| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214 | #pragma once#include <inttypes.h>#include "cmdqueue.h"#include "pins.h"#include "fastio.h"#include "adc.h"#include "pat9125.h"#define FSENSOR_IR 1#define FSENSOR_IR_ANALOG 2#define FSENSOR_PAT9125 3/// Can be used to block printer's filament sensor handling - to avoid errorneous injecting of M600/// while doing a toolchange with the MMU/// In case of "no filament sensor" these methods default to an empty implementationclass FSensorBlockRunout {public:    FSensorBlockRunout();    ~FSensorBlockRunout();};/// Base class Filament sensor/// /// Ideally, there could have been a nice class hierarchy of filament sensor types with common functionality/// extracted into this base class./// But:/// - virtual methods take more space/// - we don't need to switch among different filament sensors at runtime/// Therefore the class hierarchy carefully avoids using virtual methods and doesn't look too fancy.#ifdef FILAMENT_SENSORclass Filament_sensor {public:    enum class State : uint8_t {        disabled = 0,        initializing,        ready,        error,    };        enum class SensorActionOnError : uint8_t {        _Continue = 0,        _Pause = 1,        _Undef = EEPROM_EMPTY_VALUE    };        static void setEnabled(bool enabled);        void setAutoLoadEnabled(bool state, bool updateEEPROM = false);    bool getAutoLoadEnabled() const { return autoLoadEnabled; }        void setRunoutEnabled(bool state, bool updateEEPROM = false);    bool getRunoutEnabled() const { return runoutEnabled; }        void setActionOnError(SensorActionOnError state, bool updateEEPROM = false);    SensorActionOnError getActionOnError() const { return sensorActionOnError; }        bool getFilamentLoadEvent() const { return postponedLoadEvent; }        bool isError() const { return state == State::error; }    bool isReady() const { return state == State::ready; }    bool isEnabled() const { return state != State::disabled; }    protected:    void settings_init_common();        bool checkFilamentEvents();        void triggerFilamentInserted();        void triggerFilamentRemoved();        static void filAutoLoad();        void filRunout();        void triggerError();        State state;    bool autoLoadEnabled;    bool runoutEnabled;    bool oldFilamentPresent; //for creating filament presence switching events.    bool postponedLoadEvent; //this event lasts exactly one update cycle. It is long enough to be able to do polling for load event.    ShortTimer eventBlankingTimer;    SensorActionOnError sensorActionOnError;};#if (FILAMENT_SENSOR_TYPE == FSENSOR_IR) || (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG)class IR_sensor: public Filament_sensor {public:    void init();    void deinit();    bool update();    bool getFilamentPresent() const { return !READ(IR_SENSOR_PIN); }#ifdef FSENSOR_PROBING    static bool probeOtherType(); //checks if the wrong fsensor type is detected.#endif    void settings_init();};#if (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG)constexpr static uint16_t Voltage2Raw(float V) {    return (V * 1023 * OVERSAMPLENR / VOLT_DIV_REF ) + 0.5F;}constexpr static float Raw2Voltage(uint16_t raw) {    return VOLT_DIV_REF * (raw / (1023.F * OVERSAMPLENR));}class IR_sensor_analog: public IR_sensor {public:    void init();    bool update();    void voltUpdate(uint16_t raw);        uint16_t __attribute__((noinline)) getVoltRaw();        enum class SensorRevision : uint8_t {        _Old = 0,        _Rev04 = 1,        _Undef = EEPROM_EMPTY_VALUE    };        SensorRevision getSensorRevision() const { return sensorRevision; }        const char* __attribute__((noinline)) getIRVersionText();        void setSensorRevision(SensorRevision rev, bool updateEEPROM = false);        constexpr static uint16_t IRsensor_Ldiode_TRESHOLD = Voltage2Raw(0.3F); // ~0.3V, raw value=982    constexpr static uint16_t IRsensor_Lmax_TRESHOLD = Voltage2Raw(1.5F); // ~1.5V (0.3*Vcc), raw value=4910    constexpr static uint16_t IRsensor_Hmin_TRESHOLD = Voltage2Raw(3.0F); // ~3.0V (0.6*Vcc), raw value=9821    constexpr static uint16_t IRsensor_Hopen_TRESHOLD = Voltage2Raw(4.6F); // ~4.6V (N.C. @ Ru~20-50k, Rd'=56k, Ru'=10k), raw value=15059    constexpr static uint16_t IRsensor_VMax_TRESHOLD = Voltage2Raw(5.F); // ~5V, raw value=16368    private:    SensorRevision sensorRevision;        bool voltReady; // set by the adc ISR, therefore avoid accessing the variable directly but use getVoltReady()    bool getVoltReady()const;    void clearVoltReady();        uint16_t voltRaw; // set by the adc ISR, therefore avoid accessing the variable directly but use getVoltRaw()    bool checkVoltage(uint16_t raw);        uint16_t minVolt = Voltage2Raw(6.F);    uint16_t maxVolt = 0;    uint16_t nFSCheckCount;    uint8_t voltageErrorCnt;    static constexpr uint16_t FS_CHECK_COUNT = 4;    /// Switching mechanism of the fsensor type.    /// Called from 2 spots which have a very similar behavior    /// 1: SensorRevision::_Old -> SensorRevision::_Rev04 and print _i("FS v0.4 or newer")    /// 2: SensorRevision::_Rev04 -> sensorRevision=SensorRevision::_Old and print _i("FS v0.3 or older")    void IR_ANALOG_Check(SensorRevision isVersion, SensorRevision switchTo);};#endif //(FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG)#endif //(FILAMENT_SENSOR_TYPE == FSENSOR_IR) || (FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOG)#if (FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125)class PAT9125_sensor: public Filament_sensor {public:    void init();    void deinit();    bool update();    bool getFilamentPresent() const { return filterFilPresent; }#ifdef FSENSOR_PROBING    bool probeOtherType(); //checks if the wrong fsensor type is detected.#endif        void setJamDetectionEnabled(bool state, bool updateEEPROM = false);    bool getJamDetectionEnabled() const { return jamDetection; }        void stStep(bool rev) { //from stepper isr        stepCount += rev ? -1 : 1;    }        void settings_init();private:    static constexpr uint16_t pollingPeriod = 10; //[ms]    static constexpr uint8_t filterCnt = 5; //how many checks need to be done in order to determine the filament presence precisely.    ShortTimer pollingTimer;    uint8_t filter;    uint8_t filterFilPresent;        bool jamDetection;    int16_t oldPos;    int16_t stepCount;    int16_t chunkSteps;    uint8_t jamErrCnt;        constexpr void calcChunkSteps(float u) {        chunkSteps = (int16_t)(1.25 * u); //[mm]    }        int16_t getStepCount();        void resetStepCount();        void filJam();        bool updatePAT9125();};#endif //(FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125)#if FILAMENT_SENSOR_TYPE == FSENSOR_IRextern IR_sensor fsensor;#elif FILAMENT_SENSOR_TYPE == FSENSOR_IR_ANALOGextern IR_sensor_analog fsensor;#elif FILAMENT_SENSOR_TYPE == FSENSOR_PAT9125extern PAT9125_sensor fsensor;#endif#endif //FILAMENT_SENSOR
 |