Marlin_main.cpp 333 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include <avr/wdt.h>
  70. #include <avr/pgmspace.h>
  71. #include "Dcodes.h"
  72. #include "AutoDeplete.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #include "mmu.h"
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "sound.h"
  107. #include "cmdqueue.h"
  108. #include "io_atmega2560.h"
  109. // Macros for bit masks
  110. #define BIT(b) (1<<(b))
  111. #define TEST(n,b) (((n)&BIT(b))!=0)
  112. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  113. //Macro for print fan speed
  114. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  115. #define PRINTING_TYPE_SD 0
  116. #define PRINTING_TYPE_USB 1
  117. #define PRINTING_TYPE_NONE 2
  118. //filament types
  119. #define FILAMENT_DEFAULT 0
  120. #define FILAMENT_FLEX 1
  121. #define FILAMENT_PVA 2
  122. #define FILAMENT_UNDEFINED 255
  123. //Stepper Movement Variables
  124. //===========================================================================
  125. //=============================imported variables============================
  126. //===========================================================================
  127. //===========================================================================
  128. //=============================public variables=============================
  129. //===========================================================================
  130. #ifdef SDSUPPORT
  131. CardReader card;
  132. #endif
  133. unsigned long PingTime = _millis();
  134. unsigned long NcTime;
  135. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  136. //used for PINDA temp calibration and pause print
  137. #define DEFAULT_RETRACTION 1
  138. #define DEFAULT_RETRACTION_MM 4 //MM
  139. float default_retraction = DEFAULT_RETRACTION;
  140. float homing_feedrate[] = HOMING_FEEDRATE;
  141. // Currently only the extruder axis may be switched to a relative mode.
  142. // Other axes are always absolute or relative based on the common relative_mode flag.
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int extrudemultiply=100; //100->1 200->2
  146. int extruder_multiply[EXTRUDERS] = {100
  147. #if EXTRUDERS > 1
  148. , 100
  149. #if EXTRUDERS > 2
  150. , 100
  151. #endif
  152. #endif
  153. };
  154. int bowden_length[4] = {385, 385, 385, 385};
  155. bool is_usb_printing = false;
  156. bool homing_flag = false;
  157. bool temp_cal_active = false;
  158. unsigned long kicktime = _millis()+100000;
  159. unsigned int usb_printing_counter;
  160. int8_t lcd_change_fil_state = 0;
  161. unsigned long pause_time = 0;
  162. unsigned long start_pause_print = _millis();
  163. unsigned long t_fan_rising_edge = _millis();
  164. LongTimer safetyTimer;
  165. static LongTimer crashDetTimer;
  166. //unsigned long load_filament_time;
  167. bool mesh_bed_leveling_flag = false;
  168. bool mesh_bed_run_from_menu = false;
  169. bool prusa_sd_card_upload = false;
  170. unsigned int status_number = 0;
  171. unsigned long total_filament_used;
  172. unsigned int heating_status;
  173. unsigned int heating_status_counter;
  174. bool loading_flag = false;
  175. char snmm_filaments_used = 0;
  176. bool fan_state[2];
  177. int fan_edge_counter[2];
  178. int fan_speed[2];
  179. char dir_names[3][9];
  180. bool sortAlpha = false;
  181. float extruder_multiplier[EXTRUDERS] = {1.0
  182. #if EXTRUDERS > 1
  183. , 1.0
  184. #if EXTRUDERS > 2
  185. , 1.0
  186. #endif
  187. #endif
  188. };
  189. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  190. //shortcuts for more readable code
  191. #define _x current_position[X_AXIS]
  192. #define _y current_position[Y_AXIS]
  193. #define _z current_position[Z_AXIS]
  194. #define _e current_position[E_AXIS]
  195. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  196. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  197. bool axis_known_position[3] = {false, false, false};
  198. // Extruder offset
  199. #if EXTRUDERS > 1
  200. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  201. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  202. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  203. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  204. #endif
  205. };
  206. #endif
  207. uint8_t active_extruder = 0;
  208. int fanSpeed=0;
  209. #ifdef FWRETRACT
  210. bool retracted[EXTRUDERS]={false
  211. #if EXTRUDERS > 1
  212. , false
  213. #if EXTRUDERS > 2
  214. , false
  215. #endif
  216. #endif
  217. };
  218. bool retracted_swap[EXTRUDERS]={false
  219. #if EXTRUDERS > 1
  220. , false
  221. #if EXTRUDERS > 2
  222. , false
  223. #endif
  224. #endif
  225. };
  226. float retract_length_swap = RETRACT_LENGTH_SWAP;
  227. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  228. #endif
  229. #ifdef PS_DEFAULT_OFF
  230. bool powersupply = false;
  231. #else
  232. bool powersupply = true;
  233. #endif
  234. bool cancel_heatup = false ;
  235. int8_t busy_state = NOT_BUSY;
  236. static long prev_busy_signal_ms = -1;
  237. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  238. const char errormagic[] PROGMEM = "Error:";
  239. const char echomagic[] PROGMEM = "echo:";
  240. bool no_response = false;
  241. uint8_t important_status;
  242. uint8_t saved_filament_type;
  243. // save/restore printing in case that mmu was not responding
  244. bool mmu_print_saved = false;
  245. // storing estimated time to end of print counted by slicer
  246. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  247. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  248. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  249. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  250. bool wizard_active = false; //autoload temporarily disabled during wizard
  251. //===========================================================================
  252. //=============================Private Variables=============================
  253. //===========================================================================
  254. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  255. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  256. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  257. // For tracing an arc
  258. static float offset[3] = {0.0, 0.0, 0.0};
  259. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  260. // Determines Absolute or Relative Coordinates.
  261. // Also there is bool axis_relative_modes[] per axis flag.
  262. static bool relative_mode = false;
  263. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  264. //static float tt = 0;
  265. //static float bt = 0;
  266. //Inactivity shutdown variables
  267. static unsigned long previous_millis_cmd = 0;
  268. unsigned long max_inactive_time = 0;
  269. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  270. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  271. unsigned long starttime=0;
  272. unsigned long stoptime=0;
  273. unsigned long _usb_timer = 0;
  274. bool extruder_under_pressure = true;
  275. bool Stopped=false;
  276. #if NUM_SERVOS > 0
  277. Servo servos[NUM_SERVOS];
  278. #endif
  279. bool CooldownNoWait = true;
  280. bool target_direction;
  281. //Insert variables if CHDK is defined
  282. #ifdef CHDK
  283. unsigned long chdkHigh = 0;
  284. boolean chdkActive = false;
  285. #endif
  286. //! @name RAM save/restore printing
  287. //! @{
  288. bool saved_printing = false; //!< Print is paused and saved in RAM
  289. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  290. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  291. static float saved_pos[4] = { 0, 0, 0, 0 };
  292. //! Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  293. static float saved_feedrate2 = 0;
  294. static uint8_t saved_active_extruder = 0;
  295. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  296. static bool saved_extruder_under_pressure = false;
  297. static bool saved_extruder_relative_mode = false;
  298. static int saved_fanSpeed = 0; //!< Print fan speed
  299. //! @}
  300. static int saved_feedmultiply_mm = 100;
  301. //===========================================================================
  302. //=============================Routines======================================
  303. //===========================================================================
  304. static void get_arc_coordinates();
  305. static bool setTargetedHotend(int code, uint8_t &extruder);
  306. static void print_time_remaining_init();
  307. static void wait_for_heater(long codenum, uint8_t extruder);
  308. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  309. uint16_t gcode_in_progress = 0;
  310. uint16_t mcode_in_progress = 0;
  311. void serial_echopair_P(const char *s_P, float v)
  312. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  313. void serial_echopair_P(const char *s_P, double v)
  314. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  315. void serial_echopair_P(const char *s_P, unsigned long v)
  316. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  317. #ifdef SDSUPPORT
  318. #include "SdFatUtil.h"
  319. int freeMemory() { return SdFatUtil::FreeRam(); }
  320. #else
  321. extern "C" {
  322. extern unsigned int __bss_end;
  323. extern unsigned int __heap_start;
  324. extern void *__brkval;
  325. int freeMemory() {
  326. int free_memory;
  327. if ((int)__brkval == 0)
  328. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  329. else
  330. free_memory = ((int)&free_memory) - ((int)__brkval);
  331. return free_memory;
  332. }
  333. }
  334. #endif //!SDSUPPORT
  335. void setup_killpin()
  336. {
  337. #if defined(KILL_PIN) && KILL_PIN > -1
  338. SET_INPUT(KILL_PIN);
  339. WRITE(KILL_PIN,HIGH);
  340. #endif
  341. }
  342. // Set home pin
  343. void setup_homepin(void)
  344. {
  345. #if defined(HOME_PIN) && HOME_PIN > -1
  346. SET_INPUT(HOME_PIN);
  347. WRITE(HOME_PIN,HIGH);
  348. #endif
  349. }
  350. void setup_photpin()
  351. {
  352. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  353. SET_OUTPUT(PHOTOGRAPH_PIN);
  354. WRITE(PHOTOGRAPH_PIN, LOW);
  355. #endif
  356. }
  357. void setup_powerhold()
  358. {
  359. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  360. SET_OUTPUT(SUICIDE_PIN);
  361. WRITE(SUICIDE_PIN, HIGH);
  362. #endif
  363. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  364. SET_OUTPUT(PS_ON_PIN);
  365. #if defined(PS_DEFAULT_OFF)
  366. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  367. #else
  368. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  369. #endif
  370. #endif
  371. }
  372. void suicide()
  373. {
  374. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  375. SET_OUTPUT(SUICIDE_PIN);
  376. WRITE(SUICIDE_PIN, LOW);
  377. #endif
  378. }
  379. void servo_init()
  380. {
  381. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  382. servos[0].attach(SERVO0_PIN);
  383. #endif
  384. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  385. servos[1].attach(SERVO1_PIN);
  386. #endif
  387. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  388. servos[2].attach(SERVO2_PIN);
  389. #endif
  390. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  391. servos[3].attach(SERVO3_PIN);
  392. #endif
  393. #if (NUM_SERVOS >= 5)
  394. #error "TODO: enter initalisation code for more servos"
  395. #endif
  396. }
  397. bool fans_check_enabled = true;
  398. #ifdef TMC2130
  399. extern int8_t CrashDetectMenu;
  400. void crashdet_enable()
  401. {
  402. tmc2130_sg_stop_on_crash = true;
  403. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  404. CrashDetectMenu = 1;
  405. }
  406. void crashdet_disable()
  407. {
  408. tmc2130_sg_stop_on_crash = false;
  409. tmc2130_sg_crash = 0;
  410. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  411. CrashDetectMenu = 0;
  412. }
  413. void crashdet_stop_and_save_print()
  414. {
  415. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  416. }
  417. void crashdet_restore_print_and_continue()
  418. {
  419. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  420. // babystep_apply();
  421. }
  422. void crashdet_stop_and_save_print2()
  423. {
  424. cli();
  425. planner_abort_hard(); //abort printing
  426. cmdqueue_reset(); //empty cmdqueue
  427. card.sdprinting = false;
  428. card.closefile();
  429. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  430. st_reset_timer();
  431. sei();
  432. }
  433. void crashdet_detected(uint8_t mask)
  434. {
  435. st_synchronize();
  436. static uint8_t crashDet_counter = 0;
  437. bool automatic_recovery_after_crash = true;
  438. if (crashDet_counter++ == 0) {
  439. crashDetTimer.start();
  440. }
  441. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  442. crashDetTimer.stop();
  443. crashDet_counter = 0;
  444. }
  445. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  446. automatic_recovery_after_crash = false;
  447. crashDetTimer.stop();
  448. crashDet_counter = 0;
  449. }
  450. else {
  451. crashDetTimer.start();
  452. }
  453. lcd_update_enable(true);
  454. lcd_clear();
  455. lcd_update(2);
  456. if (mask & X_AXIS_MASK)
  457. {
  458. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  459. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  460. }
  461. if (mask & Y_AXIS_MASK)
  462. {
  463. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  464. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  465. }
  466. lcd_update_enable(true);
  467. lcd_update(2);
  468. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  469. gcode_G28(true, true, false); //home X and Y
  470. st_synchronize();
  471. if (automatic_recovery_after_crash) {
  472. enquecommand_P(PSTR("CRASH_RECOVER"));
  473. }else{
  474. setTargetHotend(0, active_extruder);
  475. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  476. lcd_update_enable(true);
  477. if (yesno)
  478. {
  479. enquecommand_P(PSTR("CRASH_RECOVER"));
  480. }
  481. else
  482. {
  483. enquecommand_P(PSTR("CRASH_CANCEL"));
  484. }
  485. }
  486. }
  487. void crashdet_recover()
  488. {
  489. crashdet_restore_print_and_continue();
  490. tmc2130_sg_stop_on_crash = true;
  491. }
  492. void crashdet_cancel()
  493. {
  494. saved_printing = false;
  495. tmc2130_sg_stop_on_crash = true;
  496. if (saved_printing_type == PRINTING_TYPE_SD) {
  497. lcd_print_stop();
  498. }else if(saved_printing_type == PRINTING_TYPE_USB){
  499. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  500. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  501. }
  502. }
  503. #endif //TMC2130
  504. void failstats_reset_print()
  505. {
  506. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  507. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  508. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  509. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  510. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  511. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  512. }
  513. #ifdef MESH_BED_LEVELING
  514. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  515. #endif
  516. // Factory reset function
  517. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  518. // Level input parameter sets depth of reset
  519. int er_progress = 0;
  520. static void factory_reset(char level)
  521. {
  522. lcd_clear();
  523. switch (level) {
  524. // Level 0: Language reset
  525. case 0:
  526. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  527. WRITE(BEEPER, HIGH);
  528. _delay_ms(100);
  529. WRITE(BEEPER, LOW);
  530. lang_reset();
  531. break;
  532. //Level 1: Reset statistics
  533. case 1:
  534. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  535. WRITE(BEEPER, HIGH);
  536. _delay_ms(100);
  537. WRITE(BEEPER, LOW);
  538. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  539. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  540. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  541. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  544. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  545. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  550. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  551. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  552. lcd_menu_statistics();
  553. break;
  554. // Level 2: Prepare for shipping
  555. case 2:
  556. //lcd_puts_P(PSTR("Factory RESET"));
  557. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  558. // Force language selection at the next boot up.
  559. lang_reset();
  560. // Force the "Follow calibration flow" message at the next boot up.
  561. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  562. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  563. farm_no = 0;
  564. farm_mode = false;
  565. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  566. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  567. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  568. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  569. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  570. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  575. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  576. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  577. #ifdef FILAMENT_SENSOR
  578. fsensor_enable();
  579. fsensor_autoload_set(true);
  580. #endif //FILAMENT_SENSOR
  581. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  582. WRITE(BEEPER, HIGH);
  583. _delay_ms(100);
  584. WRITE(BEEPER, LOW);
  585. //_delay_ms(2000);
  586. break;
  587. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  588. case 3:
  589. lcd_puts_P(PSTR("Factory RESET"));
  590. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  591. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  592. WRITE(BEEPER, HIGH);
  593. _delay_ms(100);
  594. WRITE(BEEPER, LOW);
  595. er_progress = 0;
  596. lcd_puts_at_P(3, 3, PSTR(" "));
  597. lcd_set_cursor(3, 3);
  598. lcd_print(er_progress);
  599. // Erase EEPROM
  600. for (int i = 0; i < 4096; i++) {
  601. eeprom_update_byte((uint8_t*)i, 0xFF);
  602. if (i % 41 == 0) {
  603. er_progress++;
  604. lcd_puts_at_P(3, 3, PSTR(" "));
  605. lcd_set_cursor(3, 3);
  606. lcd_print(er_progress);
  607. lcd_puts_P(PSTR("%"));
  608. }
  609. }
  610. break;
  611. case 4:
  612. bowden_menu();
  613. break;
  614. default:
  615. break;
  616. }
  617. }
  618. extern "C" {
  619. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  620. }
  621. int uart_putchar(char c, FILE *)
  622. {
  623. MYSERIAL.write(c);
  624. return 0;
  625. }
  626. void lcd_splash()
  627. {
  628. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  629. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  630. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  631. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  632. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  633. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  634. }
  635. void factory_reset()
  636. {
  637. KEEPALIVE_STATE(PAUSED_FOR_USER);
  638. if (!READ(BTN_ENC))
  639. {
  640. _delay_ms(1000);
  641. if (!READ(BTN_ENC))
  642. {
  643. lcd_clear();
  644. lcd_puts_P(PSTR("Factory RESET"));
  645. SET_OUTPUT(BEEPER);
  646. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  647. WRITE(BEEPER, HIGH);
  648. while (!READ(BTN_ENC));
  649. WRITE(BEEPER, LOW);
  650. _delay_ms(2000);
  651. char level = reset_menu();
  652. factory_reset(level);
  653. switch (level) {
  654. case 0: _delay_ms(0); break;
  655. case 1: _delay_ms(0); break;
  656. case 2: _delay_ms(0); break;
  657. case 3: _delay_ms(0); break;
  658. }
  659. }
  660. }
  661. KEEPALIVE_STATE(IN_HANDLER);
  662. }
  663. void show_fw_version_warnings() {
  664. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  665. switch (FW_DEV_VERSION) {
  666. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  667. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  668. case(FW_VERSION_DEVEL):
  669. case(FW_VERSION_DEBUG):
  670. lcd_update_enable(false);
  671. lcd_clear();
  672. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  673. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  674. #else
  675. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  676. #endif
  677. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  678. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  679. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  680. lcd_wait_for_click();
  681. break;
  682. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  683. }
  684. lcd_update_enable(true);
  685. }
  686. //! @brief try to check if firmware is on right type of printer
  687. static void check_if_fw_is_on_right_printer(){
  688. #ifdef FILAMENT_SENSOR
  689. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  690. #ifdef IR_SENSOR
  691. swi2c_init();
  692. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  693. if (pat9125_detected){
  694. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  695. #endif //IR_SENSOR
  696. #ifdef PAT9125
  697. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  698. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  699. if (ir_detected){
  700. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  701. #endif //PAT9125
  702. }
  703. #endif //FILAMENT_SENSOR
  704. }
  705. uint8_t check_printer_version()
  706. {
  707. uint8_t version_changed = 0;
  708. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  709. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  710. if (printer_type != PRINTER_TYPE) {
  711. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  712. else version_changed |= 0b10;
  713. }
  714. if (motherboard != MOTHERBOARD) {
  715. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  716. else version_changed |= 0b01;
  717. }
  718. return version_changed;
  719. }
  720. #ifdef BOOTAPP
  721. #include "bootapp.h" //bootloader support
  722. #endif //BOOTAPP
  723. #if (LANG_MODE != 0) //secondary language support
  724. #ifdef W25X20CL
  725. // language update from external flash
  726. #define LANGBOOT_BLOCKSIZE 0x1000u
  727. #define LANGBOOT_RAMBUFFER 0x0800
  728. void update_sec_lang_from_external_flash()
  729. {
  730. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  731. {
  732. uint8_t lang = boot_reserved >> 4;
  733. uint8_t state = boot_reserved & 0xf;
  734. lang_table_header_t header;
  735. uint32_t src_addr;
  736. if (lang_get_header(lang, &header, &src_addr))
  737. {
  738. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  739. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  740. _delay(100);
  741. boot_reserved = (state + 1) | (lang << 4);
  742. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  743. {
  744. cli();
  745. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  746. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  747. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  748. if (state == 0)
  749. {
  750. //TODO - check header integrity
  751. }
  752. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  753. }
  754. else
  755. {
  756. //TODO - check sec lang data integrity
  757. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  758. }
  759. }
  760. }
  761. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  762. }
  763. #ifdef DEBUG_W25X20CL
  764. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  765. {
  766. lang_table_header_t header;
  767. uint8_t count = 0;
  768. uint32_t addr = 0x00000;
  769. while (1)
  770. {
  771. printf_P(_n("LANGTABLE%d:"), count);
  772. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  773. if (header.magic != LANG_MAGIC)
  774. {
  775. printf_P(_n("NG!\n"));
  776. break;
  777. }
  778. printf_P(_n("OK\n"));
  779. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  780. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  781. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  782. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  783. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  784. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  785. addr += header.size;
  786. codes[count] = header.code;
  787. count ++;
  788. }
  789. return count;
  790. }
  791. void list_sec_lang_from_external_flash()
  792. {
  793. uint16_t codes[8];
  794. uint8_t count = lang_xflash_enum_codes(codes);
  795. printf_P(_n("XFlash lang count = %hhd\n"), count);
  796. }
  797. #endif //DEBUG_W25X20CL
  798. #endif //W25X20CL
  799. #endif //(LANG_MODE != 0)
  800. static void w25x20cl_err_msg()
  801. {
  802. lcd_puts_P(_n(ESC_2J ESC_H(0,0) "External SPI flash" ESC_H(0,1) "W25X20CL is not res-"
  803. ESC_H(0,2) "ponding. Language" ESC_H(0,3) "switch unavailable."));
  804. }
  805. // "Setup" function is called by the Arduino framework on startup.
  806. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  807. // are initialized by the main() routine provided by the Arduino framework.
  808. void setup()
  809. {
  810. mmu_init();
  811. ultralcd_init();
  812. #if (LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  813. analogWrite(LCD_BL_PIN, 255); //set full brightnes
  814. #endif //(LCD_BL_PIN != -1) && defined (LCD_BL_PIN)
  815. spi_init();
  816. lcd_splash();
  817. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  818. #ifdef W25X20CL
  819. bool w25x20cl_success = w25x20cl_init();
  820. if (w25x20cl_success)
  821. {
  822. optiboot_w25x20cl_enter();
  823. #if (LANG_MODE != 0) //secondary language support
  824. update_sec_lang_from_external_flash();
  825. #endif //(LANG_MODE != 0)
  826. }
  827. else
  828. {
  829. w25x20cl_err_msg();
  830. }
  831. #else
  832. const bool w25x20cl_success = true;
  833. #endif //W25X20CL
  834. setup_killpin();
  835. setup_powerhold();
  836. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  837. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  838. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  839. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  840. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  841. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  842. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  843. if (farm_mode)
  844. {
  845. no_response = true; //we need confirmation by recieving PRUSA thx
  846. important_status = 8;
  847. prusa_statistics(8);
  848. selectedSerialPort = 1;
  849. #ifdef TMC2130
  850. //increased extruder current (PFW363)
  851. tmc2130_current_h[E_AXIS] = 36;
  852. tmc2130_current_r[E_AXIS] = 36;
  853. #endif //TMC2130
  854. #ifdef FILAMENT_SENSOR
  855. //disabled filament autoload (PFW360)
  856. fsensor_autoload_set(false);
  857. #endif //FILAMENT_SENSOR
  858. // ~ FanCheck -> on
  859. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  860. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  861. }
  862. MYSERIAL.begin(BAUDRATE);
  863. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  864. #ifndef W25X20CL
  865. SERIAL_PROTOCOLLNPGM("start");
  866. #endif //W25X20CL
  867. stdout = uartout;
  868. SERIAL_ECHO_START;
  869. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  870. #ifdef DEBUG_SEC_LANG
  871. lang_table_header_t header;
  872. uint32_t src_addr = 0x00000;
  873. if (lang_get_header(1, &header, &src_addr))
  874. {
  875. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  876. #define LT_PRINT_TEST 2
  877. // flash usage
  878. // total p.test
  879. //0 252718 t+c text code
  880. //1 253142 424 170 254
  881. //2 253040 322 164 158
  882. //3 253248 530 135 395
  883. #if (LT_PRINT_TEST==1) //not optimized printf
  884. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  885. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  886. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  887. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  888. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  889. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  890. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  891. #elif (LT_PRINT_TEST==2) //optimized printf
  892. printf_P(
  893. _n(
  894. " _src_addr = 0x%08lx\n"
  895. " _lt_magic = 0x%08lx %S\n"
  896. " _lt_size = 0x%04x (%d)\n"
  897. " _lt_count = 0x%04x (%d)\n"
  898. " _lt_chsum = 0x%04x\n"
  899. " _lt_code = 0x%04x (%c%c)\n"
  900. " _lt_resv1 = 0x%08lx\n"
  901. ),
  902. src_addr,
  903. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  904. header.size, header.size,
  905. header.count, header.count,
  906. header.checksum,
  907. header.code, header.code >> 8, header.code & 0xff,
  908. header.signature
  909. );
  910. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  911. MYSERIAL.print(" _src_addr = 0x");
  912. MYSERIAL.println(src_addr, 16);
  913. MYSERIAL.print(" _lt_magic = 0x");
  914. MYSERIAL.print(header.magic, 16);
  915. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  916. MYSERIAL.print(" _lt_size = 0x");
  917. MYSERIAL.print(header.size, 16);
  918. MYSERIAL.print(" (");
  919. MYSERIAL.print(header.size, 10);
  920. MYSERIAL.println(")");
  921. MYSERIAL.print(" _lt_count = 0x");
  922. MYSERIAL.print(header.count, 16);
  923. MYSERIAL.print(" (");
  924. MYSERIAL.print(header.count, 10);
  925. MYSERIAL.println(")");
  926. MYSERIAL.print(" _lt_chsum = 0x");
  927. MYSERIAL.println(header.checksum, 16);
  928. MYSERIAL.print(" _lt_code = 0x");
  929. MYSERIAL.print(header.code, 16);
  930. MYSERIAL.print(" (");
  931. MYSERIAL.print((char)(header.code >> 8), 0);
  932. MYSERIAL.print((char)(header.code & 0xff), 0);
  933. MYSERIAL.println(")");
  934. MYSERIAL.print(" _lt_resv1 = 0x");
  935. MYSERIAL.println(header.signature, 16);
  936. #endif //(LT_PRINT_TEST==)
  937. #undef LT_PRINT_TEST
  938. #if 0
  939. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  940. for (uint16_t i = 0; i < 1024; i++)
  941. {
  942. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  943. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  944. if ((i % 16) == 15) putchar('\n');
  945. }
  946. #endif
  947. uint16_t sum = 0;
  948. for (uint16_t i = 0; i < header.size; i++)
  949. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  950. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  951. sum -= header.checksum; //subtract checksum
  952. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  953. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  954. if (sum == header.checksum)
  955. printf_P(_n("Checksum OK\n"), sum);
  956. else
  957. printf_P(_n("Checksum NG\n"), sum);
  958. }
  959. else
  960. printf_P(_n("lang_get_header failed!\n"));
  961. #if 0
  962. for (uint16_t i = 0; i < 1024*10; i++)
  963. {
  964. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  965. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  966. if ((i % 16) == 15) putchar('\n');
  967. }
  968. #endif
  969. #if 0
  970. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  971. for (int i = 0; i < 4096; ++i) {
  972. int b = eeprom_read_byte((unsigned char*)i);
  973. if (b != 255) {
  974. SERIAL_ECHO(i);
  975. SERIAL_ECHO(":");
  976. SERIAL_ECHO(b);
  977. SERIAL_ECHOLN("");
  978. }
  979. }
  980. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  981. #endif
  982. #endif //DEBUG_SEC_LANG
  983. // Check startup - does nothing if bootloader sets MCUSR to 0
  984. byte mcu = MCUSR;
  985. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  986. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  987. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  988. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  989. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  990. if (mcu & 1) puts_P(MSG_POWERUP);
  991. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  992. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  993. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  994. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  995. MCUSR = 0;
  996. //SERIAL_ECHORPGM(MSG_MARLIN);
  997. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  998. #ifdef STRING_VERSION_CONFIG_H
  999. #ifdef STRING_CONFIG_H_AUTHOR
  1000. SERIAL_ECHO_START;
  1001. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  1002. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1003. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  1004. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1005. SERIAL_ECHOPGM("Compiled: ");
  1006. SERIAL_ECHOLNPGM(__DATE__);
  1007. #endif
  1008. #endif
  1009. SERIAL_ECHO_START;
  1010. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1011. SERIAL_ECHO(freeMemory());
  1012. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1013. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1014. //lcd_update_enable(false); // why do we need this?? - andre
  1015. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1016. bool previous_settings_retrieved = false;
  1017. uint8_t hw_changed = check_printer_version();
  1018. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1019. previous_settings_retrieved = Config_RetrieveSettings();
  1020. }
  1021. else { //printer version was changed so use default settings
  1022. Config_ResetDefault();
  1023. }
  1024. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1025. tp_init(); // Initialize temperature loop
  1026. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1027. else
  1028. {
  1029. w25x20cl_err_msg();
  1030. printf_P(_n("W25X20CL not responding.\n"));
  1031. }
  1032. plan_init(); // Initialize planner;
  1033. factory_reset();
  1034. lcd_encoder_diff=0;
  1035. #ifdef TMC2130
  1036. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1037. if (silentMode == 0xff) silentMode = 0;
  1038. tmc2130_mode = TMC2130_MODE_NORMAL;
  1039. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1040. if (crashdet && !farm_mode)
  1041. {
  1042. crashdet_enable();
  1043. puts_P(_N("CrashDetect ENABLED!"));
  1044. }
  1045. else
  1046. {
  1047. crashdet_disable();
  1048. puts_P(_N("CrashDetect DISABLED"));
  1049. }
  1050. #ifdef TMC2130_LINEARITY_CORRECTION
  1051. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1052. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1053. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1054. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1055. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1056. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1057. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1058. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1059. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1060. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1061. #endif //TMC2130_LINEARITY_CORRECTION
  1062. #ifdef TMC2130_VARIABLE_RESOLUTION
  1063. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1064. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1065. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1066. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1067. #else //TMC2130_VARIABLE_RESOLUTION
  1068. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1069. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1070. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1071. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1072. #endif //TMC2130_VARIABLE_RESOLUTION
  1073. #endif //TMC2130
  1074. st_init(); // Initialize stepper, this enables interrupts!
  1075. #ifdef UVLO_SUPPORT
  1076. setup_uvlo_interrupt();
  1077. #endif //UVLO_SUPPORT
  1078. #ifdef TMC2130
  1079. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1080. update_mode_profile();
  1081. tmc2130_init();
  1082. #endif //TMC2130
  1083. setup_photpin();
  1084. servo_init();
  1085. // Reset the machine correction matrix.
  1086. // It does not make sense to load the correction matrix until the machine is homed.
  1087. world2machine_reset();
  1088. #ifdef FILAMENT_SENSOR
  1089. fsensor_init();
  1090. #endif //FILAMENT_SENSOR
  1091. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1092. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1093. #endif
  1094. setup_homepin();
  1095. #ifdef TMC2130
  1096. if (1) {
  1097. // try to run to zero phase before powering the Z motor.
  1098. // Move in negative direction
  1099. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1100. // Round the current micro-micro steps to micro steps.
  1101. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1102. // Until the phase counter is reset to zero.
  1103. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1104. _delay(2);
  1105. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1106. _delay(2);
  1107. }
  1108. }
  1109. #endif //TMC2130
  1110. #if defined(Z_AXIS_ALWAYS_ON)
  1111. enable_z();
  1112. #endif
  1113. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1114. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1115. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1116. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1117. if (farm_mode)
  1118. {
  1119. prusa_statistics(8);
  1120. }
  1121. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1122. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1123. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1124. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1125. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1126. // where all the EEPROM entries are set to 0x0ff.
  1127. // Once a firmware boots up, it forces at least a language selection, which changes
  1128. // EEPROM_LANG to number lower than 0x0ff.
  1129. // 1) Set a high power mode.
  1130. #ifdef TMC2130
  1131. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1132. tmc2130_mode = TMC2130_MODE_NORMAL;
  1133. #endif //TMC2130
  1134. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1135. }
  1136. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1137. // but this times out if a blocking dialog is shown in setup().
  1138. card.initsd();
  1139. #ifdef DEBUG_SD_SPEED_TEST
  1140. if (card.cardOK)
  1141. {
  1142. uint8_t* buff = (uint8_t*)block_buffer;
  1143. uint32_t block = 0;
  1144. uint32_t sumr = 0;
  1145. uint32_t sumw = 0;
  1146. for (int i = 0; i < 1024; i++)
  1147. {
  1148. uint32_t u = _micros();
  1149. bool res = card.card.readBlock(i, buff);
  1150. u = _micros() - u;
  1151. if (res)
  1152. {
  1153. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1154. sumr += u;
  1155. u = _micros();
  1156. res = card.card.writeBlock(i, buff);
  1157. u = _micros() - u;
  1158. if (res)
  1159. {
  1160. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1161. sumw += u;
  1162. }
  1163. else
  1164. {
  1165. printf_P(PSTR("writeBlock %4d error\n"), i);
  1166. break;
  1167. }
  1168. }
  1169. else
  1170. {
  1171. printf_P(PSTR("readBlock %4d error\n"), i);
  1172. break;
  1173. }
  1174. }
  1175. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1176. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1177. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1178. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1179. }
  1180. else
  1181. printf_P(PSTR("Card NG!\n"));
  1182. #endif //DEBUG_SD_SPEED_TEST
  1183. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1184. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1185. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1186. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1187. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1188. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1189. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1190. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1191. if (eeprom_read_word((uint16_t*)EEPROM_MMU_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  1192. if (eeprom_read_word((uint16_t*)EEPROM_MMU_LOAD_FAIL_TOT) == 0xffff) eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  1193. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  1194. if (eeprom_read_byte((uint8_t*)EEPROM_MMU_LOAD_FAIL) == 0xff) eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  1195. #ifdef SNMM
  1196. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1197. int _z = BOWDEN_LENGTH;
  1198. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1199. }
  1200. #endif
  1201. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1202. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1203. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1204. #if (LANG_MODE != 0) //secondary language support
  1205. #ifdef DEBUG_W25X20CL
  1206. W25X20CL_SPI_ENTER();
  1207. uint8_t uid[8]; // 64bit unique id
  1208. w25x20cl_rd_uid(uid);
  1209. puts_P(_n("W25X20CL UID="));
  1210. for (uint8_t i = 0; i < 8; i ++)
  1211. printf_P(PSTR("%02hhx"), uid[i]);
  1212. putchar('\n');
  1213. list_sec_lang_from_external_flash();
  1214. #endif //DEBUG_W25X20CL
  1215. // lang_reset();
  1216. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1217. lcd_language();
  1218. #ifdef DEBUG_SEC_LANG
  1219. uint16_t sec_lang_code = lang_get_code(1);
  1220. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1221. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1222. lang_print_sec_lang(uartout);
  1223. #endif //DEBUG_SEC_LANG
  1224. #endif //(LANG_MODE != 0)
  1225. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1226. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1227. temp_cal_active = false;
  1228. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1229. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1230. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1231. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1232. int16_t z_shift = 0;
  1233. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1234. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1235. temp_cal_active = false;
  1236. }
  1237. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1238. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1239. }
  1240. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1241. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1242. }
  1243. //mbl_mode_init();
  1244. mbl_settings_init();
  1245. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1246. if (SilentModeMenu_MMU == 255) {
  1247. SilentModeMenu_MMU = 1;
  1248. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1249. }
  1250. check_babystep(); //checking if Z babystep is in allowed range
  1251. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1252. setup_fan_interrupt();
  1253. #endif //DEBUG_DISABLE_FANCHECK
  1254. #ifdef PAT9125
  1255. fsensor_setup_interrupt();
  1256. #endif //PAT9125
  1257. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1258. #ifndef DEBUG_DISABLE_STARTMSGS
  1259. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1260. check_if_fw_is_on_right_printer();
  1261. show_fw_version_warnings();
  1262. switch (hw_changed) {
  1263. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1264. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1265. case(0b01):
  1266. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1267. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1268. break;
  1269. case(0b10):
  1270. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1271. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1272. break;
  1273. case(0b11):
  1274. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1275. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1276. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1277. break;
  1278. default: break; //no change, show no message
  1279. }
  1280. if (!previous_settings_retrieved) {
  1281. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1282. Config_StoreSettings();
  1283. }
  1284. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1285. lcd_wizard(WizState::Run);
  1286. }
  1287. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1288. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1289. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1290. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1291. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1292. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1293. // Show the message.
  1294. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1295. }
  1296. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1297. // Show the message.
  1298. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1299. lcd_update_enable(true);
  1300. }
  1301. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1302. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1303. lcd_update_enable(true);
  1304. }
  1305. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1306. // Show the message.
  1307. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1308. }
  1309. }
  1310. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1311. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1312. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1313. update_current_firmware_version_to_eeprom();
  1314. lcd_selftest();
  1315. }
  1316. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1317. KEEPALIVE_STATE(IN_PROCESS);
  1318. #endif //DEBUG_DISABLE_STARTMSGS
  1319. lcd_update_enable(true);
  1320. lcd_clear();
  1321. lcd_update(2);
  1322. // Store the currently running firmware into an eeprom,
  1323. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1324. update_current_firmware_version_to_eeprom();
  1325. #ifdef TMC2130
  1326. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1327. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1328. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1329. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1330. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1331. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1332. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1333. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1334. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1335. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1336. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1337. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1338. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1339. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1340. #endif //TMC2130
  1341. #ifdef UVLO_SUPPORT
  1342. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1343. /*
  1344. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1345. else {
  1346. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1347. lcd_update_enable(true);
  1348. lcd_update(2);
  1349. lcd_setstatuspgm(_T(WELCOME_MSG));
  1350. }
  1351. */
  1352. manage_heater(); // Update temperatures
  1353. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1354. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1355. #endif
  1356. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1357. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1358. puts_P(_N("Automatic recovery!"));
  1359. #endif
  1360. recover_print(1);
  1361. }
  1362. else{
  1363. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1364. puts_P(_N("Normal recovery!"));
  1365. #endif
  1366. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1367. else {
  1368. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1369. lcd_update_enable(true);
  1370. lcd_update(2);
  1371. lcd_setstatuspgm(_T(WELCOME_MSG));
  1372. }
  1373. }
  1374. }
  1375. #endif //UVLO_SUPPORT
  1376. fCheckModeInit();
  1377. KEEPALIVE_STATE(NOT_BUSY);
  1378. #ifdef WATCHDOG
  1379. wdt_enable(WDTO_4S);
  1380. #endif //WATCHDOG
  1381. }
  1382. void trace();
  1383. #define CHUNK_SIZE 64 // bytes
  1384. #define SAFETY_MARGIN 1
  1385. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1386. int chunkHead = 0;
  1387. void serial_read_stream() {
  1388. setAllTargetHotends(0);
  1389. setTargetBed(0);
  1390. lcd_clear();
  1391. lcd_puts_P(PSTR(" Upload in progress"));
  1392. // first wait for how many bytes we will receive
  1393. uint32_t bytesToReceive;
  1394. // receive the four bytes
  1395. char bytesToReceiveBuffer[4];
  1396. for (int i=0; i<4; i++) {
  1397. int data;
  1398. while ((data = MYSERIAL.read()) == -1) {};
  1399. bytesToReceiveBuffer[i] = data;
  1400. }
  1401. // make it a uint32
  1402. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1403. // we're ready, notify the sender
  1404. MYSERIAL.write('+');
  1405. // lock in the routine
  1406. uint32_t receivedBytes = 0;
  1407. while (prusa_sd_card_upload) {
  1408. int i;
  1409. for (i=0; i<CHUNK_SIZE; i++) {
  1410. int data;
  1411. // check if we're not done
  1412. if (receivedBytes == bytesToReceive) {
  1413. break;
  1414. }
  1415. // read the next byte
  1416. while ((data = MYSERIAL.read()) == -1) {};
  1417. receivedBytes++;
  1418. // save it to the chunk
  1419. chunk[i] = data;
  1420. }
  1421. // write the chunk to SD
  1422. card.write_command_no_newline(&chunk[0]);
  1423. // notify the sender we're ready for more data
  1424. MYSERIAL.write('+');
  1425. // for safety
  1426. manage_heater();
  1427. // check if we're done
  1428. if(receivedBytes == bytesToReceive) {
  1429. trace(); // beep
  1430. card.closefile();
  1431. prusa_sd_card_upload = false;
  1432. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1433. }
  1434. }
  1435. }
  1436. /**
  1437. * Output a "busy" message at regular intervals
  1438. * while the machine is not accepting commands.
  1439. */
  1440. void host_keepalive() {
  1441. #ifndef HOST_KEEPALIVE_FEATURE
  1442. return;
  1443. #endif //HOST_KEEPALIVE_FEATURE
  1444. if (farm_mode) return;
  1445. long ms = _millis();
  1446. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1447. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1448. switch (busy_state) {
  1449. case IN_HANDLER:
  1450. case IN_PROCESS:
  1451. SERIAL_ECHO_START;
  1452. SERIAL_ECHOLNPGM("busy: processing");
  1453. break;
  1454. case PAUSED_FOR_USER:
  1455. SERIAL_ECHO_START;
  1456. SERIAL_ECHOLNPGM("busy: paused for user");
  1457. break;
  1458. case PAUSED_FOR_INPUT:
  1459. SERIAL_ECHO_START;
  1460. SERIAL_ECHOLNPGM("busy: paused for input");
  1461. break;
  1462. default:
  1463. break;
  1464. }
  1465. }
  1466. prev_busy_signal_ms = ms;
  1467. }
  1468. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1469. // Before loop(), the setup() function is called by the main() routine.
  1470. void loop()
  1471. {
  1472. KEEPALIVE_STATE(NOT_BUSY);
  1473. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1474. {
  1475. is_usb_printing = true;
  1476. usb_printing_counter--;
  1477. _usb_timer = _millis();
  1478. }
  1479. if (usb_printing_counter == 0)
  1480. {
  1481. is_usb_printing = false;
  1482. }
  1483. if (prusa_sd_card_upload)
  1484. {
  1485. //we read byte-by byte
  1486. serial_read_stream();
  1487. } else
  1488. {
  1489. get_command();
  1490. #ifdef SDSUPPORT
  1491. card.checkautostart(false);
  1492. #endif
  1493. if(buflen)
  1494. {
  1495. cmdbuffer_front_already_processed = false;
  1496. #ifdef SDSUPPORT
  1497. if(card.saving)
  1498. {
  1499. // Saving a G-code file onto an SD-card is in progress.
  1500. // Saving starts with M28, saving until M29 is seen.
  1501. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1502. card.write_command(CMDBUFFER_CURRENT_STRING);
  1503. if(card.logging)
  1504. process_commands();
  1505. else
  1506. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1507. } else {
  1508. card.closefile();
  1509. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1510. }
  1511. } else {
  1512. process_commands();
  1513. }
  1514. #else
  1515. process_commands();
  1516. #endif //SDSUPPORT
  1517. if (! cmdbuffer_front_already_processed && buflen)
  1518. {
  1519. // ptr points to the start of the block currently being processed.
  1520. // The first character in the block is the block type.
  1521. char *ptr = cmdbuffer + bufindr;
  1522. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1523. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1524. union {
  1525. struct {
  1526. char lo;
  1527. char hi;
  1528. } lohi;
  1529. uint16_t value;
  1530. } sdlen;
  1531. sdlen.value = 0;
  1532. {
  1533. // This block locks the interrupts globally for 3.25 us,
  1534. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1535. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1536. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1537. cli();
  1538. // Reset the command to something, which will be ignored by the power panic routine,
  1539. // so this buffer length will not be counted twice.
  1540. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1541. // Extract the current buffer length.
  1542. sdlen.lohi.lo = *ptr ++;
  1543. sdlen.lohi.hi = *ptr;
  1544. // and pass it to the planner queue.
  1545. planner_add_sd_length(sdlen.value);
  1546. sei();
  1547. }
  1548. }
  1549. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1550. cli();
  1551. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1552. // and one for each command to previous block in the planner queue.
  1553. planner_add_sd_length(1);
  1554. sei();
  1555. }
  1556. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1557. // this block's SD card length will not be counted twice as its command type has been replaced
  1558. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1559. cmdqueue_pop_front();
  1560. }
  1561. host_keepalive();
  1562. }
  1563. }
  1564. //check heater every n milliseconds
  1565. manage_heater();
  1566. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1567. checkHitEndstops();
  1568. lcd_update(0);
  1569. #ifdef TMC2130
  1570. tmc2130_check_overtemp();
  1571. if (tmc2130_sg_crash)
  1572. {
  1573. uint8_t crash = tmc2130_sg_crash;
  1574. tmc2130_sg_crash = 0;
  1575. // crashdet_stop_and_save_print();
  1576. switch (crash)
  1577. {
  1578. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1579. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1580. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1581. }
  1582. }
  1583. #endif //TMC2130
  1584. mmu_loop();
  1585. }
  1586. #define DEFINE_PGM_READ_ANY(type, reader) \
  1587. static inline type pgm_read_any(const type *p) \
  1588. { return pgm_read_##reader##_near(p); }
  1589. DEFINE_PGM_READ_ANY(float, float);
  1590. DEFINE_PGM_READ_ANY(signed char, byte);
  1591. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1592. static const PROGMEM type array##_P[3] = \
  1593. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1594. static inline type array(int axis) \
  1595. { return pgm_read_any(&array##_P[axis]); } \
  1596. type array##_ext(int axis) \
  1597. { return pgm_read_any(&array##_P[axis]); }
  1598. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1599. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1600. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1601. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1602. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1603. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1604. static void axis_is_at_home(int axis) {
  1605. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1606. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1607. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1608. }
  1609. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1610. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1611. //! @return original feedmultiply
  1612. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1613. saved_feedrate = feedrate;
  1614. int l_feedmultiply = feedmultiply;
  1615. feedmultiply = 100;
  1616. previous_millis_cmd = _millis();
  1617. enable_endstops(enable_endstops_now);
  1618. return l_feedmultiply;
  1619. }
  1620. //! @param original_feedmultiply feedmultiply to restore
  1621. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1622. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1623. enable_endstops(false);
  1624. #endif
  1625. feedrate = saved_feedrate;
  1626. feedmultiply = original_feedmultiply;
  1627. previous_millis_cmd = _millis();
  1628. }
  1629. #ifdef ENABLE_AUTO_BED_LEVELING
  1630. #ifdef AUTO_BED_LEVELING_GRID
  1631. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1632. {
  1633. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1634. planeNormal.debug("planeNormal");
  1635. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1636. //bedLevel.debug("bedLevel");
  1637. //plan_bed_level_matrix.debug("bed level before");
  1638. //vector_3 uncorrected_position = plan_get_position_mm();
  1639. //uncorrected_position.debug("position before");
  1640. vector_3 corrected_position = plan_get_position();
  1641. // corrected_position.debug("position after");
  1642. current_position[X_AXIS] = corrected_position.x;
  1643. current_position[Y_AXIS] = corrected_position.y;
  1644. current_position[Z_AXIS] = corrected_position.z;
  1645. // put the bed at 0 so we don't go below it.
  1646. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1647. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1648. }
  1649. #else // not AUTO_BED_LEVELING_GRID
  1650. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1651. plan_bed_level_matrix.set_to_identity();
  1652. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1653. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1654. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1655. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1656. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1657. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1658. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1659. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1660. vector_3 corrected_position = plan_get_position();
  1661. current_position[X_AXIS] = corrected_position.x;
  1662. current_position[Y_AXIS] = corrected_position.y;
  1663. current_position[Z_AXIS] = corrected_position.z;
  1664. // put the bed at 0 so we don't go below it.
  1665. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1666. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1667. }
  1668. #endif // AUTO_BED_LEVELING_GRID
  1669. static void run_z_probe() {
  1670. plan_bed_level_matrix.set_to_identity();
  1671. feedrate = homing_feedrate[Z_AXIS];
  1672. // move down until you find the bed
  1673. float zPosition = -10;
  1674. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1675. st_synchronize();
  1676. // we have to let the planner know where we are right now as it is not where we said to go.
  1677. zPosition = st_get_position_mm(Z_AXIS);
  1678. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1679. // move up the retract distance
  1680. zPosition += home_retract_mm(Z_AXIS);
  1681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1682. st_synchronize();
  1683. // move back down slowly to find bed
  1684. feedrate = homing_feedrate[Z_AXIS]/4;
  1685. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1687. st_synchronize();
  1688. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1689. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1690. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1691. }
  1692. static void do_blocking_move_to(float x, float y, float z) {
  1693. float oldFeedRate = feedrate;
  1694. feedrate = homing_feedrate[Z_AXIS];
  1695. current_position[Z_AXIS] = z;
  1696. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1697. st_synchronize();
  1698. feedrate = XY_TRAVEL_SPEED;
  1699. current_position[X_AXIS] = x;
  1700. current_position[Y_AXIS] = y;
  1701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1702. st_synchronize();
  1703. feedrate = oldFeedRate;
  1704. }
  1705. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1706. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1707. }
  1708. /// Probe bed height at position (x,y), returns the measured z value
  1709. static float probe_pt(float x, float y, float z_before) {
  1710. // move to right place
  1711. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1712. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1713. run_z_probe();
  1714. float measured_z = current_position[Z_AXIS];
  1715. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1716. SERIAL_PROTOCOLPGM(" x: ");
  1717. SERIAL_PROTOCOL(x);
  1718. SERIAL_PROTOCOLPGM(" y: ");
  1719. SERIAL_PROTOCOL(y);
  1720. SERIAL_PROTOCOLPGM(" z: ");
  1721. SERIAL_PROTOCOL(measured_z);
  1722. SERIAL_PROTOCOLPGM("\n");
  1723. return measured_z;
  1724. }
  1725. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1726. #ifdef LIN_ADVANCE
  1727. /**
  1728. * M900: Set and/or Get advance K factor and WH/D ratio
  1729. *
  1730. * K<factor> Set advance K factor
  1731. * R<ratio> Set ratio directly (overrides WH/D)
  1732. * W<width> H<height> D<diam> Set ratio from WH/D
  1733. */
  1734. inline void gcode_M900() {
  1735. st_synchronize();
  1736. const float newK = code_seen('K') ? code_value_float() : -1;
  1737. if (newK >= 0) extruder_advance_k = newK;
  1738. float newR = code_seen('R') ? code_value_float() : -1;
  1739. if (newR < 0) {
  1740. const float newD = code_seen('D') ? code_value_float() : -1,
  1741. newW = code_seen('W') ? code_value_float() : -1,
  1742. newH = code_seen('H') ? code_value_float() : -1;
  1743. if (newD >= 0 && newW >= 0 && newH >= 0)
  1744. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1745. }
  1746. if (newR >= 0) advance_ed_ratio = newR;
  1747. SERIAL_ECHO_START;
  1748. SERIAL_ECHOPGM("Advance K=");
  1749. SERIAL_ECHOLN(extruder_advance_k);
  1750. SERIAL_ECHOPGM(" E/D=");
  1751. const float ratio = advance_ed_ratio;
  1752. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1753. }
  1754. #endif // LIN_ADVANCE
  1755. bool check_commands() {
  1756. bool end_command_found = false;
  1757. while (buflen)
  1758. {
  1759. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1760. if (!cmdbuffer_front_already_processed)
  1761. cmdqueue_pop_front();
  1762. cmdbuffer_front_already_processed = false;
  1763. }
  1764. return end_command_found;
  1765. }
  1766. #ifdef TMC2130
  1767. bool calibrate_z_auto()
  1768. {
  1769. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1770. lcd_clear();
  1771. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1772. bool endstops_enabled = enable_endstops(true);
  1773. int axis_up_dir = -home_dir(Z_AXIS);
  1774. tmc2130_home_enter(Z_AXIS_MASK);
  1775. current_position[Z_AXIS] = 0;
  1776. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1777. set_destination_to_current();
  1778. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1779. feedrate = homing_feedrate[Z_AXIS];
  1780. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1781. st_synchronize();
  1782. // current_position[axis] = 0;
  1783. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1784. tmc2130_home_exit();
  1785. enable_endstops(false);
  1786. current_position[Z_AXIS] = 0;
  1787. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1788. set_destination_to_current();
  1789. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1790. feedrate = homing_feedrate[Z_AXIS] / 2;
  1791. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1792. st_synchronize();
  1793. enable_endstops(endstops_enabled);
  1794. if (PRINTER_TYPE == PRINTER_MK3) {
  1795. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1796. }
  1797. else {
  1798. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1799. }
  1800. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1801. return true;
  1802. }
  1803. #endif //TMC2130
  1804. #ifdef TMC2130
  1805. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1806. #else
  1807. void homeaxis(int axis, uint8_t cnt)
  1808. #endif //TMC2130
  1809. {
  1810. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1811. #define HOMEAXIS_DO(LETTER) \
  1812. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1813. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1814. {
  1815. int axis_home_dir = home_dir(axis);
  1816. feedrate = homing_feedrate[axis];
  1817. #ifdef TMC2130
  1818. tmc2130_home_enter(X_AXIS_MASK << axis);
  1819. #endif //TMC2130
  1820. // Move away a bit, so that the print head does not touch the end position,
  1821. // and the following movement to endstop has a chance to achieve the required velocity
  1822. // for the stall guard to work.
  1823. current_position[axis] = 0;
  1824. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1825. set_destination_to_current();
  1826. // destination[axis] = 11.f;
  1827. destination[axis] = -3.f * axis_home_dir;
  1828. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1829. st_synchronize();
  1830. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1831. endstops_hit_on_purpose();
  1832. enable_endstops(false);
  1833. current_position[axis] = 0;
  1834. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1835. destination[axis] = 1. * axis_home_dir;
  1836. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1837. st_synchronize();
  1838. // Now continue to move up to the left end stop with the collision detection enabled.
  1839. enable_endstops(true);
  1840. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1841. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1842. st_synchronize();
  1843. for (uint8_t i = 0; i < cnt; i++)
  1844. {
  1845. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1846. endstops_hit_on_purpose();
  1847. enable_endstops(false);
  1848. current_position[axis] = 0;
  1849. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1850. destination[axis] = -10.f * axis_home_dir;
  1851. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1852. st_synchronize();
  1853. endstops_hit_on_purpose();
  1854. // Now move left up to the collision, this time with a repeatable velocity.
  1855. enable_endstops(true);
  1856. destination[axis] = 11.f * axis_home_dir;
  1857. #ifdef TMC2130
  1858. feedrate = homing_feedrate[axis];
  1859. #else //TMC2130
  1860. feedrate = homing_feedrate[axis] / 2;
  1861. #endif //TMC2130
  1862. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1863. st_synchronize();
  1864. #ifdef TMC2130
  1865. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1866. if (pstep) pstep[i] = mscnt >> 4;
  1867. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1868. #endif //TMC2130
  1869. }
  1870. endstops_hit_on_purpose();
  1871. enable_endstops(false);
  1872. #ifdef TMC2130
  1873. uint8_t orig = tmc2130_home_origin[axis];
  1874. uint8_t back = tmc2130_home_bsteps[axis];
  1875. if (tmc2130_home_enabled && (orig <= 63))
  1876. {
  1877. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1878. if (back > 0)
  1879. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1880. }
  1881. else
  1882. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1883. tmc2130_home_exit();
  1884. #endif //TMC2130
  1885. axis_is_at_home(axis);
  1886. axis_known_position[axis] = true;
  1887. // Move from minimum
  1888. #ifdef TMC2130
  1889. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1890. #else //TMC2130
  1891. float dist = - axis_home_dir * 0.01f * 64;
  1892. #endif //TMC2130
  1893. current_position[axis] -= dist;
  1894. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1895. current_position[axis] += dist;
  1896. destination[axis] = current_position[axis];
  1897. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1898. st_synchronize();
  1899. feedrate = 0.0;
  1900. }
  1901. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1902. {
  1903. #ifdef TMC2130
  1904. FORCE_HIGH_POWER_START;
  1905. #endif
  1906. int axis_home_dir = home_dir(axis);
  1907. current_position[axis] = 0;
  1908. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1909. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1910. feedrate = homing_feedrate[axis];
  1911. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1912. st_synchronize();
  1913. #ifdef TMC2130
  1914. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1915. FORCE_HIGH_POWER_END;
  1916. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1917. return;
  1918. }
  1919. #endif //TMC2130
  1920. current_position[axis] = 0;
  1921. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1922. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1923. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1924. st_synchronize();
  1925. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1926. feedrate = homing_feedrate[axis]/2 ;
  1927. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1928. st_synchronize();
  1929. #ifdef TMC2130
  1930. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1931. FORCE_HIGH_POWER_END;
  1932. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1933. return;
  1934. }
  1935. #endif //TMC2130
  1936. axis_is_at_home(axis);
  1937. destination[axis] = current_position[axis];
  1938. feedrate = 0.0;
  1939. endstops_hit_on_purpose();
  1940. axis_known_position[axis] = true;
  1941. #ifdef TMC2130
  1942. FORCE_HIGH_POWER_END;
  1943. #endif
  1944. }
  1945. enable_endstops(endstops_enabled);
  1946. }
  1947. /**/
  1948. void home_xy()
  1949. {
  1950. set_destination_to_current();
  1951. homeaxis(X_AXIS);
  1952. homeaxis(Y_AXIS);
  1953. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1954. endstops_hit_on_purpose();
  1955. }
  1956. void refresh_cmd_timeout(void)
  1957. {
  1958. previous_millis_cmd = _millis();
  1959. }
  1960. #ifdef FWRETRACT
  1961. void retract(bool retracting, bool swapretract = false) {
  1962. if(retracting && !retracted[active_extruder]) {
  1963. destination[X_AXIS]=current_position[X_AXIS];
  1964. destination[Y_AXIS]=current_position[Y_AXIS];
  1965. destination[Z_AXIS]=current_position[Z_AXIS];
  1966. destination[E_AXIS]=current_position[E_AXIS];
  1967. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  1968. plan_set_e_position(current_position[E_AXIS]);
  1969. float oldFeedrate = feedrate;
  1970. feedrate=cs.retract_feedrate*60;
  1971. retracted[active_extruder]=true;
  1972. prepare_move();
  1973. current_position[Z_AXIS]-=cs.retract_zlift;
  1974. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1975. prepare_move();
  1976. feedrate = oldFeedrate;
  1977. } else if(!retracting && retracted[active_extruder]) {
  1978. destination[X_AXIS]=current_position[X_AXIS];
  1979. destination[Y_AXIS]=current_position[Y_AXIS];
  1980. destination[Z_AXIS]=current_position[Z_AXIS];
  1981. destination[E_AXIS]=current_position[E_AXIS];
  1982. current_position[Z_AXIS]+=cs.retract_zlift;
  1983. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1984. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  1985. plan_set_e_position(current_position[E_AXIS]);
  1986. float oldFeedrate = feedrate;
  1987. feedrate=cs.retract_recover_feedrate*60;
  1988. retracted[active_extruder]=false;
  1989. prepare_move();
  1990. feedrate = oldFeedrate;
  1991. }
  1992. } //retract
  1993. #endif //FWRETRACT
  1994. void trace() {
  1995. //if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  1996. _tone(BEEPER, 440);
  1997. _delay(25);
  1998. _noTone(BEEPER);
  1999. _delay(20);
  2000. }
  2001. /*
  2002. void ramming() {
  2003. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2004. if (current_temperature[0] < 230) {
  2005. //PLA
  2006. max_feedrate[E_AXIS] = 50;
  2007. //current_position[E_AXIS] -= 8;
  2008. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2009. //current_position[E_AXIS] += 8;
  2010. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2011. current_position[E_AXIS] += 5.4;
  2012. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2013. current_position[E_AXIS] += 3.2;
  2014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2015. current_position[E_AXIS] += 3;
  2016. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2017. st_synchronize();
  2018. max_feedrate[E_AXIS] = 80;
  2019. current_position[E_AXIS] -= 82;
  2020. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2021. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2022. current_position[E_AXIS] -= 20;
  2023. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2024. current_position[E_AXIS] += 5;
  2025. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2026. current_position[E_AXIS] += 5;
  2027. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2028. current_position[E_AXIS] -= 10;
  2029. st_synchronize();
  2030. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2031. current_position[E_AXIS] += 10;
  2032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2033. current_position[E_AXIS] -= 10;
  2034. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2035. current_position[E_AXIS] += 10;
  2036. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2037. current_position[E_AXIS] -= 10;
  2038. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2039. st_synchronize();
  2040. }
  2041. else {
  2042. //ABS
  2043. max_feedrate[E_AXIS] = 50;
  2044. //current_position[E_AXIS] -= 8;
  2045. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2046. //current_position[E_AXIS] += 8;
  2047. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2048. current_position[E_AXIS] += 3.1;
  2049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2050. current_position[E_AXIS] += 3.1;
  2051. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2052. current_position[E_AXIS] += 4;
  2053. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2054. st_synchronize();
  2055. //current_position[X_AXIS] += 23; //delay
  2056. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2057. //current_position[X_AXIS] -= 23; //delay
  2058. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2059. _delay(4700);
  2060. max_feedrate[E_AXIS] = 80;
  2061. current_position[E_AXIS] -= 92;
  2062. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2063. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2064. current_position[E_AXIS] -= 5;
  2065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2066. current_position[E_AXIS] += 5;
  2067. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2068. current_position[E_AXIS] -= 5;
  2069. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2070. st_synchronize();
  2071. current_position[E_AXIS] += 5;
  2072. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2073. current_position[E_AXIS] -= 5;
  2074. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2075. current_position[E_AXIS] += 5;
  2076. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2077. current_position[E_AXIS] -= 5;
  2078. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2079. st_synchronize();
  2080. }
  2081. }
  2082. */
  2083. #ifdef TMC2130
  2084. void force_high_power_mode(bool start_high_power_section) {
  2085. uint8_t silent;
  2086. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2087. if (silent == 1) {
  2088. //we are in silent mode, set to normal mode to enable crash detection
  2089. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2090. st_synchronize();
  2091. cli();
  2092. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2093. update_mode_profile();
  2094. tmc2130_init();
  2095. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2096. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2097. st_reset_timer();
  2098. sei();
  2099. }
  2100. }
  2101. #endif //TMC2130
  2102. #ifdef TMC2130
  2103. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2104. #else
  2105. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2106. #endif //TMC2130
  2107. {
  2108. st_synchronize();
  2109. #if 0
  2110. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2111. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2112. #endif
  2113. // Flag for the display update routine and to disable the print cancelation during homing.
  2114. homing_flag = true;
  2115. // Which axes should be homed?
  2116. bool home_x = home_x_axis;
  2117. bool home_y = home_y_axis;
  2118. bool home_z = home_z_axis;
  2119. // Either all X,Y,Z codes are present, or none of them.
  2120. bool home_all_axes = home_x == home_y && home_x == home_z;
  2121. if (home_all_axes)
  2122. // No X/Y/Z code provided means to home all axes.
  2123. home_x = home_y = home_z = true;
  2124. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2125. if (home_all_axes) {
  2126. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2127. feedrate = homing_feedrate[Z_AXIS];
  2128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2129. st_synchronize();
  2130. }
  2131. #ifdef ENABLE_AUTO_BED_LEVELING
  2132. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2133. #endif //ENABLE_AUTO_BED_LEVELING
  2134. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2135. // the planner will not perform any adjustments in the XY plane.
  2136. // Wait for the motors to stop and update the current position with the absolute values.
  2137. world2machine_revert_to_uncorrected();
  2138. // For mesh bed leveling deactivate the matrix temporarily.
  2139. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2140. // in a single axis only.
  2141. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2142. #ifdef MESH_BED_LEVELING
  2143. uint8_t mbl_was_active = mbl.active;
  2144. mbl.active = 0;
  2145. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2146. #endif
  2147. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2148. // consumed during the first movements following this statement.
  2149. if (home_z)
  2150. babystep_undo();
  2151. saved_feedrate = feedrate;
  2152. int l_feedmultiply = feedmultiply;
  2153. feedmultiply = 100;
  2154. previous_millis_cmd = _millis();
  2155. enable_endstops(true);
  2156. memcpy(destination, current_position, sizeof(destination));
  2157. feedrate = 0.0;
  2158. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2159. if(home_z)
  2160. homeaxis(Z_AXIS);
  2161. #endif
  2162. #ifdef QUICK_HOME
  2163. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2164. if(home_x && home_y) //first diagonal move
  2165. {
  2166. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2167. int x_axis_home_dir = home_dir(X_AXIS);
  2168. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2169. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2170. feedrate = homing_feedrate[X_AXIS];
  2171. if(homing_feedrate[Y_AXIS]<feedrate)
  2172. feedrate = homing_feedrate[Y_AXIS];
  2173. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2174. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2175. } else {
  2176. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2177. }
  2178. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2179. st_synchronize();
  2180. axis_is_at_home(X_AXIS);
  2181. axis_is_at_home(Y_AXIS);
  2182. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2183. destination[X_AXIS] = current_position[X_AXIS];
  2184. destination[Y_AXIS] = current_position[Y_AXIS];
  2185. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2186. feedrate = 0.0;
  2187. st_synchronize();
  2188. endstops_hit_on_purpose();
  2189. current_position[X_AXIS] = destination[X_AXIS];
  2190. current_position[Y_AXIS] = destination[Y_AXIS];
  2191. current_position[Z_AXIS] = destination[Z_AXIS];
  2192. }
  2193. #endif /* QUICK_HOME */
  2194. #ifdef TMC2130
  2195. if(home_x)
  2196. {
  2197. if (!calib)
  2198. homeaxis(X_AXIS);
  2199. else
  2200. tmc2130_home_calibrate(X_AXIS);
  2201. }
  2202. if(home_y)
  2203. {
  2204. if (!calib)
  2205. homeaxis(Y_AXIS);
  2206. else
  2207. tmc2130_home_calibrate(Y_AXIS);
  2208. }
  2209. #else //TMC2130
  2210. if(home_x) homeaxis(X_AXIS);
  2211. if(home_y) homeaxis(Y_AXIS);
  2212. #endif //TMC2130
  2213. if(home_x_axis && home_x_value != 0)
  2214. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2215. if(home_y_axis && home_y_value != 0)
  2216. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2217. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2218. #ifndef Z_SAFE_HOMING
  2219. if(home_z) {
  2220. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2221. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2222. feedrate = max_feedrate[Z_AXIS];
  2223. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2224. st_synchronize();
  2225. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2226. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2227. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2228. {
  2229. homeaxis(X_AXIS);
  2230. homeaxis(Y_AXIS);
  2231. }
  2232. // 1st mesh bed leveling measurement point, corrected.
  2233. world2machine_initialize();
  2234. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2235. world2machine_reset();
  2236. if (destination[Y_AXIS] < Y_MIN_POS)
  2237. destination[Y_AXIS] = Y_MIN_POS;
  2238. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2239. feedrate = homing_feedrate[Z_AXIS]/10;
  2240. current_position[Z_AXIS] = 0;
  2241. enable_endstops(false);
  2242. #ifdef DEBUG_BUILD
  2243. SERIAL_ECHOLNPGM("plan_set_position()");
  2244. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2245. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2246. #endif
  2247. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2248. #ifdef DEBUG_BUILD
  2249. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2250. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2251. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2252. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2253. #endif
  2254. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2255. st_synchronize();
  2256. current_position[X_AXIS] = destination[X_AXIS];
  2257. current_position[Y_AXIS] = destination[Y_AXIS];
  2258. enable_endstops(true);
  2259. endstops_hit_on_purpose();
  2260. homeaxis(Z_AXIS);
  2261. #else // MESH_BED_LEVELING
  2262. homeaxis(Z_AXIS);
  2263. #endif // MESH_BED_LEVELING
  2264. }
  2265. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2266. if(home_all_axes) {
  2267. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2268. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2269. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2270. feedrate = XY_TRAVEL_SPEED/60;
  2271. current_position[Z_AXIS] = 0;
  2272. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2273. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2274. st_synchronize();
  2275. current_position[X_AXIS] = destination[X_AXIS];
  2276. current_position[Y_AXIS] = destination[Y_AXIS];
  2277. homeaxis(Z_AXIS);
  2278. }
  2279. // Let's see if X and Y are homed and probe is inside bed area.
  2280. if(home_z) {
  2281. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2282. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2283. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2284. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2285. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2286. current_position[Z_AXIS] = 0;
  2287. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2288. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2289. feedrate = max_feedrate[Z_AXIS];
  2290. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2291. st_synchronize();
  2292. homeaxis(Z_AXIS);
  2293. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2294. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2295. SERIAL_ECHO_START;
  2296. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2297. } else {
  2298. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2299. SERIAL_ECHO_START;
  2300. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2301. }
  2302. }
  2303. #endif // Z_SAFE_HOMING
  2304. #endif // Z_HOME_DIR < 0
  2305. if(home_z_axis && home_z_value != 0)
  2306. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2307. #ifdef ENABLE_AUTO_BED_LEVELING
  2308. if(home_z)
  2309. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2310. #endif
  2311. // Set the planner and stepper routine positions.
  2312. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2313. // contains the machine coordinates.
  2314. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2315. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2316. enable_endstops(false);
  2317. #endif
  2318. feedrate = saved_feedrate;
  2319. feedmultiply = l_feedmultiply;
  2320. previous_millis_cmd = _millis();
  2321. endstops_hit_on_purpose();
  2322. #ifndef MESH_BED_LEVELING
  2323. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2324. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2325. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2326. lcd_adjust_z();
  2327. #endif
  2328. // Load the machine correction matrix
  2329. world2machine_initialize();
  2330. // and correct the current_position XY axes to match the transformed coordinate system.
  2331. world2machine_update_current();
  2332. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2333. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2334. {
  2335. if (! home_z && mbl_was_active) {
  2336. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2337. mbl.active = true;
  2338. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2339. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2340. }
  2341. }
  2342. else
  2343. {
  2344. st_synchronize();
  2345. homing_flag = false;
  2346. }
  2347. #endif
  2348. if (farm_mode) { prusa_statistics(20); };
  2349. homing_flag = false;
  2350. #if 0
  2351. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2352. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2353. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2354. #endif
  2355. }
  2356. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2357. {
  2358. #ifdef TMC2130
  2359. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2360. #else
  2361. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2362. #endif //TMC2130
  2363. }
  2364. void adjust_bed_reset()
  2365. {
  2366. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2367. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2368. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2369. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2370. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2371. }
  2372. //! @brief Calibrate XYZ
  2373. //! @param onlyZ if true, calibrate only Z axis
  2374. //! @param verbosity_level
  2375. //! @retval true Succeeded
  2376. //! @retval false Failed
  2377. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2378. {
  2379. bool final_result = false;
  2380. #ifdef TMC2130
  2381. FORCE_HIGH_POWER_START;
  2382. #endif // TMC2130
  2383. // Only Z calibration?
  2384. if (!onlyZ)
  2385. {
  2386. setTargetBed(0);
  2387. setAllTargetHotends(0);
  2388. adjust_bed_reset(); //reset bed level correction
  2389. }
  2390. // Disable the default update procedure of the display. We will do a modal dialog.
  2391. lcd_update_enable(false);
  2392. // Let the planner use the uncorrected coordinates.
  2393. mbl.reset();
  2394. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2395. // the planner will not perform any adjustments in the XY plane.
  2396. // Wait for the motors to stop and update the current position with the absolute values.
  2397. world2machine_revert_to_uncorrected();
  2398. // Reset the baby step value applied without moving the axes.
  2399. babystep_reset();
  2400. // Mark all axes as in a need for homing.
  2401. memset(axis_known_position, 0, sizeof(axis_known_position));
  2402. // Home in the XY plane.
  2403. //set_destination_to_current();
  2404. int l_feedmultiply = setup_for_endstop_move();
  2405. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2406. home_xy();
  2407. enable_endstops(false);
  2408. current_position[X_AXIS] += 5;
  2409. current_position[Y_AXIS] += 5;
  2410. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2411. st_synchronize();
  2412. // Let the user move the Z axes up to the end stoppers.
  2413. #ifdef TMC2130
  2414. if (calibrate_z_auto())
  2415. {
  2416. #else //TMC2130
  2417. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2418. {
  2419. #endif //TMC2130
  2420. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2421. if(onlyZ){
  2422. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2423. lcd_set_cursor(0, 3);
  2424. lcd_print(1);
  2425. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2426. }else{
  2427. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2428. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2429. lcd_set_cursor(0, 2);
  2430. lcd_print(1);
  2431. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2432. }
  2433. refresh_cmd_timeout();
  2434. #ifndef STEEL_SHEET
  2435. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2436. {
  2437. lcd_wait_for_cool_down();
  2438. }
  2439. #endif //STEEL_SHEET
  2440. if(!onlyZ)
  2441. {
  2442. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2443. #ifdef STEEL_SHEET
  2444. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2445. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2446. #endif //STEEL_SHEET
  2447. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2448. KEEPALIVE_STATE(IN_HANDLER);
  2449. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2450. lcd_set_cursor(0, 2);
  2451. lcd_print(1);
  2452. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2453. }
  2454. bool endstops_enabled = enable_endstops(false);
  2455. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2457. st_synchronize();
  2458. // Move the print head close to the bed.
  2459. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2460. enable_endstops(true);
  2461. #ifdef TMC2130
  2462. tmc2130_home_enter(Z_AXIS_MASK);
  2463. #endif //TMC2130
  2464. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2465. st_synchronize();
  2466. #ifdef TMC2130
  2467. tmc2130_home_exit();
  2468. #endif //TMC2130
  2469. enable_endstops(endstops_enabled);
  2470. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2471. {
  2472. if (onlyZ)
  2473. {
  2474. clean_up_after_endstop_move(l_feedmultiply);
  2475. // Z only calibration.
  2476. // Load the machine correction matrix
  2477. world2machine_initialize();
  2478. // and correct the current_position to match the transformed coordinate system.
  2479. world2machine_update_current();
  2480. //FIXME
  2481. bool result = sample_mesh_and_store_reference();
  2482. if (result)
  2483. {
  2484. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2485. // Shipped, the nozzle height has been set already. The user can start printing now.
  2486. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2487. final_result = true;
  2488. // babystep_apply();
  2489. }
  2490. }
  2491. else
  2492. {
  2493. // Reset the baby step value and the baby step applied flag.
  2494. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2495. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2496. // Complete XYZ calibration.
  2497. uint8_t point_too_far_mask = 0;
  2498. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2499. clean_up_after_endstop_move(l_feedmultiply);
  2500. // Print head up.
  2501. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2503. st_synchronize();
  2504. //#ifndef NEW_XYZCAL
  2505. if (result >= 0)
  2506. {
  2507. #ifdef HEATBED_V2
  2508. sample_z();
  2509. #else //HEATBED_V2
  2510. point_too_far_mask = 0;
  2511. // Second half: The fine adjustment.
  2512. // Let the planner use the uncorrected coordinates.
  2513. mbl.reset();
  2514. world2machine_reset();
  2515. // Home in the XY plane.
  2516. int l_feedmultiply = setup_for_endstop_move();
  2517. home_xy();
  2518. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2519. clean_up_after_endstop_move(l_feedmultiply);
  2520. // Print head up.
  2521. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2523. st_synchronize();
  2524. // if (result >= 0) babystep_apply();
  2525. #endif //HEATBED_V2
  2526. }
  2527. //#endif //NEW_XYZCAL
  2528. lcd_update_enable(true);
  2529. lcd_update(2);
  2530. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2531. if (result >= 0)
  2532. {
  2533. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2534. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2535. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2536. final_result = true;
  2537. }
  2538. }
  2539. #ifdef TMC2130
  2540. tmc2130_home_exit();
  2541. #endif
  2542. }
  2543. else
  2544. {
  2545. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2546. final_result = false;
  2547. }
  2548. }
  2549. else
  2550. {
  2551. // Timeouted.
  2552. }
  2553. lcd_update_enable(true);
  2554. #ifdef TMC2130
  2555. FORCE_HIGH_POWER_END;
  2556. #endif // TMC2130
  2557. return final_result;
  2558. }
  2559. void gcode_M114()
  2560. {
  2561. SERIAL_PROTOCOLPGM("X:");
  2562. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2563. SERIAL_PROTOCOLPGM(" Y:");
  2564. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2565. SERIAL_PROTOCOLPGM(" Z:");
  2566. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2567. SERIAL_PROTOCOLPGM(" E:");
  2568. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2569. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2570. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2571. SERIAL_PROTOCOLPGM(" Y:");
  2572. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2573. SERIAL_PROTOCOLPGM(" Z:");
  2574. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2575. SERIAL_PROTOCOLPGM(" E:");
  2576. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2577. SERIAL_PROTOCOLLN("");
  2578. }
  2579. //! extracted code to compute z_shift for M600 in case of filament change operation
  2580. //! requested from fsensors.
  2581. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2582. //! unlike the previous implementation, which was adding 25mm even when the head was
  2583. //! printing at e.g. 24mm height.
  2584. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2585. //! the printout.
  2586. //! This function is templated to enable fast change of computation data type.
  2587. //! @return new z_shift value
  2588. template<typename T>
  2589. static T gcode_M600_filament_change_z_shift()
  2590. {
  2591. #ifdef FILAMENTCHANGE_ZADD
  2592. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2593. // avoid floating point arithmetics when not necessary - results in shorter code
  2594. T ztmp = T( current_position[Z_AXIS] );
  2595. T z_shift = 0;
  2596. if(ztmp < T(25)){
  2597. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2598. }
  2599. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2600. #else
  2601. return T(0);
  2602. #endif
  2603. }
  2604. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2605. {
  2606. st_synchronize();
  2607. float lastpos[4];
  2608. if (farm_mode)
  2609. {
  2610. prusa_statistics(22);
  2611. }
  2612. //First backup current position and settings
  2613. int feedmultiplyBckp = feedmultiply;
  2614. float HotendTempBckp = degTargetHotend(active_extruder);
  2615. int fanSpeedBckp = fanSpeed;
  2616. lastpos[X_AXIS] = current_position[X_AXIS];
  2617. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2618. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2619. lastpos[E_AXIS] = current_position[E_AXIS];
  2620. //Retract E
  2621. current_position[E_AXIS] += e_shift;
  2622. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2623. current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  2624. st_synchronize();
  2625. //Lift Z
  2626. current_position[Z_AXIS] += z_shift;
  2627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2628. current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  2629. st_synchronize();
  2630. //Move XY to side
  2631. current_position[X_AXIS] = x_position;
  2632. current_position[Y_AXIS] = y_position;
  2633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2634. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2635. st_synchronize();
  2636. //Beep, manage nozzle heater and wait for user to start unload filament
  2637. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2638. lcd_change_fil_state = 0;
  2639. // Unload filament
  2640. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2641. else unload_filament(); //unload filament for single material (used also in M702)
  2642. //finish moves
  2643. st_synchronize();
  2644. if (!mmu_enabled)
  2645. {
  2646. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2647. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2648. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2649. if (lcd_change_fil_state == 0)
  2650. {
  2651. lcd_clear();
  2652. lcd_set_cursor(0, 2);
  2653. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2654. current_position[X_AXIS] -= 100;
  2655. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2656. current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  2657. st_synchronize();
  2658. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2659. }
  2660. }
  2661. if (mmu_enabled)
  2662. {
  2663. if (!automatic) {
  2664. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2665. mmu_M600_wait_and_beep();
  2666. if (saved_printing) {
  2667. lcd_clear();
  2668. lcd_set_cursor(0, 2);
  2669. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2670. mmu_command(MmuCmd::R0);
  2671. manage_response(false, false);
  2672. }
  2673. }
  2674. mmu_M600_load_filament(automatic, HotendTempBckp);
  2675. }
  2676. else
  2677. M600_load_filament();
  2678. if (!automatic) M600_check_state(HotendTempBckp);
  2679. lcd_update_enable(true);
  2680. //Not let's go back to print
  2681. fanSpeed = fanSpeedBckp;
  2682. //Feed a little of filament to stabilize pressure
  2683. if (!automatic)
  2684. {
  2685. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2686. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2687. current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  2688. }
  2689. //Move XY back
  2690. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2691. FILAMENTCHANGE_XYFEED, active_extruder);
  2692. st_synchronize();
  2693. //Move Z back
  2694. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2695. FILAMENTCHANGE_ZFEED, active_extruder);
  2696. st_synchronize();
  2697. //Set E position to original
  2698. plan_set_e_position(lastpos[E_AXIS]);
  2699. memcpy(current_position, lastpos, sizeof(lastpos));
  2700. memcpy(destination, current_position, sizeof(current_position));
  2701. //Recover feed rate
  2702. feedmultiply = feedmultiplyBckp;
  2703. char cmd[9];
  2704. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2705. enquecommand(cmd);
  2706. #ifdef IR_SENSOR
  2707. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2708. fsensor_check_autoload();
  2709. #endif //IR_SENSOR
  2710. lcd_setstatuspgm(_T(WELCOME_MSG));
  2711. custom_message_type = CustomMsg::Status;
  2712. }
  2713. //! @brief Rise Z if too low to avoid blob/jam before filament loading
  2714. //!
  2715. //! It doesn't plan_buffer_line(), as it expects plan_buffer_line() to be called after
  2716. //! during extruding (loading) filament.
  2717. void marlin_rise_z(void)
  2718. {
  2719. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2720. }
  2721. void gcode_M701()
  2722. {
  2723. printf_P(PSTR("gcode_M701 begin\n"));
  2724. if (farm_mode)
  2725. {
  2726. prusa_statistics(22);
  2727. }
  2728. if (mmu_enabled)
  2729. {
  2730. extr_adj(tmp_extruder);//loads current extruder
  2731. mmu_extruder = tmp_extruder;
  2732. }
  2733. else
  2734. {
  2735. enable_z();
  2736. custom_message_type = CustomMsg::FilamentLoading;
  2737. #ifdef FSENSOR_QUALITY
  2738. fsensor_oq_meassure_start(40);
  2739. #endif //FSENSOR_QUALITY
  2740. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2741. current_position[E_AXIS] += 40;
  2742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2743. st_synchronize();
  2744. marlin_rise_z();
  2745. current_position[E_AXIS] += 30;
  2746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2747. load_filament_final_feed(); //slow sequence
  2748. st_synchronize();
  2749. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)) _tone(BEEPER, 500);
  2750. delay_keep_alive(50);
  2751. _noTone(BEEPER);
  2752. if (!farm_mode && loading_flag) {
  2753. lcd_load_filament_color_check();
  2754. }
  2755. lcd_update_enable(true);
  2756. lcd_update(2);
  2757. lcd_setstatuspgm(_T(WELCOME_MSG));
  2758. disable_z();
  2759. loading_flag = false;
  2760. custom_message_type = CustomMsg::Status;
  2761. #ifdef FSENSOR_QUALITY
  2762. fsensor_oq_meassure_stop();
  2763. if (!fsensor_oq_result())
  2764. {
  2765. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2766. lcd_update_enable(true);
  2767. lcd_update(2);
  2768. if (disable)
  2769. fsensor_disable();
  2770. }
  2771. #endif //FSENSOR_QUALITY
  2772. }
  2773. }
  2774. /**
  2775. * @brief Get serial number from 32U2 processor
  2776. *
  2777. * Typical format of S/N is:CZPX0917X003XC13518
  2778. *
  2779. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2780. *
  2781. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2782. * reply is transmitted to serial port 1 character by character.
  2783. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2784. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2785. * in any case.
  2786. */
  2787. static void gcode_PRUSA_SN()
  2788. {
  2789. if (farm_mode) {
  2790. selectedSerialPort = 0;
  2791. putchar(';');
  2792. putchar('S');
  2793. int numbersRead = 0;
  2794. ShortTimer timeout;
  2795. timeout.start();
  2796. while (numbersRead < 19) {
  2797. while (MSerial.available() > 0) {
  2798. uint8_t serial_char = MSerial.read();
  2799. selectedSerialPort = 1;
  2800. putchar(serial_char);
  2801. numbersRead++;
  2802. selectedSerialPort = 0;
  2803. }
  2804. if (timeout.expired(100u)) break;
  2805. }
  2806. selectedSerialPort = 1;
  2807. putchar('\n');
  2808. #if 0
  2809. for (int b = 0; b < 3; b++) {
  2810. _tone(BEEPER, 110);
  2811. _delay(50);
  2812. _noTone(BEEPER);
  2813. _delay(50);
  2814. }
  2815. #endif
  2816. } else {
  2817. puts_P(_N("Not in farm mode."));
  2818. }
  2819. }
  2820. #ifdef BACKLASH_X
  2821. extern uint8_t st_backlash_x;
  2822. #endif //BACKLASH_X
  2823. #ifdef BACKLASH_Y
  2824. extern uint8_t st_backlash_y;
  2825. #endif //BACKLASH_Y
  2826. //! @brief Parse and process commands
  2827. //!
  2828. //! look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  2829. //! http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  2830. //!
  2831. //! Implemented Codes
  2832. //! -------------------
  2833. //!
  2834. //!@n PRUSA CODES
  2835. //!@n P F - Returns FW versions
  2836. //!@n P R - Returns revision of printer
  2837. //!
  2838. //!@n G0 -> G1
  2839. //!@n G1 - Coordinated Movement X Y Z E
  2840. //!@n G2 - CW ARC
  2841. //!@n G3 - CCW ARC
  2842. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2843. //!@n G10 - retract filament according to settings of M207
  2844. //!@n G11 - retract recover filament according to settings of M208
  2845. //!@n G28 - Home all Axis
  2846. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2847. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2848. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2849. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2850. //!@n G80 - Automatic mesh bed leveling
  2851. //!@n G81 - Print bed profile
  2852. //!@n G90 - Use Absolute Coordinates
  2853. //!@n G91 - Use Relative Coordinates
  2854. //!@n G92 - Set current position to coordinates given
  2855. //!
  2856. //!@n M Codes
  2857. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2858. //!@n M1 - Same as M0
  2859. //!@n M17 - Enable/Power all stepper motors
  2860. //!@n M18 - Disable all stepper motors; same as M84
  2861. //!@n M20 - List SD card
  2862. //!@n M21 - Init SD card
  2863. //!@n M22 - Release SD card
  2864. //!@n M23 - Select SD file (M23 filename.g)
  2865. //!@n M24 - Start/resume SD print
  2866. //!@n M25 - Pause SD print
  2867. //!@n M26 - Set SD position in bytes (M26 S12345)
  2868. //!@n M27 - Report SD print status
  2869. //!@n M28 - Start SD write (M28 filename.g)
  2870. //!@n M29 - Stop SD write
  2871. //!@n M30 - Delete file from SD (M30 filename.g)
  2872. //!@n M31 - Output time since last M109 or SD card start to serial
  2873. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2874. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2875. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2876. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2877. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2878. //!@n M73 - Show percent done and print time remaining
  2879. //!@n M80 - Turn on Power Supply
  2880. //!@n M81 - Turn off Power Supply
  2881. //!@n M82 - Set E codes absolute (default)
  2882. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2883. //!@n M84 - Disable steppers until next move,
  2884. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2885. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2886. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  2887. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  2888. //!@n M104 - Set extruder target temp
  2889. //!@n M105 - Read current temp
  2890. //!@n M106 - Fan on
  2891. //!@n M107 - Fan off
  2892. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  2893. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  2894. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  2895. //!@n M112 - Emergency stop
  2896. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  2897. //!@n M114 - Output current position to serial port
  2898. //!@n M115 - Capabilities string
  2899. //!@n M117 - display message
  2900. //!@n M119 - Output Endstop status to serial port
  2901. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  2902. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  2903. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2904. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  2905. //!@n M140 - Set bed target temp
  2906. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  2907. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2908. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2909. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2910. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  2911. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  2912. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  2913. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  2914. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  2915. //!@n M206 - set additional homing offset
  2916. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  2917. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2918. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2919. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2920. //!@n M220 S<factor in percent>- set speed factor override percentage
  2921. //!@n M221 S<factor in percent>- set extrude factor override percentage
  2922. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2923. //!@n M240 - Trigger a camera to take a photograph
  2924. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  2925. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2926. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  2927. //!@n M301 - Set PID parameters P I and D
  2928. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  2929. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  2930. //!@n M304 - Set bed PID parameters P I and D
  2931. //!@n M400 - Finish all moves
  2932. //!@n M401 - Lower z-probe if present
  2933. //!@n M402 - Raise z-probe if present
  2934. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  2935. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  2936. //!@n M406 - Turn off Filament Sensor extrusion control
  2937. //!@n M407 - Displays measured filament diameter
  2938. //!@n M500 - stores parameters in EEPROM
  2939. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  2940. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  2941. //!@n M503 - print the current settings (from memory not from EEPROM)
  2942. //!@n M509 - force language selection on next restart
  2943. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  2944. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2945. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  2946. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  2947. //!@n M861 - Set / Read PINDA temperature compensation offsets
  2948. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  2949. //!@n M907 - Set digital trimpot motor current using axis codes.
  2950. //!@n M908 - Control digital trimpot directly.
  2951. //!@n M350 - Set microstepping mode.
  2952. //!@n M351 - Toggle MS1 MS2 pins directly.
  2953. //!
  2954. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  2955. //!@n M999 - Restart after being stopped by error
  2956. void process_commands()
  2957. {
  2958. #ifdef FANCHECK
  2959. if (fan_check_error){
  2960. if( fan_check_error == EFCE_DETECTED ){
  2961. fan_check_error = EFCE_REPORTED;
  2962. lcd_pause_print();
  2963. } // otherwise it has already been reported, so just ignore further processing
  2964. return;
  2965. }
  2966. #endif
  2967. if (!buflen) return; //empty command
  2968. #ifdef FILAMENT_RUNOUT_SUPPORT
  2969. SET_INPUT(FR_SENS);
  2970. #endif
  2971. #ifdef CMDBUFFER_DEBUG
  2972. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2973. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2974. SERIAL_ECHOLNPGM("");
  2975. SERIAL_ECHOPGM("In cmdqueue: ");
  2976. SERIAL_ECHO(buflen);
  2977. SERIAL_ECHOLNPGM("");
  2978. #endif /* CMDBUFFER_DEBUG */
  2979. unsigned long codenum; //throw away variable
  2980. char *starpos = NULL;
  2981. #ifdef ENABLE_AUTO_BED_LEVELING
  2982. float x_tmp, y_tmp, z_tmp, real_z;
  2983. #endif
  2984. // PRUSA GCODES
  2985. KEEPALIVE_STATE(IN_HANDLER);
  2986. #ifdef SNMM
  2987. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2988. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2989. int8_t SilentMode;
  2990. #endif
  2991. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2992. starpos = (strchr(strchr_pointer + 5, '*'));
  2993. if (starpos != NULL)
  2994. *(starpos) = '\0';
  2995. lcd_setstatus(strchr_pointer + 5);
  2996. }
  2997. #ifdef TMC2130
  2998. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2999. {
  3000. if(code_seen("CRASH_DETECTED")) //! CRASH_DETECTED
  3001. {
  3002. uint8_t mask = 0;
  3003. if (code_seen('X')) mask |= X_AXIS_MASK;
  3004. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3005. crashdet_detected(mask);
  3006. }
  3007. else if(code_seen("CRASH_RECOVER")) //! CRASH_RECOVER
  3008. crashdet_recover();
  3009. else if(code_seen("CRASH_CANCEL")) //! CRASH_CANCEL
  3010. crashdet_cancel();
  3011. }
  3012. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3013. {
  3014. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0) //! TMC_SET_WAVE_
  3015. {
  3016. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3017. axis = (axis == 'E')?3:(axis - 'X');
  3018. if (axis < 4)
  3019. {
  3020. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3021. tmc2130_set_wave(axis, 247, fac);
  3022. }
  3023. }
  3024. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0) //! TMC_SET_STEP_
  3025. {
  3026. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3027. axis = (axis == 'E')?3:(axis - 'X');
  3028. if (axis < 4)
  3029. {
  3030. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3031. uint16_t res = tmc2130_get_res(axis);
  3032. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3033. }
  3034. }
  3035. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0) //! TMC_SET_CHOP_
  3036. {
  3037. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3038. axis = (axis == 'E')?3:(axis - 'X');
  3039. if (axis < 4)
  3040. {
  3041. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3042. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3043. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3044. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3045. char* str_end = 0;
  3046. if (CMDBUFFER_CURRENT_STRING[14])
  3047. {
  3048. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3049. if (str_end && *str_end)
  3050. {
  3051. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3052. if (str_end && *str_end)
  3053. {
  3054. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3055. if (str_end && *str_end)
  3056. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3057. }
  3058. }
  3059. }
  3060. tmc2130_chopper_config[axis].toff = chop0;
  3061. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3062. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3063. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3064. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3065. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3066. }
  3067. }
  3068. }
  3069. #ifdef BACKLASH_X
  3070. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3071. {
  3072. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3073. st_backlash_x = bl;
  3074. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3075. }
  3076. #endif //BACKLASH_X
  3077. #ifdef BACKLASH_Y
  3078. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3079. {
  3080. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3081. st_backlash_y = bl;
  3082. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3083. }
  3084. #endif //BACKLASH_Y
  3085. #endif //TMC2130
  3086. else if(code_seen("PRUSA")){
  3087. if (code_seen("Ping")) { //! PRUSA Ping
  3088. if (farm_mode) {
  3089. PingTime = _millis();
  3090. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3091. }
  3092. }
  3093. else if (code_seen("PRN")) { //! PRUSA PRN
  3094. printf_P(_N("%d"), status_number);
  3095. }else if (code_seen("FAN")) { //! PRUSA FAN
  3096. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3097. }else if (code_seen("fn")) { //! PRUSA fn
  3098. if (farm_mode) {
  3099. printf_P(_N("%d"), farm_no);
  3100. }
  3101. else {
  3102. puts_P(_N("Not in farm mode."));
  3103. }
  3104. }
  3105. else if (code_seen("thx")) //! PRUSA thx
  3106. {
  3107. no_response = false;
  3108. }
  3109. else if (code_seen("uvlo")) //! PRUSA uvlo
  3110. {
  3111. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3112. enquecommand_P(PSTR("M24"));
  3113. }
  3114. #ifdef FILAMENT_SENSOR
  3115. else if (code_seen("fsensor_recover")) //! PRUSA fsensor_recover
  3116. {
  3117. fsensor_restore_print_and_continue();
  3118. }
  3119. #endif //FILAMENT_SENSOR
  3120. else if (code_seen("MMURES")) //! PRUSA MMURES
  3121. {
  3122. mmu_reset();
  3123. }
  3124. else if (code_seen("RESET")) { //! PRUSA RESET
  3125. // careful!
  3126. if (farm_mode) {
  3127. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3128. boot_app_magic = BOOT_APP_MAGIC;
  3129. boot_app_flags = BOOT_APP_FLG_RUN;
  3130. wdt_enable(WDTO_15MS);
  3131. cli();
  3132. while(1);
  3133. #else //WATCHDOG
  3134. asm volatile("jmp 0x3E000");
  3135. #endif //WATCHDOG
  3136. }
  3137. else {
  3138. MYSERIAL.println("Not in farm mode.");
  3139. }
  3140. }else if (code_seen("fv")) { //! PRUSA fv
  3141. // get file version
  3142. #ifdef SDSUPPORT
  3143. card.openFile(strchr_pointer + 3,true);
  3144. while (true) {
  3145. uint16_t readByte = card.get();
  3146. MYSERIAL.write(readByte);
  3147. if (readByte=='\n') {
  3148. break;
  3149. }
  3150. }
  3151. card.closefile();
  3152. #endif // SDSUPPORT
  3153. } else if (code_seen("M28")) { //! PRUSA M28
  3154. trace();
  3155. prusa_sd_card_upload = true;
  3156. card.openFile(strchr_pointer+4,false);
  3157. } else if (code_seen("SN")) { //! PRUSA SN
  3158. gcode_PRUSA_SN();
  3159. } else if(code_seen("Fir")){ //! PRUSA Fir
  3160. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3161. } else if(code_seen("Rev")){ //! PRUSA Rev
  3162. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3163. } else if(code_seen("Lang")) { //! PRUSA Lang
  3164. lang_reset();
  3165. } else if(code_seen("Lz")) { //! PRUSA Lz
  3166. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  3167. } else if(code_seen("Beat")) { //! PRUSA Beat
  3168. // Kick farm link timer
  3169. kicktime = _millis();
  3170. } else if(code_seen("FR")) { //! PRUSA FR
  3171. // Factory full reset
  3172. factory_reset(0);
  3173. //-//
  3174. /*
  3175. } else if(code_seen("qqq")) {
  3176. MYSERIAL.println("=== checking ===");
  3177. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3178. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3179. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3180. MYSERIAL.println(farm_mode,DEC);
  3181. MYSERIAL.println(eCheckMode,DEC);
  3182. } else if(code_seen("www")) {
  3183. MYSERIAL.println("=== @ FF ===");
  3184. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3185. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3186. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3187. */
  3188. } else if (code_seen("nozzle")) { //! PRUSA nozzle
  3189. uint16_t nDiameter;
  3190. if(code_seen('D'))
  3191. {
  3192. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3193. nozzle_diameter_check(nDiameter);
  3194. }
  3195. else if(code_seen("set") && farm_mode)
  3196. {
  3197. strchr_pointer++; // skip 2nd char (~ 'e')
  3198. strchr_pointer++; // skip 3rd char (~ 't')
  3199. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3200. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)e_NOZZLE_DIAMETER_NULL); // for correct synchronization after farm-mode exiting
  3201. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3202. }
  3203. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3204. }
  3205. //else if (code_seen('Cal')) {
  3206. // lcd_calibration();
  3207. // }
  3208. }
  3209. else if (code_seen('^')) {
  3210. // nothing, this is a version line
  3211. } else if(code_seen('G'))
  3212. {
  3213. gcode_in_progress = (int)code_value();
  3214. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3215. switch (gcode_in_progress)
  3216. {
  3217. case 0: // G0 -> G1
  3218. case 1: // G1
  3219. if(Stopped == false) {
  3220. #ifdef FILAMENT_RUNOUT_SUPPORT
  3221. if(READ(FR_SENS)){
  3222. int feedmultiplyBckp=feedmultiply;
  3223. float target[4];
  3224. float lastpos[4];
  3225. target[X_AXIS]=current_position[X_AXIS];
  3226. target[Y_AXIS]=current_position[Y_AXIS];
  3227. target[Z_AXIS]=current_position[Z_AXIS];
  3228. target[E_AXIS]=current_position[E_AXIS];
  3229. lastpos[X_AXIS]=current_position[X_AXIS];
  3230. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3231. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3232. lastpos[E_AXIS]=current_position[E_AXIS];
  3233. //retract by E
  3234. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3235. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3236. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3237. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3238. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3239. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3240. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3241. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3242. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3243. //finish moves
  3244. st_synchronize();
  3245. //disable extruder steppers so filament can be removed
  3246. disable_e0();
  3247. disable_e1();
  3248. disable_e2();
  3249. _delay(100);
  3250. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3251. uint8_t cnt=0;
  3252. int counterBeep = 0;
  3253. lcd_wait_interact();
  3254. while(!lcd_clicked()){
  3255. cnt++;
  3256. manage_heater();
  3257. manage_inactivity(true);
  3258. //lcd_update(0);
  3259. if(cnt==0)
  3260. {
  3261. #if BEEPER > 0
  3262. if (counterBeep== 500){
  3263. counterBeep = 0;
  3264. }
  3265. SET_OUTPUT(BEEPER);
  3266. if (counterBeep== 0){
  3267. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  3268. WRITE(BEEPER,HIGH);
  3269. }
  3270. if (counterBeep== 20){
  3271. WRITE(BEEPER,LOW);
  3272. }
  3273. counterBeep++;
  3274. #else
  3275. #endif
  3276. }
  3277. }
  3278. WRITE(BEEPER,LOW);
  3279. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3280. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3281. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3282. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3283. lcd_change_fil_state = 0;
  3284. lcd_loading_filament();
  3285. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3286. lcd_change_fil_state = 0;
  3287. lcd_alright();
  3288. switch(lcd_change_fil_state){
  3289. case 2:
  3290. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3291. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3292. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3293. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3294. lcd_loading_filament();
  3295. break;
  3296. case 3:
  3297. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3298. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3299. lcd_loading_color();
  3300. break;
  3301. default:
  3302. lcd_change_success();
  3303. break;
  3304. }
  3305. }
  3306. target[E_AXIS]+= 5;
  3307. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3308. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3309. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3310. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3311. //plan_set_e_position(current_position[E_AXIS]);
  3312. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3313. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3314. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3315. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3316. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3317. plan_set_e_position(lastpos[E_AXIS]);
  3318. feedmultiply=feedmultiplyBckp;
  3319. char cmd[9];
  3320. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3321. enquecommand(cmd);
  3322. }
  3323. #endif
  3324. get_coordinates(); // For X Y Z E F
  3325. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3326. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3327. }
  3328. #ifdef FWRETRACT
  3329. if(cs.autoretract_enabled)
  3330. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3331. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3332. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3333. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3334. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3335. retract(!retracted[active_extruder]);
  3336. return;
  3337. }
  3338. }
  3339. #endif //FWRETRACT
  3340. prepare_move();
  3341. //ClearToSend();
  3342. }
  3343. break;
  3344. case 2: // G2 - CW ARC
  3345. if(Stopped == false) {
  3346. get_arc_coordinates();
  3347. prepare_arc_move(true);
  3348. }
  3349. break;
  3350. case 3: // G3 - CCW ARC
  3351. if(Stopped == false) {
  3352. get_arc_coordinates();
  3353. prepare_arc_move(false);
  3354. }
  3355. break;
  3356. case 4: // G4 dwell
  3357. codenum = 0;
  3358. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3359. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3360. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3361. st_synchronize();
  3362. codenum += _millis(); // keep track of when we started waiting
  3363. previous_millis_cmd = _millis();
  3364. while(_millis() < codenum) {
  3365. manage_heater();
  3366. manage_inactivity();
  3367. lcd_update(0);
  3368. }
  3369. break;
  3370. #ifdef FWRETRACT
  3371. case 10: // G10 retract
  3372. #if EXTRUDERS > 1
  3373. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3374. retract(true,retracted_swap[active_extruder]);
  3375. #else
  3376. retract(true);
  3377. #endif
  3378. break;
  3379. case 11: // G11 retract_recover
  3380. #if EXTRUDERS > 1
  3381. retract(false,retracted_swap[active_extruder]);
  3382. #else
  3383. retract(false);
  3384. #endif
  3385. break;
  3386. #endif //FWRETRACT
  3387. case 28: //G28 Home all Axis one at a time
  3388. {
  3389. long home_x_value = 0;
  3390. long home_y_value = 0;
  3391. long home_z_value = 0;
  3392. // Which axes should be homed?
  3393. bool home_x = code_seen(axis_codes[X_AXIS]);
  3394. home_x_value = code_value_long();
  3395. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3396. home_y_value = code_value_long();
  3397. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3398. home_z_value = code_value_long();
  3399. bool without_mbl = code_seen('W');
  3400. // calibrate?
  3401. #ifdef TMC2130
  3402. bool calib = code_seen('C');
  3403. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3404. #else
  3405. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3406. #endif //TMC2130
  3407. if ((home_x || home_y || without_mbl || home_z) == false) {
  3408. // Push the commands to the front of the message queue in the reverse order!
  3409. // There shall be always enough space reserved for these commands.
  3410. goto case_G80;
  3411. }
  3412. break;
  3413. }
  3414. #ifdef ENABLE_AUTO_BED_LEVELING
  3415. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3416. {
  3417. #if Z_MIN_PIN == -1
  3418. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3419. #endif
  3420. // Prevent user from running a G29 without first homing in X and Y
  3421. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3422. {
  3423. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3424. SERIAL_ECHO_START;
  3425. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3426. break; // abort G29, since we don't know where we are
  3427. }
  3428. st_synchronize();
  3429. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3430. //vector_3 corrected_position = plan_get_position_mm();
  3431. //corrected_position.debug("position before G29");
  3432. plan_bed_level_matrix.set_to_identity();
  3433. vector_3 uncorrected_position = plan_get_position();
  3434. //uncorrected_position.debug("position durring G29");
  3435. current_position[X_AXIS] = uncorrected_position.x;
  3436. current_position[Y_AXIS] = uncorrected_position.y;
  3437. current_position[Z_AXIS] = uncorrected_position.z;
  3438. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3439. int l_feedmultiply = setup_for_endstop_move();
  3440. feedrate = homing_feedrate[Z_AXIS];
  3441. #ifdef AUTO_BED_LEVELING_GRID
  3442. // probe at the points of a lattice grid
  3443. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3444. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3445. // solve the plane equation ax + by + d = z
  3446. // A is the matrix with rows [x y 1] for all the probed points
  3447. // B is the vector of the Z positions
  3448. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3449. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3450. // "A" matrix of the linear system of equations
  3451. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3452. // "B" vector of Z points
  3453. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3454. int probePointCounter = 0;
  3455. bool zig = true;
  3456. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3457. {
  3458. int xProbe, xInc;
  3459. if (zig)
  3460. {
  3461. xProbe = LEFT_PROBE_BED_POSITION;
  3462. //xEnd = RIGHT_PROBE_BED_POSITION;
  3463. xInc = xGridSpacing;
  3464. zig = false;
  3465. } else // zag
  3466. {
  3467. xProbe = RIGHT_PROBE_BED_POSITION;
  3468. //xEnd = LEFT_PROBE_BED_POSITION;
  3469. xInc = -xGridSpacing;
  3470. zig = true;
  3471. }
  3472. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3473. {
  3474. float z_before;
  3475. if (probePointCounter == 0)
  3476. {
  3477. // raise before probing
  3478. z_before = Z_RAISE_BEFORE_PROBING;
  3479. } else
  3480. {
  3481. // raise extruder
  3482. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3483. }
  3484. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3485. eqnBVector[probePointCounter] = measured_z;
  3486. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3487. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3488. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3489. probePointCounter++;
  3490. xProbe += xInc;
  3491. }
  3492. }
  3493. clean_up_after_endstop_move(l_feedmultiply);
  3494. // solve lsq problem
  3495. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3496. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3497. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3498. SERIAL_PROTOCOLPGM(" b: ");
  3499. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3500. SERIAL_PROTOCOLPGM(" d: ");
  3501. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3502. set_bed_level_equation_lsq(plane_equation_coefficients);
  3503. free(plane_equation_coefficients);
  3504. #else // AUTO_BED_LEVELING_GRID not defined
  3505. // Probe at 3 arbitrary points
  3506. // probe 1
  3507. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3508. // probe 2
  3509. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3510. // probe 3
  3511. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3512. clean_up_after_endstop_move(l_feedmultiply);
  3513. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3514. #endif // AUTO_BED_LEVELING_GRID
  3515. st_synchronize();
  3516. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3517. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3518. // When the bed is uneven, this height must be corrected.
  3519. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3520. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3521. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3522. z_tmp = current_position[Z_AXIS];
  3523. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3524. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3525. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3526. }
  3527. break;
  3528. #ifndef Z_PROBE_SLED
  3529. case 30: // G30 Single Z Probe
  3530. {
  3531. st_synchronize();
  3532. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3533. int l_feedmultiply = setup_for_endstop_move();
  3534. feedrate = homing_feedrate[Z_AXIS];
  3535. run_z_probe();
  3536. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3537. SERIAL_PROTOCOLPGM(" X: ");
  3538. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3539. SERIAL_PROTOCOLPGM(" Y: ");
  3540. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3541. SERIAL_PROTOCOLPGM(" Z: ");
  3542. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3543. SERIAL_PROTOCOLPGM("\n");
  3544. clean_up_after_endstop_move(l_feedmultiply);
  3545. }
  3546. break;
  3547. #else
  3548. case 31: // dock the sled
  3549. dock_sled(true);
  3550. break;
  3551. case 32: // undock the sled
  3552. dock_sled(false);
  3553. break;
  3554. #endif // Z_PROBE_SLED
  3555. #endif // ENABLE_AUTO_BED_LEVELING
  3556. #ifdef MESH_BED_LEVELING
  3557. case 30: // G30 Single Z Probe
  3558. {
  3559. st_synchronize();
  3560. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3561. int l_feedmultiply = setup_for_endstop_move();
  3562. feedrate = homing_feedrate[Z_AXIS];
  3563. find_bed_induction_sensor_point_z(-10.f, 3);
  3564. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3565. clean_up_after_endstop_move(l_feedmultiply);
  3566. }
  3567. break;
  3568. case 75:
  3569. {
  3570. for (int i = 40; i <= 110; i++)
  3571. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3572. }
  3573. break;
  3574. case 76: //! G76 - PINDA probe temperature calibration
  3575. {
  3576. #ifdef PINDA_THERMISTOR
  3577. if (true)
  3578. {
  3579. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3580. //we need to know accurate position of first calibration point
  3581. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3582. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3583. break;
  3584. }
  3585. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3586. {
  3587. // We don't know where we are! HOME!
  3588. // Push the commands to the front of the message queue in the reverse order!
  3589. // There shall be always enough space reserved for these commands.
  3590. repeatcommand_front(); // repeat G76 with all its parameters
  3591. enquecommand_front_P((PSTR("G28 W0")));
  3592. break;
  3593. }
  3594. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3595. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3596. if (result)
  3597. {
  3598. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3600. current_position[Z_AXIS] = 50;
  3601. current_position[Y_AXIS] = 180;
  3602. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3603. st_synchronize();
  3604. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3605. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3606. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3608. st_synchronize();
  3609. gcode_G28(false, false, true);
  3610. }
  3611. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3612. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3613. current_position[Z_AXIS] = 100;
  3614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3615. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3616. lcd_temp_cal_show_result(false);
  3617. break;
  3618. }
  3619. }
  3620. lcd_update_enable(true);
  3621. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3622. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3623. float zero_z;
  3624. int z_shift = 0; //unit: steps
  3625. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3626. if (start_temp < 35) start_temp = 35;
  3627. if (start_temp < current_temperature_pinda) start_temp += 5;
  3628. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3629. // setTargetHotend(200, 0);
  3630. setTargetBed(70 + (start_temp - 30));
  3631. custom_message_type = CustomMsg::TempCal;
  3632. custom_message_state = 1;
  3633. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3634. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3635. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3636. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3637. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3638. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3639. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3641. st_synchronize();
  3642. while (current_temperature_pinda < start_temp)
  3643. {
  3644. delay_keep_alive(1000);
  3645. serialecho_temperatures();
  3646. }
  3647. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3648. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3649. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3650. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3651. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3652. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3653. st_synchronize();
  3654. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3655. if (find_z_result == false) {
  3656. lcd_temp_cal_show_result(find_z_result);
  3657. break;
  3658. }
  3659. zero_z = current_position[Z_AXIS];
  3660. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3661. int i = -1; for (; i < 5; i++)
  3662. {
  3663. float temp = (40 + i * 5);
  3664. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3665. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3666. if (start_temp <= temp) break;
  3667. }
  3668. for (i++; i < 5; i++)
  3669. {
  3670. float temp = (40 + i * 5);
  3671. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3672. custom_message_state = i + 2;
  3673. setTargetBed(50 + 10 * (temp - 30) / 5);
  3674. // setTargetHotend(255, 0);
  3675. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3677. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3678. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3679. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3680. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3681. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3682. st_synchronize();
  3683. while (current_temperature_pinda < temp)
  3684. {
  3685. delay_keep_alive(1000);
  3686. serialecho_temperatures();
  3687. }
  3688. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3689. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3690. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3691. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3693. st_synchronize();
  3694. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3695. if (find_z_result == false) {
  3696. lcd_temp_cal_show_result(find_z_result);
  3697. break;
  3698. }
  3699. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3700. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3701. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3702. }
  3703. lcd_temp_cal_show_result(true);
  3704. break;
  3705. }
  3706. #endif //PINDA_THERMISTOR
  3707. setTargetBed(PINDA_MIN_T);
  3708. float zero_z;
  3709. int z_shift = 0; //unit: steps
  3710. int t_c; // temperature
  3711. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3712. // We don't know where we are! HOME!
  3713. // Push the commands to the front of the message queue in the reverse order!
  3714. // There shall be always enough space reserved for these commands.
  3715. repeatcommand_front(); // repeat G76 with all its parameters
  3716. enquecommand_front_P((PSTR("G28 W0")));
  3717. break;
  3718. }
  3719. puts_P(_N("PINDA probe calibration start"));
  3720. custom_message_type = CustomMsg::TempCal;
  3721. custom_message_state = 1;
  3722. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3723. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3724. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3725. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3726. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3727. st_synchronize();
  3728. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3729. delay_keep_alive(1000);
  3730. serialecho_temperatures();
  3731. }
  3732. //enquecommand_P(PSTR("M190 S50"));
  3733. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3734. delay_keep_alive(1000);
  3735. serialecho_temperatures();
  3736. }
  3737. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3738. current_position[Z_AXIS] = 5;
  3739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3740. current_position[X_AXIS] = BED_X0;
  3741. current_position[Y_AXIS] = BED_Y0;
  3742. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3743. st_synchronize();
  3744. find_bed_induction_sensor_point_z(-1.f);
  3745. zero_z = current_position[Z_AXIS];
  3746. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3747. for (int i = 0; i<5; i++) {
  3748. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3749. custom_message_state = i + 2;
  3750. t_c = 60 + i * 10;
  3751. setTargetBed(t_c);
  3752. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3753. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3754. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3756. st_synchronize();
  3757. while (degBed() < t_c) {
  3758. delay_keep_alive(1000);
  3759. serialecho_temperatures();
  3760. }
  3761. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3762. delay_keep_alive(1000);
  3763. serialecho_temperatures();
  3764. }
  3765. current_position[Z_AXIS] = 5;
  3766. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3767. current_position[X_AXIS] = BED_X0;
  3768. current_position[Y_AXIS] = BED_Y0;
  3769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3770. st_synchronize();
  3771. find_bed_induction_sensor_point_z(-1.f);
  3772. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  3773. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3774. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3775. }
  3776. custom_message_type = CustomMsg::Status;
  3777. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3778. puts_P(_N("Temperature calibration done."));
  3779. disable_x();
  3780. disable_y();
  3781. disable_z();
  3782. disable_e0();
  3783. disable_e1();
  3784. disable_e2();
  3785. setTargetBed(0); //set bed target temperature back to 0
  3786. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3787. temp_cal_active = true;
  3788. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3789. lcd_update_enable(true);
  3790. lcd_update(2);
  3791. }
  3792. break;
  3793. /**
  3794. * G80: Mesh-based Z probe, probes a grid and produces a
  3795. * mesh to compensate for variable bed height
  3796. *
  3797. * The S0 report the points as below
  3798. * @code{.unparsed}
  3799. * +----> X-axis
  3800. * |
  3801. * |
  3802. * v Y-axis
  3803. * @endcode
  3804. */
  3805. case 80:
  3806. #ifdef MK1BP
  3807. break;
  3808. #endif //MK1BP
  3809. case_G80:
  3810. {
  3811. mesh_bed_leveling_flag = true;
  3812. static bool run = false;
  3813. #ifdef SUPPORT_VERBOSITY
  3814. int8_t verbosity_level = 0;
  3815. if (code_seen('V')) {
  3816. // Just 'V' without a number counts as V1.
  3817. char c = strchr_pointer[1];
  3818. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3819. }
  3820. #endif //SUPPORT_VERBOSITY
  3821. // Firstly check if we know where we are
  3822. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3823. // We don't know where we are! HOME!
  3824. // Push the commands to the front of the message queue in the reverse order!
  3825. // There shall be always enough space reserved for these commands.
  3826. if (lcd_commands_type != LcdCommands::StopPrint) {
  3827. repeatcommand_front(); // repeat G80 with all its parameters
  3828. enquecommand_front_P((PSTR("G28 W0")));
  3829. }
  3830. else {
  3831. mesh_bed_leveling_flag = false;
  3832. }
  3833. break;
  3834. }
  3835. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  3836. if (code_seen('N')) {
  3837. nMeasPoints = code_value_uint8();
  3838. if (nMeasPoints != 7) {
  3839. nMeasPoints = 3;
  3840. }
  3841. }
  3842. else {
  3843. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  3844. }
  3845. uint8_t nProbeRetry = 3;
  3846. if (code_seen('R')) {
  3847. nProbeRetry = code_value_uint8();
  3848. if (nProbeRetry > 10) {
  3849. nProbeRetry = 10;
  3850. }
  3851. }
  3852. else {
  3853. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  3854. }
  3855. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  3856. bool temp_comp_start = true;
  3857. #ifdef PINDA_THERMISTOR
  3858. temp_comp_start = false;
  3859. #endif //PINDA_THERMISTOR
  3860. if (temp_comp_start)
  3861. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3862. if (lcd_commands_type != LcdCommands::StopPrint) {
  3863. temp_compensation_start();
  3864. run = true;
  3865. repeatcommand_front(); // repeat G80 with all its parameters
  3866. enquecommand_front_P((PSTR("G28 W0")));
  3867. }
  3868. else {
  3869. mesh_bed_leveling_flag = false;
  3870. }
  3871. break;
  3872. }
  3873. run = false;
  3874. if (lcd_commands_type == LcdCommands::StopPrint) {
  3875. mesh_bed_leveling_flag = false;
  3876. break;
  3877. }
  3878. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3879. CustomMsg custom_message_type_old = custom_message_type;
  3880. unsigned int custom_message_state_old = custom_message_state;
  3881. custom_message_type = CustomMsg::MeshBedLeveling;
  3882. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  3883. lcd_update(1);
  3884. mbl.reset(); //reset mesh bed leveling
  3885. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3886. // consumed during the first movements following this statement.
  3887. babystep_undo();
  3888. // Cycle through all points and probe them
  3889. // First move up. During this first movement, the babystepping will be reverted.
  3890. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3891. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3892. // The move to the first calibration point.
  3893. current_position[X_AXIS] = BED_X0;
  3894. current_position[Y_AXIS] = BED_Y0;
  3895. #ifdef SUPPORT_VERBOSITY
  3896. if (verbosity_level >= 1)
  3897. {
  3898. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3899. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3900. }
  3901. #else //SUPPORT_VERBOSITY
  3902. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3903. #endif //SUPPORT_VERBOSITY
  3904. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3905. // Wait until the move is finished.
  3906. st_synchronize();
  3907. uint8_t mesh_point = 0; //index number of calibration point
  3908. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3909. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3910. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3911. #ifdef SUPPORT_VERBOSITY
  3912. if (verbosity_level >= 1) {
  3913. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3914. }
  3915. #endif // SUPPORT_VERBOSITY
  3916. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3917. const char *kill_message = NULL;
  3918. while (mesh_point != nMeasPoints * nMeasPoints) {
  3919. // Get coords of a measuring point.
  3920. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  3921. uint8_t iy = mesh_point / nMeasPoints;
  3922. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  3923. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  3924. custom_message_state--;
  3925. mesh_point++;
  3926. continue; //skip
  3927. }*/
  3928. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  3929. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  3930. {
  3931. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  3932. }
  3933. float z0 = 0.f;
  3934. if (has_z && (mesh_point > 0)) {
  3935. uint16_t z_offset_u = 0;
  3936. if (nMeasPoints == 7) {
  3937. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  3938. }
  3939. else {
  3940. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3941. }
  3942. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3943. #ifdef SUPPORT_VERBOSITY
  3944. if (verbosity_level >= 1) {
  3945. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  3946. }
  3947. #endif // SUPPORT_VERBOSITY
  3948. }
  3949. // Move Z up to MESH_HOME_Z_SEARCH.
  3950. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3951. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  3952. float init_z_bckp = current_position[Z_AXIS];
  3953. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3954. st_synchronize();
  3955. // Move to XY position of the sensor point.
  3956. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  3957. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  3958. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3959. #ifdef SUPPORT_VERBOSITY
  3960. if (verbosity_level >= 1) {
  3961. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3962. SERIAL_PROTOCOL(mesh_point);
  3963. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3964. }
  3965. #else //SUPPORT_VERBOSITY
  3966. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3967. #endif // SUPPORT_VERBOSITY
  3968. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  3969. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3970. st_synchronize();
  3971. // Go down until endstop is hit
  3972. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3973. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3974. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3975. break;
  3976. }
  3977. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  3978. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  3979. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3981. st_synchronize();
  3982. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3983. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  3984. break;
  3985. }
  3986. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3987. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  3988. break;
  3989. }
  3990. }
  3991. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3992. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  3993. break;
  3994. }
  3995. #ifdef SUPPORT_VERBOSITY
  3996. if (verbosity_level >= 10) {
  3997. SERIAL_ECHOPGM("X: ");
  3998. MYSERIAL.print(current_position[X_AXIS], 5);
  3999. SERIAL_ECHOLNPGM("");
  4000. SERIAL_ECHOPGM("Y: ");
  4001. MYSERIAL.print(current_position[Y_AXIS], 5);
  4002. SERIAL_PROTOCOLPGM("\n");
  4003. }
  4004. #endif // SUPPORT_VERBOSITY
  4005. float offset_z = 0;
  4006. #ifdef PINDA_THERMISTOR
  4007. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4008. #endif //PINDA_THERMISTOR
  4009. // #ifdef SUPPORT_VERBOSITY
  4010. /* if (verbosity_level >= 1)
  4011. {
  4012. SERIAL_ECHOPGM("mesh bed leveling: ");
  4013. MYSERIAL.print(current_position[Z_AXIS], 5);
  4014. SERIAL_ECHOPGM(" offset: ");
  4015. MYSERIAL.print(offset_z, 5);
  4016. SERIAL_ECHOLNPGM("");
  4017. }*/
  4018. // #endif // SUPPORT_VERBOSITY
  4019. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4020. custom_message_state--;
  4021. mesh_point++;
  4022. lcd_update(1);
  4023. }
  4024. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4025. #ifdef SUPPORT_VERBOSITY
  4026. if (verbosity_level >= 20) {
  4027. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4028. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4029. MYSERIAL.print(current_position[Z_AXIS], 5);
  4030. }
  4031. #endif // SUPPORT_VERBOSITY
  4032. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  4033. st_synchronize();
  4034. if (mesh_point != nMeasPoints * nMeasPoints) {
  4035. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4036. bool bState;
  4037. do { // repeat until Z-leveling o.k.
  4038. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4039. #ifdef TMC2130
  4040. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4041. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4042. #else // TMC2130
  4043. lcd_wait_for_click_delay(0); // ~ no timeout
  4044. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4045. #endif // TMC2130
  4046. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4047. bState=enable_z_endstop(false);
  4048. current_position[Z_AXIS] -= 1;
  4049. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4050. st_synchronize();
  4051. enable_z_endstop(true);
  4052. #ifdef TMC2130
  4053. tmc2130_home_enter(Z_AXIS_MASK);
  4054. #endif // TMC2130
  4055. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4056. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  4057. st_synchronize();
  4058. #ifdef TMC2130
  4059. tmc2130_home_exit();
  4060. #endif // TMC2130
  4061. enable_z_endstop(bState);
  4062. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4063. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4064. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4065. lcd_update_enable(true); // display / status-line recovery
  4066. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4067. repeatcommand_front(); // re-run (i.e. of "G80")
  4068. break;
  4069. }
  4070. clean_up_after_endstop_move(l_feedmultiply);
  4071. // SERIAL_ECHOLNPGM("clean up finished ");
  4072. bool apply_temp_comp = true;
  4073. #ifdef PINDA_THERMISTOR
  4074. apply_temp_comp = false;
  4075. #endif
  4076. if (apply_temp_comp)
  4077. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4078. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4079. // SERIAL_ECHOLNPGM("babystep applied");
  4080. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4081. #ifdef SUPPORT_VERBOSITY
  4082. if (verbosity_level >= 1) {
  4083. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4084. }
  4085. #endif // SUPPORT_VERBOSITY
  4086. for (uint8_t i = 0; i < 4; ++i) {
  4087. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4088. long correction = 0;
  4089. if (code_seen(codes[i]))
  4090. correction = code_value_long();
  4091. else if (eeprom_bed_correction_valid) {
  4092. unsigned char *addr = (i < 2) ?
  4093. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4094. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4095. correction = eeprom_read_int8(addr);
  4096. }
  4097. if (correction == 0)
  4098. continue;
  4099. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4100. SERIAL_ERROR_START;
  4101. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4102. SERIAL_ECHO(correction);
  4103. SERIAL_ECHOLNPGM(" microns");
  4104. }
  4105. else {
  4106. float offset = float(correction) * 0.001f;
  4107. switch (i) {
  4108. case 0:
  4109. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4110. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4111. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4112. }
  4113. }
  4114. break;
  4115. case 1:
  4116. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4117. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4118. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4119. }
  4120. }
  4121. break;
  4122. case 2:
  4123. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4124. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4125. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4126. }
  4127. }
  4128. break;
  4129. case 3:
  4130. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4131. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4132. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4133. }
  4134. }
  4135. break;
  4136. }
  4137. }
  4138. }
  4139. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4140. if (nMeasPoints == 3) {
  4141. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4142. }
  4143. /*
  4144. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4145. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4146. SERIAL_PROTOCOLPGM(",");
  4147. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4148. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4149. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4150. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4151. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4152. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4153. SERIAL_PROTOCOLPGM(" ");
  4154. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4155. }
  4156. SERIAL_PROTOCOLPGM("\n");
  4157. }
  4158. */
  4159. if (nMeasPoints == 7 && magnet_elimination) {
  4160. mbl_interpolation(nMeasPoints);
  4161. }
  4162. /*
  4163. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4164. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4165. SERIAL_PROTOCOLPGM(",");
  4166. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4167. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4168. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4169. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4170. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4171. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4172. SERIAL_PROTOCOLPGM(" ");
  4173. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4174. }
  4175. SERIAL_PROTOCOLPGM("\n");
  4176. }
  4177. */
  4178. // SERIAL_ECHOLNPGM("Upsample finished");
  4179. mbl.active = 1; //activate mesh bed leveling
  4180. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4181. go_home_with_z_lift();
  4182. // SERIAL_ECHOLNPGM("Go home finished");
  4183. //unretract (after PINDA preheat retraction)
  4184. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4185. current_position[E_AXIS] += default_retraction;
  4186. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  4187. }
  4188. KEEPALIVE_STATE(NOT_BUSY);
  4189. // Restore custom message state
  4190. lcd_setstatuspgm(_T(WELCOME_MSG));
  4191. custom_message_type = custom_message_type_old;
  4192. custom_message_state = custom_message_state_old;
  4193. mesh_bed_leveling_flag = false;
  4194. mesh_bed_run_from_menu = false;
  4195. lcd_update(2);
  4196. }
  4197. break;
  4198. /**
  4199. * G81: Print mesh bed leveling status and bed profile if activated
  4200. */
  4201. case 81:
  4202. if (mbl.active) {
  4203. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4204. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4205. SERIAL_PROTOCOLPGM(",");
  4206. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4207. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4208. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4209. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4210. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4211. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4212. SERIAL_PROTOCOLPGM(" ");
  4213. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4214. }
  4215. SERIAL_PROTOCOLPGM("\n");
  4216. }
  4217. }
  4218. else
  4219. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4220. break;
  4221. #if 0
  4222. /**
  4223. * G82: Single Z probe at current location
  4224. *
  4225. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4226. *
  4227. */
  4228. case 82:
  4229. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4230. int l_feedmultiply = setup_for_endstop_move();
  4231. find_bed_induction_sensor_point_z();
  4232. clean_up_after_endstop_move(l_feedmultiply);
  4233. SERIAL_PROTOCOLPGM("Bed found at: ");
  4234. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4235. SERIAL_PROTOCOLPGM("\n");
  4236. break;
  4237. /**
  4238. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  4239. */
  4240. case 83:
  4241. {
  4242. int babystepz = code_seen('S') ? code_value() : 0;
  4243. int BabyPosition = code_seen('P') ? code_value() : 0;
  4244. if (babystepz != 0) {
  4245. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4246. // Is the axis indexed starting with zero or one?
  4247. if (BabyPosition > 4) {
  4248. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4249. }else{
  4250. // Save it to the eeprom
  4251. babystepLoadZ = babystepz;
  4252. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4253. // adjust the Z
  4254. babystepsTodoZadd(babystepLoadZ);
  4255. }
  4256. }
  4257. }
  4258. break;
  4259. /**
  4260. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  4261. */
  4262. case 84:
  4263. babystepsTodoZsubtract(babystepLoadZ);
  4264. // babystepLoadZ = 0;
  4265. break;
  4266. /**
  4267. * G85: Prusa3D specific: Pick best babystep
  4268. */
  4269. case 85:
  4270. lcd_pick_babystep();
  4271. break;
  4272. #endif
  4273. /**
  4274. * G86: Prusa3D specific: Disable babystep correction after home.
  4275. * This G-code will be performed at the start of a calibration script.
  4276. */
  4277. case 86:
  4278. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4279. break;
  4280. /**
  4281. * G87: Prusa3D specific: Enable babystep correction after home
  4282. * This G-code will be performed at the end of a calibration script.
  4283. */
  4284. case 87:
  4285. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4286. break;
  4287. /**
  4288. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4289. */
  4290. case 88:
  4291. break;
  4292. #endif // ENABLE_MESH_BED_LEVELING
  4293. case 90: // G90
  4294. relative_mode = false;
  4295. break;
  4296. case 91: // G91
  4297. relative_mode = true;
  4298. break;
  4299. case 92: // G92
  4300. if(!code_seen(axis_codes[E_AXIS]))
  4301. st_synchronize();
  4302. for(int8_t i=0; i < NUM_AXIS; i++) {
  4303. if(code_seen(axis_codes[i])) {
  4304. if(i == E_AXIS) {
  4305. current_position[i] = code_value();
  4306. plan_set_e_position(current_position[E_AXIS]);
  4307. }
  4308. else {
  4309. current_position[i] = code_value()+cs.add_homing[i];
  4310. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4311. }
  4312. }
  4313. }
  4314. break;
  4315. case 98: //! G98 (activate farm mode)
  4316. farm_mode = 1;
  4317. PingTime = _millis();
  4318. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4319. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4320. SilentModeMenu = SILENT_MODE_OFF;
  4321. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4322. fCheckModeInit(); // alternatively invoke printer reset
  4323. break;
  4324. case 99: //! G99 (deactivate farm mode)
  4325. farm_mode = 0;
  4326. lcd_printer_connected();
  4327. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4328. lcd_update(2);
  4329. fCheckModeInit(); // alternatively invoke printer reset
  4330. break;
  4331. default:
  4332. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4333. }
  4334. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4335. gcode_in_progress = 0;
  4336. } // end if(code_seen('G'))
  4337. else if(code_seen('M'))
  4338. {
  4339. int index;
  4340. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4341. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4342. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4343. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4344. } else
  4345. {
  4346. mcode_in_progress = (int)code_value();
  4347. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4348. switch(mcode_in_progress)
  4349. {
  4350. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4351. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4352. {
  4353. char *src = strchr_pointer + 2;
  4354. codenum = 0;
  4355. bool hasP = false, hasS = false;
  4356. if (code_seen('P')) {
  4357. codenum = code_value(); // milliseconds to wait
  4358. hasP = codenum > 0;
  4359. }
  4360. if (code_seen('S')) {
  4361. codenum = code_value() * 1000; // seconds to wait
  4362. hasS = codenum > 0;
  4363. }
  4364. starpos = strchr(src, '*');
  4365. if (starpos != NULL) *(starpos) = '\0';
  4366. while (*src == ' ') ++src;
  4367. if (!hasP && !hasS && *src != '\0') {
  4368. lcd_setstatus(src);
  4369. } else {
  4370. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4371. }
  4372. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4373. st_synchronize();
  4374. previous_millis_cmd = _millis();
  4375. if (codenum > 0){
  4376. codenum += _millis(); // keep track of when we started waiting
  4377. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4378. while(_millis() < codenum && !lcd_clicked()){
  4379. manage_heater();
  4380. manage_inactivity(true);
  4381. lcd_update(0);
  4382. }
  4383. KEEPALIVE_STATE(IN_HANDLER);
  4384. lcd_ignore_click(false);
  4385. }else{
  4386. marlin_wait_for_click();
  4387. }
  4388. if (IS_SD_PRINTING)
  4389. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4390. else
  4391. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4392. }
  4393. break;
  4394. case 17:
  4395. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4396. enable_x();
  4397. enable_y();
  4398. enable_z();
  4399. enable_e0();
  4400. enable_e1();
  4401. enable_e2();
  4402. break;
  4403. #ifdef SDSUPPORT
  4404. case 20: // M20 - list SD card
  4405. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4406. card.ls();
  4407. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4408. break;
  4409. case 21: // M21 - init SD card
  4410. card.initsd();
  4411. break;
  4412. case 22: //M22 - release SD card
  4413. card.release();
  4414. break;
  4415. case 23: //M23 - Select file
  4416. starpos = (strchr(strchr_pointer + 4,'*'));
  4417. if(starpos!=NULL)
  4418. *(starpos)='\0';
  4419. card.openFile(strchr_pointer + 4,true);
  4420. break;
  4421. case 24: //M24 - Start SD print
  4422. if (!card.paused)
  4423. failstats_reset_print();
  4424. card.startFileprint();
  4425. starttime=_millis();
  4426. break;
  4427. case 25: //M25 - Pause SD print
  4428. card.pauseSDPrint();
  4429. break;
  4430. case 26: //M26 - Set SD index
  4431. if(card.cardOK && code_seen('S')) {
  4432. card.setIndex(code_value_long());
  4433. }
  4434. break;
  4435. case 27: //M27 - Get SD status
  4436. card.getStatus();
  4437. break;
  4438. case 28: //M28 - Start SD write
  4439. starpos = (strchr(strchr_pointer + 4,'*'));
  4440. if(starpos != NULL){
  4441. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4442. strchr_pointer = strchr(npos,' ') + 1;
  4443. *(starpos) = '\0';
  4444. }
  4445. card.openFile(strchr_pointer+4,false);
  4446. break;
  4447. case 29: //M29 - Stop SD write
  4448. //processed in write to file routine above
  4449. //card,saving = false;
  4450. break;
  4451. case 30: //M30 <filename> Delete File
  4452. if (card.cardOK){
  4453. card.closefile();
  4454. starpos = (strchr(strchr_pointer + 4,'*'));
  4455. if(starpos != NULL){
  4456. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4457. strchr_pointer = strchr(npos,' ') + 1;
  4458. *(starpos) = '\0';
  4459. }
  4460. card.removeFile(strchr_pointer + 4);
  4461. }
  4462. break;
  4463. case 32: //M32 - Select file and start SD print
  4464. {
  4465. if(card.sdprinting) {
  4466. st_synchronize();
  4467. }
  4468. starpos = (strchr(strchr_pointer + 4,'*'));
  4469. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4470. if(namestartpos==NULL)
  4471. {
  4472. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4473. }
  4474. else
  4475. namestartpos++; //to skip the '!'
  4476. if(starpos!=NULL)
  4477. *(starpos)='\0';
  4478. bool call_procedure=(code_seen('P'));
  4479. if(strchr_pointer>namestartpos)
  4480. call_procedure=false; //false alert, 'P' found within filename
  4481. if( card.cardOK )
  4482. {
  4483. card.openFile(namestartpos,true,!call_procedure);
  4484. if(code_seen('S'))
  4485. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4486. card.setIndex(code_value_long());
  4487. card.startFileprint();
  4488. if(!call_procedure)
  4489. starttime=_millis(); //procedure calls count as normal print time.
  4490. }
  4491. } break;
  4492. case 928: //M928 - Start SD write
  4493. starpos = (strchr(strchr_pointer + 5,'*'));
  4494. if(starpos != NULL){
  4495. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4496. strchr_pointer = strchr(npos,' ') + 1;
  4497. *(starpos) = '\0';
  4498. }
  4499. card.openLogFile(strchr_pointer+5);
  4500. break;
  4501. #endif //SDSUPPORT
  4502. case 31: //M31 take time since the start of the SD print or an M109 command
  4503. {
  4504. stoptime=_millis();
  4505. char time[30];
  4506. unsigned long t=(stoptime-starttime)/1000;
  4507. int sec,min;
  4508. min=t/60;
  4509. sec=t%60;
  4510. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4511. SERIAL_ECHO_START;
  4512. SERIAL_ECHOLN(time);
  4513. lcd_setstatus(time);
  4514. autotempShutdown();
  4515. }
  4516. break;
  4517. case 42: //M42 -Change pin status via gcode
  4518. if (code_seen('S'))
  4519. {
  4520. int pin_status = code_value();
  4521. int pin_number = LED_PIN;
  4522. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4523. pin_number = code_value();
  4524. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4525. {
  4526. if (sensitive_pins[i] == pin_number)
  4527. {
  4528. pin_number = -1;
  4529. break;
  4530. }
  4531. }
  4532. #if defined(FAN_PIN) && FAN_PIN > -1
  4533. if (pin_number == FAN_PIN)
  4534. fanSpeed = pin_status;
  4535. #endif
  4536. if (pin_number > -1)
  4537. {
  4538. pinMode(pin_number, OUTPUT);
  4539. digitalWrite(pin_number, pin_status);
  4540. analogWrite(pin_number, pin_status);
  4541. }
  4542. }
  4543. break;
  4544. case 44: //! M44: Prusa3D: Reset the bed skew and offset calibration.
  4545. // Reset the baby step value and the baby step applied flag.
  4546. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4547. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4548. // Reset the skew and offset in both RAM and EEPROM.
  4549. reset_bed_offset_and_skew();
  4550. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4551. // the planner will not perform any adjustments in the XY plane.
  4552. // Wait for the motors to stop and update the current position with the absolute values.
  4553. world2machine_revert_to_uncorrected();
  4554. break;
  4555. case 45: //! M45: Prusa3D: bed skew and offset with manual Z up
  4556. {
  4557. int8_t verbosity_level = 0;
  4558. bool only_Z = code_seen('Z');
  4559. #ifdef SUPPORT_VERBOSITY
  4560. if (code_seen('V'))
  4561. {
  4562. // Just 'V' without a number counts as V1.
  4563. char c = strchr_pointer[1];
  4564. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4565. }
  4566. #endif //SUPPORT_VERBOSITY
  4567. gcode_M45(only_Z, verbosity_level);
  4568. }
  4569. break;
  4570. /*
  4571. case 46:
  4572. {
  4573. // M46: Prusa3D: Show the assigned IP address.
  4574. uint8_t ip[4];
  4575. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4576. if (hasIP) {
  4577. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4578. SERIAL_ECHO(int(ip[0]));
  4579. SERIAL_ECHOPGM(".");
  4580. SERIAL_ECHO(int(ip[1]));
  4581. SERIAL_ECHOPGM(".");
  4582. SERIAL_ECHO(int(ip[2]));
  4583. SERIAL_ECHOPGM(".");
  4584. SERIAL_ECHO(int(ip[3]));
  4585. SERIAL_ECHOLNPGM("");
  4586. } else {
  4587. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4588. }
  4589. break;
  4590. }
  4591. */
  4592. case 47:
  4593. //! M47: Prusa3D: Show end stops dialog on the display.
  4594. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4595. lcd_diag_show_end_stops();
  4596. KEEPALIVE_STATE(IN_HANDLER);
  4597. break;
  4598. #if 0
  4599. case 48: //! M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4600. {
  4601. // Disable the default update procedure of the display. We will do a modal dialog.
  4602. lcd_update_enable(false);
  4603. // Let the planner use the uncorrected coordinates.
  4604. mbl.reset();
  4605. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4606. // the planner will not perform any adjustments in the XY plane.
  4607. // Wait for the motors to stop and update the current position with the absolute values.
  4608. world2machine_revert_to_uncorrected();
  4609. // Move the print head close to the bed.
  4610. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4611. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4612. st_synchronize();
  4613. // Home in the XY plane.
  4614. set_destination_to_current();
  4615. int l_feedmultiply = setup_for_endstop_move();
  4616. home_xy();
  4617. int8_t verbosity_level = 0;
  4618. if (code_seen('V')) {
  4619. // Just 'V' without a number counts as V1.
  4620. char c = strchr_pointer[1];
  4621. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4622. }
  4623. bool success = scan_bed_induction_points(verbosity_level);
  4624. clean_up_after_endstop_move(l_feedmultiply);
  4625. // Print head up.
  4626. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4628. st_synchronize();
  4629. lcd_update_enable(true);
  4630. break;
  4631. }
  4632. #endif
  4633. #ifdef ENABLE_AUTO_BED_LEVELING
  4634. #ifdef Z_PROBE_REPEATABILITY_TEST
  4635. //! M48 Z-Probe repeatability measurement function.
  4636. //!
  4637. //! Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4638. //!
  4639. //! This function assumes the bed has been homed. Specificaly, that a G28 command
  4640. //! as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4641. //! Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4642. //! regenerated.
  4643. //!
  4644. //! The number of samples will default to 10 if not specified. You can use upper or lower case
  4645. //! letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4646. //! N for its communication protocol and will get horribly confused if you send it a capital N.
  4647. //!
  4648. case 48: // M48 Z-Probe repeatability
  4649. {
  4650. #if Z_MIN_PIN == -1
  4651. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4652. #endif
  4653. double sum=0.0;
  4654. double mean=0.0;
  4655. double sigma=0.0;
  4656. double sample_set[50];
  4657. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4658. double X_current, Y_current, Z_current;
  4659. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4660. if (code_seen('V') || code_seen('v')) {
  4661. verbose_level = code_value();
  4662. if (verbose_level<0 || verbose_level>4 ) {
  4663. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4664. goto Sigma_Exit;
  4665. }
  4666. }
  4667. if (verbose_level > 0) {
  4668. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4669. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4670. }
  4671. if (code_seen('n')) {
  4672. n_samples = code_value();
  4673. if (n_samples<4 || n_samples>50 ) {
  4674. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4675. goto Sigma_Exit;
  4676. }
  4677. }
  4678. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4679. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4680. Z_current = st_get_position_mm(Z_AXIS);
  4681. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4682. ext_position = st_get_position_mm(E_AXIS);
  4683. if (code_seen('X') || code_seen('x') ) {
  4684. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4685. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4686. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4687. goto Sigma_Exit;
  4688. }
  4689. }
  4690. if (code_seen('Y') || code_seen('y') ) {
  4691. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4692. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4693. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4694. goto Sigma_Exit;
  4695. }
  4696. }
  4697. if (code_seen('L') || code_seen('l') ) {
  4698. n_legs = code_value();
  4699. if ( n_legs==1 )
  4700. n_legs = 2;
  4701. if ( n_legs<0 || n_legs>15 ) {
  4702. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4703. goto Sigma_Exit;
  4704. }
  4705. }
  4706. //
  4707. // Do all the preliminary setup work. First raise the probe.
  4708. //
  4709. st_synchronize();
  4710. plan_bed_level_matrix.set_to_identity();
  4711. plan_buffer_line( X_current, Y_current, Z_start_location,
  4712. ext_position,
  4713. homing_feedrate[Z_AXIS]/60,
  4714. active_extruder);
  4715. st_synchronize();
  4716. //
  4717. // Now get everything to the specified probe point So we can safely do a probe to
  4718. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4719. // use that as a starting point for each probe.
  4720. //
  4721. if (verbose_level > 2)
  4722. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4723. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4724. ext_position,
  4725. homing_feedrate[X_AXIS]/60,
  4726. active_extruder);
  4727. st_synchronize();
  4728. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4729. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4730. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4731. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4732. //
  4733. // OK, do the inital probe to get us close to the bed.
  4734. // Then retrace the right amount and use that in subsequent probes
  4735. //
  4736. int l_feedmultiply = setup_for_endstop_move();
  4737. run_z_probe();
  4738. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4739. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4740. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4741. ext_position,
  4742. homing_feedrate[X_AXIS]/60,
  4743. active_extruder);
  4744. st_synchronize();
  4745. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4746. for( n=0; n<n_samples; n++) {
  4747. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4748. if ( n_legs) {
  4749. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4750. int rotational_direction, l;
  4751. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  4752. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4753. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4754. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4755. //SERIAL_ECHOPAIR(" theta: ",theta);
  4756. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4757. //SERIAL_PROTOCOLLNPGM("");
  4758. for( l=0; l<n_legs-1; l++) {
  4759. if (rotational_direction==1)
  4760. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4761. else
  4762. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4763. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  4764. if ( radius<0.0 )
  4765. radius = -radius;
  4766. X_current = X_probe_location + cos(theta) * radius;
  4767. Y_current = Y_probe_location + sin(theta) * radius;
  4768. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4769. X_current = X_MIN_POS;
  4770. if ( X_current>X_MAX_POS)
  4771. X_current = X_MAX_POS;
  4772. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4773. Y_current = Y_MIN_POS;
  4774. if ( Y_current>Y_MAX_POS)
  4775. Y_current = Y_MAX_POS;
  4776. if (verbose_level>3 ) {
  4777. SERIAL_ECHOPAIR("x: ", X_current);
  4778. SERIAL_ECHOPAIR("y: ", Y_current);
  4779. SERIAL_PROTOCOLLNPGM("");
  4780. }
  4781. do_blocking_move_to( X_current, Y_current, Z_current );
  4782. }
  4783. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4784. }
  4785. int l_feedmultiply = setup_for_endstop_move();
  4786. run_z_probe();
  4787. sample_set[n] = current_position[Z_AXIS];
  4788. //
  4789. // Get the current mean for the data points we have so far
  4790. //
  4791. sum=0.0;
  4792. for( j=0; j<=n; j++) {
  4793. sum = sum + sample_set[j];
  4794. }
  4795. mean = sum / (double (n+1));
  4796. //
  4797. // Now, use that mean to calculate the standard deviation for the
  4798. // data points we have so far
  4799. //
  4800. sum=0.0;
  4801. for( j=0; j<=n; j++) {
  4802. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4803. }
  4804. sigma = sqrt( sum / (double (n+1)) );
  4805. if (verbose_level > 1) {
  4806. SERIAL_PROTOCOL(n+1);
  4807. SERIAL_PROTOCOL(" of ");
  4808. SERIAL_PROTOCOL(n_samples);
  4809. SERIAL_PROTOCOLPGM(" z: ");
  4810. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4811. }
  4812. if (verbose_level > 2) {
  4813. SERIAL_PROTOCOL(" mean: ");
  4814. SERIAL_PROTOCOL_F(mean,6);
  4815. SERIAL_PROTOCOL(" sigma: ");
  4816. SERIAL_PROTOCOL_F(sigma,6);
  4817. }
  4818. if (verbose_level > 0)
  4819. SERIAL_PROTOCOLPGM("\n");
  4820. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4821. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4822. st_synchronize();
  4823. }
  4824. _delay(1000);
  4825. clean_up_after_endstop_move(l_feedmultiply);
  4826. // enable_endstops(true);
  4827. if (verbose_level > 0) {
  4828. SERIAL_PROTOCOLPGM("Mean: ");
  4829. SERIAL_PROTOCOL_F(mean, 6);
  4830. SERIAL_PROTOCOLPGM("\n");
  4831. }
  4832. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4833. SERIAL_PROTOCOL_F(sigma, 6);
  4834. SERIAL_PROTOCOLPGM("\n\n");
  4835. Sigma_Exit:
  4836. break;
  4837. }
  4838. #endif // Z_PROBE_REPEATABILITY_TEST
  4839. #endif // ENABLE_AUTO_BED_LEVELING
  4840. case 73: //M73 show percent done and time remaining
  4841. if(code_seen('P')) print_percent_done_normal = code_value();
  4842. if(code_seen('R')) print_time_remaining_normal = code_value();
  4843. if(code_seen('Q')) print_percent_done_silent = code_value();
  4844. if(code_seen('S')) print_time_remaining_silent = code_value();
  4845. {
  4846. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4847. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4848. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4849. }
  4850. break;
  4851. case 104: // M104
  4852. {
  4853. uint8_t extruder;
  4854. if(setTargetedHotend(104,extruder)){
  4855. break;
  4856. }
  4857. if (code_seen('S'))
  4858. {
  4859. setTargetHotendSafe(code_value(), extruder);
  4860. }
  4861. setWatch();
  4862. break;
  4863. }
  4864. case 112: // M112 -Emergency Stop
  4865. kill(_n(""), 3);
  4866. break;
  4867. case 140: // M140 set bed temp
  4868. if (code_seen('S')) setTargetBed(code_value());
  4869. break;
  4870. case 105 : // M105
  4871. {
  4872. uint8_t extruder;
  4873. if(setTargetedHotend(105, extruder)){
  4874. break;
  4875. }
  4876. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4877. SERIAL_PROTOCOLPGM("ok T:");
  4878. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  4879. SERIAL_PROTOCOLPGM(" /");
  4880. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  4881. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4882. SERIAL_PROTOCOLPGM(" B:");
  4883. SERIAL_PROTOCOL_F(degBed(),1);
  4884. SERIAL_PROTOCOLPGM(" /");
  4885. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4886. #endif //TEMP_BED_PIN
  4887. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4888. SERIAL_PROTOCOLPGM(" T");
  4889. SERIAL_PROTOCOL(cur_extruder);
  4890. SERIAL_PROTOCOLPGM(":");
  4891. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4892. SERIAL_PROTOCOLPGM(" /");
  4893. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4894. }
  4895. #else
  4896. SERIAL_ERROR_START;
  4897. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  4898. #endif
  4899. SERIAL_PROTOCOLPGM(" @:");
  4900. #ifdef EXTRUDER_WATTS
  4901. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4902. SERIAL_PROTOCOLPGM("W");
  4903. #else
  4904. SERIAL_PROTOCOL(getHeaterPower(extruder));
  4905. #endif
  4906. SERIAL_PROTOCOLPGM(" B@:");
  4907. #ifdef BED_WATTS
  4908. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4909. SERIAL_PROTOCOLPGM("W");
  4910. #else
  4911. SERIAL_PROTOCOL(getHeaterPower(-1));
  4912. #endif
  4913. #ifdef PINDA_THERMISTOR
  4914. SERIAL_PROTOCOLPGM(" P:");
  4915. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4916. #endif //PINDA_THERMISTOR
  4917. #ifdef AMBIENT_THERMISTOR
  4918. SERIAL_PROTOCOLPGM(" A:");
  4919. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4920. #endif //AMBIENT_THERMISTOR
  4921. #ifdef SHOW_TEMP_ADC_VALUES
  4922. {float raw = 0.0;
  4923. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4924. SERIAL_PROTOCOLPGM(" ADC B:");
  4925. SERIAL_PROTOCOL_F(degBed(),1);
  4926. SERIAL_PROTOCOLPGM("C->");
  4927. raw = rawBedTemp();
  4928. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4929. SERIAL_PROTOCOLPGM(" Rb->");
  4930. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4931. SERIAL_PROTOCOLPGM(" Rxb->");
  4932. SERIAL_PROTOCOL_F(raw, 5);
  4933. #endif
  4934. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4935. SERIAL_PROTOCOLPGM(" T");
  4936. SERIAL_PROTOCOL(cur_extruder);
  4937. SERIAL_PROTOCOLPGM(":");
  4938. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4939. SERIAL_PROTOCOLPGM("C->");
  4940. raw = rawHotendTemp(cur_extruder);
  4941. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4942. SERIAL_PROTOCOLPGM(" Rt");
  4943. SERIAL_PROTOCOL(cur_extruder);
  4944. SERIAL_PROTOCOLPGM("->");
  4945. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4946. SERIAL_PROTOCOLPGM(" Rx");
  4947. SERIAL_PROTOCOL(cur_extruder);
  4948. SERIAL_PROTOCOLPGM("->");
  4949. SERIAL_PROTOCOL_F(raw, 5);
  4950. }}
  4951. #endif
  4952. SERIAL_PROTOCOLLN("");
  4953. KEEPALIVE_STATE(NOT_BUSY);
  4954. return;
  4955. break;
  4956. }
  4957. case 109:
  4958. {// M109 - Wait for extruder heater to reach target.
  4959. uint8_t extruder;
  4960. if(setTargetedHotend(109, extruder)){
  4961. break;
  4962. }
  4963. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4964. heating_status = 1;
  4965. if (farm_mode) { prusa_statistics(1); };
  4966. #ifdef AUTOTEMP
  4967. autotemp_enabled=false;
  4968. #endif
  4969. if (code_seen('S')) {
  4970. setTargetHotendSafe(code_value(), extruder);
  4971. CooldownNoWait = true;
  4972. } else if (code_seen('R')) {
  4973. setTargetHotendSafe(code_value(), extruder);
  4974. CooldownNoWait = false;
  4975. }
  4976. #ifdef AUTOTEMP
  4977. if (code_seen('S')) autotemp_min=code_value();
  4978. if (code_seen('B')) autotemp_max=code_value();
  4979. if (code_seen('F'))
  4980. {
  4981. autotemp_factor=code_value();
  4982. autotemp_enabled=true;
  4983. }
  4984. #endif
  4985. setWatch();
  4986. codenum = _millis();
  4987. /* See if we are heating up or cooling down */
  4988. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  4989. KEEPALIVE_STATE(NOT_BUSY);
  4990. cancel_heatup = false;
  4991. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  4992. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4993. KEEPALIVE_STATE(IN_HANDLER);
  4994. heating_status = 2;
  4995. if (farm_mode) { prusa_statistics(2); };
  4996. //starttime=_millis();
  4997. previous_millis_cmd = _millis();
  4998. }
  4999. break;
  5000. case 190: // M190 - Wait for bed heater to reach target.
  5001. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5002. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5003. heating_status = 3;
  5004. if (farm_mode) { prusa_statistics(1); };
  5005. if (code_seen('S'))
  5006. {
  5007. setTargetBed(code_value());
  5008. CooldownNoWait = true;
  5009. }
  5010. else if (code_seen('R'))
  5011. {
  5012. setTargetBed(code_value());
  5013. CooldownNoWait = false;
  5014. }
  5015. codenum = _millis();
  5016. cancel_heatup = false;
  5017. target_direction = isHeatingBed(); // true if heating, false if cooling
  5018. KEEPALIVE_STATE(NOT_BUSY);
  5019. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5020. {
  5021. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5022. {
  5023. if (!farm_mode) {
  5024. float tt = degHotend(active_extruder);
  5025. SERIAL_PROTOCOLPGM("T:");
  5026. SERIAL_PROTOCOL(tt);
  5027. SERIAL_PROTOCOLPGM(" E:");
  5028. SERIAL_PROTOCOL((int)active_extruder);
  5029. SERIAL_PROTOCOLPGM(" B:");
  5030. SERIAL_PROTOCOL_F(degBed(), 1);
  5031. SERIAL_PROTOCOLLN("");
  5032. }
  5033. codenum = _millis();
  5034. }
  5035. manage_heater();
  5036. manage_inactivity();
  5037. lcd_update(0);
  5038. }
  5039. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5040. KEEPALIVE_STATE(IN_HANDLER);
  5041. heating_status = 4;
  5042. previous_millis_cmd = _millis();
  5043. #endif
  5044. break;
  5045. #if defined(FAN_PIN) && FAN_PIN > -1
  5046. case 106: //!M106 Sxxx Fan On S<speed> 0 .. 255
  5047. if (code_seen('S')){
  5048. fanSpeed=constrain(code_value(),0,255);
  5049. }
  5050. else {
  5051. fanSpeed=255;
  5052. }
  5053. break;
  5054. case 107: //M107 Fan Off
  5055. fanSpeed = 0;
  5056. break;
  5057. #endif //FAN_PIN
  5058. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5059. case 80: // M80 - Turn on Power Supply
  5060. SET_OUTPUT(PS_ON_PIN); //GND
  5061. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5062. // If you have a switch on suicide pin, this is useful
  5063. // if you want to start another print with suicide feature after
  5064. // a print without suicide...
  5065. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5066. SET_OUTPUT(SUICIDE_PIN);
  5067. WRITE(SUICIDE_PIN, HIGH);
  5068. #endif
  5069. powersupply = true;
  5070. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5071. lcd_update(0);
  5072. break;
  5073. #endif
  5074. case 81: // M81 - Turn off Power Supply
  5075. disable_heater();
  5076. st_synchronize();
  5077. disable_e0();
  5078. disable_e1();
  5079. disable_e2();
  5080. finishAndDisableSteppers();
  5081. fanSpeed = 0;
  5082. _delay(1000); // Wait a little before to switch off
  5083. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5084. st_synchronize();
  5085. suicide();
  5086. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5087. SET_OUTPUT(PS_ON_PIN);
  5088. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5089. #endif
  5090. powersupply = false;
  5091. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5092. lcd_update(0);
  5093. break;
  5094. case 82:
  5095. axis_relative_modes[3] = false;
  5096. break;
  5097. case 83:
  5098. axis_relative_modes[3] = true;
  5099. break;
  5100. case 18: //compatibility
  5101. case 84: // M84
  5102. if(code_seen('S')){
  5103. stepper_inactive_time = code_value() * 1000;
  5104. }
  5105. else
  5106. {
  5107. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5108. if(all_axis)
  5109. {
  5110. st_synchronize();
  5111. disable_e0();
  5112. disable_e1();
  5113. disable_e2();
  5114. finishAndDisableSteppers();
  5115. }
  5116. else
  5117. {
  5118. st_synchronize();
  5119. if (code_seen('X')) disable_x();
  5120. if (code_seen('Y')) disable_y();
  5121. if (code_seen('Z')) disable_z();
  5122. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5123. if (code_seen('E')) {
  5124. disable_e0();
  5125. disable_e1();
  5126. disable_e2();
  5127. }
  5128. #endif
  5129. }
  5130. }
  5131. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5132. print_time_remaining_init();
  5133. snmm_filaments_used = 0;
  5134. break;
  5135. case 85: // M85
  5136. if(code_seen('S')) {
  5137. max_inactive_time = code_value() * 1000;
  5138. }
  5139. break;
  5140. #ifdef SAFETYTIMER
  5141. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  5142. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  5143. if (code_seen('S')) {
  5144. safetytimer_inactive_time = code_value() * 1000;
  5145. safetyTimer.start();
  5146. }
  5147. break;
  5148. #endif
  5149. case 92: // M92
  5150. for(int8_t i=0; i < NUM_AXIS; i++)
  5151. {
  5152. if(code_seen(axis_codes[i]))
  5153. {
  5154. if(i == 3) { // E
  5155. float value = code_value();
  5156. if(value < 20.0) {
  5157. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5158. cs.max_jerk[E_AXIS] *= factor;
  5159. max_feedrate[i] *= factor;
  5160. axis_steps_per_sqr_second[i] *= factor;
  5161. }
  5162. cs.axis_steps_per_unit[i] = value;
  5163. }
  5164. else {
  5165. cs.axis_steps_per_unit[i] = code_value();
  5166. }
  5167. }
  5168. }
  5169. break;
  5170. case 110: //! M110 N<line number> - reset line pos
  5171. if (code_seen('N'))
  5172. gcode_LastN = code_value_long();
  5173. break;
  5174. case 113: // M113 - Get or set Host Keepalive interval
  5175. if (code_seen('S')) {
  5176. host_keepalive_interval = (uint8_t)code_value_short();
  5177. // NOMORE(host_keepalive_interval, 60);
  5178. }
  5179. else {
  5180. SERIAL_ECHO_START;
  5181. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5182. SERIAL_PROTOCOLLN("");
  5183. }
  5184. break;
  5185. case 115: // M115
  5186. if (code_seen('V')) {
  5187. // Report the Prusa version number.
  5188. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5189. } else if (code_seen('U')) {
  5190. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5191. // pause the print for 30s and ask the user to upgrade the firmware.
  5192. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5193. } else {
  5194. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5195. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5196. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5197. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5198. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5199. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5200. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5201. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5202. SERIAL_ECHOPGM(" UUID:");
  5203. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5204. }
  5205. break;
  5206. /* case 117: // M117 display message
  5207. starpos = (strchr(strchr_pointer + 5,'*'));
  5208. if(starpos!=NULL)
  5209. *(starpos)='\0';
  5210. lcd_setstatus(strchr_pointer + 5);
  5211. break;*/
  5212. case 114: // M114
  5213. gcode_M114();
  5214. break;
  5215. case 120: //! M120 - Disable endstops
  5216. enable_endstops(false) ;
  5217. break;
  5218. case 121: //! M121 - Enable endstops
  5219. enable_endstops(true) ;
  5220. break;
  5221. case 119: // M119
  5222. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5223. SERIAL_PROTOCOLLN("");
  5224. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5225. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5226. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5227. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5228. }else{
  5229. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5230. }
  5231. SERIAL_PROTOCOLLN("");
  5232. #endif
  5233. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5234. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5235. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5236. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5237. }else{
  5238. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5239. }
  5240. SERIAL_PROTOCOLLN("");
  5241. #endif
  5242. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5243. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5244. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5245. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5246. }else{
  5247. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5248. }
  5249. SERIAL_PROTOCOLLN("");
  5250. #endif
  5251. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5252. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5253. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5254. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5255. }else{
  5256. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5257. }
  5258. SERIAL_PROTOCOLLN("");
  5259. #endif
  5260. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5261. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5262. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5263. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5264. }else{
  5265. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5266. }
  5267. SERIAL_PROTOCOLLN("");
  5268. #endif
  5269. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5270. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5271. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5272. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5273. }else{
  5274. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5275. }
  5276. SERIAL_PROTOCOLLN("");
  5277. #endif
  5278. break;
  5279. //TODO: update for all axis, use for loop
  5280. #ifdef BLINKM
  5281. case 150: // M150
  5282. {
  5283. byte red;
  5284. byte grn;
  5285. byte blu;
  5286. if(code_seen('R')) red = code_value();
  5287. if(code_seen('U')) grn = code_value();
  5288. if(code_seen('B')) blu = code_value();
  5289. SendColors(red,grn,blu);
  5290. }
  5291. break;
  5292. #endif //BLINKM
  5293. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5294. {
  5295. uint8_t extruder = active_extruder;
  5296. if(code_seen('T')) {
  5297. extruder = code_value();
  5298. if(extruder >= EXTRUDERS) {
  5299. SERIAL_ECHO_START;
  5300. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5301. break;
  5302. }
  5303. }
  5304. if(code_seen('D')) {
  5305. float diameter = (float)code_value();
  5306. if (diameter == 0.0) {
  5307. // setting any extruder filament size disables volumetric on the assumption that
  5308. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5309. // for all extruders
  5310. cs.volumetric_enabled = false;
  5311. } else {
  5312. cs.filament_size[extruder] = (float)code_value();
  5313. // make sure all extruders have some sane value for the filament size
  5314. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5315. #if EXTRUDERS > 1
  5316. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5317. #if EXTRUDERS > 2
  5318. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5319. #endif
  5320. #endif
  5321. cs.volumetric_enabled = true;
  5322. }
  5323. } else {
  5324. //reserved for setting filament diameter via UFID or filament measuring device
  5325. break;
  5326. }
  5327. calculate_extruder_multipliers();
  5328. }
  5329. break;
  5330. case 201: // M201
  5331. for (int8_t i = 0; i < NUM_AXIS; i++)
  5332. {
  5333. if (code_seen(axis_codes[i]))
  5334. {
  5335. unsigned long val = code_value();
  5336. #ifdef TMC2130
  5337. unsigned long val_silent = val;
  5338. if ((i == X_AXIS) || (i == Y_AXIS))
  5339. {
  5340. if (val > NORMAL_MAX_ACCEL_XY)
  5341. val = NORMAL_MAX_ACCEL_XY;
  5342. if (val_silent > SILENT_MAX_ACCEL_XY)
  5343. val_silent = SILENT_MAX_ACCEL_XY;
  5344. }
  5345. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5346. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5347. #else //TMC2130
  5348. max_acceleration_units_per_sq_second[i] = val;
  5349. #endif //TMC2130
  5350. }
  5351. }
  5352. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5353. reset_acceleration_rates();
  5354. break;
  5355. #if 0 // Not used for Sprinter/grbl gen6
  5356. case 202: // M202
  5357. for(int8_t i=0; i < NUM_AXIS; i++) {
  5358. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5359. }
  5360. break;
  5361. #endif
  5362. case 203: // M203 max feedrate mm/sec
  5363. for (int8_t i = 0; i < NUM_AXIS; i++)
  5364. {
  5365. if (code_seen(axis_codes[i]))
  5366. {
  5367. float val = code_value();
  5368. #ifdef TMC2130
  5369. float val_silent = val;
  5370. if ((i == X_AXIS) || (i == Y_AXIS))
  5371. {
  5372. if (val > NORMAL_MAX_FEEDRATE_XY)
  5373. val = NORMAL_MAX_FEEDRATE_XY;
  5374. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5375. val_silent = SILENT_MAX_FEEDRATE_XY;
  5376. }
  5377. cs.max_feedrate_normal[i] = val;
  5378. cs.max_feedrate_silent[i] = val_silent;
  5379. #else //TMC2130
  5380. max_feedrate[i] = val;
  5381. #endif //TMC2130
  5382. }
  5383. }
  5384. break;
  5385. case 204:
  5386. //! M204 acclereration settings.
  5387. //!@n Supporting old format: M204 S[normal moves] T[filmanent only moves]
  5388. //!@n and new format: M204 P[printing moves] R[filmanent only moves] T[travel moves] (as of now T is ignored)
  5389. {
  5390. if(code_seen('S')) {
  5391. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  5392. // and it is also generated by Slic3r to control acceleration per extrusion type
  5393. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  5394. cs.acceleration = code_value();
  5395. // Interpret the T value as retract acceleration in the old Marlin format.
  5396. if(code_seen('T'))
  5397. cs.retract_acceleration = code_value();
  5398. } else {
  5399. // New acceleration format, compatible with the upstream Marlin.
  5400. if(code_seen('P'))
  5401. cs.acceleration = code_value();
  5402. if(code_seen('R'))
  5403. cs.retract_acceleration = code_value();
  5404. if(code_seen('T')) {
  5405. // Interpret the T value as the travel acceleration in the new Marlin format.
  5406. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  5407. // travel_acceleration = code_value();
  5408. }
  5409. }
  5410. }
  5411. break;
  5412. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5413. {
  5414. if(code_seen('S')) cs.minimumfeedrate = code_value();
  5415. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  5416. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  5417. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  5418. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  5419. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  5420. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  5421. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  5422. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5423. }
  5424. break;
  5425. case 206: // M206 additional homing offset
  5426. for(int8_t i=0; i < 3; i++)
  5427. {
  5428. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  5429. }
  5430. break;
  5431. #ifdef FWRETRACT
  5432. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5433. {
  5434. if(code_seen('S'))
  5435. {
  5436. cs.retract_length = code_value() ;
  5437. }
  5438. if(code_seen('F'))
  5439. {
  5440. cs.retract_feedrate = code_value()/60 ;
  5441. }
  5442. if(code_seen('Z'))
  5443. {
  5444. cs.retract_zlift = code_value() ;
  5445. }
  5446. }break;
  5447. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5448. {
  5449. if(code_seen('S'))
  5450. {
  5451. cs.retract_recover_length = code_value() ;
  5452. }
  5453. if(code_seen('F'))
  5454. {
  5455. cs.retract_recover_feedrate = code_value()/60 ;
  5456. }
  5457. }break;
  5458. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5459. {
  5460. if(code_seen('S'))
  5461. {
  5462. int t= code_value() ;
  5463. switch(t)
  5464. {
  5465. case 0:
  5466. {
  5467. cs.autoretract_enabled=false;
  5468. retracted[0]=false;
  5469. #if EXTRUDERS > 1
  5470. retracted[1]=false;
  5471. #endif
  5472. #if EXTRUDERS > 2
  5473. retracted[2]=false;
  5474. #endif
  5475. }break;
  5476. case 1:
  5477. {
  5478. cs.autoretract_enabled=true;
  5479. retracted[0]=false;
  5480. #if EXTRUDERS > 1
  5481. retracted[1]=false;
  5482. #endif
  5483. #if EXTRUDERS > 2
  5484. retracted[2]=false;
  5485. #endif
  5486. }break;
  5487. default:
  5488. SERIAL_ECHO_START;
  5489. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5490. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5491. SERIAL_ECHOLNPGM("\"(1)");
  5492. }
  5493. }
  5494. }break;
  5495. #endif // FWRETRACT
  5496. #if EXTRUDERS > 1
  5497. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5498. {
  5499. uint8_t extruder;
  5500. if(setTargetedHotend(218, extruder)){
  5501. break;
  5502. }
  5503. if(code_seen('X'))
  5504. {
  5505. extruder_offset[X_AXIS][extruder] = code_value();
  5506. }
  5507. if(code_seen('Y'))
  5508. {
  5509. extruder_offset[Y_AXIS][extruder] = code_value();
  5510. }
  5511. SERIAL_ECHO_START;
  5512. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5513. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  5514. {
  5515. SERIAL_ECHO(" ");
  5516. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  5517. SERIAL_ECHO(",");
  5518. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  5519. }
  5520. SERIAL_ECHOLN("");
  5521. }break;
  5522. #endif
  5523. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5524. {
  5525. if (code_seen('B')) //backup current speed factor
  5526. {
  5527. saved_feedmultiply_mm = feedmultiply;
  5528. }
  5529. if(code_seen('S'))
  5530. {
  5531. feedmultiply = code_value() ;
  5532. }
  5533. if (code_seen('R')) { //restore previous feedmultiply
  5534. feedmultiply = saved_feedmultiply_mm;
  5535. }
  5536. }
  5537. break;
  5538. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5539. {
  5540. if(code_seen('S'))
  5541. {
  5542. int tmp_code = code_value();
  5543. if (code_seen('T'))
  5544. {
  5545. uint8_t extruder;
  5546. if(setTargetedHotend(221, extruder)){
  5547. break;
  5548. }
  5549. extruder_multiply[extruder] = tmp_code;
  5550. }
  5551. else
  5552. {
  5553. extrudemultiply = tmp_code ;
  5554. }
  5555. }
  5556. calculate_extruder_multipliers();
  5557. }
  5558. break;
  5559. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5560. {
  5561. if(code_seen('P')){
  5562. int pin_number = code_value(); // pin number
  5563. int pin_state = -1; // required pin state - default is inverted
  5564. if(code_seen('S')) pin_state = code_value(); // required pin state
  5565. if(pin_state >= -1 && pin_state <= 1){
  5566. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5567. {
  5568. if (sensitive_pins[i] == pin_number)
  5569. {
  5570. pin_number = -1;
  5571. break;
  5572. }
  5573. }
  5574. if (pin_number > -1)
  5575. {
  5576. int target = LOW;
  5577. st_synchronize();
  5578. pinMode(pin_number, INPUT);
  5579. switch(pin_state){
  5580. case 1:
  5581. target = HIGH;
  5582. break;
  5583. case 0:
  5584. target = LOW;
  5585. break;
  5586. case -1:
  5587. target = !digitalRead(pin_number);
  5588. break;
  5589. }
  5590. while(digitalRead(pin_number) != target){
  5591. manage_heater();
  5592. manage_inactivity();
  5593. lcd_update(0);
  5594. }
  5595. }
  5596. }
  5597. }
  5598. }
  5599. break;
  5600. #if NUM_SERVOS > 0
  5601. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5602. {
  5603. int servo_index = -1;
  5604. int servo_position = 0;
  5605. if (code_seen('P'))
  5606. servo_index = code_value();
  5607. if (code_seen('S')) {
  5608. servo_position = code_value();
  5609. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5610. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5611. servos[servo_index].attach(0);
  5612. #endif
  5613. servos[servo_index].write(servo_position);
  5614. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5615. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5616. servos[servo_index].detach();
  5617. #endif
  5618. }
  5619. else {
  5620. SERIAL_ECHO_START;
  5621. SERIAL_ECHO("Servo ");
  5622. SERIAL_ECHO(servo_index);
  5623. SERIAL_ECHOLN(" out of range");
  5624. }
  5625. }
  5626. else if (servo_index >= 0) {
  5627. SERIAL_PROTOCOL(MSG_OK);
  5628. SERIAL_PROTOCOL(" Servo ");
  5629. SERIAL_PROTOCOL(servo_index);
  5630. SERIAL_PROTOCOL(": ");
  5631. SERIAL_PROTOCOL(servos[servo_index].read());
  5632. SERIAL_PROTOCOLLN("");
  5633. }
  5634. }
  5635. break;
  5636. #endif // NUM_SERVOS > 0
  5637. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5638. case 300: // M300
  5639. {
  5640. int beepS = code_seen('S') ? code_value() : 110;
  5641. int beepP = code_seen('P') ? code_value() : 1000;
  5642. if (beepS > 0)
  5643. {
  5644. #if BEEPER > 0
  5645. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  5646. _tone(BEEPER, beepS);
  5647. _delay(beepP);
  5648. _noTone(BEEPER);
  5649. #endif
  5650. }
  5651. else
  5652. {
  5653. _delay(beepP);
  5654. }
  5655. }
  5656. break;
  5657. #endif // M300
  5658. #ifdef PIDTEMP
  5659. case 301: // M301
  5660. {
  5661. if(code_seen('P')) cs.Kp = code_value();
  5662. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  5663. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  5664. #ifdef PID_ADD_EXTRUSION_RATE
  5665. if(code_seen('C')) Kc = code_value();
  5666. #endif
  5667. updatePID();
  5668. SERIAL_PROTOCOLRPGM(MSG_OK);
  5669. SERIAL_PROTOCOL(" p:");
  5670. SERIAL_PROTOCOL(cs.Kp);
  5671. SERIAL_PROTOCOL(" i:");
  5672. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  5673. SERIAL_PROTOCOL(" d:");
  5674. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  5675. #ifdef PID_ADD_EXTRUSION_RATE
  5676. SERIAL_PROTOCOL(" c:");
  5677. //Kc does not have scaling applied above, or in resetting defaults
  5678. SERIAL_PROTOCOL(Kc);
  5679. #endif
  5680. SERIAL_PROTOCOLLN("");
  5681. }
  5682. break;
  5683. #endif //PIDTEMP
  5684. #ifdef PIDTEMPBED
  5685. case 304: // M304
  5686. {
  5687. if(code_seen('P')) cs.bedKp = code_value();
  5688. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  5689. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  5690. updatePID();
  5691. SERIAL_PROTOCOLRPGM(MSG_OK);
  5692. SERIAL_PROTOCOL(" p:");
  5693. SERIAL_PROTOCOL(cs.bedKp);
  5694. SERIAL_PROTOCOL(" i:");
  5695. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  5696. SERIAL_PROTOCOL(" d:");
  5697. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  5698. SERIAL_PROTOCOLLN("");
  5699. }
  5700. break;
  5701. #endif //PIDTEMP
  5702. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5703. {
  5704. #ifdef CHDK
  5705. SET_OUTPUT(CHDK);
  5706. WRITE(CHDK, HIGH);
  5707. chdkHigh = _millis();
  5708. chdkActive = true;
  5709. #else
  5710. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5711. const uint8_t NUM_PULSES=16;
  5712. const float PULSE_LENGTH=0.01524;
  5713. for(int i=0; i < NUM_PULSES; i++) {
  5714. WRITE(PHOTOGRAPH_PIN, HIGH);
  5715. _delay_ms(PULSE_LENGTH);
  5716. WRITE(PHOTOGRAPH_PIN, LOW);
  5717. _delay_ms(PULSE_LENGTH);
  5718. }
  5719. _delay(7.33);
  5720. for(int i=0; i < NUM_PULSES; i++) {
  5721. WRITE(PHOTOGRAPH_PIN, HIGH);
  5722. _delay_ms(PULSE_LENGTH);
  5723. WRITE(PHOTOGRAPH_PIN, LOW);
  5724. _delay_ms(PULSE_LENGTH);
  5725. }
  5726. #endif
  5727. #endif //chdk end if
  5728. }
  5729. break;
  5730. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5731. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5732. {
  5733. float temp = .0;
  5734. if (code_seen('S')) temp=code_value();
  5735. set_extrude_min_temp(temp);
  5736. }
  5737. break;
  5738. #endif
  5739. case 303: // M303 PID autotune
  5740. {
  5741. float temp = 150.0;
  5742. int e=0;
  5743. int c=5;
  5744. if (code_seen('E')) e=code_value();
  5745. if (e<0)
  5746. temp=70;
  5747. if (code_seen('S')) temp=code_value();
  5748. if (code_seen('C')) c=code_value();
  5749. PID_autotune(temp, e, c);
  5750. }
  5751. break;
  5752. case 400: // M400 finish all moves
  5753. {
  5754. st_synchronize();
  5755. }
  5756. break;
  5757. case 403: //! M403 set filament type (material) for particular extruder and send this information to mmu
  5758. {
  5759. //! currently three different materials are needed (default, flex and PVA)
  5760. //! add storing this information for different load/unload profiles etc. in the future
  5761. //!firmware does not wait for "ok" from mmu
  5762. if (mmu_enabled)
  5763. {
  5764. uint8_t extruder = 255;
  5765. uint8_t filament = FILAMENT_UNDEFINED;
  5766. if(code_seen('E')) extruder = code_value();
  5767. if(code_seen('F')) filament = code_value();
  5768. mmu_set_filament_type(extruder, filament);
  5769. }
  5770. }
  5771. break;
  5772. case 500: // M500 Store settings in EEPROM
  5773. {
  5774. Config_StoreSettings();
  5775. }
  5776. break;
  5777. case 501: // M501 Read settings from EEPROM
  5778. {
  5779. Config_RetrieveSettings();
  5780. }
  5781. break;
  5782. case 502: // M502 Revert to default settings
  5783. {
  5784. Config_ResetDefault();
  5785. }
  5786. break;
  5787. case 503: // M503 print settings currently in memory
  5788. {
  5789. Config_PrintSettings();
  5790. }
  5791. break;
  5792. case 509: //M509 Force language selection
  5793. {
  5794. lang_reset();
  5795. SERIAL_ECHO_START;
  5796. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5797. }
  5798. break;
  5799. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5800. case 540:
  5801. {
  5802. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5803. }
  5804. break;
  5805. #endif
  5806. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5807. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5808. {
  5809. float value;
  5810. if (code_seen('Z'))
  5811. {
  5812. value = code_value();
  5813. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5814. {
  5815. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5816. SERIAL_ECHO_START;
  5817. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  5818. SERIAL_PROTOCOLLN("");
  5819. }
  5820. else
  5821. {
  5822. SERIAL_ECHO_START;
  5823. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5824. SERIAL_ECHORPGM(MSG_Z_MIN);
  5825. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5826. SERIAL_ECHORPGM(MSG_Z_MAX);
  5827. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5828. SERIAL_PROTOCOLLN("");
  5829. }
  5830. }
  5831. else
  5832. {
  5833. SERIAL_ECHO_START;
  5834. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5835. SERIAL_ECHO(-cs.zprobe_zoffset);
  5836. SERIAL_PROTOCOLLN("");
  5837. }
  5838. break;
  5839. }
  5840. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5841. #ifdef FILAMENTCHANGEENABLE
  5842. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5843. {
  5844. st_synchronize();
  5845. float x_position = current_position[X_AXIS];
  5846. float y_position = current_position[Y_AXIS];
  5847. float z_shift = 0; // is it necessary to be a float?
  5848. float e_shift_init = 0;
  5849. float e_shift_late = 0;
  5850. bool automatic = false;
  5851. //Retract extruder
  5852. if(code_seen('E'))
  5853. {
  5854. e_shift_init = code_value();
  5855. }
  5856. else
  5857. {
  5858. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5859. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  5860. #endif
  5861. }
  5862. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  5863. if (code_seen('L'))
  5864. {
  5865. e_shift_late = code_value();
  5866. }
  5867. else
  5868. {
  5869. #ifdef FILAMENTCHANGE_FINALRETRACT
  5870. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  5871. #endif
  5872. }
  5873. //Lift Z
  5874. if(code_seen('Z'))
  5875. {
  5876. z_shift = code_value();
  5877. }
  5878. else
  5879. {
  5880. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  5881. }
  5882. //Move XY to side
  5883. if(code_seen('X'))
  5884. {
  5885. x_position = code_value();
  5886. }
  5887. else
  5888. {
  5889. #ifdef FILAMENTCHANGE_XPOS
  5890. x_position = FILAMENTCHANGE_XPOS;
  5891. #endif
  5892. }
  5893. if(code_seen('Y'))
  5894. {
  5895. y_position = code_value();
  5896. }
  5897. else
  5898. {
  5899. #ifdef FILAMENTCHANGE_YPOS
  5900. y_position = FILAMENTCHANGE_YPOS ;
  5901. #endif
  5902. }
  5903. if (mmu_enabled && code_seen("AUTO"))
  5904. automatic = true;
  5905. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  5906. }
  5907. break;
  5908. #endif //FILAMENTCHANGEENABLE
  5909. case 601: //! M601 - Pause print
  5910. {
  5911. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  5912. lcd_pause_print();
  5913. }
  5914. break;
  5915. case 602: { //! M602 - Resume print
  5916. lcd_resume_print();
  5917. }
  5918. break;
  5919. #ifdef PINDA_THERMISTOR
  5920. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5921. {
  5922. int set_target_pinda = 0;
  5923. if (code_seen('S')) {
  5924. set_target_pinda = code_value();
  5925. }
  5926. else {
  5927. break;
  5928. }
  5929. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5930. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5931. SERIAL_PROTOCOL(set_target_pinda);
  5932. SERIAL_PROTOCOLLN("");
  5933. codenum = _millis();
  5934. cancel_heatup = false;
  5935. bool is_pinda_cooling = false;
  5936. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5937. is_pinda_cooling = true;
  5938. }
  5939. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5940. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5941. {
  5942. SERIAL_PROTOCOLPGM("P:");
  5943. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5944. SERIAL_PROTOCOLPGM("/");
  5945. SERIAL_PROTOCOL(set_target_pinda);
  5946. SERIAL_PROTOCOLLN("");
  5947. codenum = _millis();
  5948. }
  5949. manage_heater();
  5950. manage_inactivity();
  5951. lcd_update(0);
  5952. }
  5953. LCD_MESSAGERPGM(MSG_OK);
  5954. break;
  5955. }
  5956. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5957. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5958. uint8_t cal_status = calibration_status_pinda();
  5959. int16_t usteps = 0;
  5960. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5961. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5962. for (uint8_t i = 0; i < 6; i++)
  5963. {
  5964. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5965. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  5966. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5967. SERIAL_PROTOCOLPGM(", ");
  5968. SERIAL_PROTOCOL(35 + (i * 5));
  5969. SERIAL_PROTOCOLPGM(", ");
  5970. SERIAL_PROTOCOL(usteps);
  5971. SERIAL_PROTOCOLPGM(", ");
  5972. SERIAL_PROTOCOL(mm * 1000);
  5973. SERIAL_PROTOCOLLN("");
  5974. }
  5975. }
  5976. else if (code_seen('!')) { // ! - Set factory default values
  5977. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5978. int16_t z_shift = 8; //40C - 20um - 8usteps
  5979. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5980. z_shift = 24; //45C - 60um - 24usteps
  5981. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5982. z_shift = 48; //50C - 120um - 48usteps
  5983. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5984. z_shift = 80; //55C - 200um - 80usteps
  5985. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5986. z_shift = 120; //60C - 300um - 120usteps
  5987. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5988. SERIAL_PROTOCOLLN("factory restored");
  5989. }
  5990. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5991. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5992. int16_t z_shift = 0;
  5993. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5994. SERIAL_PROTOCOLLN("zerorized");
  5995. }
  5996. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5997. int16_t usteps = code_value();
  5998. if (code_seen('I')) {
  5999. uint8_t index = code_value();
  6000. if (index < 5) {
  6001. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6002. SERIAL_PROTOCOLLN("OK");
  6003. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6004. for (uint8_t i = 0; i < 6; i++)
  6005. {
  6006. usteps = 0;
  6007. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6008. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6009. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6010. SERIAL_PROTOCOLPGM(", ");
  6011. SERIAL_PROTOCOL(35 + (i * 5));
  6012. SERIAL_PROTOCOLPGM(", ");
  6013. SERIAL_PROTOCOL(usteps);
  6014. SERIAL_PROTOCOLPGM(", ");
  6015. SERIAL_PROTOCOL(mm * 1000);
  6016. SERIAL_PROTOCOLLN("");
  6017. }
  6018. }
  6019. }
  6020. }
  6021. else {
  6022. SERIAL_PROTOCOLPGM("no valid command");
  6023. }
  6024. break;
  6025. #endif //PINDA_THERMISTOR
  6026. #ifdef LIN_ADVANCE
  6027. case 900: // M900: Set LIN_ADVANCE options.
  6028. gcode_M900();
  6029. break;
  6030. #endif
  6031. case 907: // M907 Set digital trimpot motor current using axis codes.
  6032. {
  6033. #ifdef TMC2130
  6034. for (int i = 0; i < NUM_AXIS; i++)
  6035. if(code_seen(axis_codes[i]))
  6036. {
  6037. long cur_mA = code_value_long();
  6038. uint8_t val = tmc2130_cur2val(cur_mA);
  6039. tmc2130_set_current_h(i, val);
  6040. tmc2130_set_current_r(i, val);
  6041. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6042. }
  6043. #else //TMC2130
  6044. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6045. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6046. if(code_seen('B')) st_current_set(4,code_value());
  6047. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6048. #endif
  6049. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6050. if(code_seen('X')) st_current_set(0, code_value());
  6051. #endif
  6052. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6053. if(code_seen('Z')) st_current_set(1, code_value());
  6054. #endif
  6055. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6056. if(code_seen('E')) st_current_set(2, code_value());
  6057. #endif
  6058. #endif //TMC2130
  6059. }
  6060. break;
  6061. case 908: // M908 Control digital trimpot directly.
  6062. {
  6063. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6064. uint8_t channel,current;
  6065. if(code_seen('P')) channel=code_value();
  6066. if(code_seen('S')) current=code_value();
  6067. digitalPotWrite(channel, current);
  6068. #endif
  6069. }
  6070. break;
  6071. #ifdef TMC2130_SERVICE_CODES_M910_M918
  6072. case 910: //! M910 - TMC2130 init
  6073. {
  6074. tmc2130_init();
  6075. }
  6076. break;
  6077. case 911: //! M911 - Set TMC2130 holding currents
  6078. {
  6079. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  6080. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  6081. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  6082. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  6083. }
  6084. break;
  6085. case 912: //! M912 - Set TMC2130 running currents
  6086. {
  6087. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  6088. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  6089. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  6090. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  6091. }
  6092. break;
  6093. case 913: //! M913 - Print TMC2130 currents
  6094. {
  6095. tmc2130_print_currents();
  6096. }
  6097. break;
  6098. case 914: //! M914 - Set normal mode
  6099. {
  6100. tmc2130_mode = TMC2130_MODE_NORMAL;
  6101. update_mode_profile();
  6102. tmc2130_init();
  6103. }
  6104. break;
  6105. case 915: //! M915 - Set silent mode
  6106. {
  6107. tmc2130_mode = TMC2130_MODE_SILENT;
  6108. update_mode_profile();
  6109. tmc2130_init();
  6110. }
  6111. break;
  6112. case 916: //! M916 - Set sg_thrs
  6113. {
  6114. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  6115. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  6116. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  6117. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  6118. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  6119. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  6120. }
  6121. break;
  6122. case 917: //! M917 - Set TMC2130 pwm_ampl
  6123. {
  6124. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  6125. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  6126. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  6127. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  6128. }
  6129. break;
  6130. case 918: //! M918 - Set TMC2130 pwm_grad
  6131. {
  6132. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  6133. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  6134. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  6135. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  6136. }
  6137. break;
  6138. #endif //TMC2130_SERVICE_CODES_M910_M918
  6139. case 350: //! M350 - Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6140. {
  6141. #ifdef TMC2130
  6142. if(code_seen('E'))
  6143. {
  6144. uint16_t res_new = code_value();
  6145. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  6146. {
  6147. st_synchronize();
  6148. uint8_t axis = E_AXIS;
  6149. uint16_t res = tmc2130_get_res(axis);
  6150. tmc2130_set_res(axis, res_new);
  6151. cs.axis_ustep_resolution[axis] = res_new;
  6152. if (res_new > res)
  6153. {
  6154. uint16_t fac = (res_new / res);
  6155. cs.axis_steps_per_unit[axis] *= fac;
  6156. position[E_AXIS] *= fac;
  6157. }
  6158. else
  6159. {
  6160. uint16_t fac = (res / res_new);
  6161. cs.axis_steps_per_unit[axis] /= fac;
  6162. position[E_AXIS] /= fac;
  6163. }
  6164. }
  6165. }
  6166. #else //TMC2130
  6167. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6168. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6169. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6170. if(code_seen('B')) microstep_mode(4,code_value());
  6171. microstep_readings();
  6172. #endif
  6173. #endif //TMC2130
  6174. }
  6175. break;
  6176. case 351: //! M351 - Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6177. {
  6178. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6179. if(code_seen('S')) switch((int)code_value())
  6180. {
  6181. case 1:
  6182. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6183. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6184. break;
  6185. case 2:
  6186. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6187. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6188. break;
  6189. }
  6190. microstep_readings();
  6191. #endif
  6192. }
  6193. break;
  6194. case 701: //! M701 - load filament
  6195. {
  6196. if (mmu_enabled && code_seen('E'))
  6197. tmp_extruder = code_value();
  6198. gcode_M701();
  6199. }
  6200. break;
  6201. case 702: //! M702 [U C] -
  6202. {
  6203. #ifdef SNMM
  6204. if (code_seen('U'))
  6205. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  6206. else if (code_seen('C'))
  6207. extr_unload(); //! if "C" unload just current filament
  6208. else
  6209. extr_unload_all(); //! otherwise unload all filaments
  6210. #else
  6211. if (code_seen('C')) {
  6212. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  6213. }
  6214. else {
  6215. if(mmu_enabled) extr_unload(); //! unload current filament
  6216. else unload_filament();
  6217. }
  6218. #endif //SNMM
  6219. }
  6220. break;
  6221. case 999: // M999: Restart after being stopped
  6222. Stopped = false;
  6223. lcd_reset_alert_level();
  6224. gcode_LastN = Stopped_gcode_LastN;
  6225. FlushSerialRequestResend();
  6226. break;
  6227. default:
  6228. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6229. }
  6230. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6231. mcode_in_progress = 0;
  6232. }
  6233. }
  6234. // end if(code_seen('M')) (end of M codes)
  6235. //! T<extruder nr.> - select extruder in case of multi extruder printer
  6236. //! select filament in case of MMU_V2
  6237. //! if extruder is "?", open menu to let the user select extruder/filament
  6238. //!
  6239. //! For MMU_V2:
  6240. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  6241. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  6242. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  6243. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  6244. else if(code_seen('T'))
  6245. {
  6246. int index;
  6247. bool load_to_nozzle = false;
  6248. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6249. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  6250. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  6251. SERIAL_ECHOLNPGM("Invalid T code.");
  6252. }
  6253. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  6254. if (mmu_enabled)
  6255. {
  6256. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6257. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6258. {
  6259. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6260. }
  6261. else
  6262. {
  6263. st_synchronize();
  6264. mmu_command(MmuCmd::T0 + tmp_extruder);
  6265. manage_response(true, true, MMU_TCODE_MOVE);
  6266. }
  6267. }
  6268. }
  6269. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  6270. if (mmu_enabled)
  6271. {
  6272. st_synchronize();
  6273. mmu_continue_loading(is_usb_printing);
  6274. mmu_extruder = tmp_extruder; //filament change is finished
  6275. mmu_load_to_nozzle();
  6276. }
  6277. }
  6278. else {
  6279. if (*(strchr_pointer + index) == '?')
  6280. {
  6281. if(mmu_enabled)
  6282. {
  6283. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  6284. load_to_nozzle = true;
  6285. } else
  6286. {
  6287. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  6288. }
  6289. }
  6290. else {
  6291. tmp_extruder = code_value();
  6292. if (mmu_enabled && lcd_autoDepleteEnabled())
  6293. {
  6294. tmp_extruder = ad_getAlternative(tmp_extruder);
  6295. }
  6296. }
  6297. st_synchronize();
  6298. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6299. if (mmu_enabled)
  6300. {
  6301. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  6302. {
  6303. printf_P(PSTR("Duplicate T-code ignored.\n"));
  6304. }
  6305. else
  6306. {
  6307. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6308. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  6309. {
  6310. mmu_command(MmuCmd::K0 + tmp_extruder);
  6311. manage_response(true, true, MMU_UNLOAD_MOVE);
  6312. }
  6313. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  6314. mmu_command(MmuCmd::T0 + tmp_extruder);
  6315. manage_response(true, true, MMU_TCODE_MOVE);
  6316. mmu_continue_loading(is_usb_printing);
  6317. mmu_extruder = tmp_extruder; //filament change is finished
  6318. if (load_to_nozzle)// for single material usage with mmu
  6319. {
  6320. mmu_load_to_nozzle();
  6321. }
  6322. }
  6323. }
  6324. else
  6325. {
  6326. #ifdef SNMM
  6327. #ifdef LIN_ADVANCE
  6328. if (mmu_extruder != tmp_extruder)
  6329. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6330. #endif
  6331. mmu_extruder = tmp_extruder;
  6332. _delay(100);
  6333. disable_e0();
  6334. disable_e1();
  6335. disable_e2();
  6336. pinMode(E_MUX0_PIN, OUTPUT);
  6337. pinMode(E_MUX1_PIN, OUTPUT);
  6338. _delay(100);
  6339. SERIAL_ECHO_START;
  6340. SERIAL_ECHO("T:");
  6341. SERIAL_ECHOLN((int)tmp_extruder);
  6342. switch (tmp_extruder) {
  6343. case 1:
  6344. WRITE(E_MUX0_PIN, HIGH);
  6345. WRITE(E_MUX1_PIN, LOW);
  6346. break;
  6347. case 2:
  6348. WRITE(E_MUX0_PIN, LOW);
  6349. WRITE(E_MUX1_PIN, HIGH);
  6350. break;
  6351. case 3:
  6352. WRITE(E_MUX0_PIN, HIGH);
  6353. WRITE(E_MUX1_PIN, HIGH);
  6354. break;
  6355. default:
  6356. WRITE(E_MUX0_PIN, LOW);
  6357. WRITE(E_MUX1_PIN, LOW);
  6358. break;
  6359. }
  6360. _delay(100);
  6361. #else //SNMM
  6362. if (tmp_extruder >= EXTRUDERS) {
  6363. SERIAL_ECHO_START;
  6364. SERIAL_ECHOPGM("T");
  6365. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6366. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  6367. }
  6368. else {
  6369. #if EXTRUDERS > 1
  6370. boolean make_move = false;
  6371. #endif
  6372. if (code_seen('F')) {
  6373. #if EXTRUDERS > 1
  6374. make_move = true;
  6375. #endif
  6376. next_feedrate = code_value();
  6377. if (next_feedrate > 0.0) {
  6378. feedrate = next_feedrate;
  6379. }
  6380. }
  6381. #if EXTRUDERS > 1
  6382. if (tmp_extruder != active_extruder) {
  6383. // Save current position to return to after applying extruder offset
  6384. memcpy(destination, current_position, sizeof(destination));
  6385. // Offset extruder (only by XY)
  6386. int i;
  6387. for (i = 0; i < 2; i++) {
  6388. current_position[i] = current_position[i] -
  6389. extruder_offset[i][active_extruder] +
  6390. extruder_offset[i][tmp_extruder];
  6391. }
  6392. // Set the new active extruder and position
  6393. active_extruder = tmp_extruder;
  6394. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6395. // Move to the old position if 'F' was in the parameters
  6396. if (make_move && Stopped == false) {
  6397. prepare_move();
  6398. }
  6399. }
  6400. #endif
  6401. SERIAL_ECHO_START;
  6402. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  6403. SERIAL_PROTOCOLLN((int)active_extruder);
  6404. }
  6405. #endif //SNMM
  6406. }
  6407. }
  6408. } // end if(code_seen('T')) (end of T codes)
  6409. else if (code_seen('D')) // D codes (debug)
  6410. {
  6411. switch((int)code_value())
  6412. {
  6413. case -1: //! D-1 - Endless loop
  6414. dcode__1(); break;
  6415. #ifdef DEBUG_DCODES
  6416. case 0: //! D0 - Reset
  6417. dcode_0(); break;
  6418. case 1: //! D1 - Clear EEPROM
  6419. dcode_1(); break;
  6420. case 2: //! D2 - Read/Write RAM
  6421. dcode_2(); break;
  6422. #endif //DEBUG_DCODES
  6423. #ifdef DEBUG_DCODE3
  6424. case 3: //! D3 - Read/Write EEPROM
  6425. dcode_3(); break;
  6426. #endif //DEBUG_DCODE3
  6427. #ifdef DEBUG_DCODES
  6428. case 4: //! D4 - Read/Write PIN
  6429. dcode_4(); break;
  6430. #endif //DEBUG_DCODES
  6431. #ifdef DEBUG_DCODE5
  6432. case 5: // D5 - Read/Write FLASH
  6433. dcode_5(); break;
  6434. break;
  6435. #endif //DEBUG_DCODE5
  6436. #ifdef DEBUG_DCODES
  6437. case 6: // D6 - Read/Write external FLASH
  6438. dcode_6(); break;
  6439. case 7: //! D7 - Read/Write Bootloader
  6440. dcode_7(); break;
  6441. case 8: //! D8 - Read/Write PINDA
  6442. dcode_8(); break;
  6443. case 9: //! D9 - Read/Write ADC
  6444. dcode_9(); break;
  6445. case 10: //! D10 - XYZ calibration = OK
  6446. dcode_10(); break;
  6447. #endif //DEBUG_DCODES
  6448. #ifdef HEATBED_ANALYSIS
  6449. case 80:
  6450. {
  6451. float dimension_x = 40;
  6452. float dimension_y = 40;
  6453. int points_x = 40;
  6454. int points_y = 40;
  6455. float offset_x = 74;
  6456. float offset_y = 33;
  6457. if (code_seen('E')) dimension_x = code_value();
  6458. if (code_seen('F')) dimension_y = code_value();
  6459. if (code_seen('G')) {points_x = code_value(); }
  6460. if (code_seen('H')) {points_y = code_value(); }
  6461. if (code_seen('I')) {offset_x = code_value(); }
  6462. if (code_seen('J')) {offset_y = code_value(); }
  6463. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  6464. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  6465. printf_P(PSTR("POINTS X: %d\n"), points_x);
  6466. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  6467. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  6468. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  6469. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6470. }break;
  6471. case 81:
  6472. {
  6473. float dimension_x = 40;
  6474. float dimension_y = 40;
  6475. int points_x = 40;
  6476. int points_y = 40;
  6477. float offset_x = 74;
  6478. float offset_y = 33;
  6479. if (code_seen('E')) dimension_x = code_value();
  6480. if (code_seen('F')) dimension_y = code_value();
  6481. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  6482. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  6483. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  6484. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  6485. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  6486. } break;
  6487. #endif //HEATBED_ANALYSIS
  6488. #ifdef DEBUG_DCODES
  6489. case 106: //D106 print measured fan speed for different pwm values
  6490. {
  6491. for (int i = 255; i > 0; i = i - 5) {
  6492. fanSpeed = i;
  6493. //delay_keep_alive(2000);
  6494. for (int j = 0; j < 100; j++) {
  6495. delay_keep_alive(100);
  6496. }
  6497. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  6498. }
  6499. }break;
  6500. #ifdef TMC2130
  6501. case 2130: //! D2130 - TMC2130
  6502. dcode_2130(); break;
  6503. #endif //TMC2130
  6504. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  6505. case 9125: //! D9125 - FILAMENT_SENSOR
  6506. dcode_9125(); break;
  6507. #endif //FILAMENT_SENSOR
  6508. #endif //DEBUG_DCODES
  6509. }
  6510. }
  6511. else
  6512. {
  6513. SERIAL_ECHO_START;
  6514. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6515. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6516. SERIAL_ECHOLNPGM("\"(2)");
  6517. }
  6518. KEEPALIVE_STATE(NOT_BUSY);
  6519. ClearToSend();
  6520. }
  6521. void FlushSerialRequestResend()
  6522. {
  6523. //char cmdbuffer[bufindr][100]="Resend:";
  6524. MYSERIAL.flush();
  6525. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  6526. }
  6527. // Confirm the execution of a command, if sent from a serial line.
  6528. // Execution of a command from a SD card will not be confirmed.
  6529. void ClearToSend()
  6530. {
  6531. previous_millis_cmd = _millis();
  6532. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6533. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  6534. }
  6535. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6536. void update_currents() {
  6537. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6538. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6539. float tmp_motor[3];
  6540. //SERIAL_ECHOLNPGM("Currents updated: ");
  6541. if (destination[Z_AXIS] < Z_SILENT) {
  6542. //SERIAL_ECHOLNPGM("LOW");
  6543. for (uint8_t i = 0; i < 3; i++) {
  6544. st_current_set(i, current_low[i]);
  6545. /*MYSERIAL.print(int(i));
  6546. SERIAL_ECHOPGM(": ");
  6547. MYSERIAL.println(current_low[i]);*/
  6548. }
  6549. }
  6550. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6551. //SERIAL_ECHOLNPGM("HIGH");
  6552. for (uint8_t i = 0; i < 3; i++) {
  6553. st_current_set(i, current_high[i]);
  6554. /*MYSERIAL.print(int(i));
  6555. SERIAL_ECHOPGM(": ");
  6556. MYSERIAL.println(current_high[i]);*/
  6557. }
  6558. }
  6559. else {
  6560. for (uint8_t i = 0; i < 3; i++) {
  6561. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6562. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6563. st_current_set(i, tmp_motor[i]);
  6564. /*MYSERIAL.print(int(i));
  6565. SERIAL_ECHOPGM(": ");
  6566. MYSERIAL.println(tmp_motor[i]);*/
  6567. }
  6568. }
  6569. }
  6570. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6571. void get_coordinates()
  6572. {
  6573. bool seen[4]={false,false,false,false};
  6574. for(int8_t i=0; i < NUM_AXIS; i++) {
  6575. if(code_seen(axis_codes[i]))
  6576. {
  6577. bool relative = axis_relative_modes[i] || relative_mode;
  6578. destination[i] = (float)code_value();
  6579. if (i == E_AXIS) {
  6580. float emult = extruder_multiplier[active_extruder];
  6581. if (emult != 1.) {
  6582. if (! relative) {
  6583. destination[i] -= current_position[i];
  6584. relative = true;
  6585. }
  6586. destination[i] *= emult;
  6587. }
  6588. }
  6589. if (relative)
  6590. destination[i] += current_position[i];
  6591. seen[i]=true;
  6592. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6593. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6594. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6595. }
  6596. else destination[i] = current_position[i]; //Are these else lines really needed?
  6597. }
  6598. if(code_seen('F')) {
  6599. next_feedrate = code_value();
  6600. #ifdef MAX_SILENT_FEEDRATE
  6601. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6602. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6603. #endif //MAX_SILENT_FEEDRATE
  6604. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6605. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6606. {
  6607. // float e_max_speed =
  6608. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6609. }
  6610. }
  6611. }
  6612. void get_arc_coordinates()
  6613. {
  6614. #ifdef SF_ARC_FIX
  6615. bool relative_mode_backup = relative_mode;
  6616. relative_mode = true;
  6617. #endif
  6618. get_coordinates();
  6619. #ifdef SF_ARC_FIX
  6620. relative_mode=relative_mode_backup;
  6621. #endif
  6622. if(code_seen('I')) {
  6623. offset[0] = code_value();
  6624. }
  6625. else {
  6626. offset[0] = 0.0;
  6627. }
  6628. if(code_seen('J')) {
  6629. offset[1] = code_value();
  6630. }
  6631. else {
  6632. offset[1] = 0.0;
  6633. }
  6634. }
  6635. void clamp_to_software_endstops(float target[3])
  6636. {
  6637. #ifdef DEBUG_DISABLE_SWLIMITS
  6638. return;
  6639. #endif //DEBUG_DISABLE_SWLIMITS
  6640. world2machine_clamp(target[0], target[1]);
  6641. // Clamp the Z coordinate.
  6642. if (min_software_endstops) {
  6643. float negative_z_offset = 0;
  6644. #ifdef ENABLE_AUTO_BED_LEVELING
  6645. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6646. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  6647. #endif
  6648. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6649. }
  6650. if (max_software_endstops) {
  6651. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6652. }
  6653. }
  6654. #ifdef MESH_BED_LEVELING
  6655. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6656. float dx = x - current_position[X_AXIS];
  6657. float dy = y - current_position[Y_AXIS];
  6658. float dz = z - current_position[Z_AXIS];
  6659. int n_segments = 0;
  6660. if (mbl.active) {
  6661. float len = abs(dx) + abs(dy);
  6662. if (len > 0)
  6663. // Split to 3cm segments or shorter.
  6664. n_segments = int(ceil(len / 30.f));
  6665. }
  6666. if (n_segments > 1) {
  6667. float de = e - current_position[E_AXIS];
  6668. for (int i = 1; i < n_segments; ++ i) {
  6669. float t = float(i) / float(n_segments);
  6670. if (saved_printing || (mbl.active == false)) return;
  6671. plan_buffer_line(
  6672. current_position[X_AXIS] + t * dx,
  6673. current_position[Y_AXIS] + t * dy,
  6674. current_position[Z_AXIS] + t * dz,
  6675. current_position[E_AXIS] + t * de,
  6676. feed_rate, extruder);
  6677. }
  6678. }
  6679. // The rest of the path.
  6680. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6681. current_position[X_AXIS] = x;
  6682. current_position[Y_AXIS] = y;
  6683. current_position[Z_AXIS] = z;
  6684. current_position[E_AXIS] = e;
  6685. }
  6686. #endif // MESH_BED_LEVELING
  6687. void prepare_move()
  6688. {
  6689. clamp_to_software_endstops(destination);
  6690. previous_millis_cmd = _millis();
  6691. // Do not use feedmultiply for E or Z only moves
  6692. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6693. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6694. }
  6695. else {
  6696. #ifdef MESH_BED_LEVELING
  6697. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6698. #else
  6699. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6700. #endif
  6701. }
  6702. for(int8_t i=0; i < NUM_AXIS; i++) {
  6703. current_position[i] = destination[i];
  6704. }
  6705. }
  6706. void prepare_arc_move(char isclockwise) {
  6707. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6708. // Trace the arc
  6709. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6710. // As far as the parser is concerned, the position is now == target. In reality the
  6711. // motion control system might still be processing the action and the real tool position
  6712. // in any intermediate location.
  6713. for(int8_t i=0; i < NUM_AXIS; i++) {
  6714. current_position[i] = destination[i];
  6715. }
  6716. previous_millis_cmd = _millis();
  6717. }
  6718. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6719. #if defined(FAN_PIN)
  6720. #if CONTROLLERFAN_PIN == FAN_PIN
  6721. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6722. #endif
  6723. #endif
  6724. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6725. unsigned long lastMotorCheck = 0;
  6726. void controllerFan()
  6727. {
  6728. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6729. {
  6730. lastMotorCheck = _millis();
  6731. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6732. #if EXTRUDERS > 2
  6733. || !READ(E2_ENABLE_PIN)
  6734. #endif
  6735. #if EXTRUDER > 1
  6736. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6737. || !READ(X2_ENABLE_PIN)
  6738. #endif
  6739. || !READ(E1_ENABLE_PIN)
  6740. #endif
  6741. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6742. {
  6743. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  6744. }
  6745. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6746. {
  6747. digitalWrite(CONTROLLERFAN_PIN, 0);
  6748. analogWrite(CONTROLLERFAN_PIN, 0);
  6749. }
  6750. else
  6751. {
  6752. // allows digital or PWM fan output to be used (see M42 handling)
  6753. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6754. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6755. }
  6756. }
  6757. }
  6758. #endif
  6759. #ifdef TEMP_STAT_LEDS
  6760. static bool blue_led = false;
  6761. static bool red_led = false;
  6762. static uint32_t stat_update = 0;
  6763. void handle_status_leds(void) {
  6764. float max_temp = 0.0;
  6765. if(_millis() > stat_update) {
  6766. stat_update += 500; // Update every 0.5s
  6767. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6768. max_temp = max(max_temp, degHotend(cur_extruder));
  6769. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6770. }
  6771. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6772. max_temp = max(max_temp, degTargetBed());
  6773. max_temp = max(max_temp, degBed());
  6774. #endif
  6775. if((max_temp > 55.0) && (red_led == false)) {
  6776. digitalWrite(STAT_LED_RED, 1);
  6777. digitalWrite(STAT_LED_BLUE, 0);
  6778. red_led = true;
  6779. blue_led = false;
  6780. }
  6781. if((max_temp < 54.0) && (blue_led == false)) {
  6782. digitalWrite(STAT_LED_RED, 0);
  6783. digitalWrite(STAT_LED_BLUE, 1);
  6784. red_led = false;
  6785. blue_led = true;
  6786. }
  6787. }
  6788. }
  6789. #endif
  6790. #ifdef SAFETYTIMER
  6791. /**
  6792. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6793. *
  6794. * Full screen blocking notification message is shown after heater turning off.
  6795. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6796. * damage print.
  6797. *
  6798. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6799. */
  6800. static void handleSafetyTimer()
  6801. {
  6802. #if (EXTRUDERS > 1)
  6803. #error Implemented only for one extruder.
  6804. #endif //(EXTRUDERS > 1)
  6805. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6806. {
  6807. safetyTimer.stop();
  6808. }
  6809. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6810. {
  6811. safetyTimer.start();
  6812. }
  6813. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  6814. {
  6815. setTargetBed(0);
  6816. setAllTargetHotends(0);
  6817. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  6818. }
  6819. }
  6820. #endif //SAFETYTIMER
  6821. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6822. {
  6823. bool bInhibitFlag;
  6824. #ifdef FILAMENT_SENSOR
  6825. if (mmu_enabled == false)
  6826. {
  6827. //-// if (mcode_in_progress != 600) //M600 not in progress
  6828. #ifdef PAT9125
  6829. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  6830. #endif // PAT9125
  6831. #ifdef IR_SENSOR
  6832. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  6833. #endif // IR_SENSOR
  6834. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  6835. {
  6836. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && !wizard_active)
  6837. {
  6838. if (fsensor_check_autoload())
  6839. {
  6840. #ifdef PAT9125
  6841. fsensor_autoload_check_stop();
  6842. #endif //PAT9125
  6843. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  6844. if(0)
  6845. {
  6846. if ((eSoundMode == e_SOUND_MODE_LOUD) || (eSoundMode == e_SOUND_MODE_ONCE))
  6847. _tone(BEEPER, 1000);
  6848. delay_keep_alive(50);
  6849. _noTone(BEEPER);
  6850. loading_flag = true;
  6851. enquecommand_front_P((PSTR("M701")));
  6852. }
  6853. else
  6854. {
  6855. /*
  6856. lcd_update_enable(false);
  6857. show_preheat_nozzle_warning();
  6858. lcd_update_enable(true);
  6859. */
  6860. eFilamentAction=FilamentAction::AutoLoad;
  6861. bFilamentFirstRun=false;
  6862. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  6863. {
  6864. bFilamentPreheatState=true;
  6865. // mFilamentItem(target_temperature[0],target_temperature_bed);
  6866. menu_submenu(mFilamentItemForce);
  6867. }
  6868. else
  6869. {
  6870. menu_submenu(mFilamentMenu);
  6871. lcd_timeoutToStatus.start();
  6872. }
  6873. }
  6874. }
  6875. }
  6876. else
  6877. {
  6878. #ifdef PAT9125
  6879. fsensor_autoload_check_stop();
  6880. #endif //PAT9125
  6881. fsensor_update();
  6882. }
  6883. }
  6884. }
  6885. #endif //FILAMENT_SENSOR
  6886. #ifdef SAFETYTIMER
  6887. handleSafetyTimer();
  6888. #endif //SAFETYTIMER
  6889. #if defined(KILL_PIN) && KILL_PIN > -1
  6890. static int killCount = 0; // make the inactivity button a bit less responsive
  6891. const int KILL_DELAY = 10000;
  6892. #endif
  6893. if(buflen < (BUFSIZE-1)){
  6894. get_command();
  6895. }
  6896. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  6897. if(max_inactive_time)
  6898. kill(_n(""), 4);
  6899. if(stepper_inactive_time) {
  6900. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  6901. {
  6902. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6903. disable_x();
  6904. disable_y();
  6905. disable_z();
  6906. disable_e0();
  6907. disable_e1();
  6908. disable_e2();
  6909. }
  6910. }
  6911. }
  6912. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6913. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  6914. {
  6915. chdkActive = false;
  6916. WRITE(CHDK, LOW);
  6917. }
  6918. #endif
  6919. #if defined(KILL_PIN) && KILL_PIN > -1
  6920. // Check if the kill button was pressed and wait just in case it was an accidental
  6921. // key kill key press
  6922. // -------------------------------------------------------------------------------
  6923. if( 0 == READ(KILL_PIN) )
  6924. {
  6925. killCount++;
  6926. }
  6927. else if (killCount > 0)
  6928. {
  6929. killCount--;
  6930. }
  6931. // Exceeded threshold and we can confirm that it was not accidental
  6932. // KILL the machine
  6933. // ----------------------------------------------------------------
  6934. if ( killCount >= KILL_DELAY)
  6935. {
  6936. kill("", 5);
  6937. }
  6938. #endif
  6939. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6940. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6941. #endif
  6942. #ifdef EXTRUDER_RUNOUT_PREVENT
  6943. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6944. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6945. {
  6946. bool oldstatus=READ(E0_ENABLE_PIN);
  6947. enable_e0();
  6948. float oldepos=current_position[E_AXIS];
  6949. float oldedes=destination[E_AXIS];
  6950. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6951. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  6952. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  6953. current_position[E_AXIS]=oldepos;
  6954. destination[E_AXIS]=oldedes;
  6955. plan_set_e_position(oldepos);
  6956. previous_millis_cmd=_millis();
  6957. st_synchronize();
  6958. WRITE(E0_ENABLE_PIN,oldstatus);
  6959. }
  6960. #endif
  6961. #ifdef TEMP_STAT_LEDS
  6962. handle_status_leds();
  6963. #endif
  6964. check_axes_activity();
  6965. mmu_loop();
  6966. }
  6967. void kill(const char *full_screen_message, unsigned char id)
  6968. {
  6969. printf_P(_N("KILL: %d\n"), id);
  6970. //return;
  6971. cli(); // Stop interrupts
  6972. disable_heater();
  6973. disable_x();
  6974. // SERIAL_ECHOLNPGM("kill - disable Y");
  6975. disable_y();
  6976. disable_z();
  6977. disable_e0();
  6978. disable_e1();
  6979. disable_e2();
  6980. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6981. pinMode(PS_ON_PIN,INPUT);
  6982. #endif
  6983. SERIAL_ERROR_START;
  6984. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  6985. if (full_screen_message != NULL) {
  6986. SERIAL_ERRORLNRPGM(full_screen_message);
  6987. lcd_display_message_fullscreen_P(full_screen_message);
  6988. } else {
  6989. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  6990. }
  6991. // FMC small patch to update the LCD before ending
  6992. sei(); // enable interrupts
  6993. for ( int i=5; i--; lcd_update(0))
  6994. {
  6995. _delay(200);
  6996. }
  6997. cli(); // disable interrupts
  6998. suicide();
  6999. while(1)
  7000. {
  7001. #ifdef WATCHDOG
  7002. wdt_reset();
  7003. #endif //WATCHDOG
  7004. /* Intentionally left empty */
  7005. } // Wait for reset
  7006. }
  7007. void Stop()
  7008. {
  7009. disable_heater();
  7010. if(Stopped == false) {
  7011. Stopped = true;
  7012. lcd_print_stop();
  7013. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7014. SERIAL_ERROR_START;
  7015. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  7016. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  7017. }
  7018. }
  7019. bool IsStopped() { return Stopped; };
  7020. #ifdef FAST_PWM_FAN
  7021. void setPwmFrequency(uint8_t pin, int val)
  7022. {
  7023. val &= 0x07;
  7024. switch(digitalPinToTimer(pin))
  7025. {
  7026. #if defined(TCCR0A)
  7027. case TIMER0A:
  7028. case TIMER0B:
  7029. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7030. // TCCR0B |= val;
  7031. break;
  7032. #endif
  7033. #if defined(TCCR1A)
  7034. case TIMER1A:
  7035. case TIMER1B:
  7036. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7037. // TCCR1B |= val;
  7038. break;
  7039. #endif
  7040. #if defined(TCCR2)
  7041. case TIMER2:
  7042. case TIMER2:
  7043. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7044. TCCR2 |= val;
  7045. break;
  7046. #endif
  7047. #if defined(TCCR2A)
  7048. case TIMER2A:
  7049. case TIMER2B:
  7050. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7051. TCCR2B |= val;
  7052. break;
  7053. #endif
  7054. #if defined(TCCR3A)
  7055. case TIMER3A:
  7056. case TIMER3B:
  7057. case TIMER3C:
  7058. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7059. TCCR3B |= val;
  7060. break;
  7061. #endif
  7062. #if defined(TCCR4A)
  7063. case TIMER4A:
  7064. case TIMER4B:
  7065. case TIMER4C:
  7066. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7067. TCCR4B |= val;
  7068. break;
  7069. #endif
  7070. #if defined(TCCR5A)
  7071. case TIMER5A:
  7072. case TIMER5B:
  7073. case TIMER5C:
  7074. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7075. TCCR5B |= val;
  7076. break;
  7077. #endif
  7078. }
  7079. }
  7080. #endif //FAST_PWM_FAN
  7081. //! @brief Get and validate extruder number
  7082. //!
  7083. //! If it is not specified, active_extruder is returned in parameter extruder.
  7084. //! @param [in] code M code number
  7085. //! @param [out] extruder
  7086. //! @return error
  7087. //! @retval true Invalid extruder specified in T code
  7088. //! @retval false Valid extruder specified in T code, or not specifiead
  7089. bool setTargetedHotend(int code, uint8_t &extruder)
  7090. {
  7091. extruder = active_extruder;
  7092. if(code_seen('T')) {
  7093. extruder = code_value();
  7094. if(extruder >= EXTRUDERS) {
  7095. SERIAL_ECHO_START;
  7096. switch(code){
  7097. case 104:
  7098. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  7099. break;
  7100. case 105:
  7101. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  7102. break;
  7103. case 109:
  7104. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  7105. break;
  7106. case 218:
  7107. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  7108. break;
  7109. case 221:
  7110. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  7111. break;
  7112. }
  7113. SERIAL_PROTOCOLLN((int)extruder);
  7114. return true;
  7115. }
  7116. }
  7117. return false;
  7118. }
  7119. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  7120. {
  7121. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  7122. {
  7123. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  7124. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  7125. }
  7126. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  7127. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  7128. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  7129. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  7130. total_filament_used = 0;
  7131. }
  7132. float calculate_extruder_multiplier(float diameter) {
  7133. float out = 1.f;
  7134. if (cs.volumetric_enabled && diameter > 0.f) {
  7135. float area = M_PI * diameter * diameter * 0.25;
  7136. out = 1.f / area;
  7137. }
  7138. if (extrudemultiply != 100)
  7139. out *= float(extrudemultiply) * 0.01f;
  7140. return out;
  7141. }
  7142. void calculate_extruder_multipliers() {
  7143. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  7144. #if EXTRUDERS > 1
  7145. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  7146. #if EXTRUDERS > 2
  7147. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  7148. #endif
  7149. #endif
  7150. }
  7151. void delay_keep_alive(unsigned int ms)
  7152. {
  7153. for (;;) {
  7154. manage_heater();
  7155. // Manage inactivity, but don't disable steppers on timeout.
  7156. manage_inactivity(true);
  7157. lcd_update(0);
  7158. if (ms == 0)
  7159. break;
  7160. else if (ms >= 50) {
  7161. _delay(50);
  7162. ms -= 50;
  7163. } else {
  7164. _delay(ms);
  7165. ms = 0;
  7166. }
  7167. }
  7168. }
  7169. static void wait_for_heater(long codenum, uint8_t extruder) {
  7170. #ifdef TEMP_RESIDENCY_TIME
  7171. long residencyStart;
  7172. residencyStart = -1;
  7173. /* continue to loop until we have reached the target temp
  7174. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  7175. while ((!cancel_heatup) && ((residencyStart == -1) ||
  7176. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  7177. #else
  7178. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  7179. #endif //TEMP_RESIDENCY_TIME
  7180. if ((_millis() - codenum) > 1000UL)
  7181. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  7182. if (!farm_mode) {
  7183. SERIAL_PROTOCOLPGM("T:");
  7184. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  7185. SERIAL_PROTOCOLPGM(" E:");
  7186. SERIAL_PROTOCOL((int)extruder);
  7187. #ifdef TEMP_RESIDENCY_TIME
  7188. SERIAL_PROTOCOLPGM(" W:");
  7189. if (residencyStart > -1)
  7190. {
  7191. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  7192. SERIAL_PROTOCOLLN(codenum);
  7193. }
  7194. else
  7195. {
  7196. SERIAL_PROTOCOLLN("?");
  7197. }
  7198. }
  7199. #else
  7200. SERIAL_PROTOCOLLN("");
  7201. #endif
  7202. codenum = _millis();
  7203. }
  7204. manage_heater();
  7205. manage_inactivity(true); //do not disable steppers
  7206. lcd_update(0);
  7207. #ifdef TEMP_RESIDENCY_TIME
  7208. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  7209. or when current temp falls outside the hysteresis after target temp was reached */
  7210. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  7211. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  7212. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  7213. {
  7214. residencyStart = _millis();
  7215. }
  7216. #endif //TEMP_RESIDENCY_TIME
  7217. }
  7218. }
  7219. void check_babystep()
  7220. {
  7221. int babystep_z;
  7222. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7223. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  7224. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  7225. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  7226. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  7227. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  7228. lcd_update_enable(true);
  7229. }
  7230. }
  7231. #ifdef HEATBED_ANALYSIS
  7232. void d_setup()
  7233. {
  7234. pinMode(D_DATACLOCK, INPUT_PULLUP);
  7235. pinMode(D_DATA, INPUT_PULLUP);
  7236. pinMode(D_REQUIRE, OUTPUT);
  7237. digitalWrite(D_REQUIRE, HIGH);
  7238. }
  7239. float d_ReadData()
  7240. {
  7241. int digit[13];
  7242. String mergeOutput;
  7243. float output;
  7244. digitalWrite(D_REQUIRE, HIGH);
  7245. for (int i = 0; i<13; i++)
  7246. {
  7247. for (int j = 0; j < 4; j++)
  7248. {
  7249. while (digitalRead(D_DATACLOCK) == LOW) {}
  7250. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7251. bitWrite(digit[i], j, digitalRead(D_DATA));
  7252. }
  7253. }
  7254. digitalWrite(D_REQUIRE, LOW);
  7255. mergeOutput = "";
  7256. output = 0;
  7257. for (int r = 5; r <= 10; r++) //Merge digits
  7258. {
  7259. mergeOutput += digit[r];
  7260. }
  7261. output = mergeOutput.toFloat();
  7262. if (digit[4] == 8) //Handle sign
  7263. {
  7264. output *= -1;
  7265. }
  7266. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7267. {
  7268. output /= 10;
  7269. }
  7270. return output;
  7271. }
  7272. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7273. int t1 = 0;
  7274. int t_delay = 0;
  7275. int digit[13];
  7276. int m;
  7277. char str[3];
  7278. //String mergeOutput;
  7279. char mergeOutput[15];
  7280. float output;
  7281. int mesh_point = 0; //index number of calibration point
  7282. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7283. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7284. float mesh_home_z_search = 4;
  7285. float measure_z_height = 0.2f;
  7286. float row[x_points_num];
  7287. int ix = 0;
  7288. int iy = 0;
  7289. const char* filename_wldsd = "mesh.txt";
  7290. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  7291. char numb_wldsd[8]; // (" -A.BCD" + null)
  7292. #ifdef MICROMETER_LOGGING
  7293. d_setup();
  7294. #endif //MICROMETER_LOGGING
  7295. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7296. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7297. unsigned int custom_message_type_old = custom_message_type;
  7298. unsigned int custom_message_state_old = custom_message_state;
  7299. custom_message_type = CustomMsg::MeshBedLeveling;
  7300. custom_message_state = (x_points_num * y_points_num) + 10;
  7301. lcd_update(1);
  7302. //mbl.reset();
  7303. babystep_undo();
  7304. card.openFile(filename_wldsd, false);
  7305. /*destination[Z_AXIS] = mesh_home_z_search;
  7306. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7307. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7308. for(int8_t i=0; i < NUM_AXIS; i++) {
  7309. current_position[i] = destination[i];
  7310. }
  7311. st_synchronize();
  7312. */
  7313. destination[Z_AXIS] = measure_z_height;
  7314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7315. for(int8_t i=0; i < NUM_AXIS; i++) {
  7316. current_position[i] = destination[i];
  7317. }
  7318. st_synchronize();
  7319. /*int l_feedmultiply = */setup_for_endstop_move(false);
  7320. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7321. SERIAL_PROTOCOL(x_points_num);
  7322. SERIAL_PROTOCOLPGM(",");
  7323. SERIAL_PROTOCOL(y_points_num);
  7324. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7325. SERIAL_PROTOCOL(mesh_home_z_search);
  7326. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7327. SERIAL_PROTOCOL(x_dimension);
  7328. SERIAL_PROTOCOLPGM(",");
  7329. SERIAL_PROTOCOL(y_dimension);
  7330. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7331. while (mesh_point != x_points_num * y_points_num) {
  7332. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7333. iy = mesh_point / x_points_num;
  7334. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7335. float z0 = 0.f;
  7336. /*destination[Z_AXIS] = mesh_home_z_search;
  7337. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7338. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7339. for(int8_t i=0; i < NUM_AXIS; i++) {
  7340. current_position[i] = destination[i];
  7341. }
  7342. st_synchronize();*/
  7343. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7344. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7345. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  7346. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  7347. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  7348. for(int8_t i=0; i < NUM_AXIS; i++) {
  7349. current_position[i] = destination[i];
  7350. }
  7351. st_synchronize();
  7352. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7353. delay_keep_alive(1000);
  7354. #ifdef MICROMETER_LOGGING
  7355. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7356. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7357. //strcat(data_wldsd, numb_wldsd);
  7358. //MYSERIAL.println(data_wldsd);
  7359. //delay(1000);
  7360. //delay(3000);
  7361. //t1 = millis();
  7362. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7363. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7364. memset(digit, 0, sizeof(digit));
  7365. //cli();
  7366. digitalWrite(D_REQUIRE, LOW);
  7367. for (int i = 0; i<13; i++)
  7368. {
  7369. //t1 = millis();
  7370. for (int j = 0; j < 4; j++)
  7371. {
  7372. while (digitalRead(D_DATACLOCK) == LOW) {}
  7373. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7374. //printf_P(PSTR("Done %d\n"), j);
  7375. bitWrite(digit[i], j, digitalRead(D_DATA));
  7376. }
  7377. //t_delay = (millis() - t1);
  7378. //SERIAL_PROTOCOLPGM(" ");
  7379. //SERIAL_PROTOCOL_F(t_delay, 5);
  7380. //SERIAL_PROTOCOLPGM(" ");
  7381. }
  7382. //sei();
  7383. digitalWrite(D_REQUIRE, HIGH);
  7384. mergeOutput[0] = '\0';
  7385. output = 0;
  7386. for (int r = 5; r <= 10; r++) //Merge digits
  7387. {
  7388. sprintf(str, "%d", digit[r]);
  7389. strcat(mergeOutput, str);
  7390. }
  7391. output = atof(mergeOutput);
  7392. if (digit[4] == 8) //Handle sign
  7393. {
  7394. output *= -1;
  7395. }
  7396. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7397. {
  7398. output *= 0.1;
  7399. }
  7400. //output = d_ReadData();
  7401. //row[ix] = current_position[Z_AXIS];
  7402. //row[ix] = d_ReadData();
  7403. row[ix] = output;
  7404. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7405. memset(data_wldsd, 0, sizeof(data_wldsd));
  7406. for (int i = 0; i < x_points_num; i++) {
  7407. SERIAL_PROTOCOLPGM(" ");
  7408. SERIAL_PROTOCOL_F(row[i], 5);
  7409. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7410. dtostrf(row[i], 7, 3, numb_wldsd);
  7411. strcat(data_wldsd, numb_wldsd);
  7412. }
  7413. card.write_command(data_wldsd);
  7414. SERIAL_PROTOCOLPGM("\n");
  7415. }
  7416. custom_message_state--;
  7417. mesh_point++;
  7418. lcd_update(1);
  7419. }
  7420. #endif //MICROMETER_LOGGING
  7421. card.closefile();
  7422. //clean_up_after_endstop_move(l_feedmultiply);
  7423. }
  7424. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7425. int t1 = 0;
  7426. int t_delay = 0;
  7427. int digit[13];
  7428. int m;
  7429. char str[3];
  7430. //String mergeOutput;
  7431. char mergeOutput[15];
  7432. float output;
  7433. int mesh_point = 0; //index number of calibration point
  7434. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7435. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7436. float mesh_home_z_search = 4;
  7437. float row[x_points_num];
  7438. int ix = 0;
  7439. int iy = 0;
  7440. const char* filename_wldsd = "wldsd.txt";
  7441. char data_wldsd[70];
  7442. char numb_wldsd[10];
  7443. d_setup();
  7444. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7445. // We don't know where we are! HOME!
  7446. // Push the commands to the front of the message queue in the reverse order!
  7447. // There shall be always enough space reserved for these commands.
  7448. repeatcommand_front(); // repeat G80 with all its parameters
  7449. enquecommand_front_P((PSTR("G28 W0")));
  7450. enquecommand_front_P((PSTR("G1 Z5")));
  7451. return;
  7452. }
  7453. unsigned int custom_message_type_old = custom_message_type;
  7454. unsigned int custom_message_state_old = custom_message_state;
  7455. custom_message_type = CustomMsg::MeshBedLeveling;
  7456. custom_message_state = (x_points_num * y_points_num) + 10;
  7457. lcd_update(1);
  7458. mbl.reset();
  7459. babystep_undo();
  7460. card.openFile(filename_wldsd, false);
  7461. current_position[Z_AXIS] = mesh_home_z_search;
  7462. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7463. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7464. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7465. int l_feedmultiply = setup_for_endstop_move(false);
  7466. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7467. SERIAL_PROTOCOL(x_points_num);
  7468. SERIAL_PROTOCOLPGM(",");
  7469. SERIAL_PROTOCOL(y_points_num);
  7470. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7471. SERIAL_PROTOCOL(mesh_home_z_search);
  7472. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7473. SERIAL_PROTOCOL(x_dimension);
  7474. SERIAL_PROTOCOLPGM(",");
  7475. SERIAL_PROTOCOL(y_dimension);
  7476. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7477. while (mesh_point != x_points_num * y_points_num) {
  7478. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7479. iy = mesh_point / x_points_num;
  7480. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7481. float z0 = 0.f;
  7482. current_position[Z_AXIS] = mesh_home_z_search;
  7483. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7484. st_synchronize();
  7485. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7486. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7487. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7488. st_synchronize();
  7489. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7490. break;
  7491. card.closefile();
  7492. }
  7493. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7494. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7495. //strcat(data_wldsd, numb_wldsd);
  7496. //MYSERIAL.println(data_wldsd);
  7497. //_delay(1000);
  7498. //_delay(3000);
  7499. //t1 = _millis();
  7500. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7501. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7502. memset(digit, 0, sizeof(digit));
  7503. //cli();
  7504. digitalWrite(D_REQUIRE, LOW);
  7505. for (int i = 0; i<13; i++)
  7506. {
  7507. //t1 = _millis();
  7508. for (int j = 0; j < 4; j++)
  7509. {
  7510. while (digitalRead(D_DATACLOCK) == LOW) {}
  7511. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7512. bitWrite(digit[i], j, digitalRead(D_DATA));
  7513. }
  7514. //t_delay = (_millis() - t1);
  7515. //SERIAL_PROTOCOLPGM(" ");
  7516. //SERIAL_PROTOCOL_F(t_delay, 5);
  7517. //SERIAL_PROTOCOLPGM(" ");
  7518. }
  7519. //sei();
  7520. digitalWrite(D_REQUIRE, HIGH);
  7521. mergeOutput[0] = '\0';
  7522. output = 0;
  7523. for (int r = 5; r <= 10; r++) //Merge digits
  7524. {
  7525. sprintf(str, "%d", digit[r]);
  7526. strcat(mergeOutput, str);
  7527. }
  7528. output = atof(mergeOutput);
  7529. if (digit[4] == 8) //Handle sign
  7530. {
  7531. output *= -1;
  7532. }
  7533. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7534. {
  7535. output *= 0.1;
  7536. }
  7537. //output = d_ReadData();
  7538. //row[ix] = current_position[Z_AXIS];
  7539. memset(data_wldsd, 0, sizeof(data_wldsd));
  7540. for (int i = 0; i <3; i++) {
  7541. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7542. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7543. strcat(data_wldsd, numb_wldsd);
  7544. strcat(data_wldsd, ";");
  7545. }
  7546. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7547. dtostrf(output, 8, 5, numb_wldsd);
  7548. strcat(data_wldsd, numb_wldsd);
  7549. //strcat(data_wldsd, ";");
  7550. card.write_command(data_wldsd);
  7551. //row[ix] = d_ReadData();
  7552. row[ix] = output; // current_position[Z_AXIS];
  7553. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7554. for (int i = 0; i < x_points_num; i++) {
  7555. SERIAL_PROTOCOLPGM(" ");
  7556. SERIAL_PROTOCOL_F(row[i], 5);
  7557. }
  7558. SERIAL_PROTOCOLPGM("\n");
  7559. }
  7560. custom_message_state--;
  7561. mesh_point++;
  7562. lcd_update(1);
  7563. }
  7564. card.closefile();
  7565. clean_up_after_endstop_move(l_feedmultiply);
  7566. }
  7567. #endif //HEATBED_ANALYSIS
  7568. void temp_compensation_start() {
  7569. custom_message_type = CustomMsg::TempCompPreheat;
  7570. custom_message_state = PINDA_HEAT_T + 1;
  7571. lcd_update(2);
  7572. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7573. current_position[E_AXIS] -= default_retraction;
  7574. }
  7575. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7576. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7577. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7578. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7579. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7580. st_synchronize();
  7581. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7582. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7583. delay_keep_alive(1000);
  7584. custom_message_state = PINDA_HEAT_T - i;
  7585. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7586. else lcd_update(1);
  7587. }
  7588. custom_message_type = CustomMsg::Status;
  7589. custom_message_state = 0;
  7590. }
  7591. void temp_compensation_apply() {
  7592. int i_add;
  7593. int z_shift = 0;
  7594. float z_shift_mm;
  7595. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7596. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7597. i_add = (target_temperature_bed - 60) / 10;
  7598. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7599. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  7600. }else {
  7601. //interpolation
  7602. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  7603. }
  7604. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7605. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7606. st_synchronize();
  7607. plan_set_z_position(current_position[Z_AXIS]);
  7608. }
  7609. else {
  7610. //we have no temp compensation data
  7611. }
  7612. }
  7613. float temp_comp_interpolation(float inp_temperature) {
  7614. //cubic spline interpolation
  7615. int n, i, j;
  7616. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7617. int shift[10];
  7618. int temp_C[10];
  7619. n = 6; //number of measured points
  7620. shift[0] = 0;
  7621. for (i = 0; i < n; i++) {
  7622. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7623. temp_C[i] = 50 + i * 10; //temperature in C
  7624. #ifdef PINDA_THERMISTOR
  7625. temp_C[i] = 35 + i * 5; //temperature in C
  7626. #else
  7627. temp_C[i] = 50 + i * 10; //temperature in C
  7628. #endif
  7629. x[i] = (float)temp_C[i];
  7630. f[i] = (float)shift[i];
  7631. }
  7632. if (inp_temperature < x[0]) return 0;
  7633. for (i = n - 1; i>0; i--) {
  7634. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7635. h[i - 1] = x[i] - x[i - 1];
  7636. }
  7637. //*********** formation of h, s , f matrix **************
  7638. for (i = 1; i<n - 1; i++) {
  7639. m[i][i] = 2 * (h[i - 1] + h[i]);
  7640. if (i != 1) {
  7641. m[i][i - 1] = h[i - 1];
  7642. m[i - 1][i] = h[i - 1];
  7643. }
  7644. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7645. }
  7646. //*********** forward elimination **************
  7647. for (i = 1; i<n - 2; i++) {
  7648. temp = (m[i + 1][i] / m[i][i]);
  7649. for (j = 1; j <= n - 1; j++)
  7650. m[i + 1][j] -= temp*m[i][j];
  7651. }
  7652. //*********** backward substitution *********
  7653. for (i = n - 2; i>0; i--) {
  7654. sum = 0;
  7655. for (j = i; j <= n - 2; j++)
  7656. sum += m[i][j] * s[j];
  7657. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7658. }
  7659. for (i = 0; i<n - 1; i++)
  7660. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7661. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7662. b = s[i] / 2;
  7663. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7664. d = f[i];
  7665. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7666. }
  7667. return sum;
  7668. }
  7669. #ifdef PINDA_THERMISTOR
  7670. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7671. {
  7672. if (!temp_cal_active) return 0;
  7673. if (!calibration_status_pinda()) return 0;
  7674. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  7675. }
  7676. #endif //PINDA_THERMISTOR
  7677. void long_pause() //long pause print
  7678. {
  7679. st_synchronize();
  7680. start_pause_print = _millis();
  7681. //retract
  7682. current_position[E_AXIS] -= default_retraction;
  7683. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7684. //lift z
  7685. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7686. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7687. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7688. //Move XY to side
  7689. current_position[X_AXIS] = X_PAUSE_POS;
  7690. current_position[Y_AXIS] = Y_PAUSE_POS;
  7691. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7692. // Turn off the print fan
  7693. fanSpeed = 0;
  7694. st_synchronize();
  7695. }
  7696. void serialecho_temperatures() {
  7697. float tt = degHotend(active_extruder);
  7698. SERIAL_PROTOCOLPGM("T:");
  7699. SERIAL_PROTOCOL(tt);
  7700. SERIAL_PROTOCOLPGM(" E:");
  7701. SERIAL_PROTOCOL((int)active_extruder);
  7702. SERIAL_PROTOCOLPGM(" B:");
  7703. SERIAL_PROTOCOL_F(degBed(), 1);
  7704. SERIAL_PROTOCOLLN("");
  7705. }
  7706. extern uint32_t sdpos_atomic;
  7707. #ifdef UVLO_SUPPORT
  7708. void uvlo_()
  7709. {
  7710. unsigned long time_start = _millis();
  7711. bool sd_print = card.sdprinting;
  7712. // Conserve power as soon as possible.
  7713. disable_x();
  7714. disable_y();
  7715. #ifdef TMC2130
  7716. tmc2130_set_current_h(Z_AXIS, 20);
  7717. tmc2130_set_current_r(Z_AXIS, 20);
  7718. tmc2130_set_current_h(E_AXIS, 20);
  7719. tmc2130_set_current_r(E_AXIS, 20);
  7720. #endif //TMC2130
  7721. // Indicate that the interrupt has been triggered.
  7722. // SERIAL_ECHOLNPGM("UVLO");
  7723. // Read out the current Z motor microstep counter. This will be later used
  7724. // for reaching the zero full step before powering off.
  7725. uint16_t z_microsteps = 0;
  7726. #ifdef TMC2130
  7727. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7728. #endif //TMC2130
  7729. // Calculate the file position, from which to resume this print.
  7730. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7731. {
  7732. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7733. sd_position -= sdlen_planner;
  7734. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7735. sd_position -= sdlen_cmdqueue;
  7736. if (sd_position < 0) sd_position = 0;
  7737. }
  7738. // Backup the feedrate in mm/min.
  7739. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7740. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7741. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7742. // are in action.
  7743. planner_abort_hard();
  7744. // Store the current extruder position.
  7745. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7746. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7747. // Clean the input command queue.
  7748. cmdqueue_reset();
  7749. card.sdprinting = false;
  7750. // card.closefile();
  7751. // Enable stepper driver interrupt to move Z axis.
  7752. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7753. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7754. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7755. sei();
  7756. plan_buffer_line(
  7757. current_position[X_AXIS],
  7758. current_position[Y_AXIS],
  7759. current_position[Z_AXIS],
  7760. current_position[E_AXIS] - default_retraction,
  7761. 95, active_extruder);
  7762. st_synchronize();
  7763. disable_e0();
  7764. plan_buffer_line(
  7765. current_position[X_AXIS],
  7766. current_position[Y_AXIS],
  7767. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7768. current_position[E_AXIS] - default_retraction,
  7769. 40, active_extruder);
  7770. st_synchronize();
  7771. disable_e0();
  7772. plan_buffer_line(
  7773. current_position[X_AXIS],
  7774. current_position[Y_AXIS],
  7775. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  7776. current_position[E_AXIS] - default_retraction,
  7777. 40, active_extruder);
  7778. st_synchronize();
  7779. disable_e0();
  7780. disable_z();
  7781. // Move Z up to the next 0th full step.
  7782. // Write the file position.
  7783. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7784. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7785. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7786. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7787. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7788. // Scale the z value to 1u resolution.
  7789. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  7790. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7791. }
  7792. // Read out the current Z motor microstep counter. This will be later used
  7793. // for reaching the zero full step before powering off.
  7794. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7795. // Store the current position.
  7796. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7797. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7798. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  7799. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7800. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7801. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7802. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7803. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7804. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7805. #if EXTRUDERS > 1
  7806. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7807. #if EXTRUDERS > 2
  7808. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7809. #endif
  7810. #endif
  7811. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7812. // Finaly store the "power outage" flag.
  7813. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7814. st_synchronize();
  7815. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7816. disable_z();
  7817. // Increment power failure counter
  7818. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7819. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7820. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  7821. #if 0
  7822. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7823. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7824. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7825. st_synchronize();
  7826. #endif
  7827. wdt_enable(WDTO_500MS);
  7828. WRITE(BEEPER,HIGH);
  7829. while(1)
  7830. ;
  7831. }
  7832. void uvlo_tiny()
  7833. {
  7834. uint16_t z_microsteps=0;
  7835. // Conserve power as soon as possible.
  7836. disable_x();
  7837. disable_y();
  7838. disable_e0();
  7839. #ifdef TMC2130
  7840. tmc2130_set_current_h(Z_AXIS, 20);
  7841. tmc2130_set_current_r(Z_AXIS, 20);
  7842. #endif //TMC2130
  7843. // Read out the current Z motor microstep counter
  7844. #ifdef TMC2130
  7845. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7846. #endif //TMC2130
  7847. planner_abort_hard();
  7848. disable_z();
  7849. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  7850. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  7851. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  7852. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7853. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7854. }
  7855. //after multiple power panics current Z axis is unknow
  7856. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  7857. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  7858. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  7859. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  7860. }
  7861. // Finaly store the "power outage" flag.
  7862. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7863. // Increment power failure counter
  7864. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7865. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7866. wdt_enable(WDTO_500MS);
  7867. WRITE(BEEPER,HIGH);
  7868. while(1)
  7869. ;
  7870. }
  7871. #endif //UVLO_SUPPORT
  7872. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7873. void setup_fan_interrupt() {
  7874. //INT7
  7875. DDRE &= ~(1 << 7); //input pin
  7876. PORTE &= ~(1 << 7); //no internal pull-up
  7877. //start with sensing rising edge
  7878. EICRB &= ~(1 << 6);
  7879. EICRB |= (1 << 7);
  7880. //enable INT7 interrupt
  7881. EIMSK |= (1 << 7);
  7882. }
  7883. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7884. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7885. ISR(INT7_vect) {
  7886. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7887. #ifdef FAN_SOFT_PWM
  7888. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  7889. #else //FAN_SOFT_PWM
  7890. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7891. #endif //FAN_SOFT_PWM
  7892. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7893. t_fan_rising_edge = millis_nc();
  7894. }
  7895. else { //interrupt was triggered by falling edge
  7896. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7897. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7898. }
  7899. }
  7900. EICRB ^= (1 << 6); //change edge
  7901. }
  7902. #endif
  7903. #ifdef UVLO_SUPPORT
  7904. void setup_uvlo_interrupt() {
  7905. DDRE &= ~(1 << 4); //input pin
  7906. PORTE &= ~(1 << 4); //no internal pull-up
  7907. //sensing falling edge
  7908. EICRB |= (1 << 0);
  7909. EICRB &= ~(1 << 1);
  7910. //enable INT4 interrupt
  7911. EIMSK |= (1 << 4);
  7912. }
  7913. ISR(INT4_vect) {
  7914. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7915. SERIAL_ECHOLNPGM("INT4");
  7916. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  7917. //Don't change || to && because in some case the printer can be moving although IS_SD_PRINTING is zero
  7918. if((IS_SD_PRINTING ) || (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  7919. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7920. }
  7921. void recover_print(uint8_t automatic) {
  7922. char cmd[30];
  7923. lcd_update_enable(true);
  7924. lcd_update(2);
  7925. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7926. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7927. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7928. // Lift the print head, so one may remove the excess priming material.
  7929. if(!bTiny&&(current_position[Z_AXIS]<25))
  7930. enquecommand_P(PSTR("G1 Z25 F800"));
  7931. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7932. enquecommand_P(PSTR("G28 X Y"));
  7933. // Set the target bed and nozzle temperatures and wait.
  7934. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7935. enquecommand(cmd);
  7936. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7937. enquecommand(cmd);
  7938. enquecommand_P(PSTR("M83")); //E axis relative mode
  7939. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7940. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7941. if(automatic == 0){
  7942. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7943. }
  7944. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  7945. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7946. // Restart the print.
  7947. restore_print_from_eeprom();
  7948. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7949. }
  7950. void recover_machine_state_after_power_panic(bool bTiny)
  7951. {
  7952. char cmd[30];
  7953. // 1) Recover the logical cordinates at the time of the power panic.
  7954. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7955. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7956. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7957. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  7958. mbl.active = false;
  7959. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  7960. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7961. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  7962. // Scale the z value to 10u resolution.
  7963. int16_t v;
  7964. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  7965. if (v != 0)
  7966. mbl.active = true;
  7967. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7968. }
  7969. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7970. // The current position after power panic is moved to the next closest 0th full step.
  7971. if(bTiny){
  7972. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  7973. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  7974. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7975. //after multiple power panics the print is slightly in the air so get it little bit down.
  7976. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  7977. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  7978. }
  7979. else{
  7980. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7981. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  7982. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  7983. }
  7984. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7985. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7986. sprintf_P(cmd, PSTR("G92 E"));
  7987. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7988. enquecommand(cmd);
  7989. }
  7990. memcpy(destination, current_position, sizeof(destination));
  7991. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7992. print_world_coordinates();
  7993. // 3) Initialize the logical to physical coordinate system transformation.
  7994. world2machine_initialize();
  7995. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7996. // print_mesh_bed_leveling_table();
  7997. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7998. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7999. babystep_load();
  8000. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  8001. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  8002. // 6) Power up the motors, mark their positions as known.
  8003. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  8004. axis_known_position[X_AXIS] = true; enable_x();
  8005. axis_known_position[Y_AXIS] = true; enable_y();
  8006. axis_known_position[Z_AXIS] = true; enable_z();
  8007. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  8008. print_physical_coordinates();
  8009. // 7) Recover the target temperatures.
  8010. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  8011. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  8012. // 8) Recover extruder multipilers
  8013. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  8014. #if EXTRUDERS > 1
  8015. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  8016. #if EXTRUDERS > 2
  8017. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  8018. #endif
  8019. #endif
  8020. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  8021. }
  8022. void restore_print_from_eeprom() {
  8023. int feedrate_rec;
  8024. uint8_t fan_speed_rec;
  8025. char cmd[30];
  8026. char filename[13];
  8027. uint8_t depth = 0;
  8028. char dir_name[9];
  8029. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  8030. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  8031. SERIAL_ECHOPGM("Feedrate:");
  8032. MYSERIAL.println(feedrate_rec);
  8033. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  8034. MYSERIAL.println(int(depth));
  8035. for (int i = 0; i < depth; i++) {
  8036. for (int j = 0; j < 8; j++) {
  8037. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  8038. }
  8039. dir_name[8] = '\0';
  8040. MYSERIAL.println(dir_name);
  8041. strcpy(dir_names[i], dir_name);
  8042. card.chdir(dir_name);
  8043. }
  8044. for (int i = 0; i < 8; i++) {
  8045. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  8046. }
  8047. filename[8] = '\0';
  8048. MYSERIAL.print(filename);
  8049. strcat_P(filename, PSTR(".gco"));
  8050. sprintf_P(cmd, PSTR("M23 %s"), filename);
  8051. enquecommand(cmd);
  8052. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  8053. SERIAL_ECHOPGM("Position read from eeprom:");
  8054. MYSERIAL.println(position);
  8055. // E axis relative mode.
  8056. enquecommand_P(PSTR("M83"));
  8057. // Move to the XY print position in logical coordinates, where the print has been killed.
  8058. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  8059. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  8060. strcat_P(cmd, PSTR(" F2000"));
  8061. enquecommand(cmd);
  8062. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  8063. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  8064. // Move the Z axis down to the print, in logical coordinates.
  8065. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  8066. enquecommand(cmd);
  8067. // Unretract.
  8068. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  8069. // Set the feedrate saved at the power panic.
  8070. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  8071. enquecommand(cmd);
  8072. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  8073. {
  8074. enquecommand_P(PSTR("M82")); //E axis abslute mode
  8075. }
  8076. // Set the fan speed saved at the power panic.
  8077. strcpy_P(cmd, PSTR("M106 S"));
  8078. strcat(cmd, itostr3(int(fan_speed_rec)));
  8079. enquecommand(cmd);
  8080. // Set a position in the file.
  8081. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  8082. enquecommand(cmd);
  8083. enquecommand_P(PSTR("G4 S0"));
  8084. enquecommand_P(PSTR("PRUSA uvlo"));
  8085. }
  8086. #endif //UVLO_SUPPORT
  8087. //! @brief Immediately stop print moves
  8088. //!
  8089. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  8090. //! If printing from sd card, position in file is saved.
  8091. //! If printing from USB, line number is saved.
  8092. //!
  8093. //! @param z_move
  8094. //! @param e_move
  8095. void stop_and_save_print_to_ram(float z_move, float e_move)
  8096. {
  8097. if (saved_printing) return;
  8098. #if 0
  8099. unsigned char nplanner_blocks;
  8100. #endif
  8101. unsigned char nlines;
  8102. uint16_t sdlen_planner;
  8103. uint16_t sdlen_cmdqueue;
  8104. cli();
  8105. if (card.sdprinting) {
  8106. #if 0
  8107. nplanner_blocks = number_of_blocks();
  8108. #endif
  8109. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  8110. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8111. saved_sdpos -= sdlen_planner;
  8112. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8113. saved_sdpos -= sdlen_cmdqueue;
  8114. saved_printing_type = PRINTING_TYPE_SD;
  8115. }
  8116. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  8117. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  8118. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  8119. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  8120. saved_sdpos -= nlines;
  8121. saved_sdpos -= buflen; //number of blocks in cmd buffer
  8122. saved_printing_type = PRINTING_TYPE_USB;
  8123. }
  8124. else {
  8125. saved_printing_type = PRINTING_TYPE_NONE;
  8126. //not sd printing nor usb printing
  8127. }
  8128. #if 0
  8129. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  8130. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  8131. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  8132. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  8133. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  8134. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  8135. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  8136. {
  8137. card.setIndex(saved_sdpos);
  8138. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  8139. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  8140. MYSERIAL.print(char(card.get()));
  8141. SERIAL_ECHOLNPGM("Content of command buffer: ");
  8142. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  8143. MYSERIAL.print(char(card.get()));
  8144. SERIAL_ECHOLNPGM("End of command buffer");
  8145. }
  8146. {
  8147. // Print the content of the planner buffer, line by line:
  8148. card.setIndex(saved_sdpos);
  8149. int8_t iline = 0;
  8150. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  8151. SERIAL_ECHOPGM("Planner line (from file): ");
  8152. MYSERIAL.print(int(iline), DEC);
  8153. SERIAL_ECHOPGM(", length: ");
  8154. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  8155. SERIAL_ECHOPGM(", steps: (");
  8156. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  8157. SERIAL_ECHOPGM(",");
  8158. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  8159. SERIAL_ECHOPGM(",");
  8160. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  8161. SERIAL_ECHOPGM(",");
  8162. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  8163. SERIAL_ECHOPGM("), events: ");
  8164. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  8165. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  8166. MYSERIAL.print(char(card.get()));
  8167. }
  8168. }
  8169. {
  8170. // Print the content of the command buffer, line by line:
  8171. int8_t iline = 0;
  8172. union {
  8173. struct {
  8174. char lo;
  8175. char hi;
  8176. } lohi;
  8177. uint16_t value;
  8178. } sdlen_single;
  8179. int _bufindr = bufindr;
  8180. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  8181. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  8182. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  8183. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  8184. }
  8185. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  8186. MYSERIAL.print(int(iline), DEC);
  8187. SERIAL_ECHOPGM(", type: ");
  8188. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  8189. SERIAL_ECHOPGM(", len: ");
  8190. MYSERIAL.println(sdlen_single.value, DEC);
  8191. // Print the content of the buffer line.
  8192. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  8193. SERIAL_ECHOPGM("Buffer line (from file): ");
  8194. MYSERIAL.println(int(iline), DEC);
  8195. for (; sdlen_single.value > 0; -- sdlen_single.value)
  8196. MYSERIAL.print(char(card.get()));
  8197. if (-- _buflen == 0)
  8198. break;
  8199. // First skip the current command ID and iterate up to the end of the string.
  8200. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  8201. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  8202. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8203. // If the end of the buffer was empty,
  8204. if (_bufindr == sizeof(cmdbuffer)) {
  8205. // skip to the start and find the nonzero command.
  8206. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  8207. }
  8208. }
  8209. }
  8210. #endif
  8211. #if 0
  8212. saved_feedrate2 = feedrate; //save feedrate
  8213. #else
  8214. // Try to deduce the feedrate from the first block of the planner.
  8215. // Speed is in mm/min.
  8216. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  8217. #endif
  8218. planner_abort_hard(); //abort printing
  8219. memcpy(saved_pos, current_position, sizeof(saved_pos));
  8220. saved_active_extruder = active_extruder; //save active_extruder
  8221. saved_extruder_temperature = degTargetHotend(active_extruder);
  8222. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  8223. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  8224. saved_fanSpeed = fanSpeed;
  8225. cmdqueue_reset(); //empty cmdqueue
  8226. card.sdprinting = false;
  8227. // card.closefile();
  8228. saved_printing = true;
  8229. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  8230. st_reset_timer();
  8231. sei();
  8232. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  8233. #if 1
  8234. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  8235. char buf[48];
  8236. // First unretract (relative extrusion)
  8237. if(!saved_extruder_relative_mode){
  8238. enquecommand(PSTR("M83"), true);
  8239. }
  8240. //retract 45mm/s
  8241. // A single sprintf may not be faster, but is definitely 20B shorter
  8242. // than a sequence of commands building the string piece by piece
  8243. // A snprintf would have been a safer call, but since it is not used
  8244. // in the whole program, its implementation would bring more bytes to the total size
  8245. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  8246. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  8247. enquecommand(buf, false);
  8248. // Then lift Z axis
  8249. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  8250. // At this point the command queue is empty.
  8251. enquecommand(buf, false);
  8252. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  8253. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  8254. repeatcommand_front();
  8255. #else
  8256. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  8257. st_synchronize(); //wait moving
  8258. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8259. memcpy(destination, current_position, sizeof(destination));
  8260. #endif
  8261. }
  8262. }
  8263. //! @brief Restore print from ram
  8264. //!
  8265. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking,
  8266. //! waits for extruder temperature restore, then restores position and continues
  8267. //! print moves.
  8268. //! Internaly lcd_update() is called by wait_for_heater().
  8269. //!
  8270. //! @param e_move
  8271. void restore_print_from_ram_and_continue(float e_move)
  8272. {
  8273. if (!saved_printing) return;
  8274. #ifdef FANCHECK
  8275. // Do not allow resume printing if fans are still not ok
  8276. if( fan_check_error != EFCE_OK )return;
  8277. #endif
  8278. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  8279. // current_position[axis] = st_get_position_mm(axis);
  8280. active_extruder = saved_active_extruder; //restore active_extruder
  8281. if (saved_extruder_temperature) {
  8282. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  8283. heating_status = 1;
  8284. wait_for_heater(_millis(), saved_active_extruder);
  8285. heating_status = 2;
  8286. }
  8287. feedrate = saved_feedrate2; //restore feedrate
  8288. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  8289. fanSpeed = saved_fanSpeed;
  8290. float e = saved_pos[E_AXIS] - e_move;
  8291. plan_set_e_position(e);
  8292. //first move print head in XY to the saved position:
  8293. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8294. st_synchronize();
  8295. //then move Z
  8296. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  8297. st_synchronize();
  8298. //and finaly unretract (35mm/s)
  8299. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  8300. st_synchronize();
  8301. memcpy(current_position, saved_pos, sizeof(saved_pos));
  8302. memcpy(destination, current_position, sizeof(destination));
  8303. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  8304. card.setIndex(saved_sdpos);
  8305. sdpos_atomic = saved_sdpos;
  8306. card.sdprinting = true;
  8307. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  8308. }
  8309. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  8310. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  8311. serial_count = 0;
  8312. FlushSerialRequestResend();
  8313. }
  8314. else {
  8315. //not sd printing nor usb printing
  8316. }
  8317. lcd_setstatuspgm(_T(WELCOME_MSG));
  8318. saved_printing = false;
  8319. }
  8320. void print_world_coordinates()
  8321. {
  8322. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  8323. }
  8324. void print_physical_coordinates()
  8325. {
  8326. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  8327. }
  8328. void print_mesh_bed_leveling_table()
  8329. {
  8330. SERIAL_ECHOPGM("mesh bed leveling: ");
  8331. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  8332. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  8333. MYSERIAL.print(mbl.z_values[y][x], 3);
  8334. SERIAL_ECHOPGM(" ");
  8335. }
  8336. SERIAL_ECHOLNPGM("");
  8337. }
  8338. uint16_t print_time_remaining() {
  8339. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  8340. #ifdef TMC2130
  8341. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  8342. else print_t = print_time_remaining_silent;
  8343. #else
  8344. print_t = print_time_remaining_normal;
  8345. #endif //TMC2130
  8346. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  8347. return print_t;
  8348. }
  8349. uint8_t calc_percent_done()
  8350. {
  8351. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  8352. uint8_t percent_done = 0;
  8353. #ifdef TMC2130
  8354. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  8355. percent_done = print_percent_done_normal;
  8356. }
  8357. else if (print_percent_done_silent <= 100) {
  8358. percent_done = print_percent_done_silent;
  8359. }
  8360. #else
  8361. if (print_percent_done_normal <= 100) {
  8362. percent_done = print_percent_done_normal;
  8363. }
  8364. #endif //TMC2130
  8365. else {
  8366. percent_done = card.percentDone();
  8367. }
  8368. return percent_done;
  8369. }
  8370. static void print_time_remaining_init()
  8371. {
  8372. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  8373. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  8374. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  8375. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  8376. }
  8377. void load_filament_final_feed()
  8378. {
  8379. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  8380. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  8381. }
  8382. //! @brief Wait for user to check the state
  8383. //! @par nozzle_temp nozzle temperature to load filament
  8384. void M600_check_state(float nozzle_temp)
  8385. {
  8386. lcd_change_fil_state = 0;
  8387. while (lcd_change_fil_state != 1)
  8388. {
  8389. lcd_change_fil_state = 0;
  8390. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8391. lcd_alright();
  8392. KEEPALIVE_STATE(IN_HANDLER);
  8393. switch(lcd_change_fil_state)
  8394. {
  8395. // Filament failed to load so load it again
  8396. case 2:
  8397. if (mmu_enabled)
  8398. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  8399. else
  8400. M600_load_filament_movements();
  8401. break;
  8402. // Filament loaded properly but color is not clear
  8403. case 3:
  8404. st_synchronize();
  8405. load_filament_final_feed();
  8406. lcd_loading_color();
  8407. st_synchronize();
  8408. break;
  8409. // Everything good
  8410. default:
  8411. lcd_change_success();
  8412. break;
  8413. }
  8414. }
  8415. }
  8416. //! @brief Wait for user action
  8417. //!
  8418. //! Beep, manage nozzle heater and wait for user to start unload filament
  8419. //! If times out, active extruder temperature is set to 0.
  8420. //!
  8421. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  8422. void M600_wait_for_user(float HotendTempBckp) {
  8423. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8424. int counterBeep = 0;
  8425. unsigned long waiting_start_time = _millis();
  8426. uint8_t wait_for_user_state = 0;
  8427. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8428. bool bFirst=true;
  8429. while (!(wait_for_user_state == 0 && lcd_clicked())){
  8430. manage_heater();
  8431. manage_inactivity(true);
  8432. #if BEEPER > 0
  8433. if (counterBeep == 500) {
  8434. counterBeep = 0;
  8435. }
  8436. SET_OUTPUT(BEEPER);
  8437. if (counterBeep == 0) {
  8438. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  8439. {
  8440. bFirst=false;
  8441. WRITE(BEEPER, HIGH);
  8442. }
  8443. }
  8444. if (counterBeep == 20) {
  8445. WRITE(BEEPER, LOW);
  8446. }
  8447. counterBeep++;
  8448. #endif //BEEPER > 0
  8449. switch (wait_for_user_state) {
  8450. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  8451. delay_keep_alive(4);
  8452. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  8453. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  8454. wait_for_user_state = 1;
  8455. setAllTargetHotends(0);
  8456. st_synchronize();
  8457. disable_e0();
  8458. disable_e1();
  8459. disable_e2();
  8460. }
  8461. break;
  8462. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  8463. delay_keep_alive(4);
  8464. if (lcd_clicked()) {
  8465. setTargetHotend(HotendTempBckp, active_extruder);
  8466. lcd_wait_for_heater();
  8467. wait_for_user_state = 2;
  8468. }
  8469. break;
  8470. case 2: //waiting for nozzle to reach target temperature
  8471. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  8472. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  8473. waiting_start_time = _millis();
  8474. wait_for_user_state = 0;
  8475. }
  8476. else {
  8477. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  8478. lcd_set_cursor(1, 4);
  8479. lcd_print(ftostr3(degHotend(active_extruder)));
  8480. }
  8481. break;
  8482. }
  8483. }
  8484. WRITE(BEEPER, LOW);
  8485. }
  8486. void M600_load_filament_movements()
  8487. {
  8488. #ifdef SNMM
  8489. display_loading();
  8490. do
  8491. {
  8492. current_position[E_AXIS] += 0.002;
  8493. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  8494. delay_keep_alive(2);
  8495. }
  8496. while (!lcd_clicked());
  8497. st_synchronize();
  8498. current_position[E_AXIS] += bowden_length[mmu_extruder];
  8499. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  8500. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  8501. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  8502. current_position[E_AXIS] += 40;
  8503. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  8504. current_position[E_AXIS] += 10;
  8505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  8506. #else
  8507. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  8508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  8509. #endif
  8510. load_filament_final_feed();
  8511. lcd_loading_filament();
  8512. st_synchronize();
  8513. }
  8514. void M600_load_filament() {
  8515. //load filament for single material and SNMM
  8516. lcd_wait_interact();
  8517. //load_filament_time = _millis();
  8518. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8519. #ifdef PAT9125
  8520. fsensor_autoload_check_start();
  8521. #endif //PAT9125
  8522. while(!lcd_clicked())
  8523. {
  8524. manage_heater();
  8525. manage_inactivity(true);
  8526. #ifdef FILAMENT_SENSOR
  8527. if (fsensor_check_autoload())
  8528. {
  8529. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8530. _tone(BEEPER, 1000);
  8531. delay_keep_alive(50);
  8532. _noTone(BEEPER);
  8533. break;
  8534. }
  8535. #endif //FILAMENT_SENSOR
  8536. }
  8537. #ifdef PAT9125
  8538. fsensor_autoload_check_stop();
  8539. #endif //PAT9125
  8540. KEEPALIVE_STATE(IN_HANDLER);
  8541. #ifdef FSENSOR_QUALITY
  8542. fsensor_oq_meassure_start(70);
  8543. #endif //FSENSOR_QUALITY
  8544. M600_load_filament_movements();
  8545. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE))
  8546. _tone(BEEPER, 500);
  8547. delay_keep_alive(50);
  8548. _noTone(BEEPER);
  8549. #ifdef FSENSOR_QUALITY
  8550. fsensor_oq_meassure_stop();
  8551. if (!fsensor_oq_result())
  8552. {
  8553. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8554. lcd_update_enable(true);
  8555. lcd_update(2);
  8556. if (disable)
  8557. fsensor_disable();
  8558. }
  8559. #endif //FSENSOR_QUALITY
  8560. lcd_update_enable(false);
  8561. }
  8562. //! @brief Wait for click
  8563. //!
  8564. //! Set
  8565. void marlin_wait_for_click()
  8566. {
  8567. int8_t busy_state_backup = busy_state;
  8568. KEEPALIVE_STATE(PAUSED_FOR_USER);
  8569. lcd_consume_click();
  8570. while(!lcd_clicked())
  8571. {
  8572. manage_heater();
  8573. manage_inactivity(true);
  8574. lcd_update(0);
  8575. }
  8576. KEEPALIVE_STATE(busy_state_backup);
  8577. }
  8578. #define FIL_LOAD_LENGTH 60