| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230 | //swi2c.c#include "swi2c.h"#include <avr/io.h>#include <util/delay.h>#include <avr/pgmspace.h>#include "stdbool.h"#include "Configuration_var.h"#include "pins.h"#include "fastio.h"#ifdef SWI2C_SCL#define SWI2C_RMSK   0x01 //read mask (bit0 = 1)#define SWI2C_WMSK   0x00 //write mask (bit0 = 0)#define SWI2C_ASHF   0x01 //address shift (<< 1)#define SWI2C_DMSK   0x7f //device address maskstatic void __delay(void);static void swi2c_start(void);static void swi2c_stop(void);// static void swi2c_ack(void);static void swi2c_nack(void);static uint8_t swi2c_wait_ack();static uint8_t swi2c_read(void);static void swi2c_write(uint8_t data);void swi2c_init(void){	SET_INPUT(SWI2C_SDA);	WRITE(SWI2C_SDA, 1); //SDA must be input with pullups while we are not sure if the slave is outputing or not	WRITE(SWI2C_SCL, 0);	SET_OUTPUT(SWI2C_SCL); //SCL can be an output at all times. The bus is not in a multi-master configuration.	for (uint8_t i = 0; i < 100; i++) //wait. Not sure what for, but wait anyway.		__delay();	for (uint8_t i = 0; i < 10; i++) { //send nack 10 times. This makes sure that the slave gets a nack regardless of it's state when we init the bus.		swi2c_nack();	}	swi2c_stop(); //"release" the bus by sending a stop condition.	SET_OUTPUT(SWI2C_SDA); //finally make the SDA line an output since the bus is idle for sure.}void swi2c_disable(void){	SET_INPUT(SWI2C_SDA);	WRITE(SWI2C_SDA, 0);	SET_INPUT(SWI2C_SCL);	WRITE(SWI2C_SCL, 0);}static void __delay(void){	_delay_us(1.5);}static void swi2c_start(void){	WRITE(SWI2C_SDA, 0);	__delay();	WRITE(SWI2C_SCL, 0);	__delay();}static void swi2c_stop(void){	WRITE(SWI2C_SCL, 1);	__delay();	WRITE(SWI2C_SDA, 1);	__delay();}/*static void swi2c_ack(void){	WRITE(SWI2C_SDA, 0);	__delay();	WRITE(SWI2C_SCL, 1);	__delay();	WRITE(SWI2C_SCL, 0);	__delay();}*/static void swi2c_nack(void){	WRITE(SWI2C_SDA, 1);	__delay();	WRITE(SWI2C_SCL, 1);	__delay();	WRITE(SWI2C_SCL, 0);	__delay();}static uint8_t swi2c_wait_ack(){	SET_INPUT(SWI2C_SDA);	__delay();//	WRITE(SWI2C_SDA, 1);	__delay();	WRITE(SWI2C_SCL, 1);//	__delay();	uint8_t ack = 0;	uint16_t ackto = SWI2C_TMO;	while (!(ack = (!READ(SWI2C_SDA))) && ackto--) __delay();	WRITE(SWI2C_SCL, 0);	__delay();	SET_OUTPUT(SWI2C_SDA);	__delay();	WRITE(SWI2C_SDA, 0);	__delay();	return ack;}static uint8_t swi2c_read(void){	WRITE(SWI2C_SDA, 1);	__delay();	SET_INPUT(SWI2C_SDA);	uint8_t data = 0;	for (uint8_t bit = 8; bit-- > 0;)	{		WRITE(SWI2C_SCL, 1);		__delay();		data |= (READ(SWI2C_SDA)) << bit;		WRITE(SWI2C_SCL, 0);		__delay();	}	SET_OUTPUT(SWI2C_SDA);	return data;}static void swi2c_write(uint8_t data){	for (uint8_t bit = 8; bit-- > 0;)	{		WRITE(SWI2C_SDA, data & _BV(bit));		__delay();		WRITE(SWI2C_SCL, 1);		__delay();		WRITE(SWI2C_SCL, 0);		__delay();	}}uint8_t swi2c_check(uint8_t dev_addr){	swi2c_start();	swi2c_write((dev_addr & SWI2C_DMSK) << SWI2C_ASHF);	if (!swi2c_wait_ack()) { swi2c_stop(); return 1; }	swi2c_stop();	return 0;}#ifdef SWI2C_A8 //8bit addressuint8_t swi2c_readByte_A8(uint8_t dev_addr, uint8_t addr, uint8_t* pbyte){	swi2c_start();	swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));	if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }	swi2c_write(addr & 0xff);	if (!swi2c_wait_ack()) return 0;	swi2c_stop();	swi2c_start();	swi2c_write(SWI2C_RMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));	if (!swi2c_wait_ack()) return 0;	uint8_t byte = swi2c_read();	swi2c_stop();	if (pbyte) *pbyte = byte;	return 1;}uint8_t swi2c_writeByte_A8(uint8_t dev_addr, uint8_t addr, uint8_t* pbyte){	swi2c_start();	swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));	if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }	swi2c_write(addr & 0xff);	if (!swi2c_wait_ack()) return 0;	swi2c_write(*pbyte);	if (!swi2c_wait_ack()) return 0;	swi2c_stop();	return 1;}#endif //SWI2C_A8#ifdef SWI2C_A16 //16bit addressuint8_t swi2c_readByte_A16(uint8_t dev_addr, unsigned short addr, uint8_t* pbyte){	swi2c_start();	swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));	if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }	swi2c_write(addr >> 8);	if (!swi2c_wait_ack()) return 0;	swi2c_write(addr & 0xff);	if (!swi2c_wait_ack()) return 0;	swi2c_stop();	swi2c_start();	swi2c_write(SWI2C_RMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));	if (!swi2c_wait_ack()) return 0;	uint8_t byte = swi2c_read();	swi2c_stop();	if (pbyte) *pbyte = byte;	return 1;}uint8_t swi2c_writeByte_A16(uint8_t dev_addr, unsigned short addr, uint8_t* pbyte){	swi2c_start();	swi2c_write(SWI2C_WMSK | ((dev_addr & SWI2C_DMSK) << SWI2C_ASHF));	if (!swi2c_wait_ack()) { swi2c_stop(); return 0; }	swi2c_write(addr >> 8);	if (!swi2c_wait_ack()) return 0;	swi2c_write(addr & 0xff);	if (!swi2c_wait_ack()) return 0;	swi2c_write(*pbyte);	if (!swi2c_wait_ack()) return 0;	swi2c_stop();	return 1;}#endif //SWI2C_A16#endif //SWI2C_SCL
 |