Marlin_main.cpp 308 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef PAT9125
  81. #include "pat9125.h"
  82. #include "fsensor.h"
  83. #endif //PAT9125
  84. #ifdef TMC2130
  85. #include "tmc2130.h"
  86. #endif //TMC2130
  87. #ifdef W25X20CL
  88. #include "w25x20cl.h"
  89. #include "optiboot_w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M73 - Show percent done and print time remaining
  162. // M80 - Turn on Power Supply
  163. // M81 - Turn off Power Supply
  164. // M82 - Set E codes absolute (default)
  165. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  166. // M84 - Disable steppers until next move,
  167. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  168. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  169. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  170. // M92 - Set axis_steps_per_unit - same syntax as G92
  171. // M104 - Set extruder target temp
  172. // M105 - Read current temp
  173. // M106 - Fan on
  174. // M107 - Fan off
  175. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  176. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  177. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  178. // M112 - Emergency stop
  179. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  180. // M114 - Output current position to serial port
  181. // M115 - Capabilities string
  182. // M117 - display message
  183. // M119 - Output Endstop status to serial port
  184. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  185. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  186. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  188. // M140 - Set bed target temp
  189. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  190. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  191. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  192. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  193. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  194. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  195. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  196. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  197. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  198. // M206 - set additional homing offset
  199. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  200. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  201. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  202. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  203. // M220 S<factor in percent>- set speed factor override percentage
  204. // M221 S<factor in percent>- set extrude factor override percentage
  205. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  206. // M240 - Trigger a camera to take a photograph
  207. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  208. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  209. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  210. // M301 - Set PID parameters P I and D
  211. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  212. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  213. // M304 - Set bed PID parameters P I and D
  214. // M400 - Finish all moves
  215. // M401 - Lower z-probe if present
  216. // M402 - Raise z-probe if present
  217. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  218. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  219. // M406 - Turn off Filament Sensor extrusion control
  220. // M407 - Displays measured filament diameter
  221. // M500 - stores parameters in EEPROM
  222. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  223. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  224. // M503 - print the current settings (from memory not from EEPROM)
  225. // M509 - force language selection on next restart
  226. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  227. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  228. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. // M860 - Wait for PINDA thermistor to reach target temperature.
  230. // M861 - Set / Read PINDA temperature compensation offsets
  231. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  232. // M907 - Set digital trimpot motor current using axis codes.
  233. // M908 - Control digital trimpot directly.
  234. // M350 - Set microstepping mode.
  235. // M351 - Toggle MS1 MS2 pins directly.
  236. // M928 - Start SD logging (M928 filename.g) - ended by M29
  237. // M999 - Restart after being stopped by error
  238. //Stepper Movement Variables
  239. //===========================================================================
  240. //=============================imported variables============================
  241. //===========================================================================
  242. //===========================================================================
  243. //=============================public variables=============================
  244. //===========================================================================
  245. #ifdef SDSUPPORT
  246. CardReader card;
  247. #endif
  248. unsigned long PingTime = millis();
  249. unsigned long NcTime;
  250. union Data
  251. {
  252. byte b[2];
  253. int value;
  254. };
  255. float homing_feedrate[] = HOMING_FEEDRATE;
  256. // Currently only the extruder axis may be switched to a relative mode.
  257. // Other axes are always absolute or relative based on the common relative_mode flag.
  258. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  259. int feedmultiply=100; //100->1 200->2
  260. int saved_feedmultiply;
  261. int extrudemultiply=100; //100->1 200->2
  262. int extruder_multiply[EXTRUDERS] = {100
  263. #if EXTRUDERS > 1
  264. , 100
  265. #if EXTRUDERS > 2
  266. , 100
  267. #endif
  268. #endif
  269. };
  270. int bowden_length[4] = {385, 385, 385, 385};
  271. bool is_usb_printing = false;
  272. bool homing_flag = false;
  273. bool temp_cal_active = false;
  274. unsigned long kicktime = millis()+100000;
  275. unsigned int usb_printing_counter;
  276. int lcd_change_fil_state = 0;
  277. int feedmultiplyBckp = 100;
  278. float HotendTempBckp = 0;
  279. int fanSpeedBckp = 0;
  280. float pause_lastpos[4];
  281. unsigned long pause_time = 0;
  282. unsigned long start_pause_print = millis();
  283. unsigned long t_fan_rising_edge = millis();
  284. static LongTimer safetyTimer;
  285. static LongTimer crashDetTimer;
  286. //unsigned long load_filament_time;
  287. bool mesh_bed_leveling_flag = false;
  288. bool mesh_bed_run_from_menu = false;
  289. int8_t FarmMode = 0;
  290. bool prusa_sd_card_upload = false;
  291. unsigned int status_number = 0;
  292. unsigned long total_filament_used;
  293. unsigned int heating_status;
  294. unsigned int heating_status_counter;
  295. bool custom_message;
  296. bool loading_flag = false;
  297. unsigned int custom_message_type;
  298. unsigned int custom_message_state;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. //shortcuts for more readable code
  324. #define _x current_position[X_AXIS]
  325. #define _y current_position[Y_AXIS]
  326. #define _z current_position[Z_AXIS]
  327. #define _e current_position[E_AXIS]
  328. float add_homing[3]={0,0,0};
  329. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  330. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  331. bool axis_known_position[3] = {false, false, false};
  332. float zprobe_zoffset;
  333. // Extruder offset
  334. #if EXTRUDERS > 1
  335. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  336. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  337. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  338. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  339. #endif
  340. };
  341. #endif
  342. uint8_t active_extruder = 0;
  343. int fanSpeed=0;
  344. #ifdef FWRETRACT
  345. bool autoretract_enabled=false;
  346. bool retracted[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. bool retracted_swap[EXTRUDERS]={false
  355. #if EXTRUDERS > 1
  356. , false
  357. #if EXTRUDERS > 2
  358. , false
  359. #endif
  360. #endif
  361. };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif
  370. #ifdef PS_DEFAULT_OFF
  371. bool powersupply = false;
  372. #else
  373. bool powersupply = true;
  374. #endif
  375. bool cancel_heatup = false ;
  376. #ifdef HOST_KEEPALIVE_FEATURE
  377. int busy_state = NOT_BUSY;
  378. static long prev_busy_signal_ms = -1;
  379. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  380. #else
  381. #define host_keepalive();
  382. #define KEEPALIVE_STATE(n);
  383. #endif
  384. const char errormagic[] PROGMEM = "Error:";
  385. const char echomagic[] PROGMEM = "echo:";
  386. bool no_response = false;
  387. uint8_t important_status;
  388. uint8_t saved_filament_type;
  389. // save/restore printing
  390. bool saved_printing = false;
  391. // storing estimated time to end of print counted by slicer
  392. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  393. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  394. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. //===========================================================================
  397. //=============================Private Variables=============================
  398. //===========================================================================
  399. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  400. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  401. static float delta[3] = {0.0, 0.0, 0.0};
  402. // For tracing an arc
  403. static float offset[3] = {0.0, 0.0, 0.0};
  404. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  405. // Determines Absolute or Relative Coordinates.
  406. // Also there is bool axis_relative_modes[] per axis flag.
  407. static bool relative_mode = false;
  408. #ifndef _DISABLE_M42_M226
  409. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  410. #endif //_DISABLE_M42_M226
  411. //static float tt = 0;
  412. //static float bt = 0;
  413. //Inactivity shutdown variables
  414. static unsigned long previous_millis_cmd = 0;
  415. unsigned long max_inactive_time = 0;
  416. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  417. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  418. unsigned long starttime=0;
  419. unsigned long stoptime=0;
  420. unsigned long _usb_timer = 0;
  421. static uint8_t tmp_extruder;
  422. bool extruder_under_pressure = true;
  423. bool Stopped=false;
  424. #if NUM_SERVOS > 0
  425. Servo servos[NUM_SERVOS];
  426. #endif
  427. bool CooldownNoWait = true;
  428. bool target_direction;
  429. //Insert variables if CHDK is defined
  430. #ifdef CHDK
  431. unsigned long chdkHigh = 0;
  432. boolean chdkActive = false;
  433. #endif
  434. // save/restore printing
  435. static uint32_t saved_sdpos = 0;
  436. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  437. static float saved_pos[4] = { 0, 0, 0, 0 };
  438. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  439. static float saved_feedrate2 = 0;
  440. static uint8_t saved_active_extruder = 0;
  441. static bool saved_extruder_under_pressure = false;
  442. static bool saved_extruder_relative_mode = false;
  443. //===========================================================================
  444. //=============================Routines======================================
  445. //===========================================================================
  446. void get_arc_coordinates();
  447. bool setTargetedHotend(int code);
  448. void serial_echopair_P(const char *s_P, float v)
  449. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  450. void serial_echopair_P(const char *s_P, double v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. void serial_echopair_P(const char *s_P, unsigned long v)
  453. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  454. #ifdef SDSUPPORT
  455. #include "SdFatUtil.h"
  456. int freeMemory() { return SdFatUtil::FreeRam(); }
  457. #else
  458. extern "C" {
  459. extern unsigned int __bss_end;
  460. extern unsigned int __heap_start;
  461. extern void *__brkval;
  462. int freeMemory() {
  463. int free_memory;
  464. if ((int)__brkval == 0)
  465. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  466. else
  467. free_memory = ((int)&free_memory) - ((int)__brkval);
  468. return free_memory;
  469. }
  470. }
  471. #endif //!SDSUPPORT
  472. void setup_killpin()
  473. {
  474. #if defined(KILL_PIN) && KILL_PIN > -1
  475. SET_INPUT(KILL_PIN);
  476. WRITE(KILL_PIN,HIGH);
  477. #endif
  478. }
  479. // Set home pin
  480. void setup_homepin(void)
  481. {
  482. #if defined(HOME_PIN) && HOME_PIN > -1
  483. SET_INPUT(HOME_PIN);
  484. WRITE(HOME_PIN,HIGH);
  485. #endif
  486. }
  487. void setup_photpin()
  488. {
  489. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  490. SET_OUTPUT(PHOTOGRAPH_PIN);
  491. WRITE(PHOTOGRAPH_PIN, LOW);
  492. #endif
  493. }
  494. void setup_powerhold()
  495. {
  496. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  497. SET_OUTPUT(SUICIDE_PIN);
  498. WRITE(SUICIDE_PIN, HIGH);
  499. #endif
  500. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  501. SET_OUTPUT(PS_ON_PIN);
  502. #if defined(PS_DEFAULT_OFF)
  503. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  504. #else
  505. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  506. #endif
  507. #endif
  508. }
  509. void suicide()
  510. {
  511. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  512. SET_OUTPUT(SUICIDE_PIN);
  513. WRITE(SUICIDE_PIN, LOW);
  514. #endif
  515. }
  516. void servo_init()
  517. {
  518. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  519. servos[0].attach(SERVO0_PIN);
  520. #endif
  521. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  522. servos[1].attach(SERVO1_PIN);
  523. #endif
  524. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  525. servos[2].attach(SERVO2_PIN);
  526. #endif
  527. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  528. servos[3].attach(SERVO3_PIN);
  529. #endif
  530. #if (NUM_SERVOS >= 5)
  531. #error "TODO: enter initalisation code for more servos"
  532. #endif
  533. }
  534. void stop_and_save_print_to_ram(float z_move, float e_move);
  535. void restore_print_from_ram_and_continue(float e_move);
  536. bool fans_check_enabled = true;
  537. bool filament_autoload_enabled = true;
  538. #ifdef TMC2130
  539. extern int8_t CrashDetectMenu;
  540. void crashdet_enable()
  541. {
  542. tmc2130_sg_stop_on_crash = true;
  543. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  544. CrashDetectMenu = 1;
  545. }
  546. void crashdet_disable()
  547. {
  548. tmc2130_sg_stop_on_crash = false;
  549. tmc2130_sg_crash = 0;
  550. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  551. CrashDetectMenu = 0;
  552. }
  553. void crashdet_stop_and_save_print()
  554. {
  555. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  556. }
  557. void crashdet_restore_print_and_continue()
  558. {
  559. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  560. // babystep_apply();
  561. }
  562. void crashdet_stop_and_save_print2()
  563. {
  564. cli();
  565. planner_abort_hard(); //abort printing
  566. cmdqueue_reset(); //empty cmdqueue
  567. card.sdprinting = false;
  568. card.closefile();
  569. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  570. st_reset_timer();
  571. sei();
  572. }
  573. void crashdet_detected(uint8_t mask)
  574. {
  575. // printf("CRASH_DETECTED");
  576. /* while (!is_buffer_empty())
  577. {
  578. process_commands();
  579. cmdqueue_pop_front();
  580. }*/
  581. st_synchronize();
  582. static uint8_t crashDet_counter = 0;
  583. bool automatic_recovery_after_crash = true;
  584. if (crashDet_counter++ == 0) {
  585. crashDetTimer.start();
  586. }
  587. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  588. crashDetTimer.stop();
  589. crashDet_counter = 0;
  590. }
  591. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  592. automatic_recovery_after_crash = false;
  593. crashDetTimer.stop();
  594. crashDet_counter = 0;
  595. }
  596. else {
  597. crashDetTimer.start();
  598. }
  599. lcd_update_enable(true);
  600. lcd_clear();
  601. lcd_update(2);
  602. if (mask & X_AXIS_MASK)
  603. {
  604. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  605. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  606. }
  607. if (mask & Y_AXIS_MASK)
  608. {
  609. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  610. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  611. }
  612. lcd_update_enable(true);
  613. lcd_update(2);
  614. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  615. gcode_G28(true, true, false); //home X and Y
  616. st_synchronize();
  617. if (automatic_recovery_after_crash) {
  618. enquecommand_P(PSTR("CRASH_RECOVER"));
  619. }else{
  620. HotendTempBckp = degTargetHotend(active_extruder);
  621. setTargetHotend(0, active_extruder);
  622. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  623. lcd_update_enable(true);
  624. if (yesno)
  625. {
  626. char cmd1[10];
  627. strcpy(cmd1, "M109 S");
  628. strcat(cmd1, ftostr3(HotendTempBckp));
  629. enquecommand(cmd1);
  630. enquecommand_P(PSTR("CRASH_RECOVER"));
  631. }
  632. else
  633. {
  634. enquecommand_P(PSTR("CRASH_CANCEL"));
  635. }
  636. }
  637. }
  638. void crashdet_recover()
  639. {
  640. crashdet_restore_print_and_continue();
  641. tmc2130_sg_stop_on_crash = true;
  642. }
  643. void crashdet_cancel()
  644. {
  645. tmc2130_sg_stop_on_crash = true;
  646. if (saved_printing_type == PRINTING_TYPE_SD) {
  647. lcd_print_stop();
  648. }else if(saved_printing_type == PRINTING_TYPE_USB){
  649. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  650. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  651. }
  652. }
  653. #endif //TMC2130
  654. void failstats_reset_print()
  655. {
  656. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  657. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  658. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  659. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  660. }
  661. #ifdef MESH_BED_LEVELING
  662. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  663. #endif
  664. // Factory reset function
  665. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  666. // Level input parameter sets depth of reset
  667. // Quiet parameter masks all waitings for user interact.
  668. int er_progress = 0;
  669. void factory_reset(char level, bool quiet)
  670. {
  671. lcd_clear();
  672. int cursor_pos = 0;
  673. switch (level) {
  674. // Level 0: Language reset
  675. case 0:
  676. WRITE(BEEPER, HIGH);
  677. _delay_ms(100);
  678. WRITE(BEEPER, LOW);
  679. lang_reset();
  680. break;
  681. //Level 1: Reset statistics
  682. case 1:
  683. WRITE(BEEPER, HIGH);
  684. _delay_ms(100);
  685. WRITE(BEEPER, LOW);
  686. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  687. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  688. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  689. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  690. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  691. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  692. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  693. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  694. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  696. lcd_menu_statistics();
  697. break;
  698. // Level 2: Prepare for shipping
  699. case 2:
  700. //lcd_puts_P(PSTR("Factory RESET"));
  701. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  702. // Force language selection at the next boot up.
  703. lang_reset();
  704. // Force the "Follow calibration flow" message at the next boot up.
  705. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  706. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  707. farm_no = 0;
  708. farm_mode = false;
  709. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  710. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  711. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  712. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  713. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  714. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  715. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  716. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  717. fsensor_enable();
  718. fautoload_set(true);
  719. WRITE(BEEPER, HIGH);
  720. _delay_ms(100);
  721. WRITE(BEEPER, LOW);
  722. //_delay_ms(2000);
  723. break;
  724. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  725. case 3:
  726. lcd_puts_P(PSTR("Factory RESET"));
  727. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  728. WRITE(BEEPER, HIGH);
  729. _delay_ms(100);
  730. WRITE(BEEPER, LOW);
  731. er_progress = 0;
  732. lcd_puts_at_P(3, 3, PSTR(" "));
  733. lcd_set_cursor(3, 3);
  734. lcd_print(er_progress);
  735. // Erase EEPROM
  736. for (int i = 0; i < 4096; i++) {
  737. eeprom_write_byte((uint8_t*)i, 0xFF);
  738. if (i % 41 == 0) {
  739. er_progress++;
  740. lcd_puts_at_P(3, 3, PSTR(" "));
  741. lcd_set_cursor(3, 3);
  742. lcd_print(er_progress);
  743. lcd_puts_P(PSTR("%"));
  744. }
  745. }
  746. break;
  747. case 4:
  748. bowden_menu();
  749. break;
  750. default:
  751. break;
  752. }
  753. }
  754. FILE _uartout = {0};
  755. int uart_putchar(char c, FILE *stream)
  756. {
  757. MYSERIAL.write(c);
  758. return 0;
  759. }
  760. void lcd_splash()
  761. {
  762. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  763. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  764. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  765. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  766. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  767. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  768. }
  769. void factory_reset()
  770. {
  771. KEEPALIVE_STATE(PAUSED_FOR_USER);
  772. if (!READ(BTN_ENC))
  773. {
  774. _delay_ms(1000);
  775. if (!READ(BTN_ENC))
  776. {
  777. lcd_clear();
  778. lcd_puts_P(PSTR("Factory RESET"));
  779. SET_OUTPUT(BEEPER);
  780. WRITE(BEEPER, HIGH);
  781. while (!READ(BTN_ENC));
  782. WRITE(BEEPER, LOW);
  783. _delay_ms(2000);
  784. char level = reset_menu();
  785. factory_reset(level, false);
  786. switch (level) {
  787. case 0: _delay_ms(0); break;
  788. case 1: _delay_ms(0); break;
  789. case 2: _delay_ms(0); break;
  790. case 3: _delay_ms(0); break;
  791. }
  792. // _delay_ms(100);
  793. /*
  794. #ifdef MESH_BED_LEVELING
  795. _delay_ms(2000);
  796. if (!READ(BTN_ENC))
  797. {
  798. WRITE(BEEPER, HIGH);
  799. _delay_ms(100);
  800. WRITE(BEEPER, LOW);
  801. _delay_ms(200);
  802. WRITE(BEEPER, HIGH);
  803. _delay_ms(100);
  804. WRITE(BEEPER, LOW);
  805. int _z = 0;
  806. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  807. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  808. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  809. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  810. }
  811. else
  812. {
  813. WRITE(BEEPER, HIGH);
  814. _delay_ms(100);
  815. WRITE(BEEPER, LOW);
  816. }
  817. #endif // mesh */
  818. }
  819. }
  820. else
  821. {
  822. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  823. }
  824. KEEPALIVE_STATE(IN_HANDLER);
  825. }
  826. void show_fw_version_warnings() {
  827. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  828. switch (FW_DEV_VERSION) {
  829. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  830. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  831. case(FW_VERSION_DEVEL):
  832. case(FW_VERSION_DEBUG):
  833. lcd_update_enable(false);
  834. lcd_clear();
  835. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  836. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  837. #else
  838. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  839. #endif
  840. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  841. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  842. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  843. lcd_wait_for_click();
  844. break;
  845. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  846. }
  847. lcd_update_enable(true);
  848. }
  849. uint8_t check_printer_version()
  850. {
  851. uint8_t version_changed = 0;
  852. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  853. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  854. if (printer_type != PRINTER_TYPE) {
  855. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  856. else version_changed |= 0b10;
  857. }
  858. if (motherboard != MOTHERBOARD) {
  859. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  860. else version_changed |= 0b01;
  861. }
  862. return version_changed;
  863. }
  864. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  865. {
  866. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  867. }
  868. #if (LANG_MODE != 0) //secondary language support
  869. #ifdef W25X20CL
  870. #include "bootapp.h" //bootloader support
  871. // language update from external flash
  872. #define LANGBOOT_BLOCKSIZE 0x1000
  873. #define LANGBOOT_RAMBUFFER 0x0800
  874. void update_sec_lang_from_external_flash()
  875. {
  876. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  877. {
  878. uint8_t lang = boot_reserved >> 4;
  879. uint8_t state = boot_reserved & 0xf;
  880. lang_table_header_t header;
  881. uint32_t src_addr;
  882. if (lang_get_header(lang, &header, &src_addr))
  883. {
  884. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  885. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  886. delay(100);
  887. boot_reserved = (state + 1) | (lang << 4);
  888. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  889. {
  890. cli();
  891. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  892. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  893. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  894. if (state == 0)
  895. {
  896. //TODO - check header integrity
  897. }
  898. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  899. }
  900. else
  901. {
  902. //TODO - check sec lang data integrity
  903. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  904. }
  905. }
  906. }
  907. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  908. }
  909. #ifdef DEBUG_W25X20CL
  910. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  911. {
  912. lang_table_header_t header;
  913. uint8_t count = 0;
  914. uint32_t addr = 0x00000;
  915. while (1)
  916. {
  917. printf_P(_n("LANGTABLE%d:"), count);
  918. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  919. if (header.magic != LANG_MAGIC)
  920. {
  921. printf_P(_n("NG!\n"));
  922. break;
  923. }
  924. printf_P(_n("OK\n"));
  925. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  926. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  927. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  928. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  929. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  930. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  931. addr += header.size;
  932. codes[count] = header.code;
  933. count ++;
  934. }
  935. return count;
  936. }
  937. void list_sec_lang_from_external_flash()
  938. {
  939. uint16_t codes[8];
  940. uint8_t count = lang_xflash_enum_codes(codes);
  941. printf_P(_n("XFlash lang count = %hhd\n"), count);
  942. }
  943. #endif //DEBUG_W25X20CL
  944. #endif //W25X20CL
  945. #endif //(LANG_MODE != 0)
  946. // "Setup" function is called by the Arduino framework on startup.
  947. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  948. // are initialized by the main() routine provided by the Arduino framework.
  949. void setup()
  950. {
  951. ultralcd_init();
  952. spi_init();
  953. lcd_splash();
  954. #ifdef W25X20CL
  955. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  956. // optiboot_w25x20cl_enter();
  957. #endif
  958. #if (LANG_MODE != 0) //secondary language support
  959. #ifdef W25X20CL
  960. if (w25x20cl_init())
  961. update_sec_lang_from_external_flash();
  962. else
  963. kill(_i("External SPI flash W25X20CL not responding."));
  964. #endif //W25X20CL
  965. #endif //(LANG_MODE != 0)
  966. setup_killpin();
  967. setup_powerhold();
  968. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  969. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  970. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  971. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  972. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  973. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  974. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  975. if (farm_mode)
  976. {
  977. no_response = true; //we need confirmation by recieving PRUSA thx
  978. important_status = 8;
  979. prusa_statistics(8);
  980. selectedSerialPort = 1;
  981. #ifdef TMC2130
  982. //increased extruder current (PFW363)
  983. tmc2130_current_h[E_AXIS] = 36;
  984. tmc2130_current_r[E_AXIS] = 36;
  985. #endif //TMC2130
  986. //disabled filament autoload (PFW360)
  987. filament_autoload_enabled = false;
  988. eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0);
  989. }
  990. MYSERIAL.begin(BAUDRATE);
  991. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  992. stdout = uartout;
  993. SERIAL_PROTOCOLLNPGM("start");
  994. SERIAL_ECHO_START;
  995. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  996. uart2_init();
  997. #ifdef DEBUG_SEC_LANG
  998. lang_table_header_t header;
  999. uint32_t src_addr = 0x00000;
  1000. if (lang_get_header(1, &header, &src_addr))
  1001. {
  1002. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1003. #define LT_PRINT_TEST 2
  1004. // flash usage
  1005. // total p.test
  1006. //0 252718 t+c text code
  1007. //1 253142 424 170 254
  1008. //2 253040 322 164 158
  1009. //3 253248 530 135 395
  1010. #if (LT_PRINT_TEST==1) //not optimized printf
  1011. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1012. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1013. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1014. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1015. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1016. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1017. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1018. #elif (LT_PRINT_TEST==2) //optimized printf
  1019. printf_P(
  1020. _n(
  1021. " _src_addr = 0x%08lx\n"
  1022. " _lt_magic = 0x%08lx %S\n"
  1023. " _lt_size = 0x%04x (%d)\n"
  1024. " _lt_count = 0x%04x (%d)\n"
  1025. " _lt_chsum = 0x%04x\n"
  1026. " _lt_code = 0x%04x (%c%c)\n"
  1027. " _lt_resv1 = 0x%08lx\n"
  1028. ),
  1029. src_addr,
  1030. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1031. header.size, header.size,
  1032. header.count, header.count,
  1033. header.checksum,
  1034. header.code, header.code >> 8, header.code & 0xff,
  1035. header.signature
  1036. );
  1037. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1038. MYSERIAL.print(" _src_addr = 0x");
  1039. MYSERIAL.println(src_addr, 16);
  1040. MYSERIAL.print(" _lt_magic = 0x");
  1041. MYSERIAL.print(header.magic, 16);
  1042. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1043. MYSERIAL.print(" _lt_size = 0x");
  1044. MYSERIAL.print(header.size, 16);
  1045. MYSERIAL.print(" (");
  1046. MYSERIAL.print(header.size, 10);
  1047. MYSERIAL.println(")");
  1048. MYSERIAL.print(" _lt_count = 0x");
  1049. MYSERIAL.print(header.count, 16);
  1050. MYSERIAL.print(" (");
  1051. MYSERIAL.print(header.count, 10);
  1052. MYSERIAL.println(")");
  1053. MYSERIAL.print(" _lt_chsum = 0x");
  1054. MYSERIAL.println(header.checksum, 16);
  1055. MYSERIAL.print(" _lt_code = 0x");
  1056. MYSERIAL.print(header.code, 16);
  1057. MYSERIAL.print(" (");
  1058. MYSERIAL.print((char)(header.code >> 8), 0);
  1059. MYSERIAL.print((char)(header.code & 0xff), 0);
  1060. MYSERIAL.println(")");
  1061. MYSERIAL.print(" _lt_resv1 = 0x");
  1062. MYSERIAL.println(header.signature, 16);
  1063. #endif //(LT_PRINT_TEST==)
  1064. #undef LT_PRINT_TEST
  1065. #if 0
  1066. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1067. for (uint16_t i = 0; i < 1024; i++)
  1068. {
  1069. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1070. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1071. if ((i % 16) == 15) putchar('\n');
  1072. }
  1073. #endif
  1074. uint16_t sum = 0;
  1075. for (uint16_t i = 0; i < header.size; i++)
  1076. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1077. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1078. sum -= header.checksum; //subtract checksum
  1079. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1080. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1081. if (sum == header.checksum)
  1082. printf_P(_n("Checksum OK\n"), sum);
  1083. else
  1084. printf_P(_n("Checksum NG\n"), sum);
  1085. }
  1086. else
  1087. printf_P(_n("lang_get_header failed!\n"));
  1088. #if 0
  1089. for (uint16_t i = 0; i < 1024*10; i++)
  1090. {
  1091. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1092. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1093. if ((i % 16) == 15) putchar('\n');
  1094. }
  1095. #endif
  1096. #if 0
  1097. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1098. for (int i = 0; i < 4096; ++i) {
  1099. int b = eeprom_read_byte((unsigned char*)i);
  1100. if (b != 255) {
  1101. SERIAL_ECHO(i);
  1102. SERIAL_ECHO(":");
  1103. SERIAL_ECHO(b);
  1104. SERIAL_ECHOLN("");
  1105. }
  1106. }
  1107. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1108. #endif
  1109. #endif //DEBUG_SEC_LANG
  1110. // Check startup - does nothing if bootloader sets MCUSR to 0
  1111. byte mcu = MCUSR;
  1112. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1113. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1114. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1115. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1116. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1117. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1118. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1119. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1120. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1121. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1122. MCUSR = 0;
  1123. //SERIAL_ECHORPGM(MSG_MARLIN);
  1124. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1125. #ifdef STRING_VERSION_CONFIG_H
  1126. #ifdef STRING_CONFIG_H_AUTHOR
  1127. SERIAL_ECHO_START;
  1128. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1129. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1130. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1131. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1132. SERIAL_ECHOPGM("Compiled: ");
  1133. SERIAL_ECHOLNPGM(__DATE__);
  1134. #endif
  1135. #endif
  1136. SERIAL_ECHO_START;
  1137. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1138. SERIAL_ECHO(freeMemory());
  1139. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1140. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1141. //lcd_update_enable(false); // why do we need this?? - andre
  1142. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1143. bool previous_settings_retrieved = false;
  1144. uint8_t hw_changed = check_printer_version();
  1145. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1146. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1147. }
  1148. else { //printer version was changed so use default settings
  1149. Config_ResetDefault();
  1150. }
  1151. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1152. tp_init(); // Initialize temperature loop
  1153. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1154. plan_init(); // Initialize planner;
  1155. factory_reset();
  1156. #ifdef TMC2130
  1157. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1158. if (silentMode == 0xff) silentMode = 0;
  1159. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1160. tmc2130_mode = TMC2130_MODE_NORMAL;
  1161. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1162. if (crashdet && !farm_mode)
  1163. {
  1164. crashdet_enable();
  1165. puts_P(_N("CrashDetect ENABLED!"));
  1166. }
  1167. else
  1168. {
  1169. crashdet_disable();
  1170. puts_P(_N("CrashDetect DISABLED"));
  1171. }
  1172. #ifdef TMC2130_LINEARITY_CORRECTION
  1173. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1174. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1175. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1176. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1177. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1178. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1179. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1180. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1181. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1182. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1183. #endif //TMC2130_LINEARITY_CORRECTION
  1184. #ifdef TMC2130_VARIABLE_RESOLUTION
  1185. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1186. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1187. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1188. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1189. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1190. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1191. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1192. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1193. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1194. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1195. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1196. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1197. #else //TMC2130_VARIABLE_RESOLUTION
  1198. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1199. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1200. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1201. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1202. #endif //TMC2130_VARIABLE_RESOLUTION
  1203. #endif //TMC2130
  1204. st_init(); // Initialize stepper, this enables interrupts!
  1205. #ifdef TMC2130
  1206. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1207. tmc2130_init();
  1208. #endif //TMC2130
  1209. setup_photpin();
  1210. servo_init();
  1211. // Reset the machine correction matrix.
  1212. // It does not make sense to load the correction matrix until the machine is homed.
  1213. world2machine_reset();
  1214. #ifdef PAT9125
  1215. fsensor_init();
  1216. #endif //PAT9125
  1217. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1218. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1219. #endif
  1220. setup_homepin();
  1221. #ifdef TMC2130
  1222. if (1) {
  1223. // try to run to zero phase before powering the Z motor.
  1224. // Move in negative direction
  1225. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1226. // Round the current micro-micro steps to micro steps.
  1227. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1228. // Until the phase counter is reset to zero.
  1229. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1230. delay(2);
  1231. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1232. delay(2);
  1233. }
  1234. }
  1235. #endif //TMC2130
  1236. #if defined(Z_AXIS_ALWAYS_ON)
  1237. enable_z();
  1238. #endif
  1239. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1240. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1241. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1242. if (farm_no == 0xFFFF) farm_no = 0;
  1243. if (farm_mode)
  1244. {
  1245. prusa_statistics(8);
  1246. }
  1247. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1248. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1249. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1250. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1251. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1252. // where all the EEPROM entries are set to 0x0ff.
  1253. // Once a firmware boots up, it forces at least a language selection, which changes
  1254. // EEPROM_LANG to number lower than 0x0ff.
  1255. // 1) Set a high power mode.
  1256. #ifdef TMC2130
  1257. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1258. tmc2130_mode = TMC2130_MODE_NORMAL;
  1259. #endif //TMC2130
  1260. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1261. }
  1262. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1263. // but this times out if a blocking dialog is shown in setup().
  1264. card.initsd();
  1265. #ifdef DEBUG_SD_SPEED_TEST
  1266. if (card.cardOK)
  1267. {
  1268. uint8_t* buff = (uint8_t*)block_buffer;
  1269. uint32_t block = 0;
  1270. uint32_t sumr = 0;
  1271. uint32_t sumw = 0;
  1272. for (int i = 0; i < 1024; i++)
  1273. {
  1274. uint32_t u = micros();
  1275. bool res = card.card.readBlock(i, buff);
  1276. u = micros() - u;
  1277. if (res)
  1278. {
  1279. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1280. sumr += u;
  1281. u = micros();
  1282. res = card.card.writeBlock(i, buff);
  1283. u = micros() - u;
  1284. if (res)
  1285. {
  1286. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1287. sumw += u;
  1288. }
  1289. else
  1290. {
  1291. printf_P(PSTR("writeBlock %4d error\n"), i);
  1292. break;
  1293. }
  1294. }
  1295. else
  1296. {
  1297. printf_P(PSTR("readBlock %4d error\n"), i);
  1298. break;
  1299. }
  1300. }
  1301. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1302. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1303. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1304. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1305. }
  1306. else
  1307. printf_P(PSTR("Card NG!\n"));
  1308. #endif //DEBUG_SD_SPEED_TEST
  1309. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1310. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1311. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1312. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1313. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1314. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1315. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1316. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1317. #ifdef SNMM
  1318. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1319. int _z = BOWDEN_LENGTH;
  1320. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1321. }
  1322. #endif
  1323. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1324. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1325. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1326. #if (LANG_MODE != 0) //secondary language support
  1327. #ifdef DEBUG_W25X20CL
  1328. W25X20CL_SPI_ENTER();
  1329. uint8_t uid[8]; // 64bit unique id
  1330. w25x20cl_rd_uid(uid);
  1331. puts_P(_n("W25X20CL UID="));
  1332. for (uint8_t i = 0; i < 8; i ++)
  1333. printf_P(PSTR("%02hhx"), uid[i]);
  1334. putchar('\n');
  1335. list_sec_lang_from_external_flash();
  1336. #endif //DEBUG_W25X20CL
  1337. // lang_reset();
  1338. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1339. lcd_language();
  1340. #ifdef DEBUG_SEC_LANG
  1341. uint16_t sec_lang_code = lang_get_code(1);
  1342. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1343. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1344. // lang_print_sec_lang(uartout);
  1345. #endif //DEBUG_SEC_LANG
  1346. #endif //(LANG_MODE != 0)
  1347. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1348. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1349. temp_cal_active = false;
  1350. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1351. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1352. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1353. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1354. int16_t z_shift = 0;
  1355. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1356. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1357. temp_cal_active = false;
  1358. }
  1359. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1360. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1361. }
  1362. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1363. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1364. }
  1365. check_babystep(); //checking if Z babystep is in allowed range
  1366. #ifdef UVLO_SUPPORT
  1367. setup_uvlo_interrupt();
  1368. #endif //UVLO_SUPPORT
  1369. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1370. setup_fan_interrupt();
  1371. #endif //DEBUG_DISABLE_FANCHECK
  1372. #ifdef PAT9125
  1373. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1374. fsensor_setup_interrupt();
  1375. #endif //DEBUG_DISABLE_FSENSORCHECK
  1376. #endif //PAT9125
  1377. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1378. #ifndef DEBUG_DISABLE_STARTMSGS
  1379. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1380. show_fw_version_warnings();
  1381. switch (hw_changed) {
  1382. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1383. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1384. case(0b01):
  1385. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1386. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1387. break;
  1388. case(0b10):
  1389. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1390. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1391. break;
  1392. case(0b11):
  1393. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1394. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1395. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1396. break;
  1397. default: break; //no change, show no message
  1398. }
  1399. if (!previous_settings_retrieved) {
  1400. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1401. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1402. }
  1403. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1404. lcd_wizard(0);
  1405. }
  1406. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1407. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1408. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1409. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1410. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1411. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1412. // Show the message.
  1413. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1414. }
  1415. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1416. // Show the message.
  1417. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1418. lcd_update_enable(true);
  1419. }
  1420. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1421. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1422. lcd_update_enable(true);
  1423. }
  1424. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1425. // Show the message.
  1426. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1427. }
  1428. }
  1429. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1430. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1431. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1432. update_current_firmware_version_to_eeprom();
  1433. lcd_selftest();
  1434. }
  1435. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1436. KEEPALIVE_STATE(IN_PROCESS);
  1437. #endif //DEBUG_DISABLE_STARTMSGS
  1438. lcd_update_enable(true);
  1439. lcd_clear();
  1440. lcd_update(2);
  1441. // Store the currently running firmware into an eeprom,
  1442. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1443. update_current_firmware_version_to_eeprom();
  1444. #ifdef TMC2130
  1445. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1446. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1447. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1448. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1449. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1450. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1451. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1452. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1453. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1454. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1455. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1456. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1457. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1458. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1459. #endif //TMC2130
  1460. #ifdef UVLO_SUPPORT
  1461. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1462. /*
  1463. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1464. else {
  1465. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1466. lcd_update_enable(true);
  1467. lcd_update(2);
  1468. lcd_setstatuspgm(_T(WELCOME_MSG));
  1469. }
  1470. */
  1471. manage_heater(); // Update temperatures
  1472. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1473. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1474. #endif
  1475. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1476. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1477. puts_P(_N("Automatic recovery!"));
  1478. #endif
  1479. recover_print(1);
  1480. }
  1481. else{
  1482. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1483. puts_P(_N("Normal recovery!"));
  1484. #endif
  1485. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1486. else {
  1487. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1488. lcd_update_enable(true);
  1489. lcd_update(2);
  1490. lcd_setstatuspgm(_T(WELCOME_MSG));
  1491. }
  1492. }
  1493. }
  1494. #endif //UVLO_SUPPORT
  1495. KEEPALIVE_STATE(NOT_BUSY);
  1496. #ifdef WATCHDOG
  1497. wdt_enable(WDTO_4S);
  1498. #endif //WATCHDOG
  1499. }
  1500. #ifdef PAT9125
  1501. void fsensor_init() {
  1502. int pat9125 = pat9125_init();
  1503. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1504. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1505. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1506. if (!pat9125)
  1507. {
  1508. fsensor = 0; //disable sensor
  1509. fsensor_not_responding = true;
  1510. }
  1511. else {
  1512. fsensor_not_responding = false;
  1513. }
  1514. puts_P(PSTR("FSensor "));
  1515. if (fsensor)
  1516. {
  1517. puts_P(PSTR("ENABLED\n"));
  1518. fsensor_enable();
  1519. }
  1520. else
  1521. {
  1522. puts_P(PSTR("DISABLED\n"));
  1523. fsensor_disable();
  1524. }
  1525. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1526. filament_autoload_enabled = false;
  1527. fsensor_disable();
  1528. #endif //DEBUG_DISABLE_FSENSORCHECK
  1529. }
  1530. #endif //PAT9125
  1531. void trace();
  1532. #define CHUNK_SIZE 64 // bytes
  1533. #define SAFETY_MARGIN 1
  1534. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1535. int chunkHead = 0;
  1536. int serial_read_stream() {
  1537. setTargetHotend(0, 0);
  1538. setTargetBed(0);
  1539. lcd_clear();
  1540. lcd_puts_P(PSTR(" Upload in progress"));
  1541. // first wait for how many bytes we will receive
  1542. uint32_t bytesToReceive;
  1543. // receive the four bytes
  1544. char bytesToReceiveBuffer[4];
  1545. for (int i=0; i<4; i++) {
  1546. int data;
  1547. while ((data = MYSERIAL.read()) == -1) {};
  1548. bytesToReceiveBuffer[i] = data;
  1549. }
  1550. // make it a uint32
  1551. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1552. // we're ready, notify the sender
  1553. MYSERIAL.write('+');
  1554. // lock in the routine
  1555. uint32_t receivedBytes = 0;
  1556. while (prusa_sd_card_upload) {
  1557. int i;
  1558. for (i=0; i<CHUNK_SIZE; i++) {
  1559. int data;
  1560. // check if we're not done
  1561. if (receivedBytes == bytesToReceive) {
  1562. break;
  1563. }
  1564. // read the next byte
  1565. while ((data = MYSERIAL.read()) == -1) {};
  1566. receivedBytes++;
  1567. // save it to the chunk
  1568. chunk[i] = data;
  1569. }
  1570. // write the chunk to SD
  1571. card.write_command_no_newline(&chunk[0]);
  1572. // notify the sender we're ready for more data
  1573. MYSERIAL.write('+');
  1574. // for safety
  1575. manage_heater();
  1576. // check if we're done
  1577. if(receivedBytes == bytesToReceive) {
  1578. trace(); // beep
  1579. card.closefile();
  1580. prusa_sd_card_upload = false;
  1581. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1582. return 0;
  1583. }
  1584. }
  1585. }
  1586. #ifdef HOST_KEEPALIVE_FEATURE
  1587. /**
  1588. * Output a "busy" message at regular intervals
  1589. * while the machine is not accepting commands.
  1590. */
  1591. void host_keepalive() {
  1592. if (farm_mode) return;
  1593. long ms = millis();
  1594. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1595. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1596. switch (busy_state) {
  1597. case IN_HANDLER:
  1598. case IN_PROCESS:
  1599. SERIAL_ECHO_START;
  1600. SERIAL_ECHOLNPGM("busy: processing");
  1601. break;
  1602. case PAUSED_FOR_USER:
  1603. SERIAL_ECHO_START;
  1604. SERIAL_ECHOLNPGM("busy: paused for user");
  1605. break;
  1606. case PAUSED_FOR_INPUT:
  1607. SERIAL_ECHO_START;
  1608. SERIAL_ECHOLNPGM("busy: paused for input");
  1609. break;
  1610. default:
  1611. break;
  1612. }
  1613. }
  1614. prev_busy_signal_ms = ms;
  1615. }
  1616. #endif
  1617. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1618. // Before loop(), the setup() function is called by the main() routine.
  1619. void loop()
  1620. {
  1621. KEEPALIVE_STATE(NOT_BUSY);
  1622. bool stack_integrity = true;
  1623. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1624. {
  1625. is_usb_printing = true;
  1626. usb_printing_counter--;
  1627. _usb_timer = millis();
  1628. }
  1629. if (usb_printing_counter == 0)
  1630. {
  1631. is_usb_printing = false;
  1632. }
  1633. if (prusa_sd_card_upload)
  1634. {
  1635. //we read byte-by byte
  1636. serial_read_stream();
  1637. } else
  1638. {
  1639. get_command();
  1640. #ifdef SDSUPPORT
  1641. card.checkautostart(false);
  1642. #endif
  1643. if(buflen)
  1644. {
  1645. cmdbuffer_front_already_processed = false;
  1646. #ifdef SDSUPPORT
  1647. if(card.saving)
  1648. {
  1649. // Saving a G-code file onto an SD-card is in progress.
  1650. // Saving starts with M28, saving until M29 is seen.
  1651. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1652. card.write_command(CMDBUFFER_CURRENT_STRING);
  1653. if(card.logging)
  1654. process_commands();
  1655. else
  1656. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1657. } else {
  1658. card.closefile();
  1659. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1660. }
  1661. } else {
  1662. process_commands();
  1663. }
  1664. #else
  1665. process_commands();
  1666. #endif //SDSUPPORT
  1667. if (! cmdbuffer_front_already_processed && buflen)
  1668. {
  1669. // ptr points to the start of the block currently being processed.
  1670. // The first character in the block is the block type.
  1671. char *ptr = cmdbuffer + bufindr;
  1672. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1673. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1674. union {
  1675. struct {
  1676. char lo;
  1677. char hi;
  1678. } lohi;
  1679. uint16_t value;
  1680. } sdlen;
  1681. sdlen.value = 0;
  1682. {
  1683. // This block locks the interrupts globally for 3.25 us,
  1684. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1685. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1686. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1687. cli();
  1688. // Reset the command to something, which will be ignored by the power panic routine,
  1689. // so this buffer length will not be counted twice.
  1690. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1691. // Extract the current buffer length.
  1692. sdlen.lohi.lo = *ptr ++;
  1693. sdlen.lohi.hi = *ptr;
  1694. // and pass it to the planner queue.
  1695. planner_add_sd_length(sdlen.value);
  1696. sei();
  1697. }
  1698. }
  1699. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1700. cli();
  1701. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1702. // and one for each command to previous block in the planner queue.
  1703. planner_add_sd_length(1);
  1704. sei();
  1705. }
  1706. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1707. // this block's SD card length will not be counted twice as its command type has been replaced
  1708. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1709. cmdqueue_pop_front();
  1710. }
  1711. host_keepalive();
  1712. }
  1713. }
  1714. //check heater every n milliseconds
  1715. manage_heater();
  1716. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1717. checkHitEndstops();
  1718. lcd_update(0);
  1719. #ifdef PAT9125
  1720. fsensor_update();
  1721. #endif //PAT9125
  1722. #ifdef TMC2130
  1723. tmc2130_check_overtemp();
  1724. if (tmc2130_sg_crash)
  1725. {
  1726. uint8_t crash = tmc2130_sg_crash;
  1727. tmc2130_sg_crash = 0;
  1728. // crashdet_stop_and_save_print();
  1729. switch (crash)
  1730. {
  1731. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1732. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1733. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1734. }
  1735. }
  1736. #endif //TMC2130
  1737. }
  1738. #define DEFINE_PGM_READ_ANY(type, reader) \
  1739. static inline type pgm_read_any(const type *p) \
  1740. { return pgm_read_##reader##_near(p); }
  1741. DEFINE_PGM_READ_ANY(float, float);
  1742. DEFINE_PGM_READ_ANY(signed char, byte);
  1743. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1744. static const PROGMEM type array##_P[3] = \
  1745. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1746. static inline type array(int axis) \
  1747. { return pgm_read_any(&array##_P[axis]); } \
  1748. type array##_ext(int axis) \
  1749. { return pgm_read_any(&array##_P[axis]); }
  1750. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1751. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1752. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1753. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1754. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1755. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1756. static void axis_is_at_home(int axis) {
  1757. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1758. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1759. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1760. }
  1761. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1762. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1763. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1764. saved_feedrate = feedrate;
  1765. saved_feedmultiply = feedmultiply;
  1766. feedmultiply = 100;
  1767. previous_millis_cmd = millis();
  1768. enable_endstops(enable_endstops_now);
  1769. }
  1770. static void clean_up_after_endstop_move() {
  1771. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1772. enable_endstops(false);
  1773. #endif
  1774. feedrate = saved_feedrate;
  1775. feedmultiply = saved_feedmultiply;
  1776. previous_millis_cmd = millis();
  1777. }
  1778. #ifdef ENABLE_AUTO_BED_LEVELING
  1779. #ifdef AUTO_BED_LEVELING_GRID
  1780. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1781. {
  1782. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1783. planeNormal.debug("planeNormal");
  1784. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1785. //bedLevel.debug("bedLevel");
  1786. //plan_bed_level_matrix.debug("bed level before");
  1787. //vector_3 uncorrected_position = plan_get_position_mm();
  1788. //uncorrected_position.debug("position before");
  1789. vector_3 corrected_position = plan_get_position();
  1790. // corrected_position.debug("position after");
  1791. current_position[X_AXIS] = corrected_position.x;
  1792. current_position[Y_AXIS] = corrected_position.y;
  1793. current_position[Z_AXIS] = corrected_position.z;
  1794. // put the bed at 0 so we don't go below it.
  1795. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1796. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1797. }
  1798. #else // not AUTO_BED_LEVELING_GRID
  1799. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1800. plan_bed_level_matrix.set_to_identity();
  1801. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1802. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1803. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1804. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1805. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1806. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1807. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1808. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1809. vector_3 corrected_position = plan_get_position();
  1810. current_position[X_AXIS] = corrected_position.x;
  1811. current_position[Y_AXIS] = corrected_position.y;
  1812. current_position[Z_AXIS] = corrected_position.z;
  1813. // put the bed at 0 so we don't go below it.
  1814. current_position[Z_AXIS] = zprobe_zoffset;
  1815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. }
  1817. #endif // AUTO_BED_LEVELING_GRID
  1818. static void run_z_probe() {
  1819. plan_bed_level_matrix.set_to_identity();
  1820. feedrate = homing_feedrate[Z_AXIS];
  1821. // move down until you find the bed
  1822. float zPosition = -10;
  1823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1824. st_synchronize();
  1825. // we have to let the planner know where we are right now as it is not where we said to go.
  1826. zPosition = st_get_position_mm(Z_AXIS);
  1827. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1828. // move up the retract distance
  1829. zPosition += home_retract_mm(Z_AXIS);
  1830. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1831. st_synchronize();
  1832. // move back down slowly to find bed
  1833. feedrate = homing_feedrate[Z_AXIS]/4;
  1834. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1836. st_synchronize();
  1837. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1838. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1840. }
  1841. static void do_blocking_move_to(float x, float y, float z) {
  1842. float oldFeedRate = feedrate;
  1843. feedrate = homing_feedrate[Z_AXIS];
  1844. current_position[Z_AXIS] = z;
  1845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1846. st_synchronize();
  1847. feedrate = XY_TRAVEL_SPEED;
  1848. current_position[X_AXIS] = x;
  1849. current_position[Y_AXIS] = y;
  1850. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1851. st_synchronize();
  1852. feedrate = oldFeedRate;
  1853. }
  1854. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1855. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1856. }
  1857. /// Probe bed height at position (x,y), returns the measured z value
  1858. static float probe_pt(float x, float y, float z_before) {
  1859. // move to right place
  1860. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1861. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1862. run_z_probe();
  1863. float measured_z = current_position[Z_AXIS];
  1864. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1865. SERIAL_PROTOCOLPGM(" x: ");
  1866. SERIAL_PROTOCOL(x);
  1867. SERIAL_PROTOCOLPGM(" y: ");
  1868. SERIAL_PROTOCOL(y);
  1869. SERIAL_PROTOCOLPGM(" z: ");
  1870. SERIAL_PROTOCOL(measured_z);
  1871. SERIAL_PROTOCOLPGM("\n");
  1872. return measured_z;
  1873. }
  1874. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1875. #ifdef LIN_ADVANCE
  1876. /**
  1877. * M900: Set and/or Get advance K factor and WH/D ratio
  1878. *
  1879. * K<factor> Set advance K factor
  1880. * R<ratio> Set ratio directly (overrides WH/D)
  1881. * W<width> H<height> D<diam> Set ratio from WH/D
  1882. */
  1883. inline void gcode_M900() {
  1884. st_synchronize();
  1885. const float newK = code_seen('K') ? code_value_float() : -1;
  1886. if (newK >= 0) extruder_advance_k = newK;
  1887. float newR = code_seen('R') ? code_value_float() : -1;
  1888. if (newR < 0) {
  1889. const float newD = code_seen('D') ? code_value_float() : -1,
  1890. newW = code_seen('W') ? code_value_float() : -1,
  1891. newH = code_seen('H') ? code_value_float() : -1;
  1892. if (newD >= 0 && newW >= 0 && newH >= 0)
  1893. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1894. }
  1895. if (newR >= 0) advance_ed_ratio = newR;
  1896. SERIAL_ECHO_START;
  1897. SERIAL_ECHOPGM("Advance K=");
  1898. SERIAL_ECHOLN(extruder_advance_k);
  1899. SERIAL_ECHOPGM(" E/D=");
  1900. const float ratio = advance_ed_ratio;
  1901. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1902. }
  1903. #endif // LIN_ADVANCE
  1904. bool check_commands() {
  1905. bool end_command_found = false;
  1906. while (buflen)
  1907. {
  1908. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1909. if (!cmdbuffer_front_already_processed)
  1910. cmdqueue_pop_front();
  1911. cmdbuffer_front_already_processed = false;
  1912. }
  1913. return end_command_found;
  1914. }
  1915. #ifdef TMC2130
  1916. bool calibrate_z_auto()
  1917. {
  1918. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1919. lcd_clear();
  1920. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1921. bool endstops_enabled = enable_endstops(true);
  1922. int axis_up_dir = -home_dir(Z_AXIS);
  1923. tmc2130_home_enter(Z_AXIS_MASK);
  1924. current_position[Z_AXIS] = 0;
  1925. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1926. set_destination_to_current();
  1927. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1928. feedrate = homing_feedrate[Z_AXIS];
  1929. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1930. st_synchronize();
  1931. // current_position[axis] = 0;
  1932. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1933. tmc2130_home_exit();
  1934. enable_endstops(false);
  1935. current_position[Z_AXIS] = 0;
  1936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1937. set_destination_to_current();
  1938. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1939. feedrate = homing_feedrate[Z_AXIS] / 2;
  1940. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1941. st_synchronize();
  1942. enable_endstops(endstops_enabled);
  1943. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1944. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1945. return true;
  1946. }
  1947. #endif //TMC2130
  1948. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1949. {
  1950. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1951. #define HOMEAXIS_DO(LETTER) \
  1952. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1953. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1954. {
  1955. int axis_home_dir = home_dir(axis);
  1956. feedrate = homing_feedrate[axis];
  1957. #ifdef TMC2130
  1958. tmc2130_home_enter(X_AXIS_MASK << axis);
  1959. #endif //TMC2130
  1960. // Move right a bit, so that the print head does not touch the left end position,
  1961. // and the following left movement has a chance to achieve the required velocity
  1962. // for the stall guard to work.
  1963. current_position[axis] = 0;
  1964. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1965. set_destination_to_current();
  1966. // destination[axis] = 11.f;
  1967. destination[axis] = 3.f;
  1968. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1969. st_synchronize();
  1970. // Move left away from the possible collision with the collision detection disabled.
  1971. endstops_hit_on_purpose();
  1972. enable_endstops(false);
  1973. current_position[axis] = 0;
  1974. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1975. destination[axis] = - 1.;
  1976. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1977. st_synchronize();
  1978. // Now continue to move up to the left end stop with the collision detection enabled.
  1979. enable_endstops(true);
  1980. destination[axis] = - 1.1 * max_length(axis);
  1981. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1982. st_synchronize();
  1983. for (uint8_t i = 0; i < cnt; i++)
  1984. {
  1985. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1986. endstops_hit_on_purpose();
  1987. enable_endstops(false);
  1988. current_position[axis] = 0;
  1989. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1990. destination[axis] = 10.f;
  1991. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1992. st_synchronize();
  1993. endstops_hit_on_purpose();
  1994. // Now move left up to the collision, this time with a repeatable velocity.
  1995. enable_endstops(true);
  1996. destination[axis] = - 11.f;
  1997. #ifdef TMC2130
  1998. feedrate = homing_feedrate[axis];
  1999. #else //TMC2130
  2000. feedrate = homing_feedrate[axis] / 2;
  2001. #endif //TMC2130
  2002. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2003. st_synchronize();
  2004. #ifdef TMC2130
  2005. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  2006. if (pstep) pstep[i] = mscnt >> 4;
  2007. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  2008. #endif //TMC2130
  2009. }
  2010. endstops_hit_on_purpose();
  2011. enable_endstops(false);
  2012. #ifdef TMC2130
  2013. uint8_t orig = tmc2130_home_origin[axis];
  2014. uint8_t back = tmc2130_home_bsteps[axis];
  2015. if (tmc2130_home_enabled && (orig <= 63))
  2016. {
  2017. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2018. if (back > 0)
  2019. tmc2130_do_steps(axis, back, 1, 1000);
  2020. }
  2021. else
  2022. tmc2130_do_steps(axis, 8, 2, 1000);
  2023. tmc2130_home_exit();
  2024. #endif //TMC2130
  2025. axis_is_at_home(axis);
  2026. axis_known_position[axis] = true;
  2027. // Move from minimum
  2028. #ifdef TMC2130
  2029. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2030. #else //TMC2130
  2031. float dist = 0.01f * 64;
  2032. #endif //TMC2130
  2033. current_position[axis] -= dist;
  2034. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2035. current_position[axis] += dist;
  2036. destination[axis] = current_position[axis];
  2037. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2038. st_synchronize();
  2039. feedrate = 0.0;
  2040. }
  2041. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2042. {
  2043. #ifdef TMC2130
  2044. FORCE_HIGH_POWER_START;
  2045. #endif
  2046. int axis_home_dir = home_dir(axis);
  2047. current_position[axis] = 0;
  2048. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2049. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2050. feedrate = homing_feedrate[axis];
  2051. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2052. st_synchronize();
  2053. #ifdef TMC2130
  2054. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2055. FORCE_HIGH_POWER_END;
  2056. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2057. return;
  2058. }
  2059. #endif //TMC2130
  2060. current_position[axis] = 0;
  2061. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2062. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2063. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2064. st_synchronize();
  2065. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2066. feedrate = homing_feedrate[axis]/2 ;
  2067. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2068. st_synchronize();
  2069. #ifdef TMC2130
  2070. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2071. FORCE_HIGH_POWER_END;
  2072. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2073. return;
  2074. }
  2075. #endif //TMC2130
  2076. axis_is_at_home(axis);
  2077. destination[axis] = current_position[axis];
  2078. feedrate = 0.0;
  2079. endstops_hit_on_purpose();
  2080. axis_known_position[axis] = true;
  2081. #ifdef TMC2130
  2082. FORCE_HIGH_POWER_END;
  2083. #endif
  2084. }
  2085. enable_endstops(endstops_enabled);
  2086. }
  2087. /**/
  2088. void home_xy()
  2089. {
  2090. set_destination_to_current();
  2091. homeaxis(X_AXIS);
  2092. homeaxis(Y_AXIS);
  2093. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2094. endstops_hit_on_purpose();
  2095. }
  2096. void refresh_cmd_timeout(void)
  2097. {
  2098. previous_millis_cmd = millis();
  2099. }
  2100. #ifdef FWRETRACT
  2101. void retract(bool retracting, bool swapretract = false) {
  2102. if(retracting && !retracted[active_extruder]) {
  2103. destination[X_AXIS]=current_position[X_AXIS];
  2104. destination[Y_AXIS]=current_position[Y_AXIS];
  2105. destination[Z_AXIS]=current_position[Z_AXIS];
  2106. destination[E_AXIS]=current_position[E_AXIS];
  2107. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2108. plan_set_e_position(current_position[E_AXIS]);
  2109. float oldFeedrate = feedrate;
  2110. feedrate=retract_feedrate*60;
  2111. retracted[active_extruder]=true;
  2112. prepare_move();
  2113. current_position[Z_AXIS]-=retract_zlift;
  2114. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2115. prepare_move();
  2116. feedrate = oldFeedrate;
  2117. } else if(!retracting && retracted[active_extruder]) {
  2118. destination[X_AXIS]=current_position[X_AXIS];
  2119. destination[Y_AXIS]=current_position[Y_AXIS];
  2120. destination[Z_AXIS]=current_position[Z_AXIS];
  2121. destination[E_AXIS]=current_position[E_AXIS];
  2122. current_position[Z_AXIS]+=retract_zlift;
  2123. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2124. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2125. plan_set_e_position(current_position[E_AXIS]);
  2126. float oldFeedrate = feedrate;
  2127. feedrate=retract_recover_feedrate*60;
  2128. retracted[active_extruder]=false;
  2129. prepare_move();
  2130. feedrate = oldFeedrate;
  2131. }
  2132. } //retract
  2133. #endif //FWRETRACT
  2134. void trace() {
  2135. tone(BEEPER, 440);
  2136. delay(25);
  2137. noTone(BEEPER);
  2138. delay(20);
  2139. }
  2140. /*
  2141. void ramming() {
  2142. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2143. if (current_temperature[0] < 230) {
  2144. //PLA
  2145. max_feedrate[E_AXIS] = 50;
  2146. //current_position[E_AXIS] -= 8;
  2147. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2148. //current_position[E_AXIS] += 8;
  2149. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2150. current_position[E_AXIS] += 5.4;
  2151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2152. current_position[E_AXIS] += 3.2;
  2153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2154. current_position[E_AXIS] += 3;
  2155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2156. st_synchronize();
  2157. max_feedrate[E_AXIS] = 80;
  2158. current_position[E_AXIS] -= 82;
  2159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2160. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2161. current_position[E_AXIS] -= 20;
  2162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2163. current_position[E_AXIS] += 5;
  2164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2165. current_position[E_AXIS] += 5;
  2166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2167. current_position[E_AXIS] -= 10;
  2168. st_synchronize();
  2169. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2170. current_position[E_AXIS] += 10;
  2171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2172. current_position[E_AXIS] -= 10;
  2173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2174. current_position[E_AXIS] += 10;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2176. current_position[E_AXIS] -= 10;
  2177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2178. st_synchronize();
  2179. }
  2180. else {
  2181. //ABS
  2182. max_feedrate[E_AXIS] = 50;
  2183. //current_position[E_AXIS] -= 8;
  2184. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2185. //current_position[E_AXIS] += 8;
  2186. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2187. current_position[E_AXIS] += 3.1;
  2188. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2189. current_position[E_AXIS] += 3.1;
  2190. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2191. current_position[E_AXIS] += 4;
  2192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2193. st_synchronize();
  2194. //current_position[X_AXIS] += 23; //delay
  2195. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2196. //current_position[X_AXIS] -= 23; //delay
  2197. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2198. delay(4700);
  2199. max_feedrate[E_AXIS] = 80;
  2200. current_position[E_AXIS] -= 92;
  2201. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2202. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2203. current_position[E_AXIS] -= 5;
  2204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2205. current_position[E_AXIS] += 5;
  2206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2207. current_position[E_AXIS] -= 5;
  2208. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2209. st_synchronize();
  2210. current_position[E_AXIS] += 5;
  2211. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2212. current_position[E_AXIS] -= 5;
  2213. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2214. current_position[E_AXIS] += 5;
  2215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2216. current_position[E_AXIS] -= 5;
  2217. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2218. st_synchronize();
  2219. }
  2220. }
  2221. */
  2222. #ifdef TMC2130
  2223. void force_high_power_mode(bool start_high_power_section) {
  2224. uint8_t silent;
  2225. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2226. if (silent == 1) {
  2227. //we are in silent mode, set to normal mode to enable crash detection
  2228. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2229. st_synchronize();
  2230. cli();
  2231. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2232. tmc2130_init();
  2233. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2234. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2235. st_reset_timer();
  2236. sei();
  2237. }
  2238. }
  2239. #endif //TMC2130
  2240. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2241. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2242. }
  2243. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2244. st_synchronize();
  2245. #if 0
  2246. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2247. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2248. #endif
  2249. // Flag for the display update routine and to disable the print cancelation during homing.
  2250. homing_flag = true;
  2251. // Which axes should be homed?
  2252. bool home_x = home_x_axis;
  2253. bool home_y = home_y_axis;
  2254. bool home_z = home_z_axis;
  2255. // Either all X,Y,Z codes are present, or none of them.
  2256. bool home_all_axes = home_x == home_y && home_x == home_z;
  2257. if (home_all_axes)
  2258. // No X/Y/Z code provided means to home all axes.
  2259. home_x = home_y = home_z = true;
  2260. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2261. if (home_all_axes) {
  2262. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2263. feedrate = homing_feedrate[Z_AXIS];
  2264. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2265. st_synchronize();
  2266. }
  2267. #ifdef ENABLE_AUTO_BED_LEVELING
  2268. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2269. #endif //ENABLE_AUTO_BED_LEVELING
  2270. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2271. // the planner will not perform any adjustments in the XY plane.
  2272. // Wait for the motors to stop and update the current position with the absolute values.
  2273. world2machine_revert_to_uncorrected();
  2274. // For mesh bed leveling deactivate the matrix temporarily.
  2275. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2276. // in a single axis only.
  2277. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2278. #ifdef MESH_BED_LEVELING
  2279. uint8_t mbl_was_active = mbl.active;
  2280. mbl.active = 0;
  2281. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2282. #endif
  2283. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2284. // consumed during the first movements following this statement.
  2285. if (home_z)
  2286. babystep_undo();
  2287. saved_feedrate = feedrate;
  2288. saved_feedmultiply = feedmultiply;
  2289. feedmultiply = 100;
  2290. previous_millis_cmd = millis();
  2291. enable_endstops(true);
  2292. memcpy(destination, current_position, sizeof(destination));
  2293. feedrate = 0.0;
  2294. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2295. if(home_z)
  2296. homeaxis(Z_AXIS);
  2297. #endif
  2298. #ifdef QUICK_HOME
  2299. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2300. if(home_x && home_y) //first diagonal move
  2301. {
  2302. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2303. int x_axis_home_dir = home_dir(X_AXIS);
  2304. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2305. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2306. feedrate = homing_feedrate[X_AXIS];
  2307. if(homing_feedrate[Y_AXIS]<feedrate)
  2308. feedrate = homing_feedrate[Y_AXIS];
  2309. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2310. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2311. } else {
  2312. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2313. }
  2314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2315. st_synchronize();
  2316. axis_is_at_home(X_AXIS);
  2317. axis_is_at_home(Y_AXIS);
  2318. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2319. destination[X_AXIS] = current_position[X_AXIS];
  2320. destination[Y_AXIS] = current_position[Y_AXIS];
  2321. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2322. feedrate = 0.0;
  2323. st_synchronize();
  2324. endstops_hit_on_purpose();
  2325. current_position[X_AXIS] = destination[X_AXIS];
  2326. current_position[Y_AXIS] = destination[Y_AXIS];
  2327. current_position[Z_AXIS] = destination[Z_AXIS];
  2328. }
  2329. #endif /* QUICK_HOME */
  2330. #ifdef TMC2130
  2331. if(home_x)
  2332. {
  2333. if (!calib)
  2334. homeaxis(X_AXIS);
  2335. else
  2336. tmc2130_home_calibrate(X_AXIS);
  2337. }
  2338. if(home_y)
  2339. {
  2340. if (!calib)
  2341. homeaxis(Y_AXIS);
  2342. else
  2343. tmc2130_home_calibrate(Y_AXIS);
  2344. }
  2345. #endif //TMC2130
  2346. if(home_x_axis && home_x_value != 0)
  2347. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2348. if(home_y_axis && home_y_value != 0)
  2349. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2350. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2351. #ifndef Z_SAFE_HOMING
  2352. if(home_z) {
  2353. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2354. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2355. feedrate = max_feedrate[Z_AXIS];
  2356. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2357. st_synchronize();
  2358. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2359. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2360. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2361. {
  2362. homeaxis(X_AXIS);
  2363. homeaxis(Y_AXIS);
  2364. }
  2365. // 1st mesh bed leveling measurement point, corrected.
  2366. world2machine_initialize();
  2367. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2368. world2machine_reset();
  2369. if (destination[Y_AXIS] < Y_MIN_POS)
  2370. destination[Y_AXIS] = Y_MIN_POS;
  2371. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2372. feedrate = homing_feedrate[Z_AXIS]/10;
  2373. current_position[Z_AXIS] = 0;
  2374. enable_endstops(false);
  2375. #ifdef DEBUG_BUILD
  2376. SERIAL_ECHOLNPGM("plan_set_position()");
  2377. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2378. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2379. #endif
  2380. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2381. #ifdef DEBUG_BUILD
  2382. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2383. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2384. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2385. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2386. #endif
  2387. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2388. st_synchronize();
  2389. current_position[X_AXIS] = destination[X_AXIS];
  2390. current_position[Y_AXIS] = destination[Y_AXIS];
  2391. enable_endstops(true);
  2392. endstops_hit_on_purpose();
  2393. homeaxis(Z_AXIS);
  2394. #else // MESH_BED_LEVELING
  2395. homeaxis(Z_AXIS);
  2396. #endif // MESH_BED_LEVELING
  2397. }
  2398. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2399. if(home_all_axes) {
  2400. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2401. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2402. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2403. feedrate = XY_TRAVEL_SPEED/60;
  2404. current_position[Z_AXIS] = 0;
  2405. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2406. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2407. st_synchronize();
  2408. current_position[X_AXIS] = destination[X_AXIS];
  2409. current_position[Y_AXIS] = destination[Y_AXIS];
  2410. homeaxis(Z_AXIS);
  2411. }
  2412. // Let's see if X and Y are homed and probe is inside bed area.
  2413. if(home_z) {
  2414. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2415. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2416. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2417. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2418. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2419. current_position[Z_AXIS] = 0;
  2420. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2421. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2422. feedrate = max_feedrate[Z_AXIS];
  2423. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2424. st_synchronize();
  2425. homeaxis(Z_AXIS);
  2426. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2427. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2428. SERIAL_ECHO_START;
  2429. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2430. } else {
  2431. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2432. SERIAL_ECHO_START;
  2433. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2434. }
  2435. }
  2436. #endif // Z_SAFE_HOMING
  2437. #endif // Z_HOME_DIR < 0
  2438. if(home_z_axis && home_z_value != 0)
  2439. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2440. #ifdef ENABLE_AUTO_BED_LEVELING
  2441. if(home_z)
  2442. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2443. #endif
  2444. // Set the planner and stepper routine positions.
  2445. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2446. // contains the machine coordinates.
  2447. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2448. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2449. enable_endstops(false);
  2450. #endif
  2451. feedrate = saved_feedrate;
  2452. feedmultiply = saved_feedmultiply;
  2453. previous_millis_cmd = millis();
  2454. endstops_hit_on_purpose();
  2455. #ifndef MESH_BED_LEVELING
  2456. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2457. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2458. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2459. lcd_adjust_z();
  2460. #endif
  2461. // Load the machine correction matrix
  2462. world2machine_initialize();
  2463. // and correct the current_position XY axes to match the transformed coordinate system.
  2464. world2machine_update_current();
  2465. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2466. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2467. {
  2468. if (! home_z && mbl_was_active) {
  2469. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2470. mbl.active = true;
  2471. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2472. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2473. }
  2474. }
  2475. else
  2476. {
  2477. st_synchronize();
  2478. homing_flag = false;
  2479. }
  2480. #endif
  2481. if (farm_mode) { prusa_statistics(20); };
  2482. homing_flag = false;
  2483. #if 0
  2484. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2485. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2486. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2487. #endif
  2488. }
  2489. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2490. {
  2491. bool final_result = false;
  2492. #ifdef TMC2130
  2493. FORCE_HIGH_POWER_START;
  2494. #endif // TMC2130
  2495. // Only Z calibration?
  2496. if (!onlyZ)
  2497. {
  2498. setTargetBed(0);
  2499. setTargetHotend(0, 0);
  2500. setTargetHotend(0, 1);
  2501. setTargetHotend(0, 2);
  2502. adjust_bed_reset(); //reset bed level correction
  2503. }
  2504. // Disable the default update procedure of the display. We will do a modal dialog.
  2505. lcd_update_enable(false);
  2506. // Let the planner use the uncorrected coordinates.
  2507. mbl.reset();
  2508. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2509. // the planner will not perform any adjustments in the XY plane.
  2510. // Wait for the motors to stop and update the current position with the absolute values.
  2511. world2machine_revert_to_uncorrected();
  2512. // Reset the baby step value applied without moving the axes.
  2513. babystep_reset();
  2514. // Mark all axes as in a need for homing.
  2515. memset(axis_known_position, 0, sizeof(axis_known_position));
  2516. // Home in the XY plane.
  2517. //set_destination_to_current();
  2518. setup_for_endstop_move();
  2519. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2520. home_xy();
  2521. enable_endstops(false);
  2522. current_position[X_AXIS] += 5;
  2523. current_position[Y_AXIS] += 5;
  2524. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2525. st_synchronize();
  2526. // Let the user move the Z axes up to the end stoppers.
  2527. #ifdef TMC2130
  2528. if (calibrate_z_auto())
  2529. {
  2530. #else //TMC2130
  2531. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2532. {
  2533. #endif //TMC2130
  2534. refresh_cmd_timeout();
  2535. #ifndef STEEL_SHEET
  2536. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2537. {
  2538. lcd_wait_for_cool_down();
  2539. }
  2540. #endif //STEEL_SHEET
  2541. if(!onlyZ)
  2542. {
  2543. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2544. #ifdef STEEL_SHEET
  2545. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2546. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2547. #endif //STEEL_SHEET
  2548. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2549. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2550. KEEPALIVE_STATE(IN_HANDLER);
  2551. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2552. lcd_set_cursor(0, 2);
  2553. lcd_print(1);
  2554. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2555. }
  2556. // Move the print head close to the bed.
  2557. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2558. bool endstops_enabled = enable_endstops(true);
  2559. #ifdef TMC2130
  2560. tmc2130_home_enter(Z_AXIS_MASK);
  2561. #endif //TMC2130
  2562. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2563. st_synchronize();
  2564. #ifdef TMC2130
  2565. tmc2130_home_exit();
  2566. #endif //TMC2130
  2567. enable_endstops(endstops_enabled);
  2568. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2569. {
  2570. int8_t verbosity_level = 0;
  2571. if (code_seen('V'))
  2572. {
  2573. // Just 'V' without a number counts as V1.
  2574. char c = strchr_pointer[1];
  2575. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2576. }
  2577. if (onlyZ)
  2578. {
  2579. clean_up_after_endstop_move();
  2580. // Z only calibration.
  2581. // Load the machine correction matrix
  2582. world2machine_initialize();
  2583. // and correct the current_position to match the transformed coordinate system.
  2584. world2machine_update_current();
  2585. //FIXME
  2586. bool result = sample_mesh_and_store_reference();
  2587. if (result)
  2588. {
  2589. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2590. // Shipped, the nozzle height has been set already. The user can start printing now.
  2591. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2592. final_result = true;
  2593. // babystep_apply();
  2594. }
  2595. }
  2596. else
  2597. {
  2598. // Reset the baby step value and the baby step applied flag.
  2599. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2600. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2601. // Complete XYZ calibration.
  2602. uint8_t point_too_far_mask = 0;
  2603. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2604. clean_up_after_endstop_move();
  2605. // Print head up.
  2606. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2608. st_synchronize();
  2609. //#ifndef NEW_XYZCAL
  2610. if (result >= 0)
  2611. {
  2612. #ifdef HEATBED_V2
  2613. sample_z();
  2614. #else //HEATBED_V2
  2615. point_too_far_mask = 0;
  2616. // Second half: The fine adjustment.
  2617. // Let the planner use the uncorrected coordinates.
  2618. mbl.reset();
  2619. world2machine_reset();
  2620. // Home in the XY plane.
  2621. setup_for_endstop_move();
  2622. home_xy();
  2623. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2624. clean_up_after_endstop_move();
  2625. // Print head up.
  2626. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2628. st_synchronize();
  2629. // if (result >= 0) babystep_apply();
  2630. #endif //HEATBED_V2
  2631. }
  2632. //#endif //NEW_XYZCAL
  2633. lcd_update_enable(true);
  2634. lcd_update(2);
  2635. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2636. if (result >= 0)
  2637. {
  2638. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2639. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2640. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2641. final_result = true;
  2642. }
  2643. }
  2644. #ifdef TMC2130
  2645. tmc2130_home_exit();
  2646. #endif
  2647. }
  2648. else
  2649. {
  2650. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2651. final_result = false;
  2652. }
  2653. }
  2654. else
  2655. {
  2656. // Timeouted.
  2657. }
  2658. lcd_update_enable(true);
  2659. #ifdef TMC2130
  2660. FORCE_HIGH_POWER_END;
  2661. #endif // TMC2130
  2662. return final_result;
  2663. }
  2664. void gcode_M114()
  2665. {
  2666. SERIAL_PROTOCOLPGM("X:");
  2667. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2668. SERIAL_PROTOCOLPGM(" Y:");
  2669. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2670. SERIAL_PROTOCOLPGM(" Z:");
  2671. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2672. SERIAL_PROTOCOLPGM(" E:");
  2673. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2674. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2675. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2676. SERIAL_PROTOCOLPGM(" Y:");
  2677. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2678. SERIAL_PROTOCOLPGM(" Z:");
  2679. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2680. SERIAL_PROTOCOLPGM(" E:");
  2681. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2682. SERIAL_PROTOCOLLN("");
  2683. }
  2684. void gcode_M701()
  2685. {
  2686. #if defined (SNMM) || defined (SNMM_V2)
  2687. extr_adj(snmm_extruder);//loads current extruder
  2688. #else
  2689. enable_z();
  2690. custom_message = true;
  2691. custom_message_type = 2;
  2692. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2693. current_position[E_AXIS] += 40;
  2694. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2695. st_synchronize();
  2696. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2697. current_position[E_AXIS] += 30;
  2698. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2699. st_synchronize();
  2700. current_position[E_AXIS] += 25;
  2701. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2702. st_synchronize();
  2703. tone(BEEPER, 500);
  2704. delay_keep_alive(50);
  2705. noTone(BEEPER);
  2706. if (!farm_mode && loading_flag) {
  2707. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2708. while (!clean) {
  2709. lcd_update_enable(true);
  2710. lcd_update(2);
  2711. current_position[E_AXIS] += 25;
  2712. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2713. st_synchronize();
  2714. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2715. }
  2716. }
  2717. lcd_update_enable(true);
  2718. lcd_update(2);
  2719. lcd_setstatuspgm(_T(WELCOME_MSG));
  2720. disable_z();
  2721. loading_flag = false;
  2722. custom_message = false;
  2723. custom_message_type = 0;
  2724. #endif
  2725. }
  2726. /**
  2727. * @brief Get serial number from 32U2 processor
  2728. *
  2729. * Typical format of S/N is:CZPX0917X003XC13518
  2730. *
  2731. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2732. *
  2733. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2734. * reply is transmitted to serial port 1 character by character.
  2735. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2736. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2737. * in any case.
  2738. */
  2739. static void gcode_PRUSA_SN()
  2740. {
  2741. if (farm_mode) {
  2742. selectedSerialPort = 0;
  2743. putchar(';');
  2744. putchar('S');
  2745. int numbersRead = 0;
  2746. ShortTimer timeout;
  2747. timeout.start();
  2748. while (numbersRead < 19) {
  2749. while (MSerial.available() > 0) {
  2750. uint8_t serial_char = MSerial.read();
  2751. selectedSerialPort = 1;
  2752. putchar(serial_char);
  2753. numbersRead++;
  2754. selectedSerialPort = 0;
  2755. }
  2756. if (timeout.expired(100u)) break;
  2757. }
  2758. selectedSerialPort = 1;
  2759. putchar('\n');
  2760. #if 0
  2761. for (int b = 0; b < 3; b++) {
  2762. tone(BEEPER, 110);
  2763. delay(50);
  2764. noTone(BEEPER);
  2765. delay(50);
  2766. }
  2767. #endif
  2768. } else {
  2769. puts_P(_N("Not in farm mode."));
  2770. }
  2771. }
  2772. #ifdef BACKLASH_X
  2773. extern uint8_t st_backlash_x;
  2774. #endif //BACKLASH_X
  2775. #ifdef BACKLASH_Y
  2776. extern uint8_t st_backlash_y;
  2777. #endif //BACKLASH_Y
  2778. void process_commands()
  2779. {
  2780. if (!buflen) return; //empty command
  2781. #ifdef FILAMENT_RUNOUT_SUPPORT
  2782. SET_INPUT(FR_SENS);
  2783. #endif
  2784. #ifdef CMDBUFFER_DEBUG
  2785. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2786. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2787. SERIAL_ECHOLNPGM("");
  2788. SERIAL_ECHOPGM("In cmdqueue: ");
  2789. SERIAL_ECHO(buflen);
  2790. SERIAL_ECHOLNPGM("");
  2791. #endif /* CMDBUFFER_DEBUG */
  2792. unsigned long codenum; //throw away variable
  2793. char *starpos = NULL;
  2794. #ifdef ENABLE_AUTO_BED_LEVELING
  2795. float x_tmp, y_tmp, z_tmp, real_z;
  2796. #endif
  2797. // PRUSA GCODES
  2798. KEEPALIVE_STATE(IN_HANDLER);
  2799. #ifdef SNMM
  2800. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2801. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2802. int8_t SilentMode;
  2803. #endif
  2804. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2805. starpos = (strchr(strchr_pointer + 5, '*'));
  2806. if (starpos != NULL)
  2807. *(starpos) = '\0';
  2808. lcd_setstatus(strchr_pointer + 5);
  2809. }
  2810. #ifdef TMC2130
  2811. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2812. {
  2813. if(code_seen("CRASH_DETECTED"))
  2814. {
  2815. uint8_t mask = 0;
  2816. if (code_seen("X")) mask |= X_AXIS_MASK;
  2817. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2818. crashdet_detected(mask);
  2819. }
  2820. else if(code_seen("CRASH_RECOVER"))
  2821. crashdet_recover();
  2822. else if(code_seen("CRASH_CANCEL"))
  2823. crashdet_cancel();
  2824. }
  2825. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2826. {
  2827. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2828. {
  2829. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2830. axis = (axis == 'E')?3:(axis - 'X');
  2831. if (axis < 4)
  2832. {
  2833. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2834. tmc2130_set_wave(axis, 247, fac);
  2835. }
  2836. }
  2837. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2838. {
  2839. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2840. axis = (axis == 'E')?3:(axis - 'X');
  2841. if (axis < 4)
  2842. {
  2843. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2844. uint16_t res = tmc2130_get_res(axis);
  2845. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2846. }
  2847. }
  2848. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2849. {
  2850. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2851. axis = (axis == 'E')?3:(axis - 'X');
  2852. if (axis < 4)
  2853. {
  2854. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2855. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2856. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2857. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2858. char* str_end = 0;
  2859. if (CMDBUFFER_CURRENT_STRING[14])
  2860. {
  2861. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2862. if (str_end && *str_end)
  2863. {
  2864. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2865. if (str_end && *str_end)
  2866. {
  2867. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2868. if (str_end && *str_end)
  2869. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2870. }
  2871. }
  2872. }
  2873. tmc2130_chopper_config[axis].toff = chop0;
  2874. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2875. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2876. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2877. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2878. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2879. }
  2880. }
  2881. }
  2882. #ifdef BACKLASH_X
  2883. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2884. {
  2885. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2886. st_backlash_x = bl;
  2887. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2888. }
  2889. #endif //BACKLASH_X
  2890. #ifdef BACKLASH_Y
  2891. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2892. {
  2893. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2894. st_backlash_y = bl;
  2895. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2896. }
  2897. #endif //BACKLASH_Y
  2898. #endif //TMC2130
  2899. else if(code_seen("PRUSA")){
  2900. if (code_seen("Ping")) { //PRUSA Ping
  2901. if (farm_mode) {
  2902. PingTime = millis();
  2903. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2904. }
  2905. }
  2906. else if (code_seen("PRN")) {
  2907. printf_P(_N("%d"), status_number);
  2908. }else if (code_seen("FAN")) {
  2909. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2910. }else if (code_seen("fn")) {
  2911. if (farm_mode) {
  2912. printf_P(_N("%d"), farm_no);
  2913. }
  2914. else {
  2915. puts_P(_N("Not in farm mode."));
  2916. }
  2917. }
  2918. else if (code_seen("thx")) {
  2919. no_response = false;
  2920. }
  2921. else if (code_seen("MMURES")) {
  2922. fprintf_P(uart2io, PSTR("X0"));
  2923. bool response = mmu_get_reponse();
  2924. if (!response) mmu_not_responding();
  2925. }
  2926. else if (code_seen("RESET")) {
  2927. // careful!
  2928. if (farm_mode) {
  2929. #ifdef WATCHDOG
  2930. boot_app_magic = BOOT_APP_MAGIC;
  2931. boot_app_flags = BOOT_APP_FLG_RUN;
  2932. wdt_enable(WDTO_15MS);
  2933. cli();
  2934. while(1);
  2935. #else //WATCHDOG
  2936. asm volatile("jmp 0x3E000");
  2937. #endif //WATCHDOG
  2938. }
  2939. else {
  2940. MYSERIAL.println("Not in farm mode.");
  2941. }
  2942. }else if (code_seen("fv")) {
  2943. // get file version
  2944. #ifdef SDSUPPORT
  2945. card.openFile(strchr_pointer + 3,true);
  2946. while (true) {
  2947. uint16_t readByte = card.get();
  2948. MYSERIAL.write(readByte);
  2949. if (readByte=='\n') {
  2950. break;
  2951. }
  2952. }
  2953. card.closefile();
  2954. #endif // SDSUPPORT
  2955. } else if (code_seen("M28")) {
  2956. trace();
  2957. prusa_sd_card_upload = true;
  2958. card.openFile(strchr_pointer+4,false);
  2959. } else if (code_seen("SN")) {
  2960. gcode_PRUSA_SN();
  2961. } else if(code_seen("Fir")){
  2962. SERIAL_PROTOCOLLN(FW_VERSION);
  2963. } else if(code_seen("Rev")){
  2964. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2965. } else if(code_seen("Lang")) {
  2966. lang_reset();
  2967. } else if(code_seen("Lz")) {
  2968. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2969. } else if(code_seen("Beat")) {
  2970. // Kick farm link timer
  2971. kicktime = millis();
  2972. } else if(code_seen("FR")) {
  2973. // Factory full reset
  2974. factory_reset(0,true);
  2975. }
  2976. //else if (code_seen('Cal')) {
  2977. // lcd_calibration();
  2978. // }
  2979. }
  2980. else if (code_seen('^')) {
  2981. // nothing, this is a version line
  2982. } else if(code_seen('G'))
  2983. {
  2984. switch((int)code_value())
  2985. {
  2986. case 0: // G0 -> G1
  2987. case 1: // G1
  2988. if(Stopped == false) {
  2989. #ifdef FILAMENT_RUNOUT_SUPPORT
  2990. if(READ(FR_SENS)){
  2991. feedmultiplyBckp=feedmultiply;
  2992. float target[4];
  2993. float lastpos[4];
  2994. target[X_AXIS]=current_position[X_AXIS];
  2995. target[Y_AXIS]=current_position[Y_AXIS];
  2996. target[Z_AXIS]=current_position[Z_AXIS];
  2997. target[E_AXIS]=current_position[E_AXIS];
  2998. lastpos[X_AXIS]=current_position[X_AXIS];
  2999. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3000. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3001. lastpos[E_AXIS]=current_position[E_AXIS];
  3002. //retract by E
  3003. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3004. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3005. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3006. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3007. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3008. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3009. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3010. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3011. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3012. //finish moves
  3013. st_synchronize();
  3014. //disable extruder steppers so filament can be removed
  3015. disable_e0();
  3016. disable_e1();
  3017. disable_e2();
  3018. delay(100);
  3019. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3020. uint8_t cnt=0;
  3021. int counterBeep = 0;
  3022. lcd_wait_interact();
  3023. while(!lcd_clicked()){
  3024. cnt++;
  3025. manage_heater();
  3026. manage_inactivity(true);
  3027. //lcd_update(0);
  3028. if(cnt==0)
  3029. {
  3030. #if BEEPER > 0
  3031. if (counterBeep== 500){
  3032. counterBeep = 0;
  3033. }
  3034. SET_OUTPUT(BEEPER);
  3035. if (counterBeep== 0){
  3036. WRITE(BEEPER,HIGH);
  3037. }
  3038. if (counterBeep== 20){
  3039. WRITE(BEEPER,LOW);
  3040. }
  3041. counterBeep++;
  3042. #else
  3043. #endif
  3044. }
  3045. }
  3046. WRITE(BEEPER,LOW);
  3047. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3048. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3049. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3050. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3051. lcd_change_fil_state = 0;
  3052. lcd_loading_filament();
  3053. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3054. lcd_change_fil_state = 0;
  3055. lcd_alright();
  3056. switch(lcd_change_fil_state){
  3057. case 2:
  3058. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3059. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3060. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3061. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3062. lcd_loading_filament();
  3063. break;
  3064. case 3:
  3065. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3066. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3067. lcd_loading_color();
  3068. break;
  3069. default:
  3070. lcd_change_success();
  3071. break;
  3072. }
  3073. }
  3074. target[E_AXIS]+= 5;
  3075. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3076. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3077. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3078. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3079. //plan_set_e_position(current_position[E_AXIS]);
  3080. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3081. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3082. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3083. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3084. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3085. plan_set_e_position(lastpos[E_AXIS]);
  3086. feedmultiply=feedmultiplyBckp;
  3087. char cmd[9];
  3088. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3089. enquecommand(cmd);
  3090. }
  3091. #endif
  3092. get_coordinates(); // For X Y Z E F
  3093. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3094. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3095. }
  3096. #ifdef FWRETRACT
  3097. if(autoretract_enabled)
  3098. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3099. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3100. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3101. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3102. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3103. retract(!retracted[active_extruder]);
  3104. return;
  3105. }
  3106. }
  3107. #endif //FWRETRACT
  3108. prepare_move();
  3109. //ClearToSend();
  3110. }
  3111. break;
  3112. case 2: // G2 - CW ARC
  3113. if(Stopped == false) {
  3114. get_arc_coordinates();
  3115. prepare_arc_move(true);
  3116. }
  3117. break;
  3118. case 3: // G3 - CCW ARC
  3119. if(Stopped == false) {
  3120. get_arc_coordinates();
  3121. prepare_arc_move(false);
  3122. }
  3123. break;
  3124. case 4: // G4 dwell
  3125. codenum = 0;
  3126. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3127. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3128. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3129. st_synchronize();
  3130. codenum += millis(); // keep track of when we started waiting
  3131. previous_millis_cmd = millis();
  3132. while(millis() < codenum) {
  3133. manage_heater();
  3134. manage_inactivity();
  3135. lcd_update(0);
  3136. }
  3137. break;
  3138. #ifdef FWRETRACT
  3139. case 10: // G10 retract
  3140. #if EXTRUDERS > 1
  3141. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3142. retract(true,retracted_swap[active_extruder]);
  3143. #else
  3144. retract(true);
  3145. #endif
  3146. break;
  3147. case 11: // G11 retract_recover
  3148. #if EXTRUDERS > 1
  3149. retract(false,retracted_swap[active_extruder]);
  3150. #else
  3151. retract(false);
  3152. #endif
  3153. break;
  3154. #endif //FWRETRACT
  3155. case 28: //G28 Home all Axis one at a time
  3156. {
  3157. long home_x_value = 0;
  3158. long home_y_value = 0;
  3159. long home_z_value = 0;
  3160. // Which axes should be homed?
  3161. bool home_x = code_seen(axis_codes[X_AXIS]);
  3162. home_x_value = code_value_long();
  3163. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3164. home_y_value = code_value_long();
  3165. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3166. home_z_value = code_value_long();
  3167. bool without_mbl = code_seen('W');
  3168. // calibrate?
  3169. bool calib = code_seen('C');
  3170. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3171. if ((home_x || home_y || without_mbl || home_z) == false) {
  3172. // Push the commands to the front of the message queue in the reverse order!
  3173. // There shall be always enough space reserved for these commands.
  3174. goto case_G80;
  3175. }
  3176. break;
  3177. }
  3178. #ifdef ENABLE_AUTO_BED_LEVELING
  3179. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3180. {
  3181. #if Z_MIN_PIN == -1
  3182. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3183. #endif
  3184. // Prevent user from running a G29 without first homing in X and Y
  3185. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3186. {
  3187. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3188. SERIAL_ECHO_START;
  3189. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3190. break; // abort G29, since we don't know where we are
  3191. }
  3192. st_synchronize();
  3193. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3194. //vector_3 corrected_position = plan_get_position_mm();
  3195. //corrected_position.debug("position before G29");
  3196. plan_bed_level_matrix.set_to_identity();
  3197. vector_3 uncorrected_position = plan_get_position();
  3198. //uncorrected_position.debug("position durring G29");
  3199. current_position[X_AXIS] = uncorrected_position.x;
  3200. current_position[Y_AXIS] = uncorrected_position.y;
  3201. current_position[Z_AXIS] = uncorrected_position.z;
  3202. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3203. setup_for_endstop_move();
  3204. feedrate = homing_feedrate[Z_AXIS];
  3205. #ifdef AUTO_BED_LEVELING_GRID
  3206. // probe at the points of a lattice grid
  3207. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3208. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3209. // solve the plane equation ax + by + d = z
  3210. // A is the matrix with rows [x y 1] for all the probed points
  3211. // B is the vector of the Z positions
  3212. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3213. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3214. // "A" matrix of the linear system of equations
  3215. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3216. // "B" vector of Z points
  3217. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3218. int probePointCounter = 0;
  3219. bool zig = true;
  3220. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3221. {
  3222. int xProbe, xInc;
  3223. if (zig)
  3224. {
  3225. xProbe = LEFT_PROBE_BED_POSITION;
  3226. //xEnd = RIGHT_PROBE_BED_POSITION;
  3227. xInc = xGridSpacing;
  3228. zig = false;
  3229. } else // zag
  3230. {
  3231. xProbe = RIGHT_PROBE_BED_POSITION;
  3232. //xEnd = LEFT_PROBE_BED_POSITION;
  3233. xInc = -xGridSpacing;
  3234. zig = true;
  3235. }
  3236. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3237. {
  3238. float z_before;
  3239. if (probePointCounter == 0)
  3240. {
  3241. // raise before probing
  3242. z_before = Z_RAISE_BEFORE_PROBING;
  3243. } else
  3244. {
  3245. // raise extruder
  3246. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3247. }
  3248. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3249. eqnBVector[probePointCounter] = measured_z;
  3250. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3251. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3252. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3253. probePointCounter++;
  3254. xProbe += xInc;
  3255. }
  3256. }
  3257. clean_up_after_endstop_move();
  3258. // solve lsq problem
  3259. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3260. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3261. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3262. SERIAL_PROTOCOLPGM(" b: ");
  3263. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3264. SERIAL_PROTOCOLPGM(" d: ");
  3265. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3266. set_bed_level_equation_lsq(plane_equation_coefficients);
  3267. free(plane_equation_coefficients);
  3268. #else // AUTO_BED_LEVELING_GRID not defined
  3269. // Probe at 3 arbitrary points
  3270. // probe 1
  3271. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3272. // probe 2
  3273. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3274. // probe 3
  3275. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3276. clean_up_after_endstop_move();
  3277. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3278. #endif // AUTO_BED_LEVELING_GRID
  3279. st_synchronize();
  3280. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3281. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3282. // When the bed is uneven, this height must be corrected.
  3283. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3284. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3285. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3286. z_tmp = current_position[Z_AXIS];
  3287. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3288. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3289. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3290. }
  3291. break;
  3292. #ifndef Z_PROBE_SLED
  3293. case 30: // G30 Single Z Probe
  3294. {
  3295. st_synchronize();
  3296. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3297. setup_for_endstop_move();
  3298. feedrate = homing_feedrate[Z_AXIS];
  3299. run_z_probe();
  3300. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3301. SERIAL_PROTOCOLPGM(" X: ");
  3302. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3303. SERIAL_PROTOCOLPGM(" Y: ");
  3304. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3305. SERIAL_PROTOCOLPGM(" Z: ");
  3306. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3307. SERIAL_PROTOCOLPGM("\n");
  3308. clean_up_after_endstop_move();
  3309. }
  3310. break;
  3311. #else
  3312. case 31: // dock the sled
  3313. dock_sled(true);
  3314. break;
  3315. case 32: // undock the sled
  3316. dock_sled(false);
  3317. break;
  3318. #endif // Z_PROBE_SLED
  3319. #endif // ENABLE_AUTO_BED_LEVELING
  3320. #ifdef MESH_BED_LEVELING
  3321. case 30: // G30 Single Z Probe
  3322. {
  3323. st_synchronize();
  3324. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3325. setup_for_endstop_move();
  3326. feedrate = homing_feedrate[Z_AXIS];
  3327. find_bed_induction_sensor_point_z(-10.f, 3);
  3328. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3329. clean_up_after_endstop_move();
  3330. }
  3331. break;
  3332. case 75:
  3333. {
  3334. for (int i = 40; i <= 110; i++)
  3335. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3336. }
  3337. break;
  3338. case 76: //PINDA probe temperature calibration
  3339. {
  3340. #ifdef PINDA_THERMISTOR
  3341. if (true)
  3342. {
  3343. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3344. //we need to know accurate position of first calibration point
  3345. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3346. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3347. break;
  3348. }
  3349. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3350. {
  3351. // We don't know where we are! HOME!
  3352. // Push the commands to the front of the message queue in the reverse order!
  3353. // There shall be always enough space reserved for these commands.
  3354. repeatcommand_front(); // repeat G76 with all its parameters
  3355. enquecommand_front_P((PSTR("G28 W0")));
  3356. break;
  3357. }
  3358. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3359. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3360. if (result)
  3361. {
  3362. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3363. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3364. current_position[Z_AXIS] = 50;
  3365. current_position[Y_AXIS] = 180;
  3366. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3367. st_synchronize();
  3368. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3369. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3370. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3371. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3372. st_synchronize();
  3373. gcode_G28(false, false, true);
  3374. }
  3375. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3376. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3377. current_position[Z_AXIS] = 100;
  3378. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3379. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3380. lcd_temp_cal_show_result(false);
  3381. break;
  3382. }
  3383. }
  3384. lcd_update_enable(true);
  3385. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3386. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3387. float zero_z;
  3388. int z_shift = 0; //unit: steps
  3389. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3390. if (start_temp < 35) start_temp = 35;
  3391. if (start_temp < current_temperature_pinda) start_temp += 5;
  3392. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3393. // setTargetHotend(200, 0);
  3394. setTargetBed(70 + (start_temp - 30));
  3395. custom_message = true;
  3396. custom_message_type = 4;
  3397. custom_message_state = 1;
  3398. custom_message = _T(MSG_TEMP_CALIBRATION);
  3399. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3400. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3401. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3402. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3403. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3404. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3405. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3406. st_synchronize();
  3407. while (current_temperature_pinda < start_temp)
  3408. {
  3409. delay_keep_alive(1000);
  3410. serialecho_temperatures();
  3411. }
  3412. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3413. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3414. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3415. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3416. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3417. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3418. st_synchronize();
  3419. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3420. if (find_z_result == false) {
  3421. lcd_temp_cal_show_result(find_z_result);
  3422. break;
  3423. }
  3424. zero_z = current_position[Z_AXIS];
  3425. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3426. int i = -1; for (; i < 5; i++)
  3427. {
  3428. float temp = (40 + i * 5);
  3429. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3430. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3431. if (start_temp <= temp) break;
  3432. }
  3433. for (i++; i < 5; i++)
  3434. {
  3435. float temp = (40 + i * 5);
  3436. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3437. custom_message_state = i + 2;
  3438. setTargetBed(50 + 10 * (temp - 30) / 5);
  3439. // setTargetHotend(255, 0);
  3440. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3441. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3442. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3443. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3444. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3445. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3446. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3447. st_synchronize();
  3448. while (current_temperature_pinda < temp)
  3449. {
  3450. delay_keep_alive(1000);
  3451. serialecho_temperatures();
  3452. }
  3453. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3454. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3455. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3456. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3457. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3458. st_synchronize();
  3459. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3460. if (find_z_result == false) {
  3461. lcd_temp_cal_show_result(find_z_result);
  3462. break;
  3463. }
  3464. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3465. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3466. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3467. }
  3468. lcd_temp_cal_show_result(true);
  3469. break;
  3470. }
  3471. #endif //PINDA_THERMISTOR
  3472. setTargetBed(PINDA_MIN_T);
  3473. float zero_z;
  3474. int z_shift = 0; //unit: steps
  3475. int t_c; // temperature
  3476. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3477. // We don't know where we are! HOME!
  3478. // Push the commands to the front of the message queue in the reverse order!
  3479. // There shall be always enough space reserved for these commands.
  3480. repeatcommand_front(); // repeat G76 with all its parameters
  3481. enquecommand_front_P((PSTR("G28 W0")));
  3482. break;
  3483. }
  3484. puts_P(_N("PINDA probe calibration start"));
  3485. custom_message = true;
  3486. custom_message_type = 4;
  3487. custom_message_state = 1;
  3488. custom_message = _T(MSG_TEMP_CALIBRATION);
  3489. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3490. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3491. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3492. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3493. st_synchronize();
  3494. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3495. delay_keep_alive(1000);
  3496. serialecho_temperatures();
  3497. }
  3498. //enquecommand_P(PSTR("M190 S50"));
  3499. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3500. delay_keep_alive(1000);
  3501. serialecho_temperatures();
  3502. }
  3503. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3504. current_position[Z_AXIS] = 5;
  3505. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3506. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3507. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3508. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3509. st_synchronize();
  3510. find_bed_induction_sensor_point_z(-1.f);
  3511. zero_z = current_position[Z_AXIS];
  3512. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3513. for (int i = 0; i<5; i++) {
  3514. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3515. custom_message_state = i + 2;
  3516. t_c = 60 + i * 10;
  3517. setTargetBed(t_c);
  3518. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3519. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3520. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3522. st_synchronize();
  3523. while (degBed() < t_c) {
  3524. delay_keep_alive(1000);
  3525. serialecho_temperatures();
  3526. }
  3527. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3528. delay_keep_alive(1000);
  3529. serialecho_temperatures();
  3530. }
  3531. current_position[Z_AXIS] = 5;
  3532. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3533. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3534. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3535. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3536. st_synchronize();
  3537. find_bed_induction_sensor_point_z(-1.f);
  3538. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3539. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3540. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3541. }
  3542. custom_message_type = 0;
  3543. custom_message = false;
  3544. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3545. puts_P(_N("Temperature calibration done."));
  3546. disable_x();
  3547. disable_y();
  3548. disable_z();
  3549. disable_e0();
  3550. disable_e1();
  3551. disable_e2();
  3552. setTargetBed(0); //set bed target temperature back to 0
  3553. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3554. temp_cal_active = true;
  3555. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3556. lcd_update_enable(true);
  3557. lcd_update(2);
  3558. }
  3559. break;
  3560. #ifdef DIS
  3561. case 77:
  3562. {
  3563. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3564. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3565. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3566. float dimension_x = 40;
  3567. float dimension_y = 40;
  3568. int points_x = 40;
  3569. int points_y = 40;
  3570. float offset_x = 74;
  3571. float offset_y = 33;
  3572. if (code_seen('X')) dimension_x = code_value();
  3573. if (code_seen('Y')) dimension_y = code_value();
  3574. if (code_seen('XP')) points_x = code_value();
  3575. if (code_seen('YP')) points_y = code_value();
  3576. if (code_seen('XO')) offset_x = code_value();
  3577. if (code_seen('YO')) offset_y = code_value();
  3578. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3579. } break;
  3580. #endif
  3581. case 79: {
  3582. for (int i = 255; i > 0; i = i - 5) {
  3583. fanSpeed = i;
  3584. //delay_keep_alive(2000);
  3585. for (int j = 0; j < 100; j++) {
  3586. delay_keep_alive(100);
  3587. }
  3588. fan_speed[1];
  3589. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3590. }
  3591. }break;
  3592. /**
  3593. * G80: Mesh-based Z probe, probes a grid and produces a
  3594. * mesh to compensate for variable bed height
  3595. *
  3596. * The S0 report the points as below
  3597. *
  3598. * +----> X-axis
  3599. * |
  3600. * |
  3601. * v Y-axis
  3602. *
  3603. */
  3604. case 80:
  3605. #ifdef MK1BP
  3606. break;
  3607. #endif //MK1BP
  3608. case_G80:
  3609. {
  3610. mesh_bed_leveling_flag = true;
  3611. int8_t verbosity_level = 0;
  3612. static bool run = false;
  3613. if (code_seen('V')) {
  3614. // Just 'V' without a number counts as V1.
  3615. char c = strchr_pointer[1];
  3616. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3617. }
  3618. // Firstly check if we know where we are
  3619. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3620. // We don't know where we are! HOME!
  3621. // Push the commands to the front of the message queue in the reverse order!
  3622. // There shall be always enough space reserved for these commands.
  3623. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3624. repeatcommand_front(); // repeat G80 with all its parameters
  3625. enquecommand_front_P((PSTR("G28 W0")));
  3626. }
  3627. else {
  3628. mesh_bed_leveling_flag = false;
  3629. }
  3630. break;
  3631. }
  3632. bool temp_comp_start = true;
  3633. #ifdef PINDA_THERMISTOR
  3634. temp_comp_start = false;
  3635. #endif //PINDA_THERMISTOR
  3636. if (temp_comp_start)
  3637. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3638. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3639. temp_compensation_start();
  3640. run = true;
  3641. repeatcommand_front(); // repeat G80 with all its parameters
  3642. enquecommand_front_P((PSTR("G28 W0")));
  3643. }
  3644. else {
  3645. mesh_bed_leveling_flag = false;
  3646. }
  3647. break;
  3648. }
  3649. run = false;
  3650. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3651. mesh_bed_leveling_flag = false;
  3652. break;
  3653. }
  3654. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3655. bool custom_message_old = custom_message;
  3656. unsigned int custom_message_type_old = custom_message_type;
  3657. unsigned int custom_message_state_old = custom_message_state;
  3658. custom_message = true;
  3659. custom_message_type = 1;
  3660. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3661. lcd_update(1);
  3662. mbl.reset(); //reset mesh bed leveling
  3663. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3664. // consumed during the first movements following this statement.
  3665. babystep_undo();
  3666. // Cycle through all points and probe them
  3667. // First move up. During this first movement, the babystepping will be reverted.
  3668. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3669. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3670. // The move to the first calibration point.
  3671. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3672. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3673. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3674. #ifdef SUPPORT_VERBOSITY
  3675. if (verbosity_level >= 1) {
  3676. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3677. }
  3678. #endif //SUPPORT_VERBOSITY
  3679. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3680. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3681. // Wait until the move is finished.
  3682. st_synchronize();
  3683. int mesh_point = 0; //index number of calibration point
  3684. int ix = 0;
  3685. int iy = 0;
  3686. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3687. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3688. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3689. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3690. #ifdef SUPPORT_VERBOSITY
  3691. if (verbosity_level >= 1) {
  3692. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3693. }
  3694. #endif // SUPPORT_VERBOSITY
  3695. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3696. const char *kill_message = NULL;
  3697. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3698. // Get coords of a measuring point.
  3699. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3700. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3701. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3702. float z0 = 0.f;
  3703. if (has_z && mesh_point > 0) {
  3704. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3705. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3706. //#if 0
  3707. #ifdef SUPPORT_VERBOSITY
  3708. if (verbosity_level >= 1) {
  3709. SERIAL_ECHOLNPGM("");
  3710. SERIAL_ECHOPGM("Bed leveling, point: ");
  3711. MYSERIAL.print(mesh_point);
  3712. SERIAL_ECHOPGM(", calibration z: ");
  3713. MYSERIAL.print(z0, 5);
  3714. SERIAL_ECHOLNPGM("");
  3715. }
  3716. #endif // SUPPORT_VERBOSITY
  3717. //#endif
  3718. }
  3719. // Move Z up to MESH_HOME_Z_SEARCH.
  3720. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3722. st_synchronize();
  3723. // Move to XY position of the sensor point.
  3724. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3725. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3726. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3727. #ifdef SUPPORT_VERBOSITY
  3728. if (verbosity_level >= 1) {
  3729. SERIAL_PROTOCOL(mesh_point);
  3730. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3731. }
  3732. #endif // SUPPORT_VERBOSITY
  3733. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3734. st_synchronize();
  3735. // Go down until endstop is hit
  3736. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3737. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3738. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3739. break;
  3740. }
  3741. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3742. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3743. break;
  3744. }
  3745. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3746. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3747. break;
  3748. }
  3749. #ifdef SUPPORT_VERBOSITY
  3750. if (verbosity_level >= 10) {
  3751. SERIAL_ECHOPGM("X: ");
  3752. MYSERIAL.print(current_position[X_AXIS], 5);
  3753. SERIAL_ECHOLNPGM("");
  3754. SERIAL_ECHOPGM("Y: ");
  3755. MYSERIAL.print(current_position[Y_AXIS], 5);
  3756. SERIAL_PROTOCOLPGM("\n");
  3757. }
  3758. #endif // SUPPORT_VERBOSITY
  3759. float offset_z = 0;
  3760. #ifdef PINDA_THERMISTOR
  3761. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3762. #endif //PINDA_THERMISTOR
  3763. // #ifdef SUPPORT_VERBOSITY
  3764. /* if (verbosity_level >= 1)
  3765. {
  3766. SERIAL_ECHOPGM("mesh bed leveling: ");
  3767. MYSERIAL.print(current_position[Z_AXIS], 5);
  3768. SERIAL_ECHOPGM(" offset: ");
  3769. MYSERIAL.print(offset_z, 5);
  3770. SERIAL_ECHOLNPGM("");
  3771. }*/
  3772. // #endif // SUPPORT_VERBOSITY
  3773. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3774. custom_message_state--;
  3775. mesh_point++;
  3776. lcd_update(1);
  3777. }
  3778. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3779. #ifdef SUPPORT_VERBOSITY
  3780. if (verbosity_level >= 20) {
  3781. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3782. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3783. MYSERIAL.print(current_position[Z_AXIS], 5);
  3784. }
  3785. #endif // SUPPORT_VERBOSITY
  3786. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3787. st_synchronize();
  3788. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3789. kill(kill_message);
  3790. SERIAL_ECHOLNPGM("killed");
  3791. }
  3792. clean_up_after_endstop_move();
  3793. // SERIAL_ECHOLNPGM("clean up finished ");
  3794. bool apply_temp_comp = true;
  3795. #ifdef PINDA_THERMISTOR
  3796. apply_temp_comp = false;
  3797. #endif
  3798. if (apply_temp_comp)
  3799. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3800. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3801. // SERIAL_ECHOLNPGM("babystep applied");
  3802. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3803. #ifdef SUPPORT_VERBOSITY
  3804. if (verbosity_level >= 1) {
  3805. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3806. }
  3807. #endif // SUPPORT_VERBOSITY
  3808. for (uint8_t i = 0; i < 4; ++i) {
  3809. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3810. long correction = 0;
  3811. if (code_seen(codes[i]))
  3812. correction = code_value_long();
  3813. else if (eeprom_bed_correction_valid) {
  3814. unsigned char *addr = (i < 2) ?
  3815. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3816. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3817. correction = eeprom_read_int8(addr);
  3818. }
  3819. if (correction == 0)
  3820. continue;
  3821. float offset = float(correction) * 0.001f;
  3822. if (fabs(offset) > 0.101f) {
  3823. SERIAL_ERROR_START;
  3824. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3825. SERIAL_ECHO(offset);
  3826. SERIAL_ECHOLNPGM(" microns");
  3827. }
  3828. else {
  3829. switch (i) {
  3830. case 0:
  3831. for (uint8_t row = 0; row < 3; ++row) {
  3832. mbl.z_values[row][1] += 0.5f * offset;
  3833. mbl.z_values[row][0] += offset;
  3834. }
  3835. break;
  3836. case 1:
  3837. for (uint8_t row = 0; row < 3; ++row) {
  3838. mbl.z_values[row][1] += 0.5f * offset;
  3839. mbl.z_values[row][2] += offset;
  3840. }
  3841. break;
  3842. case 2:
  3843. for (uint8_t col = 0; col < 3; ++col) {
  3844. mbl.z_values[1][col] += 0.5f * offset;
  3845. mbl.z_values[0][col] += offset;
  3846. }
  3847. break;
  3848. case 3:
  3849. for (uint8_t col = 0; col < 3; ++col) {
  3850. mbl.z_values[1][col] += 0.5f * offset;
  3851. mbl.z_values[2][col] += offset;
  3852. }
  3853. break;
  3854. }
  3855. }
  3856. }
  3857. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3858. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3859. // SERIAL_ECHOLNPGM("Upsample finished");
  3860. mbl.active = 1; //activate mesh bed leveling
  3861. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3862. go_home_with_z_lift();
  3863. // SERIAL_ECHOLNPGM("Go home finished");
  3864. //unretract (after PINDA preheat retraction)
  3865. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3866. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3867. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3868. }
  3869. KEEPALIVE_STATE(NOT_BUSY);
  3870. // Restore custom message state
  3871. lcd_setstatuspgm(_T(WELCOME_MSG));
  3872. custom_message = custom_message_old;
  3873. custom_message_type = custom_message_type_old;
  3874. custom_message_state = custom_message_state_old;
  3875. mesh_bed_leveling_flag = false;
  3876. mesh_bed_run_from_menu = false;
  3877. lcd_update(2);
  3878. }
  3879. break;
  3880. /**
  3881. * G81: Print mesh bed leveling status and bed profile if activated
  3882. */
  3883. case 81:
  3884. if (mbl.active) {
  3885. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3886. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3887. SERIAL_PROTOCOLPGM(",");
  3888. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3889. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3890. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3891. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3892. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3893. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3894. SERIAL_PROTOCOLPGM(" ");
  3895. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3896. }
  3897. SERIAL_PROTOCOLPGM("\n");
  3898. }
  3899. }
  3900. else
  3901. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3902. break;
  3903. #if 0
  3904. /**
  3905. * G82: Single Z probe at current location
  3906. *
  3907. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3908. *
  3909. */
  3910. case 82:
  3911. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3912. setup_for_endstop_move();
  3913. find_bed_induction_sensor_point_z();
  3914. clean_up_after_endstop_move();
  3915. SERIAL_PROTOCOLPGM("Bed found at: ");
  3916. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3917. SERIAL_PROTOCOLPGM("\n");
  3918. break;
  3919. /**
  3920. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3921. */
  3922. case 83:
  3923. {
  3924. int babystepz = code_seen('S') ? code_value() : 0;
  3925. int BabyPosition = code_seen('P') ? code_value() : 0;
  3926. if (babystepz != 0) {
  3927. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3928. // Is the axis indexed starting with zero or one?
  3929. if (BabyPosition > 4) {
  3930. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3931. }else{
  3932. // Save it to the eeprom
  3933. babystepLoadZ = babystepz;
  3934. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3935. // adjust the Z
  3936. babystepsTodoZadd(babystepLoadZ);
  3937. }
  3938. }
  3939. }
  3940. break;
  3941. /**
  3942. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3943. */
  3944. case 84:
  3945. babystepsTodoZsubtract(babystepLoadZ);
  3946. // babystepLoadZ = 0;
  3947. break;
  3948. /**
  3949. * G85: Prusa3D specific: Pick best babystep
  3950. */
  3951. case 85:
  3952. lcd_pick_babystep();
  3953. break;
  3954. #endif
  3955. /**
  3956. * G86: Prusa3D specific: Disable babystep correction after home.
  3957. * This G-code will be performed at the start of a calibration script.
  3958. */
  3959. case 86:
  3960. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3961. break;
  3962. /**
  3963. * G87: Prusa3D specific: Enable babystep correction after home
  3964. * This G-code will be performed at the end of a calibration script.
  3965. */
  3966. case 87:
  3967. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3968. break;
  3969. /**
  3970. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3971. */
  3972. case 88:
  3973. break;
  3974. #endif // ENABLE_MESH_BED_LEVELING
  3975. case 90: // G90
  3976. relative_mode = false;
  3977. break;
  3978. case 91: // G91
  3979. relative_mode = true;
  3980. break;
  3981. case 92: // G92
  3982. if(!code_seen(axis_codes[E_AXIS]))
  3983. st_synchronize();
  3984. for(int8_t i=0; i < NUM_AXIS; i++) {
  3985. if(code_seen(axis_codes[i])) {
  3986. if(i == E_AXIS) {
  3987. current_position[i] = code_value();
  3988. plan_set_e_position(current_position[E_AXIS]);
  3989. }
  3990. else {
  3991. current_position[i] = code_value()+add_homing[i];
  3992. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3993. }
  3994. }
  3995. }
  3996. break;
  3997. case 98: // G98 (activate farm mode)
  3998. farm_mode = 1;
  3999. PingTime = millis();
  4000. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4001. SilentModeMenu = SILENT_MODE_OFF;
  4002. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4003. break;
  4004. case 99: // G99 (deactivate farm mode)
  4005. farm_mode = 0;
  4006. lcd_printer_connected();
  4007. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4008. lcd_update(2);
  4009. break;
  4010. default:
  4011. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4012. }
  4013. } // end if(code_seen('G'))
  4014. else if(code_seen('M'))
  4015. {
  4016. int index;
  4017. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4018. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4019. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4020. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4021. } else
  4022. switch((int)code_value())
  4023. {
  4024. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4025. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4026. {
  4027. char *src = strchr_pointer + 2;
  4028. codenum = 0;
  4029. bool hasP = false, hasS = false;
  4030. if (code_seen('P')) {
  4031. codenum = code_value(); // milliseconds to wait
  4032. hasP = codenum > 0;
  4033. }
  4034. if (code_seen('S')) {
  4035. codenum = code_value() * 1000; // seconds to wait
  4036. hasS = codenum > 0;
  4037. }
  4038. starpos = strchr(src, '*');
  4039. if (starpos != NULL) *(starpos) = '\0';
  4040. while (*src == ' ') ++src;
  4041. if (!hasP && !hasS && *src != '\0') {
  4042. lcd_setstatus(src);
  4043. } else {
  4044. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4045. }
  4046. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4047. st_synchronize();
  4048. previous_millis_cmd = millis();
  4049. if (codenum > 0){
  4050. codenum += millis(); // keep track of when we started waiting
  4051. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4052. while(millis() < codenum && !lcd_clicked()){
  4053. manage_heater();
  4054. manage_inactivity(true);
  4055. lcd_update(0);
  4056. }
  4057. KEEPALIVE_STATE(IN_HANDLER);
  4058. lcd_ignore_click(false);
  4059. }else{
  4060. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4061. while(!lcd_clicked()){
  4062. manage_heater();
  4063. manage_inactivity(true);
  4064. lcd_update(0);
  4065. }
  4066. KEEPALIVE_STATE(IN_HANDLER);
  4067. }
  4068. if (IS_SD_PRINTING)
  4069. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4070. else
  4071. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4072. }
  4073. break;
  4074. case 17:
  4075. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4076. enable_x();
  4077. enable_y();
  4078. enable_z();
  4079. enable_e0();
  4080. enable_e1();
  4081. enable_e2();
  4082. break;
  4083. #ifdef SDSUPPORT
  4084. case 20: // M20 - list SD card
  4085. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4086. card.ls();
  4087. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4088. break;
  4089. case 21: // M21 - init SD card
  4090. card.initsd();
  4091. break;
  4092. case 22: //M22 - release SD card
  4093. card.release();
  4094. break;
  4095. case 23: //M23 - Select file
  4096. starpos = (strchr(strchr_pointer + 4,'*'));
  4097. if(starpos!=NULL)
  4098. *(starpos)='\0';
  4099. card.openFile(strchr_pointer + 4,true);
  4100. break;
  4101. case 24: //M24 - Start SD print
  4102. if (!card.paused)
  4103. failstats_reset_print();
  4104. card.startFileprint();
  4105. starttime=millis();
  4106. break;
  4107. case 25: //M25 - Pause SD print
  4108. card.pauseSDPrint();
  4109. break;
  4110. case 26: //M26 - Set SD index
  4111. if(card.cardOK && code_seen('S')) {
  4112. card.setIndex(code_value_long());
  4113. }
  4114. break;
  4115. case 27: //M27 - Get SD status
  4116. card.getStatus();
  4117. break;
  4118. case 28: //M28 - Start SD write
  4119. starpos = (strchr(strchr_pointer + 4,'*'));
  4120. if(starpos != NULL){
  4121. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4122. strchr_pointer = strchr(npos,' ') + 1;
  4123. *(starpos) = '\0';
  4124. }
  4125. card.openFile(strchr_pointer+4,false);
  4126. break;
  4127. case 29: //M29 - Stop SD write
  4128. //processed in write to file routine above
  4129. //card,saving = false;
  4130. break;
  4131. case 30: //M30 <filename> Delete File
  4132. if (card.cardOK){
  4133. card.closefile();
  4134. starpos = (strchr(strchr_pointer + 4,'*'));
  4135. if(starpos != NULL){
  4136. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4137. strchr_pointer = strchr(npos,' ') + 1;
  4138. *(starpos) = '\0';
  4139. }
  4140. card.removeFile(strchr_pointer + 4);
  4141. }
  4142. break;
  4143. case 32: //M32 - Select file and start SD print
  4144. {
  4145. if(card.sdprinting) {
  4146. st_synchronize();
  4147. }
  4148. starpos = (strchr(strchr_pointer + 4,'*'));
  4149. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4150. if(namestartpos==NULL)
  4151. {
  4152. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4153. }
  4154. else
  4155. namestartpos++; //to skip the '!'
  4156. if(starpos!=NULL)
  4157. *(starpos)='\0';
  4158. bool call_procedure=(code_seen('P'));
  4159. if(strchr_pointer>namestartpos)
  4160. call_procedure=false; //false alert, 'P' found within filename
  4161. if( card.cardOK )
  4162. {
  4163. card.openFile(namestartpos,true,!call_procedure);
  4164. if(code_seen('S'))
  4165. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4166. card.setIndex(code_value_long());
  4167. card.startFileprint();
  4168. if(!call_procedure)
  4169. starttime=millis(); //procedure calls count as normal print time.
  4170. }
  4171. } break;
  4172. case 928: //M928 - Start SD write
  4173. starpos = (strchr(strchr_pointer + 5,'*'));
  4174. if(starpos != NULL){
  4175. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4176. strchr_pointer = strchr(npos,' ') + 1;
  4177. *(starpos) = '\0';
  4178. }
  4179. card.openLogFile(strchr_pointer+5);
  4180. break;
  4181. #endif //SDSUPPORT
  4182. case 31: //M31 take time since the start of the SD print or an M109 command
  4183. {
  4184. stoptime=millis();
  4185. char time[30];
  4186. unsigned long t=(stoptime-starttime)/1000;
  4187. int sec,min;
  4188. min=t/60;
  4189. sec=t%60;
  4190. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4191. SERIAL_ECHO_START;
  4192. SERIAL_ECHOLN(time);
  4193. lcd_setstatus(time);
  4194. autotempShutdown();
  4195. }
  4196. break;
  4197. #ifndef _DISABLE_M42_M226
  4198. case 42: //M42 -Change pin status via gcode
  4199. if (code_seen('S'))
  4200. {
  4201. int pin_status = code_value();
  4202. int pin_number = LED_PIN;
  4203. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4204. pin_number = code_value();
  4205. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4206. {
  4207. if (sensitive_pins[i] == pin_number)
  4208. {
  4209. pin_number = -1;
  4210. break;
  4211. }
  4212. }
  4213. #if defined(FAN_PIN) && FAN_PIN > -1
  4214. if (pin_number == FAN_PIN)
  4215. fanSpeed = pin_status;
  4216. #endif
  4217. if (pin_number > -1)
  4218. {
  4219. pinMode(pin_number, OUTPUT);
  4220. digitalWrite(pin_number, pin_status);
  4221. analogWrite(pin_number, pin_status);
  4222. }
  4223. }
  4224. break;
  4225. #endif //_DISABLE_M42_M226
  4226. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4227. // Reset the baby step value and the baby step applied flag.
  4228. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4229. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4230. // Reset the skew and offset in both RAM and EEPROM.
  4231. reset_bed_offset_and_skew();
  4232. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4233. // the planner will not perform any adjustments in the XY plane.
  4234. // Wait for the motors to stop and update the current position with the absolute values.
  4235. world2machine_revert_to_uncorrected();
  4236. break;
  4237. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4238. {
  4239. int8_t verbosity_level = 0;
  4240. bool only_Z = code_seen('Z');
  4241. #ifdef SUPPORT_VERBOSITY
  4242. if (code_seen('V'))
  4243. {
  4244. // Just 'V' without a number counts as V1.
  4245. char c = strchr_pointer[1];
  4246. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4247. }
  4248. #endif //SUPPORT_VERBOSITY
  4249. gcode_M45(only_Z, verbosity_level);
  4250. }
  4251. break;
  4252. /*
  4253. case 46:
  4254. {
  4255. // M46: Prusa3D: Show the assigned IP address.
  4256. uint8_t ip[4];
  4257. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4258. if (hasIP) {
  4259. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4260. SERIAL_ECHO(int(ip[0]));
  4261. SERIAL_ECHOPGM(".");
  4262. SERIAL_ECHO(int(ip[1]));
  4263. SERIAL_ECHOPGM(".");
  4264. SERIAL_ECHO(int(ip[2]));
  4265. SERIAL_ECHOPGM(".");
  4266. SERIAL_ECHO(int(ip[3]));
  4267. SERIAL_ECHOLNPGM("");
  4268. } else {
  4269. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4270. }
  4271. break;
  4272. }
  4273. */
  4274. case 47:
  4275. // M47: Prusa3D: Show end stops dialog on the display.
  4276. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4277. lcd_diag_show_end_stops();
  4278. KEEPALIVE_STATE(IN_HANDLER);
  4279. break;
  4280. #if 0
  4281. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4282. {
  4283. // Disable the default update procedure of the display. We will do a modal dialog.
  4284. lcd_update_enable(false);
  4285. // Let the planner use the uncorrected coordinates.
  4286. mbl.reset();
  4287. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4288. // the planner will not perform any adjustments in the XY plane.
  4289. // Wait for the motors to stop and update the current position with the absolute values.
  4290. world2machine_revert_to_uncorrected();
  4291. // Move the print head close to the bed.
  4292. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4293. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4294. st_synchronize();
  4295. // Home in the XY plane.
  4296. set_destination_to_current();
  4297. setup_for_endstop_move();
  4298. home_xy();
  4299. int8_t verbosity_level = 0;
  4300. if (code_seen('V')) {
  4301. // Just 'V' without a number counts as V1.
  4302. char c = strchr_pointer[1];
  4303. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4304. }
  4305. bool success = scan_bed_induction_points(verbosity_level);
  4306. clean_up_after_endstop_move();
  4307. // Print head up.
  4308. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4309. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4310. st_synchronize();
  4311. lcd_update_enable(true);
  4312. break;
  4313. }
  4314. #endif
  4315. // M48 Z-Probe repeatability measurement function.
  4316. //
  4317. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4318. //
  4319. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4320. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4321. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4322. // regenerated.
  4323. //
  4324. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4325. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4326. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4327. //
  4328. #ifdef ENABLE_AUTO_BED_LEVELING
  4329. #ifdef Z_PROBE_REPEATABILITY_TEST
  4330. case 48: // M48 Z-Probe repeatability
  4331. {
  4332. #if Z_MIN_PIN == -1
  4333. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4334. #endif
  4335. double sum=0.0;
  4336. double mean=0.0;
  4337. double sigma=0.0;
  4338. double sample_set[50];
  4339. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4340. double X_current, Y_current, Z_current;
  4341. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4342. if (code_seen('V') || code_seen('v')) {
  4343. verbose_level = code_value();
  4344. if (verbose_level<0 || verbose_level>4 ) {
  4345. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4346. goto Sigma_Exit;
  4347. }
  4348. }
  4349. if (verbose_level > 0) {
  4350. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4351. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4352. }
  4353. if (code_seen('n')) {
  4354. n_samples = code_value();
  4355. if (n_samples<4 || n_samples>50 ) {
  4356. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4357. goto Sigma_Exit;
  4358. }
  4359. }
  4360. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4361. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4362. Z_current = st_get_position_mm(Z_AXIS);
  4363. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4364. ext_position = st_get_position_mm(E_AXIS);
  4365. if (code_seen('X') || code_seen('x') ) {
  4366. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4367. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4368. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4369. goto Sigma_Exit;
  4370. }
  4371. }
  4372. if (code_seen('Y') || code_seen('y') ) {
  4373. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4374. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4375. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4376. goto Sigma_Exit;
  4377. }
  4378. }
  4379. if (code_seen('L') || code_seen('l') ) {
  4380. n_legs = code_value();
  4381. if ( n_legs==1 )
  4382. n_legs = 2;
  4383. if ( n_legs<0 || n_legs>15 ) {
  4384. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4385. goto Sigma_Exit;
  4386. }
  4387. }
  4388. //
  4389. // Do all the preliminary setup work. First raise the probe.
  4390. //
  4391. st_synchronize();
  4392. plan_bed_level_matrix.set_to_identity();
  4393. plan_buffer_line( X_current, Y_current, Z_start_location,
  4394. ext_position,
  4395. homing_feedrate[Z_AXIS]/60,
  4396. active_extruder);
  4397. st_synchronize();
  4398. //
  4399. // Now get everything to the specified probe point So we can safely do a probe to
  4400. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4401. // use that as a starting point for each probe.
  4402. //
  4403. if (verbose_level > 2)
  4404. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4405. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4406. ext_position,
  4407. homing_feedrate[X_AXIS]/60,
  4408. active_extruder);
  4409. st_synchronize();
  4410. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4411. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4412. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4413. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4414. //
  4415. // OK, do the inital probe to get us close to the bed.
  4416. // Then retrace the right amount and use that in subsequent probes
  4417. //
  4418. setup_for_endstop_move();
  4419. run_z_probe();
  4420. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4421. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4422. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4423. ext_position,
  4424. homing_feedrate[X_AXIS]/60,
  4425. active_extruder);
  4426. st_synchronize();
  4427. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4428. for( n=0; n<n_samples; n++) {
  4429. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4430. if ( n_legs) {
  4431. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4432. int rotational_direction, l;
  4433. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4434. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4435. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4436. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4437. //SERIAL_ECHOPAIR(" theta: ",theta);
  4438. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4439. //SERIAL_PROTOCOLLNPGM("");
  4440. for( l=0; l<n_legs-1; l++) {
  4441. if (rotational_direction==1)
  4442. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4443. else
  4444. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4445. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4446. if ( radius<0.0 )
  4447. radius = -radius;
  4448. X_current = X_probe_location + cos(theta) * radius;
  4449. Y_current = Y_probe_location + sin(theta) * radius;
  4450. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4451. X_current = X_MIN_POS;
  4452. if ( X_current>X_MAX_POS)
  4453. X_current = X_MAX_POS;
  4454. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4455. Y_current = Y_MIN_POS;
  4456. if ( Y_current>Y_MAX_POS)
  4457. Y_current = Y_MAX_POS;
  4458. if (verbose_level>3 ) {
  4459. SERIAL_ECHOPAIR("x: ", X_current);
  4460. SERIAL_ECHOPAIR("y: ", Y_current);
  4461. SERIAL_PROTOCOLLNPGM("");
  4462. }
  4463. do_blocking_move_to( X_current, Y_current, Z_current );
  4464. }
  4465. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4466. }
  4467. setup_for_endstop_move();
  4468. run_z_probe();
  4469. sample_set[n] = current_position[Z_AXIS];
  4470. //
  4471. // Get the current mean for the data points we have so far
  4472. //
  4473. sum=0.0;
  4474. for( j=0; j<=n; j++) {
  4475. sum = sum + sample_set[j];
  4476. }
  4477. mean = sum / (double (n+1));
  4478. //
  4479. // Now, use that mean to calculate the standard deviation for the
  4480. // data points we have so far
  4481. //
  4482. sum=0.0;
  4483. for( j=0; j<=n; j++) {
  4484. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4485. }
  4486. sigma = sqrt( sum / (double (n+1)) );
  4487. if (verbose_level > 1) {
  4488. SERIAL_PROTOCOL(n+1);
  4489. SERIAL_PROTOCOL(" of ");
  4490. SERIAL_PROTOCOL(n_samples);
  4491. SERIAL_PROTOCOLPGM(" z: ");
  4492. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4493. }
  4494. if (verbose_level > 2) {
  4495. SERIAL_PROTOCOL(" mean: ");
  4496. SERIAL_PROTOCOL_F(mean,6);
  4497. SERIAL_PROTOCOL(" sigma: ");
  4498. SERIAL_PROTOCOL_F(sigma,6);
  4499. }
  4500. if (verbose_level > 0)
  4501. SERIAL_PROTOCOLPGM("\n");
  4502. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4503. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4504. st_synchronize();
  4505. }
  4506. delay(1000);
  4507. clean_up_after_endstop_move();
  4508. // enable_endstops(true);
  4509. if (verbose_level > 0) {
  4510. SERIAL_PROTOCOLPGM("Mean: ");
  4511. SERIAL_PROTOCOL_F(mean, 6);
  4512. SERIAL_PROTOCOLPGM("\n");
  4513. }
  4514. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4515. SERIAL_PROTOCOL_F(sigma, 6);
  4516. SERIAL_PROTOCOLPGM("\n\n");
  4517. Sigma_Exit:
  4518. break;
  4519. }
  4520. #endif // Z_PROBE_REPEATABILITY_TEST
  4521. #endif // ENABLE_AUTO_BED_LEVELING
  4522. case 73: //M73 show percent done and time remaining
  4523. if(code_seen('P')) print_percent_done_normal = code_value();
  4524. if(code_seen('R')) print_time_remaining_normal = code_value();
  4525. if(code_seen('Q')) print_percent_done_silent = code_value();
  4526. if(code_seen('S')) print_time_remaining_silent = code_value();
  4527. {
  4528. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4529. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4530. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4531. }
  4532. break;
  4533. case 104: // M104
  4534. if(setTargetedHotend(104)){
  4535. break;
  4536. }
  4537. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4538. setWatch();
  4539. break;
  4540. case 112: // M112 -Emergency Stop
  4541. kill(_n(""), 3);
  4542. break;
  4543. case 140: // M140 set bed temp
  4544. if (code_seen('S')) setTargetBed(code_value());
  4545. break;
  4546. case 105 : // M105
  4547. if(setTargetedHotend(105)){
  4548. break;
  4549. }
  4550. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4551. SERIAL_PROTOCOLPGM("ok T:");
  4552. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4553. SERIAL_PROTOCOLPGM(" /");
  4554. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4555. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4556. SERIAL_PROTOCOLPGM(" B:");
  4557. SERIAL_PROTOCOL_F(degBed(),1);
  4558. SERIAL_PROTOCOLPGM(" /");
  4559. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4560. #endif //TEMP_BED_PIN
  4561. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4562. SERIAL_PROTOCOLPGM(" T");
  4563. SERIAL_PROTOCOL(cur_extruder);
  4564. SERIAL_PROTOCOLPGM(":");
  4565. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4566. SERIAL_PROTOCOLPGM(" /");
  4567. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4568. }
  4569. #else
  4570. SERIAL_ERROR_START;
  4571. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4572. #endif
  4573. SERIAL_PROTOCOLPGM(" @:");
  4574. #ifdef EXTRUDER_WATTS
  4575. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4576. SERIAL_PROTOCOLPGM("W");
  4577. #else
  4578. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4579. #endif
  4580. SERIAL_PROTOCOLPGM(" B@:");
  4581. #ifdef BED_WATTS
  4582. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4583. SERIAL_PROTOCOLPGM("W");
  4584. #else
  4585. SERIAL_PROTOCOL(getHeaterPower(-1));
  4586. #endif
  4587. #ifdef PINDA_THERMISTOR
  4588. SERIAL_PROTOCOLPGM(" P:");
  4589. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4590. #endif //PINDA_THERMISTOR
  4591. #ifdef AMBIENT_THERMISTOR
  4592. SERIAL_PROTOCOLPGM(" A:");
  4593. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4594. #endif //AMBIENT_THERMISTOR
  4595. #ifdef SHOW_TEMP_ADC_VALUES
  4596. {float raw = 0.0;
  4597. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4598. SERIAL_PROTOCOLPGM(" ADC B:");
  4599. SERIAL_PROTOCOL_F(degBed(),1);
  4600. SERIAL_PROTOCOLPGM("C->");
  4601. raw = rawBedTemp();
  4602. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4603. SERIAL_PROTOCOLPGM(" Rb->");
  4604. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4605. SERIAL_PROTOCOLPGM(" Rxb->");
  4606. SERIAL_PROTOCOL_F(raw, 5);
  4607. #endif
  4608. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4609. SERIAL_PROTOCOLPGM(" T");
  4610. SERIAL_PROTOCOL(cur_extruder);
  4611. SERIAL_PROTOCOLPGM(":");
  4612. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4613. SERIAL_PROTOCOLPGM("C->");
  4614. raw = rawHotendTemp(cur_extruder);
  4615. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4616. SERIAL_PROTOCOLPGM(" Rt");
  4617. SERIAL_PROTOCOL(cur_extruder);
  4618. SERIAL_PROTOCOLPGM("->");
  4619. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4620. SERIAL_PROTOCOLPGM(" Rx");
  4621. SERIAL_PROTOCOL(cur_extruder);
  4622. SERIAL_PROTOCOLPGM("->");
  4623. SERIAL_PROTOCOL_F(raw, 5);
  4624. }}
  4625. #endif
  4626. SERIAL_PROTOCOLLN("");
  4627. KEEPALIVE_STATE(NOT_BUSY);
  4628. return;
  4629. break;
  4630. case 109:
  4631. {// M109 - Wait for extruder heater to reach target.
  4632. if(setTargetedHotend(109)){
  4633. break;
  4634. }
  4635. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4636. heating_status = 1;
  4637. if (farm_mode) { prusa_statistics(1); };
  4638. #ifdef AUTOTEMP
  4639. autotemp_enabled=false;
  4640. #endif
  4641. if (code_seen('S')) {
  4642. setTargetHotend(code_value(), tmp_extruder);
  4643. CooldownNoWait = true;
  4644. } else if (code_seen('R')) {
  4645. setTargetHotend(code_value(), tmp_extruder);
  4646. CooldownNoWait = false;
  4647. }
  4648. #ifdef AUTOTEMP
  4649. if (code_seen('S')) autotemp_min=code_value();
  4650. if (code_seen('B')) autotemp_max=code_value();
  4651. if (code_seen('F'))
  4652. {
  4653. autotemp_factor=code_value();
  4654. autotemp_enabled=true;
  4655. }
  4656. #endif
  4657. setWatch();
  4658. codenum = millis();
  4659. /* See if we are heating up or cooling down */
  4660. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4661. KEEPALIVE_STATE(NOT_BUSY);
  4662. cancel_heatup = false;
  4663. wait_for_heater(codenum); //loops until target temperature is reached
  4664. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4665. KEEPALIVE_STATE(IN_HANDLER);
  4666. heating_status = 2;
  4667. if (farm_mode) { prusa_statistics(2); };
  4668. //starttime=millis();
  4669. previous_millis_cmd = millis();
  4670. }
  4671. break;
  4672. case 190: // M190 - Wait for bed heater to reach target.
  4673. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4674. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4675. heating_status = 3;
  4676. if (farm_mode) { prusa_statistics(1); };
  4677. if (code_seen('S'))
  4678. {
  4679. setTargetBed(code_value());
  4680. CooldownNoWait = true;
  4681. }
  4682. else if (code_seen('R'))
  4683. {
  4684. setTargetBed(code_value());
  4685. CooldownNoWait = false;
  4686. }
  4687. codenum = millis();
  4688. cancel_heatup = false;
  4689. target_direction = isHeatingBed(); // true if heating, false if cooling
  4690. KEEPALIVE_STATE(NOT_BUSY);
  4691. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4692. {
  4693. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4694. {
  4695. if (!farm_mode) {
  4696. float tt = degHotend(active_extruder);
  4697. SERIAL_PROTOCOLPGM("T:");
  4698. SERIAL_PROTOCOL(tt);
  4699. SERIAL_PROTOCOLPGM(" E:");
  4700. SERIAL_PROTOCOL((int)active_extruder);
  4701. SERIAL_PROTOCOLPGM(" B:");
  4702. SERIAL_PROTOCOL_F(degBed(), 1);
  4703. SERIAL_PROTOCOLLN("");
  4704. }
  4705. codenum = millis();
  4706. }
  4707. manage_heater();
  4708. manage_inactivity();
  4709. lcd_update(0);
  4710. }
  4711. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4712. KEEPALIVE_STATE(IN_HANDLER);
  4713. heating_status = 4;
  4714. previous_millis_cmd = millis();
  4715. #endif
  4716. break;
  4717. #if defined(FAN_PIN) && FAN_PIN > -1
  4718. case 106: //M106 Fan On
  4719. if (code_seen('S')){
  4720. fanSpeed=constrain(code_value(),0,255);
  4721. }
  4722. else {
  4723. fanSpeed=255;
  4724. }
  4725. break;
  4726. case 107: //M107 Fan Off
  4727. fanSpeed = 0;
  4728. break;
  4729. #endif //FAN_PIN
  4730. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4731. case 80: // M80 - Turn on Power Supply
  4732. SET_OUTPUT(PS_ON_PIN); //GND
  4733. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4734. // If you have a switch on suicide pin, this is useful
  4735. // if you want to start another print with suicide feature after
  4736. // a print without suicide...
  4737. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4738. SET_OUTPUT(SUICIDE_PIN);
  4739. WRITE(SUICIDE_PIN, HIGH);
  4740. #endif
  4741. powersupply = true;
  4742. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4743. lcd_update(0);
  4744. break;
  4745. #endif
  4746. case 81: // M81 - Turn off Power Supply
  4747. disable_heater();
  4748. st_synchronize();
  4749. disable_e0();
  4750. disable_e1();
  4751. disable_e2();
  4752. finishAndDisableSteppers();
  4753. fanSpeed = 0;
  4754. delay(1000); // Wait a little before to switch off
  4755. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4756. st_synchronize();
  4757. suicide();
  4758. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4759. SET_OUTPUT(PS_ON_PIN);
  4760. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4761. #endif
  4762. powersupply = false;
  4763. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4764. lcd_update(0);
  4765. break;
  4766. case 82:
  4767. axis_relative_modes[3] = false;
  4768. break;
  4769. case 83:
  4770. axis_relative_modes[3] = true;
  4771. break;
  4772. case 18: //compatibility
  4773. case 84: // M84
  4774. if(code_seen('S')){
  4775. stepper_inactive_time = code_value() * 1000;
  4776. }
  4777. else
  4778. {
  4779. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4780. if(all_axis)
  4781. {
  4782. st_synchronize();
  4783. disable_e0();
  4784. disable_e1();
  4785. disable_e2();
  4786. finishAndDisableSteppers();
  4787. }
  4788. else
  4789. {
  4790. st_synchronize();
  4791. if (code_seen('X')) disable_x();
  4792. if (code_seen('Y')) disable_y();
  4793. if (code_seen('Z')) disable_z();
  4794. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4795. if (code_seen('E')) {
  4796. disable_e0();
  4797. disable_e1();
  4798. disable_e2();
  4799. }
  4800. #endif
  4801. }
  4802. }
  4803. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4804. print_time_remaining_init();
  4805. snmm_filaments_used = 0;
  4806. break;
  4807. case 85: // M85
  4808. if(code_seen('S')) {
  4809. max_inactive_time = code_value() * 1000;
  4810. }
  4811. break;
  4812. #ifdef SAFETYTIMER
  4813. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4814. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4815. if (code_seen('S')) {
  4816. safetytimer_inactive_time = code_value() * 1000;
  4817. safetyTimer.start();
  4818. }
  4819. break;
  4820. #endif
  4821. case 92: // M92
  4822. for(int8_t i=0; i < NUM_AXIS; i++)
  4823. {
  4824. if(code_seen(axis_codes[i]))
  4825. {
  4826. if(i == 3) { // E
  4827. float value = code_value();
  4828. if(value < 20.0) {
  4829. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4830. max_jerk[E_AXIS] *= factor;
  4831. max_feedrate[i] *= factor;
  4832. axis_steps_per_sqr_second[i] *= factor;
  4833. }
  4834. axis_steps_per_unit[i] = value;
  4835. }
  4836. else {
  4837. axis_steps_per_unit[i] = code_value();
  4838. }
  4839. }
  4840. }
  4841. break;
  4842. case 110: // M110 - reset line pos
  4843. if (code_seen('N'))
  4844. gcode_LastN = code_value_long();
  4845. break;
  4846. #ifdef HOST_KEEPALIVE_FEATURE
  4847. case 113: // M113 - Get or set Host Keepalive interval
  4848. if (code_seen('S')) {
  4849. host_keepalive_interval = (uint8_t)code_value_short();
  4850. // NOMORE(host_keepalive_interval, 60);
  4851. }
  4852. else {
  4853. SERIAL_ECHO_START;
  4854. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4855. SERIAL_PROTOCOLLN("");
  4856. }
  4857. break;
  4858. #endif
  4859. case 115: // M115
  4860. if (code_seen('V')) {
  4861. // Report the Prusa version number.
  4862. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4863. } else if (code_seen('U')) {
  4864. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4865. // pause the print and ask the user to upgrade the firmware.
  4866. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4867. } else {
  4868. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4869. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4870. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4871. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4872. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4873. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4874. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4875. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4876. SERIAL_ECHOPGM(" UUID:");
  4877. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4878. }
  4879. break;
  4880. /* case 117: // M117 display message
  4881. starpos = (strchr(strchr_pointer + 5,'*'));
  4882. if(starpos!=NULL)
  4883. *(starpos)='\0';
  4884. lcd_setstatus(strchr_pointer + 5);
  4885. break;*/
  4886. case 114: // M114
  4887. gcode_M114();
  4888. break;
  4889. case 120: // M120
  4890. enable_endstops(false) ;
  4891. break;
  4892. case 121: // M121
  4893. enable_endstops(true) ;
  4894. break;
  4895. case 119: // M119
  4896. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4897. SERIAL_PROTOCOLLN("");
  4898. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4899. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4900. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4901. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4902. }else{
  4903. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4904. }
  4905. SERIAL_PROTOCOLLN("");
  4906. #endif
  4907. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4908. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4909. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4910. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4911. }else{
  4912. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4913. }
  4914. SERIAL_PROTOCOLLN("");
  4915. #endif
  4916. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4917. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4918. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4919. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4920. }else{
  4921. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4922. }
  4923. SERIAL_PROTOCOLLN("");
  4924. #endif
  4925. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4926. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4927. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4928. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4929. }else{
  4930. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4931. }
  4932. SERIAL_PROTOCOLLN("");
  4933. #endif
  4934. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4935. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4936. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4937. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4938. }else{
  4939. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4940. }
  4941. SERIAL_PROTOCOLLN("");
  4942. #endif
  4943. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4944. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4945. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4946. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4947. }else{
  4948. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4949. }
  4950. SERIAL_PROTOCOLLN("");
  4951. #endif
  4952. break;
  4953. //TODO: update for all axis, use for loop
  4954. #ifdef BLINKM
  4955. case 150: // M150
  4956. {
  4957. byte red;
  4958. byte grn;
  4959. byte blu;
  4960. if(code_seen('R')) red = code_value();
  4961. if(code_seen('U')) grn = code_value();
  4962. if(code_seen('B')) blu = code_value();
  4963. SendColors(red,grn,blu);
  4964. }
  4965. break;
  4966. #endif //BLINKM
  4967. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4968. {
  4969. tmp_extruder = active_extruder;
  4970. if(code_seen('T')) {
  4971. tmp_extruder = code_value();
  4972. if(tmp_extruder >= EXTRUDERS) {
  4973. SERIAL_ECHO_START;
  4974. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4975. break;
  4976. }
  4977. }
  4978. float area = .0;
  4979. if(code_seen('D')) {
  4980. float diameter = (float)code_value();
  4981. if (diameter == 0.0) {
  4982. // setting any extruder filament size disables volumetric on the assumption that
  4983. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4984. // for all extruders
  4985. volumetric_enabled = false;
  4986. } else {
  4987. filament_size[tmp_extruder] = (float)code_value();
  4988. // make sure all extruders have some sane value for the filament size
  4989. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4990. #if EXTRUDERS > 1
  4991. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4992. #if EXTRUDERS > 2
  4993. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4994. #endif
  4995. #endif
  4996. volumetric_enabled = true;
  4997. }
  4998. } else {
  4999. //reserved for setting filament diameter via UFID or filament measuring device
  5000. break;
  5001. }
  5002. calculate_extruder_multipliers();
  5003. }
  5004. break;
  5005. case 201: // M201
  5006. for(int8_t i=0; i < NUM_AXIS; i++)
  5007. {
  5008. if(code_seen(axis_codes[i]))
  5009. {
  5010. max_acceleration_units_per_sq_second[i] = code_value();
  5011. }
  5012. }
  5013. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5014. reset_acceleration_rates();
  5015. break;
  5016. #if 0 // Not used for Sprinter/grbl gen6
  5017. case 202: // M202
  5018. for(int8_t i=0; i < NUM_AXIS; i++) {
  5019. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5020. }
  5021. break;
  5022. #endif
  5023. case 203: // M203 max feedrate mm/sec
  5024. for(int8_t i=0; i < NUM_AXIS; i++) {
  5025. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  5026. }
  5027. break;
  5028. case 204: // M204 acclereration S normal moves T filmanent only moves
  5029. {
  5030. if(code_seen('S')) acceleration = code_value() ;
  5031. if(code_seen('T')) retract_acceleration = code_value() ;
  5032. }
  5033. break;
  5034. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5035. {
  5036. if(code_seen('S')) minimumfeedrate = code_value();
  5037. if(code_seen('T')) mintravelfeedrate = code_value();
  5038. if(code_seen('B')) minsegmenttime = code_value() ;
  5039. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5040. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5041. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5042. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5043. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5044. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5045. }
  5046. break;
  5047. case 206: // M206 additional homing offset
  5048. for(int8_t i=0; i < 3; i++)
  5049. {
  5050. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5051. }
  5052. break;
  5053. #ifdef FWRETRACT
  5054. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5055. {
  5056. if(code_seen('S'))
  5057. {
  5058. retract_length = code_value() ;
  5059. }
  5060. if(code_seen('F'))
  5061. {
  5062. retract_feedrate = code_value()/60 ;
  5063. }
  5064. if(code_seen('Z'))
  5065. {
  5066. retract_zlift = code_value() ;
  5067. }
  5068. }break;
  5069. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5070. {
  5071. if(code_seen('S'))
  5072. {
  5073. retract_recover_length = code_value() ;
  5074. }
  5075. if(code_seen('F'))
  5076. {
  5077. retract_recover_feedrate = code_value()/60 ;
  5078. }
  5079. }break;
  5080. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5081. {
  5082. if(code_seen('S'))
  5083. {
  5084. int t= code_value() ;
  5085. switch(t)
  5086. {
  5087. case 0:
  5088. {
  5089. autoretract_enabled=false;
  5090. retracted[0]=false;
  5091. #if EXTRUDERS > 1
  5092. retracted[1]=false;
  5093. #endif
  5094. #if EXTRUDERS > 2
  5095. retracted[2]=false;
  5096. #endif
  5097. }break;
  5098. case 1:
  5099. {
  5100. autoretract_enabled=true;
  5101. retracted[0]=false;
  5102. #if EXTRUDERS > 1
  5103. retracted[1]=false;
  5104. #endif
  5105. #if EXTRUDERS > 2
  5106. retracted[2]=false;
  5107. #endif
  5108. }break;
  5109. default:
  5110. SERIAL_ECHO_START;
  5111. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5112. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5113. SERIAL_ECHOLNPGM("\"(1)");
  5114. }
  5115. }
  5116. }break;
  5117. #endif // FWRETRACT
  5118. #if EXTRUDERS > 1
  5119. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5120. {
  5121. if(setTargetedHotend(218)){
  5122. break;
  5123. }
  5124. if(code_seen('X'))
  5125. {
  5126. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5127. }
  5128. if(code_seen('Y'))
  5129. {
  5130. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5131. }
  5132. SERIAL_ECHO_START;
  5133. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5134. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5135. {
  5136. SERIAL_ECHO(" ");
  5137. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5138. SERIAL_ECHO(",");
  5139. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5140. }
  5141. SERIAL_ECHOLN("");
  5142. }break;
  5143. #endif
  5144. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5145. {
  5146. if(code_seen('S'))
  5147. {
  5148. feedmultiply = code_value() ;
  5149. }
  5150. }
  5151. break;
  5152. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5153. {
  5154. if(code_seen('S'))
  5155. {
  5156. int tmp_code = code_value();
  5157. if (code_seen('T'))
  5158. {
  5159. if(setTargetedHotend(221)){
  5160. break;
  5161. }
  5162. extruder_multiply[tmp_extruder] = tmp_code;
  5163. }
  5164. else
  5165. {
  5166. extrudemultiply = tmp_code ;
  5167. }
  5168. }
  5169. calculate_extruder_multipliers();
  5170. }
  5171. break;
  5172. #ifndef _DISABLE_M42_M226
  5173. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5174. {
  5175. if(code_seen('P')){
  5176. int pin_number = code_value(); // pin number
  5177. int pin_state = -1; // required pin state - default is inverted
  5178. if(code_seen('S')) pin_state = code_value(); // required pin state
  5179. if(pin_state >= -1 && pin_state <= 1){
  5180. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5181. {
  5182. if (sensitive_pins[i] == pin_number)
  5183. {
  5184. pin_number = -1;
  5185. break;
  5186. }
  5187. }
  5188. if (pin_number > -1)
  5189. {
  5190. int target = LOW;
  5191. st_synchronize();
  5192. pinMode(pin_number, INPUT);
  5193. switch(pin_state){
  5194. case 1:
  5195. target = HIGH;
  5196. break;
  5197. case 0:
  5198. target = LOW;
  5199. break;
  5200. case -1:
  5201. target = !digitalRead(pin_number);
  5202. break;
  5203. }
  5204. while(digitalRead(pin_number) != target){
  5205. manage_heater();
  5206. manage_inactivity();
  5207. lcd_update(0);
  5208. }
  5209. }
  5210. }
  5211. }
  5212. }
  5213. break;
  5214. #endif //_DISABLE_M42_M226
  5215. #if NUM_SERVOS > 0
  5216. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5217. {
  5218. int servo_index = -1;
  5219. int servo_position = 0;
  5220. if (code_seen('P'))
  5221. servo_index = code_value();
  5222. if (code_seen('S')) {
  5223. servo_position = code_value();
  5224. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5225. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5226. servos[servo_index].attach(0);
  5227. #endif
  5228. servos[servo_index].write(servo_position);
  5229. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5230. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5231. servos[servo_index].detach();
  5232. #endif
  5233. }
  5234. else {
  5235. SERIAL_ECHO_START;
  5236. SERIAL_ECHO("Servo ");
  5237. SERIAL_ECHO(servo_index);
  5238. SERIAL_ECHOLN(" out of range");
  5239. }
  5240. }
  5241. else if (servo_index >= 0) {
  5242. SERIAL_PROTOCOL(_T(MSG_OK));
  5243. SERIAL_PROTOCOL(" Servo ");
  5244. SERIAL_PROTOCOL(servo_index);
  5245. SERIAL_PROTOCOL(": ");
  5246. SERIAL_PROTOCOL(servos[servo_index].read());
  5247. SERIAL_PROTOCOLLN("");
  5248. }
  5249. }
  5250. break;
  5251. #endif // NUM_SERVOS > 0
  5252. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5253. case 300: // M300
  5254. {
  5255. int beepS = code_seen('S') ? code_value() : 110;
  5256. int beepP = code_seen('P') ? code_value() : 1000;
  5257. if (beepS > 0)
  5258. {
  5259. #if BEEPER > 0
  5260. tone(BEEPER, beepS);
  5261. delay(beepP);
  5262. noTone(BEEPER);
  5263. #endif
  5264. }
  5265. else
  5266. {
  5267. delay(beepP);
  5268. }
  5269. }
  5270. break;
  5271. #endif // M300
  5272. #ifdef PIDTEMP
  5273. case 301: // M301
  5274. {
  5275. if(code_seen('P')) Kp = code_value();
  5276. if(code_seen('I')) Ki = scalePID_i(code_value());
  5277. if(code_seen('D')) Kd = scalePID_d(code_value());
  5278. #ifdef PID_ADD_EXTRUSION_RATE
  5279. if(code_seen('C')) Kc = code_value();
  5280. #endif
  5281. updatePID();
  5282. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5283. SERIAL_PROTOCOL(" p:");
  5284. SERIAL_PROTOCOL(Kp);
  5285. SERIAL_PROTOCOL(" i:");
  5286. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5287. SERIAL_PROTOCOL(" d:");
  5288. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5289. #ifdef PID_ADD_EXTRUSION_RATE
  5290. SERIAL_PROTOCOL(" c:");
  5291. //Kc does not have scaling applied above, or in resetting defaults
  5292. SERIAL_PROTOCOL(Kc);
  5293. #endif
  5294. SERIAL_PROTOCOLLN("");
  5295. }
  5296. break;
  5297. #endif //PIDTEMP
  5298. #ifdef PIDTEMPBED
  5299. case 304: // M304
  5300. {
  5301. if(code_seen('P')) bedKp = code_value();
  5302. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5303. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5304. updatePID();
  5305. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5306. SERIAL_PROTOCOL(" p:");
  5307. SERIAL_PROTOCOL(bedKp);
  5308. SERIAL_PROTOCOL(" i:");
  5309. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5310. SERIAL_PROTOCOL(" d:");
  5311. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5312. SERIAL_PROTOCOLLN("");
  5313. }
  5314. break;
  5315. #endif //PIDTEMP
  5316. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5317. {
  5318. #ifdef CHDK
  5319. SET_OUTPUT(CHDK);
  5320. WRITE(CHDK, HIGH);
  5321. chdkHigh = millis();
  5322. chdkActive = true;
  5323. #else
  5324. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5325. const uint8_t NUM_PULSES=16;
  5326. const float PULSE_LENGTH=0.01524;
  5327. for(int i=0; i < NUM_PULSES; i++) {
  5328. WRITE(PHOTOGRAPH_PIN, HIGH);
  5329. _delay_ms(PULSE_LENGTH);
  5330. WRITE(PHOTOGRAPH_PIN, LOW);
  5331. _delay_ms(PULSE_LENGTH);
  5332. }
  5333. delay(7.33);
  5334. for(int i=0; i < NUM_PULSES; i++) {
  5335. WRITE(PHOTOGRAPH_PIN, HIGH);
  5336. _delay_ms(PULSE_LENGTH);
  5337. WRITE(PHOTOGRAPH_PIN, LOW);
  5338. _delay_ms(PULSE_LENGTH);
  5339. }
  5340. #endif
  5341. #endif //chdk end if
  5342. }
  5343. break;
  5344. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5345. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5346. {
  5347. float temp = .0;
  5348. if (code_seen('S')) temp=code_value();
  5349. set_extrude_min_temp(temp);
  5350. }
  5351. break;
  5352. #endif
  5353. case 303: // M303 PID autotune
  5354. {
  5355. float temp = 150.0;
  5356. int e=0;
  5357. int c=5;
  5358. if (code_seen('E')) e=code_value();
  5359. if (e<0)
  5360. temp=70;
  5361. if (code_seen('S')) temp=code_value();
  5362. if (code_seen('C')) c=code_value();
  5363. PID_autotune(temp, e, c);
  5364. }
  5365. break;
  5366. case 400: // M400 finish all moves
  5367. {
  5368. st_synchronize();
  5369. }
  5370. break;
  5371. case 500: // M500 Store settings in EEPROM
  5372. {
  5373. Config_StoreSettings(EEPROM_OFFSET);
  5374. }
  5375. break;
  5376. case 501: // M501 Read settings from EEPROM
  5377. {
  5378. Config_RetrieveSettings(EEPROM_OFFSET);
  5379. }
  5380. break;
  5381. case 502: // M502 Revert to default settings
  5382. {
  5383. Config_ResetDefault();
  5384. }
  5385. break;
  5386. case 503: // M503 print settings currently in memory
  5387. {
  5388. Config_PrintSettings();
  5389. }
  5390. break;
  5391. case 509: //M509 Force language selection
  5392. {
  5393. lang_reset();
  5394. SERIAL_ECHO_START;
  5395. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5396. }
  5397. break;
  5398. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5399. case 540:
  5400. {
  5401. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5402. }
  5403. break;
  5404. #endif
  5405. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5406. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5407. {
  5408. float value;
  5409. if (code_seen('Z'))
  5410. {
  5411. value = code_value();
  5412. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5413. {
  5414. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5415. SERIAL_ECHO_START;
  5416. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5417. SERIAL_PROTOCOLLN("");
  5418. }
  5419. else
  5420. {
  5421. SERIAL_ECHO_START;
  5422. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5423. SERIAL_ECHORPGM(MSG_Z_MIN);
  5424. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5425. SERIAL_ECHORPGM(MSG_Z_MAX);
  5426. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5427. SERIAL_PROTOCOLLN("");
  5428. }
  5429. }
  5430. else
  5431. {
  5432. SERIAL_ECHO_START;
  5433. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5434. SERIAL_ECHO(-zprobe_zoffset);
  5435. SERIAL_PROTOCOLLN("");
  5436. }
  5437. break;
  5438. }
  5439. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5440. #ifdef FILAMENTCHANGEENABLE
  5441. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5442. {
  5443. #ifdef PAT9125
  5444. bool old_fsensor_enabled = fsensor_enabled;
  5445. // fsensor_enabled = false; //temporary solution for unexpected restarting
  5446. #endif //PAT9125
  5447. st_synchronize();
  5448. float lastpos[4];
  5449. if (farm_mode)
  5450. {
  5451. prusa_statistics(22);
  5452. }
  5453. feedmultiplyBckp=feedmultiply;
  5454. int8_t TooLowZ = 0;
  5455. float HotendTempBckp = degTargetHotend(active_extruder);
  5456. int fanSpeedBckp = fanSpeed;
  5457. lastpos[X_AXIS]=current_position[X_AXIS];
  5458. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5459. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5460. lastpos[E_AXIS]=current_position[E_AXIS];
  5461. //Restract extruder
  5462. if(code_seen('E'))
  5463. {
  5464. current_position[E_AXIS]+= code_value();
  5465. }
  5466. else
  5467. {
  5468. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5469. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5470. #endif
  5471. }
  5472. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5473. //Lift Z
  5474. if(code_seen('Z'))
  5475. {
  5476. current_position[Z_AXIS]+= code_value();
  5477. }
  5478. else
  5479. {
  5480. #ifdef FILAMENTCHANGE_ZADD
  5481. current_position[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5482. if(current_position[Z_AXIS] < 10){
  5483. current_position[Z_AXIS]+= 10 ;
  5484. TooLowZ = 1;
  5485. }else{
  5486. TooLowZ = 0;
  5487. }
  5488. #endif
  5489. }
  5490. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5491. //Move XY to side
  5492. if(code_seen('X'))
  5493. {
  5494. current_position[X_AXIS]+= code_value();
  5495. }
  5496. else
  5497. {
  5498. #ifdef FILAMENTCHANGE_XPOS
  5499. current_position[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5500. #endif
  5501. }
  5502. if(code_seen('Y'))
  5503. {
  5504. current_position[Y_AXIS]= code_value();
  5505. }
  5506. else
  5507. {
  5508. #ifdef FILAMENTCHANGE_YPOS
  5509. current_position[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5510. #endif
  5511. }
  5512. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5513. st_synchronize();
  5514. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5515. uint8_t cnt = 0;
  5516. int counterBeep = 0;
  5517. fanSpeed = 0;
  5518. unsigned long waiting_start_time = millis();
  5519. uint8_t wait_for_user_state = 0;
  5520. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5521. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5522. //cnt++;
  5523. manage_heater();
  5524. manage_inactivity(true);
  5525. #if BEEPER > 0
  5526. if (counterBeep == 500) {
  5527. counterBeep = 0;
  5528. }
  5529. SET_OUTPUT(BEEPER);
  5530. if (counterBeep == 0) {
  5531. WRITE(BEEPER, HIGH);
  5532. }
  5533. if (counterBeep == 20) {
  5534. WRITE(BEEPER, LOW);
  5535. }
  5536. counterBeep++;
  5537. #endif
  5538. switch (wait_for_user_state) {
  5539. case 0:
  5540. delay_keep_alive(4);
  5541. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5542. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5543. wait_for_user_state = 1;
  5544. setTargetHotend(0, 0);
  5545. setTargetHotend(0, 1);
  5546. setTargetHotend(0, 2);
  5547. st_synchronize();
  5548. disable_e0();
  5549. disable_e1();
  5550. disable_e2();
  5551. }
  5552. break;
  5553. case 1:
  5554. delay_keep_alive(4);
  5555. if (lcd_clicked()) {
  5556. setTargetHotend(HotendTempBckp, active_extruder);
  5557. lcd_wait_for_heater();
  5558. wait_for_user_state = 2;
  5559. }
  5560. break;
  5561. case 2:
  5562. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5563. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5564. waiting_start_time = millis();
  5565. wait_for_user_state = 0;
  5566. }
  5567. else {
  5568. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5569. lcd_set_cursor(1, 4);
  5570. lcd_print(ftostr3(degHotend(active_extruder)));
  5571. }
  5572. break;
  5573. }
  5574. }
  5575. WRITE(BEEPER, LOW);
  5576. lcd_change_fil_state = 0;
  5577. // Unload filament
  5578. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5579. KEEPALIVE_STATE(IN_HANDLER);
  5580. custom_message = true;
  5581. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5582. if (code_seen('L'))
  5583. {
  5584. current_position[E_AXIS] += code_value();
  5585. }
  5586. else
  5587. {
  5588. #ifdef SNMM
  5589. #else
  5590. #ifdef FILAMENTCHANGE_FINALRETRACT
  5591. current_position[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5592. #endif
  5593. #endif // SNMM
  5594. }
  5595. #ifdef SNMM
  5596. current_position[E_AXIS] += 12;
  5597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500, active_extruder);
  5598. current_position[E_AXIS] += 6;
  5599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  5600. current_position[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5601. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  5602. st_synchronize();
  5603. current_position[E_AXIS] += (FIL_COOLING);
  5604. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5605. current_position[E_AXIS] += (FIL_COOLING*-1);
  5606. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5607. current_position[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5608. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  5609. st_synchronize();
  5610. #else
  5611. // plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5612. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500 / 60, active_extruder);
  5613. current_position[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5614. st_synchronize();
  5615. #ifdef TMC2130
  5616. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5617. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5618. #else
  5619. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5620. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5621. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5622. #endif //TMC2130
  5623. current_position[E_AXIS] -= 45;
  5624. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5625. st_synchronize();
  5626. current_position[E_AXIS] -= 15;
  5627. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5628. st_synchronize();
  5629. current_position[E_AXIS] -= 20;
  5630. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5631. st_synchronize();
  5632. #ifdef TMC2130
  5633. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5634. #else
  5635. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5636. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5637. else st_current_set(2, tmp_motor_loud[2]);
  5638. #endif //TMC2130
  5639. #endif // SNMM
  5640. //finish moves
  5641. st_synchronize();
  5642. //disable extruder steppers so filament can be removed
  5643. disable_e0();
  5644. disable_e1();
  5645. disable_e2();
  5646. delay(100);
  5647. #ifdef SNMM_V2
  5648. fprintf_P(uart2io, PSTR("U0\n"));
  5649. // get response
  5650. bool response = mmu_get_reponse();
  5651. if (!response) mmu_not_responding();
  5652. #else
  5653. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5654. WRITE(BEEPER, HIGH);
  5655. counterBeep = 0;
  5656. while(!lcd_clicked() && (counterBeep < 50)) {
  5657. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5658. delay_keep_alive(100);
  5659. counterBeep++;
  5660. }
  5661. WRITE(BEEPER, LOW);
  5662. #endif
  5663. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5664. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5665. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5666. //lcd_return_to_status();
  5667. lcd_update_enable(true);
  5668. //Wait for user to insert filament and load filament to nozzle
  5669. #ifdef SNMM_V2
  5670. mmu_M600_load_filament();
  5671. #else
  5672. M600_load_filament(old_fsensor_enabled);
  5673. #endif
  5674. //Wait for user to check the state
  5675. lcd_change_fil_state = 0;
  5676. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5677. lcd_change_fil_state = 0;
  5678. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5679. lcd_alright();
  5680. KEEPALIVE_STATE(IN_HANDLER);
  5681. switch(lcd_change_fil_state){
  5682. // Filament failed to load so load it again
  5683. case 2:
  5684. #ifdef SNMM_V2
  5685. mmu_M600_load_filament(); //change to "wrong filament loaded" option?
  5686. #else
  5687. M600_load_filament_movements();
  5688. #endif
  5689. break;
  5690. // Filament loaded properly but color is not clear
  5691. case 3:
  5692. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5693. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  5694. lcd_loading_color();
  5695. break;
  5696. // Everything good
  5697. default:
  5698. lcd_change_success();
  5699. lcd_update_enable(true);
  5700. break;
  5701. }
  5702. }
  5703. //Not let's go back to print
  5704. fanSpeed = fanSpeedBckp;
  5705. //Feed a little of filament to stabilize pressure
  5706. current_position[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5707. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5708. //Retract
  5709. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5710. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5711. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 70, active_extruder); //should do nothing
  5712. //Move XY back
  5713. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5714. //Move Z back
  5715. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5716. current_position[E_AXIS]= current_position[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5717. //Unretract
  5718. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5719. //Set E position to original
  5720. plan_set_e_position(lastpos[E_AXIS]);
  5721. memcpy(current_position, lastpos, sizeof(lastpos));
  5722. memcpy(destination, current_position, sizeof(current_position));
  5723. //Recover feed rate
  5724. feedmultiply=feedmultiplyBckp;
  5725. char cmd[9];
  5726. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5727. enquecommand(cmd);
  5728. lcd_setstatuspgm(_T(WELCOME_MSG));
  5729. custom_message = false;
  5730. custom_message_type = 0;
  5731. #ifdef PAT9125
  5732. // fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5733. if (fsensor_M600)
  5734. {
  5735. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5736. st_synchronize();
  5737. while (!is_buffer_empty())
  5738. {
  5739. process_commands();
  5740. cmdqueue_pop_front();
  5741. }
  5742. KEEPALIVE_STATE(IN_HANDLER);
  5743. // fsensor_enable();
  5744. fsensor_restore_print_and_continue();
  5745. }
  5746. fsensor_M600 = false;
  5747. #endif //PAT9125
  5748. }
  5749. break;
  5750. #endif //FILAMENTCHANGEENABLE
  5751. case 601: {
  5752. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5753. }
  5754. break;
  5755. case 602: {
  5756. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5757. }
  5758. break;
  5759. #ifdef PINDA_THERMISTOR
  5760. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5761. {
  5762. int set_target_pinda = 0;
  5763. if (code_seen('S')) {
  5764. set_target_pinda = code_value();
  5765. }
  5766. else {
  5767. break;
  5768. }
  5769. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5770. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5771. SERIAL_PROTOCOL(set_target_pinda);
  5772. SERIAL_PROTOCOLLN("");
  5773. codenum = millis();
  5774. cancel_heatup = false;
  5775. bool is_pinda_cooling = false;
  5776. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5777. is_pinda_cooling = true;
  5778. }
  5779. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5780. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5781. {
  5782. SERIAL_PROTOCOLPGM("P:");
  5783. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5784. SERIAL_PROTOCOLPGM("/");
  5785. SERIAL_PROTOCOL(set_target_pinda);
  5786. SERIAL_PROTOCOLLN("");
  5787. codenum = millis();
  5788. }
  5789. manage_heater();
  5790. manage_inactivity();
  5791. lcd_update(0);
  5792. }
  5793. LCD_MESSAGERPGM(_T(MSG_OK));
  5794. break;
  5795. }
  5796. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5797. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5798. uint8_t cal_status = calibration_status_pinda();
  5799. int16_t usteps = 0;
  5800. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5801. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5802. for (uint8_t i = 0; i < 6; i++)
  5803. {
  5804. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5805. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5806. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5807. SERIAL_PROTOCOLPGM(", ");
  5808. SERIAL_PROTOCOL(35 + (i * 5));
  5809. SERIAL_PROTOCOLPGM(", ");
  5810. SERIAL_PROTOCOL(usteps);
  5811. SERIAL_PROTOCOLPGM(", ");
  5812. SERIAL_PROTOCOL(mm * 1000);
  5813. SERIAL_PROTOCOLLN("");
  5814. }
  5815. }
  5816. else if (code_seen('!')) { // ! - Set factory default values
  5817. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5818. int16_t z_shift = 8; //40C - 20um - 8usteps
  5819. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5820. z_shift = 24; //45C - 60um - 24usteps
  5821. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5822. z_shift = 48; //50C - 120um - 48usteps
  5823. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5824. z_shift = 80; //55C - 200um - 80usteps
  5825. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5826. z_shift = 120; //60C - 300um - 120usteps
  5827. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5828. SERIAL_PROTOCOLLN("factory restored");
  5829. }
  5830. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5831. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5832. int16_t z_shift = 0;
  5833. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5834. SERIAL_PROTOCOLLN("zerorized");
  5835. }
  5836. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5837. int16_t usteps = code_value();
  5838. if (code_seen('I')) {
  5839. byte index = code_value();
  5840. if ((index >= 0) && (index < 5)) {
  5841. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5842. SERIAL_PROTOCOLLN("OK");
  5843. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5844. for (uint8_t i = 0; i < 6; i++)
  5845. {
  5846. usteps = 0;
  5847. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5848. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5849. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5850. SERIAL_PROTOCOLPGM(", ");
  5851. SERIAL_PROTOCOL(35 + (i * 5));
  5852. SERIAL_PROTOCOLPGM(", ");
  5853. SERIAL_PROTOCOL(usteps);
  5854. SERIAL_PROTOCOLPGM(", ");
  5855. SERIAL_PROTOCOL(mm * 1000);
  5856. SERIAL_PROTOCOLLN("");
  5857. }
  5858. }
  5859. }
  5860. }
  5861. else {
  5862. SERIAL_PROTOCOLPGM("no valid command");
  5863. }
  5864. break;
  5865. #endif //PINDA_THERMISTOR
  5866. #ifdef LIN_ADVANCE
  5867. case 900: // M900: Set LIN_ADVANCE options.
  5868. gcode_M900();
  5869. break;
  5870. #endif
  5871. case 907: // M907 Set digital trimpot motor current using axis codes.
  5872. {
  5873. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5874. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5875. if(code_seen('B')) st_current_set(4,code_value());
  5876. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5877. #endif
  5878. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5879. if(code_seen('X')) st_current_set(0, code_value());
  5880. #endif
  5881. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5882. if(code_seen('Z')) st_current_set(1, code_value());
  5883. #endif
  5884. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5885. if(code_seen('E')) st_current_set(2, code_value());
  5886. #endif
  5887. }
  5888. break;
  5889. case 908: // M908 Control digital trimpot directly.
  5890. {
  5891. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5892. uint8_t channel,current;
  5893. if(code_seen('P')) channel=code_value();
  5894. if(code_seen('S')) current=code_value();
  5895. digitalPotWrite(channel, current);
  5896. #endif
  5897. }
  5898. break;
  5899. #ifdef TMC2130
  5900. case 910: // M910 TMC2130 init
  5901. {
  5902. tmc2130_init();
  5903. }
  5904. break;
  5905. case 911: // M911 Set TMC2130 holding currents
  5906. {
  5907. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5908. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5909. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5910. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5911. }
  5912. break;
  5913. case 912: // M912 Set TMC2130 running currents
  5914. {
  5915. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5916. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5917. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5918. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5919. }
  5920. break;
  5921. case 913: // M913 Print TMC2130 currents
  5922. {
  5923. tmc2130_print_currents();
  5924. }
  5925. break;
  5926. case 914: // M914 Set normal mode
  5927. {
  5928. tmc2130_mode = TMC2130_MODE_NORMAL;
  5929. tmc2130_init();
  5930. }
  5931. break;
  5932. case 915: // M915 Set silent mode
  5933. {
  5934. tmc2130_mode = TMC2130_MODE_SILENT;
  5935. tmc2130_init();
  5936. }
  5937. break;
  5938. case 916: // M916 Set sg_thrs
  5939. {
  5940. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5941. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5942. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5943. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5944. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5945. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5946. }
  5947. break;
  5948. case 917: // M917 Set TMC2130 pwm_ampl
  5949. {
  5950. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5951. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5952. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5953. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5954. }
  5955. break;
  5956. case 918: // M918 Set TMC2130 pwm_grad
  5957. {
  5958. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5959. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5960. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5961. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5962. }
  5963. break;
  5964. #endif //TMC2130
  5965. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5966. {
  5967. #ifdef TMC2130
  5968. if(code_seen('E'))
  5969. {
  5970. uint16_t res_new = code_value();
  5971. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5972. {
  5973. st_synchronize();
  5974. uint8_t axis = E_AXIS;
  5975. uint16_t res = tmc2130_get_res(axis);
  5976. tmc2130_set_res(axis, res_new);
  5977. if (res_new > res)
  5978. {
  5979. uint16_t fac = (res_new / res);
  5980. axis_steps_per_unit[axis] *= fac;
  5981. position[E_AXIS] *= fac;
  5982. }
  5983. else
  5984. {
  5985. uint16_t fac = (res / res_new);
  5986. axis_steps_per_unit[axis] /= fac;
  5987. position[E_AXIS] /= fac;
  5988. }
  5989. }
  5990. }
  5991. #else //TMC2130
  5992. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5993. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5994. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5995. if(code_seen('B')) microstep_mode(4,code_value());
  5996. microstep_readings();
  5997. #endif
  5998. #endif //TMC2130
  5999. }
  6000. break;
  6001. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6002. {
  6003. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6004. if(code_seen('S')) switch((int)code_value())
  6005. {
  6006. case 1:
  6007. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6008. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6009. break;
  6010. case 2:
  6011. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6012. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6013. break;
  6014. }
  6015. microstep_readings();
  6016. #endif
  6017. }
  6018. break;
  6019. case 701: //M701: load filament
  6020. {
  6021. #ifdef SNMM_V2
  6022. if (code_seen('E'))
  6023. {
  6024. snmm_extruder = code_value();
  6025. }
  6026. #endif
  6027. gcode_M701();
  6028. }
  6029. break;
  6030. case 702:
  6031. {
  6032. #if defined (SNMM) || defined (SNMM_V2)
  6033. if (code_seen('U')) {
  6034. extr_unload_used(); //unload all filaments which were used in current print
  6035. }
  6036. else if (code_seen('C')) {
  6037. extr_unload(); //unload just current filament
  6038. }
  6039. else {
  6040. extr_unload_all(); //unload all filaments
  6041. }
  6042. #else
  6043. #ifdef PAT9125
  6044. bool old_fsensor_enabled = fsensor_enabled;
  6045. // fsensor_enabled = false;
  6046. #endif //PAT9125
  6047. custom_message = true;
  6048. custom_message_type = 2;
  6049. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6050. // extr_unload2();
  6051. current_position[E_AXIS] -= 45;
  6052. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6053. st_synchronize();
  6054. current_position[E_AXIS] -= 15;
  6055. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6056. st_synchronize();
  6057. current_position[E_AXIS] -= 20;
  6058. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6059. st_synchronize();
  6060. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6061. //disable extruder steppers so filament can be removed
  6062. disable_e0();
  6063. disable_e1();
  6064. disable_e2();
  6065. delay(100);
  6066. WRITE(BEEPER, HIGH);
  6067. uint8_t counterBeep = 0;
  6068. while (!lcd_clicked() && (counterBeep < 50)) {
  6069. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6070. delay_keep_alive(100);
  6071. counterBeep++;
  6072. }
  6073. WRITE(BEEPER, LOW);
  6074. st_synchronize();
  6075. while (lcd_clicked()) delay_keep_alive(100);
  6076. lcd_update_enable(true);
  6077. lcd_setstatuspgm(_T(WELCOME_MSG));
  6078. custom_message = false;
  6079. custom_message_type = 0;
  6080. #ifdef PAT9125
  6081. // fsensor_enabled = old_fsensor_enabled;
  6082. #endif //PAT9125
  6083. #endif
  6084. }
  6085. break;
  6086. case 999: // M999: Restart after being stopped
  6087. Stopped = false;
  6088. lcd_reset_alert_level();
  6089. gcode_LastN = Stopped_gcode_LastN;
  6090. FlushSerialRequestResend();
  6091. break;
  6092. default:
  6093. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6094. }
  6095. } // end if(code_seen('M')) (end of M codes)
  6096. else if(code_seen('T'))
  6097. {
  6098. int index;
  6099. st_synchronize();
  6100. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6101. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6102. SERIAL_ECHOLNPGM("Invalid T code.");
  6103. }
  6104. else {
  6105. if (*(strchr_pointer + index) == '?') {
  6106. tmp_extruder = choose_extruder_menu();
  6107. }
  6108. else {
  6109. tmp_extruder = code_value();
  6110. }
  6111. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6112. #ifdef SNMM_V2
  6113. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6114. switch (tmp_extruder)
  6115. {
  6116. case 1:
  6117. fprintf_P(uart2io, PSTR("T1\n"));
  6118. break;
  6119. case 2:
  6120. fprintf_P(uart2io, PSTR("T2\n"));
  6121. break;
  6122. case 3:
  6123. fprintf_P(uart2io, PSTR("T3\n"));
  6124. break;
  6125. case 4:
  6126. fprintf_P(uart2io, PSTR("T4\n"));
  6127. break;
  6128. default:
  6129. fprintf_P(uart2io, PSTR("T0\n"));
  6130. break;
  6131. }
  6132. bool response = mmu_get_reponse();
  6133. if (!response) mmu_not_responding();
  6134. snmm_extruder = tmp_extruder; //filament change is finished
  6135. if (*(strchr_pointer + index) == '?') { // for single material usage with mmu
  6136. mmu_load_to_nozzle();
  6137. }
  6138. #endif
  6139. #ifdef SNMM
  6140. #ifdef LIN_ADVANCE
  6141. if (snmm_extruder != tmp_extruder)
  6142. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6143. #endif
  6144. snmm_extruder = tmp_extruder;
  6145. delay(100);
  6146. disable_e0();
  6147. disable_e1();
  6148. disable_e2();
  6149. pinMode(E_MUX0_PIN, OUTPUT);
  6150. pinMode(E_MUX1_PIN, OUTPUT);
  6151. delay(100);
  6152. SERIAL_ECHO_START;
  6153. SERIAL_ECHO("T:");
  6154. SERIAL_ECHOLN((int)tmp_extruder);
  6155. switch (tmp_extruder) {
  6156. case 1:
  6157. WRITE(E_MUX0_PIN, HIGH);
  6158. WRITE(E_MUX1_PIN, LOW);
  6159. break;
  6160. case 2:
  6161. WRITE(E_MUX0_PIN, LOW);
  6162. WRITE(E_MUX1_PIN, HIGH);
  6163. break;
  6164. case 3:
  6165. WRITE(E_MUX0_PIN, HIGH);
  6166. WRITE(E_MUX1_PIN, HIGH);
  6167. break;
  6168. default:
  6169. WRITE(E_MUX0_PIN, LOW);
  6170. WRITE(E_MUX1_PIN, LOW);
  6171. break;
  6172. }
  6173. delay(100);
  6174. #else
  6175. if (tmp_extruder >= EXTRUDERS) {
  6176. SERIAL_ECHO_START;
  6177. SERIAL_ECHOPGM("T");
  6178. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6179. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6180. }
  6181. else {
  6182. boolean make_move = false;
  6183. if (code_seen('F')) {
  6184. make_move = true;
  6185. next_feedrate = code_value();
  6186. if (next_feedrate > 0.0) {
  6187. feedrate = next_feedrate;
  6188. }
  6189. }
  6190. #if EXTRUDERS > 1
  6191. if (tmp_extruder != active_extruder) {
  6192. // Save current position to return to after applying extruder offset
  6193. memcpy(destination, current_position, sizeof(destination));
  6194. // Offset extruder (only by XY)
  6195. int i;
  6196. for (i = 0; i < 2; i++) {
  6197. current_position[i] = current_position[i] -
  6198. extruder_offset[i][active_extruder] +
  6199. extruder_offset[i][tmp_extruder];
  6200. }
  6201. // Set the new active extruder and position
  6202. active_extruder = tmp_extruder;
  6203. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6204. // Move to the old position if 'F' was in the parameters
  6205. if (make_move && Stopped == false) {
  6206. prepare_move();
  6207. }
  6208. }
  6209. #endif
  6210. SERIAL_ECHO_START;
  6211. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6212. SERIAL_PROTOCOLLN((int)active_extruder);
  6213. }
  6214. #endif
  6215. }
  6216. } // end if(code_seen('T')) (end of T codes)
  6217. #ifdef DEBUG_DCODES
  6218. else if (code_seen('D')) // D codes (debug)
  6219. {
  6220. switch((int)code_value())
  6221. {
  6222. case -1: // D-1 - Endless loop
  6223. dcode__1(); break;
  6224. case 0: // D0 - Reset
  6225. dcode_0(); break;
  6226. case 1: // D1 - Clear EEPROM
  6227. dcode_1(); break;
  6228. case 2: // D2 - Read/Write RAM
  6229. dcode_2(); break;
  6230. case 3: // D3 - Read/Write EEPROM
  6231. dcode_3(); break;
  6232. case 4: // D4 - Read/Write PIN
  6233. dcode_4(); break;
  6234. case 5: // D5 - Read/Write FLASH
  6235. // dcode_5(); break;
  6236. break;
  6237. case 6: // D6 - Read/Write external FLASH
  6238. dcode_6(); break;
  6239. case 7: // D7 - Read/Write Bootloader
  6240. dcode_7(); break;
  6241. case 8: // D8 - Read/Write PINDA
  6242. dcode_8(); break;
  6243. case 9: // D9 - Read/Write ADC
  6244. dcode_9(); break;
  6245. case 10: // D10 - XYZ calibration = OK
  6246. dcode_10(); break;
  6247. #ifdef TMC2130
  6248. case 2130: // D9125 - TMC2130
  6249. dcode_2130(); break;
  6250. #endif //TMC2130
  6251. #ifdef PAT9125
  6252. case 9125: // D9125 - PAT9125
  6253. dcode_9125(); break;
  6254. #endif //PAT9125
  6255. }
  6256. }
  6257. #endif //DEBUG_DCODES
  6258. else
  6259. {
  6260. SERIAL_ECHO_START;
  6261. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6262. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6263. SERIAL_ECHOLNPGM("\"(2)");
  6264. }
  6265. KEEPALIVE_STATE(NOT_BUSY);
  6266. ClearToSend();
  6267. }
  6268. void FlushSerialRequestResend()
  6269. {
  6270. //char cmdbuffer[bufindr][100]="Resend:";
  6271. MYSERIAL.flush();
  6272. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6273. }
  6274. // Confirm the execution of a command, if sent from a serial line.
  6275. // Execution of a command from a SD card will not be confirmed.
  6276. void ClearToSend()
  6277. {
  6278. previous_millis_cmd = millis();
  6279. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6280. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6281. }
  6282. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6283. void update_currents() {
  6284. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6285. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6286. float tmp_motor[3];
  6287. //SERIAL_ECHOLNPGM("Currents updated: ");
  6288. if (destination[Z_AXIS] < Z_SILENT) {
  6289. //SERIAL_ECHOLNPGM("LOW");
  6290. for (uint8_t i = 0; i < 3; i++) {
  6291. st_current_set(i, current_low[i]);
  6292. /*MYSERIAL.print(int(i));
  6293. SERIAL_ECHOPGM(": ");
  6294. MYSERIAL.println(current_low[i]);*/
  6295. }
  6296. }
  6297. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6298. //SERIAL_ECHOLNPGM("HIGH");
  6299. for (uint8_t i = 0; i < 3; i++) {
  6300. st_current_set(i, current_high[i]);
  6301. /*MYSERIAL.print(int(i));
  6302. SERIAL_ECHOPGM(": ");
  6303. MYSERIAL.println(current_high[i]);*/
  6304. }
  6305. }
  6306. else {
  6307. for (uint8_t i = 0; i < 3; i++) {
  6308. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6309. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6310. st_current_set(i, tmp_motor[i]);
  6311. /*MYSERIAL.print(int(i));
  6312. SERIAL_ECHOPGM(": ");
  6313. MYSERIAL.println(tmp_motor[i]);*/
  6314. }
  6315. }
  6316. }
  6317. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6318. void get_coordinates()
  6319. {
  6320. bool seen[4]={false,false,false,false};
  6321. for(int8_t i=0; i < NUM_AXIS; i++) {
  6322. if(code_seen(axis_codes[i]))
  6323. {
  6324. bool relative = axis_relative_modes[i] || relative_mode;
  6325. destination[i] = (float)code_value();
  6326. if (i == E_AXIS) {
  6327. float emult = extruder_multiplier[active_extruder];
  6328. if (emult != 1.) {
  6329. if (! relative) {
  6330. destination[i] -= current_position[i];
  6331. relative = true;
  6332. }
  6333. destination[i] *= emult;
  6334. }
  6335. }
  6336. if (relative)
  6337. destination[i] += current_position[i];
  6338. seen[i]=true;
  6339. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6340. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6341. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6342. }
  6343. else destination[i] = current_position[i]; //Are these else lines really needed?
  6344. }
  6345. if(code_seen('F')) {
  6346. next_feedrate = code_value();
  6347. #ifdef MAX_SILENT_FEEDRATE
  6348. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6349. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6350. #endif //MAX_SILENT_FEEDRATE
  6351. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6352. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6353. {
  6354. // float e_max_speed =
  6355. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6356. }
  6357. }
  6358. }
  6359. void get_arc_coordinates()
  6360. {
  6361. #ifdef SF_ARC_FIX
  6362. bool relative_mode_backup = relative_mode;
  6363. relative_mode = true;
  6364. #endif
  6365. get_coordinates();
  6366. #ifdef SF_ARC_FIX
  6367. relative_mode=relative_mode_backup;
  6368. #endif
  6369. if(code_seen('I')) {
  6370. offset[0] = code_value();
  6371. }
  6372. else {
  6373. offset[0] = 0.0;
  6374. }
  6375. if(code_seen('J')) {
  6376. offset[1] = code_value();
  6377. }
  6378. else {
  6379. offset[1] = 0.0;
  6380. }
  6381. }
  6382. void clamp_to_software_endstops(float target[3])
  6383. {
  6384. #ifdef DEBUG_DISABLE_SWLIMITS
  6385. return;
  6386. #endif //DEBUG_DISABLE_SWLIMITS
  6387. world2machine_clamp(target[0], target[1]);
  6388. // Clamp the Z coordinate.
  6389. if (min_software_endstops) {
  6390. float negative_z_offset = 0;
  6391. #ifdef ENABLE_AUTO_BED_LEVELING
  6392. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6393. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6394. #endif
  6395. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6396. }
  6397. if (max_software_endstops) {
  6398. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6399. }
  6400. }
  6401. #ifdef MESH_BED_LEVELING
  6402. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6403. float dx = x - current_position[X_AXIS];
  6404. float dy = y - current_position[Y_AXIS];
  6405. float dz = z - current_position[Z_AXIS];
  6406. int n_segments = 0;
  6407. if (mbl.active) {
  6408. float len = abs(dx) + abs(dy);
  6409. if (len > 0)
  6410. // Split to 3cm segments or shorter.
  6411. n_segments = int(ceil(len / 30.f));
  6412. }
  6413. if (n_segments > 1) {
  6414. float de = e - current_position[E_AXIS];
  6415. for (int i = 1; i < n_segments; ++ i) {
  6416. float t = float(i) / float(n_segments);
  6417. if (saved_printing || (mbl.active == false)) return;
  6418. plan_buffer_line(
  6419. current_position[X_AXIS] + t * dx,
  6420. current_position[Y_AXIS] + t * dy,
  6421. current_position[Z_AXIS] + t * dz,
  6422. current_position[E_AXIS] + t * de,
  6423. feed_rate, extruder);
  6424. }
  6425. }
  6426. // The rest of the path.
  6427. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6428. current_position[X_AXIS] = x;
  6429. current_position[Y_AXIS] = y;
  6430. current_position[Z_AXIS] = z;
  6431. current_position[E_AXIS] = e;
  6432. }
  6433. #endif // MESH_BED_LEVELING
  6434. void prepare_move()
  6435. {
  6436. clamp_to_software_endstops(destination);
  6437. previous_millis_cmd = millis();
  6438. // Do not use feedmultiply for E or Z only moves
  6439. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6440. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6441. }
  6442. else {
  6443. #ifdef MESH_BED_LEVELING
  6444. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6445. #else
  6446. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6447. #endif
  6448. }
  6449. for(int8_t i=0; i < NUM_AXIS; i++) {
  6450. current_position[i] = destination[i];
  6451. }
  6452. }
  6453. void prepare_arc_move(char isclockwise) {
  6454. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6455. // Trace the arc
  6456. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6457. // As far as the parser is concerned, the position is now == target. In reality the
  6458. // motion control system might still be processing the action and the real tool position
  6459. // in any intermediate location.
  6460. for(int8_t i=0; i < NUM_AXIS; i++) {
  6461. current_position[i] = destination[i];
  6462. }
  6463. previous_millis_cmd = millis();
  6464. }
  6465. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6466. #if defined(FAN_PIN)
  6467. #if CONTROLLERFAN_PIN == FAN_PIN
  6468. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6469. #endif
  6470. #endif
  6471. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6472. unsigned long lastMotorCheck = 0;
  6473. void controllerFan()
  6474. {
  6475. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6476. {
  6477. lastMotorCheck = millis();
  6478. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6479. #if EXTRUDERS > 2
  6480. || !READ(E2_ENABLE_PIN)
  6481. #endif
  6482. #if EXTRUDER > 1
  6483. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6484. || !READ(X2_ENABLE_PIN)
  6485. #endif
  6486. || !READ(E1_ENABLE_PIN)
  6487. #endif
  6488. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6489. {
  6490. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6491. }
  6492. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6493. {
  6494. digitalWrite(CONTROLLERFAN_PIN, 0);
  6495. analogWrite(CONTROLLERFAN_PIN, 0);
  6496. }
  6497. else
  6498. {
  6499. // allows digital or PWM fan output to be used (see M42 handling)
  6500. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6501. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6502. }
  6503. }
  6504. }
  6505. #endif
  6506. #ifdef TEMP_STAT_LEDS
  6507. static bool blue_led = false;
  6508. static bool red_led = false;
  6509. static uint32_t stat_update = 0;
  6510. void handle_status_leds(void) {
  6511. float max_temp = 0.0;
  6512. if(millis() > stat_update) {
  6513. stat_update += 500; // Update every 0.5s
  6514. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6515. max_temp = max(max_temp, degHotend(cur_extruder));
  6516. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6517. }
  6518. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6519. max_temp = max(max_temp, degTargetBed());
  6520. max_temp = max(max_temp, degBed());
  6521. #endif
  6522. if((max_temp > 55.0) && (red_led == false)) {
  6523. digitalWrite(STAT_LED_RED, 1);
  6524. digitalWrite(STAT_LED_BLUE, 0);
  6525. red_led = true;
  6526. blue_led = false;
  6527. }
  6528. if((max_temp < 54.0) && (blue_led == false)) {
  6529. digitalWrite(STAT_LED_RED, 0);
  6530. digitalWrite(STAT_LED_BLUE, 1);
  6531. red_led = false;
  6532. blue_led = true;
  6533. }
  6534. }
  6535. }
  6536. #endif
  6537. #ifdef SAFETYTIMER
  6538. /**
  6539. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6540. *
  6541. * Full screen blocking notification message is shown after heater turning off.
  6542. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6543. * damage print.
  6544. *
  6545. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6546. */
  6547. static void handleSafetyTimer()
  6548. {
  6549. #if (EXTRUDERS > 1)
  6550. #error Implemented only for one extruder.
  6551. #endif //(EXTRUDERS > 1)
  6552. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6553. {
  6554. safetyTimer.stop();
  6555. }
  6556. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6557. {
  6558. safetyTimer.start();
  6559. }
  6560. else if (safetyTimer.expired(safetytimer_inactive_time))
  6561. {
  6562. setTargetBed(0);
  6563. setTargetHotend(0, 0);
  6564. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6565. }
  6566. }
  6567. #endif //SAFETYTIMER
  6568. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6569. {
  6570. #ifdef PAT9125
  6571. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6572. {
  6573. if (fsensor_autoload_enabled)
  6574. {
  6575. if (fsensor_check_autoload())
  6576. {
  6577. if (degHotend0() > EXTRUDE_MINTEMP)
  6578. {
  6579. fsensor_autoload_check_stop();
  6580. tone(BEEPER, 1000);
  6581. delay_keep_alive(50);
  6582. noTone(BEEPER);
  6583. loading_flag = true;
  6584. enquecommand_front_P((PSTR("M701")));
  6585. }
  6586. else
  6587. {
  6588. lcd_update_enable(false);
  6589. lcd_clear();
  6590. lcd_set_cursor(0, 0);
  6591. lcd_puts_P(_T(MSG_ERROR));
  6592. lcd_set_cursor(0, 2);
  6593. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6594. delay(2000);
  6595. lcd_clear();
  6596. lcd_update_enable(true);
  6597. }
  6598. }
  6599. }
  6600. else
  6601. fsensor_autoload_check_start();
  6602. }
  6603. else
  6604. if (fsensor_autoload_enabled)
  6605. fsensor_autoload_check_stop();
  6606. #endif //PAT9125
  6607. #ifdef SAFETYTIMER
  6608. handleSafetyTimer();
  6609. #endif //SAFETYTIMER
  6610. #if defined(KILL_PIN) && KILL_PIN > -1
  6611. static int killCount = 0; // make the inactivity button a bit less responsive
  6612. const int KILL_DELAY = 10000;
  6613. #endif
  6614. if(buflen < (BUFSIZE-1)){
  6615. get_command();
  6616. }
  6617. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6618. if(max_inactive_time)
  6619. kill(_n(""), 4);
  6620. if(stepper_inactive_time) {
  6621. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6622. {
  6623. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6624. disable_x();
  6625. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6626. disable_y();
  6627. disable_z();
  6628. disable_e0();
  6629. disable_e1();
  6630. disable_e2();
  6631. }
  6632. }
  6633. }
  6634. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6635. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6636. {
  6637. chdkActive = false;
  6638. WRITE(CHDK, LOW);
  6639. }
  6640. #endif
  6641. #if defined(KILL_PIN) && KILL_PIN > -1
  6642. // Check if the kill button was pressed and wait just in case it was an accidental
  6643. // key kill key press
  6644. // -------------------------------------------------------------------------------
  6645. if( 0 == READ(KILL_PIN) )
  6646. {
  6647. killCount++;
  6648. }
  6649. else if (killCount > 0)
  6650. {
  6651. killCount--;
  6652. }
  6653. // Exceeded threshold and we can confirm that it was not accidental
  6654. // KILL the machine
  6655. // ----------------------------------------------------------------
  6656. if ( killCount >= KILL_DELAY)
  6657. {
  6658. kill("", 5);
  6659. }
  6660. #endif
  6661. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6662. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6663. #endif
  6664. #ifdef EXTRUDER_RUNOUT_PREVENT
  6665. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6666. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6667. {
  6668. bool oldstatus=READ(E0_ENABLE_PIN);
  6669. enable_e0();
  6670. float oldepos=current_position[E_AXIS];
  6671. float oldedes=destination[E_AXIS];
  6672. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6673. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6674. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6675. current_position[E_AXIS]=oldepos;
  6676. destination[E_AXIS]=oldedes;
  6677. plan_set_e_position(oldepos);
  6678. previous_millis_cmd=millis();
  6679. st_synchronize();
  6680. WRITE(E0_ENABLE_PIN,oldstatus);
  6681. }
  6682. #endif
  6683. #ifdef TEMP_STAT_LEDS
  6684. handle_status_leds();
  6685. #endif
  6686. check_axes_activity();
  6687. }
  6688. void kill(const char *full_screen_message, unsigned char id)
  6689. {
  6690. printf_P(_N("KILL: %d\n"), id);
  6691. //return;
  6692. cli(); // Stop interrupts
  6693. disable_heater();
  6694. disable_x();
  6695. // SERIAL_ECHOLNPGM("kill - disable Y");
  6696. disable_y();
  6697. disable_z();
  6698. disable_e0();
  6699. disable_e1();
  6700. disable_e2();
  6701. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6702. pinMode(PS_ON_PIN,INPUT);
  6703. #endif
  6704. SERIAL_ERROR_START;
  6705. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6706. if (full_screen_message != NULL) {
  6707. SERIAL_ERRORLNRPGM(full_screen_message);
  6708. lcd_display_message_fullscreen_P(full_screen_message);
  6709. } else {
  6710. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6711. }
  6712. // FMC small patch to update the LCD before ending
  6713. sei(); // enable interrupts
  6714. for ( int i=5; i--; lcd_update(0))
  6715. {
  6716. delay(200);
  6717. }
  6718. cli(); // disable interrupts
  6719. suicide();
  6720. while(1)
  6721. {
  6722. #ifdef WATCHDOG
  6723. wdt_reset();
  6724. #endif //WATCHDOG
  6725. /* Intentionally left empty */
  6726. } // Wait for reset
  6727. }
  6728. void Stop()
  6729. {
  6730. disable_heater();
  6731. if(Stopped == false) {
  6732. Stopped = true;
  6733. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6734. SERIAL_ERROR_START;
  6735. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6736. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6737. }
  6738. }
  6739. bool IsStopped() { return Stopped; };
  6740. #ifdef FAST_PWM_FAN
  6741. void setPwmFrequency(uint8_t pin, int val)
  6742. {
  6743. val &= 0x07;
  6744. switch(digitalPinToTimer(pin))
  6745. {
  6746. #if defined(TCCR0A)
  6747. case TIMER0A:
  6748. case TIMER0B:
  6749. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6750. // TCCR0B |= val;
  6751. break;
  6752. #endif
  6753. #if defined(TCCR1A)
  6754. case TIMER1A:
  6755. case TIMER1B:
  6756. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6757. // TCCR1B |= val;
  6758. break;
  6759. #endif
  6760. #if defined(TCCR2)
  6761. case TIMER2:
  6762. case TIMER2:
  6763. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6764. TCCR2 |= val;
  6765. break;
  6766. #endif
  6767. #if defined(TCCR2A)
  6768. case TIMER2A:
  6769. case TIMER2B:
  6770. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6771. TCCR2B |= val;
  6772. break;
  6773. #endif
  6774. #if defined(TCCR3A)
  6775. case TIMER3A:
  6776. case TIMER3B:
  6777. case TIMER3C:
  6778. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6779. TCCR3B |= val;
  6780. break;
  6781. #endif
  6782. #if defined(TCCR4A)
  6783. case TIMER4A:
  6784. case TIMER4B:
  6785. case TIMER4C:
  6786. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6787. TCCR4B |= val;
  6788. break;
  6789. #endif
  6790. #if defined(TCCR5A)
  6791. case TIMER5A:
  6792. case TIMER5B:
  6793. case TIMER5C:
  6794. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6795. TCCR5B |= val;
  6796. break;
  6797. #endif
  6798. }
  6799. }
  6800. #endif //FAST_PWM_FAN
  6801. bool setTargetedHotend(int code){
  6802. tmp_extruder = active_extruder;
  6803. if(code_seen('T')) {
  6804. tmp_extruder = code_value();
  6805. if(tmp_extruder >= EXTRUDERS) {
  6806. SERIAL_ECHO_START;
  6807. switch(code){
  6808. case 104:
  6809. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6810. break;
  6811. case 105:
  6812. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6813. break;
  6814. case 109:
  6815. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6816. break;
  6817. case 218:
  6818. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6819. break;
  6820. case 221:
  6821. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6822. break;
  6823. }
  6824. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6825. return true;
  6826. }
  6827. }
  6828. return false;
  6829. }
  6830. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6831. {
  6832. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6833. {
  6834. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6835. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6836. }
  6837. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6838. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6839. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6840. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6841. total_filament_used = 0;
  6842. }
  6843. float calculate_extruder_multiplier(float diameter) {
  6844. float out = 1.f;
  6845. if (volumetric_enabled && diameter > 0.f) {
  6846. float area = M_PI * diameter * diameter * 0.25;
  6847. out = 1.f / area;
  6848. }
  6849. if (extrudemultiply != 100)
  6850. out *= float(extrudemultiply) * 0.01f;
  6851. return out;
  6852. }
  6853. void calculate_extruder_multipliers() {
  6854. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6855. #if EXTRUDERS > 1
  6856. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6857. #if EXTRUDERS > 2
  6858. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6859. #endif
  6860. #endif
  6861. }
  6862. void delay_keep_alive(unsigned int ms)
  6863. {
  6864. for (;;) {
  6865. manage_heater();
  6866. // Manage inactivity, but don't disable steppers on timeout.
  6867. manage_inactivity(true);
  6868. lcd_update(0);
  6869. if (ms == 0)
  6870. break;
  6871. else if (ms >= 50) {
  6872. delay(50);
  6873. ms -= 50;
  6874. } else {
  6875. delay(ms);
  6876. ms = 0;
  6877. }
  6878. }
  6879. }
  6880. void wait_for_heater(long codenum) {
  6881. #ifdef TEMP_RESIDENCY_TIME
  6882. long residencyStart;
  6883. residencyStart = -1;
  6884. /* continue to loop until we have reached the target temp
  6885. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6886. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6887. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6888. #else
  6889. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6890. #endif //TEMP_RESIDENCY_TIME
  6891. if ((millis() - codenum) > 1000UL)
  6892. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6893. if (!farm_mode) {
  6894. SERIAL_PROTOCOLPGM("T:");
  6895. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6896. SERIAL_PROTOCOLPGM(" E:");
  6897. SERIAL_PROTOCOL((int)tmp_extruder);
  6898. #ifdef TEMP_RESIDENCY_TIME
  6899. SERIAL_PROTOCOLPGM(" W:");
  6900. if (residencyStart > -1)
  6901. {
  6902. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6903. SERIAL_PROTOCOLLN(codenum);
  6904. }
  6905. else
  6906. {
  6907. SERIAL_PROTOCOLLN("?");
  6908. }
  6909. }
  6910. #else
  6911. SERIAL_PROTOCOLLN("");
  6912. #endif
  6913. codenum = millis();
  6914. }
  6915. manage_heater();
  6916. manage_inactivity();
  6917. lcd_update(0);
  6918. #ifdef TEMP_RESIDENCY_TIME
  6919. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6920. or when current temp falls outside the hysteresis after target temp was reached */
  6921. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6922. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6923. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6924. {
  6925. residencyStart = millis();
  6926. }
  6927. #endif //TEMP_RESIDENCY_TIME
  6928. }
  6929. }
  6930. void check_babystep() {
  6931. int babystep_z;
  6932. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6933. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6934. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6935. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6936. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6937. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6938. lcd_update_enable(true);
  6939. }
  6940. }
  6941. #ifdef DIS
  6942. void d_setup()
  6943. {
  6944. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6945. pinMode(D_DATA, INPUT_PULLUP);
  6946. pinMode(D_REQUIRE, OUTPUT);
  6947. digitalWrite(D_REQUIRE, HIGH);
  6948. }
  6949. float d_ReadData()
  6950. {
  6951. int digit[13];
  6952. String mergeOutput;
  6953. float output;
  6954. digitalWrite(D_REQUIRE, HIGH);
  6955. for (int i = 0; i<13; i++)
  6956. {
  6957. for (int j = 0; j < 4; j++)
  6958. {
  6959. while (digitalRead(D_DATACLOCK) == LOW) {}
  6960. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6961. bitWrite(digit[i], j, digitalRead(D_DATA));
  6962. }
  6963. }
  6964. digitalWrite(D_REQUIRE, LOW);
  6965. mergeOutput = "";
  6966. output = 0;
  6967. for (int r = 5; r <= 10; r++) //Merge digits
  6968. {
  6969. mergeOutput += digit[r];
  6970. }
  6971. output = mergeOutput.toFloat();
  6972. if (digit[4] == 8) //Handle sign
  6973. {
  6974. output *= -1;
  6975. }
  6976. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6977. {
  6978. output /= 10;
  6979. }
  6980. return output;
  6981. }
  6982. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6983. int t1 = 0;
  6984. int t_delay = 0;
  6985. int digit[13];
  6986. int m;
  6987. char str[3];
  6988. //String mergeOutput;
  6989. char mergeOutput[15];
  6990. float output;
  6991. int mesh_point = 0; //index number of calibration point
  6992. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6993. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6994. float mesh_home_z_search = 4;
  6995. float row[x_points_num];
  6996. int ix = 0;
  6997. int iy = 0;
  6998. char* filename_wldsd = "wldsd.txt";
  6999. char data_wldsd[70];
  7000. char numb_wldsd[10];
  7001. d_setup();
  7002. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7003. // We don't know where we are! HOME!
  7004. // Push the commands to the front of the message queue in the reverse order!
  7005. // There shall be always enough space reserved for these commands.
  7006. repeatcommand_front(); // repeat G80 with all its parameters
  7007. enquecommand_front_P((PSTR("G28 W0")));
  7008. enquecommand_front_P((PSTR("G1 Z5")));
  7009. return;
  7010. }
  7011. bool custom_message_old = custom_message;
  7012. unsigned int custom_message_type_old = custom_message_type;
  7013. unsigned int custom_message_state_old = custom_message_state;
  7014. custom_message = true;
  7015. custom_message_type = 1;
  7016. custom_message_state = (x_points_num * y_points_num) + 10;
  7017. lcd_update(1);
  7018. mbl.reset();
  7019. babystep_undo();
  7020. card.openFile(filename_wldsd, false);
  7021. current_position[Z_AXIS] = mesh_home_z_search;
  7022. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7023. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7024. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7025. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7026. setup_for_endstop_move(false);
  7027. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7028. SERIAL_PROTOCOL(x_points_num);
  7029. SERIAL_PROTOCOLPGM(",");
  7030. SERIAL_PROTOCOL(y_points_num);
  7031. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7032. SERIAL_PROTOCOL(mesh_home_z_search);
  7033. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7034. SERIAL_PROTOCOL(x_dimension);
  7035. SERIAL_PROTOCOLPGM(",");
  7036. SERIAL_PROTOCOL(y_dimension);
  7037. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7038. while (mesh_point != x_points_num * y_points_num) {
  7039. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7040. iy = mesh_point / x_points_num;
  7041. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7042. float z0 = 0.f;
  7043. current_position[Z_AXIS] = mesh_home_z_search;
  7044. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7045. st_synchronize();
  7046. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7047. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7048. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7049. st_synchronize();
  7050. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7051. break;
  7052. card.closefile();
  7053. }
  7054. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7055. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7056. //strcat(data_wldsd, numb_wldsd);
  7057. //MYSERIAL.println(data_wldsd);
  7058. //delay(1000);
  7059. //delay(3000);
  7060. //t1 = millis();
  7061. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7062. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7063. memset(digit, 0, sizeof(digit));
  7064. //cli();
  7065. digitalWrite(D_REQUIRE, LOW);
  7066. for (int i = 0; i<13; i++)
  7067. {
  7068. //t1 = millis();
  7069. for (int j = 0; j < 4; j++)
  7070. {
  7071. while (digitalRead(D_DATACLOCK) == LOW) {}
  7072. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7073. bitWrite(digit[i], j, digitalRead(D_DATA));
  7074. }
  7075. //t_delay = (millis() - t1);
  7076. //SERIAL_PROTOCOLPGM(" ");
  7077. //SERIAL_PROTOCOL_F(t_delay, 5);
  7078. //SERIAL_PROTOCOLPGM(" ");
  7079. }
  7080. //sei();
  7081. digitalWrite(D_REQUIRE, HIGH);
  7082. mergeOutput[0] = '\0';
  7083. output = 0;
  7084. for (int r = 5; r <= 10; r++) //Merge digits
  7085. {
  7086. sprintf(str, "%d", digit[r]);
  7087. strcat(mergeOutput, str);
  7088. }
  7089. output = atof(mergeOutput);
  7090. if (digit[4] == 8) //Handle sign
  7091. {
  7092. output *= -1;
  7093. }
  7094. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7095. {
  7096. output *= 0.1;
  7097. }
  7098. //output = d_ReadData();
  7099. //row[ix] = current_position[Z_AXIS];
  7100. memset(data_wldsd, 0, sizeof(data_wldsd));
  7101. for (int i = 0; i <3; i++) {
  7102. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7103. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7104. strcat(data_wldsd, numb_wldsd);
  7105. strcat(data_wldsd, ";");
  7106. }
  7107. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7108. dtostrf(output, 8, 5, numb_wldsd);
  7109. strcat(data_wldsd, numb_wldsd);
  7110. //strcat(data_wldsd, ";");
  7111. card.write_command(data_wldsd);
  7112. //row[ix] = d_ReadData();
  7113. row[ix] = output; // current_position[Z_AXIS];
  7114. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7115. for (int i = 0; i < x_points_num; i++) {
  7116. SERIAL_PROTOCOLPGM(" ");
  7117. SERIAL_PROTOCOL_F(row[i], 5);
  7118. }
  7119. SERIAL_PROTOCOLPGM("\n");
  7120. }
  7121. custom_message_state--;
  7122. mesh_point++;
  7123. lcd_update(1);
  7124. }
  7125. card.closefile();
  7126. }
  7127. #endif
  7128. void temp_compensation_start() {
  7129. custom_message = true;
  7130. custom_message_type = 5;
  7131. custom_message_state = PINDA_HEAT_T + 1;
  7132. lcd_update(2);
  7133. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7134. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7135. }
  7136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7137. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7138. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7139. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7140. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7141. st_synchronize();
  7142. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7143. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7144. delay_keep_alive(1000);
  7145. custom_message_state = PINDA_HEAT_T - i;
  7146. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7147. else lcd_update(1);
  7148. }
  7149. custom_message_type = 0;
  7150. custom_message_state = 0;
  7151. custom_message = false;
  7152. }
  7153. void temp_compensation_apply() {
  7154. int i_add;
  7155. int compensation_value;
  7156. int z_shift = 0;
  7157. float z_shift_mm;
  7158. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7159. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7160. i_add = (target_temperature_bed - 60) / 10;
  7161. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7162. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7163. }else {
  7164. //interpolation
  7165. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7166. }
  7167. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7168. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7169. st_synchronize();
  7170. plan_set_z_position(current_position[Z_AXIS]);
  7171. }
  7172. else {
  7173. //we have no temp compensation data
  7174. }
  7175. }
  7176. float temp_comp_interpolation(float inp_temperature) {
  7177. //cubic spline interpolation
  7178. int n, i, j, k;
  7179. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7180. int shift[10];
  7181. int temp_C[10];
  7182. n = 6; //number of measured points
  7183. shift[0] = 0;
  7184. for (i = 0; i < n; i++) {
  7185. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7186. temp_C[i] = 50 + i * 10; //temperature in C
  7187. #ifdef PINDA_THERMISTOR
  7188. temp_C[i] = 35 + i * 5; //temperature in C
  7189. #else
  7190. temp_C[i] = 50 + i * 10; //temperature in C
  7191. #endif
  7192. x[i] = (float)temp_C[i];
  7193. f[i] = (float)shift[i];
  7194. }
  7195. if (inp_temperature < x[0]) return 0;
  7196. for (i = n - 1; i>0; i--) {
  7197. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7198. h[i - 1] = x[i] - x[i - 1];
  7199. }
  7200. //*********** formation of h, s , f matrix **************
  7201. for (i = 1; i<n - 1; i++) {
  7202. m[i][i] = 2 * (h[i - 1] + h[i]);
  7203. if (i != 1) {
  7204. m[i][i - 1] = h[i - 1];
  7205. m[i - 1][i] = h[i - 1];
  7206. }
  7207. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7208. }
  7209. //*********** forward elimination **************
  7210. for (i = 1; i<n - 2; i++) {
  7211. temp = (m[i + 1][i] / m[i][i]);
  7212. for (j = 1; j <= n - 1; j++)
  7213. m[i + 1][j] -= temp*m[i][j];
  7214. }
  7215. //*********** backward substitution *********
  7216. for (i = n - 2; i>0; i--) {
  7217. sum = 0;
  7218. for (j = i; j <= n - 2; j++)
  7219. sum += m[i][j] * s[j];
  7220. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7221. }
  7222. for (i = 0; i<n - 1; i++)
  7223. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7224. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7225. b = s[i] / 2;
  7226. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7227. d = f[i];
  7228. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7229. }
  7230. return sum;
  7231. }
  7232. #ifdef PINDA_THERMISTOR
  7233. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7234. {
  7235. if (!temp_cal_active) return 0;
  7236. if (!calibration_status_pinda()) return 0;
  7237. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7238. }
  7239. #endif //PINDA_THERMISTOR
  7240. void long_pause() //long pause print
  7241. {
  7242. st_synchronize();
  7243. //save currently set parameters to global variables
  7244. saved_feedmultiply = feedmultiply;
  7245. HotendTempBckp = degTargetHotend(active_extruder);
  7246. fanSpeedBckp = fanSpeed;
  7247. start_pause_print = millis();
  7248. //save position
  7249. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7250. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7251. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7252. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7253. //retract
  7254. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7255. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7256. //lift z
  7257. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7258. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7259. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7260. //set nozzle target temperature to 0
  7261. setTargetHotend(0, 0);
  7262. setTargetHotend(0, 1);
  7263. setTargetHotend(0, 2);
  7264. //Move XY to side
  7265. current_position[X_AXIS] = X_PAUSE_POS;
  7266. current_position[Y_AXIS] = Y_PAUSE_POS;
  7267. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7268. // Turn off the print fan
  7269. fanSpeed = 0;
  7270. st_synchronize();
  7271. }
  7272. void serialecho_temperatures() {
  7273. float tt = degHotend(active_extruder);
  7274. SERIAL_PROTOCOLPGM("T:");
  7275. SERIAL_PROTOCOL(tt);
  7276. SERIAL_PROTOCOLPGM(" E:");
  7277. SERIAL_PROTOCOL((int)active_extruder);
  7278. SERIAL_PROTOCOLPGM(" B:");
  7279. SERIAL_PROTOCOL_F(degBed(), 1);
  7280. SERIAL_PROTOCOLLN("");
  7281. }
  7282. extern uint32_t sdpos_atomic;
  7283. #ifdef UVLO_SUPPORT
  7284. void uvlo_()
  7285. {
  7286. unsigned long time_start = millis();
  7287. bool sd_print = card.sdprinting;
  7288. // Conserve power as soon as possible.
  7289. disable_x();
  7290. disable_y();
  7291. #ifdef TMC2130
  7292. tmc2130_set_current_h(Z_AXIS, 20);
  7293. tmc2130_set_current_r(Z_AXIS, 20);
  7294. tmc2130_set_current_h(E_AXIS, 20);
  7295. tmc2130_set_current_r(E_AXIS, 20);
  7296. #endif //TMC2130
  7297. // Indicate that the interrupt has been triggered.
  7298. // SERIAL_ECHOLNPGM("UVLO");
  7299. // Read out the current Z motor microstep counter. This will be later used
  7300. // for reaching the zero full step before powering off.
  7301. uint16_t z_microsteps = 0;
  7302. #ifdef TMC2130
  7303. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7304. #endif //TMC2130
  7305. // Calculate the file position, from which to resume this print.
  7306. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7307. {
  7308. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7309. sd_position -= sdlen_planner;
  7310. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7311. sd_position -= sdlen_cmdqueue;
  7312. if (sd_position < 0) sd_position = 0;
  7313. }
  7314. // Backup the feedrate in mm/min.
  7315. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7316. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7317. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7318. // are in action.
  7319. planner_abort_hard();
  7320. // Store the current extruder position.
  7321. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7322. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7323. // Clean the input command queue.
  7324. cmdqueue_reset();
  7325. card.sdprinting = false;
  7326. // card.closefile();
  7327. // Enable stepper driver interrupt to move Z axis.
  7328. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7329. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7330. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7331. sei();
  7332. plan_buffer_line(
  7333. current_position[X_AXIS],
  7334. current_position[Y_AXIS],
  7335. current_position[Z_AXIS],
  7336. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7337. 95, active_extruder);
  7338. st_synchronize();
  7339. disable_e0();
  7340. plan_buffer_line(
  7341. current_position[X_AXIS],
  7342. current_position[Y_AXIS],
  7343. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7344. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7345. 40, active_extruder);
  7346. st_synchronize();
  7347. disable_e0();
  7348. plan_buffer_line(
  7349. current_position[X_AXIS],
  7350. current_position[Y_AXIS],
  7351. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7352. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7353. 40, active_extruder);
  7354. st_synchronize();
  7355. disable_e0();
  7356. disable_z();
  7357. // Move Z up to the next 0th full step.
  7358. // Write the file position.
  7359. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7360. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7361. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7362. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7363. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7364. // Scale the z value to 1u resolution.
  7365. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7366. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7367. }
  7368. // Read out the current Z motor microstep counter. This will be later used
  7369. // for reaching the zero full step before powering off.
  7370. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7371. // Store the current position.
  7372. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7373. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7374. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7375. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7376. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7377. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7378. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7379. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7380. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7381. #if EXTRUDERS > 1
  7382. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7383. #if EXTRUDERS > 2
  7384. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7385. #endif
  7386. #endif
  7387. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7388. // Finaly store the "power outage" flag.
  7389. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7390. st_synchronize();
  7391. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7392. disable_z();
  7393. // Increment power failure counter
  7394. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7395. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7396. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7397. #if 0
  7398. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7399. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7400. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7401. st_synchronize();
  7402. #endif
  7403. cli();
  7404. volatile unsigned int ppcount = 0;
  7405. SET_OUTPUT(BEEPER);
  7406. WRITE(BEEPER, HIGH);
  7407. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7408. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7409. }
  7410. WRITE(BEEPER, LOW);
  7411. while(1){
  7412. #if 1
  7413. WRITE(BEEPER, LOW);
  7414. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7415. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7416. }
  7417. #endif
  7418. };
  7419. }
  7420. #endif //UVLO_SUPPORT
  7421. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7422. void setup_fan_interrupt() {
  7423. //INT7
  7424. DDRE &= ~(1 << 7); //input pin
  7425. PORTE &= ~(1 << 7); //no internal pull-up
  7426. //start with sensing rising edge
  7427. EICRB &= ~(1 << 6);
  7428. EICRB |= (1 << 7);
  7429. //enable INT7 interrupt
  7430. EIMSK |= (1 << 7);
  7431. }
  7432. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7433. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7434. ISR(INT7_vect) {
  7435. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7436. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7437. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7438. t_fan_rising_edge = millis_nc();
  7439. }
  7440. else { //interrupt was triggered by falling edge
  7441. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7442. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7443. }
  7444. }
  7445. EICRB ^= (1 << 6); //change edge
  7446. }
  7447. #endif
  7448. #ifdef UVLO_SUPPORT
  7449. void setup_uvlo_interrupt() {
  7450. DDRE &= ~(1 << 4); //input pin
  7451. PORTE &= ~(1 << 4); //no internal pull-up
  7452. //sensing falling edge
  7453. EICRB |= (1 << 0);
  7454. EICRB &= ~(1 << 1);
  7455. //enable INT4 interrupt
  7456. EIMSK |= (1 << 4);
  7457. }
  7458. ISR(INT4_vect) {
  7459. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7460. SERIAL_ECHOLNPGM("INT4");
  7461. if (IS_SD_PRINTING) uvlo_();
  7462. }
  7463. void recover_print(uint8_t automatic) {
  7464. char cmd[30];
  7465. lcd_update_enable(true);
  7466. lcd_update(2);
  7467. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7468. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7469. // Lift the print head, so one may remove the excess priming material.
  7470. if (current_position[Z_AXIS] < 25)
  7471. enquecommand_P(PSTR("G1 Z25 F800"));
  7472. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7473. enquecommand_P(PSTR("G28 X Y"));
  7474. // Set the target bed and nozzle temperatures and wait.
  7475. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7476. enquecommand(cmd);
  7477. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7478. enquecommand(cmd);
  7479. enquecommand_P(PSTR("M83")); //E axis relative mode
  7480. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7481. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7482. if(automatic == 0){
  7483. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7484. }
  7485. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7486. // Mark the power panic status as inactive.
  7487. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7488. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7489. delay_keep_alive(1000);
  7490. }*/
  7491. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7492. // Restart the print.
  7493. restore_print_from_eeprom();
  7494. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7495. }
  7496. void recover_machine_state_after_power_panic()
  7497. {
  7498. char cmd[30];
  7499. // 1) Recover the logical cordinates at the time of the power panic.
  7500. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7501. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7502. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7503. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7504. // The current position after power panic is moved to the next closest 0th full step.
  7505. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7506. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7507. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7508. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7509. sprintf_P(cmd, PSTR("G92 E"));
  7510. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7511. enquecommand(cmd);
  7512. }
  7513. memcpy(destination, current_position, sizeof(destination));
  7514. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7515. print_world_coordinates();
  7516. // 2) Initialize the logical to physical coordinate system transformation.
  7517. world2machine_initialize();
  7518. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7519. mbl.active = false;
  7520. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7521. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7522. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7523. // Scale the z value to 10u resolution.
  7524. int16_t v;
  7525. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7526. if (v != 0)
  7527. mbl.active = true;
  7528. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7529. }
  7530. if (mbl.active)
  7531. mbl.upsample_3x3();
  7532. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7533. // print_mesh_bed_leveling_table();
  7534. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7535. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7536. babystep_load();
  7537. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7538. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7539. // 6) Power up the motors, mark their positions as known.
  7540. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7541. axis_known_position[X_AXIS] = true; enable_x();
  7542. axis_known_position[Y_AXIS] = true; enable_y();
  7543. axis_known_position[Z_AXIS] = true; enable_z();
  7544. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7545. print_physical_coordinates();
  7546. // 7) Recover the target temperatures.
  7547. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7548. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7549. // 8) Recover extruder multipilers
  7550. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7551. #if EXTRUDERS > 1
  7552. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7553. #if EXTRUDERS > 2
  7554. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7555. #endif
  7556. #endif
  7557. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7558. }
  7559. void restore_print_from_eeprom() {
  7560. float x_rec, y_rec, z_pos;
  7561. int feedrate_rec;
  7562. uint8_t fan_speed_rec;
  7563. char cmd[30];
  7564. char* c;
  7565. char filename[13];
  7566. uint8_t depth = 0;
  7567. char dir_name[9];
  7568. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7569. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7570. SERIAL_ECHOPGM("Feedrate:");
  7571. MYSERIAL.println(feedrate_rec);
  7572. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7573. MYSERIAL.println(int(depth));
  7574. for (int i = 0; i < depth; i++) {
  7575. for (int j = 0; j < 8; j++) {
  7576. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7577. }
  7578. dir_name[8] = '\0';
  7579. MYSERIAL.println(dir_name);
  7580. strcpy(dir_names[i], dir_name);
  7581. card.chdir(dir_name);
  7582. }
  7583. for (int i = 0; i < 8; i++) {
  7584. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7585. }
  7586. filename[8] = '\0';
  7587. MYSERIAL.print(filename);
  7588. strcat_P(filename, PSTR(".gco"));
  7589. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7590. enquecommand(cmd);
  7591. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7592. SERIAL_ECHOPGM("Position read from eeprom:");
  7593. MYSERIAL.println(position);
  7594. // E axis relative mode.
  7595. enquecommand_P(PSTR("M83"));
  7596. // Move to the XY print position in logical coordinates, where the print has been killed.
  7597. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7598. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7599. strcat_P(cmd, PSTR(" F2000"));
  7600. enquecommand(cmd);
  7601. // Move the Z axis down to the print, in logical coordinates.
  7602. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7603. enquecommand(cmd);
  7604. // Unretract.
  7605. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7606. // Set the feedrate saved at the power panic.
  7607. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7608. enquecommand(cmd);
  7609. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7610. {
  7611. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7612. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7613. }
  7614. // Set the fan speed saved at the power panic.
  7615. strcpy_P(cmd, PSTR("M106 S"));
  7616. strcat(cmd, itostr3(int(fan_speed_rec)));
  7617. enquecommand(cmd);
  7618. // Set a position in the file.
  7619. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7620. enquecommand(cmd);
  7621. // Start SD print.
  7622. enquecommand_P(PSTR("M24"));
  7623. }
  7624. #endif //UVLO_SUPPORT
  7625. ////////////////////////////////////////////////////////////////////////////////
  7626. // save/restore printing
  7627. void stop_and_save_print_to_ram(float z_move, float e_move)
  7628. {
  7629. if (saved_printing) return;
  7630. unsigned char nplanner_blocks;
  7631. unsigned char nlines;
  7632. uint16_t sdlen_planner;
  7633. uint16_t sdlen_cmdqueue;
  7634. cli();
  7635. if (card.sdprinting) {
  7636. nplanner_blocks = number_of_blocks();
  7637. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7638. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7639. saved_sdpos -= sdlen_planner;
  7640. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7641. saved_sdpos -= sdlen_cmdqueue;
  7642. saved_printing_type = PRINTING_TYPE_SD;
  7643. }
  7644. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7645. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7646. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7647. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7648. saved_sdpos -= nlines;
  7649. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7650. saved_printing_type = PRINTING_TYPE_USB;
  7651. }
  7652. else {
  7653. //not sd printing nor usb printing
  7654. }
  7655. #if 0
  7656. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7657. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7658. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7659. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7660. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7661. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7662. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7663. {
  7664. card.setIndex(saved_sdpos);
  7665. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7666. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7667. MYSERIAL.print(char(card.get()));
  7668. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7669. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7670. MYSERIAL.print(char(card.get()));
  7671. SERIAL_ECHOLNPGM("End of command buffer");
  7672. }
  7673. {
  7674. // Print the content of the planner buffer, line by line:
  7675. card.setIndex(saved_sdpos);
  7676. int8_t iline = 0;
  7677. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7678. SERIAL_ECHOPGM("Planner line (from file): ");
  7679. MYSERIAL.print(int(iline), DEC);
  7680. SERIAL_ECHOPGM(", length: ");
  7681. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7682. SERIAL_ECHOPGM(", steps: (");
  7683. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7684. SERIAL_ECHOPGM(",");
  7685. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7686. SERIAL_ECHOPGM(",");
  7687. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7688. SERIAL_ECHOPGM(",");
  7689. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7690. SERIAL_ECHOPGM("), events: ");
  7691. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7692. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7693. MYSERIAL.print(char(card.get()));
  7694. }
  7695. }
  7696. {
  7697. // Print the content of the command buffer, line by line:
  7698. int8_t iline = 0;
  7699. union {
  7700. struct {
  7701. char lo;
  7702. char hi;
  7703. } lohi;
  7704. uint16_t value;
  7705. } sdlen_single;
  7706. int _bufindr = bufindr;
  7707. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7708. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7709. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7710. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7711. }
  7712. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7713. MYSERIAL.print(int(iline), DEC);
  7714. SERIAL_ECHOPGM(", type: ");
  7715. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7716. SERIAL_ECHOPGM(", len: ");
  7717. MYSERIAL.println(sdlen_single.value, DEC);
  7718. // Print the content of the buffer line.
  7719. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7720. SERIAL_ECHOPGM("Buffer line (from file): ");
  7721. MYSERIAL.println(int(iline), DEC);
  7722. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7723. MYSERIAL.print(char(card.get()));
  7724. if (-- _buflen == 0)
  7725. break;
  7726. // First skip the current command ID and iterate up to the end of the string.
  7727. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7728. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7729. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7730. // If the end of the buffer was empty,
  7731. if (_bufindr == sizeof(cmdbuffer)) {
  7732. // skip to the start and find the nonzero command.
  7733. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7734. }
  7735. }
  7736. }
  7737. #endif
  7738. #if 0
  7739. saved_feedrate2 = feedrate; //save feedrate
  7740. #else
  7741. // Try to deduce the feedrate from the first block of the planner.
  7742. // Speed is in mm/min.
  7743. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7744. #endif
  7745. planner_abort_hard(); //abort printing
  7746. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7747. saved_active_extruder = active_extruder; //save active_extruder
  7748. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7749. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7750. cmdqueue_reset(); //empty cmdqueue
  7751. card.sdprinting = false;
  7752. // card.closefile();
  7753. saved_printing = true;
  7754. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7755. st_reset_timer();
  7756. sei();
  7757. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7758. #if 1
  7759. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7760. char buf[48];
  7761. // First unretract (relative extrusion)
  7762. if(!saved_extruder_relative_mode){
  7763. strcpy_P(buf, PSTR("M83"));
  7764. enquecommand(buf, false);
  7765. }
  7766. //retract 45mm/s
  7767. strcpy_P(buf, PSTR("G1 E"));
  7768. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7769. strcat_P(buf, PSTR(" F"));
  7770. dtostrf(2700, 8, 3, buf + strlen(buf));
  7771. enquecommand(buf, false);
  7772. // Then lift Z axis
  7773. strcpy_P(buf, PSTR("G1 Z"));
  7774. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7775. strcat_P(buf, PSTR(" F"));
  7776. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7777. // At this point the command queue is empty.
  7778. enquecommand(buf, false);
  7779. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7780. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7781. repeatcommand_front();
  7782. #else
  7783. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7784. st_synchronize(); //wait moving
  7785. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7786. memcpy(destination, current_position, sizeof(destination));
  7787. #endif
  7788. }
  7789. }
  7790. void restore_print_from_ram_and_continue(float e_move)
  7791. {
  7792. if (!saved_printing) return;
  7793. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7794. // current_position[axis] = st_get_position_mm(axis);
  7795. active_extruder = saved_active_extruder; //restore active_extruder
  7796. feedrate = saved_feedrate2; //restore feedrate
  7797. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7798. float e = saved_pos[E_AXIS] - e_move;
  7799. plan_set_e_position(e);
  7800. //first move print head in XY to the saved position:
  7801. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7802. st_synchronize();
  7803. //then move Z
  7804. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7805. st_synchronize();
  7806. //and finaly unretract (35mm/s)
  7807. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7808. st_synchronize();
  7809. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7810. memcpy(destination, current_position, sizeof(destination));
  7811. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7812. card.setIndex(saved_sdpos);
  7813. sdpos_atomic = saved_sdpos;
  7814. card.sdprinting = true;
  7815. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7816. }
  7817. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7818. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7819. serial_count = 0;
  7820. FlushSerialRequestResend();
  7821. }
  7822. else {
  7823. //not sd printing nor usb printing
  7824. }
  7825. lcd_setstatuspgm(_T(WELCOME_MSG));
  7826. saved_printing = false;
  7827. }
  7828. void print_world_coordinates()
  7829. {
  7830. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7831. }
  7832. void print_physical_coordinates()
  7833. {
  7834. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7835. }
  7836. void print_mesh_bed_leveling_table()
  7837. {
  7838. SERIAL_ECHOPGM("mesh bed leveling: ");
  7839. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7840. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7841. MYSERIAL.print(mbl.z_values[y][x], 3);
  7842. SERIAL_ECHOPGM(" ");
  7843. }
  7844. SERIAL_ECHOLNPGM("");
  7845. }
  7846. uint16_t print_time_remaining() {
  7847. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7848. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7849. else print_t = print_time_remaining_silent;
  7850. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7851. return print_t;
  7852. }
  7853. uint8_t print_percent_done() {
  7854. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7855. uint8_t percent_done = 0;
  7856. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7857. percent_done = print_percent_done_normal;
  7858. }
  7859. else if (print_percent_done_silent <= 100) {
  7860. percent_done = print_percent_done_silent;
  7861. }
  7862. else {
  7863. percent_done = card.percentDone();
  7864. }
  7865. return percent_done;
  7866. }
  7867. static void print_time_remaining_init() {
  7868. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7869. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7870. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7871. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7872. }
  7873. bool mmu_get_reponse() {
  7874. bool response = true;
  7875. LongTimer mmu_get_reponse_timeout;
  7876. uart2_rx_clr();
  7877. mmu_get_reponse_timeout.start();
  7878. while (!uart2_rx_ok())
  7879. {
  7880. delay_keep_alive(100);
  7881. if (mmu_get_reponse_timeout.expired(30 * 1000ul)) { //PINDA cooling from 60 C to 35 C takes about 7 minutes
  7882. response = false;
  7883. break;
  7884. }
  7885. }
  7886. return response;
  7887. }
  7888. void mmu_not_responding() {
  7889. printf_P(PSTR("MMU not responding"));
  7890. }
  7891. void mmu_load_to_nozzle() {
  7892. /*bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7893. if (!saved_e_relative_mode) {
  7894. enquecommand_front_P(PSTR("M82")); // set extruder to relative mode
  7895. }
  7896. enquecommand_front_P((PSTR("G1 E7.2000 F562")));
  7897. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7898. enquecommand_front_P((PSTR("G1 E36.0000 F1393")));
  7899. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7900. if (!saved_e_relative_mode) {
  7901. enquecommand_front_P(PSTR("M83")); // set extruder to relative mode
  7902. }*/
  7903. st_synchronize();
  7904. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7905. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  7906. current_position[E_AXIS] += 7.2f;
  7907. float feedrate = 562;
  7908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7909. st_synchronize();
  7910. current_position[E_AXIS] += 14.4f;
  7911. feedrate = 871;
  7912. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7913. st_synchronize();
  7914. current_position[E_AXIS] += 36.0f;
  7915. feedrate = 1393;
  7916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7917. st_synchronize();
  7918. current_position[E_AXIS] += 14.4f;
  7919. feedrate = 871;
  7920. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7921. st_synchronize();
  7922. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  7923. }
  7924. void mmu_switch_extruder(uint8_t extruder) {
  7925. }
  7926. void mmu_M600_load_filament() {
  7927. #ifdef SNMM_V2
  7928. bool response = false;
  7929. tmp_extruder = choose_extruder_menu();
  7930. lcd_update_enable(false);
  7931. lcd_clear();
  7932. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  7933. lcd_print(" ");
  7934. lcd_print(snmm_extruder + 1);
  7935. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7936. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  7937. switch (tmp_extruder)
  7938. {
  7939. case 1:
  7940. fprintf_P(uart2io, PSTR("T1\n"));
  7941. break;
  7942. case 2:
  7943. fprintf_P(uart2io, PSTR("T2\n"));
  7944. break;
  7945. case 3:
  7946. fprintf_P(uart2io, PSTR("T3\n"));
  7947. break;
  7948. case 4:
  7949. fprintf_P(uart2io, PSTR("T4\n"));
  7950. break;
  7951. default:
  7952. fprintf_P(uart2io, PSTR("T0\n"));
  7953. break;
  7954. }
  7955. response = mmu_get_reponse();
  7956. if (!response) mmu_not_responding();
  7957. snmm_extruder = tmp_extruder; //filament change is finished
  7958. mmu_load_to_nozzle();
  7959. #endif
  7960. }
  7961. void M600_load_filament_movements() {
  7962. #ifdef SNMM
  7963. display_loading();
  7964. do {
  7965. current_position[E_AXIS] += 0.002;
  7966. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7967. delay_keep_alive(2);
  7968. } while (!lcd_clicked());
  7969. st_synchronize();
  7970. current_position[E_AXIS] += bowden_length[snmm_extruder];
  7971. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7972. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7974. current_position[E_AXIS] += 40;
  7975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7976. current_position[E_AXIS] += 10;
  7977. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7978. #else
  7979. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7980. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7981. #endif
  7982. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7983. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7984. lcd_loading_filament();
  7985. }
  7986. void M600_load_filament(bool fsensor_enabled) {
  7987. lcd_wait_interact();
  7988. //load_filament_time = millis();
  7989. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7990. #ifdef PAT9125
  7991. if (filament_autoload_enabled && (fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  7992. #endif //PAT9125
  7993. while(!lcd_clicked())
  7994. {
  7995. manage_heater();
  7996. manage_inactivity(true);
  7997. #ifdef PAT9125
  7998. if (filament_autoload_enabled && (fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  7999. {
  8000. tone(BEEPER, 1000);
  8001. delay_keep_alive(50);
  8002. noTone(BEEPER);
  8003. break;
  8004. }
  8005. #endif //PAT9125
  8006. }
  8007. #ifdef PAT9125
  8008. if (filament_autoload_enabled && (fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  8009. #endif //PAT9125
  8010. KEEPALIVE_STATE(IN_HANDLER);
  8011. M600_load_filament_movements();
  8012. tone(BEEPER, 500);
  8013. delay_keep_alive(50);
  8014. noTone(BEEPER);
  8015. }
  8016. #define FIL_LOAD_LENGTH 60