| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012 | #include "Marlin.h"#include "Dcodes.h"#include "Configuration.h"#include "language.h"#include "cmdqueue.h"#include <stdio.h>#include <avr/pgmspace.h>#define SHOW_TEMP_ADC_VALUES#include "temperature.h"#define DBG(args...) printf_P(args)inline void print_hex_nibble(uint8_t val){	putchar((val > 9)?(val - 10 + 'a'):(val + '0'));}void print_hex_byte(uint8_t val){	print_hex_nibble(val >> 4);	print_hex_nibble(val & 15);}// debug range address type (fits all SRAM/PROGMEM/XFLASH memory ranges)#if defined(DEBUG_DCODE6) || defined(DEBUG_DCODES) || defined(XFLASH_DUMP)#include "xflash.h"#include "xflash_layout.h"#define DADDR_SIZE 32typedef uint32_t daddr_t; // XFLASH requires 24 bits#else#define DADDR_SIZE 16typedef uint16_t daddr_t;#endifvoid print_hex_word(daddr_t val){#if DADDR_SIZE > 16    print_hex_byte((val >> 16) & 0xFF);#endif    print_hex_byte((val >> 8) & 0xFF);    print_hex_byte(val & 0xFF);}int parse_hex(const char* hex, uint8_t* data, int count){	int parsed = 0;	while (*hex)	{		if (count && (parsed >= count)) break;		char c = *(hex++);		if (c == ' ') continue;		if (c == '\n') break;		uint8_t val = 0x00;		if ((c >= '0') && (c <= '9')) val |= ((c - '0') << 4);		else if ((c >= 'a') && (c <= 'f')) val |= ((c - 'a' + 10) << 4);		else return -parsed;		c = *(hex++);		if ((c >= '0') && (c <= '9')) val |= (c - '0');		else if ((c >= 'a') && (c <= 'f')) val |= (c - 'a' + 10);		else return -parsed;		data[parsed] = val;		parsed++;	}	return parsed;}enum class dcode_mem_t:uint8_t { sram, eeprom, progmem, xflash };void print_mem(daddr_t address, daddr_t count, dcode_mem_t type, uint8_t countperline = 16){#if defined(DEBUG_DCODE6) || defined(DEBUG_DCODES) || defined(XFLASH_DUMP)    if(type == dcode_mem_t::xflash)        XFLASH_SPI_ENTER();#endif	while (count)	{		print_hex_word(address);		putchar(' ');		uint8_t count_line = countperline;		while (count && count_line)		{			uint8_t data = 0;			switch (type)			{			case dcode_mem_t::sram: data = *((uint8_t*)address); break;			case dcode_mem_t::eeprom: data = eeprom_read_byte((uint8_t*)address); break;			case dcode_mem_t::progmem: break;#if defined(DEBUG_DCODE6) || defined(DEBUG_DCODES) || defined(XFLASH_DUMP)            case dcode_mem_t::xflash: xflash_rd_data(address, &data, 1); break;#else            case dcode_mem_t::xflash: break;#endif			}            ++address;			putchar(' ');			print_hex_byte(data);			count_line--;			count--;            // sporadically call manage_heater, but only when interrupts are enabled (meaning            // print_mem is called by D2). Don't do anything otherwise: we are inside a crash            // handler where memory & stack needs to be preserved!            if((SREG & (1 << SREG_I)) && !((uint16_t)count % 8192))                manage_heater();		}		putchar('\n');	}}// TODO: this only handles SRAM/EEPROM 16bit addressesvoid write_mem(uint16_t address, uint16_t count, const uint8_t* data, const dcode_mem_t type){    for (uint16_t i = 0; i < count; i++)    {        switch (type)        {        case dcode_mem_t::sram: *((uint8_t*)address) = data[i]; break;        case dcode_mem_t::eeprom: eeprom_write_byte((uint8_t*)address, data[i]); break;        case dcode_mem_t::progmem: break;        case dcode_mem_t::xflash: break;        }        ++address;    }}void dcode_core(daddr_t addr_start, const daddr_t addr_end, const dcode_mem_t type,                uint8_t dcode, const char* type_desc){    KEEPALIVE_STATE(NOT_BUSY);    DBG(_N("D%d - Read/Write %S\n"), dcode, type_desc);    daddr_t count = -1; // RW the entire space by default    if (code_seen('A'))        addr_start = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();    if (code_seen('C'))        count = code_value_long();    if (addr_start > addr_end)        addr_start = addr_end;    if ((addr_start + count) > addr_end || (addr_start + count) < addr_start)        count = addr_end - addr_start;    if (code_seen('X'))    {        uint8_t data[16];        count = parse_hex(strchr_pointer + 1, data, 16);        write_mem(addr_start, count, data, type);#if DADDR_SIZE > 16        DBG(_N("%lu bytes written to %S at address 0x%04lx\n"), count, type_desc, addr_start);#else        DBG(_N("%u bytes written to %S at address 0x%08x\n"), count, type_desc, addr_start);#endif    }    print_mem(addr_start, count, type);}#if defined DEBUG_DCODE3 || defined DEBUG_DCODES#define EEPROM_SIZE 0x1000    /*!    ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>    This command can be used without any additional parameters. It will read the entire eeprom.    #### Usage            D3 [ A | C | X ]        #### Parameters    - `A` - Address (x0000-x0fff)    - `C` - Count (1-4096)    - `X` - Data (hex)		#### Notes	- The hex address needs to be lowercase without the 0 before the x	- Count is decimal 	- The hex data needs to be lowercase	    */void dcode_3(){    dcode_core(0, EEPROM_SIZE, dcode_mem_t::eeprom, 3, _N("EEPROM"));}#endif //DEBUG_DCODE3#include "ConfigurationStore.h"#include "cmdqueue.h"#include "pat9125.h"#include "adc.h"#include "temperature.h"#include <avr/wdt.h>#include "bootapp.h"#if 0extern float current_temperature_pinda;extern float axis_steps_per_unit[NUM_AXIS];#define LOG(args...) printf(args)#endif //0#define LOG(args...)    /*!    *    ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">D-1: Endless Loop</a>                D-1          *    */void dcode__1(){	DBG(_N("D-1 - Endless loop\n"));//	cli();	while (1);}#ifdef DEBUG_DCODES    /*!    ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>    #### Usage            D0 [ B ]        #### Parameters    - `B` - Bootloader    */void dcode_0(){	if (*(strchr_pointer + 1) == 0) return;	LOG("D0 - Reset\n");	if (code_seen('B')) //bootloader	{		softReset();	}	else //reset	{#ifndef _NO_ASM		asm volatile("jmp 0x00000");#endif //_NO_ASM	}}    /*!    *    ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>                D1          *    */void dcode_1(){	LOG("D1 - Clear EEPROM and RESET\n");	cli();	for (int i = 0; i < 8192; i++)		eeprom_write_byte((unsigned char*)i, (unsigned char)0xff);	softReset();}#endif#if defined DEBUG_DCODE2 || defined DEBUG_DCODES    /*!    ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>    This command can be used without any additional parameters. It will read the entire RAM.    #### Usage        D2 [ A | C | X ]    #### Parameters    - `A` - Address (x0000-x21ff)    - `C` - Count (1-8704)    - `X` - Data	#### Notes	- The hex address needs to be lowercase without the 0 before the x	- Count is decimal	- The hex data needs to be lowercase    */void dcode_2(){    dcode_core(RAMSTART, RAMEND+1, dcode_mem_t::sram, 2, _N("SRAM"));}#endif#ifdef DEBUG_DCODES    /*!        ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>    To read the digital value of a pin you need only to define the pin number.    #### Usage            D4 [ P | F | V ]        #### Parameters    - `P` - Pin (0-255)    - `F` - Function in/out (0/1)    - `V` - Value (0/1)    */void dcode_4(){	LOG("D4 - Read/Write PIN\n");	if (code_seen('P')) // Pin (0-255)	{		int pin = (int)code_value();		if ((pin >= 0) && (pin <= 255))		{			if (code_seen('F')) // Function in/out (0/1)			{				int fnc = (int)code_value();				if (fnc == 0) pinMode(pin, INPUT);				else if (fnc == 1) pinMode(pin, OUTPUT);			}			if (code_seen('V')) // Value (0/1)			{				int val = (int)code_value();				if (val == 0) digitalWrite(pin, LOW);				else if (val == 1) digitalWrite(pin, HIGH);			}			else			{				int val = (digitalRead(pin) != LOW)?1:0;				printf("PIN%d=%d", pin, val);			}		}	}}#endif //DEBUG_DCODES#if defined DEBUG_DCODE5 || defined DEBUG_DCODES    /*!    ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>    This command can be used without any additional parameters. It will read the 1kb FLASH.    #### Usage            D5 [ A | C | X | E ]        #### Parameters    - `A` - Address (x00000-x3ffff)    - `C` - Count (1-8192)    - `X` - Data (hex)    - `E` - Erase 		#### Notes	- The hex address needs to be lowercase without the 0 before the x	- Count is decimal 	- The hex data needs to be lowercase	   */void dcode_5(){	puts_P(PSTR("D5 - Read/Write FLASH"));	uint32_t address = 0x0000; //default 0x0000	uint16_t count = 0x0400; //default 0x0400 (1kb block)	if (code_seen('A')) // Address (0x00000-0x3ffff)		address = (strchr_pointer[1] == 'x')?strtol(strchr_pointer + 2, 0, 16):(int)code_value();	if (code_seen('C')) // Count (0x0001-0x2000)		count = (int)code_value();	address &= 0x3ffff;	if (count > 0x2000) count = 0x2000;	if ((address + count) > 0x40000) count = 0x40000 - address;	bool bErase = false;	bool bCopy = false;	if (code_seen('E')) //Erase		bErase = true;	uint8_t data[16];	if (code_seen('X')) // Data	{		count = parse_hex(strchr_pointer + 1, data, 16);		if (count > 0) bCopy = true;	}	if (bErase || bCopy)	{		if (bErase)		{			printf_P(PSTR("%d bytes of FLASH at address %05x will be erased\n"), count, address);		}		if (bCopy)		{			printf_P(PSTR("%d  bytes will be written to FLASH at address %05x\n"), count, address);		}		cli();		boot_app_magic = 0x55aa55aa;		boot_app_flags = (bErase?(BOOT_APP_FLG_ERASE):0) | (bCopy?(BOOT_APP_FLG_COPY):0);		boot_copy_size = (uint16_t)count;		boot_dst_addr = (uint32_t)address;		boot_src_addr = (uint32_t)(&data);		bootapp_print_vars();		softReset();	}	while (count)	{		print_hex_nibble(address >> 16);		print_hex_word(address);		putchar(' ');		uint8_t countperline = 16;		while (count && countperline)		{			uint8_t data = pgm_read_byte_far((uint8_t*)address++);			putchar(' ');			print_hex_byte(data);			countperline--;			count--;		}		putchar('\n');	}}#endif //DEBUG_DCODE5#if defined(XFLASH) && (defined DEBUG_DCODE6 || defined DEBUG_DCODES)    /*!    ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>    This command can be used without any additional parameters. It will read the entire XFLASH.    #### Usage        D6 [ A | C | X ]    #### Parameters    - `A` - Address (x0000-x3ffff)    - `C` - Count (1-262144)    - `X` - Data	#### Notes	- The hex address needs to be lowercase without the 0 before the x	- Count is decimal	- The hex data needs to be lowercase	- Writing is currently not implemented    */void dcode_6(){    dcode_core(0x0, XFLASH_SIZE, dcode_mem_t::xflash, 6, _N("XFLASH"));}#endif#ifdef DEBUG_DCODES    /*!    ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>    Reserved    */void dcode_7(){	LOG("D7 - Read/Write Bootloader\n");/*	cli();	boot_app_magic = 0x55aa55aa;	boot_app_flags = BOOT_APP_FLG_ERASE | BOOT_APP_FLG_COPY | BOOT_APP_FLG_FLASH;	boot_copy_size = (uint16_t)0xc00;	boot_src_addr = (uint32_t)0x0003e400;	boot_dst_addr = (uint32_t)0x0003f400;	softReset();*/}    /*!    ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>    #### Usage            D8 [ ? | ! | P | Z ]        #### Parameters    - `?` - Read PINDA temperature shift values    - `!` - Reset PINDA temperature shift values to default    - `P` - Pinda temperature [C]    - `Z` - Z Offset [mm]    */void dcode_8(){	puts_P(PSTR("D8 - Read/Write PINDA"));	uint8_t cal_status = calibration_status_pinda();	float temp_pinda = current_temperature_pinda;	float offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda);	if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0))	{		printf_P(PSTR("cal_status=%d\n"), cal_status?1:0);		for (uint8_t i = 0; i < 6; i++)		{			uint16_t offs = 0;			if (i > 0) offs = eeprom_read_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + (i - 1));			float foffs = ((float)offs) / cs.axis_steps_per_unit[Z_AXIS];			offs = 1000 * foffs;			printf_P(PSTR("temp_pinda=%dC temp_shift=%dum\n"), 35 + i * 5, offs);		}	}	else if (strchr_pointer[1+1] == '!')	{		cal_status = 1;		eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, cal_status);		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 0,   8); //40C -  20um -   8usteps		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 1,  24); //45C -  60um -  24usteps		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 2,  48); //50C - 120um -  48usteps		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 3,  80); //55C - 200um -  80usteps		eeprom_write_word(((uint16_t*)EEPROM_PROBE_TEMP_SHIFT) + 4, 120); //60C - 300um - 120usteps	}	else	{		if (code_seen('P')) // Pinda temperature [C]			temp_pinda = code_value();		offset_z = temp_compensation_pinda_thermistor_offset(temp_pinda);		if (code_seen('Z')) // Z Offset [mm]		{			offset_z = code_value();		}	}	printf_P(PSTR("temp_pinda=%d offset_z=%d.%03d\n"), (int)temp_pinda, (int)offset_z, ((int)(1000 * offset_z) % 1000));}    /*!    ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>    #### Usage            D9 [ I | V ]        #### Parameters    - `I` - ADC channel index         - `0` - Heater 0 temperature        - `1` - Heater 1 temperature        - `2` - Bed temperature        - `3` - PINDA temperature        - `4` - PWR voltage        - `5` - Ambient temperature        - `6` - BED voltage    - `V` Value to be written as simulated    */const char* dcode_9_ADC_name(uint8_t i){	switch (i)	{	case 0: return PSTR("TEMP_HEATER0");	case 1: return PSTR("TEMP_HEATER1");	case 2: return PSTR("TEMP_BED");	case 3: return PSTR("TEMP_PINDA");	case 4: return PSTR("VOLT_PWR");	case 5: return PSTR("TEMP_AMBIENT");	case 6: return PSTR("VOLT_BED");	}	return 0;}uint16_t dcode_9_ADC_val(uint8_t i){	switch (i)	{#ifdef SHOW_TEMP_ADC_VALUES	case 0: return current_temperature_raw[0];#endif //SHOW_TEMP_ADC_VALUES	case 1: return 0;#ifdef SHOW_TEMP_ADC_VALUES	case 2: return current_temperature_bed_raw;#endif //SHOW_TEMP_ADC_VALUES#ifdef PINDA_THERMISTOR	case 3: return current_temperature_raw_pinda;#endif //PINDA_THERMISTOR#ifdef VOLT_PWR_PIN	case 4: return current_voltage_raw_pwr;#endif //VOLT_PWR_PIN#ifdef AMBIENT_THERMISTOR	case 5: return current_temperature_raw_ambient;#endif //AMBIENT_THERMISTOR#ifdef VOLT_BED_PIN	case 6: return current_voltage_raw_bed;#endif //VOLT_BED_PIN	}	return 0;}void dcode_9(){	puts_P(PSTR("D9 - Read/Write ADC"));	if ((strchr_pointer[1+1] == '?') || (strchr_pointer[1+1] == 0))	{		for (uint8_t i = 0; i < ADC_CHAN_CNT; i++)			printf_P(PSTR("\tADC%d=%4d\t(%S)\n"), i, dcode_9_ADC_val(i) >> 4, dcode_9_ADC_name(i));	}#if 0	else	{		uint8_t index = 0xff;		if (code_seen('I')) // index (index of used channel, not avr channel index)			index = code_value();		if (index < ADC_CHAN_CNT)		{			if (code_seen('V')) // value to be written as simulated			{				adc_sim_mask |= (1 << index);				adc_values[index] = ((uint16_t)code_value_short() << 4);				printf_P(PSTR("ADC%d=%4d\n"), index, adc_values[index] >> 4);			}		}	}#endif}    /*!    ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>    */void dcode_10(){//Tell the printer that XYZ calibration went OK	LOG("D10 - XYZ calibration = OK\n");	calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST); }    /*!    ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>    Writes the current time in the log file.    */void dcode_12(){//Time	LOG("D12 - Time\n");}#ifdef HEATBED_ANALYSIS    /*!    ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>    This command will log data to SD card file "mesh.txt".    #### Usage            D80 [ E | F | G | H | I | J ]        #### Parameters    - `E` - Dimension X (default 40)    - `F` - Dimention Y (default 40)    - `G` - Points X (default 40)    - `H` - Points Y (default 40)    - `I` - Offset X (default 74)    - `J` - Offset Y (default 34)  */void dcode_80(){	float dimension_x = 40;	float dimension_y = 40;	int points_x = 40;	int points_y = 40;	float offset_x = 74;	float offset_y = 33;	if (code_seen('E')) dimension_x = code_value();	if (code_seen('F')) dimension_y = code_value();	if (code_seen('G')) {points_x = code_value(); }	if (code_seen('H')) {points_y = code_value(); }	if (code_seen('I')) {offset_x = code_value(); }	if (code_seen('J')) {offset_y = code_value(); }	printf_P(PSTR("DIM X: %f\n"), dimension_x);	printf_P(PSTR("DIM Y: %f\n"), dimension_y);	printf_P(PSTR("POINTS X: %d\n"), points_x);	printf_P(PSTR("POINTS Y: %d\n"), points_y);	printf_P(PSTR("OFFSET X: %f\n"), offset_x);	printf_P(PSTR("OFFSET Y: %f\n"), offset_y);		bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);}    /*!    ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>    This command will log data to SD card file "wldsd.txt".    #### Usage            D81 [ E | F | G | H | I | J ]        #### Parameters    - `E` - Dimension X (default 40)    - `F` - Dimention Y (default 40)    - `G` - Points X (default 40)    - `H` - Points Y (default 40)    - `I` - Offset X (default 74)    - `J` - Offset Y (default 34)  */void dcode_81(){	float dimension_x = 40;	float dimension_y = 40;	int points_x = 40;	int points_y = 40;	float offset_x = 74;	float offset_y = 33;	if (code_seen('E')) dimension_x = code_value();	if (code_seen('F')) dimension_y = code_value();	if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }	if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }	if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }	if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }		bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);	}#endif //HEATBED_ANALYSIS    /*!    ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>    */void dcode_106(){	for (int i = 255; i > 0; i = i - 5) {		fanSpeed = i;		//delay_keep_alive(2000);		for (int j = 0; j < 100; j++) {			delay_keep_alive(100);			}			printf_P(_N("%d: %d\n"), i, fan_speed[1]);	}}#ifdef TMC2130#include "planner.h"#include "tmc2130.h"extern void st_synchronize();    /*!    ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>    @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.        #### Usage            D2130 [ Axis | Command | Subcommand | Value ]        #### Parameters    - Axis      - `X` - X stepper driver      - `Y` - Y stepper driver      - `Z` - Z stepper driver      - `E` - Extruder stepper driver    - Commands      - `0`   - Current off      - `1`   - Current on      - `+`   - Single step      - `-`   - Single step oposite direction      - `NNN` - Value sereval steps      - `?`   - Read register      - Subcommands for read register        - `mres`     - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'        - `step`     - Step        - `mscnt`    - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'        - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'        - `wave`     - Microstep linearity compensation curve      - `!`   - Set register      - Subcommands for set register        - `mres`     - Micro step resolution        - `step`     - Step        - `wave`     - Microstep linearity compensation curve        - Values for set register          - `0, 180 --> 250` - Off          - `0.9 --> 1.25`   - Valid values (recommended is 1.1)      - `@`   - Home calibrate axis        Examples:                D2130E?wave            Print extruder microstep linearity compensation curve                D2130E!wave0            Disable extruder linearity compensation curve, (sine curve is used)                D2130E!wave220            (sin(x))^1.1 extruder microstep compensation curve used        Notes:      For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf    *	*/void dcode_2130(){	puts_P(PSTR("D2130 - TMC2130"));	uint8_t axis = 0xff;	switch (strchr_pointer[1+4])	{	case 'X': axis = X_AXIS; break;	case 'Y': axis = Y_AXIS; break;	case 'Z': axis = Z_AXIS; break;	case 'E': axis = E_AXIS; break;	}	if (axis != 0xff)	{		char ch_axis = strchr_pointer[1+4];		if (strchr_pointer[1+5] == '0') { tmc2130_set_pwr(axis, 0); }		else if (strchr_pointer[1+5] == '1') { tmc2130_set_pwr(axis, 1); }		else if (strchr_pointer[1+5] == '+')		{			if (strchr_pointer[1+6] == 0)			{				tmc2130_set_dir(axis, 0);				tmc2130_do_step(axis);			}			else			{				uint8_t steps = atoi(strchr_pointer + 1 + 6);				tmc2130_do_steps(axis, steps, 0, 1000);			}		}		else if (strchr_pointer[1+5] == '-')		{			if (strchr_pointer[1+6] == 0)			{				tmc2130_set_dir(axis, 1);				tmc2130_do_step(axis);			}			else			{				uint8_t steps = atoi(strchr_pointer + 1 + 6);				tmc2130_do_steps(axis, steps, 1, 1000);			}		}		else if (strchr_pointer[1+5] == '?')		{			if (strcmp(strchr_pointer + 7, "mres") == 0) printf_P(PSTR("%c mres=%d\n"), ch_axis, tmc2130_mres[axis]);			else if (strcmp(strchr_pointer + 7, "step") == 0) printf_P(PSTR("%c step=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis) >> tmc2130_mres[axis]);			else if (strcmp(strchr_pointer + 7, "mscnt") == 0) printf_P(PSTR("%c MSCNT=%d\n"), ch_axis, tmc2130_rd_MSCNT(axis));			else if (strcmp(strchr_pointer + 7, "mscuract") == 0)			{				uint32_t val = tmc2130_rd_MSCURACT(axis);				int curA = (val & 0xff);				int curB = ((val >> 16) & 0xff);				if ((val << 7) & 0x8000) curA -= 256;				if ((val >> 9) & 0x8000) curB -= 256;				printf_P(PSTR("%c MSCURACT=0x%08lx A=%d B=%d\n"), ch_axis, val, curA, curB);			}			else if (strcmp(strchr_pointer + 7, "wave") == 0)			{				tmc2130_get_wave(axis, 0, stdout);			}		}		else if (strchr_pointer[1+5] == '!')		{			if (strncmp(strchr_pointer + 7, "step", 4) == 0)			{				uint8_t step = atoi(strchr_pointer + 11);				uint16_t res = tmc2130_get_res(axis);				tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);			}			else if (strncmp(strchr_pointer + 7, "mres", 4) == 0)			{				uint8_t mres = strchr_pointer[11] - '0';				if (mres <= 8)				{					st_synchronize();					uint16_t res = tmc2130_get_res(axis);					uint16_t res_new = tmc2130_mres2usteps(mres);					tmc2130_set_res(axis, res_new);					if (res_new > res)						cs.axis_steps_per_unit[axis] *= (res_new / res);					else						cs.axis_steps_per_unit[axis] /= (res / res_new);				}			}			else if (strncmp(strchr_pointer + 7, "wave", 4) == 0)			{				uint8_t fac1000 = atoi(strchr_pointer + 11) & 0xffff;				if (fac1000 < TMC2130_WAVE_FAC1000_MIN) fac1000 = 0;				if (fac1000 > TMC2130_WAVE_FAC1000_MAX) fac1000 = TMC2130_WAVE_FAC1000_MAX;				tmc2130_set_wave(axis, 247, fac1000);				tmc2130_wave_fac[axis] = fac1000;			}		}		else if (strchr_pointer[1+5] == '@')		{			tmc2130_home_calibrate(axis);		}	}}#endif //TMC2130#if defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125)    /*!    ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>    #### Usage            D9125 [ ? | ! | R | X | Y | L ]        #### Parameters    - `?` - Print values    - `!` - Print values    - `R` - Resolution. Not active in code    - `X` - X values    - `Y` - Y values    */void dcode_9125(){	LOG("D9125 - PAT9125\n");	if ((strchr_pointer[1+4] == '?') || (strchr_pointer[1+4] == 0))	{//		printf("res_x=%d res_y=%d x=%d y=%d b=%d s=%d\n", pat9125_xres, pat9125_yres, pat9125_x, pat9125_y, pat9125_b, pat9125_s);		printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s);		return;	}	if (strchr_pointer[1+4] == '!')	{		pat9125_update();		printf("x=%d y=%d b=%d s=%d\n", pat9125_x, pat9125_y, pat9125_b, pat9125_s);		return;	}/*	if (code_seen('R'))	{		unsigned char res = (int)code_value();		LOG("pat9125_init(xres=yres=%d)=%d\n", res, pat9125_init(res, res));	}*/	if (code_seen('X'))	{		pat9125_x = (int)code_value();		LOG("pat9125_x=%d\n", pat9125_x);	}	if (code_seen('Y'))	{		pat9125_y = (int)code_value();		LOG("pat9125_y=%d\n", pat9125_y);	}}#endif //defined(FILAMENT_SENSOR) && (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125)#endif //DEBUG_DCODES#ifdef XFLASH_DUMP#include "xflash_dump.h"void dcode_20(){    if(code_seen('E'))        xfdump_full_dump_and_reset();    else    {        unsigned long ts = _millis();        xfdump_dump();        ts = _millis() - ts;        DBG(_N("dump completed in %lums\n"), ts);    }}void dcode_21(){    if(!xfdump_check_state())        DBG(_N("no dump available\n"));    else    {        KEEPALIVE_STATE(NOT_BUSY);        DBG(_N("D21 - read crash dump\n"));        print_mem(DUMP_OFFSET, sizeof(dump_t), dcode_mem_t::xflash);    }}void dcode_22(){    if(!xfdump_check_state())        DBG(_N("no dump available\n"));    else    {        xfdump_reset();        DBG(_N("dump cleared\n"));    }}#endif#ifdef EMERGENCY_SERIAL_DUMP#include "asm.h"#include "xflash_dump.h"bool emergency_serial_dump = false;void dcode_23(){    if(code_seen('E'))        serial_dump_and_reset(dump_crash_reason::manual);    else    {        emergency_serial_dump = !code_seen('R');        SERIAL_ECHOPGM("serial dump ");        SERIAL_ECHOLNRPGM(emergency_serial_dump? _N("enabled"): _N("disabled"));    }}void __attribute__((noinline)) serial_dump_and_reset(dump_crash_reason reason){    uint16_t sp;    uint32_t pc;    // we're being called from a live state, so shut off interrupts ...    cli();    // sample SP/PC    sp = SP;    pc = GETPC();    // extend WDT long enough to allow writing the entire stream    wdt_enable(WDTO_8S);    // ... and heaters    WRITE(FAN_PIN, HIGH);    disable_heater();    // this function can also be called from within a corrupted state, so not use    // printf family of functions that use the heap or grow the stack.    SERIAL_ECHOLNPGM("D23 - emergency serial dump");    SERIAL_ECHOPGM("error: ");    MYSERIAL.print((uint8_t)reason, DEC);    SERIAL_ECHOPGM(" 0x");    MYSERIAL.print(pc, HEX);    SERIAL_ECHOPGM(" 0x");    MYSERIAL.println(sp, HEX);    print_mem(0, RAMEND+1, dcode_mem_t::sram);    SERIAL_ECHOLNRPGM(MSG_OK);    // reset soon    softReset();}#endif
 |