planner.cpp 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #ifdef MESH_BED_LEVELING
  43. #include "mesh_bed_leveling.h"
  44. #include "mesh_bed_calibration.h"
  45. #endif
  46. #ifdef TMC2130
  47. #include "tmc2130.h"
  48. #endif //TMC2130
  49. //===========================================================================
  50. //=============================public variables ============================
  51. //===========================================================================
  52. unsigned long minsegmenttime;
  53. float max_feedrate[NUM_AXIS]; // set the max speeds
  54. float axis_steps_per_unit[NUM_AXIS];
  55. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  56. float minimumfeedrate;
  57. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  58. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  59. // Jerk is a maximum immediate velocity change.
  60. float max_jerk[NUM_AXIS];
  61. float mintravelfeedrate;
  62. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  63. #ifdef ENABLE_AUTO_BED_LEVELING
  64. // this holds the required transform to compensate for bed level
  65. matrix_3x3 plan_bed_level_matrix = {
  66. 1.0, 0.0, 0.0,
  67. 0.0, 1.0, 0.0,
  68. 0.0, 0.0, 1.0,
  69. };
  70. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  71. // The current position of the tool in absolute steps
  72. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  73. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  74. static float previous_nominal_speed; // Nominal speed of previous path line segment
  75. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  76. #ifdef AUTOTEMP
  77. float autotemp_max=250;
  78. float autotemp_min=210;
  79. float autotemp_factor=0.1;
  80. bool autotemp_enabled=false;
  81. #endif
  82. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  83. //===========================================================================
  84. //=================semi-private variables, used in inline functions =====
  85. //===========================================================================
  86. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  87. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  88. volatile unsigned char block_buffer_tail; // Index of the block to process now
  89. #ifdef PLANNER_DIAGNOSTICS
  90. // Diagnostic function: Minimum number of planned moves since the last
  91. static uint8_t g_cntr_planner_queue_min = 0;
  92. #endif /* PLANNER_DIAGNOSTICS */
  93. //===========================================================================
  94. //=============================private variables ============================
  95. //===========================================================================
  96. #ifdef PREVENT_DANGEROUS_EXTRUDE
  97. float extrude_min_temp=EXTRUDE_MINTEMP;
  98. #endif
  99. #ifdef FILAMENT_SENSOR
  100. static char meas_sample; //temporary variable to hold filament measurement sample
  101. #endif
  102. #ifdef LIN_ADVANCE
  103. float extruder_advance_k = LIN_ADVANCE_K,
  104. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  105. position_float[NUM_AXIS] = { 0 };
  106. #endif
  107. // Returns the index of the next block in the ring buffer
  108. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  109. static inline int8_t next_block_index(int8_t block_index) {
  110. if (++ block_index == BLOCK_BUFFER_SIZE)
  111. block_index = 0;
  112. return block_index;
  113. }
  114. // Returns the index of the previous block in the ring buffer
  115. static inline int8_t prev_block_index(int8_t block_index) {
  116. if (block_index == 0)
  117. block_index = BLOCK_BUFFER_SIZE;
  118. -- block_index;
  119. return block_index;
  120. }
  121. //===========================================================================
  122. //=============================functions ============================
  123. //===========================================================================
  124. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  125. // given acceleration:
  126. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  127. {
  128. if (acceleration!=0) {
  129. return((target_rate*target_rate-initial_rate*initial_rate)/
  130. (2.0*acceleration));
  131. }
  132. else {
  133. return 0.0; // acceleration was 0, set acceleration distance to 0
  134. }
  135. }
  136. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  137. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  138. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  139. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  140. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  141. {
  142. if (acceleration!=0) {
  143. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  144. (4.0*acceleration) );
  145. }
  146. else {
  147. return 0.0; // acceleration was 0, set intersection distance to 0
  148. }
  149. }
  150. #define MINIMAL_STEP_RATE 120
  151. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  152. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  153. {
  154. // These two lines are the only floating point calculations performed in this routine.
  155. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  156. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  157. // Limit minimal step rate (Otherwise the timer will overflow.)
  158. if (initial_rate < MINIMAL_STEP_RATE)
  159. initial_rate = MINIMAL_STEP_RATE;
  160. if (initial_rate > block->nominal_rate)
  161. initial_rate = block->nominal_rate;
  162. if (final_rate < MINIMAL_STEP_RATE)
  163. final_rate = MINIMAL_STEP_RATE;
  164. if (final_rate > block->nominal_rate)
  165. final_rate = block->nominal_rate;
  166. uint32_t acceleration = block->acceleration_st;
  167. if (acceleration == 0)
  168. // Don't allow zero acceleration.
  169. acceleration = 1;
  170. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  171. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  172. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  173. //FIXME assert that this result fits a 64bit unsigned int.
  174. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  175. uint32_t final_rate_sqr = final_rate*final_rate;
  176. uint32_t acceleration_x2 = acceleration << 1;
  177. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  178. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  179. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  180. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  181. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  182. // Size of Plateau of Nominal Rate.
  183. uint32_t plateau_steps = 0;
  184. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  185. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  186. // in order to reach the final_rate exactly at the end of this block.
  187. if (accel_decel_steps < block->step_event_count) {
  188. plateau_steps = block->step_event_count - accel_decel_steps;
  189. } else {
  190. uint32_t acceleration_x4 = acceleration << 2;
  191. // Avoid negative numbers
  192. if (final_rate_sqr >= initial_rate_sqr) {
  193. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  194. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  195. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  196. #if 0
  197. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  198. #else
  199. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  200. if (block->step_event_count & 1)
  201. accelerate_steps += acceleration_x2;
  202. accelerate_steps /= acceleration_x4;
  203. accelerate_steps += (block->step_event_count >> 1);
  204. #endif
  205. if (accelerate_steps > block->step_event_count)
  206. accelerate_steps = block->step_event_count;
  207. } else {
  208. #if 0
  209. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  210. #else
  211. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  212. if (block->step_event_count & 1)
  213. decelerate_steps += acceleration_x2;
  214. decelerate_steps /= acceleration_x4;
  215. decelerate_steps += (block->step_event_count >> 1);
  216. #endif
  217. if (decelerate_steps > block->step_event_count)
  218. decelerate_steps = block->step_event_count;
  219. accelerate_steps = block->step_event_count - decelerate_steps;
  220. }
  221. }
  222. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  223. if (! block->busy) { // Don't update variables if block is busy.
  224. block->accelerate_until = accelerate_steps;
  225. block->decelerate_after = accelerate_steps+plateau_steps;
  226. block->initial_rate = initial_rate;
  227. block->final_rate = final_rate;
  228. }
  229. CRITICAL_SECTION_END;
  230. }
  231. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  232. // decceleration within the allotted distance.
  233. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  234. {
  235. // assert(decceleration < 0);
  236. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  237. }
  238. // Recalculates the motion plan according to the following algorithm:
  239. //
  240. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  241. // so that:
  242. // a. The junction jerk is within the set limit
  243. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  244. // acceleration.
  245. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  246. // a. The speed increase within one block would require faster accelleration than the one, true
  247. // constant acceleration.
  248. //
  249. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  250. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  251. // the set limit. Finally it will:
  252. //
  253. // 3. Recalculate trapezoids for all blocks.
  254. //
  255. //FIXME This routine is called 15x every time a new line is added to the planner,
  256. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  257. // if the CPU is found lacking computational power.
  258. //
  259. // Following sources may be used to optimize the 8-bit AVR code:
  260. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  261. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  262. //
  263. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  264. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  265. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  266. //
  267. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  268. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  269. // https://github.com/rekka/avrmultiplication
  270. //
  271. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  272. // https://courses.cit.cornell.edu/ee476/Math/
  273. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  274. //
  275. void planner_recalculate(const float &safe_final_speed)
  276. {
  277. // Reverse pass
  278. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  279. // by consuming the blocks, therefore shortening the queue.
  280. unsigned char tail = block_buffer_tail;
  281. uint8_t block_index;
  282. block_t *prev, *current, *next;
  283. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  284. // At least three blocks are in the queue?
  285. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  286. if (n_blocks >= 3) {
  287. // Initialize the last tripple of blocks.
  288. block_index = prev_block_index(block_buffer_head);
  289. next = block_buffer + block_index;
  290. current = block_buffer + (block_index = prev_block_index(block_index));
  291. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  292. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  293. // 1) it may already be running at the stepper interrupt,
  294. // 2) there is no way to limit it when going in the forward direction.
  295. while (block_index != tail) {
  296. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  297. // Don't modify the entry velocity of the starting block.
  298. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  299. // for the stepper interrupt routine to use them.
  300. tail = block_index;
  301. // Update the number of blocks to process.
  302. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  303. // SERIAL_ECHOLNPGM("START");
  304. break;
  305. }
  306. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  307. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  308. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  309. if (current->entry_speed != current->max_entry_speed) {
  310. // assert(current->entry_speed < current->max_entry_speed);
  311. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  312. // segment and the maximum acceleration allowed for this segment.
  313. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  314. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  315. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  316. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  317. // together with an assembly 32bit->16bit sqrt function.
  318. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  319. current->max_entry_speed :
  320. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  321. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  322. current->flag |= BLOCK_FLAG_RECALCULATE;
  323. }
  324. next = current;
  325. current = block_buffer + (block_index = prev_block_index(block_index));
  326. }
  327. }
  328. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  329. // Forward pass and recalculate the trapezoids.
  330. if (n_blocks >= 2) {
  331. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  332. block_index = tail;
  333. prev = block_buffer + block_index;
  334. current = block_buffer + (block_index = next_block_index(block_index));
  335. do {
  336. // If the previous block is an acceleration block, but it is not long enough to complete the
  337. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  338. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  339. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  340. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  341. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  342. // Check for junction speed change
  343. if (current->entry_speed != entry_speed) {
  344. current->entry_speed = entry_speed;
  345. current->flag |= BLOCK_FLAG_RECALCULATE;
  346. }
  347. }
  348. // Recalculate if current block entry or exit junction speed has changed.
  349. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  350. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  351. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  352. // Reset current only to ensure next trapezoid is computed.
  353. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  354. }
  355. prev = current;
  356. current = block_buffer + (block_index = next_block_index(block_index));
  357. } while (block_index != block_buffer_head);
  358. }
  359. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  360. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  361. current = block_buffer + prev_block_index(block_buffer_head);
  362. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  363. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  364. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  365. }
  366. void plan_init() {
  367. block_buffer_head = 0;
  368. block_buffer_tail = 0;
  369. memset(position, 0, sizeof(position)); // clear position
  370. #ifdef LIN_ADVANCE
  371. memset(position_float, 0, sizeof(position)); // clear position
  372. #endif
  373. previous_speed[0] = 0.0;
  374. previous_speed[1] = 0.0;
  375. previous_speed[2] = 0.0;
  376. previous_speed[3] = 0.0;
  377. previous_nominal_speed = 0.0;
  378. }
  379. #ifdef AUTOTEMP
  380. void getHighESpeed()
  381. {
  382. static float oldt=0;
  383. if(!autotemp_enabled){
  384. return;
  385. }
  386. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  387. return; //do nothing
  388. }
  389. float high=0.0;
  390. uint8_t block_index = block_buffer_tail;
  391. while(block_index != block_buffer_head) {
  392. if((block_buffer[block_index].steps_x != 0) ||
  393. (block_buffer[block_index].steps_y != 0) ||
  394. (block_buffer[block_index].steps_z != 0)) {
  395. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  396. //se; mm/sec;
  397. if(se>high)
  398. {
  399. high=se;
  400. }
  401. }
  402. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  403. }
  404. float g=autotemp_min+high*autotemp_factor;
  405. float t=g;
  406. if(t<autotemp_min)
  407. t=autotemp_min;
  408. if(t>autotemp_max)
  409. t=autotemp_max;
  410. if(oldt>t)
  411. {
  412. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  413. }
  414. oldt=t;
  415. setTargetHotend0(t);
  416. }
  417. #endif
  418. void check_axes_activity()
  419. {
  420. unsigned char x_active = 0;
  421. unsigned char y_active = 0;
  422. unsigned char z_active = 0;
  423. unsigned char e_active = 0;
  424. unsigned char tail_fan_speed = fanSpeed;
  425. block_t *block;
  426. if(block_buffer_tail != block_buffer_head)
  427. {
  428. uint8_t block_index = block_buffer_tail;
  429. tail_fan_speed = block_buffer[block_index].fan_speed;
  430. while(block_index != block_buffer_head)
  431. {
  432. block = &block_buffer[block_index];
  433. if(block->steps_x != 0) x_active++;
  434. if(block->steps_y != 0) y_active++;
  435. if(block->steps_z != 0) z_active++;
  436. if(block->steps_e != 0) e_active++;
  437. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  438. }
  439. }
  440. if((DISABLE_X) && (x_active == 0)) disable_x();
  441. if((DISABLE_Y) && (y_active == 0)) disable_y();
  442. if((DISABLE_Z) && (z_active == 0)) disable_z();
  443. if((DISABLE_E) && (e_active == 0))
  444. {
  445. disable_e0();
  446. disable_e1();
  447. disable_e2();
  448. }
  449. #if defined(FAN_PIN) && FAN_PIN > -1
  450. #ifdef FAN_KICKSTART_TIME
  451. static unsigned long fan_kick_end;
  452. if (tail_fan_speed) {
  453. if (fan_kick_end == 0) {
  454. // Just starting up fan - run at full power.
  455. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  456. tail_fan_speed = 255;
  457. } else if (fan_kick_end > millis())
  458. // Fan still spinning up.
  459. tail_fan_speed = 255;
  460. } else {
  461. fan_kick_end = 0;
  462. }
  463. #endif//FAN_KICKSTART_TIME
  464. #ifdef FAN_SOFT_PWM
  465. fanSpeedSoftPwm = tail_fan_speed;
  466. #else
  467. analogWrite(FAN_PIN,tail_fan_speed);
  468. #endif//!FAN_SOFT_PWM
  469. #endif//FAN_PIN > -1
  470. #ifdef AUTOTEMP
  471. getHighESpeed();
  472. #endif
  473. }
  474. bool waiting_inside_plan_buffer_line_print_aborted = false;
  475. /*
  476. void planner_abort_soft()
  477. {
  478. // Empty the queue.
  479. while (blocks_queued()) plan_discard_current_block();
  480. // Relay to planner wait routine, that the current line shall be canceled.
  481. waiting_inside_plan_buffer_line_print_aborted = true;
  482. //current_position[i]
  483. }
  484. */
  485. #ifdef PLANNER_DIAGNOSTICS
  486. static inline void planner_update_queue_min_counter()
  487. {
  488. uint8_t new_counter = moves_planned();
  489. if (new_counter < g_cntr_planner_queue_min)
  490. g_cntr_planner_queue_min = new_counter;
  491. }
  492. #endif /* PLANNER_DIAGNOSTICS */
  493. extern volatile uint32_t step_events_completed; // The number of step events executed in the current block
  494. void planner_abort_hard()
  495. {
  496. // Abort the stepper routine and flush the planner queue.
  497. // DISABLE_STEPPER_DRIVER_INTERRUPT
  498. TIMSK1 &= ~(1<<OCIE1A);
  499. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  500. // First update the planner's current position in the physical motor steps.
  501. position[X_AXIS] = st_get_position(X_AXIS);
  502. position[Y_AXIS] = st_get_position(Y_AXIS);
  503. position[Z_AXIS] = st_get_position(Z_AXIS);
  504. position[E_AXIS] = st_get_position(E_AXIS);
  505. // Second update the current position of the front end.
  506. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  507. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  508. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  509. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  510. // Apply the mesh bed leveling correction to the Z axis.
  511. #ifdef MESH_BED_LEVELING
  512. if (mbl.active) {
  513. #if 1
  514. // Undo the bed level correction so the current Z position is reversible wrt. the machine coordinates.
  515. // This does not necessary mean that the Z position will be the same as linearly interpolated from the source G-code line.
  516. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  517. #else
  518. // Undo the bed level correction so that the current Z position is the same as linearly interpolated from the source G-code line.
  519. if (current_block == NULL || (current_block->steps_x == 0 && current_block->steps_y == 0))
  520. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  521. else {
  522. float t = float(step_events_completed) / float(current_block->step_event_count);
  523. float vec[3] = {
  524. current_block->steps_x / axis_steps_per_unit[X_AXIS],
  525. current_block->steps_y / axis_steps_per_unit[Y_AXIS],
  526. current_block->steps_z / axis_steps_per_unit[Z_AXIS]
  527. };
  528. float pos1[3], pos2[3];
  529. for (int8_t i = 0; i < 3; ++ i) {
  530. if (current_block->direction_bits & (1<<i))
  531. vec[i] = - vec[i];
  532. pos1[i] = current_position[i] - vec[i] * t;
  533. pos2[i] = current_position[i] + vec[i] * (1.f - t);
  534. }
  535. pos1[Z_AXIS] -= mbl.get_z(pos1[X_AXIS], pos1[Y_AXIS]);
  536. pos2[Z_AXIS] -= mbl.get_z(pos2[X_AXIS], pos2[Y_AXIS]);
  537. current_position[Z_AXIS] = pos1[Z_AXIS] * t + pos2[Z_AXIS] * (1.f - t);
  538. }
  539. #endif
  540. }
  541. #endif
  542. // Clear the planner queue.
  543. quickStop();
  544. // Apply inverse world correction matrix.
  545. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  546. memcpy(destination, current_position, sizeof(destination));
  547. // Resets planner junction speeds. Assumes start from rest.
  548. previous_nominal_speed = 0.0;
  549. previous_speed[0] = 0.0;
  550. previous_speed[1] = 0.0;
  551. previous_speed[2] = 0.0;
  552. previous_speed[3] = 0.0;
  553. // Relay to planner wait routine, that the current line shall be canceled.
  554. waiting_inside_plan_buffer_line_print_aborted = true;
  555. }
  556. float junction_deviation = 0.1;
  557. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  558. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  559. // calculation the caller must also provide the physical length of the line in millimeters.
  560. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  561. {
  562. // Calculate the buffer head after we push this byte
  563. int next_buffer_head = next_block_index(block_buffer_head);
  564. // If the buffer is full: good! That means we are well ahead of the robot.
  565. // Rest here until there is room in the buffer.
  566. if (block_buffer_tail == next_buffer_head) {
  567. waiting_inside_plan_buffer_line_print_aborted = false;
  568. do {
  569. manage_heater();
  570. // Vojtech: Don't disable motors inside the planner!
  571. manage_inactivity(false);
  572. lcd_update();
  573. } while (block_buffer_tail == next_buffer_head);
  574. if (waiting_inside_plan_buffer_line_print_aborted) {
  575. // Inside the lcd_update() routine the print has been aborted.
  576. // Cancel the print, do not plan the current line this routine is waiting on.
  577. #ifdef PLANNER_DIAGNOSTICS
  578. planner_update_queue_min_counter();
  579. #endif /* PLANNER_DIAGNOSTICS */
  580. return;
  581. }
  582. }
  583. #ifdef PLANNER_DIAGNOSTICS
  584. planner_update_queue_min_counter();
  585. #endif /* PLANNER_DIAGNOSTICS */
  586. #ifdef ENABLE_AUTO_BED_LEVELING
  587. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  588. #endif // ENABLE_AUTO_BED_LEVELING
  589. // Apply the machine correction matrix.
  590. {
  591. #if 0
  592. SERIAL_ECHOPGM("Planner, current position - servos: ");
  593. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  594. SERIAL_ECHOPGM(", ");
  595. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  596. SERIAL_ECHOPGM(", ");
  597. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  598. SERIAL_ECHOLNPGM("");
  599. SERIAL_ECHOPGM("Planner, target position, initial: ");
  600. MYSERIAL.print(x, 5);
  601. SERIAL_ECHOPGM(", ");
  602. MYSERIAL.print(y, 5);
  603. SERIAL_ECHOLNPGM("");
  604. SERIAL_ECHOPGM("Planner, world2machine: ");
  605. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  606. SERIAL_ECHOPGM(", ");
  607. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  608. SERIAL_ECHOPGM(", ");
  609. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  610. SERIAL_ECHOPGM(", ");
  611. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  612. SERIAL_ECHOLNPGM("");
  613. SERIAL_ECHOPGM("Planner, offset: ");
  614. MYSERIAL.print(world2machine_shift[0], 5);
  615. SERIAL_ECHOPGM(", ");
  616. MYSERIAL.print(world2machine_shift[1], 5);
  617. SERIAL_ECHOLNPGM("");
  618. #endif
  619. world2machine(x, y);
  620. #if 0
  621. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  622. MYSERIAL.print(x, 5);
  623. SERIAL_ECHOPGM(", ");
  624. MYSERIAL.print(y, 5);
  625. SERIAL_ECHOLNPGM("");
  626. #endif
  627. }
  628. // The target position of the tool in absolute steps
  629. // Calculate target position in absolute steps
  630. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  631. long target[4];
  632. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  633. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  634. #ifdef MESH_BED_LEVELING
  635. if (mbl.active){
  636. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  637. }else{
  638. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  639. }
  640. #else
  641. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  642. #endif // ENABLE_MESH_BED_LEVELING
  643. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  644. #ifdef LIN_ADVANCE
  645. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  646. float de_float = e - position_float[E_AXIS];
  647. #endif
  648. #ifdef PREVENT_DANGEROUS_EXTRUDE
  649. if(target[E_AXIS]!=position[E_AXIS])
  650. {
  651. if(degHotend(active_extruder)<extrude_min_temp)
  652. {
  653. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  654. #ifdef LIN_ADVANCE
  655. position_float[E_AXIS] = e;
  656. de_float = 0;
  657. #endif
  658. SERIAL_ECHO_START;
  659. SERIAL_ECHOLNRPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  660. }
  661. #ifdef PREVENT_LENGTHY_EXTRUDE
  662. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  663. {
  664. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  665. #ifdef LIN_ADVANCE
  666. position_float[E_AXIS] = e;
  667. de_float = 0;
  668. #endif
  669. SERIAL_ECHO_START;
  670. SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  671. }
  672. #endif
  673. }
  674. #endif
  675. // Prepare to set up new block
  676. block_t *block = &block_buffer[block_buffer_head];
  677. // Set sdlen for calculating sd position
  678. block->sdlen = 0;
  679. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  680. block->busy = false;
  681. // Number of steps for each axis
  682. #ifndef COREXY
  683. // default non-h-bot planning
  684. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  685. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  686. #else
  687. // corexy planning
  688. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  689. block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  690. block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  691. #endif
  692. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  693. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  694. if (volumetric_multiplier[active_extruder] != 1.f)
  695. block->steps_e *= volumetric_multiplier[active_extruder];
  696. if (extrudemultiply != 100) {
  697. block->steps_e *= extrudemultiply;
  698. block->steps_e /= 100;
  699. }
  700. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  701. // Bail if this is a zero-length block
  702. if (block->step_event_count <= dropsegments)
  703. {
  704. #ifdef PLANNER_DIAGNOSTICS
  705. planner_update_queue_min_counter();
  706. #endif /* PLANNER_DIAGNOSTICS */
  707. return;
  708. }
  709. block->fan_speed = fanSpeed;
  710. // Compute direction bits for this block
  711. block->direction_bits = 0;
  712. #ifndef COREXY
  713. if (target[X_AXIS] < position[X_AXIS])
  714. {
  715. block->direction_bits |= (1<<X_AXIS);
  716. }
  717. if (target[Y_AXIS] < position[Y_AXIS])
  718. {
  719. block->direction_bits |= (1<<Y_AXIS);
  720. }
  721. #else
  722. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  723. {
  724. block->direction_bits |= (1<<X_AXIS);
  725. }
  726. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  727. {
  728. block->direction_bits |= (1<<Y_AXIS);
  729. }
  730. #endif
  731. if (target[Z_AXIS] < position[Z_AXIS])
  732. {
  733. block->direction_bits |= (1<<Z_AXIS);
  734. }
  735. if (target[E_AXIS] < position[E_AXIS])
  736. {
  737. block->direction_bits |= (1<<E_AXIS);
  738. }
  739. block->active_extruder = extruder;
  740. //enable active axes
  741. #ifdef COREXY
  742. if((block->steps_x != 0) || (block->steps_y != 0))
  743. {
  744. enable_x();
  745. enable_y();
  746. }
  747. #else
  748. if(block->steps_x != 0) enable_x();
  749. if(block->steps_y != 0) enable_y();
  750. #endif
  751. #ifndef Z_LATE_ENABLE
  752. if(block->steps_z != 0) enable_z();
  753. #endif
  754. // Enable extruder(s)
  755. if(block->steps_e != 0)
  756. {
  757. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  758. {
  759. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  760. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  761. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  762. switch(extruder)
  763. {
  764. case 0:
  765. enable_e0();
  766. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  767. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  768. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  769. break;
  770. case 1:
  771. enable_e1();
  772. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  773. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  774. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  775. break;
  776. case 2:
  777. enable_e2();
  778. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  779. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  780. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  781. break;
  782. }
  783. }
  784. else //enable all
  785. {
  786. enable_e0();
  787. enable_e1();
  788. enable_e2();
  789. }
  790. }
  791. if (block->steps_e == 0)
  792. {
  793. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  794. }
  795. else
  796. {
  797. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  798. }
  799. /* This part of the code calculates the total length of the movement.
  800. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  801. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  802. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  803. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  804. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  805. */
  806. #ifndef COREXY
  807. float delta_mm[4];
  808. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  809. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  810. #else
  811. float delta_mm[6];
  812. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  813. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  814. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  815. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  816. #endif
  817. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  818. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
  819. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  820. {
  821. block->millimeters = fabs(delta_mm[E_AXIS]);
  822. }
  823. else
  824. {
  825. #ifndef COREXY
  826. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  827. #else
  828. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  829. #endif
  830. }
  831. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  832. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  833. float inverse_second = feed_rate * inverse_millimeters;
  834. int moves_queued = moves_planned();
  835. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  836. #ifdef SLOWDOWN
  837. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  838. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  839. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  840. // segment time in micro seconds
  841. unsigned long segment_time = lround(1000000.0/inverse_second);
  842. if (segment_time < minsegmenttime)
  843. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  844. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  845. }
  846. #endif // SLOWDOWN
  847. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  848. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  849. #ifdef FILAMENT_SENSOR
  850. //FMM update ring buffer used for delay with filament measurements
  851. if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
  852. {
  853. delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
  854. while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
  855. delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  856. while (delay_dist<0)
  857. delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  858. delay_index1=delay_dist/10.0; //calculate index
  859. //ensure the number is within range of the array after converting from floating point
  860. if(delay_index1<0)
  861. delay_index1=0;
  862. else if (delay_index1>MAX_MEASUREMENT_DELAY)
  863. delay_index1=MAX_MEASUREMENT_DELAY;
  864. if(delay_index1 != delay_index2) //moved index
  865. {
  866. meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
  867. }
  868. while( delay_index1 != delay_index2)
  869. {
  870. delay_index2 = delay_index2 + 1;
  871. if(delay_index2>MAX_MEASUREMENT_DELAY)
  872. delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
  873. if(delay_index2<0)
  874. delay_index2=0;
  875. else if (delay_index2>MAX_MEASUREMENT_DELAY)
  876. delay_index2=MAX_MEASUREMENT_DELAY;
  877. measurement_delay[delay_index2]=meas_sample;
  878. }
  879. }
  880. #endif
  881. // Calculate and limit speed in mm/sec for each axis
  882. float current_speed[4];
  883. float speed_factor = 1.0; //factor <=1 do decrease speed
  884. for(int i=0; i < 4; i++)
  885. {
  886. current_speed[i] = delta_mm[i] * inverse_second;
  887. #ifdef TMC2130
  888. float max_fr = max_feedrate[i];
  889. if (i < 2) // X, Y
  890. {
  891. if (tmc2130_mode == TMC2130_MODE_SILENT)
  892. {
  893. if (max_fr > SILENT_MAX_FEEDRATE)
  894. max_fr = SILENT_MAX_FEEDRATE;
  895. }
  896. else
  897. {
  898. if (max_fr > NORMAL_MAX_FEEDRATE)
  899. max_fr = NORMAL_MAX_FEEDRATE;
  900. }
  901. }
  902. if(fabs(current_speed[i]) > max_fr)
  903. speed_factor = min(speed_factor, max_fr / fabs(current_speed[i]));
  904. #else //TMC2130
  905. if(fabs(current_speed[i]) > max_feedrate[i])
  906. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  907. #endif //TMC2130
  908. }
  909. // Correct the speed
  910. if( speed_factor < 1.0)
  911. {
  912. for(unsigned char i=0; i < 4; i++)
  913. {
  914. current_speed[i] *= speed_factor;
  915. }
  916. block->nominal_speed *= speed_factor;
  917. block->nominal_rate *= speed_factor;
  918. }
  919. // Compute and limit the acceleration rate for the trapezoid generator.
  920. // block->step_event_count ... event count of the fastest axis
  921. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  922. float steps_per_mm = block->step_event_count/block->millimeters;
  923. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  924. {
  925. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  926. }
  927. else
  928. {
  929. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  930. #ifdef TMC2130
  931. #ifdef SIMPLE_ACCEL_LIMIT // in some cases can be acceleration limited inproperly
  932. if (tmc2130_mode == TMC2130_MODE_SILENT)
  933. {
  934. if (block->steps_x || block->steps_y)
  935. if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
  936. }
  937. else
  938. {
  939. if (block->steps_x || block->steps_y)
  940. if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
  941. }
  942. if (block->steps_x && (block->acceleration_st > axis_steps_per_sqr_second[X_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  943. if (block->steps_y && (block->acceleration_st > axis_steps_per_sqr_second[Y_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  944. if (block->steps_z && (block->acceleration_st > axis_steps_per_sqr_second[Z_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  945. if (block->steps_e && (block->acceleration_st > axis_steps_per_sqr_second[E_AXIS])) block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  946. #else // SIMPLE_ACCEL_LIMIT
  947. if (tmc2130_mode == TMC2130_MODE_SILENT)
  948. {
  949. if ((block->steps_x > block->step_event_count / 2) || (block->steps_y > block->step_event_count / 2))
  950. if (block->acceleration_st > SILENT_MAX_ACCEL_ST) block->acceleration_st = SILENT_MAX_ACCEL_ST;
  951. }
  952. else
  953. {
  954. if ((block->steps_x > block->step_event_count / 2) || (block->steps_y > block->step_event_count / 2))
  955. if (block->acceleration_st > NORMAL_MAX_ACCEL_ST) block->acceleration_st = NORMAL_MAX_ACCEL_ST;
  956. }
  957. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  958. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  959. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  960. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  961. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  962. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  963. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  964. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  965. #endif // SIMPLE_ACCEL_LIMIT
  966. #else //TMC2130
  967. // Limit acceleration per axis
  968. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  969. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  970. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  971. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  972. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  973. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  974. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  975. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  976. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  977. #endif //TMC2130
  978. }
  979. // Acceleration of the segment, in mm/sec^2
  980. block->acceleration = block->acceleration_st / steps_per_mm;
  981. #if 0
  982. // Oversample diagonal movements by a power of 2 up to 8x
  983. // to achieve more accurate diagonal movements.
  984. uint8_t bresenham_oversample = 1;
  985. for (uint8_t i = 0; i < 3; ++ i) {
  986. if (block->nominal_rate >= 5000) // 5kHz
  987. break;
  988. block->nominal_rate << 1;
  989. bresenham_oversample << 1;
  990. block->step_event_count << 1;
  991. }
  992. if (bresenham_oversample > 1)
  993. // Lower the acceleration steps/sec^2 to account for the oversampling.
  994. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  995. #endif
  996. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  997. // Start with a safe speed.
  998. // Safe speed is the speed, from which the machine may halt to stop immediately.
  999. float safe_speed = block->nominal_speed;
  1000. bool limited = false;
  1001. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1002. float jerk = fabs(current_speed[axis]);
  1003. if (jerk > max_jerk[axis]) {
  1004. // The actual jerk is lower, if it has been limited by the XY jerk.
  1005. if (limited) {
  1006. // Spare one division by a following gymnastics:
  1007. // Instead of jerk *= safe_speed / block->nominal_speed,
  1008. // multiply max_jerk[axis] by the divisor.
  1009. jerk *= safe_speed;
  1010. float mjerk = max_jerk[axis] * block->nominal_speed;
  1011. if (jerk > mjerk) {
  1012. safe_speed *= mjerk / jerk;
  1013. limited = true;
  1014. }
  1015. } else {
  1016. safe_speed = max_jerk[axis];
  1017. limited = true;
  1018. }
  1019. }
  1020. }
  1021. // Reset the block flag.
  1022. block->flag = 0;
  1023. // Initial limit on the segment entry velocity.
  1024. float vmax_junction;
  1025. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  1026. // Is it because we don't want to tinker with the first buffer line, which
  1027. // is likely to be executed by the stepper interrupt routine soon?
  1028. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  1029. // Estimate a maximum velocity allowed at a joint of two successive segments.
  1030. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  1031. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  1032. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  1033. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  1034. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  1035. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  1036. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  1037. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  1038. float v_factor = 1.f;
  1039. limited = false;
  1040. // Now limit the jerk in all axes.
  1041. for (uint8_t axis = 0; axis < 4; ++ axis) {
  1042. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  1043. float v_exit = previous_speed[axis];
  1044. float v_entry = current_speed [axis];
  1045. if (prev_speed_larger)
  1046. v_exit *= smaller_speed_factor;
  1047. if (limited) {
  1048. v_exit *= v_factor;
  1049. v_entry *= v_factor;
  1050. }
  1051. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  1052. float jerk =
  1053. (v_exit > v_entry) ?
  1054. ((v_entry > 0.f || v_exit < 0.f) ?
  1055. // coasting
  1056. (v_exit - v_entry) :
  1057. // axis reversal
  1058. max(v_exit, - v_entry)) :
  1059. // v_exit <= v_entry
  1060. ((v_entry < 0.f || v_exit > 0.f) ?
  1061. // coasting
  1062. (v_entry - v_exit) :
  1063. // axis reversal
  1064. max(- v_exit, v_entry));
  1065. if (jerk > max_jerk[axis]) {
  1066. v_factor *= max_jerk[axis] / jerk;
  1067. limited = true;
  1068. }
  1069. }
  1070. if (limited)
  1071. vmax_junction *= v_factor;
  1072. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  1073. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  1074. float vmax_junction_threshold = vmax_junction * 0.99f;
  1075. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  1076. // Not coasting. The machine will stop and start the movements anyway,
  1077. // better to start the segment from start.
  1078. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1079. vmax_junction = safe_speed;
  1080. }
  1081. } else {
  1082. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  1083. vmax_junction = safe_speed;
  1084. }
  1085. // Max entry speed of this block equals the max exit speed of the previous block.
  1086. block->max_entry_speed = vmax_junction;
  1087. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  1088. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  1089. block->entry_speed = min(vmax_junction, v_allowable);
  1090. // Initialize planner efficiency flags
  1091. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1092. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1093. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1094. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1095. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1096. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1097. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1098. // Always calculate trapezoid for new block
  1099. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1100. // Update previous path unit_vector and nominal speed
  1101. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1102. previous_nominal_speed = block->nominal_speed;
  1103. previous_safe_speed = safe_speed;
  1104. #ifdef LIN_ADVANCE
  1105. //
  1106. // Use LIN_ADVANCE for blocks if all these are true:
  1107. //
  1108. // esteps : We have E steps todo (a printing move)
  1109. //
  1110. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1111. //
  1112. // extruder_advance_k : There is an advance factor set.
  1113. //
  1114. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1115. // In that case, the retract and move will be executed together.
  1116. // This leads to too many advance steps due to a huge e_acceleration.
  1117. // The math is good, but we must avoid retract moves with advance!
  1118. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1119. //
  1120. block->use_advance_lead = block->steps_e
  1121. && (block->steps_x || block->steps_y)
  1122. && extruder_advance_k
  1123. && (uint32_t)block->steps_e != block->step_event_count
  1124. && de_float > 0.0;
  1125. if (block->use_advance_lead)
  1126. block->abs_adv_steps_multiplier8 = lround(
  1127. extruder_advance_k
  1128. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1129. * (block->nominal_speed / (float)block->nominal_rate)
  1130. * axis_steps_per_unit[E_AXIS] * 256.0
  1131. );
  1132. #endif
  1133. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1134. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1135. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1136. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1137. block_buffer_head = next_buffer_head;
  1138. // Update position
  1139. memcpy(position, target, sizeof(target)); // position[] = target[]
  1140. #ifdef LIN_ADVANCE
  1141. position_float[X_AXIS] = x;
  1142. position_float[Y_AXIS] = y;
  1143. position_float[Z_AXIS] = z;
  1144. position_float[E_AXIS] = e;
  1145. #endif
  1146. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1147. // the machine limits (maximum acceleration and maximum jerk).
  1148. // This runs asynchronously with the stepper interrupt controller, which may
  1149. // interfere with the process.
  1150. planner_recalculate(safe_speed);
  1151. // SERIAL_ECHOPGM("Q");
  1152. // SERIAL_ECHO(int(moves_planned()));
  1153. // SERIAL_ECHOLNPGM("");
  1154. #ifdef PLANNER_DIAGNOSTICS
  1155. planner_update_queue_min_counter();
  1156. #endif /* PLANNER_DIAGNOSTIC */
  1157. st_wake_up();
  1158. }
  1159. #ifdef ENABLE_AUTO_BED_LEVELING
  1160. vector_3 plan_get_position() {
  1161. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1162. //position.debug("in plan_get position");
  1163. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1164. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1165. //inverse.debug("in plan_get inverse");
  1166. position.apply_rotation(inverse);
  1167. //position.debug("after rotation");
  1168. return position;
  1169. }
  1170. #endif // ENABLE_AUTO_BED_LEVELING
  1171. void plan_set_position(float x, float y, float z, const float &e)
  1172. {
  1173. #ifdef ENABLE_AUTO_BED_LEVELING
  1174. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1175. #endif // ENABLE_AUTO_BED_LEVELING
  1176. // Apply the machine correction matrix.
  1177. if (world2machine_correction_mode != WORLD2MACHINE_CORRECTION_NONE)
  1178. {
  1179. float tmpx = x;
  1180. float tmpy = y;
  1181. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1182. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1183. }
  1184. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  1185. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  1186. #ifdef MESH_BED_LEVELING
  1187. position[Z_AXIS] = mbl.active ?
  1188. lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]) :
  1189. lround(z*axis_steps_per_unit[Z_AXIS]);
  1190. #else
  1191. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1192. #endif // ENABLE_MESH_BED_LEVELING
  1193. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1194. #ifdef LIN_ADVANCE
  1195. position_float[X_AXIS] = x;
  1196. position_float[Y_AXIS] = y;
  1197. position_float[Z_AXIS] = z;
  1198. position_float[E_AXIS] = e;
  1199. #endif
  1200. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1201. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1202. previous_speed[0] = 0.0;
  1203. previous_speed[1] = 0.0;
  1204. previous_speed[2] = 0.0;
  1205. previous_speed[3] = 0.0;
  1206. }
  1207. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1208. void plan_set_z_position(const float &z)
  1209. {
  1210. #ifdef LIN_ADVANCE
  1211. position_float[Z_AXIS] = z;
  1212. #endif
  1213. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1214. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1215. }
  1216. void plan_set_e_position(const float &e)
  1217. {
  1218. #ifdef LIN_ADVANCE
  1219. position_float[E_AXIS] = e;
  1220. #endif
  1221. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1222. st_set_e_position(position[E_AXIS]);
  1223. }
  1224. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1225. void set_extrude_min_temp(float temp)
  1226. {
  1227. extrude_min_temp=temp;
  1228. }
  1229. #endif
  1230. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1231. void reset_acceleration_rates()
  1232. {
  1233. for(int8_t i=0; i < NUM_AXIS; i++)
  1234. {
  1235. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  1236. }
  1237. }
  1238. unsigned char number_of_blocks() {
  1239. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1240. }
  1241. #ifdef PLANNER_DIAGNOSTICS
  1242. uint8_t planner_queue_min()
  1243. {
  1244. return g_cntr_planner_queue_min;
  1245. }
  1246. void planner_queue_min_reset()
  1247. {
  1248. g_cntr_planner_queue_min = moves_planned();
  1249. }
  1250. #endif /* PLANNER_DIAGNOSTICS */
  1251. void planner_add_sd_length(uint16_t sdlen)
  1252. {
  1253. if (block_buffer_head != block_buffer_tail) {
  1254. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1255. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1256. block_buffer[prev_block_index(block_buffer_head)].sdlen += sdlen;
  1257. } else {
  1258. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1259. // at a power panic, so the length of this command may be forgotten.
  1260. }
  1261. }
  1262. uint16_t planner_calc_sd_length()
  1263. {
  1264. unsigned char _block_buffer_head = block_buffer_head;
  1265. unsigned char _block_buffer_tail = block_buffer_tail;
  1266. uint16_t sdlen = 0;
  1267. while (_block_buffer_head != _block_buffer_tail)
  1268. {
  1269. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1270. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1271. }
  1272. return sdlen;
  1273. }