fsensor.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731
  1. //! @file
  2. #include "Marlin.h"
  3. #include "fsensor.h"
  4. #include <avr/pgmspace.h>
  5. #include "pat9125.h"
  6. #include "stepper.h"
  7. #include "io_atmega2560.h"
  8. #include "cmdqueue.h"
  9. #include "ultralcd.h"
  10. #include "mmu.h"
  11. #include "cardreader.h"
  12. #include "adc.h"
  13. #include "temperature.h"
  14. #include "config.h"
  15. //! @name Basic parameters
  16. //! @{
  17. #define FSENSOR_CHUNK_LEN 1.25 //!< filament sensor chunk length (mm)
  18. #define FSENSOR_ERR_MAX 4 //!< filament sensor maximum error/chunk count for runout detection
  19. #define FSENSOR_SOFTERR_CMAX 3 //!< number of contiguous soft failures before a triggering a runout
  20. #define FSENSOR_SOFTERR_DELTA 30000 //!< maximum interval (ms) to consider soft failures contiguous
  21. //! @}
  22. //! @name Optical quality measurement parameters
  23. //! @{
  24. #define FSENSOR_OQ_MAX_ES 2 //!< maximum sum of error blocks during filament recheck
  25. #define FSENSOR_OQ_MIN_YD 2 //!< minimum yd sum during filament check (counts per inch)
  26. #define FSENSOR_OQ_MIN_BR 80 //!< minimum brightness value
  27. #define FSENSOR_OQ_MAX_SH 10 //!< maximum shutter value
  28. //! @}
  29. const char ERRMSG_PAT9125_NOT_RESP[] PROGMEM = "PAT9125 not responding (%d)!\n";
  30. // PJ7 can not be used (does not have PinChangeInterrupt possibility)
  31. #define FSENSOR_INT_PIN 75 //!< filament sensor interrupt pin PJ4
  32. #define FSENSOR_INT_PIN_MASK 0x10 //!< filament sensor interrupt pin mask (bit4)
  33. #define FSENSOR_INT_PIN_PIN_REG PINJ // PIN register @ PJ4
  34. #define FSENSOR_INT_PIN_VECT PCINT1_vect // PinChange ISR @ PJ4
  35. #define FSENSOR_INT_PIN_PCMSK_REG PCMSK1 // PinChangeMaskRegister @ PJ4
  36. #define FSENSOR_INT_PIN_PCMSK_BIT PCINT13 // PinChange Interrupt / PinChange Enable Mask @ PJ4
  37. #define FSENSOR_INT_PIN_PCICR_BIT PCIE1 // PinChange Interrupt Enable / Flag @ PJ4
  38. //! enabled = initialized and sampled every chunk event
  39. bool fsensor_enabled = true;
  40. //! runout watching is done in fsensor_update (called from main loop)
  41. bool fsensor_watch_runout = true;
  42. //! not responding - is set if any communication error occurred during initialization or readout
  43. bool fsensor_not_responding = false;
  44. #ifdef PAT9125
  45. uint8_t fsensor_int_pin_old = 0;
  46. //! optical checking "chunk lenght" (already in steps)
  47. int16_t fsensor_chunk_len = 0;
  48. //! enable/disable quality meassurement
  49. bool fsensor_oq_meassure_enabled = false;
  50. //! number of errors, updated in ISR
  51. uint8_t fsensor_err_cnt = 0;
  52. //! variable for accumulating step count (updated callbacks from stepper and ISR)
  53. int16_t fsensor_st_cnt = 0;
  54. //! count of total sensor "soft" failures (filament status checks)
  55. uint8_t fsensor_softfail = 0;
  56. //! timestamp of last soft failure
  57. unsigned long fsensor_softfail_last = 0;
  58. //! count of soft failures within the configured time
  59. uint8_t fsensor_softfail_ccnt = 0;
  60. #endif
  61. //! log flag: 0=log disabled, 1=log enabled
  62. uint8_t fsensor_log = 1;
  63. //! @name filament autoload variables
  64. //! @{
  65. //! autoload feature enabled
  66. bool fsensor_autoload_enabled = true;
  67. //! autoload watching enable/disable flag
  68. bool fsensor_watch_autoload = false;
  69. #ifdef PAT9125
  70. //
  71. uint16_t fsensor_autoload_y;
  72. //
  73. uint8_t fsensor_autoload_c;
  74. //
  75. uint32_t fsensor_autoload_last_millis;
  76. //
  77. uint8_t fsensor_autoload_sum;
  78. //! @}
  79. #endif
  80. //! @name filament optical quality measurement variables
  81. //! @{
  82. //! Measurement enable/disable flag
  83. bool fsensor_oq_meassure = false;
  84. //! skip-chunk counter, for accurate measurement is necessary to skip first chunk...
  85. uint8_t fsensor_oq_skipchunk;
  86. //! number of samples from start of measurement
  87. uint8_t fsensor_oq_samples;
  88. //! sum of steps in positive direction movements
  89. uint16_t fsensor_oq_st_sum;
  90. //! sum of deltas in positive direction movements
  91. uint16_t fsensor_oq_yd_sum;
  92. //! sum of errors during measurement
  93. uint16_t fsensor_oq_er_sum;
  94. //! max error counter value during measurement
  95. uint8_t fsensor_oq_er_max;
  96. //! minimum delta value
  97. int16_t fsensor_oq_yd_min;
  98. //! maximum delta value
  99. int16_t fsensor_oq_yd_max;
  100. //! sum of shutter value
  101. uint16_t fsensor_oq_sh_sum;
  102. //! @}
  103. #if IR_SENSOR_ANALOG
  104. ClFsensorPCB oFsensorPCB;
  105. ClFsensorActionNA oFsensorActionNA;
  106. bool bIRsensorStateFlag=false;
  107. unsigned long nIRsensorLastTime;
  108. #endif //IR_SENSOR_ANALOG
  109. void fsensor_stop_and_save_print(void)
  110. {
  111. printf_P(PSTR("fsensor_stop_and_save_print\n"));
  112. stop_and_save_print_to_ram(0, 0);
  113. fsensor_watch_runout = false;
  114. }
  115. #ifdef PAT9125
  116. // Reset all internal counters to zero, including stepper callbacks
  117. void fsensor_reset_err_cnt()
  118. {
  119. fsensor_err_cnt = 0;
  120. pat9125_y = 0;
  121. st_reset_fsensor();
  122. }
  123. void fsensor_set_axis_steps_per_unit(float u)
  124. {
  125. fsensor_chunk_len = (int16_t)(FSENSOR_CHUNK_LEN * u);
  126. }
  127. #endif
  128. void fsensor_restore_print_and_continue(void)
  129. {
  130. printf_P(PSTR("fsensor_restore_print_and_continue\n"));
  131. fsensor_watch_runout = true;
  132. #ifdef PAT9125
  133. fsensor_reset_err_cnt();
  134. #endif
  135. restore_print_from_ram_and_continue(0);
  136. }
  137. // fsensor_checkpoint_print cuts the current print job at the current position,
  138. // allowing new instructions to be inserted in the middle
  139. void fsensor_checkpoint_print(void)
  140. {
  141. printf_P(PSTR("fsensor_checkpoint_print\n"));
  142. stop_and_save_print_to_ram(0, 0);
  143. restore_print_from_ram_and_continue(0);
  144. }
  145. void fsensor_init(void)
  146. {
  147. #ifdef PAT9125
  148. uint8_t pat9125 = pat9125_init();
  149. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  150. #endif //PAT9125
  151. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  152. fsensor_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  153. fsensor_not_responding = false;
  154. #ifdef PAT9125
  155. uint8_t oq_meassure_enabled = eeprom_read_byte((uint8_t*)EEPROM_FSENS_OQ_MEASS_ENABLED);
  156. fsensor_oq_meassure_enabled = (oq_meassure_enabled == 1)?true:false;
  157. fsensor_set_axis_steps_per_unit(cs.axis_steps_per_unit[E_AXIS]);
  158. if (!pat9125)
  159. {
  160. fsensor = 0; //disable sensor
  161. fsensor_not_responding = true;
  162. }
  163. #endif //PAT9125
  164. #if IR_SENSOR_ANALOG
  165. bIRsensorStateFlag=false;
  166. oFsensorPCB=(ClFsensorPCB)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_PCB);
  167. oFsensorActionNA=(ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA);
  168. #endif //IR_SENSOR_ANALOG
  169. if (fsensor)
  170. fsensor_enable(false); // (in this case) EEPROM update is not necessary
  171. else
  172. fsensor_disable(false); // (in this case) EEPROM update is not necessary
  173. printf_P(PSTR("FSensor %S"), (fsensor_enabled?PSTR("ENABLED"):PSTR("DISABLED")));
  174. #if IR_SENSOR_ANALOG
  175. printf_P(PSTR(" (sensor board revision: %S)\n"),(oFsensorPCB==ClFsensorPCB::_Rev03b)?PSTR("03b or newer"):PSTR("03 or older"));
  176. #else //IR_SENSOR_ANALOG
  177. printf_P(PSTR("\n"));
  178. #endif //IR_SENSOR_ANALOG
  179. if (check_for_ir_sensor()) ir_sensor_detected = true;
  180. }
  181. bool fsensor_enable(bool bUpdateEEPROM)
  182. {
  183. #ifdef PAT9125
  184. if (mmu_enabled == false) { //filament sensor is pat9125, enable only if it is working
  185. uint8_t pat9125 = pat9125_init();
  186. printf_P(PSTR("PAT9125_init:%hhu\n"), pat9125);
  187. if (pat9125)
  188. fsensor_not_responding = false;
  189. else
  190. fsensor_not_responding = true;
  191. fsensor_enabled = pat9125 ? true : false;
  192. fsensor_watch_runout = true;
  193. fsensor_oq_meassure = false;
  194. fsensor_reset_err_cnt();
  195. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, fsensor_enabled ? 0x01 : 0x00);
  196. FSensorStateMenu = fsensor_enabled ? 1 : 0;
  197. }
  198. else //filament sensor is FINDA, always enable
  199. {
  200. fsensor_enabled = true;
  201. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x01);
  202. FSensorStateMenu = 1;
  203. }
  204. #else // PAT9125
  205. #if IR_SENSOR_ANALOG
  206. if(!fsensor_IR_check())
  207. {
  208. bUpdateEEPROM=true;
  209. fsensor_enabled=false;
  210. fsensor_not_responding=true;
  211. FSensorStateMenu=0;
  212. }
  213. else {
  214. #endif //IR_SENSOR_ANALOG
  215. fsensor_enabled=true;
  216. fsensor_not_responding=false;
  217. FSensorStateMenu=1;
  218. #if IR_SENSOR_ANALOG
  219. }
  220. #endif //IR_SENSOR_ANALOG
  221. if(bUpdateEEPROM)
  222. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, FSensorStateMenu);
  223. #endif //PAT9125
  224. return fsensor_enabled;
  225. }
  226. void fsensor_disable(bool bUpdateEEPROM)
  227. {
  228. fsensor_enabled = false;
  229. FSensorStateMenu = 0;
  230. if(bUpdateEEPROM)
  231. eeprom_update_byte((uint8_t*)EEPROM_FSENSOR, 0x00);
  232. }
  233. void fsensor_autoload_set(bool State)
  234. {
  235. #ifdef PAT9125
  236. if (!State) fsensor_autoload_check_stop();
  237. #endif //PAT9125
  238. fsensor_autoload_enabled = State;
  239. eeprom_update_byte((unsigned char *)EEPROM_FSENS_AUTOLOAD_ENABLED, fsensor_autoload_enabled);
  240. }
  241. void pciSetup(byte pin)
  242. {
  243. // !!! "digitalPinTo?????bit()" does not provide the correct results for some MCU pins
  244. *digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
  245. PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
  246. PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
  247. }
  248. #ifdef PAT9125
  249. void fsensor_autoload_check_start(void)
  250. {
  251. // puts_P(_N("fsensor_autoload_check_start\n"));
  252. if (!fsensor_enabled) return;
  253. if (!fsensor_autoload_enabled) return;
  254. if (fsensor_watch_autoload) return;
  255. if (!pat9125_update()) //update sensor
  256. {
  257. fsensor_disable();
  258. fsensor_not_responding = true;
  259. fsensor_watch_autoload = false;
  260. printf_P(ERRMSG_PAT9125_NOT_RESP, 3);
  261. return;
  262. }
  263. puts_P(_N("fsensor_autoload_check_start - autoload ENABLED\n"));
  264. fsensor_autoload_y = pat9125_y; //save current y value
  265. fsensor_autoload_c = 0; //reset number of changes counter
  266. fsensor_autoload_sum = 0;
  267. fsensor_autoload_last_millis = _millis();
  268. fsensor_watch_runout = false;
  269. fsensor_watch_autoload = true;
  270. }
  271. void fsensor_autoload_check_stop(void)
  272. {
  273. // puts_P(_N("fsensor_autoload_check_stop\n"));
  274. if (!fsensor_enabled) return;
  275. // puts_P(_N("fsensor_autoload_check_stop 1\n"));
  276. if (!fsensor_autoload_enabled) return;
  277. // puts_P(_N("fsensor_autoload_check_stop 2\n"));
  278. if (!fsensor_watch_autoload) return;
  279. puts_P(_N("fsensor_autoload_check_stop - autoload DISABLED\n"));
  280. fsensor_autoload_sum = 0;
  281. fsensor_watch_autoload = false;
  282. fsensor_watch_runout = true;
  283. fsensor_reset_err_cnt();
  284. }
  285. #endif //PAT9125
  286. bool fsensor_check_autoload(void)
  287. {
  288. if (!fsensor_enabled) return false;
  289. if (!fsensor_autoload_enabled) return false;
  290. if (ir_sensor_detected) {
  291. if (digitalRead(IR_SENSOR_PIN) == 1) {
  292. fsensor_watch_autoload = true;
  293. }
  294. else if (fsensor_watch_autoload == true) {
  295. fsensor_watch_autoload = false;
  296. return true;
  297. }
  298. }
  299. #ifdef PAT9125
  300. if (!fsensor_watch_autoload)
  301. {
  302. fsensor_autoload_check_start();
  303. return false;
  304. }
  305. #if 0
  306. uint8_t fsensor_autoload_c_old = fsensor_autoload_c;
  307. #endif
  308. if ((_millis() - fsensor_autoload_last_millis) < 25) return false;
  309. fsensor_autoload_last_millis = _millis();
  310. if (!pat9125_update_y()) //update sensor
  311. {
  312. fsensor_disable();
  313. fsensor_not_responding = true;
  314. printf_P(ERRMSG_PAT9125_NOT_RESP, 2);
  315. return false;
  316. }
  317. int16_t dy = pat9125_y - fsensor_autoload_y;
  318. if (dy) //? dy value is nonzero
  319. {
  320. if (dy > 0) //? delta-y value is positive (inserting)
  321. {
  322. fsensor_autoload_sum += dy;
  323. fsensor_autoload_c += 3; //increment change counter by 3
  324. }
  325. else if (fsensor_autoload_c > 1)
  326. fsensor_autoload_c -= 2; //decrement change counter by 2
  327. fsensor_autoload_y = pat9125_y; //save current value
  328. }
  329. else if (fsensor_autoload_c > 0)
  330. fsensor_autoload_c--;
  331. if (fsensor_autoload_c == 0) fsensor_autoload_sum = 0;
  332. #if 0
  333. puts_P(_N("fsensor_check_autoload\n"));
  334. if (fsensor_autoload_c != fsensor_autoload_c_old)
  335. printf_P(PSTR("fsensor_check_autoload dy=%d c=%d sum=%d\n"), dy, fsensor_autoload_c, fsensor_autoload_sum);
  336. #endif
  337. // if ((fsensor_autoload_c >= 15) && (fsensor_autoload_sum > 30))
  338. if ((fsensor_autoload_c >= 12) && (fsensor_autoload_sum > 20))
  339. {
  340. // puts_P(_N("fsensor_check_autoload = true !!!\n"));
  341. return true;
  342. }
  343. #endif //PAT9125
  344. return false;
  345. }
  346. #ifdef PAT9125
  347. void fsensor_oq_meassure_set(bool State)
  348. {
  349. fsensor_oq_meassure_enabled = State;
  350. eeprom_update_byte((unsigned char *)EEPROM_FSENS_OQ_MEASS_ENABLED, fsensor_oq_meassure_enabled);
  351. }
  352. void fsensor_oq_meassure_start(uint8_t skip)
  353. {
  354. if (!fsensor_enabled) return;
  355. if (!fsensor_oq_meassure_enabled) return;
  356. printf_P(PSTR("fsensor_oq_meassure_start\n"));
  357. fsensor_oq_skipchunk = skip;
  358. fsensor_oq_samples = 0;
  359. fsensor_oq_st_sum = 0;
  360. fsensor_oq_yd_sum = 0;
  361. fsensor_oq_er_sum = 0;
  362. fsensor_oq_er_max = 0;
  363. fsensor_oq_yd_min = INT16_MAX;
  364. fsensor_oq_yd_max = 0;
  365. fsensor_oq_sh_sum = 0;
  366. pat9125_update();
  367. pat9125_y = 0;
  368. fsensor_oq_meassure = true;
  369. }
  370. void fsensor_oq_meassure_stop(void)
  371. {
  372. if (!fsensor_enabled) return;
  373. if (!fsensor_oq_meassure_enabled) return;
  374. printf_P(PSTR("fsensor_oq_meassure_stop, %hhu samples\n"), fsensor_oq_samples);
  375. printf_P(_N(" st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max);
  376. printf_P(_N(" yd_min=%u yd_max=%u yd_avg=%u sh_avg=%u\n"), fsensor_oq_yd_min, fsensor_oq_yd_max, (uint16_t)((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum), (uint16_t)(fsensor_oq_sh_sum / fsensor_oq_samples));
  377. fsensor_oq_meassure = false;
  378. }
  379. #ifdef FSENSOR_QUALITY
  380. const char _OK[] PROGMEM = "OK";
  381. const char _NG[] PROGMEM = "NG!";
  382. bool fsensor_oq_result(void)
  383. {
  384. if (!fsensor_enabled) return true;
  385. if (!fsensor_oq_meassure_enabled) return true;
  386. printf_P(_N("fsensor_oq_result\n"));
  387. bool res_er_sum = (fsensor_oq_er_sum <= FSENSOR_OQ_MAX_ES);
  388. printf_P(_N(" er_sum = %u %S\n"), fsensor_oq_er_sum, (res_er_sum?_OK:_NG));
  389. bool res_er_max = (fsensor_oq_er_max <= FSENSOR_OQ_MAX_EM);
  390. printf_P(_N(" er_max = %hhu %S\n"), fsensor_oq_er_max, (res_er_max?_OK:_NG));
  391. uint8_t yd_avg = ((uint32_t)fsensor_oq_yd_sum * fsensor_chunk_len / fsensor_oq_st_sum);
  392. bool res_yd_avg = (yd_avg >= FSENSOR_OQ_MIN_YD) && (yd_avg <= FSENSOR_OQ_MAX_YD);
  393. printf_P(_N(" yd_avg = %hhu %S\n"), yd_avg, (res_yd_avg?_OK:_NG));
  394. bool res_yd_max = (fsensor_oq_yd_max <= (yd_avg * FSENSOR_OQ_MAX_PD));
  395. printf_P(_N(" yd_max = %u %S\n"), fsensor_oq_yd_max, (res_yd_max?_OK:_NG));
  396. bool res_yd_min = (fsensor_oq_yd_min >= (yd_avg / FSENSOR_OQ_MAX_ND));
  397. printf_P(_N(" yd_min = %u %S\n"), fsensor_oq_yd_min, (res_yd_min?_OK:_NG));
  398. uint16_t yd_dev = (fsensor_oq_yd_max - yd_avg) + (yd_avg - fsensor_oq_yd_min);
  399. printf_P(_N(" yd_dev = %u\n"), yd_dev);
  400. uint16_t yd_qua = 10 * yd_avg / (yd_dev + 1);
  401. printf_P(_N(" yd_qua = %u %S\n"), yd_qua, ((yd_qua >= 8)?_OK:_NG));
  402. uint8_t sh_avg = (fsensor_oq_sh_sum / fsensor_oq_samples);
  403. bool res_sh_avg = (sh_avg <= FSENSOR_OQ_MAX_SH);
  404. if (yd_qua >= 8) res_sh_avg = true;
  405. printf_P(_N(" sh_avg = %hhu %S\n"), sh_avg, (res_sh_avg?_OK:_NG));
  406. bool res = res_er_sum && res_er_max && res_yd_avg && res_yd_max && res_yd_min && res_sh_avg;
  407. printf_P(_N("fsensor_oq_result %S\n"), (res?_OK:_NG));
  408. return res;
  409. }
  410. #endif //FSENSOR_QUALITY
  411. ISR(FSENSOR_INT_PIN_VECT)
  412. {
  413. if (mmu_enabled || ir_sensor_detected) return;
  414. if (!((fsensor_int_pin_old ^ FSENSOR_INT_PIN_PIN_REG) & FSENSOR_INT_PIN_MASK)) return;
  415. fsensor_int_pin_old = FSENSOR_INT_PIN_PIN_REG;
  416. // prevent isr re-entry
  417. static bool _lock = false;
  418. if (_lock) return;
  419. _lock = true;
  420. // fetch fsensor_st_cnt atomically
  421. int st_cnt = fsensor_st_cnt;
  422. fsensor_st_cnt = 0;
  423. sei();
  424. uint8_t old_err_cnt = fsensor_err_cnt;
  425. uint8_t pat9125_res = fsensor_oq_meassure?pat9125_update():pat9125_update_y();
  426. if (!pat9125_res)
  427. {
  428. fsensor_disable();
  429. fsensor_not_responding = true;
  430. printf_P(ERRMSG_PAT9125_NOT_RESP, 1);
  431. }
  432. if (st_cnt != 0)
  433. {
  434. // movement was planned, check for sensor movement
  435. int8_t st_dir = st_cnt >= 0;
  436. int8_t pat9125_dir = pat9125_y >= 0;
  437. if (pat9125_y == 0)
  438. {
  439. if (st_dir)
  440. {
  441. // no movement detected: we might be within a blind sensor range,
  442. // update the frame and shutter parameters we didn't earlier
  443. if (!fsensor_oq_meassure)
  444. pat9125_update_bs();
  445. // increment the error count only if underexposed: filament likely missing
  446. if ((pat9125_b < FSENSOR_OQ_MIN_BR) && (pat9125_s > FSENSOR_OQ_MAX_SH))
  447. {
  448. // check for a dark frame (<30% avg brightness) with long exposure
  449. ++fsensor_err_cnt;
  450. }
  451. else
  452. {
  453. // good frame, filament likely present
  454. if(fsensor_err_cnt) --fsensor_err_cnt;
  455. }
  456. }
  457. }
  458. else if (pat9125_dir != st_dir)
  459. {
  460. // detected direction opposite of motor movement
  461. if (st_dir) ++fsensor_err_cnt;
  462. }
  463. else if (pat9125_dir == st_dir)
  464. {
  465. // direction agreeing with planned movement
  466. if (fsensor_err_cnt) --fsensor_err_cnt;
  467. }
  468. if (st_dir && fsensor_oq_meassure)
  469. {
  470. // extruding with quality assessment
  471. if (fsensor_oq_skipchunk)
  472. {
  473. fsensor_oq_skipchunk--;
  474. fsensor_err_cnt = 0;
  475. }
  476. else
  477. {
  478. if (st_cnt == fsensor_chunk_len)
  479. {
  480. if (pat9125_y > 0) if (fsensor_oq_yd_min > pat9125_y) fsensor_oq_yd_min = (fsensor_oq_yd_min + pat9125_y) / 2;
  481. if (pat9125_y >= 0) if (fsensor_oq_yd_max < pat9125_y) fsensor_oq_yd_max = (fsensor_oq_yd_max + pat9125_y) / 2;
  482. }
  483. fsensor_oq_samples++;
  484. fsensor_oq_st_sum += st_cnt;
  485. if (pat9125_y > 0) fsensor_oq_yd_sum += pat9125_y;
  486. if (fsensor_err_cnt > old_err_cnt)
  487. fsensor_oq_er_sum += (fsensor_err_cnt - old_err_cnt);
  488. if (fsensor_oq_er_max < fsensor_err_cnt)
  489. fsensor_oq_er_max = fsensor_err_cnt;
  490. fsensor_oq_sh_sum += pat9125_s;
  491. }
  492. }
  493. }
  494. #ifdef DEBUG_FSENSOR_LOG
  495. if (fsensor_log)
  496. {
  497. printf_P(_N("FSENSOR cnt=%d dy=%d err=%hhu %S\n"), st_cnt, pat9125_y, fsensor_err_cnt, (fsensor_err_cnt > old_err_cnt)?_N("NG!"):_N("OK"));
  498. if (fsensor_oq_meassure) printf_P(_N("FSENSOR st_sum=%u yd_sum=%u er_sum=%u er_max=%hhu yd_max=%u\n"), fsensor_oq_st_sum, fsensor_oq_yd_sum, fsensor_oq_er_sum, fsensor_oq_er_max, fsensor_oq_yd_max);
  499. }
  500. #endif //DEBUG_FSENSOR_LOG
  501. pat9125_y = 0;
  502. _lock = false;
  503. return;
  504. }
  505. void fsensor_setup_interrupt(void)
  506. {
  507. pinMode(FSENSOR_INT_PIN, OUTPUT);
  508. digitalWrite(FSENSOR_INT_PIN, LOW);
  509. fsensor_int_pin_old = 0;
  510. //pciSetup(FSENSOR_INT_PIN);
  511. // !!! "pciSetup()" does not provide the correct results for some MCU pins
  512. // so interrupt registers settings:
  513. FSENSOR_INT_PIN_PCMSK_REG |= bit(FSENSOR_INT_PIN_PCMSK_BIT); // enable corresponding PinChangeInterrupt (individual pin)
  514. PCIFR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // clear previous occasional interrupt (set of pins)
  515. PCICR |= bit(FSENSOR_INT_PIN_PCICR_BIT); // enable corresponding PinChangeInterrupt (set of pins)
  516. }
  517. void fsensor_st_block_chunk(int cnt)
  518. {
  519. if (!fsensor_enabled) return;
  520. fsensor_st_cnt += cnt;
  521. // !!! bit toggling (PINxn <- 1) (for PinChangeInterrupt) does not work for some MCU pins
  522. if (PIN_GET(FSENSOR_INT_PIN)) {PIN_VAL(FSENSOR_INT_PIN, LOW);}
  523. else {PIN_VAL(FSENSOR_INT_PIN, HIGH);}
  524. }
  525. #endif //PAT9125
  526. //! Common code for enqueing M600 and supplemental codes into the command queue.
  527. //! Used both for the IR sensor and the PAT9125
  528. void fsensor_enque_M600(){
  529. printf_P(PSTR("fsensor_update - M600\n"));
  530. eeprom_update_byte((uint8_t*)EEPROM_FERROR_COUNT, eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) + 1);
  531. eeprom_update_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) + 1);
  532. enquecommand_front_P((PSTR("M600")));
  533. }
  534. //! @brief filament sensor update (perform M600 on filament runout)
  535. //!
  536. //! Works only if filament sensor is enabled.
  537. //! When the filament sensor error count is larger then FSENSOR_ERR_MAX, pauses print, tries to move filament back and forth.
  538. //! If there is still no plausible signal from filament sensor plans M600 (Filament change).
  539. void fsensor_update(void)
  540. {
  541. #ifdef PAT9125
  542. if (fsensor_watch_runout && (fsensor_err_cnt > FSENSOR_ERR_MAX))
  543. {
  544. fsensor_stop_and_save_print();
  545. KEEPALIVE_STATE(IN_HANDLER);
  546. bool autoload_enabled_tmp = fsensor_autoload_enabled;
  547. fsensor_autoload_enabled = false;
  548. bool oq_meassure_enabled_tmp = fsensor_oq_meassure_enabled;
  549. fsensor_oq_meassure_enabled = true;
  550. // move the nozzle away while checking the filament
  551. current_position[Z_AXIS] += 0.8;
  552. if(current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  553. plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  554. st_synchronize();
  555. // check the filament in isolation
  556. fsensor_reset_err_cnt();
  557. fsensor_oq_meassure_start(0);
  558. float e_tmp = current_position[E_AXIS];
  559. current_position[E_AXIS] -= 3;
  560. plan_buffer_line_curposXYZE(250/60, active_extruder);
  561. current_position[E_AXIS] = e_tmp;
  562. plan_buffer_line_curposXYZE(200/60, active_extruder);
  563. st_synchronize();
  564. fsensor_oq_meassure_stop();
  565. bool err = false;
  566. err |= (fsensor_err_cnt > 0); // final error count is non-zero
  567. err |= (fsensor_oq_er_sum > FSENSOR_OQ_MAX_ES); // total error count is above limit
  568. err |= (fsensor_oq_yd_sum < FSENSOR_OQ_MIN_YD); // total measured distance is below limit
  569. fsensor_restore_print_and_continue();
  570. fsensor_autoload_enabled = autoload_enabled_tmp;
  571. fsensor_oq_meassure_enabled = oq_meassure_enabled_tmp;
  572. unsigned long now = _millis();
  573. if (!err && (now - fsensor_softfail_last) > FSENSOR_SOFTERR_DELTA)
  574. fsensor_softfail_ccnt = 0;
  575. if (!err && fsensor_softfail_ccnt <= FSENSOR_SOFTERR_CMAX)
  576. {
  577. printf_P(PSTR("fsensor_err_cnt = 0\n"));
  578. ++fsensor_softfail;
  579. ++fsensor_softfail_ccnt;
  580. fsensor_softfail_last = now;
  581. }
  582. else
  583. {
  584. fsensor_softfail_ccnt = 0;
  585. fsensor_softfail_last = 0;
  586. fsensor_enque_M600();
  587. }
  588. }
  589. #else //PAT9125
  590. if (CHECK_FSENSOR && ir_sensor_detected)
  591. {
  592. if(digitalRead(IR_SENSOR_PIN))
  593. { // IR_SENSOR_PIN ~ H
  594. #if IR_SENSOR_ANALOG
  595. if(!bIRsensorStateFlag)
  596. {
  597. bIRsensorStateFlag=true;
  598. nIRsensorLastTime=_millis();
  599. }
  600. else
  601. {
  602. if((_millis()-nIRsensorLastTime)>IR_SENSOR_STEADY)
  603. {
  604. uint8_t nMUX1,nMUX2;
  605. uint16_t nADC;
  606. bIRsensorStateFlag=false;
  607. // sequence for direct data reading from AD converter
  608. DISABLE_TEMPERATURE_INTERRUPT();
  609. nMUX1=ADMUX; // ADMUX saving
  610. nMUX2=ADCSRB;
  611. adc_setmux(VOLT_IR_PIN);
  612. ADCSRA|=(1<<ADSC); // first conversion after ADMUX change discarded (preventively)
  613. while(ADCSRA&(1<<ADSC))
  614. ;
  615. ADCSRA|=(1<<ADSC); // second conversion used
  616. while(ADCSRA&(1<<ADSC))
  617. ;
  618. nADC=ADC;
  619. ADMUX=nMUX1; // ADMUX restoring
  620. ADCSRB=nMUX2;
  621. ENABLE_TEMPERATURE_INTERRUPT();
  622. // end of sequence for ...
  623. if((oFsensorPCB==ClFsensorPCB::_Rev03b)&&((nADC*OVERSAMPLENR)>((int)IRsensor_Hopen_TRESHOLD)))
  624. {
  625. fsensor_disable();
  626. fsensor_not_responding = true;
  627. printf_P(PSTR("IR sensor not responding (%d)!\n"),1);
  628. if((ClFsensorActionNA)eeprom_read_byte((uint8_t*)EEPROM_FSENSOR_ACTION_NA)==ClFsensorActionNA::_Pause)
  629. if(oFsensorActionNA==ClFsensorActionNA::_Pause)
  630. lcd_pause_print();
  631. }
  632. else
  633. {
  634. #endif //IR_SENSOR_ANALOG
  635. fsensor_checkpoint_print();
  636. fsensor_enque_M600();
  637. #if IR_SENSOR_ANALOG
  638. }
  639. }
  640. }
  641. }
  642. else
  643. { // IR_SENSOR_PIN ~ L
  644. bIRsensorStateFlag=false;
  645. #endif //IR_SENSOR_ANALOG
  646. }
  647. }
  648. #endif //PAT9125
  649. }
  650. #if IR_SENSOR_ANALOG
  651. bool fsensor_IR_check()
  652. {
  653. uint16_t volt_IR_int;
  654. bool bCheckResult;
  655. volt_IR_int=current_voltage_raw_IR;
  656. bCheckResult=(volt_IR_int<((int)IRsensor_Lmax_TRESHOLD))||(volt_IR_int>((int)IRsensor_Hmin_TRESHOLD));
  657. bCheckResult=bCheckResult&&(!((oFsensorPCB==ClFsensorPCB::_Rev03b)&&(volt_IR_int>((int)IRsensor_Hopen_TRESHOLD))));
  658. return(bCheckResult);
  659. }
  660. #endif //IR_SENSOR_ANALOG