Marlin_main.cpp 350 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "planner.h"
  61. #include "stepper.h"
  62. #include "temperature.h"
  63. #include "motion_control.h"
  64. #include "cardreader.h"
  65. #include "ConfigurationStore.h"
  66. #include "language.h"
  67. #include "pins_arduino.h"
  68. #include "math.h"
  69. #include "util.h"
  70. #include "Timer.h"
  71. #include <avr/wdt.h>
  72. #include <avr/pgmspace.h>
  73. #include "Dcodes.h"
  74. #include "AutoDeplete.h"
  75. #ifdef SWSPI
  76. #include "swspi.h"
  77. #endif //SWSPI
  78. #include "spi.h"
  79. #ifdef SWI2C
  80. #include "swi2c.h"
  81. #endif //SWI2C
  82. #ifdef FILAMENT_SENSOR
  83. #include "fsensor.h"
  84. #endif //FILAMENT_SENSOR
  85. #ifdef TMC2130
  86. #include "tmc2130.h"
  87. #endif //TMC2130
  88. #ifdef W25X20CL
  89. #include "w25x20cl.h"
  90. #include "optiboot_w25x20cl.h"
  91. #endif //W25X20CL
  92. #ifdef BLINKM
  93. #include "BlinkM.h"
  94. #include "Wire.h"
  95. #endif
  96. #ifdef ULTRALCD
  97. #include "ultralcd.h"
  98. #endif
  99. #if NUM_SERVOS > 0
  100. #include "Servo.h"
  101. #endif
  102. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  103. #include <SPI.h>
  104. #endif
  105. #include "mmu.h"
  106. #define VERSION_STRING "1.0.2"
  107. #include "ultralcd.h"
  108. #include "sound.h"
  109. #include "cmdqueue.h"
  110. #include "io_atmega2560.h"
  111. // Macros for bit masks
  112. #define BIT(b) (1<<(b))
  113. #define TEST(n,b) (((n)&BIT(b))!=0)
  114. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  115. //Macro for print fan speed
  116. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  117. //filament types
  118. #define FILAMENT_DEFAULT 0
  119. #define FILAMENT_FLEX 1
  120. #define FILAMENT_PVA 2
  121. #define FILAMENT_UNDEFINED 255
  122. //Stepper Movement Variables
  123. //===========================================================================
  124. //=============================imported variables============================
  125. //===========================================================================
  126. //===========================================================================
  127. //=============================public variables=============================
  128. //===========================================================================
  129. #ifdef SDSUPPORT
  130. CardReader card;
  131. #endif
  132. unsigned long PingTime = _millis();
  133. unsigned long NcTime;
  134. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  135. //used for PINDA temp calibration and pause print
  136. #define DEFAULT_RETRACTION 1
  137. #define DEFAULT_RETRACTION_MM 4 //MM
  138. float default_retraction = DEFAULT_RETRACTION;
  139. float homing_feedrate[] = HOMING_FEEDRATE;
  140. // Currently only the extruder axis may be switched to a relative mode.
  141. // Other axes are always absolute or relative based on the common relative_mode flag.
  142. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  143. int feedmultiply=100; //100->1 200->2
  144. int extrudemultiply=100; //100->1 200->2
  145. int extruder_multiply[EXTRUDERS] = {100
  146. #if EXTRUDERS > 1
  147. , 100
  148. #if EXTRUDERS > 2
  149. , 100
  150. #endif
  151. #endif
  152. };
  153. int bowden_length[4] = {385, 385, 385, 385};
  154. bool is_usb_printing = false;
  155. bool homing_flag = false;
  156. bool temp_cal_active = false;
  157. unsigned long kicktime = _millis()+100000;
  158. unsigned int usb_printing_counter;
  159. int8_t lcd_change_fil_state = 0;
  160. unsigned long pause_time = 0;
  161. unsigned long start_pause_print = _millis();
  162. unsigned long t_fan_rising_edge = _millis();
  163. LongTimer safetyTimer;
  164. static LongTimer crashDetTimer;
  165. //unsigned long load_filament_time;
  166. bool mesh_bed_leveling_flag = false;
  167. bool mesh_bed_run_from_menu = false;
  168. bool prusa_sd_card_upload = false;
  169. unsigned int status_number = 0;
  170. unsigned long total_filament_used;
  171. unsigned int heating_status;
  172. unsigned int heating_status_counter;
  173. bool loading_flag = false;
  174. char snmm_filaments_used = 0;
  175. bool fan_state[2];
  176. int fan_edge_counter[2];
  177. int fan_speed[2];
  178. char dir_names[3][9];
  179. bool sortAlpha = false;
  180. float extruder_multiplier[EXTRUDERS] = {1.0
  181. #if EXTRUDERS > 1
  182. , 1.0
  183. #if EXTRUDERS > 2
  184. , 1.0
  185. #endif
  186. #endif
  187. };
  188. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  189. //shortcuts for more readable code
  190. #define _x current_position[X_AXIS]
  191. #define _y current_position[Y_AXIS]
  192. #define _z current_position[Z_AXIS]
  193. #define _e current_position[E_AXIS]
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = {false, false, false};
  197. // Extruder offset
  198. #if EXTRUDERS > 1
  199. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  200. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  201. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  202. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  203. #endif
  204. };
  205. #endif
  206. uint8_t active_extruder = 0;
  207. int fanSpeed=0;
  208. #ifdef FWRETRACT
  209. bool retracted[EXTRUDERS]={false
  210. #if EXTRUDERS > 1
  211. , false
  212. #if EXTRUDERS > 2
  213. , false
  214. #endif
  215. #endif
  216. };
  217. bool retracted_swap[EXTRUDERS]={false
  218. #if EXTRUDERS > 1
  219. , false
  220. #if EXTRUDERS > 2
  221. , false
  222. #endif
  223. #endif
  224. };
  225. float retract_length_swap = RETRACT_LENGTH_SWAP;
  226. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  227. #endif
  228. #ifdef PS_DEFAULT_OFF
  229. bool powersupply = false;
  230. #else
  231. bool powersupply = true;
  232. #endif
  233. bool cancel_heatup = false ;
  234. int8_t busy_state = NOT_BUSY;
  235. static long prev_busy_signal_ms = -1;
  236. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  237. const char errormagic[] PROGMEM = "Error:";
  238. const char echomagic[] PROGMEM = "echo:";
  239. bool no_response = false;
  240. uint8_t important_status;
  241. uint8_t saved_filament_type;
  242. #define SAVED_TARGET_UNSET (X_MIN_POS-1)
  243. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  244. // save/restore printing in case that mmu was not responding
  245. bool mmu_print_saved = false;
  246. // storing estimated time to end of print counted by slicer
  247. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  248. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  249. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  250. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  251. //===========================================================================
  252. //=============================Private Variables=============================
  253. //===========================================================================
  254. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  255. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  256. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  257. // For tracing an arc
  258. static float offset[3] = {0.0, 0.0, 0.0};
  259. // Current feedrate
  260. float feedrate = 1500.0;
  261. // Feedrate for the next move
  262. static float next_feedrate;
  263. // Original feedrate saved during homing moves
  264. static float saved_feedrate;
  265. // Determines Absolute or Relative Coordinates.
  266. // Also there is bool axis_relative_modes[] per axis flag.
  267. static bool relative_mode = false;
  268. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  269. //static float tt = 0;
  270. //static float bt = 0;
  271. //Inactivity shutdown variables
  272. static unsigned long previous_millis_cmd = 0;
  273. unsigned long max_inactive_time = 0;
  274. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  275. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  276. unsigned long starttime=0;
  277. unsigned long stoptime=0;
  278. unsigned long _usb_timer = 0;
  279. bool Stopped=false;
  280. #if NUM_SERVOS > 0
  281. Servo servos[NUM_SERVOS];
  282. #endif
  283. bool target_direction;
  284. //Insert variables if CHDK is defined
  285. #ifdef CHDK
  286. unsigned long chdkHigh = 0;
  287. boolean chdkActive = false;
  288. #endif
  289. //! @name RAM save/restore printing
  290. //! @{
  291. bool saved_printing = false; //!< Print is paused and saved in RAM
  292. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  293. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  294. static float saved_pos[4] = { 0, 0, 0, 0 };
  295. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  296. static int saved_feedmultiply2 = 0;
  297. static uint8_t saved_active_extruder = 0;
  298. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  299. static bool saved_extruder_relative_mode = false;
  300. static int saved_fanSpeed = 0; //!< Print fan speed
  301. //! @}
  302. static int saved_feedmultiply_mm = 100;
  303. //===========================================================================
  304. //=============================Routines======================================
  305. //===========================================================================
  306. static void get_arc_coordinates();
  307. static bool setTargetedHotend(int code, uint8_t &extruder);
  308. static void print_time_remaining_init();
  309. static void wait_for_heater(long codenum, uint8_t extruder);
  310. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  311. static void temp_compensation_start();
  312. static void temp_compensation_apply();
  313. uint16_t gcode_in_progress = 0;
  314. uint16_t mcode_in_progress = 0;
  315. void serial_echopair_P(const char *s_P, float v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. void serial_echopair_P(const char *s_P, double v)
  318. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  319. void serial_echopair_P(const char *s_P, unsigned long v)
  320. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  321. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  322. {
  323. #if 0
  324. char ch=pgm_read_byte(str);
  325. while(ch)
  326. {
  327. MYSERIAL.write(ch);
  328. ch=pgm_read_byte(++str);
  329. }
  330. #else
  331. // hmm, same size as the above version, the compiler did a good job optimizing the above
  332. while( uint8_t ch = pgm_read_byte(str) ){
  333. MYSERIAL.write((char)ch);
  334. ++str;
  335. }
  336. #endif
  337. }
  338. #ifdef SDSUPPORT
  339. #include "SdFatUtil.h"
  340. int freeMemory() { return SdFatUtil::FreeRam(); }
  341. #else
  342. extern "C" {
  343. extern unsigned int __bss_end;
  344. extern unsigned int __heap_start;
  345. extern void *__brkval;
  346. int freeMemory() {
  347. int free_memory;
  348. if ((int)__brkval == 0)
  349. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  350. else
  351. free_memory = ((int)&free_memory) - ((int)__brkval);
  352. return free_memory;
  353. }
  354. }
  355. #endif //!SDSUPPORT
  356. void setup_killpin()
  357. {
  358. #if defined(KILL_PIN) && KILL_PIN > -1
  359. SET_INPUT(KILL_PIN);
  360. WRITE(KILL_PIN,HIGH);
  361. #endif
  362. }
  363. // Set home pin
  364. void setup_homepin(void)
  365. {
  366. #if defined(HOME_PIN) && HOME_PIN > -1
  367. SET_INPUT(HOME_PIN);
  368. WRITE(HOME_PIN,HIGH);
  369. #endif
  370. }
  371. void setup_photpin()
  372. {
  373. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  374. SET_OUTPUT(PHOTOGRAPH_PIN);
  375. WRITE(PHOTOGRAPH_PIN, LOW);
  376. #endif
  377. }
  378. void setup_powerhold()
  379. {
  380. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  381. SET_OUTPUT(SUICIDE_PIN);
  382. WRITE(SUICIDE_PIN, HIGH);
  383. #endif
  384. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  385. SET_OUTPUT(PS_ON_PIN);
  386. #if defined(PS_DEFAULT_OFF)
  387. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  388. #else
  389. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  390. #endif
  391. #endif
  392. }
  393. void suicide()
  394. {
  395. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  396. SET_OUTPUT(SUICIDE_PIN);
  397. WRITE(SUICIDE_PIN, LOW);
  398. #endif
  399. }
  400. void servo_init()
  401. {
  402. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  403. servos[0].attach(SERVO0_PIN);
  404. #endif
  405. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  406. servos[1].attach(SERVO1_PIN);
  407. #endif
  408. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  409. servos[2].attach(SERVO2_PIN);
  410. #endif
  411. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  412. servos[3].attach(SERVO3_PIN);
  413. #endif
  414. #if (NUM_SERVOS >= 5)
  415. #error "TODO: enter initalisation code for more servos"
  416. #endif
  417. }
  418. bool fans_check_enabled = true;
  419. #ifdef TMC2130
  420. void crashdet_stop_and_save_print()
  421. {
  422. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  423. }
  424. void crashdet_restore_print_and_continue()
  425. {
  426. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  427. // babystep_apply();
  428. }
  429. void crashdet_stop_and_save_print2()
  430. {
  431. cli();
  432. planner_abort_hard(); //abort printing
  433. cmdqueue_reset(); //empty cmdqueue
  434. card.sdprinting = false;
  435. card.closefile();
  436. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  437. st_reset_timer();
  438. sei();
  439. }
  440. void crashdet_detected(uint8_t mask)
  441. {
  442. st_synchronize();
  443. static uint8_t crashDet_counter = 0;
  444. bool automatic_recovery_after_crash = true;
  445. if (crashDet_counter++ == 0) {
  446. crashDetTimer.start();
  447. }
  448. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  449. crashDetTimer.stop();
  450. crashDet_counter = 0;
  451. }
  452. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  453. automatic_recovery_after_crash = false;
  454. crashDetTimer.stop();
  455. crashDet_counter = 0;
  456. }
  457. else {
  458. crashDetTimer.start();
  459. }
  460. lcd_update_enable(true);
  461. lcd_clear();
  462. lcd_update(2);
  463. if (mask & X_AXIS_MASK)
  464. {
  465. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  466. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  467. }
  468. if (mask & Y_AXIS_MASK)
  469. {
  470. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  471. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  472. }
  473. lcd_update_enable(true);
  474. lcd_update(2);
  475. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  476. gcode_G28(true, true, false); //home X and Y
  477. st_synchronize();
  478. if (automatic_recovery_after_crash) {
  479. enquecommand_P(PSTR("CRASH_RECOVER"));
  480. }else{
  481. setTargetHotend(0, active_extruder);
  482. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  483. lcd_update_enable(true);
  484. if (yesno)
  485. {
  486. enquecommand_P(PSTR("CRASH_RECOVER"));
  487. }
  488. else
  489. {
  490. enquecommand_P(PSTR("CRASH_CANCEL"));
  491. }
  492. }
  493. }
  494. void crashdet_recover()
  495. {
  496. crashdet_restore_print_and_continue();
  497. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  498. }
  499. void crashdet_cancel()
  500. {
  501. saved_printing = false;
  502. tmc2130_sg_stop_on_crash = true;
  503. if (saved_printing_type == PRINTING_TYPE_SD) {
  504. lcd_print_stop();
  505. }else if(saved_printing_type == PRINTING_TYPE_USB){
  506. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  507. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  508. }
  509. }
  510. #endif //TMC2130
  511. void failstats_reset_print()
  512. {
  513. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  514. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  515. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  516. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  517. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  518. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  519. }
  520. #ifdef MESH_BED_LEVELING
  521. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  522. #endif
  523. // Factory reset function
  524. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  525. // Level input parameter sets depth of reset
  526. int er_progress = 0;
  527. static void factory_reset(char level)
  528. {
  529. lcd_clear();
  530. switch (level) {
  531. // Level 0: Language reset
  532. case 0:
  533. Sound_MakeCustom(100,0,false);
  534. lang_reset();
  535. break;
  536. //Level 1: Reset statistics
  537. case 1:
  538. Sound_MakeCustom(100,0,false);
  539. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  540. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  553. lcd_menu_statistics();
  554. break;
  555. // Level 2: Prepare for shipping
  556. case 2:
  557. //lcd_puts_P(PSTR("Factory RESET"));
  558. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  559. // Force language selection at the next boot up.
  560. lang_reset();
  561. // Force the "Follow calibration flow" message at the next boot up.
  562. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  563. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  564. farm_no = 0;
  565. farm_mode = false;
  566. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  567. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  568. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  569. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  578. #ifdef FILAMENT_SENSOR
  579. fsensor_enable();
  580. fsensor_autoload_set(true);
  581. #endif //FILAMENT_SENSOR
  582. Sound_MakeCustom(100,0,false);
  583. //_delay_ms(2000);
  584. break;
  585. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  586. case 3:
  587. lcd_puts_P(PSTR("Factory RESET"));
  588. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  589. Sound_MakeCustom(100,0,false);
  590. er_progress = 0;
  591. lcd_puts_at_P(3, 3, PSTR(" "));
  592. lcd_set_cursor(3, 3);
  593. lcd_print(er_progress);
  594. // Erase EEPROM
  595. for (int i = 0; i < 4096; i++) {
  596. eeprom_update_byte((uint8_t*)i, 0xFF);
  597. if (i % 41 == 0) {
  598. er_progress++;
  599. lcd_puts_at_P(3, 3, PSTR(" "));
  600. lcd_set_cursor(3, 3);
  601. lcd_print(er_progress);
  602. lcd_puts_P(PSTR("%"));
  603. }
  604. }
  605. break;
  606. case 4:
  607. bowden_menu();
  608. break;
  609. default:
  610. break;
  611. }
  612. }
  613. extern "C" {
  614. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  615. }
  616. int uart_putchar(char c, FILE *)
  617. {
  618. MYSERIAL.write(c);
  619. return 0;
  620. }
  621. void lcd_splash()
  622. {
  623. lcd_clear(); // clears display and homes screen
  624. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  625. }
  626. void factory_reset()
  627. {
  628. KEEPALIVE_STATE(PAUSED_FOR_USER);
  629. if (!READ(BTN_ENC))
  630. {
  631. _delay_ms(1000);
  632. if (!READ(BTN_ENC))
  633. {
  634. lcd_clear();
  635. lcd_puts_P(PSTR("Factory RESET"));
  636. SET_OUTPUT(BEEPER);
  637. if(eSoundMode!=e_SOUND_MODE_SILENT)
  638. WRITE(BEEPER, HIGH);
  639. while (!READ(BTN_ENC));
  640. WRITE(BEEPER, LOW);
  641. _delay_ms(2000);
  642. char level = reset_menu();
  643. factory_reset(level);
  644. switch (level) {
  645. case 0: _delay_ms(0); break;
  646. case 1: _delay_ms(0); break;
  647. case 2: _delay_ms(0); break;
  648. case 3: _delay_ms(0); break;
  649. }
  650. }
  651. }
  652. KEEPALIVE_STATE(IN_HANDLER);
  653. }
  654. void show_fw_version_warnings() {
  655. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  656. switch (FW_DEV_VERSION) {
  657. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  658. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  659. case(FW_VERSION_DEVEL):
  660. case(FW_VERSION_DEBUG):
  661. lcd_update_enable(false);
  662. lcd_clear();
  663. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  664. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  665. #else
  666. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  667. #endif
  668. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  669. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  670. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  671. lcd_wait_for_click();
  672. break;
  673. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  674. }
  675. lcd_update_enable(true);
  676. }
  677. //! @brief try to check if firmware is on right type of printer
  678. static void check_if_fw_is_on_right_printer(){
  679. #ifdef FILAMENT_SENSOR
  680. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  681. #ifdef IR_SENSOR
  682. swi2c_init();
  683. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  684. if (pat9125_detected){
  685. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  686. #endif //IR_SENSOR
  687. #ifdef PAT9125
  688. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  689. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  690. if (ir_detected){
  691. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  692. #endif //PAT9125
  693. }
  694. #endif //FILAMENT_SENSOR
  695. }
  696. uint8_t check_printer_version()
  697. {
  698. uint8_t version_changed = 0;
  699. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  700. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  701. if (printer_type != PRINTER_TYPE) {
  702. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  703. else version_changed |= 0b10;
  704. }
  705. if (motherboard != MOTHERBOARD) {
  706. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  707. else version_changed |= 0b01;
  708. }
  709. return version_changed;
  710. }
  711. #ifdef BOOTAPP
  712. #include "bootapp.h" //bootloader support
  713. #endif //BOOTAPP
  714. #if (LANG_MODE != 0) //secondary language support
  715. #ifdef W25X20CL
  716. // language update from external flash
  717. #define LANGBOOT_BLOCKSIZE 0x1000u
  718. #define LANGBOOT_RAMBUFFER 0x0800
  719. void update_sec_lang_from_external_flash()
  720. {
  721. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  722. {
  723. uint8_t lang = boot_reserved >> 4;
  724. uint8_t state = boot_reserved & 0xf;
  725. lang_table_header_t header;
  726. uint32_t src_addr;
  727. if (lang_get_header(lang, &header, &src_addr))
  728. {
  729. lcd_puts_at_P(1,3,PSTR("Language update."));
  730. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  731. _delay(100);
  732. boot_reserved = (state + 1) | (lang << 4);
  733. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  734. {
  735. cli();
  736. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  737. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  738. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  739. if (state == 0)
  740. {
  741. //TODO - check header integrity
  742. }
  743. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  744. }
  745. else
  746. {
  747. //TODO - check sec lang data integrity
  748. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  749. }
  750. }
  751. }
  752. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  753. }
  754. #ifdef DEBUG_W25X20CL
  755. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  756. {
  757. lang_table_header_t header;
  758. uint8_t count = 0;
  759. uint32_t addr = 0x00000;
  760. while (1)
  761. {
  762. printf_P(_n("LANGTABLE%d:"), count);
  763. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  764. if (header.magic != LANG_MAGIC)
  765. {
  766. printf_P(_n("NG!\n"));
  767. break;
  768. }
  769. printf_P(_n("OK\n"));
  770. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  771. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  772. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  773. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  774. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  775. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  776. addr += header.size;
  777. codes[count] = header.code;
  778. count ++;
  779. }
  780. return count;
  781. }
  782. void list_sec_lang_from_external_flash()
  783. {
  784. uint16_t codes[8];
  785. uint8_t count = lang_xflash_enum_codes(codes);
  786. printf_P(_n("XFlash lang count = %hhd\n"), count);
  787. }
  788. #endif //DEBUG_W25X20CL
  789. #endif //W25X20CL
  790. #endif //(LANG_MODE != 0)
  791. static void w25x20cl_err_msg()
  792. {
  793. lcd_clear();
  794. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  795. }
  796. // "Setup" function is called by the Arduino framework on startup.
  797. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  798. // are initialized by the main() routine provided by the Arduino framework.
  799. void setup()
  800. {
  801. mmu_init();
  802. ultralcd_init();
  803. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  804. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  805. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  806. spi_init();
  807. lcd_splash();
  808. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  809. #ifdef W25X20CL
  810. bool w25x20cl_success = w25x20cl_init();
  811. if (w25x20cl_success)
  812. {
  813. optiboot_w25x20cl_enter();
  814. #if (LANG_MODE != 0) //secondary language support
  815. update_sec_lang_from_external_flash();
  816. #endif //(LANG_MODE != 0)
  817. }
  818. else
  819. {
  820. w25x20cl_err_msg();
  821. }
  822. #else
  823. const bool w25x20cl_success = true;
  824. #endif //W25X20CL
  825. setup_killpin();
  826. setup_powerhold();
  827. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  828. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  829. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  830. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  831. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  832. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  833. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  834. if (farm_mode)
  835. {
  836. no_response = true; //we need confirmation by recieving PRUSA thx
  837. important_status = 8;
  838. prusa_statistics(8);
  839. selectedSerialPort = 1;
  840. #ifdef TMC2130
  841. //increased extruder current (PFW363)
  842. tmc2130_current_h[E_AXIS] = 36;
  843. tmc2130_current_r[E_AXIS] = 36;
  844. #endif //TMC2130
  845. #ifdef FILAMENT_SENSOR
  846. //disabled filament autoload (PFW360)
  847. fsensor_autoload_set(false);
  848. #endif //FILAMENT_SENSOR
  849. // ~ FanCheck -> on
  850. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  851. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  852. }
  853. MYSERIAL.begin(BAUDRATE);
  854. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  855. #ifndef W25X20CL
  856. SERIAL_PROTOCOLLNPGM("start");
  857. #endif //W25X20CL
  858. stdout = uartout;
  859. SERIAL_ECHO_START;
  860. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  861. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  862. #ifdef DEBUG_SEC_LANG
  863. lang_table_header_t header;
  864. uint32_t src_addr = 0x00000;
  865. if (lang_get_header(1, &header, &src_addr))
  866. {
  867. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  868. #define LT_PRINT_TEST 2
  869. // flash usage
  870. // total p.test
  871. //0 252718 t+c text code
  872. //1 253142 424 170 254
  873. //2 253040 322 164 158
  874. //3 253248 530 135 395
  875. #if (LT_PRINT_TEST==1) //not optimized printf
  876. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  877. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  878. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  879. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  880. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  881. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  882. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  883. #elif (LT_PRINT_TEST==2) //optimized printf
  884. printf_P(
  885. _n(
  886. " _src_addr = 0x%08lx\n"
  887. " _lt_magic = 0x%08lx %S\n"
  888. " _lt_size = 0x%04x (%d)\n"
  889. " _lt_count = 0x%04x (%d)\n"
  890. " _lt_chsum = 0x%04x\n"
  891. " _lt_code = 0x%04x (%c%c)\n"
  892. " _lt_resv1 = 0x%08lx\n"
  893. ),
  894. src_addr,
  895. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  896. header.size, header.size,
  897. header.count, header.count,
  898. header.checksum,
  899. header.code, header.code >> 8, header.code & 0xff,
  900. header.signature
  901. );
  902. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  903. MYSERIAL.print(" _src_addr = 0x");
  904. MYSERIAL.println(src_addr, 16);
  905. MYSERIAL.print(" _lt_magic = 0x");
  906. MYSERIAL.print(header.magic, 16);
  907. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  908. MYSERIAL.print(" _lt_size = 0x");
  909. MYSERIAL.print(header.size, 16);
  910. MYSERIAL.print(" (");
  911. MYSERIAL.print(header.size, 10);
  912. MYSERIAL.println(")");
  913. MYSERIAL.print(" _lt_count = 0x");
  914. MYSERIAL.print(header.count, 16);
  915. MYSERIAL.print(" (");
  916. MYSERIAL.print(header.count, 10);
  917. MYSERIAL.println(")");
  918. MYSERIAL.print(" _lt_chsum = 0x");
  919. MYSERIAL.println(header.checksum, 16);
  920. MYSERIAL.print(" _lt_code = 0x");
  921. MYSERIAL.print(header.code, 16);
  922. MYSERIAL.print(" (");
  923. MYSERIAL.print((char)(header.code >> 8), 0);
  924. MYSERIAL.print((char)(header.code & 0xff), 0);
  925. MYSERIAL.println(")");
  926. MYSERIAL.print(" _lt_resv1 = 0x");
  927. MYSERIAL.println(header.signature, 16);
  928. #endif //(LT_PRINT_TEST==)
  929. #undef LT_PRINT_TEST
  930. #if 0
  931. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  932. for (uint16_t i = 0; i < 1024; i++)
  933. {
  934. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  935. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  936. if ((i % 16) == 15) putchar('\n');
  937. }
  938. #endif
  939. uint16_t sum = 0;
  940. for (uint16_t i = 0; i < header.size; i++)
  941. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  942. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  943. sum -= header.checksum; //subtract checksum
  944. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  945. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  946. if (sum == header.checksum)
  947. printf_P(_n("Checksum OK\n"), sum);
  948. else
  949. printf_P(_n("Checksum NG\n"), sum);
  950. }
  951. else
  952. printf_P(_n("lang_get_header failed!\n"));
  953. #if 0
  954. for (uint16_t i = 0; i < 1024*10; i++)
  955. {
  956. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  957. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  958. if ((i % 16) == 15) putchar('\n');
  959. }
  960. #endif
  961. #if 0
  962. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  963. for (int i = 0; i < 4096; ++i) {
  964. int b = eeprom_read_byte((unsigned char*)i);
  965. if (b != 255) {
  966. SERIAL_ECHO(i);
  967. SERIAL_ECHO(":");
  968. SERIAL_ECHO(b);
  969. SERIAL_ECHOLN("");
  970. }
  971. }
  972. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  973. #endif
  974. #endif //DEBUG_SEC_LANG
  975. // Check startup - does nothing if bootloader sets MCUSR to 0
  976. byte mcu = MCUSR;
  977. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  978. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  979. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  980. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  981. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  982. if (mcu & 1) puts_P(MSG_POWERUP);
  983. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  984. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  985. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  986. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  987. MCUSR = 0;
  988. //SERIAL_ECHORPGM(MSG_MARLIN);
  989. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  990. #ifdef STRING_VERSION_CONFIG_H
  991. #ifdef STRING_CONFIG_H_AUTHOR
  992. SERIAL_ECHO_START;
  993. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  994. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  995. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  996. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  997. SERIAL_ECHOPGM("Compiled: ");
  998. SERIAL_ECHOLNPGM(__DATE__);
  999. #endif
  1000. #endif
  1001. SERIAL_ECHO_START;
  1002. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1003. SERIAL_ECHO(freeMemory());
  1004. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1005. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1006. //lcd_update_enable(false); // why do we need this?? - andre
  1007. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1008. bool previous_settings_retrieved = false;
  1009. uint8_t hw_changed = check_printer_version();
  1010. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1011. previous_settings_retrieved = Config_RetrieveSettings();
  1012. }
  1013. else { //printer version was changed so use default settings
  1014. Config_ResetDefault();
  1015. }
  1016. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1017. tp_init(); // Initialize temperature loop
  1018. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1019. else
  1020. {
  1021. w25x20cl_err_msg();
  1022. printf_P(_n("W25X20CL not responding.\n"));
  1023. }
  1024. plan_init(); // Initialize planner;
  1025. factory_reset();
  1026. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1027. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1028. {
  1029. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1030. // where all the EEPROM entries are set to 0x0ff.
  1031. // Once a firmware boots up, it forces at least a language selection, which changes
  1032. // EEPROM_LANG to number lower than 0x0ff.
  1033. // 1) Set a high power mode.
  1034. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1035. #ifdef TMC2130
  1036. tmc2130_mode = TMC2130_MODE_NORMAL;
  1037. #endif //TMC2130
  1038. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1039. }
  1040. lcd_encoder_diff=0;
  1041. #ifdef TMC2130
  1042. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1043. if (silentMode == 0xff) silentMode = 0;
  1044. tmc2130_mode = TMC2130_MODE_NORMAL;
  1045. if (lcd_crash_detect_enabled() && !farm_mode)
  1046. {
  1047. lcd_crash_detect_enable();
  1048. puts_P(_N("CrashDetect ENABLED!"));
  1049. }
  1050. else
  1051. {
  1052. lcd_crash_detect_disable();
  1053. puts_P(_N("CrashDetect DISABLED"));
  1054. }
  1055. #ifdef TMC2130_LINEARITY_CORRECTION
  1056. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1057. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1058. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1059. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1060. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1061. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1062. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1063. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1064. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1065. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1066. #endif //TMC2130_LINEARITY_CORRECTION
  1067. #ifdef TMC2130_VARIABLE_RESOLUTION
  1068. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1069. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1070. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1071. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1072. #else //TMC2130_VARIABLE_RESOLUTION
  1073. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1074. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1075. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1076. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1077. #endif //TMC2130_VARIABLE_RESOLUTION
  1078. #endif //TMC2130
  1079. st_init(); // Initialize stepper, this enables interrupts!
  1080. #ifdef UVLO_SUPPORT
  1081. setup_uvlo_interrupt();
  1082. #endif //UVLO_SUPPORT
  1083. #ifdef TMC2130
  1084. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1085. update_mode_profile();
  1086. tmc2130_init();
  1087. #endif //TMC2130
  1088. #ifdef PSU_Delta
  1089. init_force_z(); // ! important for correct Z-axis initialization
  1090. #endif // PSU_Delta
  1091. setup_photpin();
  1092. servo_init();
  1093. // Reset the machine correction matrix.
  1094. // It does not make sense to load the correction matrix until the machine is homed.
  1095. world2machine_reset();
  1096. #ifdef FILAMENT_SENSOR
  1097. fsensor_init();
  1098. #endif //FILAMENT_SENSOR
  1099. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1100. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1101. #endif
  1102. setup_homepin();
  1103. #ifdef TMC2130
  1104. if (1) {
  1105. // try to run to zero phase before powering the Z motor.
  1106. // Move in negative direction
  1107. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1108. // Round the current micro-micro steps to micro steps.
  1109. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1110. // Until the phase counter is reset to zero.
  1111. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1112. _delay(2);
  1113. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1114. _delay(2);
  1115. }
  1116. }
  1117. #endif //TMC2130
  1118. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1119. enable_z();
  1120. #endif
  1121. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1122. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1123. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1124. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1125. if (farm_mode)
  1126. {
  1127. prusa_statistics(8);
  1128. }
  1129. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1130. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1131. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1132. // but this times out if a blocking dialog is shown in setup().
  1133. card.initsd();
  1134. #ifdef DEBUG_SD_SPEED_TEST
  1135. if (card.cardOK)
  1136. {
  1137. uint8_t* buff = (uint8_t*)block_buffer;
  1138. uint32_t block = 0;
  1139. uint32_t sumr = 0;
  1140. uint32_t sumw = 0;
  1141. for (int i = 0; i < 1024; i++)
  1142. {
  1143. uint32_t u = _micros();
  1144. bool res = card.card.readBlock(i, buff);
  1145. u = _micros() - u;
  1146. if (res)
  1147. {
  1148. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1149. sumr += u;
  1150. u = _micros();
  1151. res = card.card.writeBlock(i, buff);
  1152. u = _micros() - u;
  1153. if (res)
  1154. {
  1155. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1156. sumw += u;
  1157. }
  1158. else
  1159. {
  1160. printf_P(PSTR("writeBlock %4d error\n"), i);
  1161. break;
  1162. }
  1163. }
  1164. else
  1165. {
  1166. printf_P(PSTR("readBlock %4d error\n"), i);
  1167. break;
  1168. }
  1169. }
  1170. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1171. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1172. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1173. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1174. }
  1175. else
  1176. printf_P(PSTR("Card NG!\n"));
  1177. #endif //DEBUG_SD_SPEED_TEST
  1178. eeprom_init();
  1179. #ifdef SNMM
  1180. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1181. int _z = BOWDEN_LENGTH;
  1182. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1183. }
  1184. #endif
  1185. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1186. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1187. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1188. #if (LANG_MODE != 0) //secondary language support
  1189. #ifdef DEBUG_W25X20CL
  1190. W25X20CL_SPI_ENTER();
  1191. uint8_t uid[8]; // 64bit unique id
  1192. w25x20cl_rd_uid(uid);
  1193. puts_P(_n("W25X20CL UID="));
  1194. for (uint8_t i = 0; i < 8; i ++)
  1195. printf_P(PSTR("%02hhx"), uid[i]);
  1196. putchar('\n');
  1197. list_sec_lang_from_external_flash();
  1198. #endif //DEBUG_W25X20CL
  1199. // lang_reset();
  1200. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1201. lcd_language();
  1202. #ifdef DEBUG_SEC_LANG
  1203. uint16_t sec_lang_code = lang_get_code(1);
  1204. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1205. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1206. lang_print_sec_lang(uartout);
  1207. #endif //DEBUG_SEC_LANG
  1208. #endif //(LANG_MODE != 0)
  1209. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1210. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1211. temp_cal_active = false;
  1212. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1213. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1214. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1215. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1216. int16_t z_shift = 0;
  1217. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1218. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1219. temp_cal_active = false;
  1220. }
  1221. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1222. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1223. }
  1224. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1225. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1226. }
  1227. //mbl_mode_init();
  1228. mbl_settings_init();
  1229. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1230. if (SilentModeMenu_MMU == 255) {
  1231. SilentModeMenu_MMU = 1;
  1232. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1233. }
  1234. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1235. setup_fan_interrupt();
  1236. #endif //DEBUG_DISABLE_FANCHECK
  1237. #ifdef PAT9125
  1238. fsensor_setup_interrupt();
  1239. #endif //PAT9125
  1240. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1241. #ifndef DEBUG_DISABLE_STARTMSGS
  1242. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1243. if (!farm_mode) {
  1244. check_if_fw_is_on_right_printer();
  1245. show_fw_version_warnings();
  1246. }
  1247. switch (hw_changed) {
  1248. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1249. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1250. case(0b01):
  1251. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1252. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1253. break;
  1254. case(0b10):
  1255. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1256. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1257. break;
  1258. case(0b11):
  1259. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1260. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1261. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1262. break;
  1263. default: break; //no change, show no message
  1264. }
  1265. if (!previous_settings_retrieved) {
  1266. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1267. Config_StoreSettings();
  1268. }
  1269. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1270. lcd_wizard(WizState::Run);
  1271. }
  1272. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1273. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1274. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1275. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1276. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1277. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1278. // Show the message.
  1279. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1280. }
  1281. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1282. // Show the message.
  1283. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1284. lcd_update_enable(true);
  1285. }
  1286. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1287. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1288. lcd_update_enable(true);
  1289. }
  1290. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1291. // Show the message.
  1292. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1293. }
  1294. }
  1295. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1296. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1297. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1298. update_current_firmware_version_to_eeprom();
  1299. lcd_selftest();
  1300. }
  1301. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1302. KEEPALIVE_STATE(IN_PROCESS);
  1303. #endif //DEBUG_DISABLE_STARTMSGS
  1304. lcd_update_enable(true);
  1305. lcd_clear();
  1306. lcd_update(2);
  1307. // Store the currently running firmware into an eeprom,
  1308. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1309. update_current_firmware_version_to_eeprom();
  1310. #ifdef TMC2130
  1311. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1312. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1313. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1314. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1315. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1316. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1317. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1318. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1319. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1320. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1321. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1322. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1323. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1324. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1325. #endif //TMC2130
  1326. #ifdef UVLO_SUPPORT
  1327. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1328. /*
  1329. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1330. else {
  1331. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1332. lcd_update_enable(true);
  1333. lcd_update(2);
  1334. lcd_setstatuspgm(_T(WELCOME_MSG));
  1335. }
  1336. */
  1337. manage_heater(); // Update temperatures
  1338. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1339. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1340. #endif
  1341. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1342. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1343. puts_P(_N("Automatic recovery!"));
  1344. #endif
  1345. recover_print(1);
  1346. }
  1347. else{
  1348. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1349. puts_P(_N("Normal recovery!"));
  1350. #endif
  1351. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1352. else {
  1353. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1354. lcd_update_enable(true);
  1355. lcd_update(2);
  1356. lcd_setstatuspgm(_T(WELCOME_MSG));
  1357. }
  1358. }
  1359. }
  1360. #endif //UVLO_SUPPORT
  1361. fCheckModeInit();
  1362. fSetMmuMode(mmu_enabled);
  1363. KEEPALIVE_STATE(NOT_BUSY);
  1364. #ifdef WATCHDOG
  1365. wdt_enable(WDTO_4S);
  1366. #endif //WATCHDOG
  1367. }
  1368. void trace();
  1369. #define CHUNK_SIZE 64 // bytes
  1370. #define SAFETY_MARGIN 1
  1371. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1372. int chunkHead = 0;
  1373. void serial_read_stream() {
  1374. setAllTargetHotends(0);
  1375. setTargetBed(0);
  1376. lcd_clear();
  1377. lcd_puts_P(PSTR(" Upload in progress"));
  1378. // first wait for how many bytes we will receive
  1379. uint32_t bytesToReceive;
  1380. // receive the four bytes
  1381. char bytesToReceiveBuffer[4];
  1382. for (int i=0; i<4; i++) {
  1383. int data;
  1384. while ((data = MYSERIAL.read()) == -1) {};
  1385. bytesToReceiveBuffer[i] = data;
  1386. }
  1387. // make it a uint32
  1388. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1389. // we're ready, notify the sender
  1390. MYSERIAL.write('+');
  1391. // lock in the routine
  1392. uint32_t receivedBytes = 0;
  1393. while (prusa_sd_card_upload) {
  1394. int i;
  1395. for (i=0; i<CHUNK_SIZE; i++) {
  1396. int data;
  1397. // check if we're not done
  1398. if (receivedBytes == bytesToReceive) {
  1399. break;
  1400. }
  1401. // read the next byte
  1402. while ((data = MYSERIAL.read()) == -1) {};
  1403. receivedBytes++;
  1404. // save it to the chunk
  1405. chunk[i] = data;
  1406. }
  1407. // write the chunk to SD
  1408. card.write_command_no_newline(&chunk[0]);
  1409. // notify the sender we're ready for more data
  1410. MYSERIAL.write('+');
  1411. // for safety
  1412. manage_heater();
  1413. // check if we're done
  1414. if(receivedBytes == bytesToReceive) {
  1415. trace(); // beep
  1416. card.closefile();
  1417. prusa_sd_card_upload = false;
  1418. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1419. }
  1420. }
  1421. }
  1422. /**
  1423. * Output a "busy" message at regular intervals
  1424. * while the machine is not accepting commands.
  1425. */
  1426. void host_keepalive() {
  1427. #ifndef HOST_KEEPALIVE_FEATURE
  1428. return;
  1429. #endif //HOST_KEEPALIVE_FEATURE
  1430. if (farm_mode) return;
  1431. long ms = _millis();
  1432. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1433. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1434. switch (busy_state) {
  1435. case IN_HANDLER:
  1436. case IN_PROCESS:
  1437. SERIAL_ECHO_START;
  1438. SERIAL_ECHOLNPGM("busy: processing");
  1439. break;
  1440. case PAUSED_FOR_USER:
  1441. SERIAL_ECHO_START;
  1442. SERIAL_ECHOLNPGM("busy: paused for user");
  1443. break;
  1444. case PAUSED_FOR_INPUT:
  1445. SERIAL_ECHO_START;
  1446. SERIAL_ECHOLNPGM("busy: paused for input");
  1447. break;
  1448. default:
  1449. break;
  1450. }
  1451. }
  1452. prev_busy_signal_ms = ms;
  1453. }
  1454. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1455. // Before loop(), the setup() function is called by the main() routine.
  1456. void loop()
  1457. {
  1458. KEEPALIVE_STATE(NOT_BUSY);
  1459. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1460. {
  1461. is_usb_printing = true;
  1462. usb_printing_counter--;
  1463. _usb_timer = _millis();
  1464. }
  1465. if (usb_printing_counter == 0)
  1466. {
  1467. is_usb_printing = false;
  1468. }
  1469. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1470. {
  1471. is_usb_printing = true;
  1472. }
  1473. #ifdef FANCHECK
  1474. if (fan_check_error && isPrintPaused)
  1475. {
  1476. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1477. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1478. }
  1479. #endif
  1480. if (prusa_sd_card_upload)
  1481. {
  1482. //we read byte-by byte
  1483. serial_read_stream();
  1484. }
  1485. else
  1486. {
  1487. get_command();
  1488. #ifdef SDSUPPORT
  1489. card.checkautostart(false);
  1490. #endif
  1491. if(buflen)
  1492. {
  1493. cmdbuffer_front_already_processed = false;
  1494. #ifdef SDSUPPORT
  1495. if(card.saving)
  1496. {
  1497. // Saving a G-code file onto an SD-card is in progress.
  1498. // Saving starts with M28, saving until M29 is seen.
  1499. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1500. card.write_command(CMDBUFFER_CURRENT_STRING);
  1501. if(card.logging)
  1502. process_commands();
  1503. else
  1504. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1505. } else {
  1506. card.closefile();
  1507. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1508. }
  1509. } else {
  1510. process_commands();
  1511. }
  1512. #else
  1513. process_commands();
  1514. #endif //SDSUPPORT
  1515. if (! cmdbuffer_front_already_processed && buflen)
  1516. {
  1517. // ptr points to the start of the block currently being processed.
  1518. // The first character in the block is the block type.
  1519. char *ptr = cmdbuffer + bufindr;
  1520. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1521. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1522. union {
  1523. struct {
  1524. char lo;
  1525. char hi;
  1526. } lohi;
  1527. uint16_t value;
  1528. } sdlen;
  1529. sdlen.value = 0;
  1530. {
  1531. // This block locks the interrupts globally for 3.25 us,
  1532. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1533. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1534. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1535. cli();
  1536. // Reset the command to something, which will be ignored by the power panic routine,
  1537. // so this buffer length will not be counted twice.
  1538. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1539. // Extract the current buffer length.
  1540. sdlen.lohi.lo = *ptr ++;
  1541. sdlen.lohi.hi = *ptr;
  1542. // and pass it to the planner queue.
  1543. planner_add_sd_length(sdlen.value);
  1544. sei();
  1545. }
  1546. }
  1547. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1548. cli();
  1549. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1550. // and one for each command to previous block in the planner queue.
  1551. planner_add_sd_length(1);
  1552. sei();
  1553. }
  1554. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1555. // this block's SD card length will not be counted twice as its command type has been replaced
  1556. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1557. cmdqueue_pop_front();
  1558. }
  1559. host_keepalive();
  1560. }
  1561. }
  1562. //check heater every n milliseconds
  1563. manage_heater();
  1564. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1565. checkHitEndstops();
  1566. lcd_update(0);
  1567. #ifdef TMC2130
  1568. tmc2130_check_overtemp();
  1569. if (tmc2130_sg_crash)
  1570. {
  1571. uint8_t crash = tmc2130_sg_crash;
  1572. tmc2130_sg_crash = 0;
  1573. // crashdet_stop_and_save_print();
  1574. switch (crash)
  1575. {
  1576. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1577. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1578. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1579. }
  1580. }
  1581. #endif //TMC2130
  1582. mmu_loop();
  1583. }
  1584. #define DEFINE_PGM_READ_ANY(type, reader) \
  1585. static inline type pgm_read_any(const type *p) \
  1586. { return pgm_read_##reader##_near(p); }
  1587. DEFINE_PGM_READ_ANY(float, float);
  1588. DEFINE_PGM_READ_ANY(signed char, byte);
  1589. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1590. static const PROGMEM type array##_P[3] = \
  1591. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1592. static inline type array(int axis) \
  1593. { return pgm_read_any(&array##_P[axis]); } \
  1594. type array##_ext(int axis) \
  1595. { return pgm_read_any(&array##_P[axis]); }
  1596. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1597. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1598. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1599. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1600. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1601. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1602. static void axis_is_at_home(int axis) {
  1603. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1604. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1605. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1606. }
  1607. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1608. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1609. //! @return original feedmultiply
  1610. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1611. saved_feedrate = feedrate;
  1612. int l_feedmultiply = feedmultiply;
  1613. feedmultiply = 100;
  1614. previous_millis_cmd = _millis();
  1615. enable_endstops(enable_endstops_now);
  1616. return l_feedmultiply;
  1617. }
  1618. //! @param original_feedmultiply feedmultiply to restore
  1619. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1620. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1621. enable_endstops(false);
  1622. #endif
  1623. feedrate = saved_feedrate;
  1624. feedmultiply = original_feedmultiply;
  1625. previous_millis_cmd = _millis();
  1626. }
  1627. #ifdef ENABLE_AUTO_BED_LEVELING
  1628. #ifdef AUTO_BED_LEVELING_GRID
  1629. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1630. {
  1631. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1632. planeNormal.debug("planeNormal");
  1633. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1634. //bedLevel.debug("bedLevel");
  1635. //plan_bed_level_matrix.debug("bed level before");
  1636. //vector_3 uncorrected_position = plan_get_position_mm();
  1637. //uncorrected_position.debug("position before");
  1638. vector_3 corrected_position = plan_get_position();
  1639. // corrected_position.debug("position after");
  1640. current_position[X_AXIS] = corrected_position.x;
  1641. current_position[Y_AXIS] = corrected_position.y;
  1642. current_position[Z_AXIS] = corrected_position.z;
  1643. // put the bed at 0 so we don't go below it.
  1644. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1645. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1646. }
  1647. #else // not AUTO_BED_LEVELING_GRID
  1648. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1649. plan_bed_level_matrix.set_to_identity();
  1650. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1651. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1652. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1653. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1654. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1655. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1656. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1657. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1658. vector_3 corrected_position = plan_get_position();
  1659. current_position[X_AXIS] = corrected_position.x;
  1660. current_position[Y_AXIS] = corrected_position.y;
  1661. current_position[Z_AXIS] = corrected_position.z;
  1662. // put the bed at 0 so we don't go below it.
  1663. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1664. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1665. }
  1666. #endif // AUTO_BED_LEVELING_GRID
  1667. static void run_z_probe() {
  1668. plan_bed_level_matrix.set_to_identity();
  1669. feedrate = homing_feedrate[Z_AXIS];
  1670. // move down until you find the bed
  1671. float zPosition = -10;
  1672. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1673. st_synchronize();
  1674. // we have to let the planner know where we are right now as it is not where we said to go.
  1675. zPosition = st_get_position_mm(Z_AXIS);
  1676. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1677. // move up the retract distance
  1678. zPosition += home_retract_mm(Z_AXIS);
  1679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1680. st_synchronize();
  1681. // move back down slowly to find bed
  1682. feedrate = homing_feedrate[Z_AXIS]/4;
  1683. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1684. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1685. st_synchronize();
  1686. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1687. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1688. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1689. }
  1690. static void do_blocking_move_to(float x, float y, float z) {
  1691. float oldFeedRate = feedrate;
  1692. feedrate = homing_feedrate[Z_AXIS];
  1693. current_position[Z_AXIS] = z;
  1694. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1695. st_synchronize();
  1696. feedrate = XY_TRAVEL_SPEED;
  1697. current_position[X_AXIS] = x;
  1698. current_position[Y_AXIS] = y;
  1699. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1700. st_synchronize();
  1701. feedrate = oldFeedRate;
  1702. }
  1703. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1704. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1705. }
  1706. /// Probe bed height at position (x,y), returns the measured z value
  1707. static float probe_pt(float x, float y, float z_before) {
  1708. // move to right place
  1709. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1710. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1711. run_z_probe();
  1712. float measured_z = current_position[Z_AXIS];
  1713. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1714. SERIAL_PROTOCOLPGM(" x: ");
  1715. SERIAL_PROTOCOL(x);
  1716. SERIAL_PROTOCOLPGM(" y: ");
  1717. SERIAL_PROTOCOL(y);
  1718. SERIAL_PROTOCOLPGM(" z: ");
  1719. SERIAL_PROTOCOL(measured_z);
  1720. SERIAL_PROTOCOLPGM("\n");
  1721. return measured_z;
  1722. }
  1723. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1724. #ifdef LIN_ADVANCE
  1725. /**
  1726. * M900: Set and/or Get advance K factor
  1727. *
  1728. * K<factor> Set advance K factor
  1729. */
  1730. inline void gcode_M900() {
  1731. st_synchronize();
  1732. const float newK = code_seen('K') ? code_value_float() : -1;
  1733. if (newK >= 0 && newK < 10)
  1734. extruder_advance_K = newK;
  1735. else
  1736. SERIAL_ECHOLNPGM("K out of allowed range!");
  1737. SERIAL_ECHO_START;
  1738. SERIAL_ECHOPGM("Advance K=");
  1739. SERIAL_ECHOLN(extruder_advance_K);
  1740. }
  1741. #endif // LIN_ADVANCE
  1742. bool check_commands() {
  1743. bool end_command_found = false;
  1744. while (buflen)
  1745. {
  1746. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1747. if (!cmdbuffer_front_already_processed)
  1748. cmdqueue_pop_front();
  1749. cmdbuffer_front_already_processed = false;
  1750. }
  1751. return end_command_found;
  1752. }
  1753. // raise_z_above: slowly raise Z to the requested height
  1754. //
  1755. // contrarily to a simple move, this function will carefully plan a move
  1756. // when the current Z position is unknown. In such cases, stallguard is
  1757. // enabled and will prevent prolonged pushing against the Z tops
  1758. void raise_z_above(float target, bool plan)
  1759. {
  1760. if (current_position[Z_AXIS] >= target)
  1761. return;
  1762. // Z needs raising
  1763. current_position[Z_AXIS] = target;
  1764. if (axis_known_position[Z_AXIS])
  1765. {
  1766. // current position is known, it's safe to raise Z
  1767. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  1768. return;
  1769. }
  1770. // ensure Z is powered in normal mode to overcome initial load
  1771. enable_z();
  1772. st_synchronize();
  1773. // rely on crashguard to limit damage
  1774. bool z_endstop_enabled = enable_z_endstop(true);
  1775. #ifdef TMC2130
  1776. tmc2130_home_enter(Z_AXIS_MASK);
  1777. #endif //TMC2130
  1778. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  1779. st_synchronize();
  1780. #ifdef TMC2130
  1781. if (endstop_z_hit_on_purpose())
  1782. {
  1783. // not necessarily exact, but will avoid further vertical moves
  1784. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1785. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS],
  1786. current_position[Z_AXIS], current_position[E_AXIS]);
  1787. }
  1788. tmc2130_home_exit();
  1789. #endif //TMC2130
  1790. enable_z_endstop(z_endstop_enabled);
  1791. }
  1792. #ifdef TMC2130
  1793. bool calibrate_z_auto()
  1794. {
  1795. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1796. lcd_clear();
  1797. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1798. bool endstops_enabled = enable_endstops(true);
  1799. int axis_up_dir = -home_dir(Z_AXIS);
  1800. tmc2130_home_enter(Z_AXIS_MASK);
  1801. current_position[Z_AXIS] = 0;
  1802. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1803. set_destination_to_current();
  1804. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1805. feedrate = homing_feedrate[Z_AXIS];
  1806. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1807. st_synchronize();
  1808. // current_position[axis] = 0;
  1809. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1810. tmc2130_home_exit();
  1811. enable_endstops(false);
  1812. current_position[Z_AXIS] = 0;
  1813. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1814. set_destination_to_current();
  1815. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1816. feedrate = homing_feedrate[Z_AXIS] / 2;
  1817. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1818. st_synchronize();
  1819. enable_endstops(endstops_enabled);
  1820. if (PRINTER_TYPE == PRINTER_MK3) {
  1821. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1822. }
  1823. else {
  1824. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1825. }
  1826. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1827. return true;
  1828. }
  1829. #endif //TMC2130
  1830. #ifdef TMC2130
  1831. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1832. #else
  1833. void homeaxis(int axis, uint8_t cnt)
  1834. #endif //TMC2130
  1835. {
  1836. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1837. #define HOMEAXIS_DO(LETTER) \
  1838. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1839. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1840. {
  1841. int axis_home_dir = home_dir(axis);
  1842. feedrate = homing_feedrate[axis];
  1843. #ifdef TMC2130
  1844. tmc2130_home_enter(X_AXIS_MASK << axis);
  1845. #endif //TMC2130
  1846. // Move away a bit, so that the print head does not touch the end position,
  1847. // and the following movement to endstop has a chance to achieve the required velocity
  1848. // for the stall guard to work.
  1849. current_position[axis] = 0;
  1850. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1851. set_destination_to_current();
  1852. // destination[axis] = 11.f;
  1853. destination[axis] = -3.f * axis_home_dir;
  1854. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1855. st_synchronize();
  1856. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1857. endstops_hit_on_purpose();
  1858. enable_endstops(false);
  1859. current_position[axis] = 0;
  1860. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1861. destination[axis] = 1. * axis_home_dir;
  1862. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1863. st_synchronize();
  1864. // Now continue to move up to the left end stop with the collision detection enabled.
  1865. enable_endstops(true);
  1866. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1867. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1868. st_synchronize();
  1869. for (uint8_t i = 0; i < cnt; i++)
  1870. {
  1871. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1872. endstops_hit_on_purpose();
  1873. enable_endstops(false);
  1874. current_position[axis] = 0;
  1875. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1876. destination[axis] = -10.f * axis_home_dir;
  1877. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1878. st_synchronize();
  1879. endstops_hit_on_purpose();
  1880. // Now move left up to the collision, this time with a repeatable velocity.
  1881. enable_endstops(true);
  1882. destination[axis] = 11.f * axis_home_dir;
  1883. #ifdef TMC2130
  1884. feedrate = homing_feedrate[axis];
  1885. #else //TMC2130
  1886. feedrate = homing_feedrate[axis] / 2;
  1887. #endif //TMC2130
  1888. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1889. st_synchronize();
  1890. #ifdef TMC2130
  1891. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1892. if (pstep) pstep[i] = mscnt >> 4;
  1893. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1894. #endif //TMC2130
  1895. }
  1896. endstops_hit_on_purpose();
  1897. enable_endstops(false);
  1898. #ifdef TMC2130
  1899. uint8_t orig = tmc2130_home_origin[axis];
  1900. uint8_t back = tmc2130_home_bsteps[axis];
  1901. if (tmc2130_home_enabled && (orig <= 63))
  1902. {
  1903. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1904. if (back > 0)
  1905. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1906. }
  1907. else
  1908. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1909. tmc2130_home_exit();
  1910. #endif //TMC2130
  1911. axis_is_at_home(axis);
  1912. axis_known_position[axis] = true;
  1913. // Move from minimum
  1914. #ifdef TMC2130
  1915. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1916. #else //TMC2130
  1917. float dist = - axis_home_dir * 0.01f * 64;
  1918. #endif //TMC2130
  1919. current_position[axis] -= dist;
  1920. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1921. current_position[axis] += dist;
  1922. destination[axis] = current_position[axis];
  1923. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1924. st_synchronize();
  1925. feedrate = 0.0;
  1926. }
  1927. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1928. {
  1929. #ifdef TMC2130
  1930. FORCE_HIGH_POWER_START;
  1931. #endif
  1932. int axis_home_dir = home_dir(axis);
  1933. current_position[axis] = 0;
  1934. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1935. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1936. feedrate = homing_feedrate[axis];
  1937. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1938. st_synchronize();
  1939. #ifdef TMC2130
  1940. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1941. FORCE_HIGH_POWER_END;
  1942. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1943. return;
  1944. }
  1945. #endif //TMC2130
  1946. current_position[axis] = 0;
  1947. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1948. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1949. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1950. st_synchronize();
  1951. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1952. feedrate = homing_feedrate[axis]/2 ;
  1953. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1954. st_synchronize();
  1955. #ifdef TMC2130
  1956. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1957. FORCE_HIGH_POWER_END;
  1958. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1959. return;
  1960. }
  1961. #endif //TMC2130
  1962. axis_is_at_home(axis);
  1963. destination[axis] = current_position[axis];
  1964. feedrate = 0.0;
  1965. endstops_hit_on_purpose();
  1966. axis_known_position[axis] = true;
  1967. #ifdef TMC2130
  1968. FORCE_HIGH_POWER_END;
  1969. #endif
  1970. }
  1971. enable_endstops(endstops_enabled);
  1972. }
  1973. /**/
  1974. void home_xy()
  1975. {
  1976. set_destination_to_current();
  1977. homeaxis(X_AXIS);
  1978. homeaxis(Y_AXIS);
  1979. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1980. endstops_hit_on_purpose();
  1981. }
  1982. void refresh_cmd_timeout(void)
  1983. {
  1984. previous_millis_cmd = _millis();
  1985. }
  1986. #ifdef FWRETRACT
  1987. void retract(bool retracting, bool swapretract = false) {
  1988. if(retracting && !retracted[active_extruder]) {
  1989. destination[X_AXIS]=current_position[X_AXIS];
  1990. destination[Y_AXIS]=current_position[Y_AXIS];
  1991. destination[Z_AXIS]=current_position[Z_AXIS];
  1992. destination[E_AXIS]=current_position[E_AXIS];
  1993. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1994. plan_set_e_position(current_position[E_AXIS]);
  1995. float oldFeedrate = feedrate;
  1996. feedrate=cs.retract_feedrate*60;
  1997. retracted[active_extruder]=true;
  1998. prepare_move();
  1999. current_position[Z_AXIS]-=cs.retract_zlift;
  2000. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2001. prepare_move();
  2002. feedrate = oldFeedrate;
  2003. } else if(!retracting && retracted[active_extruder]) {
  2004. destination[X_AXIS]=current_position[X_AXIS];
  2005. destination[Y_AXIS]=current_position[Y_AXIS];
  2006. destination[Z_AXIS]=current_position[Z_AXIS];
  2007. destination[E_AXIS]=current_position[E_AXIS];
  2008. current_position[Z_AXIS]+=cs.retract_zlift;
  2009. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2010. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2011. plan_set_e_position(current_position[E_AXIS]);
  2012. float oldFeedrate = feedrate;
  2013. feedrate=cs.retract_recover_feedrate*60;
  2014. retracted[active_extruder]=false;
  2015. prepare_move();
  2016. feedrate = oldFeedrate;
  2017. }
  2018. } //retract
  2019. #endif //FWRETRACT
  2020. void trace() {
  2021. Sound_MakeCustom(25,440,true);
  2022. }
  2023. /*
  2024. void ramming() {
  2025. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2026. if (current_temperature[0] < 230) {
  2027. //PLA
  2028. max_feedrate[E_AXIS] = 50;
  2029. //current_position[E_AXIS] -= 8;
  2030. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2031. //current_position[E_AXIS] += 8;
  2032. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2033. current_position[E_AXIS] += 5.4;
  2034. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2035. current_position[E_AXIS] += 3.2;
  2036. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2037. current_position[E_AXIS] += 3;
  2038. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2039. st_synchronize();
  2040. max_feedrate[E_AXIS] = 80;
  2041. current_position[E_AXIS] -= 82;
  2042. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2043. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2044. current_position[E_AXIS] -= 20;
  2045. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2046. current_position[E_AXIS] += 5;
  2047. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2048. current_position[E_AXIS] += 5;
  2049. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2050. current_position[E_AXIS] -= 10;
  2051. st_synchronize();
  2052. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2053. current_position[E_AXIS] += 10;
  2054. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2055. current_position[E_AXIS] -= 10;
  2056. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2057. current_position[E_AXIS] += 10;
  2058. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2059. current_position[E_AXIS] -= 10;
  2060. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2061. st_synchronize();
  2062. }
  2063. else {
  2064. //ABS
  2065. max_feedrate[E_AXIS] = 50;
  2066. //current_position[E_AXIS] -= 8;
  2067. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2068. //current_position[E_AXIS] += 8;
  2069. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2070. current_position[E_AXIS] += 3.1;
  2071. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2072. current_position[E_AXIS] += 3.1;
  2073. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2074. current_position[E_AXIS] += 4;
  2075. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2076. st_synchronize();
  2077. //current_position[X_AXIS] += 23; //delay
  2078. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2079. //current_position[X_AXIS] -= 23; //delay
  2080. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2081. _delay(4700);
  2082. max_feedrate[E_AXIS] = 80;
  2083. current_position[E_AXIS] -= 92;
  2084. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2085. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2086. current_position[E_AXIS] -= 5;
  2087. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2088. current_position[E_AXIS] += 5;
  2089. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2090. current_position[E_AXIS] -= 5;
  2091. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2092. st_synchronize();
  2093. current_position[E_AXIS] += 5;
  2094. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2095. current_position[E_AXIS] -= 5;
  2096. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2097. current_position[E_AXIS] += 5;
  2098. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2099. current_position[E_AXIS] -= 5;
  2100. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2101. st_synchronize();
  2102. }
  2103. }
  2104. */
  2105. #ifdef TMC2130
  2106. void force_high_power_mode(bool start_high_power_section) {
  2107. #ifdef PSU_Delta
  2108. if (start_high_power_section == true) enable_force_z();
  2109. #endif //PSU_Delta
  2110. uint8_t silent;
  2111. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2112. if (silent == 1) {
  2113. //we are in silent mode, set to normal mode to enable crash detection
  2114. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2115. st_synchronize();
  2116. cli();
  2117. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2118. update_mode_profile();
  2119. tmc2130_init();
  2120. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2121. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2122. st_reset_timer();
  2123. sei();
  2124. }
  2125. }
  2126. #endif //TMC2130
  2127. #ifdef TMC2130
  2128. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2129. #else
  2130. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2131. #endif //TMC2130
  2132. {
  2133. st_synchronize();
  2134. #if 0
  2135. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2136. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2137. #endif
  2138. // Flag for the display update routine and to disable the print cancelation during homing.
  2139. homing_flag = true;
  2140. // Which axes should be homed?
  2141. bool home_x = home_x_axis;
  2142. bool home_y = home_y_axis;
  2143. bool home_z = home_z_axis;
  2144. // Either all X,Y,Z codes are present, or none of them.
  2145. bool home_all_axes = home_x == home_y && home_x == home_z;
  2146. if (home_all_axes)
  2147. // No X/Y/Z code provided means to home all axes.
  2148. home_x = home_y = home_z = true;
  2149. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2150. if (home_all_axes) {
  2151. raise_z_above(MESH_HOME_Z_SEARCH);
  2152. st_synchronize();
  2153. }
  2154. #ifdef ENABLE_AUTO_BED_LEVELING
  2155. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2156. #endif //ENABLE_AUTO_BED_LEVELING
  2157. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2158. // the planner will not perform any adjustments in the XY plane.
  2159. // Wait for the motors to stop and update the current position with the absolute values.
  2160. world2machine_revert_to_uncorrected();
  2161. // For mesh bed leveling deactivate the matrix temporarily.
  2162. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2163. // in a single axis only.
  2164. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2165. #ifdef MESH_BED_LEVELING
  2166. uint8_t mbl_was_active = mbl.active;
  2167. mbl.active = 0;
  2168. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2169. #endif
  2170. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2171. // consumed during the first movements following this statement.
  2172. if (home_z)
  2173. babystep_undo();
  2174. saved_feedrate = feedrate;
  2175. int l_feedmultiply = feedmultiply;
  2176. feedmultiply = 100;
  2177. previous_millis_cmd = _millis();
  2178. enable_endstops(true);
  2179. memcpy(destination, current_position, sizeof(destination));
  2180. feedrate = 0.0;
  2181. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2182. if(home_z)
  2183. homeaxis(Z_AXIS);
  2184. #endif
  2185. #ifdef QUICK_HOME
  2186. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2187. if(home_x && home_y) //first diagonal move
  2188. {
  2189. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2190. int x_axis_home_dir = home_dir(X_AXIS);
  2191. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2192. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2193. feedrate = homing_feedrate[X_AXIS];
  2194. if(homing_feedrate[Y_AXIS]<feedrate)
  2195. feedrate = homing_feedrate[Y_AXIS];
  2196. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2197. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2198. } else {
  2199. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2200. }
  2201. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2202. st_synchronize();
  2203. axis_is_at_home(X_AXIS);
  2204. axis_is_at_home(Y_AXIS);
  2205. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2206. destination[X_AXIS] = current_position[X_AXIS];
  2207. destination[Y_AXIS] = current_position[Y_AXIS];
  2208. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2209. feedrate = 0.0;
  2210. st_synchronize();
  2211. endstops_hit_on_purpose();
  2212. current_position[X_AXIS] = destination[X_AXIS];
  2213. current_position[Y_AXIS] = destination[Y_AXIS];
  2214. current_position[Z_AXIS] = destination[Z_AXIS];
  2215. }
  2216. #endif /* QUICK_HOME */
  2217. #ifdef TMC2130
  2218. if(home_x)
  2219. {
  2220. if (!calib)
  2221. homeaxis(X_AXIS);
  2222. else
  2223. tmc2130_home_calibrate(X_AXIS);
  2224. }
  2225. if(home_y)
  2226. {
  2227. if (!calib)
  2228. homeaxis(Y_AXIS);
  2229. else
  2230. tmc2130_home_calibrate(Y_AXIS);
  2231. }
  2232. #else //TMC2130
  2233. if(home_x) homeaxis(X_AXIS);
  2234. if(home_y) homeaxis(Y_AXIS);
  2235. #endif //TMC2130
  2236. if(home_x_axis && home_x_value != 0)
  2237. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2238. if(home_y_axis && home_y_value != 0)
  2239. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2240. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2241. #ifndef Z_SAFE_HOMING
  2242. if(home_z) {
  2243. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2244. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2245. st_synchronize();
  2246. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2247. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2248. raise_z_above(MESH_HOME_Z_SEARCH);
  2249. st_synchronize();
  2250. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2251. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2252. // 1st mesh bed leveling measurement point, corrected.
  2253. world2machine_initialize();
  2254. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2255. world2machine_reset();
  2256. if (destination[Y_AXIS] < Y_MIN_POS)
  2257. destination[Y_AXIS] = Y_MIN_POS;
  2258. feedrate = homing_feedrate[X_AXIS] / 20;
  2259. enable_endstops(false);
  2260. #ifdef DEBUG_BUILD
  2261. SERIAL_ECHOLNPGM("plan_set_position()");
  2262. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2263. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2264. #endif
  2265. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2266. #ifdef DEBUG_BUILD
  2267. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2268. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2269. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2270. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2271. #endif
  2272. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2273. st_synchronize();
  2274. current_position[X_AXIS] = destination[X_AXIS];
  2275. current_position[Y_AXIS] = destination[Y_AXIS];
  2276. enable_endstops(true);
  2277. endstops_hit_on_purpose();
  2278. homeaxis(Z_AXIS);
  2279. #else // MESH_BED_LEVELING
  2280. homeaxis(Z_AXIS);
  2281. #endif // MESH_BED_LEVELING
  2282. }
  2283. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2284. if(home_all_axes) {
  2285. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2286. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2287. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2288. feedrate = XY_TRAVEL_SPEED/60;
  2289. current_position[Z_AXIS] = 0;
  2290. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2291. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2292. st_synchronize();
  2293. current_position[X_AXIS] = destination[X_AXIS];
  2294. current_position[Y_AXIS] = destination[Y_AXIS];
  2295. homeaxis(Z_AXIS);
  2296. }
  2297. // Let's see if X and Y are homed and probe is inside bed area.
  2298. if(home_z) {
  2299. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2300. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2301. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2302. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2303. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2304. current_position[Z_AXIS] = 0;
  2305. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2306. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2307. feedrate = max_feedrate[Z_AXIS];
  2308. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2309. st_synchronize();
  2310. homeaxis(Z_AXIS);
  2311. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2312. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2313. SERIAL_ECHO_START;
  2314. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2315. } else {
  2316. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2317. SERIAL_ECHO_START;
  2318. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2319. }
  2320. }
  2321. #endif // Z_SAFE_HOMING
  2322. #endif // Z_HOME_DIR < 0
  2323. if(home_z_axis && home_z_value != 0)
  2324. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2325. #ifdef ENABLE_AUTO_BED_LEVELING
  2326. if(home_z)
  2327. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2328. #endif
  2329. // Set the planner and stepper routine positions.
  2330. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2331. // contains the machine coordinates.
  2332. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2333. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2334. enable_endstops(false);
  2335. #endif
  2336. feedrate = saved_feedrate;
  2337. feedmultiply = l_feedmultiply;
  2338. previous_millis_cmd = _millis();
  2339. endstops_hit_on_purpose();
  2340. #ifndef MESH_BED_LEVELING
  2341. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2342. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2343. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2344. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2345. lcd_adjust_z();
  2346. #endif
  2347. // Load the machine correction matrix
  2348. world2machine_initialize();
  2349. // and correct the current_position XY axes to match the transformed coordinate system.
  2350. world2machine_update_current();
  2351. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2352. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2353. {
  2354. if (! home_z && mbl_was_active) {
  2355. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2356. mbl.active = true;
  2357. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2358. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2359. }
  2360. }
  2361. else
  2362. {
  2363. st_synchronize();
  2364. homing_flag = false;
  2365. }
  2366. #endif
  2367. if (farm_mode) { prusa_statistics(20); };
  2368. homing_flag = false;
  2369. #if 0
  2370. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2371. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2372. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2373. #endif
  2374. }
  2375. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2376. {
  2377. #ifdef TMC2130
  2378. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2379. #else
  2380. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2381. #endif //TMC2130
  2382. }
  2383. void adjust_bed_reset()
  2384. {
  2385. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2386. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2387. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2388. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2389. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2390. }
  2391. //! @brief Calibrate XYZ
  2392. //! @param onlyZ if true, calibrate only Z axis
  2393. //! @param verbosity_level
  2394. //! @retval true Succeeded
  2395. //! @retval false Failed
  2396. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2397. {
  2398. bool final_result = false;
  2399. #ifdef TMC2130
  2400. FORCE_HIGH_POWER_START;
  2401. #endif // TMC2130
  2402. // Only Z calibration?
  2403. if (!onlyZ)
  2404. {
  2405. setTargetBed(0);
  2406. setAllTargetHotends(0);
  2407. adjust_bed_reset(); //reset bed level correction
  2408. }
  2409. // Disable the default update procedure of the display. We will do a modal dialog.
  2410. lcd_update_enable(false);
  2411. // Let the planner use the uncorrected coordinates.
  2412. mbl.reset();
  2413. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2414. // the planner will not perform any adjustments in the XY plane.
  2415. // Wait for the motors to stop and update the current position with the absolute values.
  2416. world2machine_revert_to_uncorrected();
  2417. // Reset the baby step value applied without moving the axes.
  2418. babystep_reset();
  2419. // Mark all axes as in a need for homing.
  2420. memset(axis_known_position, 0, sizeof(axis_known_position));
  2421. // Home in the XY plane.
  2422. //set_destination_to_current();
  2423. int l_feedmultiply = setup_for_endstop_move();
  2424. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2425. home_xy();
  2426. enable_endstops(false);
  2427. current_position[X_AXIS] += 5;
  2428. current_position[Y_AXIS] += 5;
  2429. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2430. st_synchronize();
  2431. // Let the user move the Z axes up to the end stoppers.
  2432. #ifdef TMC2130
  2433. if (calibrate_z_auto())
  2434. {
  2435. #else //TMC2130
  2436. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2437. {
  2438. #endif //TMC2130
  2439. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2440. if(onlyZ){
  2441. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2442. lcd_set_cursor(0, 3);
  2443. lcd_print(1);
  2444. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2445. }else{
  2446. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2447. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2448. lcd_set_cursor(0, 2);
  2449. lcd_print(1);
  2450. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2451. }
  2452. refresh_cmd_timeout();
  2453. #ifndef STEEL_SHEET
  2454. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2455. {
  2456. lcd_wait_for_cool_down();
  2457. }
  2458. #endif //STEEL_SHEET
  2459. if(!onlyZ)
  2460. {
  2461. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2462. #ifdef STEEL_SHEET
  2463. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2464. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2465. #endif //STEEL_SHEET
  2466. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2467. KEEPALIVE_STATE(IN_HANDLER);
  2468. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2469. lcd_set_cursor(0, 2);
  2470. lcd_print(1);
  2471. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2472. }
  2473. bool endstops_enabled = enable_endstops(false);
  2474. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2475. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2476. st_synchronize();
  2477. // Move the print head close to the bed.
  2478. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2479. enable_endstops(true);
  2480. #ifdef TMC2130
  2481. tmc2130_home_enter(Z_AXIS_MASK);
  2482. #endif //TMC2130
  2483. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2484. st_synchronize();
  2485. #ifdef TMC2130
  2486. tmc2130_home_exit();
  2487. #endif //TMC2130
  2488. enable_endstops(endstops_enabled);
  2489. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2490. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2491. {
  2492. if (onlyZ)
  2493. {
  2494. clean_up_after_endstop_move(l_feedmultiply);
  2495. // Z only calibration.
  2496. // Load the machine correction matrix
  2497. world2machine_initialize();
  2498. // and correct the current_position to match the transformed coordinate system.
  2499. world2machine_update_current();
  2500. //FIXME
  2501. bool result = sample_mesh_and_store_reference();
  2502. if (result)
  2503. {
  2504. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2505. // Shipped, the nozzle height has been set already. The user can start printing now.
  2506. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2507. final_result = true;
  2508. // babystep_apply();
  2509. }
  2510. }
  2511. else
  2512. {
  2513. // Reset the baby step value and the baby step applied flag.
  2514. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2515. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2516. // Complete XYZ calibration.
  2517. uint8_t point_too_far_mask = 0;
  2518. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2519. clean_up_after_endstop_move(l_feedmultiply);
  2520. // Print head up.
  2521. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2522. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2523. st_synchronize();
  2524. //#ifndef NEW_XYZCAL
  2525. if (result >= 0)
  2526. {
  2527. #ifdef HEATBED_V2
  2528. sample_z();
  2529. #else //HEATBED_V2
  2530. point_too_far_mask = 0;
  2531. // Second half: The fine adjustment.
  2532. // Let the planner use the uncorrected coordinates.
  2533. mbl.reset();
  2534. world2machine_reset();
  2535. // Home in the XY plane.
  2536. int l_feedmultiply = setup_for_endstop_move();
  2537. home_xy();
  2538. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2539. clean_up_after_endstop_move(l_feedmultiply);
  2540. // Print head up.
  2541. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2542. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2543. st_synchronize();
  2544. // if (result >= 0) babystep_apply();
  2545. #endif //HEATBED_V2
  2546. }
  2547. //#endif //NEW_XYZCAL
  2548. lcd_update_enable(true);
  2549. lcd_update(2);
  2550. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2551. if (result >= 0)
  2552. {
  2553. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2554. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2555. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2556. final_result = true;
  2557. }
  2558. }
  2559. #ifdef TMC2130
  2560. tmc2130_home_exit();
  2561. #endif
  2562. }
  2563. else
  2564. {
  2565. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2566. final_result = false;
  2567. }
  2568. }
  2569. else
  2570. {
  2571. // Timeouted.
  2572. }
  2573. lcd_update_enable(true);
  2574. #ifdef TMC2130
  2575. FORCE_HIGH_POWER_END;
  2576. #endif // TMC2130
  2577. return final_result;
  2578. }
  2579. void gcode_M114()
  2580. {
  2581. SERIAL_PROTOCOLPGM("X:");
  2582. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2583. SERIAL_PROTOCOLPGM(" Y:");
  2584. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2585. SERIAL_PROTOCOLPGM(" Z:");
  2586. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2587. SERIAL_PROTOCOLPGM(" E:");
  2588. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2589. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2590. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2591. SERIAL_PROTOCOLPGM(" Y:");
  2592. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2593. SERIAL_PROTOCOLPGM(" Z:");
  2594. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2595. SERIAL_PROTOCOLPGM(" E:");
  2596. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2597. SERIAL_PROTOCOLLN("");
  2598. }
  2599. //! extracted code to compute z_shift for M600 in case of filament change operation
  2600. //! requested from fsensors.
  2601. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2602. //! unlike the previous implementation, which was adding 25mm even when the head was
  2603. //! printing at e.g. 24mm height.
  2604. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2605. //! the printout.
  2606. //! This function is templated to enable fast change of computation data type.
  2607. //! @return new z_shift value
  2608. template<typename T>
  2609. static T gcode_M600_filament_change_z_shift()
  2610. {
  2611. #ifdef FILAMENTCHANGE_ZADD
  2612. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2613. // avoid floating point arithmetics when not necessary - results in shorter code
  2614. T ztmp = T( current_position[Z_AXIS] );
  2615. T z_shift = 0;
  2616. if(ztmp < T(25)){
  2617. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2618. }
  2619. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2620. #else
  2621. return T(0);
  2622. #endif
  2623. }
  2624. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2625. {
  2626. st_synchronize();
  2627. float lastpos[4];
  2628. if (farm_mode)
  2629. {
  2630. prusa_statistics(22);
  2631. }
  2632. //First backup current position and settings
  2633. int feedmultiplyBckp = feedmultiply;
  2634. float HotendTempBckp = degTargetHotend(active_extruder);
  2635. int fanSpeedBckp = fanSpeed;
  2636. lastpos[X_AXIS] = current_position[X_AXIS];
  2637. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2638. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2639. lastpos[E_AXIS] = current_position[E_AXIS];
  2640. //Retract E
  2641. current_position[E_AXIS] += e_shift;
  2642. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2643. st_synchronize();
  2644. //Lift Z
  2645. current_position[Z_AXIS] += z_shift;
  2646. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2647. st_synchronize();
  2648. //Move XY to side
  2649. current_position[X_AXIS] = x_position;
  2650. current_position[Y_AXIS] = y_position;
  2651. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2652. st_synchronize();
  2653. //Beep, manage nozzle heater and wait for user to start unload filament
  2654. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2655. lcd_change_fil_state = 0;
  2656. // Unload filament
  2657. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2658. else unload_filament(); //unload filament for single material (used also in M702)
  2659. //finish moves
  2660. st_synchronize();
  2661. if (!mmu_enabled)
  2662. {
  2663. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2664. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2665. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2666. if (lcd_change_fil_state == 0)
  2667. {
  2668. lcd_clear();
  2669. lcd_set_cursor(0, 2);
  2670. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2671. current_position[X_AXIS] -= 100;
  2672. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2673. st_synchronize();
  2674. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2675. }
  2676. }
  2677. if (mmu_enabled)
  2678. {
  2679. if (!automatic) {
  2680. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2681. mmu_M600_wait_and_beep();
  2682. if (saved_printing) {
  2683. lcd_clear();
  2684. lcd_set_cursor(0, 2);
  2685. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2686. mmu_command(MmuCmd::R0);
  2687. manage_response(false, false);
  2688. }
  2689. }
  2690. mmu_M600_load_filament(automatic, HotendTempBckp);
  2691. }
  2692. else
  2693. M600_load_filament();
  2694. if (!automatic) M600_check_state(HotendTempBckp);
  2695. lcd_update_enable(true);
  2696. //Not let's go back to print
  2697. fanSpeed = fanSpeedBckp;
  2698. //Feed a little of filament to stabilize pressure
  2699. if (!automatic)
  2700. {
  2701. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2702. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2703. }
  2704. //Move XY back
  2705. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2706. FILAMENTCHANGE_XYFEED, active_extruder);
  2707. st_synchronize();
  2708. //Move Z back
  2709. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2710. FILAMENTCHANGE_ZFEED, active_extruder);
  2711. st_synchronize();
  2712. //Set E position to original
  2713. plan_set_e_position(lastpos[E_AXIS]);
  2714. memcpy(current_position, lastpos, sizeof(lastpos));
  2715. memcpy(destination, current_position, sizeof(current_position));
  2716. //Recover feed rate
  2717. feedmultiply = feedmultiplyBckp;
  2718. char cmd[9];
  2719. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2720. enquecommand(cmd);
  2721. #ifdef IR_SENSOR
  2722. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2723. fsensor_check_autoload();
  2724. #endif //IR_SENSOR
  2725. lcd_setstatuspgm(_T(WELCOME_MSG));
  2726. custom_message_type = CustomMsg::Status;
  2727. }
  2728. void gcode_M701()
  2729. {
  2730. printf_P(PSTR("gcode_M701 begin\n"));
  2731. if (farm_mode)
  2732. {
  2733. prusa_statistics(22);
  2734. }
  2735. if (mmu_enabled)
  2736. {
  2737. extr_adj(tmp_extruder);//loads current extruder
  2738. mmu_extruder = tmp_extruder;
  2739. }
  2740. else
  2741. {
  2742. enable_z();
  2743. custom_message_type = CustomMsg::FilamentLoading;
  2744. #ifdef FSENSOR_QUALITY
  2745. fsensor_oq_meassure_start(40);
  2746. #endif //FSENSOR_QUALITY
  2747. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2748. current_position[E_AXIS] += 40;
  2749. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2750. st_synchronize();
  2751. raise_z_above(MIN_Z_FOR_LOAD, false);
  2752. current_position[E_AXIS] += 30;
  2753. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2754. load_filament_final_feed(); //slow sequence
  2755. st_synchronize();
  2756. Sound_MakeCustom(50,500,false);
  2757. if (!farm_mode && loading_flag) {
  2758. lcd_load_filament_color_check();
  2759. }
  2760. lcd_update_enable(true);
  2761. lcd_update(2);
  2762. lcd_setstatuspgm(_T(WELCOME_MSG));
  2763. disable_z();
  2764. loading_flag = false;
  2765. custom_message_type = CustomMsg::Status;
  2766. #ifdef FSENSOR_QUALITY
  2767. fsensor_oq_meassure_stop();
  2768. if (!fsensor_oq_result())
  2769. {
  2770. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2771. lcd_update_enable(true);
  2772. lcd_update(2);
  2773. if (disable)
  2774. fsensor_disable();
  2775. }
  2776. #endif //FSENSOR_QUALITY
  2777. }
  2778. }
  2779. /**
  2780. * @brief Get serial number from 32U2 processor
  2781. *
  2782. * Typical format of S/N is:CZPX0917X003XC13518
  2783. *
  2784. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2785. *
  2786. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2787. * reply is transmitted to serial port 1 character by character.
  2788. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2789. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2790. * in any case.
  2791. */
  2792. static void gcode_PRUSA_SN()
  2793. {
  2794. if (farm_mode) {
  2795. selectedSerialPort = 0;
  2796. putchar(';');
  2797. putchar('S');
  2798. int numbersRead = 0;
  2799. ShortTimer timeout;
  2800. timeout.start();
  2801. while (numbersRead < 19) {
  2802. while (MSerial.available() > 0) {
  2803. uint8_t serial_char = MSerial.read();
  2804. selectedSerialPort = 1;
  2805. putchar(serial_char);
  2806. numbersRead++;
  2807. selectedSerialPort = 0;
  2808. }
  2809. if (timeout.expired(100u)) break;
  2810. }
  2811. selectedSerialPort = 1;
  2812. putchar('\n');
  2813. #if 0
  2814. for (int b = 0; b < 3; b++) {
  2815. _tone(BEEPER, 110);
  2816. _delay(50);
  2817. _noTone(BEEPER);
  2818. _delay(50);
  2819. }
  2820. #endif
  2821. } else {
  2822. puts_P(_N("Not in farm mode."));
  2823. }
  2824. }
  2825. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2826. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2827. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2828. //! it may even interfere with other functions of the printer! You have been warned!
  2829. //! The test idea is to measure the time necessary to charge the capacitor.
  2830. //! So the algorithm is as follows:
  2831. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2832. //! 2. Wait a few ms
  2833. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2834. //! Repeat 1.-3. several times
  2835. //! Good RAMBo's times are in the range of approx. 260-320 us
  2836. //! Bad RAMBo's times are approx. 260-1200 us
  2837. //! So basically we are interested in maximum time, the minima are mostly the same.
  2838. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2839. static void gcode_PRUSA_BadRAMBoFanTest(){
  2840. //printf_P(PSTR("Enter fan pin test\n"));
  2841. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2842. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2843. unsigned long tach1max = 0;
  2844. uint8_t tach1cntr = 0;
  2845. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2846. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2847. SET_OUTPUT(TACH_1);
  2848. WRITE(TACH_1, LOW);
  2849. _delay(20); // the delay may be lower
  2850. unsigned long tachMeasure = _micros();
  2851. cli();
  2852. SET_INPUT(TACH_1);
  2853. // just wait brutally in an endless cycle until we reach HIGH
  2854. // if this becomes a problem it may be improved to non-endless cycle
  2855. while( READ(TACH_1) == 0 ) ;
  2856. sei();
  2857. tachMeasure = _micros() - tachMeasure;
  2858. if( tach1max < tachMeasure )
  2859. tach1max = tachMeasure;
  2860. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2861. }
  2862. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2863. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2864. if( tach1max > 500 ){
  2865. // bad RAMBo
  2866. SERIAL_PROTOCOLLNPGM("BAD");
  2867. } else {
  2868. SERIAL_PROTOCOLLNPGM("OK");
  2869. }
  2870. // cleanup after the test function
  2871. SET_INPUT(TACH_1);
  2872. WRITE(TACH_1, HIGH);
  2873. #endif
  2874. }
  2875. #ifdef BACKLASH_X
  2876. extern uint8_t st_backlash_x;
  2877. #endif //BACKLASH_X
  2878. #ifdef BACKLASH_Y
  2879. extern uint8_t st_backlash_y;
  2880. #endif //BACKLASH_Y
  2881. //! \ingroup marlin_main
  2882. //! @brief Parse and process commands
  2883. //!
  2884. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2885. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2886. //!
  2887. //!
  2888. //! Implemented Codes
  2889. //! -------------------
  2890. //!
  2891. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2892. //!
  2893. //!@n PRUSA CODES
  2894. //!@n P F - Returns FW versions
  2895. //!@n P R - Returns revision of printer
  2896. //!
  2897. //!@n G0 -> G1
  2898. //!@n G1 - Coordinated Movement X Y Z E
  2899. //!@n G2 - CW ARC
  2900. //!@n G3 - CCW ARC
  2901. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2902. //!@n G10 - retract filament according to settings of M207
  2903. //!@n G11 - retract recover filament according to settings of M208
  2904. //!@n G28 - Home all Axis
  2905. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2906. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2907. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2908. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2909. //!@n G80 - Automatic mesh bed leveling
  2910. //!@n G81 - Print bed profile
  2911. //!@n G90 - Use Absolute Coordinates
  2912. //!@n G91 - Use Relative Coordinates
  2913. //!@n G92 - Set current position to coordinates given
  2914. //!
  2915. //!@n M Codes
  2916. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2917. //!@n M1 - Same as M0
  2918. //!@n M17 - Enable/Power all stepper motors
  2919. //!@n M18 - Disable all stepper motors; same as M84
  2920. //!@n M20 - List SD card
  2921. //!@n M21 - Init SD card
  2922. //!@n M22 - Release SD card
  2923. //!@n M23 - Select SD file (M23 filename.g)
  2924. //!@n M24 - Start/resume SD print
  2925. //!@n M25 - Pause SD print
  2926. //!@n M26 - Set SD position in bytes (M26 S12345)
  2927. //!@n M27 - Report SD print status
  2928. //!@n M28 - Start SD write (M28 filename.g)
  2929. //!@n M29 - Stop SD write
  2930. //!@n M30 - Delete file from SD (M30 filename.g)
  2931. //!@n M31 - Output time since last M109 or SD card start to serial
  2932. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2933. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2934. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2935. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2936. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2937. //!@n M73 - Show percent done and print time remaining
  2938. //!@n M80 - Turn on Power Supply
  2939. //!@n M81 - Turn off Power Supply
  2940. //!@n M82 - Set E codes absolute (default)
  2941. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2942. //!@n M84 - Disable steppers until next move,
  2943. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2944. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2945. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2946. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2947. //!@n M104 - Set extruder target temp
  2948. //!@n M105 - Read current temp
  2949. //!@n M106 - Fan on
  2950. //!@n M107 - Fan off
  2951. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2952. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2953. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2954. //!@n M112 - Emergency stop
  2955. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2956. //!@n M114 - Output current position to serial port
  2957. //!@n M115 - Capabilities string
  2958. //!@n M117 - display message
  2959. //!@n M119 - Output Endstop status to serial port
  2960. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2961. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2962. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2963. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2964. //!@n M140 - Set bed target temp
  2965. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2966. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2967. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2968. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2969. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2970. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2971. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2972. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2973. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2974. //!@n M206 - set additional homing offset
  2975. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2976. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2977. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2978. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2979. //!@n M220 S<factor in percent>- set speed factor override percentage
  2980. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2981. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2982. //!@n M240 - Trigger a camera to take a photograph
  2983. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2984. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2985. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2986. //!@n M301 - Set PID parameters P I and D
  2987. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2988. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2989. //!@n M304 - Set bed PID parameters P I and D
  2990. //!@n M400 - Finish all moves
  2991. //!@n M401 - Lower z-probe if present
  2992. //!@n M402 - Raise z-probe if present
  2993. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2994. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2995. //!@n M406 - Turn off Filament Sensor extrusion control
  2996. //!@n M407 - Displays measured filament diameter
  2997. //!@n M500 - stores parameters in EEPROM
  2998. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2999. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3000. //!@n M503 - print the current settings (from memory not from EEPROM)
  3001. //!@n M509 - force language selection on next restart
  3002. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3003. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3004. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3005. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3006. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3007. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3008. //!@n M907 - Set digital trimpot motor current using axis codes.
  3009. //!@n M908 - Control digital trimpot directly.
  3010. //!@n M350 - Set microstepping mode.
  3011. //!@n M351 - Toggle MS1 MS2 pins directly.
  3012. //!
  3013. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3014. //!@n M999 - Restart after being stopped by error
  3015. //! <br><br>
  3016. /** @defgroup marlin_main Marlin main */
  3017. /** \ingroup GCodes */
  3018. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)_
  3019. void process_commands()
  3020. {
  3021. #ifdef FANCHECK
  3022. if(fan_check_error){
  3023. if(fan_check_error == EFCE_DETECTED){
  3024. fan_check_error = EFCE_REPORTED;
  3025. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3026. lcd_pause_print();
  3027. } // otherwise it has already been reported, so just ignore further processing
  3028. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3029. }
  3030. #endif
  3031. if (!buflen) return; //empty command
  3032. #ifdef FILAMENT_RUNOUT_SUPPORT
  3033. SET_INPUT(FR_SENS);
  3034. #endif
  3035. #ifdef CMDBUFFER_DEBUG
  3036. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3037. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3038. SERIAL_ECHOLNPGM("");
  3039. SERIAL_ECHOPGM("In cmdqueue: ");
  3040. SERIAL_ECHO(buflen);
  3041. SERIAL_ECHOLNPGM("");
  3042. #endif /* CMDBUFFER_DEBUG */
  3043. unsigned long codenum; //throw away variable
  3044. char *starpos = NULL;
  3045. #ifdef ENABLE_AUTO_BED_LEVELING
  3046. float x_tmp, y_tmp, z_tmp, real_z;
  3047. #endif
  3048. // PRUSA GCODES
  3049. KEEPALIVE_STATE(IN_HANDLER);
  3050. #ifdef SNMM
  3051. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3052. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3053. int8_t SilentMode;
  3054. #endif
  3055. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3056. starpos = (strchr(strchr_pointer + 5, '*'));
  3057. if (starpos != NULL)
  3058. *(starpos) = '\0';
  3059. lcd_setstatus(strchr_pointer + 5);
  3060. }
  3061. #ifdef TMC2130
  3062. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3063. {
  3064. //! ### CRASH_DETECTED - TMC2130
  3065. // ---------------------------------
  3066. if(code_seen("CRASH_DETECTED"))
  3067. {
  3068. uint8_t mask = 0;
  3069. if (code_seen('X')) mask |= X_AXIS_MASK;
  3070. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3071. crashdet_detected(mask);
  3072. }
  3073. //! ### CRASH_RECOVER - TMC2130
  3074. // ----------------------------------
  3075. else if(code_seen("CRASH_RECOVER"))
  3076. crashdet_recover();
  3077. //! ### CRASH_CANCEL - TMC2130
  3078. // ----------------------------------
  3079. else if(code_seen("CRASH_CANCEL"))
  3080. crashdet_cancel();
  3081. }
  3082. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3083. {
  3084. //! ### TMC_SET_WAVE_
  3085. // --------------------
  3086. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3087. {
  3088. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3089. axis = (axis == 'E')?3:(axis - 'X');
  3090. if (axis < 4)
  3091. {
  3092. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3093. tmc2130_set_wave(axis, 247, fac);
  3094. }
  3095. }
  3096. //! ### TMC_SET_STEP_
  3097. // ------------------
  3098. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3099. {
  3100. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3101. axis = (axis == 'E')?3:(axis - 'X');
  3102. if (axis < 4)
  3103. {
  3104. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3105. uint16_t res = tmc2130_get_res(axis);
  3106. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3107. }
  3108. }
  3109. //! ### TMC_SET_CHOP_
  3110. // -------------------
  3111. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3112. {
  3113. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3114. axis = (axis == 'E')?3:(axis - 'X');
  3115. if (axis < 4)
  3116. {
  3117. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3118. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3119. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3120. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3121. char* str_end = 0;
  3122. if (CMDBUFFER_CURRENT_STRING[14])
  3123. {
  3124. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3125. if (str_end && *str_end)
  3126. {
  3127. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3128. if (str_end && *str_end)
  3129. {
  3130. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3131. if (str_end && *str_end)
  3132. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3133. }
  3134. }
  3135. }
  3136. tmc2130_chopper_config[axis].toff = chop0;
  3137. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3138. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3139. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3140. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3141. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3142. }
  3143. }
  3144. }
  3145. #ifdef BACKLASH_X
  3146. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3147. {
  3148. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3149. st_backlash_x = bl;
  3150. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3151. }
  3152. #endif //BACKLASH_X
  3153. #ifdef BACKLASH_Y
  3154. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3155. {
  3156. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3157. st_backlash_y = bl;
  3158. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3159. }
  3160. #endif //BACKLASH_Y
  3161. #endif //TMC2130
  3162. else if(code_seen("PRUSA")){
  3163. /*!
  3164. *
  3165. ### PRUSA - Internal command set
  3166. Set of internal PRUSA commands
  3167. PRUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3168. - `Ping`
  3169. - `PRN` - Prints revision of the printer
  3170. - `FAN` - Prints fan details
  3171. - `fn` - Prints farm no.
  3172. - `thx`
  3173. - `uvlo`
  3174. - `MMURES` - Reset MMU
  3175. - `RESET` - (Careful!)
  3176. - `fv` - ?
  3177. - `M28`
  3178. - `SN`
  3179. - `Fir` - Prints firmware version
  3180. - `Rev`- Prints filament size, elelectronics, nozzle type
  3181. - `Lang` - Reset the language
  3182. - `Lz`
  3183. - `Beat` - Kick farm link timer
  3184. - `FR` - Full factory reset
  3185. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3186. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3187. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3188. *
  3189. */
  3190. if (code_seen("Ping")) { // PRUSA Ping
  3191. if (farm_mode) {
  3192. PingTime = _millis();
  3193. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3194. }
  3195. }
  3196. else if (code_seen("PRN")) { // PRUSA PRN
  3197. printf_P(_N("%d"), status_number);
  3198. } else if( code_seen("FANPINTST") ){
  3199. gcode_PRUSA_BadRAMBoFanTest();
  3200. }else if (code_seen("FAN")) { //! PRUSA FAN
  3201. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3202. }else if (code_seen("fn")) { // PRUSA fn
  3203. if (farm_mode) {
  3204. printf_P(_N("%d"), farm_no);
  3205. }
  3206. else {
  3207. puts_P(_N("Not in farm mode."));
  3208. }
  3209. }
  3210. else if (code_seen("thx")) // PRUSA thx
  3211. {
  3212. no_response = false;
  3213. }
  3214. else if (code_seen("uvlo")) // PRUSA uvlo
  3215. {
  3216. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3217. enquecommand_P(PSTR("M24"));
  3218. }
  3219. else if (code_seen("MMURES")) // PRUSA MMURES
  3220. {
  3221. mmu_reset();
  3222. }
  3223. else if (code_seen("RESET")) { // PRUSA RESET
  3224. // careful!
  3225. if (farm_mode) {
  3226. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3227. boot_app_magic = BOOT_APP_MAGIC;
  3228. boot_app_flags = BOOT_APP_FLG_RUN;
  3229. wdt_enable(WDTO_15MS);
  3230. cli();
  3231. while(1);
  3232. #else //WATCHDOG
  3233. asm volatile("jmp 0x3E000");
  3234. #endif //WATCHDOG
  3235. }
  3236. else {
  3237. MYSERIAL.println("Not in farm mode.");
  3238. }
  3239. }else if (code_seen("fv")) { // PRUSA fv
  3240. // get file version
  3241. #ifdef SDSUPPORT
  3242. card.openFile(strchr_pointer + 3,true);
  3243. while (true) {
  3244. uint16_t readByte = card.get();
  3245. MYSERIAL.write(readByte);
  3246. if (readByte=='\n') {
  3247. break;
  3248. }
  3249. }
  3250. card.closefile();
  3251. #endif // SDSUPPORT
  3252. } else if (code_seen("M28")) { // PRUSA M28
  3253. trace();
  3254. prusa_sd_card_upload = true;
  3255. card.openFile(strchr_pointer+4,false);
  3256. } else if (code_seen("SN")) { // PRUSA SN
  3257. gcode_PRUSA_SN();
  3258. } else if(code_seen("Fir")){ // PRUSA Fir
  3259. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3260. } else if(code_seen("Rev")){ // PRUSA Rev
  3261. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3262. } else if(code_seen("Lang")) { // PRUSA Lang
  3263. lang_reset();
  3264. } else if(code_seen("Lz")) { // PRUSA Lz
  3265. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3266. } else if(code_seen("Beat")) { // PRUSA Beat
  3267. // Kick farm link timer
  3268. kicktime = _millis();
  3269. } else if(code_seen("FR")) { // PRUSA FR
  3270. // Factory full reset
  3271. factory_reset(0);
  3272. //-//
  3273. /*
  3274. } else if(code_seen("rrr")) {
  3275. MYSERIAL.println("=== checking ===");
  3276. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3277. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3278. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3279. MYSERIAL.println(farm_mode,DEC);
  3280. MYSERIAL.println(eCheckMode,DEC);
  3281. } else if(code_seen("www")) {
  3282. MYSERIAL.println("=== @ FF ===");
  3283. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3284. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3285. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3286. */
  3287. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3288. uint16_t nDiameter;
  3289. if(code_seen('D'))
  3290. {
  3291. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3292. nozzle_diameter_check(nDiameter);
  3293. }
  3294. else if(code_seen("set") && farm_mode)
  3295. {
  3296. strchr_pointer++; // skip 1st char (~ 's')
  3297. strchr_pointer++; // skip 2nd char (~ 'e')
  3298. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3299. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3300. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3301. }
  3302. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3303. //-// !!! SupportMenu
  3304. /*
  3305. // musi byt PRED "PRUSA model"
  3306. } else if (code_seen("smodel")) { //! PRUSA smodel
  3307. size_t nOffset;
  3308. // ! -> "l"
  3309. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3310. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3311. if(*(strchr_pointer+1+nOffset))
  3312. printer_smodel_check(strchr_pointer);
  3313. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3314. } else if (code_seen("model")) { //! PRUSA model
  3315. uint16_t nPrinterModel;
  3316. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3317. nPrinterModel=(uint16_t)code_value_long();
  3318. if(nPrinterModel!=0)
  3319. printer_model_check(nPrinterModel);
  3320. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3321. } else if (code_seen("version")) { //! PRUSA version
  3322. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3323. while(*strchr_pointer==' ') // skip leading spaces
  3324. strchr_pointer++;
  3325. if(*strchr_pointer!=0)
  3326. fw_version_check(strchr_pointer);
  3327. else SERIAL_PROTOCOLLN(FW_VERSION);
  3328. } else if (code_seen("gcode")) { //! PRUSA gcode
  3329. uint16_t nGcodeLevel;
  3330. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3331. nGcodeLevel=(uint16_t)code_value_long();
  3332. if(nGcodeLevel!=0)
  3333. gcode_level_check(nGcodeLevel);
  3334. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3335. */
  3336. }
  3337. //else if (code_seen('Cal')) {
  3338. // lcd_calibration();
  3339. // }
  3340. }
  3341. // This prevents reading files with "^" in their names.
  3342. // Since it is unclear, if there is some usage of this construct,
  3343. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3344. // else if (code_seen('^')) {
  3345. // // nothing, this is a version line
  3346. // }
  3347. else if(code_seen('G'))
  3348. {
  3349. gcode_in_progress = (int)code_value();
  3350. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3351. switch (gcode_in_progress)
  3352. {
  3353. //! ### G0, G1 - Coordinated movement X Y Z E
  3354. // --------------------------------------
  3355. case 0: // G0 -> G1
  3356. case 1: // G1
  3357. if(Stopped == false) {
  3358. #ifdef FILAMENT_RUNOUT_SUPPORT
  3359. if(READ(FR_SENS)){
  3360. int feedmultiplyBckp=feedmultiply;
  3361. float target[4];
  3362. float lastpos[4];
  3363. target[X_AXIS]=current_position[X_AXIS];
  3364. target[Y_AXIS]=current_position[Y_AXIS];
  3365. target[Z_AXIS]=current_position[Z_AXIS];
  3366. target[E_AXIS]=current_position[E_AXIS];
  3367. lastpos[X_AXIS]=current_position[X_AXIS];
  3368. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3369. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3370. lastpos[E_AXIS]=current_position[E_AXIS];
  3371. //retract by E
  3372. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3373. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3374. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3375. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3376. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3377. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3378. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3379. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3380. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3381. //finish moves
  3382. st_synchronize();
  3383. //disable extruder steppers so filament can be removed
  3384. disable_e0();
  3385. disable_e1();
  3386. disable_e2();
  3387. _delay(100);
  3388. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3389. uint8_t cnt=0;
  3390. int counterBeep = 0;
  3391. lcd_wait_interact();
  3392. while(!lcd_clicked()){
  3393. cnt++;
  3394. manage_heater();
  3395. manage_inactivity(true);
  3396. //lcd_update(0);
  3397. if(cnt==0)
  3398. {
  3399. #if BEEPER > 0
  3400. if (counterBeep== 500){
  3401. counterBeep = 0;
  3402. }
  3403. SET_OUTPUT(BEEPER);
  3404. if (counterBeep== 0){
  3405. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3406. WRITE(BEEPER,HIGH);
  3407. }
  3408. if (counterBeep== 20){
  3409. WRITE(BEEPER,LOW);
  3410. }
  3411. counterBeep++;
  3412. #else
  3413. #endif
  3414. }
  3415. }
  3416. WRITE(BEEPER,LOW);
  3417. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3418. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3419. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3420. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3421. lcd_change_fil_state = 0;
  3422. lcd_loading_filament();
  3423. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3424. lcd_change_fil_state = 0;
  3425. lcd_alright();
  3426. switch(lcd_change_fil_state){
  3427. case 2:
  3428. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3429. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3430. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3431. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3432. lcd_loading_filament();
  3433. break;
  3434. case 3:
  3435. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3436. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3437. lcd_loading_color();
  3438. break;
  3439. default:
  3440. lcd_change_success();
  3441. break;
  3442. }
  3443. }
  3444. target[E_AXIS]+= 5;
  3445. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3446. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3447. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3448. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3449. //plan_set_e_position(current_position[E_AXIS]);
  3450. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3451. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3452. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3453. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3454. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3455. plan_set_e_position(lastpos[E_AXIS]);
  3456. feedmultiply=feedmultiplyBckp;
  3457. char cmd[9];
  3458. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3459. enquecommand(cmd);
  3460. }
  3461. #endif
  3462. get_coordinates(); // For X Y Z E F
  3463. // When recovering from a previous print move, restore the originally
  3464. // calculated target position on the first USB/SD command. This accounts
  3465. // properly for relative moves
  3466. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  3467. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  3468. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  3469. {
  3470. memcpy(destination, saved_target, sizeof(destination));
  3471. saved_target[0] = SAVED_TARGET_UNSET;
  3472. }
  3473. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3474. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3475. }
  3476. #ifdef FWRETRACT
  3477. if(cs.autoretract_enabled)
  3478. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3479. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3480. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3481. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3482. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3483. retract(!retracted[active_extruder]);
  3484. return;
  3485. }
  3486. }
  3487. #endif //FWRETRACT
  3488. prepare_move();
  3489. //ClearToSend();
  3490. }
  3491. break;
  3492. //! ### G2 - CW ARC
  3493. // ------------------------------
  3494. case 2:
  3495. if(Stopped == false) {
  3496. get_arc_coordinates();
  3497. prepare_arc_move(true);
  3498. }
  3499. break;
  3500. //! ### G3 - CCW ARC
  3501. // -------------------------------
  3502. case 3:
  3503. if(Stopped == false) {
  3504. get_arc_coordinates();
  3505. prepare_arc_move(false);
  3506. }
  3507. break;
  3508. //! ### G4 - Dwell
  3509. // -------------------------------
  3510. case 4:
  3511. codenum = 0;
  3512. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3513. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3514. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3515. st_synchronize();
  3516. codenum += _millis(); // keep track of when we started waiting
  3517. previous_millis_cmd = _millis();
  3518. while(_millis() < codenum) {
  3519. manage_heater();
  3520. manage_inactivity();
  3521. lcd_update(0);
  3522. }
  3523. break;
  3524. #ifdef FWRETRACT
  3525. //! ### G10 Retract
  3526. // ------------------------------
  3527. case 10:
  3528. #if EXTRUDERS > 1
  3529. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3530. retract(true,retracted_swap[active_extruder]);
  3531. #else
  3532. retract(true);
  3533. #endif
  3534. break;
  3535. //! ### G11 - Retract recover
  3536. // -----------------------------
  3537. case 11:
  3538. #if EXTRUDERS > 1
  3539. retract(false,retracted_swap[active_extruder]);
  3540. #else
  3541. retract(false);
  3542. #endif
  3543. break;
  3544. #endif //FWRETRACT
  3545. //! ### G28 - Home all Axis one at a time
  3546. // --------------------------------------------
  3547. case 28:
  3548. {
  3549. long home_x_value = 0;
  3550. long home_y_value = 0;
  3551. long home_z_value = 0;
  3552. // Which axes should be homed?
  3553. bool home_x = code_seen(axis_codes[X_AXIS]);
  3554. home_x_value = code_value_long();
  3555. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3556. home_y_value = code_value_long();
  3557. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3558. home_z_value = code_value_long();
  3559. bool without_mbl = code_seen('W');
  3560. // calibrate?
  3561. #ifdef TMC2130
  3562. bool calib = code_seen('C');
  3563. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3564. #else
  3565. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3566. #endif //TMC2130
  3567. if ((home_x || home_y || without_mbl || home_z) == false) {
  3568. // Push the commands to the front of the message queue in the reverse order!
  3569. // There shall be always enough space reserved for these commands.
  3570. goto case_G80;
  3571. }
  3572. break;
  3573. }
  3574. #ifdef ENABLE_AUTO_BED_LEVELING
  3575. //! ### G29 - Detailed Z-Probe
  3576. // --------------------------------
  3577. case 29:
  3578. {
  3579. #if Z_MIN_PIN == -1
  3580. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3581. #endif
  3582. // Prevent user from running a G29 without first homing in X and Y
  3583. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3584. {
  3585. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3586. SERIAL_ECHO_START;
  3587. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3588. break; // abort G29, since we don't know where we are
  3589. }
  3590. st_synchronize();
  3591. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3592. //vector_3 corrected_position = plan_get_position_mm();
  3593. //corrected_position.debug("position before G29");
  3594. plan_bed_level_matrix.set_to_identity();
  3595. vector_3 uncorrected_position = plan_get_position();
  3596. //uncorrected_position.debug("position durring G29");
  3597. current_position[X_AXIS] = uncorrected_position.x;
  3598. current_position[Y_AXIS] = uncorrected_position.y;
  3599. current_position[Z_AXIS] = uncorrected_position.z;
  3600. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3601. int l_feedmultiply = setup_for_endstop_move();
  3602. feedrate = homing_feedrate[Z_AXIS];
  3603. #ifdef AUTO_BED_LEVELING_GRID
  3604. // probe at the points of a lattice grid
  3605. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3606. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3607. // solve the plane equation ax + by + d = z
  3608. // A is the matrix with rows [x y 1] for all the probed points
  3609. // B is the vector of the Z positions
  3610. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3611. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3612. // "A" matrix of the linear system of equations
  3613. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3614. // "B" vector of Z points
  3615. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3616. int probePointCounter = 0;
  3617. bool zig = true;
  3618. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3619. {
  3620. int xProbe, xInc;
  3621. if (zig)
  3622. {
  3623. xProbe = LEFT_PROBE_BED_POSITION;
  3624. //xEnd = RIGHT_PROBE_BED_POSITION;
  3625. xInc = xGridSpacing;
  3626. zig = false;
  3627. } else // zag
  3628. {
  3629. xProbe = RIGHT_PROBE_BED_POSITION;
  3630. //xEnd = LEFT_PROBE_BED_POSITION;
  3631. xInc = -xGridSpacing;
  3632. zig = true;
  3633. }
  3634. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3635. {
  3636. float z_before;
  3637. if (probePointCounter == 0)
  3638. {
  3639. // raise before probing
  3640. z_before = Z_RAISE_BEFORE_PROBING;
  3641. } else
  3642. {
  3643. // raise extruder
  3644. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3645. }
  3646. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3647. eqnBVector[probePointCounter] = measured_z;
  3648. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3649. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3650. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3651. probePointCounter++;
  3652. xProbe += xInc;
  3653. }
  3654. }
  3655. clean_up_after_endstop_move(l_feedmultiply);
  3656. // solve lsq problem
  3657. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3658. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3659. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3660. SERIAL_PROTOCOLPGM(" b: ");
  3661. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3662. SERIAL_PROTOCOLPGM(" d: ");
  3663. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3664. set_bed_level_equation_lsq(plane_equation_coefficients);
  3665. free(plane_equation_coefficients);
  3666. #else // AUTO_BED_LEVELING_GRID not defined
  3667. // Probe at 3 arbitrary points
  3668. // probe 1
  3669. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3670. // probe 2
  3671. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3672. // probe 3
  3673. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3674. clean_up_after_endstop_move(l_feedmultiply);
  3675. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3676. #endif // AUTO_BED_LEVELING_GRID
  3677. st_synchronize();
  3678. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3679. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3680. // When the bed is uneven, this height must be corrected.
  3681. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3682. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3683. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3684. z_tmp = current_position[Z_AXIS];
  3685. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3686. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3687. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3688. }
  3689. break;
  3690. #ifndef Z_PROBE_SLED
  3691. //! ### G30 - Single Z Probe
  3692. // ------------------------------------
  3693. case 30:
  3694. {
  3695. st_synchronize();
  3696. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3697. int l_feedmultiply = setup_for_endstop_move();
  3698. feedrate = homing_feedrate[Z_AXIS];
  3699. run_z_probe();
  3700. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3701. SERIAL_PROTOCOLPGM(" X: ");
  3702. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3703. SERIAL_PROTOCOLPGM(" Y: ");
  3704. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3705. SERIAL_PROTOCOLPGM(" Z: ");
  3706. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3707. SERIAL_PROTOCOLPGM("\n");
  3708. clean_up_after_endstop_move(l_feedmultiply);
  3709. }
  3710. break;
  3711. #else
  3712. //! ### G31 - Dock the sled
  3713. // ---------------------------
  3714. case 31:
  3715. dock_sled(true);
  3716. break;
  3717. //! ### G32 - Undock the sled
  3718. // ----------------------------
  3719. case 32:
  3720. dock_sled(false);
  3721. break;
  3722. #endif // Z_PROBE_SLED
  3723. #endif // ENABLE_AUTO_BED_LEVELING
  3724. #ifdef MESH_BED_LEVELING
  3725. //! ### G30 - Single Z Probe
  3726. // ----------------------------
  3727. case 30:
  3728. {
  3729. st_synchronize();
  3730. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3731. int l_feedmultiply = setup_for_endstop_move();
  3732. feedrate = homing_feedrate[Z_AXIS];
  3733. find_bed_induction_sensor_point_z(-10.f, 3);
  3734. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3735. clean_up_after_endstop_move(l_feedmultiply);
  3736. }
  3737. break;
  3738. //! ### G75 - Print temperature interpolation
  3739. // ---------------------------------------------
  3740. case 75:
  3741. {
  3742. for (int i = 40; i <= 110; i++)
  3743. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3744. }
  3745. break;
  3746. //! ### G76 - PINDA probe temperature calibration
  3747. // ------------------------------------------------
  3748. case 76:
  3749. {
  3750. #ifdef PINDA_THERMISTOR
  3751. if (true)
  3752. {
  3753. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3754. //we need to know accurate position of first calibration point
  3755. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3756. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3757. break;
  3758. }
  3759. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3760. {
  3761. // We don't know where we are! HOME!
  3762. // Push the commands to the front of the message queue in the reverse order!
  3763. // There shall be always enough space reserved for these commands.
  3764. repeatcommand_front(); // repeat G76 with all its parameters
  3765. enquecommand_front_P((PSTR("G28 W0")));
  3766. break;
  3767. }
  3768. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3769. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3770. if (result)
  3771. {
  3772. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3773. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3774. current_position[Z_AXIS] = 50;
  3775. current_position[Y_AXIS] = 180;
  3776. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3777. st_synchronize();
  3778. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3779. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3780. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3781. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3782. st_synchronize();
  3783. gcode_G28(false, false, true);
  3784. }
  3785. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3786. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3787. current_position[Z_AXIS] = 100;
  3788. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3789. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3790. lcd_temp_cal_show_result(false);
  3791. break;
  3792. }
  3793. }
  3794. lcd_update_enable(true);
  3795. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3796. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3797. float zero_z;
  3798. int z_shift = 0; //unit: steps
  3799. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3800. if (start_temp < 35) start_temp = 35;
  3801. if (start_temp < current_temperature_pinda) start_temp += 5;
  3802. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3803. // setTargetHotend(200, 0);
  3804. setTargetBed(70 + (start_temp - 30));
  3805. custom_message_type = CustomMsg::TempCal;
  3806. custom_message_state = 1;
  3807. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3808. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3809. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3810. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3811. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3812. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3813. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3814. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3815. st_synchronize();
  3816. while (current_temperature_pinda < start_temp)
  3817. {
  3818. delay_keep_alive(1000);
  3819. serialecho_temperatures();
  3820. }
  3821. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3822. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3823. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3824. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3825. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3826. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3827. st_synchronize();
  3828. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3829. if (find_z_result == false) {
  3830. lcd_temp_cal_show_result(find_z_result);
  3831. break;
  3832. }
  3833. zero_z = current_position[Z_AXIS];
  3834. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3835. int i = -1; for (; i < 5; i++)
  3836. {
  3837. float temp = (40 + i * 5);
  3838. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3839. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3840. if (start_temp <= temp) break;
  3841. }
  3842. for (i++; i < 5; i++)
  3843. {
  3844. float temp = (40 + i * 5);
  3845. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3846. custom_message_state = i + 2;
  3847. setTargetBed(50 + 10 * (temp - 30) / 5);
  3848. // setTargetHotend(255, 0);
  3849. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3850. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3851. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3852. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3853. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3854. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3855. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3856. st_synchronize();
  3857. while (current_temperature_pinda < temp)
  3858. {
  3859. delay_keep_alive(1000);
  3860. serialecho_temperatures();
  3861. }
  3862. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3863. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3864. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3865. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3866. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3867. st_synchronize();
  3868. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3869. if (find_z_result == false) {
  3870. lcd_temp_cal_show_result(find_z_result);
  3871. break;
  3872. }
  3873. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3874. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3875. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3876. }
  3877. lcd_temp_cal_show_result(true);
  3878. break;
  3879. }
  3880. #endif //PINDA_THERMISTOR
  3881. setTargetBed(PINDA_MIN_T);
  3882. float zero_z;
  3883. int z_shift = 0; //unit: steps
  3884. int t_c; // temperature
  3885. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3886. // We don't know where we are! HOME!
  3887. // Push the commands to the front of the message queue in the reverse order!
  3888. // There shall be always enough space reserved for these commands.
  3889. repeatcommand_front(); // repeat G76 with all its parameters
  3890. enquecommand_front_P((PSTR("G28 W0")));
  3891. break;
  3892. }
  3893. puts_P(_N("PINDA probe calibration start"));
  3894. custom_message_type = CustomMsg::TempCal;
  3895. custom_message_state = 1;
  3896. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3897. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3898. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3899. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3900. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3901. st_synchronize();
  3902. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3903. delay_keep_alive(1000);
  3904. serialecho_temperatures();
  3905. }
  3906. //enquecommand_P(PSTR("M190 S50"));
  3907. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3908. delay_keep_alive(1000);
  3909. serialecho_temperatures();
  3910. }
  3911. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3912. current_position[Z_AXIS] = 5;
  3913. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3914. current_position[X_AXIS] = BED_X0;
  3915. current_position[Y_AXIS] = BED_Y0;
  3916. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3917. st_synchronize();
  3918. find_bed_induction_sensor_point_z(-1.f);
  3919. zero_z = current_position[Z_AXIS];
  3920. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3921. for (int i = 0; i<5; i++) {
  3922. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3923. custom_message_state = i + 2;
  3924. t_c = 60 + i * 10;
  3925. setTargetBed(t_c);
  3926. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3927. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3928. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3929. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3930. st_synchronize();
  3931. while (degBed() < t_c) {
  3932. delay_keep_alive(1000);
  3933. serialecho_temperatures();
  3934. }
  3935. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3936. delay_keep_alive(1000);
  3937. serialecho_temperatures();
  3938. }
  3939. current_position[Z_AXIS] = 5;
  3940. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3941. current_position[X_AXIS] = BED_X0;
  3942. current_position[Y_AXIS] = BED_Y0;
  3943. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3944. st_synchronize();
  3945. find_bed_induction_sensor_point_z(-1.f);
  3946. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3947. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3948. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3949. }
  3950. custom_message_type = CustomMsg::Status;
  3951. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3952. puts_P(_N("Temperature calibration done."));
  3953. disable_x();
  3954. disable_y();
  3955. disable_z();
  3956. disable_e0();
  3957. disable_e1();
  3958. disable_e2();
  3959. setTargetBed(0); //set bed target temperature back to 0
  3960. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3961. temp_cal_active = true;
  3962. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3963. lcd_update_enable(true);
  3964. lcd_update(2);
  3965. }
  3966. break;
  3967. //! ### G80 - Mesh-based Z probe
  3968. // -----------------------------------
  3969. /*
  3970. * Probes a grid and produces a mesh to compensate for variable bed height
  3971. * The S0 report the points as below
  3972. * +----> X-axis
  3973. * |
  3974. * |
  3975. * v Y-axis
  3976. */
  3977. case 80:
  3978. #ifdef MK1BP
  3979. break;
  3980. #endif //MK1BP
  3981. case_G80:
  3982. {
  3983. mesh_bed_leveling_flag = true;
  3984. #ifndef PINDA_THERMISTOR
  3985. static bool run = false; // thermistor-less PINDA temperature compensation is running
  3986. #endif // ndef PINDA_THERMISTOR
  3987. #ifdef SUPPORT_VERBOSITY
  3988. int8_t verbosity_level = 0;
  3989. if (code_seen('V')) {
  3990. // Just 'V' without a number counts as V1.
  3991. char c = strchr_pointer[1];
  3992. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3993. }
  3994. #endif //SUPPORT_VERBOSITY
  3995. // Firstly check if we know where we are
  3996. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3997. // We don't know where we are! HOME!
  3998. // Push the commands to the front of the message queue in the reverse order!
  3999. // There shall be always enough space reserved for these commands.
  4000. if (lcd_commands_type != LcdCommands::StopPrint) {
  4001. repeatcommand_front(); // repeat G80 with all its parameters
  4002. enquecommand_front_P((PSTR("G28 W0")));
  4003. }
  4004. else {
  4005. mesh_bed_leveling_flag = false;
  4006. }
  4007. break;
  4008. }
  4009. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4010. if (code_seen('N')) {
  4011. nMeasPoints = code_value_uint8();
  4012. if (nMeasPoints != 7) {
  4013. nMeasPoints = 3;
  4014. }
  4015. }
  4016. else {
  4017. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4018. }
  4019. uint8_t nProbeRetry = 3;
  4020. if (code_seen('R')) {
  4021. nProbeRetry = code_value_uint8();
  4022. if (nProbeRetry > 10) {
  4023. nProbeRetry = 10;
  4024. }
  4025. }
  4026. else {
  4027. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4028. }
  4029. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4030. #ifndef PINDA_THERMISTOR
  4031. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4032. {
  4033. if (lcd_commands_type != LcdCommands::StopPrint) {
  4034. temp_compensation_start();
  4035. run = true;
  4036. repeatcommand_front(); // repeat G80 with all its parameters
  4037. enquecommand_front_P((PSTR("G28 W0")));
  4038. }
  4039. else {
  4040. mesh_bed_leveling_flag = false;
  4041. }
  4042. break;
  4043. }
  4044. run = false;
  4045. #endif //PINDA_THERMISTOR
  4046. if (lcd_commands_type == LcdCommands::StopPrint) {
  4047. mesh_bed_leveling_flag = false;
  4048. break;
  4049. }
  4050. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4051. CustomMsg custom_message_type_old = custom_message_type;
  4052. unsigned int custom_message_state_old = custom_message_state;
  4053. custom_message_type = CustomMsg::MeshBedLeveling;
  4054. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4055. lcd_update(1);
  4056. mbl.reset(); //reset mesh bed leveling
  4057. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4058. // consumed during the first movements following this statement.
  4059. babystep_undo();
  4060. // Cycle through all points and probe them
  4061. // First move up. During this first movement, the babystepping will be reverted.
  4062. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4063. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4064. // The move to the first calibration point.
  4065. current_position[X_AXIS] = BED_X0;
  4066. current_position[Y_AXIS] = BED_Y0;
  4067. #ifdef SUPPORT_VERBOSITY
  4068. if (verbosity_level >= 1)
  4069. {
  4070. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4071. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4072. }
  4073. #else //SUPPORT_VERBOSITY
  4074. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4075. #endif //SUPPORT_VERBOSITY
  4076. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4077. // Wait until the move is finished.
  4078. st_synchronize();
  4079. uint8_t mesh_point = 0; //index number of calibration point
  4080. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4081. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4082. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4083. #ifdef SUPPORT_VERBOSITY
  4084. if (verbosity_level >= 1) {
  4085. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4086. }
  4087. #endif // SUPPORT_VERBOSITY
  4088. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4089. const char *kill_message = NULL;
  4090. while (mesh_point != nMeasPoints * nMeasPoints) {
  4091. // Get coords of a measuring point.
  4092. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4093. uint8_t iy = mesh_point / nMeasPoints;
  4094. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4095. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4096. custom_message_state--;
  4097. mesh_point++;
  4098. continue; //skip
  4099. }*/
  4100. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4101. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4102. {
  4103. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4104. }
  4105. float z0 = 0.f;
  4106. if (has_z && (mesh_point > 0)) {
  4107. uint16_t z_offset_u = 0;
  4108. if (nMeasPoints == 7) {
  4109. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4110. }
  4111. else {
  4112. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4113. }
  4114. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4115. #ifdef SUPPORT_VERBOSITY
  4116. if (verbosity_level >= 1) {
  4117. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4118. }
  4119. #endif // SUPPORT_VERBOSITY
  4120. }
  4121. // Move Z up to MESH_HOME_Z_SEARCH.
  4122. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4123. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4124. float init_z_bckp = current_position[Z_AXIS];
  4125. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4126. st_synchronize();
  4127. // Move to XY position of the sensor point.
  4128. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4129. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4130. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4131. #ifdef SUPPORT_VERBOSITY
  4132. if (verbosity_level >= 1) {
  4133. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4134. SERIAL_PROTOCOL(mesh_point);
  4135. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4136. }
  4137. #else //SUPPORT_VERBOSITY
  4138. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4139. #endif // SUPPORT_VERBOSITY
  4140. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4141. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4142. st_synchronize();
  4143. // Go down until endstop is hit
  4144. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4145. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4146. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4147. break;
  4148. }
  4149. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4150. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4151. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4152. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4153. st_synchronize();
  4154. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4155. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4156. break;
  4157. }
  4158. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4159. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4160. break;
  4161. }
  4162. }
  4163. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4164. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4165. break;
  4166. }
  4167. #ifdef SUPPORT_VERBOSITY
  4168. if (verbosity_level >= 10) {
  4169. SERIAL_ECHOPGM("X: ");
  4170. MYSERIAL.print(current_position[X_AXIS], 5);
  4171. SERIAL_ECHOLNPGM("");
  4172. SERIAL_ECHOPGM("Y: ");
  4173. MYSERIAL.print(current_position[Y_AXIS], 5);
  4174. SERIAL_PROTOCOLPGM("\n");
  4175. }
  4176. #endif // SUPPORT_VERBOSITY
  4177. float offset_z = 0;
  4178. #ifdef PINDA_THERMISTOR
  4179. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4180. #endif //PINDA_THERMISTOR
  4181. // #ifdef SUPPORT_VERBOSITY
  4182. /* if (verbosity_level >= 1)
  4183. {
  4184. SERIAL_ECHOPGM("mesh bed leveling: ");
  4185. MYSERIAL.print(current_position[Z_AXIS], 5);
  4186. SERIAL_ECHOPGM(" offset: ");
  4187. MYSERIAL.print(offset_z, 5);
  4188. SERIAL_ECHOLNPGM("");
  4189. }*/
  4190. // #endif // SUPPORT_VERBOSITY
  4191. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4192. custom_message_state--;
  4193. mesh_point++;
  4194. lcd_update(1);
  4195. }
  4196. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4197. #ifdef SUPPORT_VERBOSITY
  4198. if (verbosity_level >= 20) {
  4199. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4200. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4201. MYSERIAL.print(current_position[Z_AXIS], 5);
  4202. }
  4203. #endif // SUPPORT_VERBOSITY
  4204. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4205. st_synchronize();
  4206. if (mesh_point != nMeasPoints * nMeasPoints) {
  4207. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4208. bool bState;
  4209. do { // repeat until Z-leveling o.k.
  4210. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4211. #ifdef TMC2130
  4212. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4213. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4214. #else // TMC2130
  4215. lcd_wait_for_click_delay(0); // ~ no timeout
  4216. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4217. #endif // TMC2130
  4218. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4219. bState=enable_z_endstop(false);
  4220. current_position[Z_AXIS] -= 1;
  4221. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4222. st_synchronize();
  4223. enable_z_endstop(true);
  4224. #ifdef TMC2130
  4225. tmc2130_home_enter(Z_AXIS_MASK);
  4226. #endif // TMC2130
  4227. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4228. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4229. st_synchronize();
  4230. #ifdef TMC2130
  4231. tmc2130_home_exit();
  4232. #endif // TMC2130
  4233. enable_z_endstop(bState);
  4234. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4235. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4236. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4237. lcd_update_enable(true); // display / status-line recovery
  4238. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4239. repeatcommand_front(); // re-run (i.e. of "G80")
  4240. break;
  4241. }
  4242. clean_up_after_endstop_move(l_feedmultiply);
  4243. // SERIAL_ECHOLNPGM("clean up finished ");
  4244. #ifndef PINDA_THERMISTOR
  4245. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4246. #endif
  4247. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4248. // SERIAL_ECHOLNPGM("babystep applied");
  4249. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4250. #ifdef SUPPORT_VERBOSITY
  4251. if (verbosity_level >= 1) {
  4252. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4253. }
  4254. #endif // SUPPORT_VERBOSITY
  4255. for (uint8_t i = 0; i < 4; ++i) {
  4256. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4257. long correction = 0;
  4258. if (code_seen(codes[i]))
  4259. correction = code_value_long();
  4260. else if (eeprom_bed_correction_valid) {
  4261. unsigned char *addr = (i < 2) ?
  4262. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4263. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4264. correction = eeprom_read_int8(addr);
  4265. }
  4266. if (correction == 0)
  4267. continue;
  4268. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4269. SERIAL_ERROR_START;
  4270. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4271. SERIAL_ECHO(correction);
  4272. SERIAL_ECHOLNPGM(" microns");
  4273. }
  4274. else {
  4275. float offset = float(correction) * 0.001f;
  4276. switch (i) {
  4277. case 0:
  4278. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4279. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4280. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4281. }
  4282. }
  4283. break;
  4284. case 1:
  4285. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4286. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4287. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4288. }
  4289. }
  4290. break;
  4291. case 2:
  4292. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4293. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4294. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4295. }
  4296. }
  4297. break;
  4298. case 3:
  4299. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4300. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4301. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4302. }
  4303. }
  4304. break;
  4305. }
  4306. }
  4307. }
  4308. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4309. if (nMeasPoints == 3) {
  4310. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4311. }
  4312. /*
  4313. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4314. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4315. SERIAL_PROTOCOLPGM(",");
  4316. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4317. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4318. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4319. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4320. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4321. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4322. SERIAL_PROTOCOLPGM(" ");
  4323. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4324. }
  4325. SERIAL_PROTOCOLPGM("\n");
  4326. }
  4327. */
  4328. if (nMeasPoints == 7 && magnet_elimination) {
  4329. mbl_interpolation(nMeasPoints);
  4330. }
  4331. /*
  4332. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4333. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4334. SERIAL_PROTOCOLPGM(",");
  4335. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4336. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4337. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4338. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4339. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4340. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4341. SERIAL_PROTOCOLPGM(" ");
  4342. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4343. }
  4344. SERIAL_PROTOCOLPGM("\n");
  4345. }
  4346. */
  4347. // SERIAL_ECHOLNPGM("Upsample finished");
  4348. mbl.active = 1; //activate mesh bed leveling
  4349. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4350. go_home_with_z_lift();
  4351. // SERIAL_ECHOLNPGM("Go home finished");
  4352. //unretract (after PINDA preheat retraction)
  4353. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4354. current_position[E_AXIS] += default_retraction;
  4355. plan_buffer_line_curposXYZE(400, active_extruder);
  4356. }
  4357. KEEPALIVE_STATE(NOT_BUSY);
  4358. // Restore custom message state
  4359. lcd_setstatuspgm(_T(WELCOME_MSG));
  4360. custom_message_type = custom_message_type_old;
  4361. custom_message_state = custom_message_state_old;
  4362. mesh_bed_leveling_flag = false;
  4363. mesh_bed_run_from_menu = false;
  4364. lcd_update(2);
  4365. }
  4366. break;
  4367. //! ### G81 - Mesh bed leveling status
  4368. // -----------------------------------------
  4369. /*
  4370. * Prints mesh bed leveling status and bed profile if activated
  4371. */
  4372. case 81:
  4373. if (mbl.active) {
  4374. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4375. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4376. SERIAL_PROTOCOLPGM(",");
  4377. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4378. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4379. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4380. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4381. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4382. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4383. SERIAL_PROTOCOLPGM(" ");
  4384. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4385. }
  4386. SERIAL_PROTOCOLPGM("\n");
  4387. }
  4388. }
  4389. else
  4390. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4391. break;
  4392. #if 0
  4393. /*
  4394. * G82: Single Z probe at current location
  4395. *
  4396. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4397. *
  4398. */
  4399. case 82:
  4400. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4401. int l_feedmultiply = setup_for_endstop_move();
  4402. find_bed_induction_sensor_point_z();
  4403. clean_up_after_endstop_move(l_feedmultiply);
  4404. SERIAL_PROTOCOLPGM("Bed found at: ");
  4405. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4406. SERIAL_PROTOCOLPGM("\n");
  4407. break;
  4408. /*
  4409. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4410. */
  4411. case 83:
  4412. {
  4413. int babystepz = code_seen('S') ? code_value() : 0;
  4414. int BabyPosition = code_seen('P') ? code_value() : 0;
  4415. if (babystepz != 0) {
  4416. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4417. // Is the axis indexed starting with zero or one?
  4418. if (BabyPosition > 4) {
  4419. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4420. }else{
  4421. // Save it to the eeprom
  4422. babystepLoadZ = babystepz;
  4423. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4424. // adjust the Z
  4425. babystepsTodoZadd(babystepLoadZ);
  4426. }
  4427. }
  4428. }
  4429. break;
  4430. /*
  4431. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4432. */
  4433. case 84:
  4434. babystepsTodoZsubtract(babystepLoadZ);
  4435. // babystepLoadZ = 0;
  4436. break;
  4437. /*
  4438. * G85: Prusa3D specific: Pick best babystep
  4439. */
  4440. case 85:
  4441. lcd_pick_babystep();
  4442. break;
  4443. #endif
  4444. /**
  4445. * ### G86 - Disable babystep correction after home
  4446. *
  4447. * This G-code will be performed at the start of a calibration script.
  4448. * (Prusa3D specific)
  4449. */
  4450. case 86:
  4451. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4452. break;
  4453. /**
  4454. * ### G87 - Enable babystep correction after home
  4455. *
  4456. *
  4457. * This G-code will be performed at the end of a calibration script.
  4458. * (Prusa3D specific)
  4459. */
  4460. case 87:
  4461. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4462. break;
  4463. /**
  4464. * ### G88 - Reserved
  4465. *
  4466. * Currently has no effect.
  4467. */
  4468. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4469. case 88:
  4470. break;
  4471. #endif // ENABLE_MESH_BED_LEVELING
  4472. //! ### G90 - Switch off relative mode
  4473. // -------------------------------
  4474. case 90:
  4475. relative_mode = false;
  4476. break;
  4477. //! ### G91 - Switch on relative mode
  4478. // -------------------------------
  4479. case 91:
  4480. relative_mode = true;
  4481. break;
  4482. //! ### G92 - Set position
  4483. // -----------------------------
  4484. case 92:
  4485. if(!code_seen(axis_codes[E_AXIS]))
  4486. st_synchronize();
  4487. for(int8_t i=0; i < NUM_AXIS; i++) {
  4488. if(code_seen(axis_codes[i])) {
  4489. if(i == E_AXIS) {
  4490. current_position[i] = code_value();
  4491. plan_set_e_position(current_position[E_AXIS]);
  4492. }
  4493. else {
  4494. current_position[i] = code_value()+cs.add_homing[i];
  4495. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4496. }
  4497. }
  4498. }
  4499. break;
  4500. //! ### G98 - Activate farm mode
  4501. // -----------------------------------
  4502. case 98:
  4503. farm_mode = 1;
  4504. PingTime = _millis();
  4505. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4506. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4507. SilentModeMenu = SILENT_MODE_OFF;
  4508. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4509. fCheckModeInit(); // alternatively invoke printer reset
  4510. break;
  4511. //! ### G99 - Deactivate farm mode
  4512. // -------------------------------------
  4513. case 99:
  4514. farm_mode = 0;
  4515. lcd_printer_connected();
  4516. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4517. lcd_update(2);
  4518. fCheckModeInit(); // alternatively invoke printer reset
  4519. break;
  4520. default:
  4521. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4522. }
  4523. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4524. gcode_in_progress = 0;
  4525. } // end if(code_seen('G'))
  4526. //! ---------------------------------------------------------------------------------
  4527. else if(code_seen('M'))
  4528. {
  4529. int index;
  4530. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4531. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4532. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4533. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4534. } else
  4535. {
  4536. mcode_in_progress = (int)code_value();
  4537. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4538. switch(mcode_in_progress)
  4539. {
  4540. //! ### M0, M1 - Stop the printer
  4541. // ---------------------------------------------------------------
  4542. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4543. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4544. {
  4545. char *src = strchr_pointer + 2;
  4546. codenum = 0;
  4547. bool hasP = false, hasS = false;
  4548. if (code_seen('P')) {
  4549. codenum = code_value(); // milliseconds to wait
  4550. hasP = codenum > 0;
  4551. }
  4552. if (code_seen('S')) {
  4553. codenum = code_value() * 1000; // seconds to wait
  4554. hasS = codenum > 0;
  4555. }
  4556. starpos = strchr(src, '*');
  4557. if (starpos != NULL) *(starpos) = '\0';
  4558. while (*src == ' ') ++src;
  4559. if (!hasP && !hasS && *src != '\0') {
  4560. lcd_setstatus(src);
  4561. } else {
  4562. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4563. }
  4564. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4565. st_synchronize();
  4566. previous_millis_cmd = _millis();
  4567. if (codenum > 0){
  4568. codenum += _millis(); // keep track of when we started waiting
  4569. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4570. while(_millis() < codenum && !lcd_clicked()){
  4571. manage_heater();
  4572. manage_inactivity(true);
  4573. lcd_update(0);
  4574. }
  4575. KEEPALIVE_STATE(IN_HANDLER);
  4576. lcd_ignore_click(false);
  4577. }else{
  4578. marlin_wait_for_click();
  4579. }
  4580. if (IS_SD_PRINTING)
  4581. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4582. else
  4583. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4584. }
  4585. break;
  4586. //! ### M17 - Enable axes
  4587. // ---------------------------------
  4588. case 17:
  4589. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4590. enable_x();
  4591. enable_y();
  4592. enable_z();
  4593. enable_e0();
  4594. enable_e1();
  4595. enable_e2();
  4596. break;
  4597. #ifdef SDSUPPORT
  4598. //! ### M20 - SD Card file list
  4599. // -----------------------------------
  4600. case 20:
  4601. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4602. card.ls();
  4603. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4604. break;
  4605. //! ### M21 - Init SD card
  4606. // ------------------------------------
  4607. case 21:
  4608. card.initsd();
  4609. break;
  4610. //! ### M22 - Release SD card
  4611. // -----------------------------------
  4612. case 22:
  4613. card.release();
  4614. break;
  4615. //! ### M23 - Select file
  4616. // -----------------------------------
  4617. case 23:
  4618. starpos = (strchr(strchr_pointer + 4,'*'));
  4619. if(starpos!=NULL)
  4620. *(starpos)='\0';
  4621. card.openFile(strchr_pointer + 4,true);
  4622. break;
  4623. //! ### M24 - Start/resume SD print
  4624. // ----------------------------------
  4625. case 24:
  4626. if (isPrintPaused)
  4627. lcd_resume_print();
  4628. else
  4629. {
  4630. failstats_reset_print();
  4631. card.startFileprint();
  4632. starttime=_millis();
  4633. }
  4634. break;
  4635. //! ### M26 S\<index\> - Set SD index
  4636. //! Set position in SD card file to index in bytes.
  4637. //! This command is expected to be called after M23 and before M24.
  4638. //! Otherwise effect of this command is undefined.
  4639. // ----------------------------------
  4640. case 26:
  4641. if(card.cardOK && code_seen('S')) {
  4642. long index = code_value_long();
  4643. card.setIndex(index);
  4644. // We don't disable interrupt during update of sdpos_atomic
  4645. // as we expect, that SD card print is not active in this moment
  4646. sdpos_atomic = index;
  4647. }
  4648. break;
  4649. //! ### M27 - Get SD status
  4650. // ----------------------------------
  4651. case 27:
  4652. card.getStatus();
  4653. break;
  4654. //! ### M28 - Start SD write
  4655. // ---------------------------------
  4656. case 28:
  4657. starpos = (strchr(strchr_pointer + 4,'*'));
  4658. if(starpos != NULL){
  4659. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4660. strchr_pointer = strchr(npos,' ') + 1;
  4661. *(starpos) = '\0';
  4662. }
  4663. card.openFile(strchr_pointer+4,false);
  4664. break;
  4665. //! ### M29 - Stop SD write
  4666. // -------------------------------------
  4667. //! Currently has no effect.
  4668. case 29:
  4669. //processed in write to file routine above
  4670. //card,saving = false;
  4671. break;
  4672. //! ### M30 - Delete file <filename>
  4673. // ----------------------------------
  4674. case 30:
  4675. if (card.cardOK){
  4676. card.closefile();
  4677. starpos = (strchr(strchr_pointer + 4,'*'));
  4678. if(starpos != NULL){
  4679. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4680. strchr_pointer = strchr(npos,' ') + 1;
  4681. *(starpos) = '\0';
  4682. }
  4683. card.removeFile(strchr_pointer + 4);
  4684. }
  4685. break;
  4686. //! ### M32 - Select file and start SD print
  4687. // ------------------------------------
  4688. case 32:
  4689. {
  4690. if(card.sdprinting) {
  4691. st_synchronize();
  4692. }
  4693. starpos = (strchr(strchr_pointer + 4,'*'));
  4694. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4695. if(namestartpos==NULL)
  4696. {
  4697. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4698. }
  4699. else
  4700. namestartpos++; //to skip the '!'
  4701. if(starpos!=NULL)
  4702. *(starpos)='\0';
  4703. bool call_procedure=(code_seen('P'));
  4704. if(strchr_pointer>namestartpos)
  4705. call_procedure=false; //false alert, 'P' found within filename
  4706. if( card.cardOK )
  4707. {
  4708. card.openFile(namestartpos,true,!call_procedure);
  4709. if(code_seen('S'))
  4710. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4711. card.setIndex(code_value_long());
  4712. card.startFileprint();
  4713. if(!call_procedure)
  4714. starttime=_millis(); //procedure calls count as normal print time.
  4715. }
  4716. } break;
  4717. //! ### M982 - Start SD write
  4718. // ---------------------------------
  4719. case 928:
  4720. starpos = (strchr(strchr_pointer + 5,'*'));
  4721. if(starpos != NULL){
  4722. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4723. strchr_pointer = strchr(npos,' ') + 1;
  4724. *(starpos) = '\0';
  4725. }
  4726. card.openLogFile(strchr_pointer+5);
  4727. break;
  4728. #endif //SDSUPPORT
  4729. //! ### M31 - Report current print time
  4730. // --------------------------------------------------
  4731. case 31: //M31 take time since the start of the SD print or an M109 command
  4732. {
  4733. stoptime=_millis();
  4734. char time[30];
  4735. unsigned long t=(stoptime-starttime)/1000;
  4736. int sec,min;
  4737. min=t/60;
  4738. sec=t%60;
  4739. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4740. SERIAL_ECHO_START;
  4741. SERIAL_ECHOLN(time);
  4742. lcd_setstatus(time);
  4743. autotempShutdown();
  4744. }
  4745. break;
  4746. //! ### M42 - Set pin state
  4747. // -----------------------------
  4748. case 42:
  4749. if (code_seen('S'))
  4750. {
  4751. int pin_status = code_value();
  4752. int pin_number = LED_PIN;
  4753. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4754. pin_number = code_value();
  4755. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4756. {
  4757. if (sensitive_pins[i] == pin_number)
  4758. {
  4759. pin_number = -1;
  4760. break;
  4761. }
  4762. }
  4763. #if defined(FAN_PIN) && FAN_PIN > -1
  4764. if (pin_number == FAN_PIN)
  4765. fanSpeed = pin_status;
  4766. #endif
  4767. if (pin_number > -1)
  4768. {
  4769. pinMode(pin_number, OUTPUT);
  4770. digitalWrite(pin_number, pin_status);
  4771. analogWrite(pin_number, pin_status);
  4772. }
  4773. }
  4774. break;
  4775. //! ### M44 - Reset the bed skew and offset calibration (Prusa specific)
  4776. // --------------------------------------------------------------------
  4777. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4778. // Reset the baby step value and the baby step applied flag.
  4779. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4780. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4781. // Reset the skew and offset in both RAM and EEPROM.
  4782. reset_bed_offset_and_skew();
  4783. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4784. // the planner will not perform any adjustments in the XY plane.
  4785. // Wait for the motors to stop and update the current position with the absolute values.
  4786. world2machine_revert_to_uncorrected();
  4787. break;
  4788. //! ### M45 - Bed skew and offset with manual Z up (Prusa specific)
  4789. // ------------------------------------------------------
  4790. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4791. {
  4792. int8_t verbosity_level = 0;
  4793. bool only_Z = code_seen('Z');
  4794. #ifdef SUPPORT_VERBOSITY
  4795. if (code_seen('V'))
  4796. {
  4797. // Just 'V' without a number counts as V1.
  4798. char c = strchr_pointer[1];
  4799. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4800. }
  4801. #endif //SUPPORT_VERBOSITY
  4802. gcode_M45(only_Z, verbosity_level);
  4803. }
  4804. break;
  4805. /*
  4806. case 46:
  4807. {
  4808. // M46: Prusa3D: Show the assigned IP address.
  4809. uint8_t ip[4];
  4810. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4811. if (hasIP) {
  4812. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4813. SERIAL_ECHO(int(ip[0]));
  4814. SERIAL_ECHOPGM(".");
  4815. SERIAL_ECHO(int(ip[1]));
  4816. SERIAL_ECHOPGM(".");
  4817. SERIAL_ECHO(int(ip[2]));
  4818. SERIAL_ECHOPGM(".");
  4819. SERIAL_ECHO(int(ip[3]));
  4820. SERIAL_ECHOLNPGM("");
  4821. } else {
  4822. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4823. }
  4824. break;
  4825. }
  4826. */
  4827. //! ### M47 - Show end stops dialog on the display (Prusa specific)
  4828. // ----------------------------------------------------
  4829. case 47:
  4830. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4831. lcd_diag_show_end_stops();
  4832. KEEPALIVE_STATE(IN_HANDLER);
  4833. break;
  4834. #if 0
  4835. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4836. {
  4837. // Disable the default update procedure of the display. We will do a modal dialog.
  4838. lcd_update_enable(false);
  4839. // Let the planner use the uncorrected coordinates.
  4840. mbl.reset();
  4841. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4842. // the planner will not perform any adjustments in the XY plane.
  4843. // Wait for the motors to stop and update the current position with the absolute values.
  4844. world2machine_revert_to_uncorrected();
  4845. // Move the print head close to the bed.
  4846. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4847. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4848. st_synchronize();
  4849. // Home in the XY plane.
  4850. set_destination_to_current();
  4851. int l_feedmultiply = setup_for_endstop_move();
  4852. home_xy();
  4853. int8_t verbosity_level = 0;
  4854. if (code_seen('V')) {
  4855. // Just 'V' without a number counts as V1.
  4856. char c = strchr_pointer[1];
  4857. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4858. }
  4859. bool success = scan_bed_induction_points(verbosity_level);
  4860. clean_up_after_endstop_move(l_feedmultiply);
  4861. // Print head up.
  4862. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4863. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4864. st_synchronize();
  4865. lcd_update_enable(true);
  4866. break;
  4867. }
  4868. #endif
  4869. #ifdef ENABLE_AUTO_BED_LEVELING
  4870. #ifdef Z_PROBE_REPEATABILITY_TEST
  4871. //! ### M48 - Z-Probe repeatability measurement function.
  4872. // ------------------------------------------------------
  4873. //!
  4874. //! _Usage:_
  4875. //!
  4876. //! M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4877. //!
  4878. //! This function assumes the bed has been homed. Specifically, that a G28 command
  4879. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4880. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4881. //! regenerated.
  4882. //!
  4883. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4884. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4885. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4886. //!
  4887. case 48: // M48 Z-Probe repeatability
  4888. {
  4889. #if Z_MIN_PIN == -1
  4890. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4891. #endif
  4892. double sum=0.0;
  4893. double mean=0.0;
  4894. double sigma=0.0;
  4895. double sample_set[50];
  4896. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4897. double X_current, Y_current, Z_current;
  4898. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4899. if (code_seen('V') || code_seen('v')) {
  4900. verbose_level = code_value();
  4901. if (verbose_level<0 || verbose_level>4 ) {
  4902. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4903. goto Sigma_Exit;
  4904. }
  4905. }
  4906. if (verbose_level > 0) {
  4907. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4908. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4909. }
  4910. if (code_seen('n')) {
  4911. n_samples = code_value();
  4912. if (n_samples<4 || n_samples>50 ) {
  4913. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4914. goto Sigma_Exit;
  4915. }
  4916. }
  4917. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4918. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4919. Z_current = st_get_position_mm(Z_AXIS);
  4920. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4921. ext_position = st_get_position_mm(E_AXIS);
  4922. if (code_seen('X') || code_seen('x') ) {
  4923. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4924. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4925. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4926. goto Sigma_Exit;
  4927. }
  4928. }
  4929. if (code_seen('Y') || code_seen('y') ) {
  4930. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4931. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4932. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4933. goto Sigma_Exit;
  4934. }
  4935. }
  4936. if (code_seen('L') || code_seen('l') ) {
  4937. n_legs = code_value();
  4938. if ( n_legs==1 )
  4939. n_legs = 2;
  4940. if ( n_legs<0 || n_legs>15 ) {
  4941. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4942. goto Sigma_Exit;
  4943. }
  4944. }
  4945. //
  4946. // Do all the preliminary setup work. First raise the probe.
  4947. //
  4948. st_synchronize();
  4949. plan_bed_level_matrix.set_to_identity();
  4950. plan_buffer_line( X_current, Y_current, Z_start_location,
  4951. ext_position,
  4952. homing_feedrate[Z_AXIS]/60,
  4953. active_extruder);
  4954. st_synchronize();
  4955. //
  4956. // Now get everything to the specified probe point So we can safely do a probe to
  4957. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4958. // use that as a starting point for each probe.
  4959. //
  4960. if (verbose_level > 2)
  4961. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4962. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4963. ext_position,
  4964. homing_feedrate[X_AXIS]/60,
  4965. active_extruder);
  4966. st_synchronize();
  4967. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4968. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4969. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4970. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4971. //
  4972. // OK, do the inital probe to get us close to the bed.
  4973. // Then retrace the right amount and use that in subsequent probes
  4974. //
  4975. int l_feedmultiply = setup_for_endstop_move();
  4976. run_z_probe();
  4977. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4978. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4979. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4980. ext_position,
  4981. homing_feedrate[X_AXIS]/60,
  4982. active_extruder);
  4983. st_synchronize();
  4984. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4985. for( n=0; n<n_samples; n++) {
  4986. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4987. if ( n_legs) {
  4988. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4989. int rotational_direction, l;
  4990. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4991. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4992. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4993. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4994. //SERIAL_ECHOPAIR(" theta: ",theta);
  4995. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4996. //SERIAL_PROTOCOLLNPGM("");
  4997. for( l=0; l<n_legs-1; l++) {
  4998. if (rotational_direction==1)
  4999. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5000. else
  5001. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5002. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5003. if ( radius<0.0 )
  5004. radius = -radius;
  5005. X_current = X_probe_location + cos(theta) * radius;
  5006. Y_current = Y_probe_location + sin(theta) * radius;
  5007. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5008. X_current = X_MIN_POS;
  5009. if ( X_current>X_MAX_POS)
  5010. X_current = X_MAX_POS;
  5011. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5012. Y_current = Y_MIN_POS;
  5013. if ( Y_current>Y_MAX_POS)
  5014. Y_current = Y_MAX_POS;
  5015. if (verbose_level>3 ) {
  5016. SERIAL_ECHOPAIR("x: ", X_current);
  5017. SERIAL_ECHOPAIR("y: ", Y_current);
  5018. SERIAL_PROTOCOLLNPGM("");
  5019. }
  5020. do_blocking_move_to( X_current, Y_current, Z_current );
  5021. }
  5022. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5023. }
  5024. int l_feedmultiply = setup_for_endstop_move();
  5025. run_z_probe();
  5026. sample_set[n] = current_position[Z_AXIS];
  5027. //
  5028. // Get the current mean for the data points we have so far
  5029. //
  5030. sum=0.0;
  5031. for( j=0; j<=n; j++) {
  5032. sum = sum + sample_set[j];
  5033. }
  5034. mean = sum / (double (n+1));
  5035. //
  5036. // Now, use that mean to calculate the standard deviation for the
  5037. // data points we have so far
  5038. //
  5039. sum=0.0;
  5040. for( j=0; j<=n; j++) {
  5041. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5042. }
  5043. sigma = sqrt( sum / (double (n+1)) );
  5044. if (verbose_level > 1) {
  5045. SERIAL_PROTOCOL(n+1);
  5046. SERIAL_PROTOCOL(" of ");
  5047. SERIAL_PROTOCOL(n_samples);
  5048. SERIAL_PROTOCOLPGM(" z: ");
  5049. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5050. }
  5051. if (verbose_level > 2) {
  5052. SERIAL_PROTOCOL(" mean: ");
  5053. SERIAL_PROTOCOL_F(mean,6);
  5054. SERIAL_PROTOCOL(" sigma: ");
  5055. SERIAL_PROTOCOL_F(sigma,6);
  5056. }
  5057. if (verbose_level > 0)
  5058. SERIAL_PROTOCOLPGM("\n");
  5059. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5060. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5061. st_synchronize();
  5062. }
  5063. _delay(1000);
  5064. clean_up_after_endstop_move(l_feedmultiply);
  5065. // enable_endstops(true);
  5066. if (verbose_level > 0) {
  5067. SERIAL_PROTOCOLPGM("Mean: ");
  5068. SERIAL_PROTOCOL_F(mean, 6);
  5069. SERIAL_PROTOCOLPGM("\n");
  5070. }
  5071. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5072. SERIAL_PROTOCOL_F(sigma, 6);
  5073. SERIAL_PROTOCOLPGM("\n\n");
  5074. Sigma_Exit:
  5075. break;
  5076. }
  5077. #endif // Z_PROBE_REPEATABILITY_TEST
  5078. #endif // ENABLE_AUTO_BED_LEVELING
  5079. //! ### M73 - Set/get print progress
  5080. // -------------------------------------
  5081. //! _Usage:_
  5082. //!
  5083. //! M73 P<percent> R<time_remaining> Q<percent_silent> S<time_remaining_silent>
  5084. //!
  5085. case 73: //M73 show percent done and time remaining
  5086. if(code_seen('P')) print_percent_done_normal = code_value();
  5087. if(code_seen('R')) print_time_remaining_normal = code_value();
  5088. if(code_seen('Q')) print_percent_done_silent = code_value();
  5089. if(code_seen('S')) print_time_remaining_silent = code_value();
  5090. {
  5091. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5092. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5093. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5094. }
  5095. break;
  5096. //! ### M104 - Set hotend temperature
  5097. // -----------------------------------------
  5098. case 104: // M104
  5099. {
  5100. uint8_t extruder;
  5101. if(setTargetedHotend(104,extruder)){
  5102. break;
  5103. }
  5104. if (code_seen('S'))
  5105. {
  5106. setTargetHotendSafe(code_value(), extruder);
  5107. }
  5108. break;
  5109. }
  5110. //! ### M112 - Emergency stop
  5111. // -----------------------------------------
  5112. case 112:
  5113. kill(_n(""), 3);
  5114. break;
  5115. //! ### M140 - Set bed temperature
  5116. // -----------------------------------------
  5117. case 140:
  5118. if (code_seen('S')) setTargetBed(code_value());
  5119. break;
  5120. //! ### M105 - Report temperatures
  5121. // -----------------------------------------
  5122. case 105:
  5123. {
  5124. uint8_t extruder;
  5125. if(setTargetedHotend(105, extruder)){
  5126. break;
  5127. }
  5128. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5129. SERIAL_PROTOCOLPGM("ok T:");
  5130. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5131. SERIAL_PROTOCOLPGM(" /");
  5132. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5133. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5134. SERIAL_PROTOCOLPGM(" B:");
  5135. SERIAL_PROTOCOL_F(degBed(),1);
  5136. SERIAL_PROTOCOLPGM(" /");
  5137. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5138. #endif //TEMP_BED_PIN
  5139. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5140. SERIAL_PROTOCOLPGM(" T");
  5141. SERIAL_PROTOCOL(cur_extruder);
  5142. SERIAL_PROTOCOLPGM(":");
  5143. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5144. SERIAL_PROTOCOLPGM(" /");
  5145. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5146. }
  5147. #else
  5148. SERIAL_ERROR_START;
  5149. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5150. #endif
  5151. SERIAL_PROTOCOLPGM(" @:");
  5152. #ifdef EXTRUDER_WATTS
  5153. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5154. SERIAL_PROTOCOLPGM("W");
  5155. #else
  5156. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5157. #endif
  5158. SERIAL_PROTOCOLPGM(" B@:");
  5159. #ifdef BED_WATTS
  5160. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5161. SERIAL_PROTOCOLPGM("W");
  5162. #else
  5163. SERIAL_PROTOCOL(getHeaterPower(-1));
  5164. #endif
  5165. #ifdef PINDA_THERMISTOR
  5166. SERIAL_PROTOCOLPGM(" P:");
  5167. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5168. #endif //PINDA_THERMISTOR
  5169. #ifdef AMBIENT_THERMISTOR
  5170. SERIAL_PROTOCOLPGM(" A:");
  5171. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5172. #endif //AMBIENT_THERMISTOR
  5173. #ifdef SHOW_TEMP_ADC_VALUES
  5174. {float raw = 0.0;
  5175. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5176. SERIAL_PROTOCOLPGM(" ADC B:");
  5177. SERIAL_PROTOCOL_F(degBed(),1);
  5178. SERIAL_PROTOCOLPGM("C->");
  5179. raw = rawBedTemp();
  5180. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5181. SERIAL_PROTOCOLPGM(" Rb->");
  5182. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5183. SERIAL_PROTOCOLPGM(" Rxb->");
  5184. SERIAL_PROTOCOL_F(raw, 5);
  5185. #endif
  5186. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5187. SERIAL_PROTOCOLPGM(" T");
  5188. SERIAL_PROTOCOL(cur_extruder);
  5189. SERIAL_PROTOCOLPGM(":");
  5190. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5191. SERIAL_PROTOCOLPGM("C->");
  5192. raw = rawHotendTemp(cur_extruder);
  5193. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5194. SERIAL_PROTOCOLPGM(" Rt");
  5195. SERIAL_PROTOCOL(cur_extruder);
  5196. SERIAL_PROTOCOLPGM("->");
  5197. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5198. SERIAL_PROTOCOLPGM(" Rx");
  5199. SERIAL_PROTOCOL(cur_extruder);
  5200. SERIAL_PROTOCOLPGM("->");
  5201. SERIAL_PROTOCOL_F(raw, 5);
  5202. }}
  5203. #endif
  5204. SERIAL_PROTOCOLLN("");
  5205. KEEPALIVE_STATE(NOT_BUSY);
  5206. return;
  5207. break;
  5208. }
  5209. //! ### M109 - Wait for extruder temperature
  5210. //! Parameters (not mandatory):
  5211. //! * S \<temp\> set extruder temperature
  5212. //! * R \<temp\> set extruder temperature
  5213. //!
  5214. //! Parameters S and R are treated identically.
  5215. //! Command always waits for both cool down and heat up.
  5216. //! If no parameters are supplied waits for previously
  5217. //! set extruder temperature.
  5218. // -------------------------------------------------
  5219. case 109:
  5220. {
  5221. uint8_t extruder;
  5222. if(setTargetedHotend(109, extruder)){
  5223. break;
  5224. }
  5225. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5226. heating_status = 1;
  5227. if (farm_mode) { prusa_statistics(1); };
  5228. #ifdef AUTOTEMP
  5229. autotemp_enabled=false;
  5230. #endif
  5231. if (code_seen('S')) {
  5232. setTargetHotendSafe(code_value(), extruder);
  5233. } else if (code_seen('R')) {
  5234. setTargetHotendSafe(code_value(), extruder);
  5235. }
  5236. #ifdef AUTOTEMP
  5237. if (code_seen('S')) autotemp_min=code_value();
  5238. if (code_seen('B')) autotemp_max=code_value();
  5239. if (code_seen('F'))
  5240. {
  5241. autotemp_factor=code_value();
  5242. autotemp_enabled=true;
  5243. }
  5244. #endif
  5245. codenum = _millis();
  5246. /* See if we are heating up or cooling down */
  5247. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5248. KEEPALIVE_STATE(NOT_BUSY);
  5249. cancel_heatup = false;
  5250. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5251. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5252. KEEPALIVE_STATE(IN_HANDLER);
  5253. heating_status = 2;
  5254. if (farm_mode) { prusa_statistics(2); };
  5255. //starttime=_millis();
  5256. previous_millis_cmd = _millis();
  5257. }
  5258. break;
  5259. //! ### M190 - Wait for bed temperature
  5260. //! Parameters (not mandatory):
  5261. //! * S \<temp\> set extruder temperature and wait for heating
  5262. //! * R \<temp\> set extruder temperature and wait for heating or cooling
  5263. //!
  5264. //! If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5265. case 190:
  5266. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5267. {
  5268. bool CooldownNoWait = false;
  5269. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5270. heating_status = 3;
  5271. if (farm_mode) { prusa_statistics(1); };
  5272. if (code_seen('S'))
  5273. {
  5274. setTargetBed(code_value());
  5275. CooldownNoWait = true;
  5276. }
  5277. else if (code_seen('R'))
  5278. {
  5279. setTargetBed(code_value());
  5280. }
  5281. codenum = _millis();
  5282. cancel_heatup = false;
  5283. target_direction = isHeatingBed(); // true if heating, false if cooling
  5284. KEEPALIVE_STATE(NOT_BUSY);
  5285. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5286. {
  5287. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5288. {
  5289. if (!farm_mode) {
  5290. float tt = degHotend(active_extruder);
  5291. SERIAL_PROTOCOLPGM("T:");
  5292. SERIAL_PROTOCOL(tt);
  5293. SERIAL_PROTOCOLPGM(" E:");
  5294. SERIAL_PROTOCOL((int)active_extruder);
  5295. SERIAL_PROTOCOLPGM(" B:");
  5296. SERIAL_PROTOCOL_F(degBed(), 1);
  5297. SERIAL_PROTOCOLLN("");
  5298. }
  5299. codenum = _millis();
  5300. }
  5301. manage_heater();
  5302. manage_inactivity();
  5303. lcd_update(0);
  5304. }
  5305. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5306. KEEPALIVE_STATE(IN_HANDLER);
  5307. heating_status = 4;
  5308. previous_millis_cmd = _millis();
  5309. }
  5310. #endif
  5311. break;
  5312. #if defined(FAN_PIN) && FAN_PIN > -1
  5313. //! ### M106 - Set fan speed
  5314. // -------------------------------------------
  5315. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5316. if (code_seen('S')){
  5317. fanSpeed=constrain(code_value(),0,255);
  5318. }
  5319. else {
  5320. fanSpeed=255;
  5321. }
  5322. break;
  5323. //! ### M107 - Fan off
  5324. // -------------------------------
  5325. case 107:
  5326. fanSpeed = 0;
  5327. break;
  5328. #endif //FAN_PIN
  5329. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5330. //! ### M80 - Turn on the Power Supply
  5331. // -------------------------------
  5332. case 80:
  5333. SET_OUTPUT(PS_ON_PIN); //GND
  5334. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5335. // If you have a switch on suicide pin, this is useful
  5336. // if you want to start another print with suicide feature after
  5337. // a print without suicide...
  5338. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5339. SET_OUTPUT(SUICIDE_PIN);
  5340. WRITE(SUICIDE_PIN, HIGH);
  5341. #endif
  5342. powersupply = true;
  5343. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5344. lcd_update(0);
  5345. break;
  5346. #endif
  5347. //! ### M81 - Turn off Power Supply
  5348. // --------------------------------------
  5349. case 81:
  5350. disable_heater();
  5351. st_synchronize();
  5352. disable_e0();
  5353. disable_e1();
  5354. disable_e2();
  5355. finishAndDisableSteppers();
  5356. fanSpeed = 0;
  5357. _delay(1000); // Wait a little before to switch off
  5358. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5359. st_synchronize();
  5360. suicide();
  5361. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5362. SET_OUTPUT(PS_ON_PIN);
  5363. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5364. #endif
  5365. powersupply = false;
  5366. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5367. lcd_update(0);
  5368. break;
  5369. //! ### M82 - Set E axis to absolute mode
  5370. // ---------------------------------------
  5371. case 82:
  5372. axis_relative_modes[3] = false;
  5373. break;
  5374. //! ### M83 - Set E axis to relative mode
  5375. // ---------------------------------------
  5376. case 83:
  5377. axis_relative_modes[3] = true;
  5378. break;
  5379. //! ### M84, M18 - Disable steppers
  5380. //---------------------------------------
  5381. //! This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5382. //!
  5383. //! M84 [E<flag>] [S<seconds>] [X<flag>] [Y<flag>] [Z<flag>]
  5384. //!
  5385. case 18: //compatibility
  5386. case 84: // M84
  5387. if(code_seen('S')){
  5388. stepper_inactive_time = code_value() * 1000;
  5389. }
  5390. else
  5391. {
  5392. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5393. if(all_axis)
  5394. {
  5395. st_synchronize();
  5396. disable_e0();
  5397. disable_e1();
  5398. disable_e2();
  5399. finishAndDisableSteppers();
  5400. }
  5401. else
  5402. {
  5403. st_synchronize();
  5404. if (code_seen('X')) disable_x();
  5405. if (code_seen('Y')) disable_y();
  5406. if (code_seen('Z')) disable_z();
  5407. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5408. if (code_seen('E')) {
  5409. disable_e0();
  5410. disable_e1();
  5411. disable_e2();
  5412. }
  5413. #endif
  5414. }
  5415. }
  5416. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5417. print_time_remaining_init();
  5418. snmm_filaments_used = 0;
  5419. break;
  5420. //! ### M85 - Set max inactive time
  5421. // ---------------------------------------
  5422. case 85: // M85
  5423. if(code_seen('S')) {
  5424. max_inactive_time = code_value() * 1000;
  5425. }
  5426. break;
  5427. #ifdef SAFETYTIMER
  5428. //! ### M86 - Set safety timer expiration time
  5429. //!
  5430. //! _Usage:_
  5431. //! M86 S<seconds>
  5432. //!
  5433. //! Sets the safety timer expiration time in seconds. M86 S0 will disable safety timer.
  5434. //! When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5435. case 86:
  5436. if (code_seen('S')) {
  5437. safetytimer_inactive_time = code_value() * 1000;
  5438. safetyTimer.start();
  5439. }
  5440. break;
  5441. #endif
  5442. //! ### M92 Set Axis steps-per-unit
  5443. // ---------------------------------------
  5444. //! Same syntax as G92
  5445. case 92:
  5446. for(int8_t i=0; i < NUM_AXIS; i++)
  5447. {
  5448. if(code_seen(axis_codes[i]))
  5449. {
  5450. if(i == 3) { // E
  5451. float value = code_value();
  5452. if(value < 20.0) {
  5453. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5454. cs.max_jerk[E_AXIS] *= factor;
  5455. max_feedrate[i] *= factor;
  5456. axis_steps_per_sqr_second[i] *= factor;
  5457. }
  5458. cs.axis_steps_per_unit[i] = value;
  5459. }
  5460. else {
  5461. cs.axis_steps_per_unit[i] = code_value();
  5462. }
  5463. }
  5464. }
  5465. break;
  5466. //! ### M110 - Set Line number
  5467. // ---------------------------------------
  5468. case 110:
  5469. if (code_seen('N'))
  5470. gcode_LastN = code_value_long();
  5471. break;
  5472. //! ### M113 - Get or set host keep-alive interval
  5473. // ------------------------------------------
  5474. case 113:
  5475. if (code_seen('S')) {
  5476. host_keepalive_interval = (uint8_t)code_value_short();
  5477. // NOMORE(host_keepalive_interval, 60);
  5478. }
  5479. else {
  5480. SERIAL_ECHO_START;
  5481. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5482. SERIAL_PROTOCOLLN("");
  5483. }
  5484. break;
  5485. //! ### M115 - Firmware info
  5486. // --------------------------------------
  5487. //! Print the firmware info and capabilities
  5488. //!
  5489. //! M115 [V] [U<version>]
  5490. //!
  5491. //! Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5492. //! `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5493. //! pause the print for 30s and ask the user to upgrade the firmware.
  5494. case 115: // M115
  5495. if (code_seen('V')) {
  5496. // Report the Prusa version number.
  5497. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5498. } else if (code_seen('U')) {
  5499. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5500. // pause the print for 30s and ask the user to upgrade the firmware.
  5501. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5502. } else {
  5503. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5504. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5505. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5506. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5507. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5508. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5509. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5510. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5511. SERIAL_ECHOPGM(" UUID:");
  5512. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5513. }
  5514. break;
  5515. //! ### M114 - Get current position
  5516. // -------------------------------------
  5517. case 114:
  5518. gcode_M114();
  5519. break;
  5520. //! ### M117 - Set LCD Message
  5521. // --------------------------------------
  5522. /*
  5523. M117 moved up to get the high priority
  5524. case 117: // M117 display message
  5525. starpos = (strchr(strchr_pointer + 5,'*'));
  5526. if(starpos!=NULL)
  5527. *(starpos)='\0';
  5528. lcd_setstatus(strchr_pointer + 5);
  5529. break;*/
  5530. //! ### M120 - Disable endstops
  5531. // ----------------------------------------
  5532. case 120:
  5533. enable_endstops(false) ;
  5534. break;
  5535. //! ### M121 - Enable endstops
  5536. // ----------------------------------------
  5537. case 121:
  5538. enable_endstops(true) ;
  5539. break;
  5540. //! ### M119 - Get endstop states
  5541. // ----------------------------------------
  5542. case 119:
  5543. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5544. SERIAL_PROTOCOLLN("");
  5545. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5546. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5547. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5548. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5549. }else{
  5550. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5551. }
  5552. SERIAL_PROTOCOLLN("");
  5553. #endif
  5554. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5555. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5556. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5557. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5558. }else{
  5559. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5560. }
  5561. SERIAL_PROTOCOLLN("");
  5562. #endif
  5563. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5564. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5565. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5566. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5567. }else{
  5568. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5569. }
  5570. SERIAL_PROTOCOLLN("");
  5571. #endif
  5572. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5573. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5574. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5575. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5576. }else{
  5577. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5578. }
  5579. SERIAL_PROTOCOLLN("");
  5580. #endif
  5581. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5582. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5583. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5584. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5585. }else{
  5586. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5587. }
  5588. SERIAL_PROTOCOLLN("");
  5589. #endif
  5590. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5591. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5592. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5593. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5594. }else{
  5595. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5596. }
  5597. SERIAL_PROTOCOLLN("");
  5598. #endif
  5599. break;
  5600. //TODO: update for all axis, use for loop
  5601. #ifdef BLINKM
  5602. //! ### M150 - Set RGB(W) Color
  5603. // -------------------------------------------
  5604. case 150:
  5605. {
  5606. byte red;
  5607. byte grn;
  5608. byte blu;
  5609. if(code_seen('R')) red = code_value();
  5610. if(code_seen('U')) grn = code_value();
  5611. if(code_seen('B')) blu = code_value();
  5612. SendColors(red,grn,blu);
  5613. }
  5614. break;
  5615. #endif //BLINKM
  5616. //! ### M200 - Set filament diameter
  5617. // ----------------------------------------
  5618. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5619. {
  5620. uint8_t extruder = active_extruder;
  5621. if(code_seen('T')) {
  5622. extruder = code_value();
  5623. if(extruder >= EXTRUDERS) {
  5624. SERIAL_ECHO_START;
  5625. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5626. break;
  5627. }
  5628. }
  5629. if(code_seen('D')) {
  5630. float diameter = (float)code_value();
  5631. if (diameter == 0.0) {
  5632. // setting any extruder filament size disables volumetric on the assumption that
  5633. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5634. // for all extruders
  5635. cs.volumetric_enabled = false;
  5636. } else {
  5637. cs.filament_size[extruder] = (float)code_value();
  5638. // make sure all extruders have some sane value for the filament size
  5639. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5640. #if EXTRUDERS > 1
  5641. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5642. #if EXTRUDERS > 2
  5643. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5644. #endif
  5645. #endif
  5646. cs.volumetric_enabled = true;
  5647. }
  5648. } else {
  5649. //reserved for setting filament diameter via UFID or filament measuring device
  5650. break;
  5651. }
  5652. calculate_extruder_multipliers();
  5653. }
  5654. break;
  5655. //! ### M201 - Set Print Max Acceleration
  5656. // -------------------------------------------
  5657. case 201:
  5658. for (int8_t i = 0; i < NUM_AXIS; i++)
  5659. {
  5660. if (code_seen(axis_codes[i]))
  5661. {
  5662. unsigned long val = code_value();
  5663. #ifdef TMC2130
  5664. unsigned long val_silent = val;
  5665. if ((i == X_AXIS) || (i == Y_AXIS))
  5666. {
  5667. if (val > NORMAL_MAX_ACCEL_XY)
  5668. val = NORMAL_MAX_ACCEL_XY;
  5669. if (val_silent > SILENT_MAX_ACCEL_XY)
  5670. val_silent = SILENT_MAX_ACCEL_XY;
  5671. }
  5672. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5673. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5674. #else //TMC2130
  5675. max_acceleration_units_per_sq_second[i] = val;
  5676. #endif //TMC2130
  5677. }
  5678. }
  5679. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5680. reset_acceleration_rates();
  5681. break;
  5682. #if 0 // Not used for Sprinter/grbl gen6
  5683. case 202: // M202
  5684. for(int8_t i=0; i < NUM_AXIS; i++) {
  5685. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5686. }
  5687. break;
  5688. #endif
  5689. //! ### M203 - Set Max Feedrate
  5690. // ---------------------------------------
  5691. case 203: // M203 max feedrate mm/sec
  5692. for (int8_t i = 0; i < NUM_AXIS; i++)
  5693. {
  5694. if (code_seen(axis_codes[i]))
  5695. {
  5696. float val = code_value();
  5697. #ifdef TMC2130
  5698. float val_silent = val;
  5699. if ((i == X_AXIS) || (i == Y_AXIS))
  5700. {
  5701. if (val > NORMAL_MAX_FEEDRATE_XY)
  5702. val = NORMAL_MAX_FEEDRATE_XY;
  5703. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5704. val_silent = SILENT_MAX_FEEDRATE_XY;
  5705. }
  5706. cs.max_feedrate_normal[i] = val;
  5707. cs.max_feedrate_silent[i] = val_silent;
  5708. #else //TMC2130
  5709. max_feedrate[i] = val;
  5710. #endif //TMC2130
  5711. }
  5712. }
  5713. break;
  5714. //! ### M204 - Acceleration settings
  5715. // ------------------------------------------
  5716. //! Supporting old format:
  5717. //!
  5718. //! M204 S[normal moves] T[filmanent only moves]
  5719. //!
  5720. //! and new format:
  5721. //!
  5722. //! M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5723. case 204:
  5724. {
  5725. if(code_seen('S')) {
  5726. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5727. // and it is also generated by Slic3r to control acceleration per extrusion type
  5728. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5729. cs.acceleration = code_value();
  5730. // Interpret the T value as retract acceleration in the old Marlin format.
  5731. if(code_seen('T'))
  5732. cs.retract_acceleration = code_value();
  5733. } else {
  5734. // New acceleration format, compatible with the upstream Marlin.
  5735. if(code_seen('P'))
  5736. cs.acceleration = code_value();
  5737. if(code_seen('R'))
  5738. cs.retract_acceleration = code_value();
  5739. if(code_seen('T')) {
  5740. // Interpret the T value as the travel acceleration in the new Marlin format.
  5741. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5742. // travel_acceleration = code_value();
  5743. }
  5744. }
  5745. }
  5746. break;
  5747. //! ### M205 - Set advanced settings
  5748. // ---------------------------------------------
  5749. //! Set some advanced settings related to movement.
  5750. //!
  5751. //! M205 [S] [T] [B] [X] [Y] [Z] [E]
  5752. /*!
  5753. - `S` - Minimum feedrate for print moves (unit/s)
  5754. - `T` - Minimum feedrate for travel moves (units/s)
  5755. - `B` - Minimum segment time (us)
  5756. - `X` - Maximum X jerk (units/s), similarly for other axes
  5757. */
  5758. case 205:
  5759. {
  5760. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5761. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5762. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5763. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5764. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5765. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5766. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5767. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5768. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5769. }
  5770. break;
  5771. //! ### M206 - Set additional homing offsets
  5772. // ----------------------------------------------
  5773. case 206:
  5774. for(int8_t i=0; i < 3; i++)
  5775. {
  5776. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5777. }
  5778. break;
  5779. #ifdef FWRETRACT
  5780. //! ### M207 - Set firmware retraction
  5781. // --------------------------------------------------
  5782. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5783. {
  5784. if(code_seen('S'))
  5785. {
  5786. cs.retract_length = code_value() ;
  5787. }
  5788. if(code_seen('F'))
  5789. {
  5790. cs.retract_feedrate = code_value()/60 ;
  5791. }
  5792. if(code_seen('Z'))
  5793. {
  5794. cs.retract_zlift = code_value() ;
  5795. }
  5796. }break;
  5797. //! ### M208 - Set retract recover length
  5798. // --------------------------------------------
  5799. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5800. {
  5801. if(code_seen('S'))
  5802. {
  5803. cs.retract_recover_length = code_value() ;
  5804. }
  5805. if(code_seen('F'))
  5806. {
  5807. cs.retract_recover_feedrate = code_value()/60 ;
  5808. }
  5809. }break;
  5810. //! ### M209 - Enable/disable automatict retract
  5811. // ---------------------------------------------
  5812. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5813. {
  5814. if(code_seen('S'))
  5815. {
  5816. int t= code_value() ;
  5817. switch(t)
  5818. {
  5819. case 0:
  5820. {
  5821. cs.autoretract_enabled=false;
  5822. retracted[0]=false;
  5823. #if EXTRUDERS > 1
  5824. retracted[1]=false;
  5825. #endif
  5826. #if EXTRUDERS > 2
  5827. retracted[2]=false;
  5828. #endif
  5829. }break;
  5830. case 1:
  5831. {
  5832. cs.autoretract_enabled=true;
  5833. retracted[0]=false;
  5834. #if EXTRUDERS > 1
  5835. retracted[1]=false;
  5836. #endif
  5837. #if EXTRUDERS > 2
  5838. retracted[2]=false;
  5839. #endif
  5840. }break;
  5841. default:
  5842. SERIAL_ECHO_START;
  5843. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5844. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5845. SERIAL_ECHOLNPGM("\"(1)");
  5846. }
  5847. }
  5848. }break;
  5849. #endif // FWRETRACT
  5850. #if EXTRUDERS > 1
  5851. // ### M218 - Set hotend offset
  5852. // ----------------------------------------
  5853. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5854. {
  5855. uint8_t extruder;
  5856. if(setTargetedHotend(218, extruder)){
  5857. break;
  5858. }
  5859. if(code_seen('X'))
  5860. {
  5861. extruder_offset[X_AXIS][extruder] = code_value();
  5862. }
  5863. if(code_seen('Y'))
  5864. {
  5865. extruder_offset[Y_AXIS][extruder] = code_value();
  5866. }
  5867. SERIAL_ECHO_START;
  5868. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5869. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5870. {
  5871. SERIAL_ECHO(" ");
  5872. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5873. SERIAL_ECHO(",");
  5874. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5875. }
  5876. SERIAL_ECHOLN("");
  5877. }break;
  5878. #endif
  5879. //! ### M220 Set feedrate percentage
  5880. // -----------------------------------------------
  5881. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5882. {
  5883. if (code_seen('B')) //backup current speed factor
  5884. {
  5885. saved_feedmultiply_mm = feedmultiply;
  5886. }
  5887. if(code_seen('S'))
  5888. {
  5889. feedmultiply = code_value() ;
  5890. }
  5891. if (code_seen('R')) { //restore previous feedmultiply
  5892. feedmultiply = saved_feedmultiply_mm;
  5893. }
  5894. }
  5895. break;
  5896. //! ### M221 - Set extrude factor override percentage
  5897. // ----------------------------------------------------
  5898. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5899. {
  5900. if(code_seen('S'))
  5901. {
  5902. int tmp_code = code_value();
  5903. if (code_seen('T'))
  5904. {
  5905. uint8_t extruder;
  5906. if(setTargetedHotend(221, extruder)){
  5907. break;
  5908. }
  5909. extruder_multiply[extruder] = tmp_code;
  5910. }
  5911. else
  5912. {
  5913. extrudemultiply = tmp_code ;
  5914. }
  5915. }
  5916. calculate_extruder_multipliers();
  5917. }
  5918. break;
  5919. //! ### M226 - Wait for Pin state
  5920. // ------------------------------------------
  5921. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5922. {
  5923. if(code_seen('P')){
  5924. int pin_number = code_value(); // pin number
  5925. int pin_state = -1; // required pin state - default is inverted
  5926. if(code_seen('S')) pin_state = code_value(); // required pin state
  5927. if(pin_state >= -1 && pin_state <= 1){
  5928. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5929. {
  5930. if (sensitive_pins[i] == pin_number)
  5931. {
  5932. pin_number = -1;
  5933. break;
  5934. }
  5935. }
  5936. if (pin_number > -1)
  5937. {
  5938. int target = LOW;
  5939. st_synchronize();
  5940. pinMode(pin_number, INPUT);
  5941. switch(pin_state){
  5942. case 1:
  5943. target = HIGH;
  5944. break;
  5945. case 0:
  5946. target = LOW;
  5947. break;
  5948. case -1:
  5949. target = !digitalRead(pin_number);
  5950. break;
  5951. }
  5952. while(digitalRead(pin_number) != target){
  5953. manage_heater();
  5954. manage_inactivity();
  5955. lcd_update(0);
  5956. }
  5957. }
  5958. }
  5959. }
  5960. }
  5961. break;
  5962. #if NUM_SERVOS > 0
  5963. //! ### M280 - Set/Get servo position
  5964. // --------------------------------------------
  5965. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5966. {
  5967. int servo_index = -1;
  5968. int servo_position = 0;
  5969. if (code_seen('P'))
  5970. servo_index = code_value();
  5971. if (code_seen('S')) {
  5972. servo_position = code_value();
  5973. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5974. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5975. servos[servo_index].attach(0);
  5976. #endif
  5977. servos[servo_index].write(servo_position);
  5978. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5979. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5980. servos[servo_index].detach();
  5981. #endif
  5982. }
  5983. else {
  5984. SERIAL_ECHO_START;
  5985. SERIAL_ECHO("Servo ");
  5986. SERIAL_ECHO(servo_index);
  5987. SERIAL_ECHOLN(" out of range");
  5988. }
  5989. }
  5990. else if (servo_index >= 0) {
  5991. SERIAL_PROTOCOL(MSG_OK);
  5992. SERIAL_PROTOCOL(" Servo ");
  5993. SERIAL_PROTOCOL(servo_index);
  5994. SERIAL_PROTOCOL(": ");
  5995. SERIAL_PROTOCOL(servos[servo_index].read());
  5996. SERIAL_PROTOCOLLN("");
  5997. }
  5998. }
  5999. break;
  6000. #endif // NUM_SERVOS > 0
  6001. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6002. //! ### M300 - Play tone
  6003. // -----------------------
  6004. case 300: // M300
  6005. {
  6006. int beepS = code_seen('S') ? code_value() : 110;
  6007. int beepP = code_seen('P') ? code_value() : 1000;
  6008. if (beepS > 0)
  6009. {
  6010. #if BEEPER > 0
  6011. Sound_MakeCustom(beepP,beepS,false);
  6012. #endif
  6013. }
  6014. else
  6015. {
  6016. _delay(beepP);
  6017. }
  6018. }
  6019. break;
  6020. #endif // M300
  6021. #ifdef PIDTEMP
  6022. //! ### M301 - Set hotend PID
  6023. // ---------------------------------------
  6024. case 301:
  6025. {
  6026. if(code_seen('P')) cs.Kp = code_value();
  6027. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6028. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6029. #ifdef PID_ADD_EXTRUSION_RATE
  6030. if(code_seen('C')) Kc = code_value();
  6031. #endif
  6032. updatePID();
  6033. SERIAL_PROTOCOLRPGM(MSG_OK);
  6034. SERIAL_PROTOCOL(" p:");
  6035. SERIAL_PROTOCOL(cs.Kp);
  6036. SERIAL_PROTOCOL(" i:");
  6037. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6038. SERIAL_PROTOCOL(" d:");
  6039. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6040. #ifdef PID_ADD_EXTRUSION_RATE
  6041. SERIAL_PROTOCOL(" c:");
  6042. //Kc does not have scaling applied above, or in resetting defaults
  6043. SERIAL_PROTOCOL(Kc);
  6044. #endif
  6045. SERIAL_PROTOCOLLN("");
  6046. }
  6047. break;
  6048. #endif //PIDTEMP
  6049. #ifdef PIDTEMPBED
  6050. //! ### M304 - Set bed PID
  6051. // --------------------------------------
  6052. case 304:
  6053. {
  6054. if(code_seen('P')) cs.bedKp = code_value();
  6055. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6056. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6057. updatePID();
  6058. SERIAL_PROTOCOLRPGM(MSG_OK);
  6059. SERIAL_PROTOCOL(" p:");
  6060. SERIAL_PROTOCOL(cs.bedKp);
  6061. SERIAL_PROTOCOL(" i:");
  6062. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6063. SERIAL_PROTOCOL(" d:");
  6064. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6065. SERIAL_PROTOCOLLN("");
  6066. }
  6067. break;
  6068. #endif //PIDTEMP
  6069. //! ### M240 - Trigger camera
  6070. // --------------------------------------------
  6071. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6072. {
  6073. #ifdef CHDK
  6074. SET_OUTPUT(CHDK);
  6075. WRITE(CHDK, HIGH);
  6076. chdkHigh = _millis();
  6077. chdkActive = true;
  6078. #else
  6079. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6080. const uint8_t NUM_PULSES=16;
  6081. const float PULSE_LENGTH=0.01524;
  6082. for(int i=0; i < NUM_PULSES; i++) {
  6083. WRITE(PHOTOGRAPH_PIN, HIGH);
  6084. _delay_ms(PULSE_LENGTH);
  6085. WRITE(PHOTOGRAPH_PIN, LOW);
  6086. _delay_ms(PULSE_LENGTH);
  6087. }
  6088. _delay(7.33);
  6089. for(int i=0; i < NUM_PULSES; i++) {
  6090. WRITE(PHOTOGRAPH_PIN, HIGH);
  6091. _delay_ms(PULSE_LENGTH);
  6092. WRITE(PHOTOGRAPH_PIN, LOW);
  6093. _delay_ms(PULSE_LENGTH);
  6094. }
  6095. #endif
  6096. #endif //chdk end if
  6097. }
  6098. break;
  6099. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6100. //! ### M302 - Allow cold extrude, or set minimum extrude temperature
  6101. // -------------------------------------------------------------------
  6102. case 302:
  6103. {
  6104. float temp = .0;
  6105. if (code_seen('S')) temp=code_value();
  6106. set_extrude_min_temp(temp);
  6107. }
  6108. break;
  6109. #endif
  6110. //! ### M303 - PID autotune
  6111. // -------------------------------------
  6112. case 303:
  6113. {
  6114. float temp = 150.0;
  6115. int e=0;
  6116. int c=5;
  6117. if (code_seen('E')) e=code_value();
  6118. if (e<0)
  6119. temp=70;
  6120. if (code_seen('S')) temp=code_value();
  6121. if (code_seen('C')) c=code_value();
  6122. PID_autotune(temp, e, c);
  6123. }
  6124. break;
  6125. //! ### M400 - Wait for all moves to finish
  6126. // -----------------------------------------
  6127. case 400:
  6128. {
  6129. st_synchronize();
  6130. }
  6131. break;
  6132. //! ### M403 - Set filament type (material) for particular extruder and notify the MMU
  6133. // ----------------------------------------------
  6134. case 403:
  6135. {
  6136. // currently three different materials are needed (default, flex and PVA)
  6137. // add storing this information for different load/unload profiles etc. in the future
  6138. // firmware does not wait for "ok" from mmu
  6139. if (mmu_enabled)
  6140. {
  6141. uint8_t extruder = 255;
  6142. uint8_t filament = FILAMENT_UNDEFINED;
  6143. if(code_seen('E')) extruder = code_value();
  6144. if(code_seen('F')) filament = code_value();
  6145. mmu_set_filament_type(extruder, filament);
  6146. }
  6147. }
  6148. break;
  6149. //! ### M500 - Store settings in EEPROM
  6150. // -----------------------------------------
  6151. case 500:
  6152. {
  6153. Config_StoreSettings();
  6154. }
  6155. break;
  6156. //! ### M501 - Read settings from EEPROM
  6157. // ----------------------------------------
  6158. case 501:
  6159. {
  6160. Config_RetrieveSettings();
  6161. }
  6162. break;
  6163. //! ### M502 - Revert all settings to factory default
  6164. // -------------------------------------------------
  6165. case 502:
  6166. {
  6167. Config_ResetDefault();
  6168. }
  6169. break;
  6170. //! ### M503 - Repport all settings currently in memory
  6171. // -------------------------------------------------
  6172. case 503:
  6173. {
  6174. Config_PrintSettings();
  6175. }
  6176. break;
  6177. //! ### M509 - Force language selection
  6178. // ------------------------------------------------
  6179. case 509:
  6180. {
  6181. lang_reset();
  6182. SERIAL_ECHO_START;
  6183. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6184. }
  6185. break;
  6186. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6187. //! ### M540 - Abort print on endstop hit (enable/disable)
  6188. // -----------------------------------------------------
  6189. case 540:
  6190. {
  6191. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6192. }
  6193. break;
  6194. #endif
  6195. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6196. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6197. {
  6198. float value;
  6199. if (code_seen('Z'))
  6200. {
  6201. value = code_value();
  6202. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6203. {
  6204. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6205. SERIAL_ECHO_START;
  6206. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6207. SERIAL_PROTOCOLLN("");
  6208. }
  6209. else
  6210. {
  6211. SERIAL_ECHO_START;
  6212. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6213. SERIAL_ECHORPGM(MSG_Z_MIN);
  6214. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6215. SERIAL_ECHORPGM(MSG_Z_MAX);
  6216. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6217. SERIAL_PROTOCOLLN("");
  6218. }
  6219. }
  6220. else
  6221. {
  6222. SERIAL_ECHO_START;
  6223. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6224. SERIAL_ECHO(-cs.zprobe_zoffset);
  6225. SERIAL_PROTOCOLLN("");
  6226. }
  6227. break;
  6228. }
  6229. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6230. #ifdef FILAMENTCHANGEENABLE
  6231. //! ### M600 - Initiate Filament change procedure
  6232. // --------------------------------------
  6233. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6234. {
  6235. st_synchronize();
  6236. float x_position = current_position[X_AXIS];
  6237. float y_position = current_position[Y_AXIS];
  6238. float z_shift = 0; // is it necessary to be a float?
  6239. float e_shift_init = 0;
  6240. float e_shift_late = 0;
  6241. bool automatic = false;
  6242. //Retract extruder
  6243. if(code_seen('E'))
  6244. {
  6245. e_shift_init = code_value();
  6246. }
  6247. else
  6248. {
  6249. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6250. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6251. #endif
  6252. }
  6253. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6254. if (code_seen('L'))
  6255. {
  6256. e_shift_late = code_value();
  6257. }
  6258. else
  6259. {
  6260. #ifdef FILAMENTCHANGE_FINALRETRACT
  6261. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6262. #endif
  6263. }
  6264. //Lift Z
  6265. if(code_seen('Z'))
  6266. {
  6267. z_shift = code_value();
  6268. }
  6269. else
  6270. {
  6271. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6272. }
  6273. //Move XY to side
  6274. if(code_seen('X'))
  6275. {
  6276. x_position = code_value();
  6277. }
  6278. else
  6279. {
  6280. #ifdef FILAMENTCHANGE_XPOS
  6281. x_position = FILAMENTCHANGE_XPOS;
  6282. #endif
  6283. }
  6284. if(code_seen('Y'))
  6285. {
  6286. y_position = code_value();
  6287. }
  6288. else
  6289. {
  6290. #ifdef FILAMENTCHANGE_YPOS
  6291. y_position = FILAMENTCHANGE_YPOS ;
  6292. #endif
  6293. }
  6294. if (mmu_enabled && code_seen("AUTO"))
  6295. automatic = true;
  6296. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6297. }
  6298. break;
  6299. #endif //FILAMENTCHANGEENABLE
  6300. //! ### M25 - Pause SD print
  6301. //! ### M601 - Pause print
  6302. //! ### M125 - Pause print (TODO: not implemented)
  6303. // -------------------------------
  6304. case 25:
  6305. case 601:
  6306. {
  6307. if (!isPrintPaused)
  6308. {
  6309. st_synchronize();
  6310. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6311. lcd_pause_print();
  6312. }
  6313. }
  6314. break;
  6315. //! ### M602 - Resume print
  6316. // -------------------------------
  6317. case 602: {
  6318. if (isPrintPaused)
  6319. lcd_resume_print();
  6320. }
  6321. break;
  6322. //! ### M603 - Stop print
  6323. // -------------------------------
  6324. case 603: {
  6325. Stop();
  6326. }
  6327. break;
  6328. #ifdef PINDA_THERMISTOR
  6329. //! ### M860 - Wait for extruder temperature (PINDA)
  6330. // --------------------------------------------------------------
  6331. /*!
  6332. Wait for PINDA thermistor to reach target temperature
  6333. M860 [S<target_temperature>]
  6334. */
  6335. case 860:
  6336. {
  6337. int set_target_pinda = 0;
  6338. if (code_seen('S')) {
  6339. set_target_pinda = code_value();
  6340. }
  6341. else {
  6342. break;
  6343. }
  6344. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6345. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6346. SERIAL_PROTOCOL(set_target_pinda);
  6347. SERIAL_PROTOCOLLN("");
  6348. codenum = _millis();
  6349. cancel_heatup = false;
  6350. bool is_pinda_cooling = false;
  6351. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6352. is_pinda_cooling = true;
  6353. }
  6354. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6355. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6356. {
  6357. SERIAL_PROTOCOLPGM("P:");
  6358. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6359. SERIAL_PROTOCOLPGM("/");
  6360. SERIAL_PROTOCOL(set_target_pinda);
  6361. SERIAL_PROTOCOLLN("");
  6362. codenum = _millis();
  6363. }
  6364. manage_heater();
  6365. manage_inactivity();
  6366. lcd_update(0);
  6367. }
  6368. LCD_MESSAGERPGM(MSG_OK);
  6369. break;
  6370. }
  6371. //! ### M861 - Set/Get PINDA temperature compensation offsets
  6372. // -----------------------------------------------------------
  6373. /*!
  6374. M861 [ ? | ! | Z | S<microsteps> [I<table_index>] ]
  6375. - `?` - Print current EEPROM offset values
  6376. - `!` - Set factory default values
  6377. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6378. - `S<microsteps>` `I<table_index>` - Set compensation ustep value S for compensation table index I
  6379. */
  6380. case 861:
  6381. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6382. uint8_t cal_status = calibration_status_pinda();
  6383. int16_t usteps = 0;
  6384. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6385. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6386. for (uint8_t i = 0; i < 6; i++)
  6387. {
  6388. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6389. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6390. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6391. SERIAL_PROTOCOLPGM(", ");
  6392. SERIAL_PROTOCOL(35 + (i * 5));
  6393. SERIAL_PROTOCOLPGM(", ");
  6394. SERIAL_PROTOCOL(usteps);
  6395. SERIAL_PROTOCOLPGM(", ");
  6396. SERIAL_PROTOCOL(mm * 1000);
  6397. SERIAL_PROTOCOLLN("");
  6398. }
  6399. }
  6400. else if (code_seen('!')) { // ! - Set factory default values
  6401. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6402. int16_t z_shift = 8; //40C - 20um - 8usteps
  6403. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6404. z_shift = 24; //45C - 60um - 24usteps
  6405. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6406. z_shift = 48; //50C - 120um - 48usteps
  6407. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6408. z_shift = 80; //55C - 200um - 80usteps
  6409. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6410. z_shift = 120; //60C - 300um - 120usteps
  6411. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6412. SERIAL_PROTOCOLLN("factory restored");
  6413. }
  6414. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6415. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6416. int16_t z_shift = 0;
  6417. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6418. SERIAL_PROTOCOLLN("zerorized");
  6419. }
  6420. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6421. int16_t usteps = code_value();
  6422. if (code_seen('I')) {
  6423. uint8_t index = code_value();
  6424. if (index < 5) {
  6425. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6426. SERIAL_PROTOCOLLN("OK");
  6427. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6428. for (uint8_t i = 0; i < 6; i++)
  6429. {
  6430. usteps = 0;
  6431. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6432. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6433. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6434. SERIAL_PROTOCOLPGM(", ");
  6435. SERIAL_PROTOCOL(35 + (i * 5));
  6436. SERIAL_PROTOCOLPGM(", ");
  6437. SERIAL_PROTOCOL(usteps);
  6438. SERIAL_PROTOCOLPGM(", ");
  6439. SERIAL_PROTOCOL(mm * 1000);
  6440. SERIAL_PROTOCOLLN("");
  6441. }
  6442. }
  6443. }
  6444. }
  6445. else {
  6446. SERIAL_PROTOCOLPGM("no valid command");
  6447. }
  6448. break;
  6449. #endif //PINDA_THERMISTOR
  6450. //! ### M862 - Print checking
  6451. // ----------------------------------------------
  6452. /*!
  6453. Checks the parameters of the printer and gcode and performs compatibility check
  6454. - M862.1 { P<nozzle_diameter> | Q }
  6455. - M862.2 { P<model_code> | Q }
  6456. - M862.3 { P"<model_name>" | Q }
  6457. - M862.4 { P<fw_version> | Q }
  6458. - M862.5 { P<gcode_level> | Q }
  6459. When run with P<> argument, the check is performed against the input value.
  6460. When run with Q argument, the current value is shown.
  6461. M862.3 accepts text identifiers of printer types too.
  6462. The syntax of M862.3 is (note the quotes around the type):
  6463. M862.3 P "MK3S"
  6464. Accepted printer type identifiers and their numeric counterparts:
  6465. - MK1 (100)
  6466. - MK2 (200)
  6467. - MK2MM (201)
  6468. - MK2S (202)
  6469. - MK2SMM (203)
  6470. - MK2.5 (250)
  6471. - MK2.5MMU2 (20250)
  6472. - MK2.5S (252)
  6473. - MK2.5SMMU2S (20252)
  6474. - MK3 (300)
  6475. - MK3MMU2 (20300)
  6476. - MK3S (302)
  6477. - MK3SMMU2S (20302)
  6478. */
  6479. case 862: // M862: print checking
  6480. float nDummy;
  6481. uint8_t nCommand;
  6482. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6483. switch((ClPrintChecking)nCommand)
  6484. {
  6485. case ClPrintChecking::_Nozzle: // ~ .1
  6486. uint16_t nDiameter;
  6487. if(code_seen('P'))
  6488. {
  6489. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6490. nozzle_diameter_check(nDiameter);
  6491. }
  6492. /*
  6493. else if(code_seen('S')&&farm_mode)
  6494. {
  6495. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6496. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6497. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6498. }
  6499. */
  6500. else if(code_seen('Q'))
  6501. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6502. break;
  6503. case ClPrintChecking::_Model: // ~ .2
  6504. if(code_seen('P'))
  6505. {
  6506. uint16_t nPrinterModel;
  6507. nPrinterModel=(uint16_t)code_value_long();
  6508. printer_model_check(nPrinterModel);
  6509. }
  6510. else if(code_seen('Q'))
  6511. SERIAL_PROTOCOLLN(nPrinterType);
  6512. break;
  6513. case ClPrintChecking::_Smodel: // ~ .3
  6514. if(code_seen('P'))
  6515. printer_smodel_check(strchr_pointer);
  6516. else if(code_seen('Q'))
  6517. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6518. break;
  6519. case ClPrintChecking::_Version: // ~ .4
  6520. if(code_seen('P'))
  6521. fw_version_check(++strchr_pointer);
  6522. else if(code_seen('Q'))
  6523. SERIAL_PROTOCOLLN(FW_VERSION);
  6524. break;
  6525. case ClPrintChecking::_Gcode: // ~ .5
  6526. if(code_seen('P'))
  6527. {
  6528. uint16_t nGcodeLevel;
  6529. nGcodeLevel=(uint16_t)code_value_long();
  6530. gcode_level_check(nGcodeLevel);
  6531. }
  6532. else if(code_seen('Q'))
  6533. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6534. break;
  6535. }
  6536. break;
  6537. #ifdef LIN_ADVANCE
  6538. //! ### M900 - Set Linear advance options
  6539. // ----------------------------------------------
  6540. case 900:
  6541. gcode_M900();
  6542. break;
  6543. #endif
  6544. //! ### M907 - Set digital trimpot motor current in mA using axis codes
  6545. // ---------------------------------------------------------------
  6546. case 907:
  6547. {
  6548. #ifdef TMC2130
  6549. //! See tmc2130_cur2val() for translation to 0 .. 63 range
  6550. for (int i = 0; i < NUM_AXIS; i++)
  6551. if(code_seen(axis_codes[i]))
  6552. {
  6553. long cur_mA = code_value_long();
  6554. uint8_t val = tmc2130_cur2val(cur_mA);
  6555. tmc2130_set_current_h(i, val);
  6556. tmc2130_set_current_r(i, val);
  6557. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6558. }
  6559. #else //TMC2130
  6560. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6561. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6562. if(code_seen('B')) st_current_set(4,code_value());
  6563. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6564. #endif
  6565. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6566. if(code_seen('X')) st_current_set(0, code_value());
  6567. #endif
  6568. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6569. if(code_seen('Z')) st_current_set(1, code_value());
  6570. #endif
  6571. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6572. if(code_seen('E')) st_current_set(2, code_value());
  6573. #endif
  6574. #endif //TMC2130
  6575. }
  6576. break;
  6577. //! ### M908 - Control digital trimpot directly
  6578. // ---------------------------------------------------------
  6579. case 908:
  6580. {
  6581. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6582. uint8_t channel,current;
  6583. if(code_seen('P')) channel=code_value();
  6584. if(code_seen('S')) current=code_value();
  6585. digitalPotWrite(channel, current);
  6586. #endif
  6587. }
  6588. break;
  6589. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6590. //! ### M910 - TMC2130 init
  6591. // -----------------------------------------------
  6592. case 910:
  6593. {
  6594. tmc2130_init();
  6595. }
  6596. break;
  6597. //! ### M911 - Set TMC2130 holding currents
  6598. // -------------------------------------------------
  6599. case 911:
  6600. {
  6601. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6602. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6603. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6604. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6605. }
  6606. break;
  6607. //! ### M912 - Set TMC2130 running currents
  6608. // -----------------------------------------------
  6609. case 912:
  6610. {
  6611. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6612. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6613. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6614. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6615. }
  6616. break;
  6617. //! ### M913 - Print TMC2130 currents
  6618. // -----------------------------
  6619. case 913:
  6620. {
  6621. tmc2130_print_currents();
  6622. }
  6623. break;
  6624. //! ### M914 - Set TMC2130 normal mode
  6625. // ------------------------------
  6626. case 914:
  6627. {
  6628. tmc2130_mode = TMC2130_MODE_NORMAL;
  6629. update_mode_profile();
  6630. tmc2130_init();
  6631. }
  6632. break;
  6633. //! ### M95 - Set TMC2130 silent mode
  6634. // ------------------------------
  6635. case 915:
  6636. {
  6637. tmc2130_mode = TMC2130_MODE_SILENT;
  6638. update_mode_profile();
  6639. tmc2130_init();
  6640. }
  6641. break;
  6642. //! ### M916 - Set TMC2130 Stallguard sensitivity threshold
  6643. // -------------------------------------------------------
  6644. case 916:
  6645. {
  6646. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6647. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6648. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6649. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6650. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6651. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6652. }
  6653. break;
  6654. //! ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl)
  6655. // --------------------------------------------------------------
  6656. case 917:
  6657. {
  6658. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6659. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6660. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6661. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6662. }
  6663. break;
  6664. //! ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad)
  6665. // -------------------------------------------------------------
  6666. case 918:
  6667. {
  6668. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6669. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6670. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6671. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6672. }
  6673. break;
  6674. #endif //TMC2130_SERVICE_CODES_M910_M918
  6675. //! ### M350 - Set microstepping mode
  6676. // ---------------------------------------------------
  6677. //! Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6678. case 350:
  6679. {
  6680. #ifdef TMC2130
  6681. for (int i=0; i<NUM_AXIS; i++)
  6682. {
  6683. if(code_seen(axis_codes[i]))
  6684. {
  6685. uint16_t res_new = code_value();
  6686. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  6687. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  6688. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  6689. if (res_valid)
  6690. {
  6691. st_synchronize();
  6692. uint16_t res = tmc2130_get_res(i);
  6693. tmc2130_set_res(i, res_new);
  6694. cs.axis_ustep_resolution[i] = res_new;
  6695. if (res_new > res)
  6696. {
  6697. uint16_t fac = (res_new / res);
  6698. cs.axis_steps_per_unit[i] *= fac;
  6699. position[i] *= fac;
  6700. }
  6701. else
  6702. {
  6703. uint16_t fac = (res / res_new);
  6704. cs.axis_steps_per_unit[i] /= fac;
  6705. position[i] /= fac;
  6706. }
  6707. }
  6708. }
  6709. }
  6710. #else //TMC2130
  6711. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6712. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6713. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6714. if(code_seen('B')) microstep_mode(4,code_value());
  6715. microstep_readings();
  6716. #endif
  6717. #endif //TMC2130
  6718. }
  6719. break;
  6720. //! ### M351 - Toggle Microstep Pins
  6721. // -----------------------------------
  6722. //! Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6723. //!
  6724. //! M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  6725. case 351:
  6726. {
  6727. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6728. if(code_seen('S')) switch((int)code_value())
  6729. {
  6730. case 1:
  6731. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6732. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6733. break;
  6734. case 2:
  6735. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6736. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6737. break;
  6738. }
  6739. microstep_readings();
  6740. #endif
  6741. }
  6742. break;
  6743. //! ### M701 - Load filament
  6744. // -------------------------
  6745. case 701:
  6746. {
  6747. if (mmu_enabled && code_seen('E'))
  6748. tmp_extruder = code_value();
  6749. gcode_M701();
  6750. }
  6751. break;
  6752. //! ### M702 - Unload filament
  6753. // ------------------------
  6754. /*!
  6755. M702 [U C]
  6756. - `U` Unload all filaments used in current print
  6757. - `C` Unload just current filament
  6758. - without any parameters unload all filaments
  6759. */
  6760. case 702:
  6761. {
  6762. #ifdef SNMM
  6763. if (code_seen('U'))
  6764. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6765. else if (code_seen('C'))
  6766. extr_unload(); //! if "C" unload just current filament
  6767. else
  6768. extr_unload_all(); //! otherwise unload all filaments
  6769. #else
  6770. if (code_seen('C')) {
  6771. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6772. }
  6773. else {
  6774. if(mmu_enabled) extr_unload(); //! unload current filament
  6775. else unload_filament();
  6776. }
  6777. #endif //SNMM
  6778. }
  6779. break;
  6780. //! ### M999 - Restart after being stopped
  6781. // ------------------------------------
  6782. case 999:
  6783. Stopped = false;
  6784. lcd_reset_alert_level();
  6785. gcode_LastN = Stopped_gcode_LastN;
  6786. FlushSerialRequestResend();
  6787. break;
  6788. default:
  6789. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6790. }
  6791. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6792. mcode_in_progress = 0;
  6793. }
  6794. }
  6795. // end if(code_seen('M')) (end of M codes)
  6796. //! -----------------------------------------------------------------------------------------
  6797. //! T Codes
  6798. //!
  6799. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6800. //! select filament in case of MMU_V2
  6801. //! if extruder is "?", open menu to let the user select extruder/filament
  6802. //!
  6803. //! For MMU_V2:
  6804. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6805. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6806. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6807. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6808. else if(code_seen('T'))
  6809. {
  6810. int index;
  6811. bool load_to_nozzle = false;
  6812. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6813. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6814. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6815. SERIAL_ECHOLNPGM("Invalid T code.");
  6816. }
  6817. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6818. if (mmu_enabled)
  6819. {
  6820. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6821. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6822. {
  6823. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6824. }
  6825. else
  6826. {
  6827. st_synchronize();
  6828. mmu_command(MmuCmd::T0 + tmp_extruder);
  6829. manage_response(true, true, MMU_TCODE_MOVE);
  6830. }
  6831. }
  6832. }
  6833. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6834. if (mmu_enabled)
  6835. {
  6836. st_synchronize();
  6837. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6838. mmu_extruder = tmp_extruder; //filament change is finished
  6839. mmu_load_to_nozzle();
  6840. }
  6841. }
  6842. else {
  6843. if (*(strchr_pointer + index) == '?')
  6844. {
  6845. if(mmu_enabled)
  6846. {
  6847. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6848. load_to_nozzle = true;
  6849. } else
  6850. {
  6851. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6852. }
  6853. }
  6854. else {
  6855. tmp_extruder = code_value();
  6856. if (mmu_enabled && lcd_autoDepleteEnabled())
  6857. {
  6858. tmp_extruder = ad_getAlternative(tmp_extruder);
  6859. }
  6860. }
  6861. st_synchronize();
  6862. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6863. if (mmu_enabled)
  6864. {
  6865. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6866. {
  6867. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6868. }
  6869. else
  6870. {
  6871. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6872. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6873. {
  6874. mmu_command(MmuCmd::K0 + tmp_extruder);
  6875. manage_response(true, true, MMU_UNLOAD_MOVE);
  6876. }
  6877. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6878. mmu_command(MmuCmd::T0 + tmp_extruder);
  6879. manage_response(true, true, MMU_TCODE_MOVE);
  6880. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  6881. mmu_extruder = tmp_extruder; //filament change is finished
  6882. if (load_to_nozzle)// for single material usage with mmu
  6883. {
  6884. mmu_load_to_nozzle();
  6885. }
  6886. }
  6887. }
  6888. else
  6889. {
  6890. #ifdef SNMM
  6891. mmu_extruder = tmp_extruder;
  6892. _delay(100);
  6893. disable_e0();
  6894. disable_e1();
  6895. disable_e2();
  6896. pinMode(E_MUX0_PIN, OUTPUT);
  6897. pinMode(E_MUX1_PIN, OUTPUT);
  6898. _delay(100);
  6899. SERIAL_ECHO_START;
  6900. SERIAL_ECHO("T:");
  6901. SERIAL_ECHOLN((int)tmp_extruder);
  6902. switch (tmp_extruder) {
  6903. case 1:
  6904. WRITE(E_MUX0_PIN, HIGH);
  6905. WRITE(E_MUX1_PIN, LOW);
  6906. break;
  6907. case 2:
  6908. WRITE(E_MUX0_PIN, LOW);
  6909. WRITE(E_MUX1_PIN, HIGH);
  6910. break;
  6911. case 3:
  6912. WRITE(E_MUX0_PIN, HIGH);
  6913. WRITE(E_MUX1_PIN, HIGH);
  6914. break;
  6915. default:
  6916. WRITE(E_MUX0_PIN, LOW);
  6917. WRITE(E_MUX1_PIN, LOW);
  6918. break;
  6919. }
  6920. _delay(100);
  6921. #else //SNMM
  6922. if (tmp_extruder >= EXTRUDERS) {
  6923. SERIAL_ECHO_START;
  6924. SERIAL_ECHOPGM("T");
  6925. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6926. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6927. }
  6928. else {
  6929. #if EXTRUDERS > 1
  6930. boolean make_move = false;
  6931. #endif
  6932. if (code_seen('F')) {
  6933. #if EXTRUDERS > 1
  6934. make_move = true;
  6935. #endif
  6936. next_feedrate = code_value();
  6937. if (next_feedrate > 0.0) {
  6938. feedrate = next_feedrate;
  6939. }
  6940. }
  6941. #if EXTRUDERS > 1
  6942. if (tmp_extruder != active_extruder) {
  6943. // Save current position to return to after applying extruder offset
  6944. memcpy(destination, current_position, sizeof(destination));
  6945. // Offset extruder (only by XY)
  6946. int i;
  6947. for (i = 0; i < 2; i++) {
  6948. current_position[i] = current_position[i] -
  6949. extruder_offset[i][active_extruder] +
  6950. extruder_offset[i][tmp_extruder];
  6951. }
  6952. // Set the new active extruder and position
  6953. active_extruder = tmp_extruder;
  6954. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6955. // Move to the old position if 'F' was in the parameters
  6956. if (make_move && Stopped == false) {
  6957. prepare_move();
  6958. }
  6959. }
  6960. #endif
  6961. SERIAL_ECHO_START;
  6962. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6963. SERIAL_PROTOCOLLN((int)active_extruder);
  6964. }
  6965. #endif //SNMM
  6966. }
  6967. }
  6968. } // end if(code_seen('T')) (end of T codes)
  6969. //! ----------------------------------------------------------------------------------------------
  6970. else if (code_seen('D')) // D codes (debug)
  6971. {
  6972. switch((int)code_value())
  6973. {
  6974. //! ### D-1 - Endless loop
  6975. // -------------------
  6976. case -1:
  6977. dcode__1(); break;
  6978. #ifdef DEBUG_DCODES
  6979. //! ### D0 - Reset
  6980. // --------------
  6981. case 0:
  6982. dcode_0(); break;
  6983. //! ### D1 - Clear EEPROM
  6984. // ------------------
  6985. case 1:
  6986. dcode_1(); break;
  6987. //! ### D2 - Read/Write RAM
  6988. // --------------------
  6989. case 2:
  6990. dcode_2(); break;
  6991. #endif //DEBUG_DCODES
  6992. #ifdef DEBUG_DCODE3
  6993. //! ### D3 - Read/Write EEPROM
  6994. // -----------------------
  6995. case 3:
  6996. dcode_3(); break;
  6997. #endif //DEBUG_DCODE3
  6998. #ifdef DEBUG_DCODES
  6999. //! ### D4 - Read/Write PIN
  7000. // ---------------------
  7001. case 4:
  7002. dcode_4(); break;
  7003. #endif //DEBUG_DCODES
  7004. #ifdef DEBUG_DCODE5
  7005. //! ### D5 - Read/Write FLASH
  7006. // ------------------------
  7007. case 5:
  7008. dcode_5(); break;
  7009. break;
  7010. #endif //DEBUG_DCODE5
  7011. #ifdef DEBUG_DCODES
  7012. //! ### D6 - Read/Write external FLASH
  7013. // ---------------------------------------
  7014. case 6:
  7015. dcode_6(); break;
  7016. //! ### D7 - Read/Write Bootloader
  7017. // -------------------------------
  7018. case 7:
  7019. dcode_7(); break;
  7020. //! ### D8 - Read/Write PINDA
  7021. // ---------------------------
  7022. case 8:
  7023. dcode_8(); break;
  7024. // ### D9 - Read/Write ADC
  7025. // ------------------------
  7026. case 9:
  7027. dcode_9(); break;
  7028. //! ### D10 - XYZ calibration = OK
  7029. // ------------------------------
  7030. case 10:
  7031. dcode_10(); break;
  7032. #endif //DEBUG_DCODES
  7033. #ifdef HEATBED_ANALYSIS
  7034. //! ### D80 - Bed check
  7035. // ---------------------
  7036. /*!
  7037. - `E` - dimension x
  7038. - `F` - dimention y
  7039. - `G` - points_x
  7040. - `H` - points_y
  7041. - `I` - offset_x
  7042. - `J` - offset_y
  7043. */
  7044. case 80:
  7045. {
  7046. float dimension_x = 40;
  7047. float dimension_y = 40;
  7048. int points_x = 40;
  7049. int points_y = 40;
  7050. float offset_x = 74;
  7051. float offset_y = 33;
  7052. if (code_seen('E')) dimension_x = code_value();
  7053. if (code_seen('F')) dimension_y = code_value();
  7054. if (code_seen('G')) {points_x = code_value(); }
  7055. if (code_seen('H')) {points_y = code_value(); }
  7056. if (code_seen('I')) {offset_x = code_value(); }
  7057. if (code_seen('J')) {offset_y = code_value(); }
  7058. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7059. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7060. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7061. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7062. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7063. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7064. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7065. }break;
  7066. //! ### D81 - Bed analysis
  7067. // -----------------------------
  7068. /*!
  7069. - `E` - dimension x
  7070. - `F` - dimention y
  7071. - `G` - points_x
  7072. - `H` - points_y
  7073. - `I` - offset_x
  7074. - `J` - offset_y
  7075. */
  7076. case 81:
  7077. {
  7078. float dimension_x = 40;
  7079. float dimension_y = 40;
  7080. int points_x = 40;
  7081. int points_y = 40;
  7082. float offset_x = 74;
  7083. float offset_y = 33;
  7084. if (code_seen('E')) dimension_x = code_value();
  7085. if (code_seen('F')) dimension_y = code_value();
  7086. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7087. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7088. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7089. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7090. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7091. } break;
  7092. #endif //HEATBED_ANALYSIS
  7093. #ifdef DEBUG_DCODES
  7094. //! ### D106 print measured fan speed for different pwm values
  7095. // --------------------------------------------------------------
  7096. case 106:
  7097. {
  7098. for (int i = 255; i > 0; i = i - 5) {
  7099. fanSpeed = i;
  7100. //delay_keep_alive(2000);
  7101. for (int j = 0; j < 100; j++) {
  7102. delay_keep_alive(100);
  7103. }
  7104. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7105. }
  7106. }break;
  7107. #ifdef TMC2130
  7108. //! ### D2130 - TMC2130 Trinamic stepper controller
  7109. // ---------------------------
  7110. /*!
  7111. D2130<axis><command>[subcommand][value]
  7112. - <command>:
  7113. - '0' current off
  7114. - '1' current on
  7115. - '+' single step
  7116. - * value sereval steps
  7117. - '-' dtto oposite direction
  7118. - '?' read register
  7119. - * "mres"
  7120. - * "step"
  7121. - * "mscnt"
  7122. - * "mscuract"
  7123. - * "wave"
  7124. - '!' set register
  7125. - * "mres"
  7126. - * "step"
  7127. - * "wave"
  7128. - '@' home calibrate axis
  7129. Example:
  7130. D2130E?wave ... print extruder microstep linearity compensation curve
  7131. D2130E!wave0 ... disable extruder linearity compensation curve, (sine curve is used)
  7132. D2130E!wave220 ... (sin(x))^1.1 extruder microstep compensation curve used
  7133. */
  7134. case 2130:
  7135. dcode_2130(); break;
  7136. #endif //TMC2130
  7137. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7138. //! ### D9125 - FILAMENT_SENSOR
  7139. // ---------------------------------
  7140. case 9125:
  7141. dcode_9125(); break;
  7142. #endif //FILAMENT_SENSOR
  7143. #endif //DEBUG_DCODES
  7144. }
  7145. }
  7146. else
  7147. {
  7148. SERIAL_ECHO_START;
  7149. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7150. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7151. SERIAL_ECHOLNPGM("\"(2)");
  7152. }
  7153. KEEPALIVE_STATE(NOT_BUSY);
  7154. ClearToSend();
  7155. }
  7156. /** @defgroup GCodes G-Code List
  7157. */
  7158. // ---------------------------------------------------
  7159. void FlushSerialRequestResend()
  7160. {
  7161. //char cmdbuffer[bufindr][100]="Resend:";
  7162. MYSERIAL.flush();
  7163. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7164. }
  7165. // Confirm the execution of a command, if sent from a serial line.
  7166. // Execution of a command from a SD card will not be confirmed.
  7167. void ClearToSend()
  7168. {
  7169. previous_millis_cmd = _millis();
  7170. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7171. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7172. }
  7173. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7174. void update_currents() {
  7175. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7176. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7177. float tmp_motor[3];
  7178. //SERIAL_ECHOLNPGM("Currents updated: ");
  7179. if (destination[Z_AXIS] < Z_SILENT) {
  7180. //SERIAL_ECHOLNPGM("LOW");
  7181. for (uint8_t i = 0; i < 3; i++) {
  7182. st_current_set(i, current_low[i]);
  7183. /*MYSERIAL.print(int(i));
  7184. SERIAL_ECHOPGM(": ");
  7185. MYSERIAL.println(current_low[i]);*/
  7186. }
  7187. }
  7188. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7189. //SERIAL_ECHOLNPGM("HIGH");
  7190. for (uint8_t i = 0; i < 3; i++) {
  7191. st_current_set(i, current_high[i]);
  7192. /*MYSERIAL.print(int(i));
  7193. SERIAL_ECHOPGM(": ");
  7194. MYSERIAL.println(current_high[i]);*/
  7195. }
  7196. }
  7197. else {
  7198. for (uint8_t i = 0; i < 3; i++) {
  7199. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7200. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7201. st_current_set(i, tmp_motor[i]);
  7202. /*MYSERIAL.print(int(i));
  7203. SERIAL_ECHOPGM(": ");
  7204. MYSERIAL.println(tmp_motor[i]);*/
  7205. }
  7206. }
  7207. }
  7208. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7209. void get_coordinates()
  7210. {
  7211. bool seen[4]={false,false,false,false};
  7212. for(int8_t i=0; i < NUM_AXIS; i++) {
  7213. if(code_seen(axis_codes[i]))
  7214. {
  7215. bool relative = axis_relative_modes[i] || relative_mode;
  7216. destination[i] = (float)code_value();
  7217. if (i == E_AXIS) {
  7218. float emult = extruder_multiplier[active_extruder];
  7219. if (emult != 1.) {
  7220. if (! relative) {
  7221. destination[i] -= current_position[i];
  7222. relative = true;
  7223. }
  7224. destination[i] *= emult;
  7225. }
  7226. }
  7227. if (relative)
  7228. destination[i] += current_position[i];
  7229. seen[i]=true;
  7230. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7231. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7232. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7233. }
  7234. else destination[i] = current_position[i]; //Are these else lines really needed?
  7235. }
  7236. if(code_seen('F')) {
  7237. next_feedrate = code_value();
  7238. #ifdef MAX_SILENT_FEEDRATE
  7239. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7240. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7241. #endif //MAX_SILENT_FEEDRATE
  7242. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7243. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7244. {
  7245. // float e_max_speed =
  7246. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7247. }
  7248. }
  7249. }
  7250. void get_arc_coordinates()
  7251. {
  7252. #ifdef SF_ARC_FIX
  7253. bool relative_mode_backup = relative_mode;
  7254. relative_mode = true;
  7255. #endif
  7256. get_coordinates();
  7257. #ifdef SF_ARC_FIX
  7258. relative_mode=relative_mode_backup;
  7259. #endif
  7260. if(code_seen('I')) {
  7261. offset[0] = code_value();
  7262. }
  7263. else {
  7264. offset[0] = 0.0;
  7265. }
  7266. if(code_seen('J')) {
  7267. offset[1] = code_value();
  7268. }
  7269. else {
  7270. offset[1] = 0.0;
  7271. }
  7272. }
  7273. void clamp_to_software_endstops(float target[3])
  7274. {
  7275. #ifdef DEBUG_DISABLE_SWLIMITS
  7276. return;
  7277. #endif //DEBUG_DISABLE_SWLIMITS
  7278. world2machine_clamp(target[0], target[1]);
  7279. // Clamp the Z coordinate.
  7280. if (min_software_endstops) {
  7281. float negative_z_offset = 0;
  7282. #ifdef ENABLE_AUTO_BED_LEVELING
  7283. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7284. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7285. #endif
  7286. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7287. }
  7288. if (max_software_endstops) {
  7289. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7290. }
  7291. }
  7292. #ifdef MESH_BED_LEVELING
  7293. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7294. float dx = x - current_position[X_AXIS];
  7295. float dy = y - current_position[Y_AXIS];
  7296. int n_segments = 0;
  7297. if (mbl.active) {
  7298. float len = abs(dx) + abs(dy);
  7299. if (len > 0)
  7300. // Split to 3cm segments or shorter.
  7301. n_segments = int(ceil(len / 30.f));
  7302. }
  7303. if (n_segments > 1) {
  7304. // In a multi-segment move explicitly set the final target in the plan
  7305. // as the move will be recalculated in it's entirety
  7306. float gcode_target[NUM_AXIS];
  7307. gcode_target[X_AXIS] = x;
  7308. gcode_target[Y_AXIS] = y;
  7309. gcode_target[Z_AXIS] = z;
  7310. gcode_target[E_AXIS] = e;
  7311. float dz = z - current_position[Z_AXIS];
  7312. float de = e - current_position[E_AXIS];
  7313. for (int i = 1; i < n_segments; ++ i) {
  7314. float t = float(i) / float(n_segments);
  7315. plan_buffer_line(current_position[X_AXIS] + t * dx,
  7316. current_position[Y_AXIS] + t * dy,
  7317. current_position[Z_AXIS] + t * dz,
  7318. current_position[E_AXIS] + t * de,
  7319. feed_rate, extruder, gcode_target);
  7320. if (waiting_inside_plan_buffer_line_print_aborted)
  7321. return;
  7322. }
  7323. }
  7324. // The rest of the path.
  7325. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7326. }
  7327. #endif // MESH_BED_LEVELING
  7328. void prepare_move()
  7329. {
  7330. clamp_to_software_endstops(destination);
  7331. previous_millis_cmd = _millis();
  7332. // Do not use feedmultiply for E or Z only moves
  7333. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7334. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7335. }
  7336. else {
  7337. #ifdef MESH_BED_LEVELING
  7338. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7339. #else
  7340. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7341. #endif
  7342. }
  7343. if (waiting_inside_plan_buffer_line_print_aborted)
  7344. return;
  7345. set_current_to_destination();
  7346. }
  7347. void prepare_arc_move(char isclockwise) {
  7348. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7349. // Trace the arc
  7350. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7351. // As far as the parser is concerned, the position is now == target. In reality the
  7352. // motion control system might still be processing the action and the real tool position
  7353. // in any intermediate location.
  7354. for(int8_t i=0; i < NUM_AXIS; i++) {
  7355. current_position[i] = destination[i];
  7356. }
  7357. previous_millis_cmd = _millis();
  7358. }
  7359. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7360. #if defined(FAN_PIN)
  7361. #if CONTROLLERFAN_PIN == FAN_PIN
  7362. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7363. #endif
  7364. #endif
  7365. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7366. unsigned long lastMotorCheck = 0;
  7367. void controllerFan()
  7368. {
  7369. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7370. {
  7371. lastMotorCheck = _millis();
  7372. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7373. #if EXTRUDERS > 2
  7374. || !READ(E2_ENABLE_PIN)
  7375. #endif
  7376. #if EXTRUDER > 1
  7377. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7378. || !READ(X2_ENABLE_PIN)
  7379. #endif
  7380. || !READ(E1_ENABLE_PIN)
  7381. #endif
  7382. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7383. {
  7384. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7385. }
  7386. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7387. {
  7388. digitalWrite(CONTROLLERFAN_PIN, 0);
  7389. analogWrite(CONTROLLERFAN_PIN, 0);
  7390. }
  7391. else
  7392. {
  7393. // allows digital or PWM fan output to be used (see M42 handling)
  7394. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7395. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7396. }
  7397. }
  7398. }
  7399. #endif
  7400. #ifdef TEMP_STAT_LEDS
  7401. static bool blue_led = false;
  7402. static bool red_led = false;
  7403. static uint32_t stat_update = 0;
  7404. void handle_status_leds(void) {
  7405. float max_temp = 0.0;
  7406. if(_millis() > stat_update) {
  7407. stat_update += 500; // Update every 0.5s
  7408. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7409. max_temp = max(max_temp, degHotend(cur_extruder));
  7410. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7411. }
  7412. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  7413. max_temp = max(max_temp, degTargetBed());
  7414. max_temp = max(max_temp, degBed());
  7415. #endif
  7416. if((max_temp > 55.0) && (red_led == false)) {
  7417. digitalWrite(STAT_LED_RED, 1);
  7418. digitalWrite(STAT_LED_BLUE, 0);
  7419. red_led = true;
  7420. blue_led = false;
  7421. }
  7422. if((max_temp < 54.0) && (blue_led == false)) {
  7423. digitalWrite(STAT_LED_RED, 0);
  7424. digitalWrite(STAT_LED_BLUE, 1);
  7425. red_led = false;
  7426. blue_led = true;
  7427. }
  7428. }
  7429. }
  7430. #endif
  7431. #ifdef SAFETYTIMER
  7432. /**
  7433. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  7434. *
  7435. * Full screen blocking notification message is shown after heater turning off.
  7436. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  7437. * damage print.
  7438. *
  7439. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  7440. */
  7441. static void handleSafetyTimer()
  7442. {
  7443. #if (EXTRUDERS > 1)
  7444. #error Implemented only for one extruder.
  7445. #endif //(EXTRUDERS > 1)
  7446. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  7447. {
  7448. safetyTimer.stop();
  7449. }
  7450. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  7451. {
  7452. safetyTimer.start();
  7453. }
  7454. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  7455. {
  7456. setTargetBed(0);
  7457. setAllTargetHotends(0);
  7458. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  7459. }
  7460. }
  7461. #endif //SAFETYTIMER
  7462. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  7463. {
  7464. bool bInhibitFlag;
  7465. #ifdef FILAMENT_SENSOR
  7466. if (mmu_enabled == false)
  7467. {
  7468. //-// if (mcode_in_progress != 600) //M600 not in progress
  7469. #ifdef PAT9125
  7470. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  7471. #endif // PAT9125
  7472. #ifdef IR_SENSOR
  7473. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  7474. #endif // IR_SENSOR
  7475. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  7476. {
  7477. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  7478. {
  7479. if (fsensor_check_autoload())
  7480. {
  7481. #ifdef PAT9125
  7482. fsensor_autoload_check_stop();
  7483. #endif //PAT9125
  7484. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  7485. if(0)
  7486. {
  7487. Sound_MakeCustom(50,1000,false);
  7488. loading_flag = true;
  7489. enquecommand_front_P((PSTR("M701")));
  7490. }
  7491. else
  7492. {
  7493. /*
  7494. lcd_update_enable(false);
  7495. show_preheat_nozzle_warning();
  7496. lcd_update_enable(true);
  7497. */
  7498. eFilamentAction=FilamentAction::AutoLoad;
  7499. bFilamentFirstRun=false;
  7500. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  7501. {
  7502. bFilamentPreheatState=true;
  7503. // mFilamentItem(target_temperature[0],target_temperature_bed);
  7504. menu_submenu(mFilamentItemForce);
  7505. }
  7506. else
  7507. {
  7508. menu_submenu(lcd_generic_preheat_menu);
  7509. lcd_timeoutToStatus.start();
  7510. }
  7511. }
  7512. }
  7513. }
  7514. else
  7515. {
  7516. #ifdef PAT9125
  7517. fsensor_autoload_check_stop();
  7518. #endif //PAT9125
  7519. fsensor_update();
  7520. }
  7521. }
  7522. }
  7523. #endif //FILAMENT_SENSOR
  7524. #ifdef SAFETYTIMER
  7525. handleSafetyTimer();
  7526. #endif //SAFETYTIMER
  7527. #if defined(KILL_PIN) && KILL_PIN > -1
  7528. static int killCount = 0; // make the inactivity button a bit less responsive
  7529. const int KILL_DELAY = 10000;
  7530. #endif
  7531. if(buflen < (BUFSIZE-1)){
  7532. get_command();
  7533. }
  7534. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  7535. if(max_inactive_time)
  7536. kill(_n(""), 4);
  7537. if(stepper_inactive_time) {
  7538. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  7539. {
  7540. if(blocks_queued() == false && ignore_stepper_queue == false) {
  7541. disable_x();
  7542. disable_y();
  7543. disable_z();
  7544. disable_e0();
  7545. disable_e1();
  7546. disable_e2();
  7547. }
  7548. }
  7549. }
  7550. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  7551. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  7552. {
  7553. chdkActive = false;
  7554. WRITE(CHDK, LOW);
  7555. }
  7556. #endif
  7557. #if defined(KILL_PIN) && KILL_PIN > -1
  7558. // Check if the kill button was pressed and wait just in case it was an accidental
  7559. // key kill key press
  7560. // -------------------------------------------------------------------------------
  7561. if( 0 == READ(KILL_PIN) )
  7562. {
  7563. killCount++;
  7564. }
  7565. else if (killCount > 0)
  7566. {
  7567. killCount--;
  7568. }
  7569. // Exceeded threshold and we can confirm that it was not accidental
  7570. // KILL the machine
  7571. // ----------------------------------------------------------------
  7572. if ( killCount >= KILL_DELAY)
  7573. {
  7574. kill("", 5);
  7575. }
  7576. #endif
  7577. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7578. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  7579. #endif
  7580. #ifdef EXTRUDER_RUNOUT_PREVENT
  7581. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  7582. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  7583. {
  7584. bool oldstatus=READ(E0_ENABLE_PIN);
  7585. enable_e0();
  7586. float oldepos=current_position[E_AXIS];
  7587. float oldedes=destination[E_AXIS];
  7588. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7589. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  7590. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  7591. current_position[E_AXIS]=oldepos;
  7592. destination[E_AXIS]=oldedes;
  7593. plan_set_e_position(oldepos);
  7594. previous_millis_cmd=_millis();
  7595. st_synchronize();
  7596. WRITE(E0_ENABLE_PIN,oldstatus);
  7597. }
  7598. #endif
  7599. #ifdef TEMP_STAT_LEDS
  7600. handle_status_leds();
  7601. #endif
  7602. check_axes_activity();
  7603. mmu_loop();
  7604. }
  7605. void kill(const char *full_screen_message, unsigned char id)
  7606. {
  7607. printf_P(_N("KILL: %d\n"), id);
  7608. //return;
  7609. cli(); // Stop interrupts
  7610. disable_heater();
  7611. disable_x();
  7612. // SERIAL_ECHOLNPGM("kill - disable Y");
  7613. disable_y();
  7614. disable_z();
  7615. disable_e0();
  7616. disable_e1();
  7617. disable_e2();
  7618. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  7619. pinMode(PS_ON_PIN,INPUT);
  7620. #endif
  7621. SERIAL_ERROR_START;
  7622. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  7623. if (full_screen_message != NULL) {
  7624. SERIAL_ERRORLNRPGM(full_screen_message);
  7625. lcd_display_message_fullscreen_P(full_screen_message);
  7626. } else {
  7627. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  7628. }
  7629. // FMC small patch to update the LCD before ending
  7630. sei(); // enable interrupts
  7631. for ( int i=5; i--; lcd_update(0))
  7632. {
  7633. _delay(200);
  7634. }
  7635. cli(); // disable interrupts
  7636. suicide();
  7637. while(1)
  7638. {
  7639. #ifdef WATCHDOG
  7640. wdt_reset();
  7641. #endif //WATCHDOG
  7642. /* Intentionally left empty */
  7643. } // Wait for reset
  7644. }
  7645. void Stop()
  7646. {
  7647. disable_heater();
  7648. if(Stopped == false) {
  7649. Stopped = true;
  7650. lcd_print_stop();
  7651. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7652. SERIAL_ERROR_START;
  7653. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7654. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7655. }
  7656. }
  7657. bool IsStopped() { return Stopped; };
  7658. #ifdef FAST_PWM_FAN
  7659. void setPwmFrequency(uint8_t pin, int val)
  7660. {
  7661. val &= 0x07;
  7662. switch(digitalPinToTimer(pin))
  7663. {
  7664. #if defined(TCCR0A)
  7665. case TIMER0A:
  7666. case TIMER0B:
  7667. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7668. // TCCR0B |= val;
  7669. break;
  7670. #endif
  7671. #if defined(TCCR1A)
  7672. case TIMER1A:
  7673. case TIMER1B:
  7674. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7675. // TCCR1B |= val;
  7676. break;
  7677. #endif
  7678. #if defined(TCCR2)
  7679. case TIMER2:
  7680. case TIMER2:
  7681. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7682. TCCR2 |= val;
  7683. break;
  7684. #endif
  7685. #if defined(TCCR2A)
  7686. case TIMER2A:
  7687. case TIMER2B:
  7688. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7689. TCCR2B |= val;
  7690. break;
  7691. #endif
  7692. #if defined(TCCR3A)
  7693. case TIMER3A:
  7694. case TIMER3B:
  7695. case TIMER3C:
  7696. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7697. TCCR3B |= val;
  7698. break;
  7699. #endif
  7700. #if defined(TCCR4A)
  7701. case TIMER4A:
  7702. case TIMER4B:
  7703. case TIMER4C:
  7704. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7705. TCCR4B |= val;
  7706. break;
  7707. #endif
  7708. #if defined(TCCR5A)
  7709. case TIMER5A:
  7710. case TIMER5B:
  7711. case TIMER5C:
  7712. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7713. TCCR5B |= val;
  7714. break;
  7715. #endif
  7716. }
  7717. }
  7718. #endif //FAST_PWM_FAN
  7719. //! @brief Get and validate extruder number
  7720. //!
  7721. //! If it is not specified, active_extruder is returned in parameter extruder.
  7722. //! @param [in] code M code number
  7723. //! @param [out] extruder
  7724. //! @return error
  7725. //! @retval true Invalid extruder specified in T code
  7726. //! @retval false Valid extruder specified in T code, or not specifiead
  7727. bool setTargetedHotend(int code, uint8_t &extruder)
  7728. {
  7729. extruder = active_extruder;
  7730. if(code_seen('T')) {
  7731. extruder = code_value();
  7732. if(extruder >= EXTRUDERS) {
  7733. SERIAL_ECHO_START;
  7734. switch(code){
  7735. case 104:
  7736. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7737. break;
  7738. case 105:
  7739. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7740. break;
  7741. case 109:
  7742. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7743. break;
  7744. case 218:
  7745. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7746. break;
  7747. case 221:
  7748. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7749. break;
  7750. }
  7751. SERIAL_PROTOCOLLN((int)extruder);
  7752. return true;
  7753. }
  7754. }
  7755. return false;
  7756. }
  7757. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7758. {
  7759. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7760. {
  7761. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7762. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7763. }
  7764. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7765. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7766. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7767. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7768. total_filament_used = 0;
  7769. }
  7770. float calculate_extruder_multiplier(float diameter) {
  7771. float out = 1.f;
  7772. if (cs.volumetric_enabled && diameter > 0.f) {
  7773. float area = M_PI * diameter * diameter * 0.25;
  7774. out = 1.f / area;
  7775. }
  7776. if (extrudemultiply != 100)
  7777. out *= float(extrudemultiply) * 0.01f;
  7778. return out;
  7779. }
  7780. void calculate_extruder_multipliers() {
  7781. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7782. #if EXTRUDERS > 1
  7783. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7784. #if EXTRUDERS > 2
  7785. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7786. #endif
  7787. #endif
  7788. }
  7789. void delay_keep_alive(unsigned int ms)
  7790. {
  7791. for (;;) {
  7792. manage_heater();
  7793. // Manage inactivity, but don't disable steppers on timeout.
  7794. manage_inactivity(true);
  7795. lcd_update(0);
  7796. if (ms == 0)
  7797. break;
  7798. else if (ms >= 50) {
  7799. _delay(50);
  7800. ms -= 50;
  7801. } else {
  7802. _delay(ms);
  7803. ms = 0;
  7804. }
  7805. }
  7806. }
  7807. static void wait_for_heater(long codenum, uint8_t extruder) {
  7808. if (!degTargetHotend(extruder))
  7809. return;
  7810. #ifdef TEMP_RESIDENCY_TIME
  7811. long residencyStart;
  7812. residencyStart = -1;
  7813. /* continue to loop until we have reached the target temp
  7814. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7815. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7816. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7817. #else
  7818. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7819. #endif //TEMP_RESIDENCY_TIME
  7820. if ((_millis() - codenum) > 1000UL)
  7821. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7822. if (!farm_mode) {
  7823. SERIAL_PROTOCOLPGM("T:");
  7824. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7825. SERIAL_PROTOCOLPGM(" E:");
  7826. SERIAL_PROTOCOL((int)extruder);
  7827. #ifdef TEMP_RESIDENCY_TIME
  7828. SERIAL_PROTOCOLPGM(" W:");
  7829. if (residencyStart > -1)
  7830. {
  7831. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7832. SERIAL_PROTOCOLLN(codenum);
  7833. }
  7834. else
  7835. {
  7836. SERIAL_PROTOCOLLN("?");
  7837. }
  7838. }
  7839. #else
  7840. SERIAL_PROTOCOLLN("");
  7841. #endif
  7842. codenum = _millis();
  7843. }
  7844. manage_heater();
  7845. manage_inactivity(true); //do not disable steppers
  7846. lcd_update(0);
  7847. #ifdef TEMP_RESIDENCY_TIME
  7848. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7849. or when current temp falls outside the hysteresis after target temp was reached */
  7850. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7851. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7852. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7853. {
  7854. residencyStart = _millis();
  7855. }
  7856. #endif //TEMP_RESIDENCY_TIME
  7857. }
  7858. }
  7859. void check_babystep()
  7860. {
  7861. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7862. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  7863. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7864. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7865. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7866. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  7867. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  7868. babystep_z);
  7869. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7870. lcd_update_enable(true);
  7871. }
  7872. }
  7873. #ifdef HEATBED_ANALYSIS
  7874. void d_setup()
  7875. {
  7876. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7877. pinMode(D_DATA, INPUT_PULLUP);
  7878. pinMode(D_REQUIRE, OUTPUT);
  7879. digitalWrite(D_REQUIRE, HIGH);
  7880. }
  7881. float d_ReadData()
  7882. {
  7883. int digit[13];
  7884. String mergeOutput;
  7885. float output;
  7886. digitalWrite(D_REQUIRE, HIGH);
  7887. for (int i = 0; i<13; i++)
  7888. {
  7889. for (int j = 0; j < 4; j++)
  7890. {
  7891. while (digitalRead(D_DATACLOCK) == LOW) {}
  7892. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7893. bitWrite(digit[i], j, digitalRead(D_DATA));
  7894. }
  7895. }
  7896. digitalWrite(D_REQUIRE, LOW);
  7897. mergeOutput = "";
  7898. output = 0;
  7899. for (int r = 5; r <= 10; r++) //Merge digits
  7900. {
  7901. mergeOutput += digit[r];
  7902. }
  7903. output = mergeOutput.toFloat();
  7904. if (digit[4] == 8) //Handle sign
  7905. {
  7906. output *= -1;
  7907. }
  7908. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7909. {
  7910. output /= 10;
  7911. }
  7912. return output;
  7913. }
  7914. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7915. int t1 = 0;
  7916. int t_delay = 0;
  7917. int digit[13];
  7918. int m;
  7919. char str[3];
  7920. //String mergeOutput;
  7921. char mergeOutput[15];
  7922. float output;
  7923. int mesh_point = 0; //index number of calibration point
  7924. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7925. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7926. float mesh_home_z_search = 4;
  7927. float measure_z_height = 0.2f;
  7928. float row[x_points_num];
  7929. int ix = 0;
  7930. int iy = 0;
  7931. const char* filename_wldsd = "mesh.txt";
  7932. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7933. char numb_wldsd[8]; // (" -A.BCD" + null)
  7934. #ifdef MICROMETER_LOGGING
  7935. d_setup();
  7936. #endif //MICROMETER_LOGGING
  7937. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7938. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7939. unsigned int custom_message_type_old = custom_message_type;
  7940. unsigned int custom_message_state_old = custom_message_state;
  7941. custom_message_type = CustomMsg::MeshBedLeveling;
  7942. custom_message_state = (x_points_num * y_points_num) + 10;
  7943. lcd_update(1);
  7944. //mbl.reset();
  7945. babystep_undo();
  7946. card.openFile(filename_wldsd, false);
  7947. /*destination[Z_AXIS] = mesh_home_z_search;
  7948. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7949. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7950. for(int8_t i=0; i < NUM_AXIS; i++) {
  7951. current_position[i] = destination[i];
  7952. }
  7953. st_synchronize();
  7954. */
  7955. destination[Z_AXIS] = measure_z_height;
  7956. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7957. for(int8_t i=0; i < NUM_AXIS; i++) {
  7958. current_position[i] = destination[i];
  7959. }
  7960. st_synchronize();
  7961. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7962. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7963. SERIAL_PROTOCOL(x_points_num);
  7964. SERIAL_PROTOCOLPGM(",");
  7965. SERIAL_PROTOCOL(y_points_num);
  7966. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7967. SERIAL_PROTOCOL(mesh_home_z_search);
  7968. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7969. SERIAL_PROTOCOL(x_dimension);
  7970. SERIAL_PROTOCOLPGM(",");
  7971. SERIAL_PROTOCOL(y_dimension);
  7972. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7973. while (mesh_point != x_points_num * y_points_num) {
  7974. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7975. iy = mesh_point / x_points_num;
  7976. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7977. float z0 = 0.f;
  7978. /*destination[Z_AXIS] = mesh_home_z_search;
  7979. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  7980. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7981. for(int8_t i=0; i < NUM_AXIS; i++) {
  7982. current_position[i] = destination[i];
  7983. }
  7984. st_synchronize();*/
  7985. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7986. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7987. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7988. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7989. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7990. set_current_to_destination();
  7991. st_synchronize();
  7992. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7993. delay_keep_alive(1000);
  7994. #ifdef MICROMETER_LOGGING
  7995. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7996. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7997. //strcat(data_wldsd, numb_wldsd);
  7998. //MYSERIAL.println(data_wldsd);
  7999. //delay(1000);
  8000. //delay(3000);
  8001. //t1 = millis();
  8002. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8003. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8004. memset(digit, 0, sizeof(digit));
  8005. //cli();
  8006. digitalWrite(D_REQUIRE, LOW);
  8007. for (int i = 0; i<13; i++)
  8008. {
  8009. //t1 = millis();
  8010. for (int j = 0; j < 4; j++)
  8011. {
  8012. while (digitalRead(D_DATACLOCK) == LOW) {}
  8013. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8014. //printf_P(PSTR("Done %d\n"), j);
  8015. bitWrite(digit[i], j, digitalRead(D_DATA));
  8016. }
  8017. //t_delay = (millis() - t1);
  8018. //SERIAL_PROTOCOLPGM(" ");
  8019. //SERIAL_PROTOCOL_F(t_delay, 5);
  8020. //SERIAL_PROTOCOLPGM(" ");
  8021. }
  8022. //sei();
  8023. digitalWrite(D_REQUIRE, HIGH);
  8024. mergeOutput[0] = '\0';
  8025. output = 0;
  8026. for (int r = 5; r <= 10; r++) //Merge digits
  8027. {
  8028. sprintf(str, "%d", digit[r]);
  8029. strcat(mergeOutput, str);
  8030. }
  8031. output = atof(mergeOutput);
  8032. if (digit[4] == 8) //Handle sign
  8033. {
  8034. output *= -1;
  8035. }
  8036. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8037. {
  8038. output *= 0.1;
  8039. }
  8040. //output = d_ReadData();
  8041. //row[ix] = current_position[Z_AXIS];
  8042. //row[ix] = d_ReadData();
  8043. row[ix] = output;
  8044. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8045. memset(data_wldsd, 0, sizeof(data_wldsd));
  8046. for (int i = 0; i < x_points_num; i++) {
  8047. SERIAL_PROTOCOLPGM(" ");
  8048. SERIAL_PROTOCOL_F(row[i], 5);
  8049. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8050. dtostrf(row[i], 7, 3, numb_wldsd);
  8051. strcat(data_wldsd, numb_wldsd);
  8052. }
  8053. card.write_command(data_wldsd);
  8054. SERIAL_PROTOCOLPGM("\n");
  8055. }
  8056. custom_message_state--;
  8057. mesh_point++;
  8058. lcd_update(1);
  8059. }
  8060. #endif //MICROMETER_LOGGING
  8061. card.closefile();
  8062. //clean_up_after_endstop_move(l_feedmultiply);
  8063. }
  8064. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8065. int t1 = 0;
  8066. int t_delay = 0;
  8067. int digit[13];
  8068. int m;
  8069. char str[3];
  8070. //String mergeOutput;
  8071. char mergeOutput[15];
  8072. float output;
  8073. int mesh_point = 0; //index number of calibration point
  8074. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8075. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8076. float mesh_home_z_search = 4;
  8077. float row[x_points_num];
  8078. int ix = 0;
  8079. int iy = 0;
  8080. const char* filename_wldsd = "wldsd.txt";
  8081. char data_wldsd[70];
  8082. char numb_wldsd[10];
  8083. d_setup();
  8084. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8085. // We don't know where we are! HOME!
  8086. // Push the commands to the front of the message queue in the reverse order!
  8087. // There shall be always enough space reserved for these commands.
  8088. repeatcommand_front(); // repeat G80 with all its parameters
  8089. enquecommand_front_P((PSTR("G28 W0")));
  8090. enquecommand_front_P((PSTR("G1 Z5")));
  8091. return;
  8092. }
  8093. unsigned int custom_message_type_old = custom_message_type;
  8094. unsigned int custom_message_state_old = custom_message_state;
  8095. custom_message_type = CustomMsg::MeshBedLeveling;
  8096. custom_message_state = (x_points_num * y_points_num) + 10;
  8097. lcd_update(1);
  8098. mbl.reset();
  8099. babystep_undo();
  8100. card.openFile(filename_wldsd, false);
  8101. current_position[Z_AXIS] = mesh_home_z_search;
  8102. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8103. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8104. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8105. int l_feedmultiply = setup_for_endstop_move(false);
  8106. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8107. SERIAL_PROTOCOL(x_points_num);
  8108. SERIAL_PROTOCOLPGM(",");
  8109. SERIAL_PROTOCOL(y_points_num);
  8110. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8111. SERIAL_PROTOCOL(mesh_home_z_search);
  8112. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8113. SERIAL_PROTOCOL(x_dimension);
  8114. SERIAL_PROTOCOLPGM(",");
  8115. SERIAL_PROTOCOL(y_dimension);
  8116. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8117. while (mesh_point != x_points_num * y_points_num) {
  8118. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8119. iy = mesh_point / x_points_num;
  8120. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8121. float z0 = 0.f;
  8122. current_position[Z_AXIS] = mesh_home_z_search;
  8123. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8124. st_synchronize();
  8125. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8126. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8127. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8128. st_synchronize();
  8129. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8130. break;
  8131. card.closefile();
  8132. }
  8133. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8134. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8135. //strcat(data_wldsd, numb_wldsd);
  8136. //MYSERIAL.println(data_wldsd);
  8137. //_delay(1000);
  8138. //_delay(3000);
  8139. //t1 = _millis();
  8140. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8141. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8142. memset(digit, 0, sizeof(digit));
  8143. //cli();
  8144. digitalWrite(D_REQUIRE, LOW);
  8145. for (int i = 0; i<13; i++)
  8146. {
  8147. //t1 = _millis();
  8148. for (int j = 0; j < 4; j++)
  8149. {
  8150. while (digitalRead(D_DATACLOCK) == LOW) {}
  8151. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8152. bitWrite(digit[i], j, digitalRead(D_DATA));
  8153. }
  8154. //t_delay = (_millis() - t1);
  8155. //SERIAL_PROTOCOLPGM(" ");
  8156. //SERIAL_PROTOCOL_F(t_delay, 5);
  8157. //SERIAL_PROTOCOLPGM(" ");
  8158. }
  8159. //sei();
  8160. digitalWrite(D_REQUIRE, HIGH);
  8161. mergeOutput[0] = '\0';
  8162. output = 0;
  8163. for (int r = 5; r <= 10; r++) //Merge digits
  8164. {
  8165. sprintf(str, "%d", digit[r]);
  8166. strcat(mergeOutput, str);
  8167. }
  8168. output = atof(mergeOutput);
  8169. if (digit[4] == 8) //Handle sign
  8170. {
  8171. output *= -1;
  8172. }
  8173. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8174. {
  8175. output *= 0.1;
  8176. }
  8177. //output = d_ReadData();
  8178. //row[ix] = current_position[Z_AXIS];
  8179. memset(data_wldsd, 0, sizeof(data_wldsd));
  8180. for (int i = 0; i <3; i++) {
  8181. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8182. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8183. strcat(data_wldsd, numb_wldsd);
  8184. strcat(data_wldsd, ";");
  8185. }
  8186. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8187. dtostrf(output, 8, 5, numb_wldsd);
  8188. strcat(data_wldsd, numb_wldsd);
  8189. //strcat(data_wldsd, ";");
  8190. card.write_command(data_wldsd);
  8191. //row[ix] = d_ReadData();
  8192. row[ix] = output; // current_position[Z_AXIS];
  8193. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8194. for (int i = 0; i < x_points_num; i++) {
  8195. SERIAL_PROTOCOLPGM(" ");
  8196. SERIAL_PROTOCOL_F(row[i], 5);
  8197. }
  8198. SERIAL_PROTOCOLPGM("\n");
  8199. }
  8200. custom_message_state--;
  8201. mesh_point++;
  8202. lcd_update(1);
  8203. }
  8204. card.closefile();
  8205. clean_up_after_endstop_move(l_feedmultiply);
  8206. }
  8207. #endif //HEATBED_ANALYSIS
  8208. #ifndef PINDA_THERMISTOR
  8209. static void temp_compensation_start() {
  8210. custom_message_type = CustomMsg::TempCompPreheat;
  8211. custom_message_state = PINDA_HEAT_T + 1;
  8212. lcd_update(2);
  8213. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8214. current_position[E_AXIS] -= default_retraction;
  8215. }
  8216. plan_buffer_line_curposXYZE(400, active_extruder);
  8217. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8218. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8219. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8220. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8221. st_synchronize();
  8222. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8223. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8224. delay_keep_alive(1000);
  8225. custom_message_state = PINDA_HEAT_T - i;
  8226. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8227. else lcd_update(1);
  8228. }
  8229. custom_message_type = CustomMsg::Status;
  8230. custom_message_state = 0;
  8231. }
  8232. static void temp_compensation_apply() {
  8233. int i_add;
  8234. int z_shift = 0;
  8235. float z_shift_mm;
  8236. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8237. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8238. i_add = (target_temperature_bed - 60) / 10;
  8239. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8240. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8241. }else {
  8242. //interpolation
  8243. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8244. }
  8245. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8246. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8247. st_synchronize();
  8248. plan_set_z_position(current_position[Z_AXIS]);
  8249. }
  8250. else {
  8251. //we have no temp compensation data
  8252. }
  8253. }
  8254. #endif //ndef PINDA_THERMISTOR
  8255. float temp_comp_interpolation(float inp_temperature) {
  8256. //cubic spline interpolation
  8257. int n, i, j;
  8258. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8259. int shift[10];
  8260. int temp_C[10];
  8261. n = 6; //number of measured points
  8262. shift[0] = 0;
  8263. for (i = 0; i < n; i++) {
  8264. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8265. temp_C[i] = 50 + i * 10; //temperature in C
  8266. #ifdef PINDA_THERMISTOR
  8267. temp_C[i] = 35 + i * 5; //temperature in C
  8268. #else
  8269. temp_C[i] = 50 + i * 10; //temperature in C
  8270. #endif
  8271. x[i] = (float)temp_C[i];
  8272. f[i] = (float)shift[i];
  8273. }
  8274. if (inp_temperature < x[0]) return 0;
  8275. for (i = n - 1; i>0; i--) {
  8276. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8277. h[i - 1] = x[i] - x[i - 1];
  8278. }
  8279. //*********** formation of h, s , f matrix **************
  8280. for (i = 1; i<n - 1; i++) {
  8281. m[i][i] = 2 * (h[i - 1] + h[i]);
  8282. if (i != 1) {
  8283. m[i][i - 1] = h[i - 1];
  8284. m[i - 1][i] = h[i - 1];
  8285. }
  8286. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8287. }
  8288. //*********** forward elimination **************
  8289. for (i = 1; i<n - 2; i++) {
  8290. temp = (m[i + 1][i] / m[i][i]);
  8291. for (j = 1; j <= n - 1; j++)
  8292. m[i + 1][j] -= temp*m[i][j];
  8293. }
  8294. //*********** backward substitution *********
  8295. for (i = n - 2; i>0; i--) {
  8296. sum = 0;
  8297. for (j = i; j <= n - 2; j++)
  8298. sum += m[i][j] * s[j];
  8299. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8300. }
  8301. for (i = 0; i<n - 1; i++)
  8302. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8303. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8304. b = s[i] / 2;
  8305. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8306. d = f[i];
  8307. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8308. }
  8309. return sum;
  8310. }
  8311. #ifdef PINDA_THERMISTOR
  8312. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8313. {
  8314. if (!temp_cal_active) return 0;
  8315. if (!calibration_status_pinda()) return 0;
  8316. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8317. }
  8318. #endif //PINDA_THERMISTOR
  8319. void long_pause() //long pause print
  8320. {
  8321. st_synchronize();
  8322. start_pause_print = _millis();
  8323. //retract
  8324. current_position[E_AXIS] -= default_retraction;
  8325. plan_buffer_line_curposXYZE(400, active_extruder);
  8326. //lift z
  8327. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8328. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8329. plan_buffer_line_curposXYZE(15, active_extruder);
  8330. //Move XY to side
  8331. current_position[X_AXIS] = X_PAUSE_POS;
  8332. current_position[Y_AXIS] = Y_PAUSE_POS;
  8333. plan_buffer_line_curposXYZE(50, active_extruder);
  8334. // Turn off the hotends and print fan
  8335. setAllTargetHotends(0);
  8336. fanSpeed = 0;
  8337. }
  8338. void serialecho_temperatures() {
  8339. float tt = degHotend(active_extruder);
  8340. SERIAL_PROTOCOLPGM("T:");
  8341. SERIAL_PROTOCOL(tt);
  8342. SERIAL_PROTOCOLPGM(" E:");
  8343. SERIAL_PROTOCOL((int)active_extruder);
  8344. SERIAL_PROTOCOLPGM(" B:");
  8345. SERIAL_PROTOCOL_F(degBed(), 1);
  8346. SERIAL_PROTOCOLLN("");
  8347. }
  8348. #ifdef UVLO_SUPPORT
  8349. void uvlo_()
  8350. {
  8351. unsigned long time_start = _millis();
  8352. bool sd_print = card.sdprinting;
  8353. // Conserve power as soon as possible.
  8354. disable_x();
  8355. disable_y();
  8356. #ifdef TMC2130
  8357. tmc2130_set_current_h(Z_AXIS, 20);
  8358. tmc2130_set_current_r(Z_AXIS, 20);
  8359. tmc2130_set_current_h(E_AXIS, 20);
  8360. tmc2130_set_current_r(E_AXIS, 20);
  8361. #endif //TMC2130
  8362. // Indicate that the interrupt has been triggered.
  8363. // SERIAL_ECHOLNPGM("UVLO");
  8364. // Read out the current Z motor microstep counter. This will be later used
  8365. // for reaching the zero full step before powering off.
  8366. uint16_t z_microsteps = 0;
  8367. #ifdef TMC2130
  8368. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8369. #endif //TMC2130
  8370. // Calculate the file position, from which to resume this print.
  8371. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8372. {
  8373. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8374. sd_position -= sdlen_planner;
  8375. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8376. sd_position -= sdlen_cmdqueue;
  8377. if (sd_position < 0) sd_position = 0;
  8378. }
  8379. // save the global state at planning time
  8380. uint16_t feedrate_bckp;
  8381. if (blocks_queued())
  8382. {
  8383. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  8384. feedrate_bckp = current_block->gcode_feedrate;
  8385. }
  8386. else
  8387. {
  8388. saved_target[0] = SAVED_TARGET_UNSET;
  8389. feedrate_bckp = feedrate;
  8390. }
  8391. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8392. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8393. // are in action.
  8394. planner_abort_hard();
  8395. // Store the current extruder position.
  8396. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8397. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  8398. // Clean the input command queue.
  8399. cmdqueue_reset();
  8400. card.sdprinting = false;
  8401. // card.closefile();
  8402. // Enable stepper driver interrupt to move Z axis.
  8403. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  8404. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  8405. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  8406. sei();
  8407. plan_buffer_line(
  8408. current_position[X_AXIS],
  8409. current_position[Y_AXIS],
  8410. current_position[Z_AXIS],
  8411. current_position[E_AXIS] - default_retraction,
  8412. 95, active_extruder);
  8413. st_synchronize();
  8414. disable_e0();
  8415. plan_buffer_line(
  8416. current_position[X_AXIS],
  8417. current_position[Y_AXIS],
  8418. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8419. current_position[E_AXIS] - default_retraction,
  8420. 40, active_extruder);
  8421. st_synchronize();
  8422. disable_e0();
  8423. plan_buffer_line(
  8424. current_position[X_AXIS],
  8425. current_position[Y_AXIS],
  8426. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  8427. current_position[E_AXIS] - default_retraction,
  8428. 40, active_extruder);
  8429. st_synchronize();
  8430. disable_e0();
  8431. // Move Z up to the next 0th full step.
  8432. // Write the file position.
  8433. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  8434. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8435. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8436. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8437. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8438. // Scale the z value to 1u resolution.
  8439. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  8440. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  8441. }
  8442. // Read out the current Z motor microstep counter. This will be later used
  8443. // for reaching the zero full step before powering off.
  8444. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  8445. // Store the current position.
  8446. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  8447. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  8448. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  8449. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  8450. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  8451. EEPROM_save_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply);
  8452. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  8453. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  8454. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  8455. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  8456. #if EXTRUDERS > 1
  8457. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  8458. #if EXTRUDERS > 2
  8459. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  8460. #endif
  8461. #endif
  8462. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  8463. // Store the saved target
  8464. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  8465. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  8466. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  8467. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  8468. #ifdef LIN_ADVANCE
  8469. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  8470. #endif
  8471. // Finaly store the "power outage" flag.
  8472. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  8473. st_synchronize();
  8474. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  8475. // Increment power failure counter
  8476. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8477. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8478. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  8479. #if 0
  8480. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  8481. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  8482. plan_buffer_line_curposXYZE(500, active_extruder);
  8483. st_synchronize();
  8484. #endif
  8485. wdt_enable(WDTO_500MS);
  8486. WRITE(BEEPER,HIGH);
  8487. while(1)
  8488. ;
  8489. }
  8490. void uvlo_tiny()
  8491. {
  8492. uint16_t z_microsteps=0;
  8493. // Conserve power as soon as possible.
  8494. disable_x();
  8495. disable_y();
  8496. disable_e0();
  8497. #ifdef TMC2130
  8498. tmc2130_set_current_h(Z_AXIS, 20);
  8499. tmc2130_set_current_r(Z_AXIS, 20);
  8500. #endif //TMC2130
  8501. // Read out the current Z motor microstep counter
  8502. #ifdef TMC2130
  8503. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8504. #endif //TMC2130
  8505. planner_abort_hard();
  8506. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  8507. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  8508. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  8509. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  8510. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  8511. }
  8512. //after multiple power panics current Z axis is unknow
  8513. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  8514. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  8515. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  8516. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  8517. }
  8518. // Finaly store the "power outage" flag.
  8519. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  8520. // Increment power failure counter
  8521. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  8522. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  8523. wdt_enable(WDTO_500MS);
  8524. WRITE(BEEPER,HIGH);
  8525. while(1)
  8526. ;
  8527. }
  8528. #endif //UVLO_SUPPORT
  8529. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  8530. void setup_fan_interrupt() {
  8531. //INT7
  8532. DDRE &= ~(1 << 7); //input pin
  8533. PORTE &= ~(1 << 7); //no internal pull-up
  8534. //start with sensing rising edge
  8535. EICRB &= ~(1 << 6);
  8536. EICRB |= (1 << 7);
  8537. //enable INT7 interrupt
  8538. EIMSK |= (1 << 7);
  8539. }
  8540. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  8541. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  8542. ISR(INT7_vect) {
  8543. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  8544. #ifdef FAN_SOFT_PWM
  8545. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  8546. #else //FAN_SOFT_PWM
  8547. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  8548. #endif //FAN_SOFT_PWM
  8549. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  8550. t_fan_rising_edge = millis_nc();
  8551. }
  8552. else { //interrupt was triggered by falling edge
  8553. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  8554. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  8555. }
  8556. }
  8557. EICRB ^= (1 << 6); //change edge
  8558. }
  8559. #endif
  8560. #ifdef UVLO_SUPPORT
  8561. void setup_uvlo_interrupt() {
  8562. DDRE &= ~(1 << 4); //input pin
  8563. PORTE &= ~(1 << 4); //no internal pull-up
  8564. //sensing falling edge
  8565. EICRB |= (1 << 0);
  8566. EICRB &= ~(1 << 1);
  8567. //enable INT4 interrupt
  8568. EIMSK |= (1 << 4);
  8569. }
  8570. ISR(INT4_vect) {
  8571. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  8572. SERIAL_ECHOLNPGM("INT4");
  8573. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  8574. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  8575. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  8576. }
  8577. void recover_print(uint8_t automatic) {
  8578. char cmd[30];
  8579. lcd_update_enable(true);
  8580. lcd_update(2);
  8581. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  8582. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  8583. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  8584. // Lift the print head, so one may remove the excess priming material.
  8585. if(!bTiny&&(current_position[Z_AXIS]<25))
  8586. enquecommand_P(PSTR("G1 Z25 F800"));
  8587. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  8588. enquecommand_P(PSTR("G28 X Y"));
  8589. // Set the target bed and nozzle temperatures and wait.
  8590. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  8591. enquecommand(cmd);
  8592. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  8593. enquecommand(cmd);
  8594. enquecommand_P(PSTR("M83")); //E axis relative mode
  8595. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8596. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  8597. if(automatic == 0){
  8598. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  8599. }
  8600. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  8601. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8602. // Restart the print.
  8603. restore_print_from_eeprom();
  8604. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  8605. }
  8606. void recover_machine_state_after_power_panic(bool bTiny)
  8607. {
  8608. char cmd[30];
  8609. // 1) Recover the logical cordinates at the time of the power panic.
  8610. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  8611. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  8612. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  8613. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  8614. mbl.active = false;
  8615. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  8616. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  8617. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  8618. // Scale the z value to 10u resolution.
  8619. int16_t v;
  8620. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  8621. if (v != 0)
  8622. mbl.active = true;
  8623. mbl.z_values[iy][ix] = float(v) * 0.001f;
  8624. }
  8625. // Recover the logical coordinate of the Z axis at the time of the power panic.
  8626. // The current position after power panic is moved to the next closest 0th full step.
  8627. if(bTiny){
  8628. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  8629. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  8630. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8631. //after multiple power panics the print is slightly in the air so get it little bit down.
  8632. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  8633. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  8634. }
  8635. else{
  8636. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  8637. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  8638. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  8639. }
  8640. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  8641. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  8642. sprintf_P(cmd, PSTR("G92 E"));
  8643. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  8644. enquecommand(cmd);
  8645. }
  8646. memcpy(destination, current_position, sizeof(destination));
  8647. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8648. print_world_coordinates();
  8649. // 3) Initialize the logical to physical coordinate system transformation.
  8650. world2machine_initialize();
  8651. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8652. // print_mesh_bed_leveling_table();
  8653. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  8654. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  8655. babystep_load();
  8656. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8657. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8658. // 6) Power up the motors, mark their positions as known.
  8659. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8660. axis_known_position[X_AXIS] = true; enable_x();
  8661. axis_known_position[Y_AXIS] = true; enable_y();
  8662. axis_known_position[Z_AXIS] = true; enable_z();
  8663. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8664. print_physical_coordinates();
  8665. // 7) Recover the target temperatures.
  8666. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8667. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8668. // 8) Recover extruder multipilers
  8669. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8670. #if EXTRUDERS > 1
  8671. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8672. #if EXTRUDERS > 2
  8673. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8674. #endif
  8675. #endif
  8676. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8677. // 9) Recover the saved target
  8678. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  8679. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  8680. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  8681. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  8682. #ifdef LIN_ADVANCE
  8683. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  8684. #endif
  8685. }
  8686. void restore_print_from_eeprom() {
  8687. int feedrate_rec;
  8688. int feedmultiply_rec;
  8689. uint8_t fan_speed_rec;
  8690. char cmd[30];
  8691. char filename[13];
  8692. uint8_t depth = 0;
  8693. char dir_name[9];
  8694. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8695. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  8696. EEPROM_read_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply_rec);
  8697. SERIAL_ECHOPGM("Feedrate:");
  8698. MYSERIAL.print(feedrate_rec);
  8699. SERIAL_ECHOPGM(", feedmultiply:");
  8700. MYSERIAL.println(feedmultiply_rec);
  8701. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8702. MYSERIAL.println(int(depth));
  8703. for (int i = 0; i < depth; i++) {
  8704. for (int j = 0; j < 8; j++) {
  8705. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8706. }
  8707. dir_name[8] = '\0';
  8708. MYSERIAL.println(dir_name);
  8709. strcpy(dir_names[i], dir_name);
  8710. card.chdir(dir_name);
  8711. }
  8712. for (int i = 0; i < 8; i++) {
  8713. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8714. }
  8715. filename[8] = '\0';
  8716. MYSERIAL.print(filename);
  8717. strcat_P(filename, PSTR(".gco"));
  8718. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8719. enquecommand(cmd);
  8720. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8721. SERIAL_ECHOPGM("Position read from eeprom:");
  8722. MYSERIAL.println(position);
  8723. // E axis relative mode.
  8724. enquecommand_P(PSTR("M83"));
  8725. // Move to the XY print position in logical coordinates, where the print has been killed.
  8726. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8727. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8728. strcat_P(cmd, PSTR(" F2000"));
  8729. enquecommand(cmd);
  8730. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8731. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8732. // Move the Z axis down to the print, in logical coordinates.
  8733. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8734. enquecommand(cmd);
  8735. // Unretract.
  8736. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8737. // Set the feedrates saved at the power panic.
  8738. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8739. enquecommand(cmd);
  8740. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  8741. enquecommand(cmd);
  8742. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8743. {
  8744. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8745. }
  8746. // Set the fan speed saved at the power panic.
  8747. strcpy_P(cmd, PSTR("M106 S"));
  8748. strcat(cmd, itostr3(int(fan_speed_rec)));
  8749. enquecommand(cmd);
  8750. // Set a position in the file.
  8751. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8752. enquecommand(cmd);
  8753. enquecommand_P(PSTR("G4 S0"));
  8754. enquecommand_P(PSTR("PRUSA uvlo"));
  8755. }
  8756. #endif //UVLO_SUPPORT
  8757. //! @brief Immediately stop print moves
  8758. //!
  8759. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8760. //! If printing from sd card, position in file is saved.
  8761. //! If printing from USB, line number is saved.
  8762. //!
  8763. //! @param z_move
  8764. //! @param e_move
  8765. void stop_and_save_print_to_ram(float z_move, float e_move)
  8766. {
  8767. if (saved_printing) return;
  8768. #if 0
  8769. unsigned char nplanner_blocks;
  8770. #endif
  8771. unsigned char nlines;
  8772. uint16_t sdlen_planner;
  8773. uint16_t sdlen_cmdqueue;
  8774. cli();
  8775. if (card.sdprinting) {
  8776. #if 0
  8777. nplanner_blocks = number_of_blocks();
  8778. #endif
  8779. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8780. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8781. saved_sdpos -= sdlen_planner;
  8782. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8783. saved_sdpos -= sdlen_cmdqueue;
  8784. saved_printing_type = PRINTING_TYPE_SD;
  8785. }
  8786. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8787. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8788. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8789. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8790. saved_sdpos -= nlines;
  8791. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8792. saved_printing_type = PRINTING_TYPE_USB;
  8793. }
  8794. else {
  8795. saved_printing_type = PRINTING_TYPE_NONE;
  8796. //not sd printing nor usb printing
  8797. }
  8798. #if 0
  8799. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8800. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8801. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8802. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8803. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8804. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8805. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8806. {
  8807. card.setIndex(saved_sdpos);
  8808. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8809. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8810. MYSERIAL.print(char(card.get()));
  8811. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8812. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8813. MYSERIAL.print(char(card.get()));
  8814. SERIAL_ECHOLNPGM("End of command buffer");
  8815. }
  8816. {
  8817. // Print the content of the planner buffer, line by line:
  8818. card.setIndex(saved_sdpos);
  8819. int8_t iline = 0;
  8820. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8821. SERIAL_ECHOPGM("Planner line (from file): ");
  8822. MYSERIAL.print(int(iline), DEC);
  8823. SERIAL_ECHOPGM(", length: ");
  8824. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8825. SERIAL_ECHOPGM(", steps: (");
  8826. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8827. SERIAL_ECHOPGM(",");
  8828. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8829. SERIAL_ECHOPGM(",");
  8830. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8831. SERIAL_ECHOPGM(",");
  8832. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8833. SERIAL_ECHOPGM("), events: ");
  8834. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8835. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8836. MYSERIAL.print(char(card.get()));
  8837. }
  8838. }
  8839. {
  8840. // Print the content of the command buffer, line by line:
  8841. int8_t iline = 0;
  8842. union {
  8843. struct {
  8844. char lo;
  8845. char hi;
  8846. } lohi;
  8847. uint16_t value;
  8848. } sdlen_single;
  8849. int _bufindr = bufindr;
  8850. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8851. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8852. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8853. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8854. }
  8855. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8856. MYSERIAL.print(int(iline), DEC);
  8857. SERIAL_ECHOPGM(", type: ");
  8858. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8859. SERIAL_ECHOPGM(", len: ");
  8860. MYSERIAL.println(sdlen_single.value, DEC);
  8861. // Print the content of the buffer line.
  8862. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8863. SERIAL_ECHOPGM("Buffer line (from file): ");
  8864. MYSERIAL.println(int(iline), DEC);
  8865. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8866. MYSERIAL.print(char(card.get()));
  8867. if (-- _buflen == 0)
  8868. break;
  8869. // First skip the current command ID and iterate up to the end of the string.
  8870. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8871. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8872. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8873. // If the end of the buffer was empty,
  8874. if (_bufindr == sizeof(cmdbuffer)) {
  8875. // skip to the start and find the nonzero command.
  8876. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8877. }
  8878. }
  8879. }
  8880. #endif
  8881. // save the global state at planning time
  8882. if (blocks_queued())
  8883. {
  8884. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  8885. saved_feedrate2 = current_block->gcode_feedrate;
  8886. }
  8887. else
  8888. {
  8889. saved_target[0] = SAVED_TARGET_UNSET;
  8890. saved_feedrate2 = feedrate;
  8891. }
  8892. planner_abort_hard(); //abort printing
  8893. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8894. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  8895. saved_active_extruder = active_extruder; //save active_extruder
  8896. saved_extruder_temperature = degTargetHotend(active_extruder);
  8897. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8898. saved_fanSpeed = fanSpeed;
  8899. cmdqueue_reset(); //empty cmdqueue
  8900. card.sdprinting = false;
  8901. // card.closefile();
  8902. saved_printing = true;
  8903. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8904. st_reset_timer();
  8905. sei();
  8906. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8907. #if 1
  8908. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8909. char buf[48];
  8910. // First unretract (relative extrusion)
  8911. if(!saved_extruder_relative_mode){
  8912. enquecommand(PSTR("M83"), true);
  8913. }
  8914. //retract 45mm/s
  8915. // A single sprintf may not be faster, but is definitely 20B shorter
  8916. // than a sequence of commands building the string piece by piece
  8917. // A snprintf would have been a safer call, but since it is not used
  8918. // in the whole program, its implementation would bring more bytes to the total size
  8919. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8920. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8921. enquecommand(buf, false);
  8922. // Then lift Z axis
  8923. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8924. // At this point the command queue is empty.
  8925. enquecommand(buf, false);
  8926. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8927. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8928. repeatcommand_front();
  8929. #else
  8930. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8931. st_synchronize(); //wait moving
  8932. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8933. memcpy(destination, current_position, sizeof(destination));
  8934. #endif
  8935. }
  8936. }
  8937. //! @brief Restore print from ram
  8938. //!
  8939. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  8940. //! print fan speed, waits for extruder temperature restore, then restores
  8941. //! position and continues print moves.
  8942. //!
  8943. //! Internally lcd_update() is called by wait_for_heater().
  8944. //!
  8945. //! @param e_move
  8946. void restore_print_from_ram_and_continue(float e_move)
  8947. {
  8948. if (!saved_printing) return;
  8949. #ifdef FANCHECK
  8950. // Do not allow resume printing if fans are still not ok
  8951. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  8952. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  8953. #endif
  8954. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8955. // current_position[axis] = st_get_position_mm(axis);
  8956. active_extruder = saved_active_extruder; //restore active_extruder
  8957. fanSpeed = saved_fanSpeed;
  8958. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  8959. {
  8960. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8961. heating_status = 1;
  8962. wait_for_heater(_millis(), saved_active_extruder);
  8963. heating_status = 2;
  8964. }
  8965. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8966. float e = saved_pos[E_AXIS] - e_move;
  8967. plan_set_e_position(e);
  8968. #ifdef FANCHECK
  8969. fans_check_enabled = false;
  8970. #endif
  8971. //first move print head in XY to the saved position:
  8972. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8973. st_synchronize();
  8974. //then move Z
  8975. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8976. st_synchronize();
  8977. //and finaly unretract (35mm/s)
  8978. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8979. st_synchronize();
  8980. #ifdef FANCHECK
  8981. fans_check_enabled = true;
  8982. #endif
  8983. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  8984. feedrate = saved_feedrate2;
  8985. feedmultiply = saved_feedmultiply2;
  8986. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8987. memcpy(destination, current_position, sizeof(destination));
  8988. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8989. card.setIndex(saved_sdpos);
  8990. sdpos_atomic = saved_sdpos;
  8991. card.sdprinting = true;
  8992. }
  8993. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8994. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8995. serial_count = 0;
  8996. FlushSerialRequestResend();
  8997. }
  8998. else {
  8999. //not sd printing nor usb printing
  9000. }
  9001. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  9002. lcd_setstatuspgm(_T(WELCOME_MSG));
  9003. saved_printing_type = PRINTING_TYPE_NONE;
  9004. saved_printing = false;
  9005. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9006. }
  9007. void print_world_coordinates()
  9008. {
  9009. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  9010. }
  9011. void print_physical_coordinates()
  9012. {
  9013. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  9014. }
  9015. void print_mesh_bed_leveling_table()
  9016. {
  9017. SERIAL_ECHOPGM("mesh bed leveling: ");
  9018. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  9019. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  9020. MYSERIAL.print(mbl.z_values[y][x], 3);
  9021. SERIAL_ECHOPGM(" ");
  9022. }
  9023. SERIAL_ECHOLNPGM("");
  9024. }
  9025. uint16_t print_time_remaining() {
  9026. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  9027. #ifdef TMC2130
  9028. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  9029. else print_t = print_time_remaining_silent;
  9030. #else
  9031. print_t = print_time_remaining_normal;
  9032. #endif //TMC2130
  9033. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  9034. return print_t;
  9035. }
  9036. uint8_t calc_percent_done()
  9037. {
  9038. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  9039. uint8_t percent_done = 0;
  9040. #ifdef TMC2130
  9041. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  9042. percent_done = print_percent_done_normal;
  9043. }
  9044. else if (print_percent_done_silent <= 100) {
  9045. percent_done = print_percent_done_silent;
  9046. }
  9047. #else
  9048. if (print_percent_done_normal <= 100) {
  9049. percent_done = print_percent_done_normal;
  9050. }
  9051. #endif //TMC2130
  9052. else {
  9053. percent_done = card.percentDone();
  9054. }
  9055. return percent_done;
  9056. }
  9057. static void print_time_remaining_init()
  9058. {
  9059. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9060. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9061. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9062. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9063. }
  9064. void load_filament_final_feed()
  9065. {
  9066. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9067. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  9068. }
  9069. //! @brief Wait for user to check the state
  9070. //! @par nozzle_temp nozzle temperature to load filament
  9071. void M600_check_state(float nozzle_temp)
  9072. {
  9073. lcd_change_fil_state = 0;
  9074. while (lcd_change_fil_state != 1)
  9075. {
  9076. lcd_change_fil_state = 0;
  9077. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9078. lcd_alright();
  9079. KEEPALIVE_STATE(IN_HANDLER);
  9080. switch(lcd_change_fil_state)
  9081. {
  9082. // Filament failed to load so load it again
  9083. case 2:
  9084. if (mmu_enabled)
  9085. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9086. else
  9087. M600_load_filament_movements();
  9088. break;
  9089. // Filament loaded properly but color is not clear
  9090. case 3:
  9091. st_synchronize();
  9092. load_filament_final_feed();
  9093. lcd_loading_color();
  9094. st_synchronize();
  9095. break;
  9096. // Everything good
  9097. default:
  9098. lcd_change_success();
  9099. break;
  9100. }
  9101. }
  9102. }
  9103. //! @brief Wait for user action
  9104. //!
  9105. //! Beep, manage nozzle heater and wait for user to start unload filament
  9106. //! If times out, active extruder temperature is set to 0.
  9107. //!
  9108. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9109. void M600_wait_for_user(float HotendTempBckp) {
  9110. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9111. int counterBeep = 0;
  9112. unsigned long waiting_start_time = _millis();
  9113. uint8_t wait_for_user_state = 0;
  9114. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9115. bool bFirst=true;
  9116. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9117. manage_heater();
  9118. manage_inactivity(true);
  9119. #if BEEPER > 0
  9120. if (counterBeep == 500) {
  9121. counterBeep = 0;
  9122. }
  9123. SET_OUTPUT(BEEPER);
  9124. if (counterBeep == 0) {
  9125. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9126. {
  9127. bFirst=false;
  9128. WRITE(BEEPER, HIGH);
  9129. }
  9130. }
  9131. if (counterBeep == 20) {
  9132. WRITE(BEEPER, LOW);
  9133. }
  9134. counterBeep++;
  9135. #endif //BEEPER > 0
  9136. switch (wait_for_user_state) {
  9137. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9138. delay_keep_alive(4);
  9139. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9140. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9141. wait_for_user_state = 1;
  9142. setAllTargetHotends(0);
  9143. st_synchronize();
  9144. disable_e0();
  9145. disable_e1();
  9146. disable_e2();
  9147. }
  9148. break;
  9149. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9150. delay_keep_alive(4);
  9151. if (lcd_clicked()) {
  9152. setTargetHotend(HotendTempBckp, active_extruder);
  9153. lcd_wait_for_heater();
  9154. wait_for_user_state = 2;
  9155. }
  9156. break;
  9157. case 2: //waiting for nozzle to reach target temperature
  9158. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9159. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9160. waiting_start_time = _millis();
  9161. wait_for_user_state = 0;
  9162. }
  9163. else {
  9164. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9165. lcd_set_cursor(1, 4);
  9166. lcd_print(ftostr3(degHotend(active_extruder)));
  9167. }
  9168. break;
  9169. }
  9170. }
  9171. WRITE(BEEPER, LOW);
  9172. }
  9173. void M600_load_filament_movements()
  9174. {
  9175. #ifdef SNMM
  9176. display_loading();
  9177. do
  9178. {
  9179. current_position[E_AXIS] += 0.002;
  9180. plan_buffer_line_curposXYZE(500, active_extruder);
  9181. delay_keep_alive(2);
  9182. }
  9183. while (!lcd_clicked());
  9184. st_synchronize();
  9185. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9186. plan_buffer_line_curposXYZE(3000, active_extruder);
  9187. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9188. plan_buffer_line_curposXYZE(1400, active_extruder);
  9189. current_position[E_AXIS] += 40;
  9190. plan_buffer_line_curposXYZE(400, active_extruder);
  9191. current_position[E_AXIS] += 10;
  9192. plan_buffer_line_curposXYZE(50, active_extruder);
  9193. #else
  9194. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9195. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9196. #endif
  9197. load_filament_final_feed();
  9198. lcd_loading_filament();
  9199. st_synchronize();
  9200. }
  9201. void M600_load_filament() {
  9202. //load filament for single material and SNMM
  9203. lcd_wait_interact();
  9204. //load_filament_time = _millis();
  9205. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9206. #ifdef PAT9125
  9207. fsensor_autoload_check_start();
  9208. #endif //PAT9125
  9209. while(!lcd_clicked())
  9210. {
  9211. manage_heater();
  9212. manage_inactivity(true);
  9213. #ifdef FILAMENT_SENSOR
  9214. if (fsensor_check_autoload())
  9215. {
  9216. Sound_MakeCustom(50,1000,false);
  9217. break;
  9218. }
  9219. #endif //FILAMENT_SENSOR
  9220. }
  9221. #ifdef PAT9125
  9222. fsensor_autoload_check_stop();
  9223. #endif //PAT9125
  9224. KEEPALIVE_STATE(IN_HANDLER);
  9225. #ifdef FSENSOR_QUALITY
  9226. fsensor_oq_meassure_start(70);
  9227. #endif //FSENSOR_QUALITY
  9228. M600_load_filament_movements();
  9229. Sound_MakeCustom(50,1000,false);
  9230. #ifdef FSENSOR_QUALITY
  9231. fsensor_oq_meassure_stop();
  9232. if (!fsensor_oq_result())
  9233. {
  9234. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9235. lcd_update_enable(true);
  9236. lcd_update(2);
  9237. if (disable)
  9238. fsensor_disable();
  9239. }
  9240. #endif //FSENSOR_QUALITY
  9241. lcd_update_enable(false);
  9242. }
  9243. //! @brief Wait for click
  9244. //!
  9245. //! Set
  9246. void marlin_wait_for_click()
  9247. {
  9248. int8_t busy_state_backup = busy_state;
  9249. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9250. lcd_consume_click();
  9251. while(!lcd_clicked())
  9252. {
  9253. manage_heater();
  9254. manage_inactivity(true);
  9255. lcd_update(0);
  9256. }
  9257. KEEPALIVE_STATE(busy_state_backup);
  9258. }
  9259. #define FIL_LOAD_LENGTH 60
  9260. #ifdef PSU_Delta
  9261. bool bEnableForce_z;
  9262. void init_force_z()
  9263. {
  9264. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9265. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9266. disable_force_z();
  9267. }
  9268. void check_force_z()
  9269. {
  9270. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9271. init_force_z(); // causes enforced switching into disable-state
  9272. }
  9273. void disable_force_z()
  9274. {
  9275. uint16_t z_microsteps=0;
  9276. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9277. bEnableForce_z=false;
  9278. // switching to silent mode
  9279. #ifdef TMC2130
  9280. tmc2130_mode=TMC2130_MODE_SILENT;
  9281. update_mode_profile();
  9282. tmc2130_init(true);
  9283. #endif // TMC2130
  9284. axis_known_position[Z_AXIS]=false;
  9285. }
  9286. void enable_force_z()
  9287. {
  9288. if(bEnableForce_z)
  9289. return; // motor already enabled (may be ;-p )
  9290. bEnableForce_z=true;
  9291. // mode recovering
  9292. #ifdef TMC2130
  9293. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9294. update_mode_profile();
  9295. tmc2130_init(true);
  9296. #endif // TMC2130
  9297. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9298. }
  9299. #endif // PSU_Delta