planner.cpp 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #include "ConfigurationStore.h"
  43. #ifdef MESH_BED_LEVELING
  44. #include "mesh_bed_leveling.h"
  45. #include "mesh_bed_calibration.h"
  46. #endif
  47. #ifdef TMC2130
  48. #include "tmc2130.h"
  49. #endif //TMC2130
  50. //===========================================================================
  51. //=============================public variables ============================
  52. //===========================================================================
  53. // Use M203 to override by software
  54. float* max_feedrate = cs.max_feedrate_normal;
  55. // Use M201 to override by software
  56. unsigned long* max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  57. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  58. #ifdef ENABLE_AUTO_BED_LEVELING
  59. // this holds the required transform to compensate for bed level
  60. matrix_3x3 plan_bed_level_matrix = {
  61. 1.0, 0.0, 0.0,
  62. 0.0, 1.0, 0.0,
  63. 0.0, 0.0, 1.0,
  64. };
  65. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  66. // The current position of the tool in absolute steps
  67. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  68. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  69. static float previous_nominal_speed; // Nominal speed of previous path line segment
  70. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  71. uint8_t maxlimit_status;
  72. #ifdef AUTOTEMP
  73. float autotemp_max=250;
  74. float autotemp_min=210;
  75. float autotemp_factor=0.1;
  76. bool autotemp_enabled=false;
  77. #endif
  78. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  79. //===========================================================================
  80. //=================semi-private variables, used in inline functions =====
  81. //===========================================================================
  82. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  83. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  84. volatile unsigned char block_buffer_tail; // Index of the block to process now
  85. #ifdef PLANNER_DIAGNOSTICS
  86. // Diagnostic function: Minimum number of planned moves since the last
  87. static uint8_t g_cntr_planner_queue_min = 0;
  88. #endif /* PLANNER_DIAGNOSTICS */
  89. //===========================================================================
  90. //=============================private variables ============================
  91. //===========================================================================
  92. #ifdef PREVENT_DANGEROUS_EXTRUDE
  93. float extrude_min_temp=EXTRUDE_MINTEMP;
  94. #endif
  95. #ifdef LIN_ADVANCE
  96. float extruder_advance_K = LIN_ADVANCE_K;
  97. float position_float[NUM_AXIS];
  98. #endif
  99. // Returns the index of the next block in the ring buffer
  100. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  101. static inline int8_t next_block_index(int8_t block_index) {
  102. if (++ block_index == BLOCK_BUFFER_SIZE)
  103. block_index = 0;
  104. return block_index;
  105. }
  106. // Returns the index of the previous block in the ring buffer
  107. static inline int8_t prev_block_index(int8_t block_index) {
  108. if (block_index == 0)
  109. block_index = BLOCK_BUFFER_SIZE;
  110. -- block_index;
  111. return block_index;
  112. }
  113. //===========================================================================
  114. //=============================functions ============================
  115. //===========================================================================
  116. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  117. // given acceleration:
  118. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  119. {
  120. if (acceleration!=0) {
  121. return((target_rate*target_rate-initial_rate*initial_rate)/
  122. (2.0*acceleration));
  123. }
  124. else {
  125. return 0.0; // acceleration was 0, set acceleration distance to 0
  126. }
  127. }
  128. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  129. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  130. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  131. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  132. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  133. {
  134. if (acceleration!=0) {
  135. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  136. (4.0*acceleration) );
  137. }
  138. else {
  139. return 0.0; // acceleration was 0, set intersection distance to 0
  140. }
  141. }
  142. // Minimum stepper rate 120Hz.
  143. #define MINIMAL_STEP_RATE 120
  144. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  145. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  146. {
  147. // These two lines are the only floating point calculations performed in this routine.
  148. // initial_rate, final_rate in Hz.
  149. // Minimum stepper rate 120Hz, maximum 40kHz. If the stepper rate goes above 10kHz,
  150. // the stepper interrupt routine groups the pulses by 2 or 4 pulses per interrupt tick.
  151. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  152. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  153. // Limit minimal step rate (Otherwise the timer will overflow.)
  154. if (initial_rate < MINIMAL_STEP_RATE)
  155. initial_rate = MINIMAL_STEP_RATE;
  156. if (initial_rate > block->nominal_rate)
  157. initial_rate = block->nominal_rate;
  158. if (final_rate < MINIMAL_STEP_RATE)
  159. final_rate = MINIMAL_STEP_RATE;
  160. if (final_rate > block->nominal_rate)
  161. final_rate = block->nominal_rate;
  162. uint32_t acceleration = block->acceleration_st;
  163. if (acceleration == 0)
  164. // Don't allow zero acceleration.
  165. acceleration = 1;
  166. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  167. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  168. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  169. //FIXME assert that this result fits a 64bit unsigned int.
  170. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  171. uint32_t final_rate_sqr = final_rate*final_rate;
  172. uint32_t acceleration_x2 = acceleration << 1;
  173. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  174. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  175. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  176. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  177. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  178. // Size of Plateau of Nominal Rate.
  179. uint32_t plateau_steps = 0;
  180. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  181. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  182. // in order to reach the final_rate exactly at the end of this block.
  183. if (accel_decel_steps < block->step_event_count.wide) {
  184. plateau_steps = block->step_event_count.wide - accel_decel_steps;
  185. } else {
  186. uint32_t acceleration_x4 = acceleration << 2;
  187. // Avoid negative numbers
  188. if (final_rate_sqr >= initial_rate_sqr) {
  189. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  190. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  191. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  192. #if 0
  193. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  194. #else
  195. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  196. if (block->step_event_count.wide & 1)
  197. accelerate_steps += acceleration_x2;
  198. accelerate_steps /= acceleration_x4;
  199. accelerate_steps += (block->step_event_count.wide >> 1);
  200. #endif
  201. if (accelerate_steps > block->step_event_count.wide)
  202. accelerate_steps = block->step_event_count.wide;
  203. } else {
  204. #if 0
  205. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  206. #else
  207. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  208. if (block->step_event_count.wide & 1)
  209. decelerate_steps += acceleration_x2;
  210. decelerate_steps /= acceleration_x4;
  211. decelerate_steps += (block->step_event_count.wide >> 1);
  212. #endif
  213. if (decelerate_steps > block->step_event_count.wide)
  214. decelerate_steps = block->step_event_count.wide;
  215. accelerate_steps = block->step_event_count.wide - decelerate_steps;
  216. }
  217. }
  218. #ifdef LIN_ADVANCE
  219. uint16_t final_adv_steps = 0;
  220. if (block->use_advance_lead) {
  221. final_adv_steps = exit_speed * block->adv_comp;
  222. }
  223. #endif
  224. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  225. // This block locks the interrupts globally for 4.38 us,
  226. // which corresponds to a maximum repeat frequency of 228.57 kHz.
  227. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  228. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  229. if (! block->busy) { // Don't update variables if block is busy.
  230. block->accelerate_until = accelerate_steps;
  231. block->decelerate_after = accelerate_steps+plateau_steps;
  232. block->initial_rate = initial_rate;
  233. block->final_rate = final_rate;
  234. #ifdef LIN_ADVANCE
  235. block->final_adv_steps = final_adv_steps;
  236. #endif
  237. }
  238. CRITICAL_SECTION_END;
  239. }
  240. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  241. // decceleration within the allotted distance.
  242. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  243. {
  244. // assert(decceleration < 0);
  245. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  246. }
  247. // Recalculates the motion plan according to the following algorithm:
  248. //
  249. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  250. // so that:
  251. // a. The junction jerk is within the set limit
  252. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  253. // acceleration.
  254. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  255. // a. The speed increase within one block would require faster accelleration than the one, true
  256. // constant acceleration.
  257. //
  258. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  259. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  260. // the set limit. Finally it will:
  261. //
  262. // 3. Recalculate trapezoids for all blocks.
  263. //
  264. //FIXME This routine is called 15x every time a new line is added to the planner,
  265. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  266. // if the CPU is found lacking computational power.
  267. //
  268. // Following sources may be used to optimize the 8-bit AVR code:
  269. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  270. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  271. //
  272. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  273. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  274. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  275. //
  276. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  277. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  278. // https://github.com/rekka/avrmultiplication
  279. //
  280. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  281. // https://courses.cit.cornell.edu/ee476/Math/
  282. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  283. //
  284. void planner_recalculate(const float &safe_final_speed)
  285. {
  286. // Reverse pass
  287. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  288. // by consuming the blocks, therefore shortening the queue.
  289. unsigned char tail = block_buffer_tail;
  290. uint8_t block_index;
  291. block_t *prev, *current, *next;
  292. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  293. // At least three blocks are in the queue?
  294. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  295. if (n_blocks >= 3) {
  296. // Initialize the last tripple of blocks.
  297. block_index = prev_block_index(block_buffer_head);
  298. next = block_buffer + block_index;
  299. current = block_buffer + (block_index = prev_block_index(block_index));
  300. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  301. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  302. // 1) it may already be running at the stepper interrupt,
  303. // 2) there is no way to limit it when going in the forward direction.
  304. while (block_index != tail) {
  305. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  306. // Don't modify the entry velocity of the starting block.
  307. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  308. // for the stepper interrupt routine to use them.
  309. tail = block_index;
  310. // Update the number of blocks to process.
  311. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  312. // SERIAL_ECHOLNPGM("START");
  313. break;
  314. }
  315. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  316. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  317. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  318. if (current->entry_speed != current->max_entry_speed) {
  319. // assert(current->entry_speed < current->max_entry_speed);
  320. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  321. // segment and the maximum acceleration allowed for this segment.
  322. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  323. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  324. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  325. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  326. // together with an assembly 32bit->16bit sqrt function.
  327. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  328. current->max_entry_speed :
  329. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  330. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  331. current->flag |= BLOCK_FLAG_RECALCULATE;
  332. }
  333. next = current;
  334. current = block_buffer + (block_index = prev_block_index(block_index));
  335. }
  336. }
  337. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  338. // Forward pass and recalculate the trapezoids.
  339. if (n_blocks >= 2) {
  340. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  341. block_index = tail;
  342. prev = block_buffer + block_index;
  343. current = block_buffer + (block_index = next_block_index(block_index));
  344. do {
  345. // If the previous block is an acceleration block, but it is not long enough to complete the
  346. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  347. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  348. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  349. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  350. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  351. // Check for junction speed change
  352. if (current->entry_speed != entry_speed) {
  353. current->entry_speed = entry_speed;
  354. current->flag |= BLOCK_FLAG_RECALCULATE;
  355. }
  356. }
  357. // Recalculate if current block entry or exit junction speed has changed.
  358. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  359. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  360. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  361. // Reset current only to ensure next trapezoid is computed.
  362. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  363. }
  364. prev = current;
  365. current = block_buffer + (block_index = next_block_index(block_index));
  366. } while (block_index != block_buffer_head);
  367. }
  368. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  369. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  370. current = block_buffer + prev_block_index(block_buffer_head);
  371. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  372. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  373. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  374. }
  375. void plan_init() {
  376. block_buffer_head = 0;
  377. block_buffer_tail = 0;
  378. memset(position, 0, sizeof(position)); // clear position
  379. #ifdef LIN_ADVANCE
  380. memset(position_float, 0, sizeof(position_float)); // clear position
  381. #endif
  382. previous_speed[0] = 0.0;
  383. previous_speed[1] = 0.0;
  384. previous_speed[2] = 0.0;
  385. previous_speed[3] = 0.0;
  386. previous_nominal_speed = 0.0;
  387. }
  388. #ifdef AUTOTEMP
  389. void getHighESpeed()
  390. {
  391. static float oldt=0;
  392. if(!autotemp_enabled){
  393. return;
  394. }
  395. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  396. return; //do nothing
  397. }
  398. float high=0.0;
  399. uint8_t block_index = block_buffer_tail;
  400. while(block_index != block_buffer_head) {
  401. if((block_buffer[block_index].steps_x.wide != 0) ||
  402. (block_buffer[block_index].steps_y.wide != 0) ||
  403. (block_buffer[block_index].steps_z.wide != 0)) {
  404. float se=(float(block_buffer[block_index].steps_e.wide)/float(block_buffer[block_index].step_event_count.wide))*block_buffer[block_index].nominal_speed;
  405. //se; mm/sec;
  406. if(se>high)
  407. {
  408. high=se;
  409. }
  410. }
  411. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  412. }
  413. float g=autotemp_min+high*autotemp_factor;
  414. float t=g;
  415. if(t<autotemp_min)
  416. t=autotemp_min;
  417. if(t>autotemp_max)
  418. t=autotemp_max;
  419. if(oldt>t)
  420. {
  421. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  422. }
  423. oldt=t;
  424. setTargetHotend0(t);
  425. }
  426. #endif
  427. bool e_active()
  428. {
  429. unsigned char e_active = 0;
  430. block_t *block;
  431. if(block_buffer_tail != block_buffer_head)
  432. {
  433. uint8_t block_index = block_buffer_tail;
  434. while(block_index != block_buffer_head)
  435. {
  436. block = &block_buffer[block_index];
  437. if(block->steps_e.wide != 0) e_active++;
  438. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  439. }
  440. }
  441. return (e_active > 0) ? true : false ;
  442. }
  443. void check_axes_activity()
  444. {
  445. unsigned char x_active = 0;
  446. unsigned char y_active = 0;
  447. unsigned char z_active = 0;
  448. unsigned char e_active = 0;
  449. unsigned char tail_fan_speed = fanSpeed;
  450. block_t *block;
  451. if(block_buffer_tail != block_buffer_head)
  452. {
  453. uint8_t block_index = block_buffer_tail;
  454. tail_fan_speed = block_buffer[block_index].fan_speed;
  455. while(block_index != block_buffer_head)
  456. {
  457. block = &block_buffer[block_index];
  458. if(block->steps_x.wide != 0) x_active++;
  459. if(block->steps_y.wide != 0) y_active++;
  460. if(block->steps_z.wide != 0) z_active++;
  461. if(block->steps_e.wide != 0) e_active++;
  462. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  463. }
  464. }
  465. if((DISABLE_X) && (x_active == 0)) disable_x();
  466. if((DISABLE_Y) && (y_active == 0)) disable_y();
  467. if((DISABLE_Z) && (z_active == 0)) disable_z();
  468. if((DISABLE_E) && (e_active == 0))
  469. {
  470. disable_e0();
  471. disable_e1();
  472. disable_e2();
  473. }
  474. #if defined(FAN_PIN) && FAN_PIN > -1
  475. #ifdef FAN_KICKSTART_TIME
  476. static unsigned long fan_kick_end;
  477. if (tail_fan_speed) {
  478. if (fan_kick_end == 0) {
  479. // Just starting up fan - run at full power.
  480. fan_kick_end = _millis() + FAN_KICKSTART_TIME;
  481. tail_fan_speed = 255;
  482. } else if (fan_kick_end > _millis())
  483. // Fan still spinning up.
  484. tail_fan_speed = 255;
  485. } else {
  486. fan_kick_end = 0;
  487. }
  488. #endif//FAN_KICKSTART_TIME
  489. #ifdef FAN_SOFT_PWM
  490. if (fan_measuring) { //if measurement is currently in process, fanSpeedSoftPwm must remain set to 255, but we must update fanSpeedBckp value
  491. fanSpeedBckp = tail_fan_speed;
  492. }
  493. else {
  494. fanSpeedSoftPwm = tail_fan_speed;
  495. }
  496. //printf_P(PSTR("fanspeedsoftPWM %d \n"), fanSpeedSoftPwm);
  497. #else
  498. analogWrite(FAN_PIN,tail_fan_speed);
  499. #endif//!FAN_SOFT_PWM
  500. #endif//FAN_PIN > -1
  501. #ifdef AUTOTEMP
  502. getHighESpeed();
  503. #endif
  504. }
  505. bool waiting_inside_plan_buffer_line_print_aborted = false;
  506. /*
  507. void planner_abort_soft()
  508. {
  509. // Empty the queue.
  510. while (blocks_queued()) plan_discard_current_block();
  511. // Relay to planner wait routine, that the current line shall be canceled.
  512. waiting_inside_plan_buffer_line_print_aborted = true;
  513. //current_position[i]
  514. }
  515. */
  516. #ifdef PLANNER_DIAGNOSTICS
  517. static inline void planner_update_queue_min_counter()
  518. {
  519. uint8_t new_counter = moves_planned();
  520. if (new_counter < g_cntr_planner_queue_min)
  521. g_cntr_planner_queue_min = new_counter;
  522. }
  523. #endif /* PLANNER_DIAGNOSTICS */
  524. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  525. void planner_abort_hard()
  526. {
  527. // Abort the stepper routine and flush the planner queue.
  528. DISABLE_STEPPER_DRIVER_INTERRUPT();
  529. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  530. // First update the planner's current position in the physical motor steps.
  531. position[X_AXIS] = st_get_position(X_AXIS);
  532. position[Y_AXIS] = st_get_position(Y_AXIS);
  533. position[Z_AXIS] = st_get_position(Z_AXIS);
  534. position[E_AXIS] = st_get_position(E_AXIS);
  535. // Second update the current position of the front end.
  536. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  537. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  538. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  539. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  540. // Apply the mesh bed leveling correction to the Z axis.
  541. #ifdef MESH_BED_LEVELING
  542. if (mbl.active) {
  543. #if 1
  544. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  545. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  546. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  547. #else
  548. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  549. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  550. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  551. else {
  552. float t = float(step_events_completed) / float(current_block->step_event_count);
  553. float vec[3] = {
  554. current_block->steps_x / cs.axis_steps_per_unit[X_AXIS],
  555. current_block->steps_y / cs.axis_steps_per_unit[Y_AXIS],
  556. current_block->steps_z / cs.axis_steps_per_unit[Z_AXIS]
  557. };
  558. float pos1[3], pos2[3];
  559. for (int8_t i = 0; i < 3; ++ i) {
  560. if (current_block->direction_bits & (1<<i))
  561. vec[i] = - vec[i];
  562. pos1[i] = current_position[i] - vec[i] * t;
  563. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  564. }
  565. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  566. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  567. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  568. }
  569. #endif
  570. }
  571. #endif
  572. // Clear the planner queue, reset and re-enable the stepper timer.
  573. quickStop();
  574. // Apply inverse world correction matrix.
  575. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  576. memcpy(destination, current_position, sizeof(destination));
  577. #ifdef LIN_ADVANCE
  578. memcpy(position_float, current_position, sizeof(position_float));
  579. #endif
  580. // Resets planner junction speeds. Assumes start from rest.
  581. previous_nominal_speed = 0.0;
  582. previous_speed[0] = 0.0;
  583. previous_speed[1] = 0.0;
  584. previous_speed[2] = 0.0;
  585. previous_speed[3] = 0.0;
  586. // Relay to planner wait routine, that the current line shall be canceled.
  587. waiting_inside_plan_buffer_line_print_aborted = true;
  588. }
  589. void plan_buffer_line_curposXYZE(float feed_rate, uint8_t extruder) {
  590. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feed_rate, extruder );
  591. }
  592. float junction_deviation = 0.1;
  593. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  594. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  595. // calculation the caller must also provide the physical length of the line in millimeters.
  596. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, uint8_t extruder, const float* gcode_target)
  597. {
  598. // Calculate the buffer head after we push this byte
  599. int next_buffer_head = next_block_index(block_buffer_head);
  600. // If the buffer is full: good! That means we are well ahead of the robot.
  601. // Rest here until there is room in the buffer.
  602. waiting_inside_plan_buffer_line_print_aborted = false;
  603. if (block_buffer_tail == next_buffer_head) {
  604. do {
  605. manage_heater();
  606. // Vojtech: Don't disable motors inside the planner!
  607. manage_inactivity(false);
  608. lcd_update(0);
  609. } while (block_buffer_tail == next_buffer_head);
  610. if (waiting_inside_plan_buffer_line_print_aborted) {
  611. // Inside the lcd_update(0) routine the print has been aborted.
  612. // Cancel the print, do not plan the current line this routine is waiting on.
  613. #ifdef PLANNER_DIAGNOSTICS
  614. planner_update_queue_min_counter();
  615. #endif /* PLANNER_DIAGNOSTICS */
  616. return;
  617. }
  618. }
  619. #ifdef PLANNER_DIAGNOSTICS
  620. planner_update_queue_min_counter();
  621. #endif /* PLANNER_DIAGNOSTICS */
  622. // Prepare to set up new block
  623. block_t *block = &block_buffer[block_buffer_head];
  624. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  625. block->busy = false;
  626. // Set sdlen for calculating sd position
  627. block->sdlen = 0;
  628. // Save original destination of the move
  629. if (gcode_target)
  630. memcpy(block->gcode_target, gcode_target, sizeof(block_t::gcode_target));
  631. else
  632. {
  633. block->gcode_target[X_AXIS] = x;
  634. block->gcode_target[Y_AXIS] = y;
  635. block->gcode_target[Z_AXIS] = z;
  636. block->gcode_target[E_AXIS] = e;
  637. }
  638. // Save the global feedrate at scheduling time
  639. block->gcode_feedrate = feedrate;
  640. #ifdef ENABLE_AUTO_BED_LEVELING
  641. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  642. #endif // ENABLE_AUTO_BED_LEVELING
  643. // Apply the machine correction matrix.
  644. {
  645. #if 0
  646. SERIAL_ECHOPGM("Planner, current position - servos: ");
  647. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  648. SERIAL_ECHOPGM(", ");
  649. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  650. SERIAL_ECHOPGM(", ");
  651. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  652. SERIAL_ECHOLNPGM("");
  653. SERIAL_ECHOPGM("Planner, target position, initial: ");
  654. MYSERIAL.print(x, 5);
  655. SERIAL_ECHOPGM(", ");
  656. MYSERIAL.print(y, 5);
  657. SERIAL_ECHOLNPGM("");
  658. SERIAL_ECHOPGM("Planner, world2machine: ");
  659. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  660. SERIAL_ECHOPGM(", ");
  661. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  662. SERIAL_ECHOPGM(", ");
  663. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  664. SERIAL_ECHOPGM(", ");
  665. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  666. SERIAL_ECHOLNPGM("");
  667. SERIAL_ECHOPGM("Planner, offset: ");
  668. MYSERIAL.print(world2machine_shift[0], 5);
  669. SERIAL_ECHOPGM(", ");
  670. MYSERIAL.print(world2machine_shift[1], 5);
  671. SERIAL_ECHOLNPGM("");
  672. #endif
  673. world2machine(x, y);
  674. #if 0
  675. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  676. MYSERIAL.print(x, 5);
  677. SERIAL_ECHOPGM(", ");
  678. MYSERIAL.print(y, 5);
  679. SERIAL_ECHOLNPGM("");
  680. #endif
  681. }
  682. // The target position of the tool in absolute steps
  683. // Calculate target position in absolute steps
  684. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  685. long target[4];
  686. target[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  687. target[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  688. #ifdef MESH_BED_LEVELING
  689. if (mbl.active){
  690. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]);
  691. }else{
  692. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  693. }
  694. #else
  695. target[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  696. #endif // ENABLE_MESH_BED_LEVELING
  697. target[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  698. #ifdef PREVENT_DANGEROUS_EXTRUDE
  699. if(target[E_AXIS]!=position[E_AXIS])
  700. {
  701. if(degHotend(active_extruder)<extrude_min_temp)
  702. {
  703. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  704. #ifdef LIN_ADVANCE
  705. position_float[E_AXIS] = e;
  706. #endif
  707. SERIAL_ECHO_START;
  708. SERIAL_ECHOLNRPGM(_n(" cold extrusion prevented"));////MSG_ERR_COLD_EXTRUDE_STOP
  709. }
  710. #ifdef PREVENT_LENGTHY_EXTRUDE
  711. if(labs(target[E_AXIS]-position[E_AXIS])>cs.axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  712. {
  713. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  714. #ifdef LIN_ADVANCE
  715. position_float[E_AXIS] = e;
  716. #endif
  717. SERIAL_ECHO_START;
  718. SERIAL_ECHOLNRPGM(_n(" too long extrusion prevented"));////MSG_ERR_LONG_EXTRUDE_STOP
  719. }
  720. #endif
  721. }
  722. #endif
  723. // Number of steps for each axis
  724. #ifndef COREXY
  725. // default non-h-bot planning
  726. block->steps_x.wide = labs(target[X_AXIS]-position[X_AXIS]);
  727. block->steps_y.wide = labs(target[Y_AXIS]-position[Y_AXIS]);
  728. #else
  729. // corexy planning
  730. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  731. block->steps_x.wide = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  732. block->steps_y.wide = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  733. #endif
  734. block->steps_z.wide = labs(target[Z_AXIS]-position[Z_AXIS]);
  735. block->steps_e.wide = labs(target[E_AXIS]-position[E_AXIS]);
  736. block->step_event_count.wide = max(block->steps_x.wide, max(block->steps_y.wide, max(block->steps_z.wide, block->steps_e.wide)));
  737. // Bail if this is a zero-length block
  738. if (block->step_event_count.wide <= dropsegments)
  739. {
  740. #ifdef PLANNER_DIAGNOSTICS
  741. planner_update_queue_min_counter();
  742. #endif /* PLANNER_DIAGNOSTICS */
  743. return;
  744. }
  745. block->fan_speed = fanSpeed;
  746. // Compute direction bits for this block
  747. block->direction_bits = 0;
  748. #ifndef COREXY
  749. if (target[X_AXIS] < position[X_AXIS])
  750. {
  751. block->direction_bits |= (1<<X_AXIS);
  752. }
  753. if (target[Y_AXIS] < position[Y_AXIS])
  754. {
  755. block->direction_bits |= (1<<Y_AXIS);
  756. }
  757. #else
  758. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  759. {
  760. block->direction_bits |= (1<<X_AXIS);
  761. }
  762. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  763. {
  764. block->direction_bits |= (1<<Y_AXIS);
  765. }
  766. #endif
  767. if (target[Z_AXIS] < position[Z_AXIS])
  768. {
  769. block->direction_bits |= (1<<Z_AXIS);
  770. }
  771. if (target[E_AXIS] < position[E_AXIS])
  772. {
  773. block->direction_bits |= (1<<E_AXIS);
  774. }
  775. block->active_extruder = extruder;
  776. //enable active axes
  777. #ifdef COREXY
  778. if((block->steps_x.wide != 0) || (block->steps_y.wide != 0))
  779. {
  780. enable_x();
  781. enable_y();
  782. }
  783. #else
  784. if(block->steps_x.wide != 0) enable_x();
  785. if(block->steps_y.wide != 0) enable_y();
  786. #endif
  787. if(block->steps_z.wide != 0) enable_z();
  788. // Enable extruder(s)
  789. if(block->steps_e.wide != 0)
  790. {
  791. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  792. {
  793. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  794. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  795. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  796. switch(extruder)
  797. {
  798. case 0:
  799. enable_e0();
  800. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  801. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  802. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  803. break;
  804. case 1:
  805. enable_e1();
  806. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  807. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  808. if(g_uc_extruder_last_move[2] == 0) {disable_e2();}
  809. break;
  810. case 2:
  811. enable_e2();
  812. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  813. if(g_uc_extruder_last_move[0] == 0) {disable_e0();}
  814. if(g_uc_extruder_last_move[1] == 0) {disable_e1();}
  815. break;
  816. }
  817. }
  818. else //enable all
  819. {
  820. enable_e0();
  821. enable_e1();
  822. enable_e2();
  823. }
  824. }
  825. if (block->steps_e.wide == 0)
  826. {
  827. if(feed_rate<cs.mintravelfeedrate) feed_rate=cs.mintravelfeedrate;
  828. }
  829. else
  830. {
  831. if(feed_rate<cs.minimumfeedrate) feed_rate=cs.minimumfeedrate;
  832. }
  833. /* This part of the code calculates the total length of the movement.
  834. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  835. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  836. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  837. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  838. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  839. */
  840. #ifndef COREXY
  841. float delta_mm[4];
  842. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  843. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  844. #else
  845. float delta_mm[6];
  846. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/cs.axis_steps_per_unit[X_AXIS];
  847. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/cs.axis_steps_per_unit[Y_AXIS];
  848. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[X_AXIS];
  849. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/cs.axis_steps_per_unit[Y_AXIS];
  850. #endif
  851. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/cs.axis_steps_per_unit[Z_AXIS];
  852. delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/cs.axis_steps_per_unit[E_AXIS];
  853. if ( block->steps_x.wide <=dropsegments && block->steps_y.wide <=dropsegments && block->steps_z.wide <=dropsegments )
  854. {
  855. block->millimeters = fabs(delta_mm[E_AXIS]);
  856. }
  857. else
  858. {
  859. #ifndef COREXY
  860. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  861. #else
  862. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  863. #endif
  864. }
  865. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  866. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  867. float inverse_second = feed_rate * inverse_millimeters;
  868. int moves_queued = moves_planned();
  869. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  870. #ifdef SLOWDOWN
  871. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  872. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  873. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  874. // segment time in micro seconds
  875. unsigned long segment_time = lround(1000000.0/inverse_second);
  876. if (segment_time < cs.minsegmenttime)
  877. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  878. inverse_second=1000000.0/(segment_time+lround(2*(cs.minsegmenttime-segment_time)/moves_queued));
  879. }
  880. #endif // SLOWDOWN
  881. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  882. block->nominal_rate = ceil(block->step_event_count.wide * inverse_second); // (step/sec) Always > 0
  883. // Calculate and limit speed in mm/sec for each axis
  884. float current_speed[4];
  885. float speed_factor = 1.0; //factor <=1 do decrease speed
  886. // maxlimit_status &= ~0xf;
  887. for(int i=0; i < 4; i++)
  888. {
  889. current_speed[i] = delta_mm[i] * inverse_second;
  890. if(fabs(current_speed[i]) > max_feedrate[i])
  891. {
  892. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  893. maxlimit_status |= (1 << i);
  894. }
  895. }
  896. // Correct the speed
  897. if( speed_factor < 1.0)
  898. {
  899. for(unsigned char i=0; i < 4; i++)
  900. {
  901. current_speed[i] *= speed_factor;
  902. }
  903. block->nominal_speed *= speed_factor;
  904. block->nominal_rate *= speed_factor;
  905. }
  906. #ifdef LIN_ADVANCE
  907. float e_D_ratio = 0;
  908. #endif
  909. // Compute and limit the acceleration rate for the trapezoid generator.
  910. // block->step_event_count ... event count of the fastest axis
  911. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  912. float steps_per_mm = block->step_event_count.wide/block->millimeters;
  913. if(block->steps_x.wide == 0 && block->steps_y.wide == 0 && block->steps_z.wide == 0)
  914. {
  915. block->acceleration_st = ceil(cs.retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  916. #ifdef LIN_ADVANCE
  917. block->use_advance_lead = false;
  918. #endif
  919. }
  920. else
  921. {
  922. block->acceleration_st = ceil(cs.acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  923. #ifdef LIN_ADVANCE
  924. /**
  925. * Use LIN_ADVANCE within this block if all these are true:
  926. *
  927. * block->steps_e : This is a print move, because we checked for X, Y, Z steps before.
  928. * extruder_advance_K : There is an advance factor set.
  929. * delta_mm[E_AXIS] > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  930. * |delta_mm[Z_AXIS]| < 0.5 : Z is only moved for leveling (_not_ for priming)
  931. */
  932. block->use_advance_lead = block->steps_e.wide
  933. && extruder_advance_K
  934. && delta_mm[E_AXIS] > 0
  935. && abs(delta_mm[Z_AXIS]) < 0.5;
  936. if (block->use_advance_lead) {
  937. e_D_ratio = (e - position_float[E_AXIS]) /
  938. sqrt(sq(x - position_float[X_AXIS])
  939. + sq(y - position_float[Y_AXIS])
  940. + sq(z - position_float[Z_AXIS]));
  941. // Check for unusual high e_D ratio to detect if a retract move was combined with the last
  942. // print move due to min. steps per segment. Never execute this with advance! This assumes
  943. // no one will use a retract length of 0mm < retr_length < ~0.2mm and no one will print
  944. // 100mm wide lines using 3mm filament or 35mm wide lines using 1.75mm filament.
  945. if (e_D_ratio > 3.0)
  946. block->use_advance_lead = false;
  947. else {
  948. const uint32_t max_accel_steps_per_s2 = cs.max_jerk[E_AXIS] / (extruder_advance_K * e_D_ratio) * steps_per_mm;
  949. if (block->acceleration_st > max_accel_steps_per_s2) {
  950. block->acceleration_st = max_accel_steps_per_s2;
  951. #ifdef LA_DEBUG
  952. SERIAL_ECHOLNPGM("LA: Block acceleration limited due to max E-jerk");
  953. #endif
  954. }
  955. }
  956. }
  957. #endif
  958. // Limit acceleration per axis
  959. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  960. if(((float)block->acceleration_st * (float)block->steps_x.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[X_AXIS])
  961. { block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; maxlimit_status |= (X_AXIS_MASK << 4); }
  962. if(((float)block->acceleration_st * (float)block->steps_y.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[Y_AXIS])
  963. { block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; maxlimit_status |= (Y_AXIS_MASK << 4); }
  964. if(((float)block->acceleration_st * (float)block->steps_e.wide / (float)block->step_event_count.wide) > axis_steps_per_sqr_second[E_AXIS])
  965. { block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; maxlimit_status |= (Z_AXIS_MASK << 4); }
  966. if(((float)block->acceleration_st * (float)block->steps_z.wide / (float)block->step_event_count.wide ) > axis_steps_per_sqr_second[Z_AXIS])
  967. { block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; maxlimit_status |= (E_AXIS_MASK << 4); }
  968. }
  969. // Acceleration of the segment, in mm/sec^2
  970. block->acceleration = block->acceleration_st / steps_per_mm;
  971. #if 0
  972. // Oversample diagonal movements by a power of 2 up to 8x
  973. // to achieve more accurate diagonal movements.
  974. uint8_t bresenham_oversample = 1;
  975. for (uint8_t i = 0; i < 3; ++ i) {
  976. if (block->nominal_rate >= 5000) // 5kHz
  977. break;
  978. block->nominal_rate << 1;
  979. bresenham_oversample << 1;
  980. block->step_event_count << 1;
  981. }
  982. if (bresenham_oversample > 1)
  983. // Lower the acceleration steps/sec^2 to account for the oversampling.
  984. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  985. #endif
  986. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  987. #ifdef LIN_ADVANCE
  988. if (block->use_advance_lead) {
  989. // the nominal speed doesn't change past this point: calculate the compression ratio for the
  990. // segment and the required advance steps
  991. block->adv_comp = extruder_advance_K * e_D_ratio * cs.axis_steps_per_unit[E_AXIS];
  992. block->max_adv_steps = block->nominal_speed * block->adv_comp;
  993. // to save more space we avoid another copy of calc_timer and go through slow division, but we
  994. // still need to replicate the *exact* same step grouping policy (see below)
  995. float advance_speed = (extruder_advance_K * e_D_ratio * block->acceleration * cs.axis_steps_per_unit[E_AXIS]);
  996. if (advance_speed > MAX_STEP_FREQUENCY) advance_speed = MAX_STEP_FREQUENCY;
  997. block->advance_rate = (F_CPU / 8.0) / advance_speed;
  998. if (block->advance_rate > 20000) {
  999. block->advance_rate = (block->advance_rate >> 2)&0x3fff;
  1000. block->advance_step_loops = 4;
  1001. }
  1002. else if (block->advance_rate > 10000) {
  1003. block->advance_rate = (block->advance_rate >> 1)&0x7fff;
  1004. block->advance_step_loops = 2;
  1005. }
  1006. else
  1007. block->advance_step_loops = 1;
  1008. #ifdef LA_DEBUG
  1009. if (block->advance_step_loops > 2)
  1010. // @wavexx: we should really check for the difference between step_loops and
  1011. // advance_step_loops instead. A difference of more than 1 will lead
  1012. // to uneven speed and *should* be adjusted here by furthermore
  1013. // reducing the speed.
  1014. SERIAL_ECHOLNPGM("LA: More than 2 steps per eISR loop executed.");
  1015. #endif
  1016. }
  1017. #endif
  1018. // Start with a safe speed.
  1019. // Safe speed is the speed, from which the machine may halt to stop immediately.
  1020. float safe_speed = block->nominal_speed;
  1021. bool limited = false;
  1022. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1023. float jerk = fabs(current_speed[axis]);
  1024. if (jerk > cs.max_jerk[axis]) {
  1025. // The actual jerk is lower, if it has been limited by the XY jerk.
  1026. if (limited) {
  1027. // Spare one division by a following gymnastics:
  1028. // Instead of jerk *= safe_speed / block->nominal_speed,
  1029. // multiply max_jerk[axis] by the divisor.
  1030. jerk *= safe_speed;
  1031. float mjerk = cs.max_jerk[axis] * block->nominal_speed;
  1032. if (jerk > mjerk) {
  1033. safe_speed *= mjerk / jerk;
  1034. limited = true;
  1035. }
  1036. } else {
  1037. safe_speed = cs.max_jerk[axis];
  1038. limited = true;
  1039. }
  1040. }
  1041. }
  1042. // Reset the block flag.
  1043. block->flag = 0;
  1044. // Initial limit on the segment entry velocity.
  1045. float vmax_junction;
  1046. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1047. // Is it because we don't want to tinker with the first buffer line, which
  1048. // is likely to be executed by the stepper interrupt routine soon?
  1049. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1050. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1051. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1052. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1053. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1054. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1055. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1056. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1057. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1058. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1059. float v_factor = 1.f;
  1060. limited = false;
  1061. // Now limit the jerk in all axes.
  1062. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1063. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1064. float v_exit = previous_speed[axis];
  1065. float v_entry = current_speed [axis];
  1066. if (prev_speed_larger)
  1067. v_exit *= smaller_speed_factor;
  1068. if (limited) {
  1069. v_exit *= v_factor;
  1070. v_entry *= v_factor;
  1071. }
  1072. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1073. float jerk =
  1074. (v_exit > v_entry) ?
  1075. ((v_entry > 0.f || v_exit < 0.f) ?
  1076. // coasting
  1077. (v_exit - v_entry) :
  1078. // axis reversal
  1079. max(v_exit, - v_entry)) :
  1080. // v_exit <= v_entry
  1081. ((v_entry < 0.f || v_exit > 0.f) ?
  1082. // coasting
  1083. (v_entry - v_exit) :
  1084. // axis reversal
  1085. max(- v_exit, v_entry));
  1086. if (jerk > cs.max_jerk[axis]) {
  1087. v_factor *= cs.max_jerk[axis] / jerk;
  1088. limited = true;
  1089. }
  1090. }
  1091. if (limited)
  1092. vmax_junction *= v_factor;
  1093. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1094. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1095. float vmax_junction_threshold = vmax_junction * 0.99f;
  1096. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1097. // Not coasting. The machine will stop and start the movements anyway,
  1098. // better to start the segment from start.
  1099. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1100. vmax_junction = safe_speed;
  1101. }
  1102. } else {
  1103. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1104. vmax_junction = safe_speed;
  1105. }
  1106. // Max entry speed of this block equals the max exit speed of the previous block.
  1107. block->max_entry_speed = vmax_junction;
  1108. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1109. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1110. block->entry_speed = min(vmax_junction, v_allowable);
  1111. // Initialize planner efficiency flags
  1112. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1113. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1114. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1115. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1116. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1117. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1118. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1119. // Always calculate trapezoid for new block
  1120. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1121. // Update previous path unit_vector and nominal speed
  1122. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1123. previous_nominal_speed = block->nominal_speed;
  1124. previous_safe_speed = safe_speed;
  1125. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1126. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1127. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1128. if (block->step_event_count.wide <= 32767)
  1129. block->flag |= BLOCK_FLAG_DDA_LOWRES;
  1130. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1131. block_buffer_head = next_buffer_head;
  1132. // Update position
  1133. memcpy(position, target, sizeof(target)); // position[] = target[]
  1134. #ifdef LIN_ADVANCE
  1135. position_float[X_AXIS] = x;
  1136. position_float[Y_AXIS] = y;
  1137. position_float[Z_AXIS] = z;
  1138. position_float[E_AXIS] = e;
  1139. #endif
  1140. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1141. // the machine limits (maximum acceleration and maximum jerk).
  1142. // This runs asynchronously with the stepper interrupt controller, which may
  1143. // interfere with the process.
  1144. planner_recalculate(safe_speed);
  1145. // SERIAL_ECHOPGM("Q");
  1146. // SERIAL_ECHO(int(moves_planned()));
  1147. // SERIAL_ECHOLNPGM("");
  1148. #ifdef PLANNER_DIAGNOSTICS
  1149. planner_update_queue_min_counter();
  1150. #endif /* PLANNER_DIAGNOSTIC */
  1151. // The stepper timer interrupt will run continuously from now on.
  1152. // If there are no planner blocks to be executed by the stepper routine,
  1153. // the stepper interrupt ticks at 1kHz to wake up and pick a block
  1154. // from the planner queue if available.
  1155. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1156. }
  1157. #ifdef ENABLE_AUTO_BED_LEVELING
  1158. vector_3 plan_get_position() {
  1159. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1160. //position.debug("in plan_get position");
  1161. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1162. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1163. //inverse.debug("in plan_get inverse");
  1164. position.apply_rotation(inverse);
  1165. //position.debug("after rotation");
  1166. return position;
  1167. }
  1168. #endif // ENABLE_AUTO_BED_LEVELING
  1169. void plan_set_position(float x, float y, float z, const float &e)
  1170. {
  1171. #ifdef ENABLE_AUTO_BED_LEVELING
  1172. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1173. #endif // ENABLE_AUTO_BED_LEVELING
  1174. // Apply the machine correction matrix.
  1175. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1176. {
  1177. float tmpx = x;
  1178. float tmpy = y;
  1179. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1180. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1181. }
  1182. position[X_AXIS] = lround(x*cs.axis_steps_per_unit[X_AXIS]);
  1183. position[Y_AXIS] = lround(y*cs.axis_steps_per_unit[Y_AXIS]);
  1184. #ifdef MESH_BED_LEVELING
  1185. position[Z_AXIS] = mbl.active ?
  1186. lround((z+mbl.get_z(x, y))*cs.axis_steps_per_unit[Z_AXIS]) :
  1187. lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1188. #else
  1189. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1190. #endif // ENABLE_MESH_BED_LEVELING
  1191. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1192. #ifdef LIN_ADVANCE
  1193. position_float[X_AXIS] = x;
  1194. position_float[Y_AXIS] = y;
  1195. position_float[Z_AXIS] = z;
  1196. position_float[E_AXIS] = e;
  1197. #endif
  1198. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1199. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1200. previous_speed[0] = 0.0;
  1201. previous_speed[1] = 0.0;
  1202. previous_speed[2] = 0.0;
  1203. previous_speed[3] = 0.0;
  1204. }
  1205. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1206. void plan_set_z_position(const float &z)
  1207. {
  1208. #ifdef LIN_ADVANCE
  1209. position_float[Z_AXIS] = z;
  1210. #endif
  1211. position[Z_AXIS] = lround(z*cs.axis_steps_per_unit[Z_AXIS]);
  1212. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1213. }
  1214. void plan_set_e_position(const float &e)
  1215. {
  1216. #ifdef LIN_ADVANCE
  1217. position_float[E_AXIS] = e;
  1218. #endif
  1219. position[E_AXIS] = lround(e*cs.axis_steps_per_unit[E_AXIS]);
  1220. st_set_e_position(position[E_AXIS]);
  1221. }
  1222. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1223. void set_extrude_min_temp(float temp)
  1224. {
  1225. extrude_min_temp=temp;
  1226. }
  1227. #endif
  1228. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1229. void reset_acceleration_rates()
  1230. {
  1231. for(int8_t i=0; i < NUM_AXIS; i++)
  1232. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * cs.axis_steps_per_unit[i];
  1233. }
  1234. #ifdef TMC2130
  1235. void update_mode_profile()
  1236. {
  1237. if (tmc2130_mode == TMC2130_MODE_NORMAL)
  1238. {
  1239. max_feedrate = cs.max_feedrate_normal;
  1240. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_normal;
  1241. }
  1242. else if (tmc2130_mode == TMC2130_MODE_SILENT)
  1243. {
  1244. max_feedrate = cs.max_feedrate_silent;
  1245. max_acceleration_units_per_sq_second = cs.max_acceleration_units_per_sq_second_silent;
  1246. }
  1247. reset_acceleration_rates();
  1248. }
  1249. #endif //TMC2130
  1250. unsigned char number_of_blocks()
  1251. {
  1252. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1253. }
  1254. #ifdef PLANNER_DIAGNOSTICS
  1255. uint8_t planner_queue_min()
  1256. {
  1257. return g_cntr_planner_queue_min;
  1258. }
  1259. void planner_queue_min_reset()
  1260. {
  1261. g_cntr_planner_queue_min = moves_planned();
  1262. }
  1263. #endif /* PLANNER_DIAGNOSTICS */
  1264. void planner_add_sd_length(uint16_t sdlen)
  1265. {
  1266. if (block_buffer_head != block_buffer_tail) {
  1267. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1268. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1269. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1270. } else {
  1271. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1272. // at a power panic, so the length of this command may be forgotten.
  1273. }
  1274. }
  1275. uint16_t planner_calc_sd_length()
  1276. {
  1277. unsigned char _block_buffer_head = block_buffer_head;
  1278. unsigned char _block_buffer_tail = block_buffer_tail;
  1279. uint16_t sdlen = 0;
  1280. while (_block_buffer_head != _block_buffer_tail)
  1281. {
  1282. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1283. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1284. }
  1285. return sdlen;
  1286. }