[i - 1];
  6982. }
  6983. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  6984. }
  6985. //*********** forward elimination **************
  6986. for (i = 1; i<n - 2; i++) {
  6987. temp = (m[i + 1][i] / m[i][i]);
  6988. for (j = 1; j <= n - 1; j++)
  6989. m[i + 1][j] -= temp*m[i][j];
  6990. }
  6991. //*********** backward substitution *********
  6992. for (i = n - 2; i>0; i--) {
  6993. sum = 0;
  6994. for (j = i; j <= n - 2; j++)
  6995. sum += m[i][j] * s[j];
  6996. s[i] = (m[i][n - 1] - sum) / m[i][i];
  6997. }
  6998. for (i = 0; i<n - 1; i++)
  6999. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7000. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7001. b = s[i] / 2;
  7002. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7003. d = f[i];
  7004. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7005. }
  7006. return sum;
  7007. }
  7008. #ifdef PINDA_THERMISTOR
  7009. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7010. {
  7011. if (!temp_cal_active) return 0;
  7012. if (!calibration_status_pinda()) return 0;
  7013. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7014. }
  7015. #endif //PINDA_THERMISTOR
  7016. void long_pause() //long pause print
  7017. {
  7018. st_synchronize();
  7019. //save currently set parameters to global variables
  7020. saved_feedmultiply = feedmultiply;
  7021. HotendTempBckp = degTargetHotend(active_extruder);
  7022. fanSpeedBckp = fanSpeed;
  7023. start_pause_print = millis();
  7024. //save position
  7025. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7026. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7027. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7028. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7029. //retract
  7030. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7031. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7032. //lift z
  7033. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7034. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7035. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7036. //set nozzle target temperature to 0
  7037. setTargetHotend(0, 0);
  7038. setTargetHotend(0, 1);
  7039. setTargetHotend(0, 2);
  7040. //Move XY to side
  7041. current_position[X_AXIS] = X_PAUSE_POS;
  7042. current_position[Y_AXIS] = Y_PAUSE_POS;
  7043. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7044. // Turn off the print fan
  7045. fanSpeed = 0;
  7046. st_synchronize();
  7047. }
  7048. void serialecho_temperatures() {
  7049. float tt = degHotend(active_extruder);
  7050. SERIAL_PROTOCOLPGM("T:");
  7051. SERIAL_PROTOCOL(tt);
  7052. SERIAL_PROTOCOLPGM(" E:");
  7053. SERIAL_PROTOCOL((int)active_extruder);
  7054. SERIAL_PROTOCOLPGM(" B:");
  7055. SERIAL_PROTOCOL_F(degBed(), 1);
  7056. SERIAL_PROTOCOLLN("");
  7057. }
  7058. extern uint32_t sdpos_atomic;
  7059. #ifdef UVLO_SUPPORT
  7060. void uvlo_()
  7061. {
  7062. unsigned long time_start = millis();
  7063. bool sd_print = card.sdprinting;
  7064. // Conserve power as soon as possible.
  7065. disable_x();
  7066. disable_y();
  7067. disable_e0();
  7068. #ifdef TMC2130
  7069. tmc2130_set_current_h(Z_AXIS, 20);
  7070. tmc2130_set_current_r(Z_AXIS, 20);
  7071. tmc2130_set_current_h(E_AXIS, 20);
  7072. tmc2130_set_current_r(E_AXIS, 20);
  7073. #endif //TMC2130
  7074. // Indicate that the interrupt has been triggered.
  7075. // SERIAL_ECHOLNPGM("UVLO");
  7076. // Read out the current Z motor microstep counter. This will be later used
  7077. // for reaching the zero full step before powering off.
  7078. uint16_t z_microsteps = 0;
  7079. #ifdef TMC2130
  7080. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7081. #endif //TMC2130
  7082. // Calculate the file position, from which to resume this print.
  7083. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7084. {
  7085. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7086. sd_position -= sdlen_planner;
  7087. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7088. sd_position -= sdlen_cmdqueue;
  7089. if (sd_position < 0) sd_position = 0;
  7090. }
  7091. // Backup the feedrate in mm/min.
  7092. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7093. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7094. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7095. // are in action.
  7096. planner_abort_hard();
  7097. // Store the current extruder position.
  7098. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7099. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7100. // Clean the input command queue.
  7101. cmdqueue_reset();
  7102. card.sdprinting = false;
  7103. // card.closefile();
  7104. // Enable stepper driver interrupt to move Z axis.
  7105. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7106. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7107. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7108. sei();
  7109. plan_buffer_line(
  7110. current_position[X_AXIS],
  7111. current_position[Y_AXIS],
  7112. current_position[Z_AXIS],
  7113. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7114. 95, active_extruder);
  7115. st_synchronize();
  7116. disable_e0();
  7117. plan_buffer_line(
  7118. current_position[X_AXIS],
  7119. current_position[Y_AXIS],
  7120. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7121. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7122. 40, active_extruder);
  7123. st_synchronize();
  7124. disable_e0();
  7125. plan_buffer_line(
  7126. current_position[X_AXIS],
  7127. current_position[Y_AXIS],
  7128. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7129. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7130. 40, active_extruder);
  7131. st_synchronize();
  7132. disable_e0();
  7133. disable_z();
  7134. // Move Z up to the next 0th full step.
  7135. // Write the file position.
  7136. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7137. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7138. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7139. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7140. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7141. // Scale the z value to 1u resolution.
  7142. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7143. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7144. }
  7145. // Read out the current Z motor microstep counter. This will be later used
  7146. // for reaching the zero full step before powering off.
  7147. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7148. // Store the current position.
  7149. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7150. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7151. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7152. // Store the current feed rate, temperatures and fan speed.
  7153. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7154. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7155. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7156. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7157. // Finaly store the "power outage" flag.
  7158. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7159. st_synchronize();
  7160. SERIAL_ECHOPGM("stps");
  7161. MYSERIAL.println(tmc2130_rd_MSCNT(Z_AXIS));
  7162. disable_z();
  7163. // Increment power failure counter
  7164. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7165. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7166. SERIAL_ECHOLNPGM("UVLO - end");
  7167. MYSERIAL.println(millis() - time_start);
  7168. #if 0
  7169. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7170. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7172. st_synchronize();
  7173. #endif
  7174. cli();
  7175. volatile unsigned int ppcount = 0;
  7176. SET_OUTPUT(BEEPER);
  7177. WRITE(BEEPER, HIGH);
  7178. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7179. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7180. }
  7181. WRITE(BEEPER, LOW);
  7182. while(1){
  7183. #if 1
  7184. WRITE(BEEPER, LOW);
  7185. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7186. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7187. }
  7188. #endif
  7189. };
  7190. }
  7191. #endif //UVLO_SUPPORT
  7192. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7193. void setup_fan_interrupt() {
  7194. //INT7
  7195. DDRE &= ~(1 << 7); //input pin
  7196. PORTE &= ~(1 << 7); //no internal pull-up
  7197. //start with sensing rising edge
  7198. EICRB &= ~(1 << 6);
  7199. EICRB |= (1 << 7);
  7200. //enable INT7 interrupt
  7201. EIMSK |= (1 << 7);
  7202. }
  7203. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7204. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7205. ISR(INT7_vect) {
  7206. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7207. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7208. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7209. t_fan_rising_edge = millis_nc();
  7210. }
  7211. else { //interrupt was triggered by falling edge
  7212. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7213. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7214. }
  7215. }
  7216. EICRB ^= (1 << 6); //change edge
  7217. }
  7218. #endif
  7219. #ifdef UVLO_SUPPORT
  7220. void setup_uvlo_interrupt() {
  7221. DDRE &= ~(1 << 4); //input pin
  7222. PORTE &= ~(1 << 4); //no internal pull-up
  7223. //sensing falling edge
  7224. EICRB |= (1 << 0);
  7225. EICRB &= ~(1 << 1);
  7226. //enable INT4 interrupt
  7227. EIMSK |= (1 << 4);
  7228. }
  7229. ISR(INT4_vect) {
  7230. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7231. SERIAL_ECHOLNPGM("INT4");
  7232. if (IS_SD_PRINTING) uvlo_();
  7233. }
  7234. void recover_print(uint8_t automatic) {
  7235. char cmd[30];
  7236. lcd_update_enable(true);
  7237. lcd_update(2);
  7238. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7239. recover_machine_state_after_power_panic();
  7240. // Set the target bed and nozzle temperatures.
  7241. sprintf_P(cmd, PSTR("M104 S%d"), target_temperature[active_extruder]);
  7242. enquecommand(cmd);
  7243. sprintf_P(cmd, PSTR("M140 S%d"), target_temperature_bed);
  7244. enquecommand(cmd);
  7245. // Lift the print head, so one may remove the excess priming material.
  7246. if (current_position[Z_AXIS] < 25)
  7247. enquecommand_P(PSTR("G1 Z25 F800"));
  7248. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7249. enquecommand_P(PSTR("G28 X Y"));
  7250. // Set the target bed and nozzle temperatures and wait.
  7251. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7252. enquecommand(cmd);
  7253. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7254. enquecommand(cmd);
  7255. enquecommand_P(PSTR("M83")); //E axis relative mode
  7256. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7257. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7258. if(automatic == 0){
  7259. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7260. }
  7261. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7262. // Mark the power panic status as inactive.
  7263. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7264. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7265. delay_keep_alive(1000);
  7266. }*/
  7267. SERIAL_ECHOPGM("After waiting for temp:");
  7268. SERIAL_ECHOPGM("Current position X_AXIS:");
  7269. MYSERIAL.println(current_position[X_AXIS]);
  7270. SERIAL_ECHOPGM("Current position Y_AXIS:");
  7271. MYSERIAL.println(current_position[Y_AXIS]);
  7272. // Restart the print.
  7273. restore_print_from_eeprom();
  7274. SERIAL_ECHOPGM("current_position[Z_AXIS]:");
  7275. MYSERIAL.print(current_position[Z_AXIS]);
  7276. SERIAL_ECHOPGM("current_position[E_AXIS]:");
  7277. MYSERIAL.print(current_position[E_AXIS]);
  7278. }
  7279. void recover_machine_state_after_power_panic()
  7280. {
  7281. char cmd[30];
  7282. // 1) Recover the logical cordinates at the time of the power panic.
  7283. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7284. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7285. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7286. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7287. // The current position after power panic is moved to the next closest 0th full step.
  7288. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7289. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7290. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7291. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7292. sprintf_P(cmd, PSTR("G92 E"));
  7293. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7294. enquecommand(cmd);
  7295. }
  7296. memcpy(destination, current_position, sizeof(destination));
  7297. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7298. print_world_coordinates();
  7299. // 2) Initialize the logical to physical coordinate system transformation.
  7300. world2machine_initialize();
  7301. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7302. mbl.active = false;
  7303. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7304. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7305. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7306. // Scale the z value to 10u resolution.
  7307. int16_t v;
  7308. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7309. if (v != 0)
  7310. mbl.active = true;
  7311. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7312. }
  7313. if (mbl.active)
  7314. mbl.upsample_3x3();
  7315. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7316. // print_mesh_bed_leveling_table();
  7317. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7318. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7319. babystep_load();
  7320. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7321. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7322. // 6) Power up the motors, mark their positions as known.
  7323. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7324. axis_known_position[X_AXIS] = true; enable_x();
  7325. axis_known_position[Y_AXIS] = true; enable_y();
  7326. axis_known_position[Z_AXIS] = true; enable_z();
  7327. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7328. print_physical_coordinates();
  7329. // 7) Recover the target temperatures.
  7330. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7331. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7332. }
  7333. void restore_print_from_eeprom() {
  7334. float x_rec, y_rec, z_pos;
  7335. int feedrate_rec;
  7336. uint8_t fan_speed_rec;
  7337. char cmd[30];
  7338. char* c;
  7339. char filename[13];
  7340. uint8_t depth = 0;
  7341. char dir_name[9];
  7342. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7343. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7344. SERIAL_ECHOPGM("Feedrate:");
  7345. MYSERIAL.println(feedrate_rec);
  7346. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7347. MYSERIAL.println(int(depth));
  7348. for (int i = 0; i < depth; i++) {
  7349. for (int j = 0; j < 8; j++) {
  7350. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7351. }
  7352. dir_name[8] = '\0';
  7353. MYSERIAL.println(dir_name);
  7354. card.chdir(dir_name);
  7355. }
  7356. for (int i = 0; i < 8; i++) {
  7357. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7358. }
  7359. filename[8] = '\0';
  7360. MYSERIAL.print(filename);
  7361. strcat_P(filename, PSTR(".gco"));
  7362. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7363. for (c = &cmd[4]; *c; c++)
  7364. *c = tolower(*c);
  7365. enquecommand(cmd);
  7366. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7367. SERIAL_ECHOPGM("Position read from eeprom:");
  7368. MYSERIAL.println(position);
  7369. // E axis relative mode.
  7370. enquecommand_P(PSTR("M83"));
  7371. // Move to the XY print position in logical coordinates, where the print has been killed.
  7372. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7373. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7374. strcat_P(cmd, PSTR(" F2000"));
  7375. enquecommand(cmd);
  7376. // Move the Z axis down to the print, in logical coordinates.
  7377. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7378. enquecommand(cmd);
  7379. // Unretract.
  7380. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7381. // Set the feedrate saved at the power panic.
  7382. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7383. enquecommand(cmd);
  7384. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7385. {
  7386. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7387. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7388. }
  7389. // Set the fan speed saved at the power panic.
  7390. strcpy_P(cmd, PSTR("M106 S"));
  7391. strcat(cmd, itostr3(int(fan_speed_rec)));
  7392. enquecommand(cmd);
  7393. // Set a position in the file.
  7394. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7395. enquecommand(cmd);
  7396. // Start SD print.
  7397. enquecommand_P(PSTR("M24"));
  7398. }
  7399. #endif //UVLO_SUPPORT
  7400. ////////////////////////////////////////////////////////////////////////////////
  7401. // save/restore printing
  7402. void stop_and_save_print_to_ram(float z_move, float e_move)
  7403. {
  7404. if (saved_printing) return;
  7405. cli();
  7406. unsigned char nplanner_blocks = number_of_blocks();
  7407. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7408. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7409. saved_sdpos -= sdlen_planner;
  7410. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7411. saved_sdpos -= sdlen_cmdqueue;
  7412. #if 0
  7413. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7414. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7415. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7416. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7417. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7418. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7419. SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7420. {
  7421. card.setIndex(saved_sdpos);
  7422. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7423. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7424. MYSERIAL.print(char(card.get()));
  7425. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7426. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7427. MYSERIAL.print(char(card.get()));
  7428. SERIAL_ECHOLNPGM("End of command buffer");
  7429. }
  7430. {
  7431. // Print the content of the planner buffer, line by line:
  7432. card.setIndex(saved_sdpos);
  7433. int8_t iline = 0;
  7434. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7435. SERIAL_ECHOPGM("Planner line (from file): ");
  7436. MYSERIAL.print(int(iline), DEC);
  7437. SERIAL_ECHOPGM(", length: ");
  7438. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7439. SERIAL_ECHOPGM(", steps: (");
  7440. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7441. SERIAL_ECHOPGM(",");
  7442. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7443. SERIAL_ECHOPGM(",");
  7444. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7445. SERIAL_ECHOPGM(",");
  7446. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7447. SERIAL_ECHOPGM("), events: ");
  7448. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7449. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7450. MYSERIAL.print(char(card.get()));
  7451. }
  7452. }
  7453. {
  7454. // Print the content of the command buffer, line by line:
  7455. int8_t iline = 0;
  7456. union {
  7457. struct {
  7458. char lo;
  7459. char hi;
  7460. } lohi;
  7461. uint16_t value;
  7462. } sdlen_single;
  7463. int _bufindr = bufindr;
  7464. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7465. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7466. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7467. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7468. }
  7469. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7470. MYSERIAL.print(int(iline), DEC);
  7471. SERIAL_ECHOPGM(", type: ");
  7472. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7473. SERIAL_ECHOPGM(", len: ");
  7474. MYSERIAL.println(sdlen_single.value, DEC);
  7475. // Print the content of the buffer line.
  7476. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7477. SERIAL_ECHOPGM("Buffer line (from file): ");
  7478. MYSERIAL.print(int(iline), DEC);
  7479. MYSERIAL.println(int(iline), DEC);
  7480. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7481. MYSERIAL.print(char(card.get()));
  7482. if (-- _buflen == 0)
  7483. break;
  7484. // First skip the current command ID and iterate up to the end of the string.
  7485. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7486. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7487. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7488. // If the end of the buffer was empty,
  7489. if (_bufindr == sizeof(cmdbuffer)) {
  7490. // skip to the start and find the nonzero command.
  7491. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7492. }
  7493. }
  7494. }
  7495. #endif
  7496. #if 0
  7497. saved_feedrate2 = feedrate; //save feedrate
  7498. #else
  7499. // Try to deduce the feedrate from the first block of the planner.
  7500. // Speed is in mm/min.
  7501. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7502. #endif
  7503. planner_abort_hard(); //abort printing
  7504. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7505. saved_active_extruder = active_extruder; //save active_extruder
  7506. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7507. cmdqueue_reset(); //empty cmdqueue
  7508. card.sdprinting = false;
  7509. // card.closefile();
  7510. saved_printing = true;
  7511. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7512. st_reset_timer();
  7513. sei();
  7514. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7515. #if 1
  7516. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7517. char buf[48];
  7518. strcpy_P(buf, PSTR("G1 Z"));
  7519. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7520. strcat_P(buf, PSTR(" E"));
  7521. // Relative extrusion
  7522. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7523. strcat_P(buf, PSTR(" F"));
  7524. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7525. // At this point the command queue is empty.
  7526. enquecommand(buf, false);
  7527. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7528. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7529. repeatcommand_front();
  7530. #else
  7531. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7532. st_synchronize(); //wait moving
  7533. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7534. memcpy(destination, current_position, sizeof(destination));
  7535. #endif
  7536. }
  7537. }
  7538. void restore_print_from_ram_and_continue(float e_move)
  7539. {
  7540. if (!saved_printing) return;
  7541. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7542. // current_position[axis] = st_get_position_mm(axis);
  7543. active_extruder = saved_active_extruder; //restore active_extruder
  7544. feedrate = saved_feedrate2; //restore feedrate
  7545. float e = saved_pos[E_AXIS] - e_move;
  7546. plan_set_e_position(e);
  7547. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], homing_feedrate[Z_AXIS]/13, active_extruder);
  7548. st_synchronize();
  7549. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7550. memcpy(destination, current_position, sizeof(destination));
  7551. card.setIndex(saved_sdpos);
  7552. sdpos_atomic = saved_sdpos;
  7553. card.sdprinting = true;
  7554. saved_printing = false;
  7555. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7556. }
  7557. void print_world_coordinates()
  7558. {
  7559. SERIAL_ECHOPGM("world coordinates: (");
  7560. MYSERIAL.print(current_position[X_AXIS], 3);
  7561. SERIAL_ECHOPGM(", ");
  7562. MYSERIAL.print(current_position[Y_AXIS], 3);
  7563. SERIAL_ECHOPGM(", ");
  7564. MYSERIAL.print(current_position[Z_AXIS], 3);
  7565. SERIAL_ECHOLNPGM(")");
  7566. }
  7567. void print_physical_coordinates()
  7568. {
  7569. SERIAL_ECHOPGM("physical coordinates: (");
  7570. MYSERIAL.print(st_get_position_mm(X_AXIS), 3);
  7571. SERIAL_ECHOPGM(", ");
  7572. MYSERIAL.print(st_get_position_mm(Y_AXIS), 3);
  7573. SERIAL_ECHOPGM(", ");
  7574. MYSERIAL.print(st_get_position_mm(Z_AXIS), 3);
  7575. SERIAL_ECHOLNPGM(")");
  7576. }
  7577. void print_mesh_bed_leveling_table()
  7578. {
  7579. SERIAL_ECHOPGM("mesh bed leveling: ");
  7580. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7581. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7582. MYSERIAL.print(mbl.z_values[y][x], 3);
  7583. SERIAL_ECHOPGM(" ");
  7584. }
  7585. SERIAL_ECHOLNPGM("");
  7586. }
  7587. #define FIL_LOAD_LENGTH 60