| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965 | /*  temperature.c - temperature control  Part of Marlin   Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm  This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.  This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more details.  You should have received a copy of the GNU General Public License along with this program.  If not, see <http://www.gnu.org/licenses/>. *//* This firmware is a mashup between Sprinter and grbl.  (https://github.com/kliment/Sprinter)  (https://github.com/simen/grbl/tree)  It has preliminary support for Matthew Roberts advance algorithm     http://reprap.org/pipermail/reprap-dev/2011-May/003323.html */#include "temperature.h"#include "stepper.h"#include "ultralcd.h"#include "menu.h"#include "sound.h"#include "fancheck.h"#include "messages.h"#include "language.h"#include "SdFatUtil.h"#include <avr/wdt.h>#include <util/atomic.h>#include "adc.h"#include "ConfigurationStore.h"#include "Timer.h"#include "Configuration_var.h"#include "Prusa_farm.h"#if (ADC_OVRSAMPL != OVERSAMPLENR)#error "ADC_OVRSAMPL oversampling must match OVERSAMPLENR"#endif#ifdef SYSTEM_TIMER_2#define ENABLE_SOFT_PWM_INTERRUPT()  TIMSK2 |= (1<<OCIE2B)#define DISABLE_SOFT_PWM_INTERRUPT() TIMSK2 &= ~(1<<OCIE2B)#else //SYSTEM_TIMER_2#define ENABLE_SOFT_PWM_INTERRUPT()  TIMSK0 |= (1<<OCIE0B)#define DISABLE_SOFT_PWM_INTERRUPT() TIMSK0 &= ~(1<<OCIE0B)#endif //SYSTEM_TIMER_2// temperature manager timer configuration#define TEMP_MGR_INTV   0.27 // seconds, ~3.7Hz#define TEMP_TIM_PRESCALE 256#define TEMP_TIM_OCRA_OVF (uint16_t)(TEMP_MGR_INTV / ((long double)TEMP_TIM_PRESCALE / F_CPU))#define TEMP_TIM_REGNAME(registerbase,number,suffix) _REGNAME(registerbase,number,suffix)#undef B0 //Necessary hack because of "binary.h" included in "Arduino.h" included in "system_timer.h" included in this file...#define TCCRxA TEMP_TIM_REGNAME(TCCR, TEMP_TIM, A)#define TCCRxB TEMP_TIM_REGNAME(TCCR, TEMP_TIM, B)#define TCCRxC TEMP_TIM_REGNAME(TCCR, TEMP_TIM, C)#define TCNTx TEMP_TIM_REGNAME(TCNT, TEMP_TIM,)#define OCRxA TEMP_TIM_REGNAME(OCR, TEMP_TIM, A)#define TIMSKx TEMP_TIM_REGNAME(TIMSK, TEMP_TIM,)#define TIFRx TEMP_TIM_REGNAME(TIFR, TEMP_TIM,)#define TIMERx_COMPA_vect TEMP_TIM_REGNAME(TIMER, TEMP_TIM, _COMPA_vect)#define CSx0 TEMP_TIM_REGNAME(CS, TEMP_TIM, 0)#define CSx1 TEMP_TIM_REGNAME(CS, TEMP_TIM, 1)#define CSx2 TEMP_TIM_REGNAME(CS, TEMP_TIM, 2)#define WGMx0 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 0)#define WGMx1 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 1)#define WGMx2 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 2)#define WGMx3 TEMP_TIM_REGNAME(WGM, TEMP_TIM, 3)#define COMxA0 TEMP_TIM_REGNAME(COM, TEMP_TIM, A0)#define COMxB0 TEMP_TIM_REGNAME(COM, TEMP_TIM, B0)#define COMxC0 TEMP_TIM_REGNAME(COM, TEMP_TIM, C0)#define OCIExA TEMP_TIM_REGNAME(OCIE, TEMP_TIM, A)#define OCFxA TEMP_TIM_REGNAME(OCF, TEMP_TIM, A)#define TEMP_MGR_INT_FLAG_STATE()    (TIFRx & (1<<OCFxA))#define TEMP_MGR_INT_FLAG_CLEAR()    TIFRx |= (1<<OCFxA)#define TEMP_MGR_INTERRUPT_STATE()   (TIMSKx & (1<<OCIExA))#define ENABLE_TEMP_MGR_INTERRUPT()  TIMSKx |=  (1<<OCIExA)#define DISABLE_TEMP_MGR_INTERRUPT() TIMSKx &= ~(1<<OCIExA)#ifdef TEMP_MODEL// temperature model interface#include "temp_model.h"#endif#include "Filament_sensor.h"//===========================================================================//=============================public variables============================//===========================================================================int target_temperature[EXTRUDERS] = { 0 };int target_temperature_bed = 0;int current_temperature_raw[EXTRUDERS] = { 0 };float current_temperature[EXTRUDERS] = { 0.0 };#ifdef PINDA_THERMISTORuint16_t current_temperature_raw_pinda = 0;float current_temperature_pinda = 0.0;#endif //PINDA_THERMISTOR#ifdef AMBIENT_THERMISTORint current_temperature_raw_ambient = 0;float current_temperature_ambient = 0.0;#endif //AMBIENT_THERMISTOR#ifdef VOLT_PWR_PINint current_voltage_raw_pwr = 0;#endif#ifdef VOLT_BED_PINint current_voltage_raw_bed = 0;#endifint current_temperature_bed_raw = 0;float current_temperature_bed = 0.0;  #ifdef PIDTEMP  float _Kp, _Ki, _Kd;  int pid_cycle, pid_number_of_cycles;  static bool pid_tuning_finished = true;  bool pidTuningRunning() {      return !pid_tuning_finished;  }  void preparePidTuning() {      // ensure heaters are disabled before we switch off PID management!      disable_heater();      pid_tuning_finished = false;  }#endif //PIDTEMP  unsigned char soft_pwm_bed;#ifdef BABYSTEPPING  volatile int babystepsTodo[3]={0,0,0};#endif//===========================================================================//=============================private variables============================//===========================================================================static volatile bool temp_meas_ready = false;#ifdef PIDTEMP  //static cannot be external:  static float iState_sum[EXTRUDERS] = { 0 };  static float dState_last[EXTRUDERS] = { 0 };  static float pTerm[EXTRUDERS];  static float iTerm[EXTRUDERS];  static float dTerm[EXTRUDERS];  static float pid_error[EXTRUDERS];  static float iState_sum_min[EXTRUDERS];  static float iState_sum_max[EXTRUDERS];  static bool pid_reset[EXTRUDERS];#endif //PIDTEMP#ifdef PIDTEMPBED  //static cannot be external:  static float temp_iState_bed = { 0 };  static float temp_dState_bed = { 0 };  static float pTerm_bed;  static float iTerm_bed;  static float dTerm_bed;  static float pid_error_bed;  static float temp_iState_min_bed;  static float temp_iState_max_bed;#else //PIDTEMPBED	static unsigned long  previous_millis_bed_heater;#endif //PIDTEMPBED  static unsigned char soft_pwm[EXTRUDERS];#ifdef FAN_SOFT_PWM  unsigned char fanSpeedSoftPwm;  static unsigned char soft_pwm_fan;#endifuint8_t fanSpeedBckp = 255;#if EXTRUDERS > 3  # error Unsupported number of extruders#elif EXTRUDERS > 2  # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }#elif EXTRUDERS > 1  # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }#else  # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }#endif// Init min and max temp with extreme values to prevent false errors during startupstatic int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );#ifdef BED_MINTEMPstatic int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;#endif#ifdef BED_MAXTEMPstatic int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;#endif#ifdef AMBIENT_MINTEMPstatic int ambient_minttemp_raw = AMBIENT_RAW_LO_TEMP;#endif#ifdef AMBIENT_MAXTEMPstatic int ambient_maxttemp_raw = AMBIENT_RAW_HI_TEMP;#endifstatic void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );static float analog2temp(int raw, uint8_t e);static float analog2tempBed(int raw);#ifdef AMBIENT_MAXTEMPstatic float analog2tempAmbient(int raw);#endifstatic void updateTemperatures();enum TempRunawayStates : uint8_t{	TempRunaway_INACTIVE = 0,	TempRunaway_PREHEAT = 1,	TempRunaway_ACTIVE = 2,};#ifndef SOFT_PWM_SCALE#define SOFT_PWM_SCALE 0#endif//===========================================================================//=============================   functions      ============================//===========================================================================#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)static uint8_t temp_runaway_status[1 + EXTRUDERS];static float temp_runaway_target[1 + EXTRUDERS];static uint32_t temp_runaway_timer[1 + EXTRUDERS];static uint16_t temp_runaway_error_counter[1 + EXTRUDERS];static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);static void temp_runaway_stop(bool isPreheat, bool isBed);#endif// return "false", if all extruder-heaters are 'off' (ie. "true", if any heater is 'on')bool checkAllHotends(void){    bool result=false;    for(int i=0;i<EXTRUDERS;i++) result=(result||(target_temperature[i]!=0));    return(result);}// WARNING: the following function has been marked noinline to avoid a GCC 4.9.2 LTO//          codegen bug causing a stack overwrite issue in process_commands()void __attribute__((noinline)) PID_autotune(float temp, int extruder, int ncycles){  preparePidTuning();  pid_number_of_cycles = ncycles;  float input = 0.0;  pid_cycle=0;  bool heating = true;  unsigned long temp_millis = _millis();  unsigned long t1=temp_millis;  unsigned long t2=temp_millis;  long t_high = 0;  long t_low = 0;  long bias, d;  float Ku, Tu;  float max = 0, min = 10000;  uint8_t safety_check_cycles = 0;  const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed  float temp_ambient;#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)  unsigned long extruder_autofan_last_check = _millis();#endif  if ((extruder >= EXTRUDERS)  #if (TEMP_BED_PIN <= -1)       ||(extruder < 0)  #endif       ){          SERIAL_ECHOLNPGM("PID Autotune failed. Bad extruder number.");		  pid_tuning_finished = true;		  pid_cycle = 0;          return;        }	  SERIAL_ECHOLNPGM("PID Autotune start");  if (extruder<0)  {     soft_pwm_bed = (MAX_BED_POWER)/2;	 timer02_set_pwm0(soft_pwm_bed << 1);     bias = d = (MAX_BED_POWER)/2;     target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen   }   else   {     soft_pwm[extruder] = (PID_MAX)/2;     bias = d = (PID_MAX)/2;     target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen  }  for(;;) {#ifdef WATCHDOG    wdt_reset();#endif //WATCHDOG    if(temp_meas_ready == true) { // temp sample ready      updateTemperatures();      input = (extruder<0)?current_temperature_bed:current_temperature[extruder];      max=max(max,input);      min=min(min,input);      #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)      if(_millis() - extruder_autofan_last_check > 2500) {        checkExtruderAutoFans();        extruder_autofan_last_check = _millis();      }      #endif      if(heating == true && input > temp) {        if(_millis() - t2 > 5000) {           heating=false;          if (extruder<0)		  {            soft_pwm_bed = (bias - d) >> 1;			timer02_set_pwm0(soft_pwm_bed << 1);		  }          else            soft_pwm[extruder] = (bias - d) >> 1;          t1=_millis();          t_high=t1 - t2;          max=temp;        }      }      if(heating == false && input < temp) {        if(_millis() - t1 > 5000) {          heating=true;          t2=_millis();          t_low=t2 - t1;          if(pid_cycle > 0) {            bias += (d*(t_high - t_low))/(t_low + t_high);            bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);            if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;            else d = bias;            SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);            SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);            SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);            SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);            if(pid_cycle > 2) {              Ku = (4.0*d)/(3.14159*(max-min)/2.0);              Tu = ((float)(t_low + t_high)/1000.0);              SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);              SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);              _Kp = 0.6*Ku;              _Ki = 2*_Kp/Tu;              _Kd = _Kp*Tu/8;              SERIAL_PROTOCOLLNPGM(" Classic PID ");              SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);              SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);              SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);              /*              _Kp = 0.33*Ku;              _Ki = _Kp/Tu;              _Kd = _Kp*Tu/3;              SERIAL_PROTOCOLLNPGM(" Some overshoot ");              SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);              SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);              SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);              _Kp = 0.2*Ku;              _Ki = 2*_Kp/Tu;              _Kd = _Kp*Tu/3;              SERIAL_PROTOCOLLNPGM(" No overshoot ");              SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);              SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);              SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);              */            }          }          if (extruder<0)		  {            soft_pwm_bed = (bias + d) >> 1;			timer02_set_pwm0(soft_pwm_bed << 1);		  }          else            soft_pwm[extruder] = (bias + d) >> 1;          pid_cycle++;          min=temp;        }      }     }    if(input > (temp + 20)) {      SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");	  pid_tuning_finished = true;	  pid_cycle = 0;      return;    }    if(_millis() - temp_millis > 2000) {      int p;      if (extruder<0){        p=soft_pwm_bed;               SERIAL_PROTOCOLPGM("B:");      }else{        p=soft_pwm[extruder];               SERIAL_PROTOCOLPGM("T:");      }			      SERIAL_PROTOCOL(input);         SERIAL_PROTOCOLPGM(" @:");      SERIAL_PROTOCOLLN(p);       		if (safety_check_cycles == 0) { //save ambient temp			temp_ambient = input;			//SERIAL_ECHOPGM("Ambient T: ");			//MYSERIAL.println(temp_ambient);			safety_check_cycles++;		}		else if (safety_check_cycles < safety_check_cycles_count) { //delay			safety_check_cycles++;				}		else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising			safety_check_cycles++;			//SERIAL_ECHOPGM("Time from beginning: ");			//MYSERIAL.print(safety_check_cycles_count * 2);			//SERIAL_ECHOPGM("s. Difference between current and ambient T: ");			//MYSERIAL.println(input - temp_ambient);			if (fabs(input - temp_ambient) < 5.0) { 				temp_runaway_stop(false, (extruder<0));				pid_tuning_finished = true;				return;			}		}      temp_millis = _millis();    }    if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {      SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");	  pid_tuning_finished = true;	  pid_cycle = 0;      return;    }    if(pid_cycle > ncycles) {      SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");	  pid_tuning_finished = true;	  pid_cycle = 0;      return;    }    lcd_update(0);  }}void updatePID(){  // TODO: iState_sum_max and PID values should be synchronized for temp_mgr_isr#ifdef PIDTEMP  for(uint_least8_t e = 0; e < EXTRUDERS; e++) {     iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;    }#endif#ifdef PIDTEMPBED  temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;  #endif}  int getHeaterPower(int heater) {	if (heater<0)		return soft_pwm_bed;  return soft_pwm[heater];}// reset PID state after changing target_temperaturevoid resetPID(uint8_t extruder _UNUSED) {}enum class TempErrorSource : uint8_t{    hotend,    bed,#ifdef AMBIENT_THERMISTOR    ambient,#endif};// thermal error type (in order of decreasing priority!)enum class TempErrorType : uint8_t{    max,    min,    preheat,    runaway,#ifdef TEMP_MODEL    model,#endif};// error state (updated via set_temp_error from isr context)volatile static union{    uint8_t v;    struct    {        uint8_t error: 1;  // error condition        uint8_t assert: 1; // error is still asserted        uint8_t source: 2; // source        uint8_t index: 1;  // source index        uint8_t type: 3;   // error type    };} temp_error_state;// set the error type from within the temp_mgr isr to be handled in manager_heater// - immediately disable all heaters and turn on all fans at full speed// - prevent the user to set temperatures until all errors are clearedvoid set_temp_error(TempErrorSource source, uint8_t index, TempErrorType type){    // save the original target temperatures for recovery before disabling heaters    if(!temp_error_state.error && !saved_printing) {        saved_bed_temperature = target_temperature_bed;        saved_extruder_temperature = target_temperature[index];        saved_fan_speed = fanSpeed;    }    // keep disabling heaters and keep fans on as long as the condition is asserted    disable_heater();    hotendFanSetFullSpeed();    // set the initial error source to the highest priority error    if(!temp_error_state.error || (uint8_t)type < temp_error_state.type) {        temp_error_state.source = (uint8_t)source;        temp_error_state.index = index;        temp_error_state.type = (uint8_t)type;    }    // always set the error state    temp_error_state.error = true;    temp_error_state.assert = true;}bool get_temp_error(){    return temp_error_state.v;}void handle_temp_error();void manage_heater(){#ifdef WATCHDOG    wdt_reset();#endif //WATCHDOG    // limit execution to the same rate as temp_mgr (low-level fault handling is already handled -    // any remaining error handling is just user-facing and can wait one extra cycle)    if(!temp_meas_ready)        return;    // syncronize temperatures with isr    updateTemperatures();#ifdef TEMP_MODEL    // handle model warnings first, so not to override the error handler    if(temp_model::warning_state.warning)        temp_model::handle_warning();#endif    // handle temperature errors    if(temp_error_state.v)        handle_temp_error();    // periodically check fans    checkFans();#ifdef TEMP_MODEL_DEBUG    temp_model::log_usr();#endif}#define PGM_RD_W(x)   (short)pgm_read_word(&x)// Derived from RepRap FiveD extruder::getTemperature()// For hot end temperature measurement.static float analog2temp(int raw, uint8_t e) {  if(e >= EXTRUDERS)  {      SERIAL_ERROR_START;      SERIAL_ERROR((int)e);      SERIAL_ERRORLNPGM(" - Invalid extruder number !");      kill(NULL, 6);      return 0.0;  }   #ifdef HEATER_0_USES_MAX6675    if (e == 0)    {      return 0.25 * raw;    }  #endif  if(heater_ttbl_map[e] != NULL)  {    float celsius = 0;    uint8_t i;    short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);    for (i=1; i<heater_ttbllen_map[e]; i++)    {      if (PGM_RD_W((*tt)[i][0]) > raw)      {        celsius = PGM_RD_W((*tt)[i-1][1]) +           (raw - PGM_RD_W((*tt)[i-1][0])) *           (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /          (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));        break;      }    }    // Overflow: Set to last value in the table    if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);    return celsius;  }  return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;}// Derived from RepRap FiveD extruder::getTemperature()// For bed temperature measurement.static float analog2tempBed(int raw) {  #ifdef BED_USES_THERMISTOR    float celsius = 0;    byte i;    for (i=1; i<BEDTEMPTABLE_LEN; i++)    {      if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)      {        celsius  = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +           (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *           (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /          (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));        break;      }    }    // Overflow: Set to last value in the table    if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);	// temperature offset adjustment#ifdef BED_OFFSET	float _offset = BED_OFFSET;	float _offset_center = BED_OFFSET_CENTER;	float _offset_start = BED_OFFSET_START;	float _first_koef = (_offset / 2) / (_offset_center - _offset_start);	float _second_koef = (_offset / 2) / (100 - _offset_center);	if (celsius >= _offset_start && celsius <= _offset_center)	{		celsius = celsius + (_first_koef * (celsius - _offset_start));	}	else if (celsius > _offset_center && celsius <= 100)	{		celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;	}	else if (celsius > 100)	{		celsius = celsius + _offset;	}#endif    return celsius;  #elif defined BED_USES_AD595    return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;  #else    return 0;  #endif}#ifdef AMBIENT_THERMISTORstatic float analog2tempAmbient(int raw){    float celsius = 0;    byte i;    for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)    {      if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)      {        celsius  = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +           (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *           (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /          (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));        break;      }    }    // Overflow: Set to last value in the table    if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);    return celsius;}#endif //AMBIENT_THERMISTORvoid soft_pwm_init(){#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))  //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector  MCUCR=(1<<JTD);   MCUCR=(1<<JTD);#endif    // Finish init of mult extruder arrays   for(int e = 0; e < EXTRUDERS; e++) {    // populate with the first value     maxttemp[e] = maxttemp[0];#ifdef PIDTEMP    iState_sum_min[e] = 0.0;    iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;#endif //PIDTEMP#ifdef PIDTEMPBED    temp_iState_min_bed = 0.0;    temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;#endif //PIDTEMPBED  }  #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)     SET_OUTPUT(HEATER_0_PIN);  #endif    #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)     SET_OUTPUT(HEATER_1_PIN);  #endif    #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)     SET_OUTPUT(HEATER_2_PIN);  #endif    #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)     SET_OUTPUT(HEATER_BED_PIN);  #endif    #if defined(FAN_PIN) && (FAN_PIN > -1)     SET_OUTPUT(FAN_PIN);    #ifdef FAST_PWM_FAN    setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8    #endif    #ifdef FAN_SOFT_PWM    soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));    #endif  #endif  #ifdef HEATER_0_USES_MAX6675    #ifndef SDSUPPORT      SET_OUTPUT(SCK_PIN);      WRITE(SCK_PIN,0);          SET_OUTPUT(MOSI_PIN);      WRITE(MOSI_PIN,1);          SET_INPUT(MISO_PIN);      WRITE(MISO_PIN,1);    #endif    /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */        //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card	pinMode(SS_PIN, OUTPUT);	digitalWrite(SS_PIN,0);  	pinMode(MAX6675_SS, OUTPUT);	digitalWrite(MAX6675_SS,1);  #endif#ifdef HEATER_0_MINTEMP  minttemp[0] = HEATER_0_MINTEMP;  while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP    minttemp_raw[0] += OVERSAMPLENR;#else    minttemp_raw[0] -= OVERSAMPLENR;#endif  }#endif //MINTEMP#ifdef HEATER_0_MAXTEMP  maxttemp[0] = HEATER_0_MAXTEMP;  while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP    maxttemp_raw[0] -= OVERSAMPLENR;#else    maxttemp_raw[0] += OVERSAMPLENR;#endif  }#endif //MAXTEMP#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)  minttemp[1] = HEATER_1_MINTEMP;  while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP    minttemp_raw[1] += OVERSAMPLENR;#else    minttemp_raw[1] -= OVERSAMPLENR;#endif  }#endif // MINTEMP 1#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)  maxttemp[1] = HEATER_1_MAXTEMP;  while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP    maxttemp_raw[1] -= OVERSAMPLENR;#else    maxttemp_raw[1] += OVERSAMPLENR;#endif  }#endif //MAXTEMP 1#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)  minttemp[2] = HEATER_2_MINTEMP;  while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP    minttemp_raw[2] += OVERSAMPLENR;#else    minttemp_raw[2] -= OVERSAMPLENR;#endif  }#endif //MINTEMP 2#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)  maxttemp[2] = HEATER_2_MAXTEMP;  while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP    maxttemp_raw[2] -= OVERSAMPLENR;#else    maxttemp_raw[2] += OVERSAMPLENR;#endif  }#endif //MAXTEMP 2#ifdef BED_MINTEMP  while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP    bed_minttemp_raw += OVERSAMPLENR;#else    bed_minttemp_raw -= OVERSAMPLENR;#endif  }#endif //BED_MINTEMP#ifdef BED_MAXTEMP  while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP    bed_maxttemp_raw -= OVERSAMPLENR;#else    bed_maxttemp_raw += OVERSAMPLENR;#endif  }#endif //BED_MAXTEMP#ifdef AMBIENT_MINTEMP  while(analog2tempAmbient(ambient_minttemp_raw) < AMBIENT_MINTEMP) {#if AMBIENT_RAW_LO_TEMP < AMBIENT_RAW_HI_TEMP    ambient_minttemp_raw += OVERSAMPLENR;#else    ambient_minttemp_raw -= OVERSAMPLENR;#endif  }#endif //AMBIENT_MINTEMP#ifdef AMBIENT_MAXTEMP  while(analog2tempAmbient(ambient_maxttemp_raw) > AMBIENT_MAXTEMP) {#if AMBIENT_RAW_LO_TEMP < AMBIENT_RAW_HI_TEMP    ambient_maxttemp_raw -= OVERSAMPLENR;#else    ambient_maxttemp_raw += OVERSAMPLENR;#endif  }#endif //AMBIENT_MAXTEMP  timer0_init(); //enables the heatbed timer.  // timer2 already enabled earlier in the code  // now enable the COMPB temperature interrupt  OCR2B = 128;  ENABLE_SOFT_PWM_INTERRUPT();  timer4_init(); //for tone and Hotend fan PWM}#if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)static void temp_runaway_check(uint8_t _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed){	float __delta;	float __hysteresis = 0;	uint16_t __timeout = 0;	bool temp_runaway_check_active = false;	static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder	static uint8_t __preheat_counter[2] = { 0,0};	static uint8_t __preheat_errors[2] = { 0,0};	if (_millis() - temp_runaway_timer[_heater_id] > 2000)	{#ifdef 	TEMP_RUNAWAY_BED_TIMEOUT          if (_isbed)          {               __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;               __timeout = TEMP_RUNAWAY_BED_TIMEOUT;          }#endif#ifdef 	TEMP_RUNAWAY_EXTRUDER_TIMEOUT          if (!_isbed)          {               __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;               __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;          }#endif		temp_runaway_timer[_heater_id] = _millis();		if (_output == 0)		{			temp_runaway_check_active = false;			temp_runaway_error_counter[_heater_id] = 0;		}		if (temp_runaway_target[_heater_id] != _target_temperature)		{			if (_target_temperature > 0)			{				temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;				temp_runaway_target[_heater_id] = _target_temperature;				__preheat_start[_heater_id] = _current_temperature;				__preheat_counter[_heater_id] = 0;			}			else			{				temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;				temp_runaway_target[_heater_id] = _target_temperature;			}		}		if ((_current_temperature < _target_temperature)  && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))		{			__preheat_counter[_heater_id]++;			if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes			{				/*SERIAL_ECHOPGM("Heater:");				MYSERIAL.print(_heater_id);				SERIAL_ECHOPGM(" T:");				MYSERIAL.print(_current_temperature);				SERIAL_ECHOPGM(" Tstart:");				MYSERIAL.print(__preheat_start[_heater_id]);				SERIAL_ECHOPGM(" delta:");				MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/				//-//				if (_current_temperature - __preheat_start[_heater_id] < 2) {//-//				if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {                    __delta=2.0;                    if(_isbed)                         {                         __delta=3.0;                         if(_current_temperature>90.0) __delta=2.0;                         if(_current_temperature>105.0) __delta=0.6;                         }				if (_current_temperature - __preheat_start[_heater_id] < __delta) {					__preheat_errors[_heater_id]++;					/*SERIAL_ECHOPGM(" Preheat errors:");					MYSERIAL.println(__preheat_errors[_heater_id]);*/				}				else {					//SERIAL_ECHOLNPGM("");					__preheat_errors[_heater_id] = 0;				}				if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))                     set_temp_error((_isbed?TempErrorSource::bed:TempErrorSource::hotend), _heater_id, TempErrorType::preheat);				__preheat_start[_heater_id] = _current_temperature;				__preheat_counter[_heater_id] = 0;			}		}//-//		if (_current_temperature >= _target_temperature  && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)		if ((_current_temperature > (_target_temperature - __hysteresis))  && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)		{			/*SERIAL_ECHOPGM("Heater:");			MYSERIAL.print(_heater_id);			MYSERIAL.println(" ->tempRunaway");*/			temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;			temp_runaway_check_active = false;			temp_runaway_error_counter[_heater_id] = 0;		}		if (_output > 0)		{			temp_runaway_check_active = true;		}		if (temp_runaway_check_active)		{						//	we are in range			if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))			{				temp_runaway_check_active = false;				temp_runaway_error_counter[_heater_id] = 0;			}			else			{				if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)				{					temp_runaway_error_counter[_heater_id]++;					if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)                        set_temp_error((_isbed?TempErrorSource::bed:TempErrorSource::hotend), _heater_id, TempErrorType::runaway);				}			}		}	}}static void temp_runaway_stop(bool isPreheat, bool isBed){    if(IsStopped() == false) {        if (isPreheat) {            lcd_setalertstatuspgm(isBed? PSTR("BED PREHEAT ERROR") : PSTR("PREHEAT ERROR"), LCD_STATUS_CRITICAL);            SERIAL_ERROR_START;            if (isBed) {                SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HEATBED)");            } else {                SERIAL_ERRORLNPGM(" THERMAL RUNAWAY (PREHEAT HOTEND)");            }        } else {            lcd_setalertstatuspgm(isBed? PSTR("BED THERMAL RUNAWAY") : PSTR("THERMAL RUNAWAY"), LCD_STATUS_CRITICAL);            SERIAL_ERROR_START;            if (isBed) {                SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY");            } else {                SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");            }        }        prusa_statistics(0);        prusa_statistics(isPreheat? 91 : 90);    }    ThermalStop();}#endif//! signal a temperature error on both the lcd and serial//! @param type short error abbreviation (PROGMEM)//! @param e optional extruder index for hotend errorsstatic void temp_error_messagepgm(const char* PROGMEM type, uint8_t e = EXTRUDERS){    char msg[LCD_WIDTH];    strcpy_P(msg, PSTR("Err: "));    strcat_P(msg, type);    lcd_setalertstatus(msg, LCD_STATUS_CRITICAL);    SERIAL_ERROR_START;    if(e != EXTRUDERS) {        SERIAL_ERROR((int)e);        SERIAL_ERRORPGM(": ");    }    SERIAL_ERRORPGM("Heaters switched off. ");    SERIAL_ERRORRPGM(type);    SERIAL_ERRORLNPGM(" triggered!");}static void max_temp_error(uint8_t e) {    if(IsStopped() == false) {        temp_error_messagepgm(PSTR("MAXTEMP"), e);        prusa_statistics(93);    }#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE    ThermalStop();#endif}static void min_temp_error(uint8_t e) {    static const char err[] PROGMEM = "MINTEMP";    if(IsStopped() == false) {        temp_error_messagepgm(err, e);        prusa_statistics(92);    }    ThermalStop();}static void bed_max_temp_error(void) {    if(IsStopped() == false) {        temp_error_messagepgm(PSTR("MAXTEMP BED"));    }    ThermalStop();}static void bed_min_temp_error(void) {    static const char err[] PROGMEM = "MINTEMP BED";    if(IsStopped() == false) {        temp_error_messagepgm(err);	}    ThermalStop();}#ifdef AMBIENT_THERMISTORstatic void ambient_max_temp_error(void) {    if(IsStopped() == false) {        temp_error_messagepgm(PSTR("MAXTEMP AMB"));    }    ThermalStop();}static void ambient_min_temp_error(void) {    if(IsStopped() == false) {        temp_error_messagepgm(PSTR("MINTEMP AMB"));    }    ThermalStop();}#endif#ifdef HEATER_0_USES_MAX6675#define MAX6675_HEAT_INTERVAL 250long max6675_previous_millis = MAX6675_HEAT_INTERVAL;int max6675_temp = 2000;int read_max6675(){  if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)     return max6675_temp;    max6675_previous_millis = _millis();  max6675_temp = 0;      #ifdef	PRR    PRR &= ~(1<<PRSPI);  #elif defined PRR0    PRR0 &= ~(1<<PRSPI);  #endif    SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);    // enable TT_MAX6675  WRITE(MAX6675_SS, 0);    // ensure 100ns delay - a bit extra is fine  asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz  asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz    // read MSB  SPDR = 0;  for (;(SPSR & (1<<SPIF)) == 0;);  max6675_temp = SPDR;  max6675_temp <<= 8;    // read LSB  SPDR = 0;  for (;(SPSR & (1<<SPIF)) == 0;);  max6675_temp |= SPDR;    // disable TT_MAX6675  WRITE(MAX6675_SS, 1);  if (max6675_temp & 4)   {    // thermocouple open    max6675_temp = 2000;  }  else   {    max6675_temp = max6675_temp >> 3;  }  return max6675_temp;}#endif#ifdef BABYSTEPPINGFORCE_INLINE static void applyBabysteps() {  for(uint8_t axis=0;axis<3;axis++)  {    int curTodo=babystepsTodo[axis]; //get rid of volatile for performance    if(curTodo>0){      ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {        babystep(axis,/*fwd*/true);        babystepsTodo[axis]--; //less to do next time      }    }    else    if(curTodo<0)    {      ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {        babystep(axis,/*fwd*/false);        babystepsTodo[axis]++; //less to do next time      }    }  }}#endif //BABYSTEPPINGFORCE_INLINE static void soft_pwm_core(){  static uint8_t pwm_count = (1 << SOFT_PWM_SCALE);  static uint8_t soft_pwm_0;#ifdef SLOW_PWM_HEATERS  static unsigned char slow_pwm_count = 0;  static unsigned char state_heater_0 = 0;  static unsigned char state_timer_heater_0 = 0;#endif#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)  static unsigned char soft_pwm_1;#ifdef SLOW_PWM_HEATERS  static unsigned char state_heater_1 = 0;  static unsigned char state_timer_heater_1 = 0;#endif#endif#if EXTRUDERS > 2  static unsigned char soft_pwm_2;#ifdef SLOW_PWM_HEATERS  static unsigned char state_heater_2 = 0;  static unsigned char state_timer_heater_2 = 0;#endif#endif#if HEATER_BED_PIN > -1  // @@DR static unsigned char soft_pwm_b;#ifdef SLOW_PWM_HEATERS  static unsigned char state_heater_b = 0;  static unsigned char state_timer_heater_b = 0;#endif#endif  #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)  static unsigned long raw_filwidth_value = 0;  //added for filament width sensor#endif  #ifndef SLOW_PWM_HEATERS  /*   * standard PWM modulation   */  if (pwm_count == 0)  {    soft_pwm_0 = soft_pwm[0];    if(soft_pwm_0 > 0)	{       WRITE(HEATER_0_PIN,1);#ifdef HEATERS_PARALLEL      WRITE(HEATER_1_PIN,1);#endif    } else WRITE(HEATER_0_PIN,0);#if EXTRUDERS > 1    soft_pwm_1 = soft_pwm[1];    if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);#endif#if EXTRUDERS > 2    soft_pwm_2 = soft_pwm[2];    if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);#endif  }#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1  #if 0  // @@DR vypnuto pro hw pwm bedu  // tuhle prasarnu bude potreba poustet ve stanovenych intervalech, jinak nemam moc sanci zareagovat  // teoreticky by se tato cast uz vubec nemusela poustet  if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)  {    soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);#  ifndef SYSTEM_TIMER_2	// tady budu krokovat pomalou frekvenci na automatu - tohle je rizeni spinani a rozepinani	// jako ridici frekvenci mam 2khz, jako vystupni frekvenci mam 30hz	// 2kHz jsou ovsem ve slysitelnem pasmu, mozna bude potreba jit s frekvenci nahoru (a tomu taky prizpusobit ostatni veci)	// Teoreticky bych mohl stahnout OCR0B citac na 6, cimz bych se dostal nekam ke 40khz a tady potom honit PWM rychleji nebo i pomaleji	// to nicemu nevadi. Soft PWM scale by se 20x zvetsilo (no dobre, 16x), cimz by se to posunulo k puvodnimu 30Hz PWM	//if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);#  endif //SYSTEM_TIMER_2  }#endif#endif  #ifdef FAN_SOFT_PWM  if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)  {    soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));    if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);  }#endif  if(soft_pwm_0 < pwm_count)  {     WRITE(HEATER_0_PIN,0);#ifdef HEATERS_PARALLEL    WRITE(HEATER_1_PIN,0);#endif  }#if EXTRUDERS > 1  if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);#endif#if EXTRUDERS > 2  if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);#endif#if 0 // @@DR  #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1  if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))){	  //WRITE(HEATER_BED_PIN,0);  }  //WRITE(HEATER_BED_PIN, pwm_count & 1 );#endif#endif#ifdef FAN_SOFT_PWM  if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);#endif    pwm_count += (1 << SOFT_PWM_SCALE);  pwm_count &= 0x7f;#else //ifndef SLOW_PWM_HEATERS  /*   * SLOW PWM HEATERS   *   * for heaters drived by relay   */#ifndef MIN_STATE_TIME#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds#endif  if (slow_pwm_count == 0) {    // EXTRUDER 0     soft_pwm_0 = soft_pwm[0];    if (soft_pwm_0 > 0) {      // turn ON heather only if the minimum time is up       if (state_timer_heater_0 == 0) { 	// if change state set timer 	if (state_heater_0 == 0) {	  state_timer_heater_0 = MIN_STATE_TIME;	}	state_heater_0 = 1;	WRITE(HEATER_0_PIN, 1);#ifdef HEATERS_PARALLEL	WRITE(HEATER_1_PIN, 1);#endif      }    } else {      // turn OFF heather only if the minimum time is up       if (state_timer_heater_0 == 0) {	// if change state set timer 	if (state_heater_0 == 1) {	  state_timer_heater_0 = MIN_STATE_TIME;	}	state_heater_0 = 0;	WRITE(HEATER_0_PIN, 0);#ifdef HEATERS_PARALLEL	WRITE(HEATER_1_PIN, 0);#endif      }    }    #if EXTRUDERS > 1    // EXTRUDER 1    soft_pwm_1 = soft_pwm[1];    if (soft_pwm_1 > 0) {      // turn ON heather only if the minimum time is up       if (state_timer_heater_1 == 0) { 	// if change state set timer 	if (state_heater_1 == 0) {	  state_timer_heater_1 = MIN_STATE_TIME;	}	state_heater_1 = 1;	WRITE(HEATER_1_PIN, 1);      }    } else {      // turn OFF heather only if the minimum time is up       if (state_timer_heater_1 == 0) {	// if change state set timer 	if (state_heater_1 == 1) {	  state_timer_heater_1 = MIN_STATE_TIME;	}	state_heater_1 = 0;	WRITE(HEATER_1_PIN, 0);      }    }#endif    #if EXTRUDERS > 2    // EXTRUDER 2    soft_pwm_2 = soft_pwm[2];    if (soft_pwm_2 > 0) {      // turn ON heather only if the minimum time is up       if (state_timer_heater_2 == 0) { 	// if change state set timer 	if (state_heater_2 == 0) {	  state_timer_heater_2 = MIN_STATE_TIME;	}	state_heater_2 = 1;	WRITE(HEATER_2_PIN, 1);      }    } else {      // turn OFF heather only if the minimum time is up       if (state_timer_heater_2 == 0) {	// if change state set timer 	if (state_heater_2 == 1) {	  state_timer_heater_2 = MIN_STATE_TIME;	}	state_heater_2 = 0;	WRITE(HEATER_2_PIN, 0);      }    }#endif    #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1    // BED    soft_pwm_b = soft_pwm_bed;    if (soft_pwm_b > 0) {      // turn ON heather only if the minimum time is up       if (state_timer_heater_b == 0) { 	// if change state set timer 	if (state_heater_b == 0) {	  state_timer_heater_b = MIN_STATE_TIME;	}	state_heater_b = 1;	//WRITE(HEATER_BED_PIN, 1);      }    } else {      // turn OFF heather only if the minimum time is up       if (state_timer_heater_b == 0) {	// if change state set timer 	if (state_heater_b == 1) {	  state_timer_heater_b = MIN_STATE_TIME;	}	state_heater_b = 0;	WRITE(HEATER_BED_PIN, 0);      }    }#endif  } // if (slow_pwm_count == 0)    // EXTRUDER 0   if (soft_pwm_0 < slow_pwm_count) {    // turn OFF heather only if the minimum time is up     if (state_timer_heater_0 == 0) {       // if change state set timer       if (state_heater_0 == 1) {	state_timer_heater_0 = MIN_STATE_TIME;      }      state_heater_0 = 0;      WRITE(HEATER_0_PIN, 0);#ifdef HEATERS_PARALLEL      WRITE(HEATER_1_PIN, 0);#endif    }  }    #if EXTRUDERS > 1  // EXTRUDER 1   if (soft_pwm_1 < slow_pwm_count) {    // turn OFF heather only if the minimum time is up     if (state_timer_heater_1 == 0) {       // if change state set timer       if (state_heater_1 == 1) {	state_timer_heater_1 = MIN_STATE_TIME;      }      state_heater_1 = 0;      WRITE(HEATER_1_PIN, 0);    }  }#endif  #if EXTRUDERS > 2  // EXTRUDER 2  if (soft_pwm_2 < slow_pwm_count) {    // turn OFF heather only if the minimum time is up     if (state_timer_heater_2 == 0) {       // if change state set timer       if (state_heater_2 == 1) {	state_timer_heater_2 = MIN_STATE_TIME;      }      state_heater_2 = 0;      WRITE(HEATER_2_PIN, 0);    }  }#endif  #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1  // BED  if (soft_pwm_b < slow_pwm_count) {    // turn OFF heather only if the minimum time is up     if (state_timer_heater_b == 0) {       // if change state set timer       if (state_heater_b == 1) {	state_timer_heater_b = MIN_STATE_TIME;      }      state_heater_b = 0;      WRITE(HEATER_BED_PIN, 0);    }  }#endif  #ifdef FAN_SOFT_PWM  if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)    soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));    if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);  }  if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);#endif  pwm_count += (1 << SOFT_PWM_SCALE);  pwm_count &= 0x7f;    // increment slow_pwm_count only every 64 pwm_count circa 65.5ms  if ((pwm_count % 64) == 0) {    slow_pwm_count++;    slow_pwm_count &= 0x7f;        // Extruder 0    if (state_timer_heater_0 > 0) {      state_timer_heater_0--;    }   #if EXTRUDERS > 1    // Extruder 1    if (state_timer_heater_1 > 0)       state_timer_heater_1--;#endif    #if EXTRUDERS > 2    // Extruder 2    if (state_timer_heater_2 > 0)       state_timer_heater_2--;#endif    #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1    // Bed       if (state_timer_heater_b > 0)       state_timer_heater_b--;#endif  } //if ((pwm_count % 64) == 0) {  #endif //ifndef SLOW_PWM_HEATERS}FORCE_INLINE static void soft_pwm_isr(){  lcd_buttons_update();  soft_pwm_core();#ifdef BABYSTEPPING  applyBabysteps();#endif //BABYSTEPPING  // Check if a stack overflow happened  if (!SdFatUtil::test_stack_integrity()) stack_error();#if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))  readFanTach();#endif //(defined(TACH_0))}// Timer2 (originaly timer0) is shared with millies#ifdef SYSTEM_TIMER_2ISR(TIMER2_COMPB_vect)#else //SYSTEM_TIMER_2ISR(TIMER0_COMPB_vect)#endif //SYSTEM_TIMER_2{    DISABLE_SOFT_PWM_INTERRUPT();    NONATOMIC_BLOCK(NONATOMIC_FORCEOFF) {        soft_pwm_isr();    }    ENABLE_SOFT_PWM_INTERRUPT();}void check_max_temp_raw(){    //heater#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP    if (current_temperature_raw[0] <= maxttemp_raw[0]) {#else    if (current_temperature_raw[0] >= maxttemp_raw[0]) {#endif        set_temp_error(TempErrorSource::hotend, 0, TempErrorType::max);    }    //bed#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP    if (current_temperature_bed_raw <= bed_maxttemp_raw) {#else    if (current_temperature_bed_raw >= bed_maxttemp_raw) {#endif        set_temp_error(TempErrorSource::bed, 0, TempErrorType::max);    }#endif    //ambient#if defined(AMBIENT_MAXTEMP) && (TEMP_SENSOR_AMBIENT != 0)#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP    if (current_temperature_raw_ambient <= ambient_maxttemp_raw) {#else    if (current_temperature_raw_ambient >= ambient_maxttemp_raw) {#endif        set_temp_error(TempErrorSource::ambient, 0, TempErrorType::max);    }#endif}//! number of repeating the same state with consecutive step() calls//! used to slow down text switchingstruct alert_automaton_mintemp {	const char *m2;	alert_automaton_mintemp(const char *m2):m2(m2){}private:	enum { ALERT_AUTOMATON_SPEED_DIV = 5 };	enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };	States state = States::Init;	uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;	void substep(const char* next_msg, States next_state){		if( repeat == 0 ){			state = next_state; // advance to the next state			lcd_setalertstatuspgm(next_msg, LCD_STATUS_CRITICAL);			repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too		} else {			--repeat;		}	}public:	//! brief state automaton step routine	//! @param current_temp current hotend/bed temperature (for computing simple hysteresis)	//! @param mintemp minimal temperature including hysteresis to check current_temp against	void step(float current_temp, float mintemp){		static const char m1[] PROGMEM = "Please restart";		switch(state){		case States::Init: // initial state - check hysteresis			if( current_temp > mintemp ){				lcd_setalertstatuspgm(m2, LCD_STATUS_CRITICAL);				state = States::TempAboveMintemp;			}			// otherwise keep the Err MINTEMP alert message on the display,			// i.e. do not transfer to state 1			break;		case States::TempAboveMintemp: // the temperature has risen above the hysteresis check		case States::ShowMintemp: // displaying "MINTEMP fixed"			substep(m1, States::ShowPleaseRestart);			break;		case States::ShowPleaseRestart: // displaying "Please restart"			substep(m2, States::ShowMintemp);			break;		}	}};static const char m2hotend[] PROGMEM = "MINTEMP HOTEND fixed";static const char m2bed[] PROGMEM = "MINTEMP BED fixed";static alert_automaton_mintemp alert_automaton_hotend(m2hotend), alert_automaton_bed(m2bed);void check_min_temp_heater0(){#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP	if (current_temperature_raw[0] >= minttemp_raw[0]) {#else	if (current_temperature_raw[0] <= minttemp_raw[0]) {#endif        set_temp_error(TempErrorSource::hotend, 0, TempErrorType::min);	}}void check_min_temp_bed(){#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP	if (current_temperature_bed_raw >= bed_minttemp_raw) {#else	if (current_temperature_bed_raw <= bed_minttemp_raw) {#endif        set_temp_error(TempErrorSource::bed, 0, TempErrorType::min);	}}#ifdef AMBIENT_MINTEMPvoid check_min_temp_ambient(){#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP	if (current_temperature_raw_ambient >= ambient_minttemp_raw) {#else	if (current_temperature_raw_ambient <= ambient_minttemp_raw) {#endif        set_temp_error(TempErrorSource::ambient, 0, TempErrorType::min);	}}#endifvoid handle_temp_error(){    // relay to the original handler    switch((TempErrorType)temp_error_state.type) {    case TempErrorType::min:        switch((TempErrorSource)temp_error_state.source) {        case TempErrorSource::hotend:            if(temp_error_state.assert) {                min_temp_error(temp_error_state.index);            } else {                // no recovery, just force the user to restart the printer                // which is a safer variant than just continuing printing                // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before                // we shall signalize, that MINTEMP has been fixed                // Code notice: normally the alert_automaton instance would have been placed here                // as static alert_automaton_mintemp alert_automaton_hotend, but                alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);            }            break;        case TempErrorSource::bed:            if(temp_error_state.assert) {                bed_min_temp_error();            } else {                // no recovery, just force the user to restart the printer                // which is a safer variant than just continuing printing                alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);            }            break;#ifdef AMBIENT_THERMISTOR        case TempErrorSource::ambient:            ambient_min_temp_error();            break;#endif        }        break;    case TempErrorType::max:        switch((TempErrorSource)temp_error_state.source) {        case TempErrorSource::hotend:            max_temp_error(temp_error_state.index);            break;        case TempErrorSource::bed:            bed_max_temp_error();            break;#ifdef AMBIENT_THERMISTOR        case TempErrorSource::ambient:            ambient_max_temp_error();            break;#endif        }        break;    case TempErrorType::preheat:    case TempErrorType::runaway:        switch((TempErrorSource)temp_error_state.source) {        case TempErrorSource::hotend:        case TempErrorSource::bed:            temp_runaway_stop(                ((TempErrorType)temp_error_state.type == TempErrorType::preheat),                ((TempErrorSource)temp_error_state.source == TempErrorSource::bed));            break;#ifdef AMBIENT_THERMISTOR        case TempErrorSource::ambient:            // not needed            break;#endif        }        break;#ifdef TEMP_MODEL    case TempErrorType::model:        if(temp_error_state.assert) {            if(IsStopped() == false) {                SERIAL_ECHOLNPGM("TM: error triggered!");            }            ThermalStop(true);            WRITE(BEEPER, HIGH);        } else {            temp_error_state.v = 0;            WRITE(BEEPER, LOW);            // hotend error was transitory and disappeared, re-enable bed            if (!target_temperature_bed)                target_temperature_bed = saved_bed_temperature;            SERIAL_ECHOLNPGM("TM: error cleared");        }        break;#endif    }}#ifdef PIDTEMP// Apply the scale factors to the PID valuesfloat scalePID_i(float i){	return i*PID_dT;}float unscalePID_i(float i){	return i/PID_dT;}float scalePID_d(float d){    return d/PID_dT;}float unscalePID_d(float d){	return d*PID_dT;}#endif //PIDTEMP#ifdef PINDA_THERMISTOR//! @brief PINDA thermistor detected//!//! @retval true firmware should do temperature compensation and allow calibration//! @retval false PINDA thermistor is not detected, disable temperature compensation and calibration//! @retval true/false when forced via LCD menu Settings->HW Setup->SuperPINDA//!bool has_temperature_compensation(){#ifdef SUPERPINDA_SUPPORT#ifdef PINDA_TEMP_COMP   	uint8_t pinda_temp_compensation = eeprom_read_byte((uint8_t*)EEPROM_PINDA_TEMP_COMPENSATION);    if (pinda_temp_compensation == EEPROM_EMPTY_VALUE) //Unkown PINDA temp compenstation, so check it.      {#endif //PINDA_TEMP_COMP        return (current_temperature_pinda >= PINDA_MINTEMP) ? true : false;#ifdef PINDA_TEMP_COMP      }    else if (pinda_temp_compensation == 0) return true; //Overwritten via LCD menu SuperPINDA [No]    else return false; //Overwritten via LCD menu SuperPINDA [YES]#endif //PINDA_TEMP_COMP#else    return true;#endif}#endif //PINDA_THERMISTOR// RAII helper class to run a code block with temp_mgr_isr disabledclass TempMgrGuard{    bool temp_mgr_state;public:    TempMgrGuard() {        ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {            temp_mgr_state = TEMP_MGR_INTERRUPT_STATE();            DISABLE_TEMP_MGR_INTERRUPT();        }    }    ~TempMgrGuard() throw() {        ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {            if(temp_mgr_state) ENABLE_TEMP_MGR_INTERRUPT();        }    }};void temp_mgr_init(){    // initialize the ADC and start a conversion    adc_init();    adc_start_cycle();    // initialize temperature timer    ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {        // CTC        TCCRxB &= ~(1<<WGMx3);        TCCRxB |=  (1<<WGMx2);        TCCRxA &= ~(1<<WGMx1);        TCCRxA &= ~(1<<WGMx0);        // output mode = 00 (disconnected)        TCCRxA &= ~(3<<COMxA0);        TCCRxA &= ~(3<<COMxB0);        // x/256 prescaler        TCCRxB |=  (1<<CSx2);        TCCRxB &= ~(1<<CSx1);        TCCRxB &= ~(1<<CSx0);        // reset counter        TCNTx = 0;        OCRxA = TEMP_TIM_OCRA_OVF;        // clear pending interrupts, enable COMPA        TEMP_MGR_INT_FLAG_CLEAR();        ENABLE_TEMP_MGR_INTERRUPT();    }}static void pid_heater(uint8_t e, const float current, const int target){    float pid_input;    float pid_output;#ifdef PIDTEMP    pid_input = current;#ifndef PID_OPENLOOP    if(target == 0) {        pid_output = 0;        pid_reset[e] = true;    } else {        pid_error[e] = target - pid_input;        if(pid_reset[e]) {            iState_sum[e] = 0.0;            dTerm[e] = 0.0;                       // 'dState_last[e]' initial setting is not necessary (see end of if-statement)            pid_reset[e] = false;        }#ifndef PonM        pTerm[e] = cs.Kp * pid_error[e];        iState_sum[e] += pid_error[e];        iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);        iTerm[e] = cs.Ki * iState_sum[e];        // PID_K1 defined in Configuration.h in the PID settings#define K2 (1.0-PID_K1)        dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes        pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)        if (pid_output > PID_MAX) {            if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration            pid_output=PID_MAX;        } else if (pid_output < 0) {            if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration            pid_output=0;        }#else // PonM ("Proportional on Measurement" method)        iState_sum[e] += cs.Ki * pid_error[e];        iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);        iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);        dTerm[e] = cs.Kd * (pid_input - dState_last[e]);        pid_output = iState_sum[e] - dTerm[e];  // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)        pid_output = constrain(pid_output, 0, PID_MAX);#endif // PonM    }    dState_last[e] = pid_input;#else //PID_OPENLOOP    pid_output = constrain(target[e], 0, PID_MAX);#endif //PID_OPENLOOP#ifdef PID_DEBUG    SERIAL_ECHO_START;    SERIAL_ECHO(" PID_DEBUG ");    SERIAL_ECHO(e);    SERIAL_ECHO(": Input ");    SERIAL_ECHO(pid_input);    SERIAL_ECHO(" Output ");    SERIAL_ECHO(pid_output);    SERIAL_ECHO(" pTerm ");    SERIAL_ECHO(pTerm[e]);    SERIAL_ECHO(" iTerm ");    SERIAL_ECHO(iTerm[e]);    SERIAL_ECHO(" dTerm ");    SERIAL_ECHOLN(-dTerm[e]);#endif //PID_DEBUG#else /* PID off */    pid_output = 0;    if(current[e] < target[e]) {        pid_output = PID_MAX;    }#endif    // Check if temperature is within the correct range    if((current < maxttemp[e]) && (target != 0))        soft_pwm[e] = (int)pid_output >> 1;    else        soft_pwm[e] = 0;}static void pid_bed(const float current, const int target){    float pid_input;    float pid_output;#ifndef PIDTEMPBED    if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)        return;    previous_millis_bed_heater = _millis();#endif#if TEMP_SENSOR_BED != 0#ifdef PIDTEMPBED    pid_input = current;#ifndef PID_OPENLOOP    pid_error_bed = target - pid_input;    pTerm_bed = cs.bedKp * pid_error_bed;    temp_iState_bed += pid_error_bed;    temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);    iTerm_bed = cs.bedKi * temp_iState_bed;    //PID_K1 defined in Configuration.h in the PID settings#define K2 (1.0-PID_K1)    dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);    temp_dState_bed = pid_input;    pid_output = pTerm_bed + iTerm_bed - dTerm_bed;    if (pid_output > MAX_BED_POWER) {        if (pid_error_bed > 0 )  temp_iState_bed -= pid_error_bed; // conditional un-integration        pid_output=MAX_BED_POWER;    } else if (pid_output < 0){        if (pid_error_bed < 0 )  temp_iState_bed -= pid_error_bed; // conditional un-integration        pid_output=0;    }#else    pid_output = constrain(target, 0, MAX_BED_POWER);#endif //PID_OPENLOOP    if(current < BED_MAXTEMP)    {        soft_pwm_bed = (int)pid_output >> 1;        timer02_set_pwm0(soft_pwm_bed << 1);    }    else    {        soft_pwm_bed = 0;        timer02_set_pwm0(soft_pwm_bed << 1);    }#elif !defined(BED_LIMIT_SWITCHING)    // Check if temperature is within the correct range    if(current < BED_MAXTEMP)    {        if(current >= target)        {            soft_pwm_bed = 0;            timer02_set_pwm0(soft_pwm_bed << 1);        }        else        {            soft_pwm_bed = MAX_BED_POWER>>1;            timer02_set_pwm0(soft_pwm_bed << 1);        }    }    else    {        soft_pwm_bed = 0;        timer02_set_pwm0(soft_pwm_bed << 1);        WRITE(HEATER_BED_PIN,LOW);    }#else //#ifdef BED_LIMIT_SWITCHING    // Check if temperature is within the correct band    if(current < BED_MAXTEMP)    {        if(current > target + BED_HYSTERESIS)        {            soft_pwm_bed = 0;            timer02_set_pwm0(soft_pwm_bed << 1);        }        else if(current <= target - BED_HYSTERESIS)        {            soft_pwm_bed = MAX_BED_POWER>>1;            timer02_set_pwm0(soft_pwm_bed << 1);        }    }    else    {        soft_pwm_bed = 0;        timer02_set_pwm0(soft_pwm_bed << 1);        WRITE(HEATER_BED_PIN,LOW);    }#endif //BED_LIMIT_SWITCHING    if(target==0)    {        soft_pwm_bed = 0;        timer02_set_pwm0(soft_pwm_bed << 1);    }#endif //TEMP_SENSOR_BED}// ISR-safe temperaturesstatic volatile bool adc_values_ready = false;float current_temperature_isr[EXTRUDERS];int target_temperature_isr[EXTRUDERS];float current_temperature_bed_isr;int target_temperature_bed_isr;#ifdef PINDA_THERMISTORfloat current_temperature_pinda_isr;#endif#ifdef AMBIENT_THERMISTORfloat current_temperature_ambient_isr;#endif// ISR callback from adc when sampling finishedvoid adc_callback(){    current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater    current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];#ifdef PINDA_THERMISTOR    current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];#endif //PINDA_THERMISTOR#ifdef AMBIENT_THERMISTOR    current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)]; // 5->6#endif //AMBIENT_THERMISTOR#ifdef VOLT_PWR_PIN    current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];#endif#ifdef VOLT_BED_PIN    current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9#endif#ifdef IR_SENSOR_ANALOG    current_voltage_raw_IR = adc_values[ADC_PIN_IDX(VOLT_IR_PIN)];#endif //IR_SENSOR_ANALOG    adc_values_ready = true;}static void setCurrentTemperaturesFromIsr(){    for(uint8_t e=0;e<EXTRUDERS;e++)        current_temperature[e] = current_temperature_isr[e];    current_temperature_bed = current_temperature_bed_isr;#ifdef PINDA_THERMISTOR    current_temperature_pinda = current_temperature_pinda_isr;#endif#ifdef AMBIENT_THERMISTOR    current_temperature_ambient = current_temperature_ambient_isr;#endif}static void setIsrTargetTemperatures(){    for(uint8_t e=0;e<EXTRUDERS;e++)        target_temperature_isr[e] = target_temperature[e];    target_temperature_bed_isr = target_temperature_bed;}/* Synchronize temperatures:   - fetch updated values from temp_mgr_isr to current values   - update target temperatures for temp_mgr_isr regulation *if* no temperature error is set   This function is blocking: check temp_meas_ready before calling! */static void updateTemperatures(){    TempMgrGuard temp_mgr_guard;    setCurrentTemperaturesFromIsr();    if(!temp_error_state.v) {        // refuse to update target temperatures in any error condition!        setIsrTargetTemperatures();    }    temp_meas_ready = false;}/* Convert raw values into actual temperatures for temp_mgr. The raw values are created in the ADC   interrupt context, while this function runs from temp_mgr_isr which *is* preemptible as   analog2temp is relatively slow */static void setIsrTemperaturesFromRawValues(){    for(uint8_t e=0;e<EXTRUDERS;e++)        current_temperature_isr[e] = analog2temp(current_temperature_raw[e], e);    current_temperature_bed_isr = analog2tempBed(current_temperature_bed_raw);#ifdef PINDA_THERMISTOR    current_temperature_pinda_isr = analog2tempBed(current_temperature_raw_pinda);#endif#ifdef AMBIENT_THERMISTOR    current_temperature_ambient_isr = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)#endif    temp_meas_ready = true;}static void temp_mgr_pid(){    for(uint8_t e = 0; e < EXTRUDERS; e++)        pid_heater(e, current_temperature_isr[e], target_temperature_isr[e]);    pid_bed(current_temperature_bed_isr, target_temperature_bed_isr);}static void check_temp_runaway(){#ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS    for(uint8_t e = 0; e < EXTRUDERS; e++)        temp_runaway_check(e+1, target_temperature_isr[e], current_temperature_isr[e], soft_pwm[e], false);#endif#ifdef TEMP_RUNAWAY_BED_HYSTERESIS    temp_runaway_check(0, target_temperature_bed_isr, current_temperature_bed_isr, soft_pwm_bed, true);#endif}static void check_temp_raw();static void temp_mgr_isr(){    // update *_isr temperatures from raw values for PID regulation    setIsrTemperaturesFromRawValues();    // clear the error assertion flag before checking again    temp_error_state.assert = false;    check_temp_raw(); // check min/max temp using raw values    check_temp_runaway(); // classic temperature hysteresis check#ifdef TEMP_MODEL    temp_model::check(); // model-based heater check#ifdef TEMP_MODEL_DEBUG    temp_model::log_isr();#endif#endif    // PID regulation    if (pid_tuning_finished)        temp_mgr_pid();}ISR(TIMERx_COMPA_vect){    // immediately schedule a new conversion    if(adc_values_ready != true) return;    adc_values_ready = false;    adc_start_cycle();    // run temperature management with interrupts enabled to reduce latency    DISABLE_TEMP_MGR_INTERRUPT();    NONATOMIC_BLOCK(NONATOMIC_FORCEOFF) {        temp_mgr_isr();    }    ENABLE_TEMP_MGR_INTERRUPT();}void disable_heater(){  setAllTargetHotends(0);  setTargetBed(0);  ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {      // propagate all values down the chain      setIsrTargetTemperatures();      temp_mgr_pid();      // we can't call soft_pwm_core directly to toggle the pins as it would require removing the inline      // attribute, so disable each pin individually#if defined(HEATER_0_PIN) && HEATER_0_PIN > -1 && EXTRUDERS > 0      WRITE(HEATER_0_PIN,LOW);#endif#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 && EXTRUDERS > 1      WRITE(HEATER_1_PIN,LOW);#endif#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1 && EXTRUDERS > 2      WRITE(HEATER_2_PIN,LOW);#endif#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1      // TODO: this doesn't take immediate effect!      timer02_set_pwm0(0);      bedPWMDisabled = 0;#endif  }}static void check_min_temp_raw(){    static bool bCheckingOnHeater = false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)    static bool bCheckingOnBed    = false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)    static ShortTimer oTimer4minTempHeater;    static ShortTimer oTimer4minTempBed;#ifdef AMBIENT_THERMISTOR#ifdef AMBIENT_MINTEMP    // we need to check ambient temperature    check_min_temp_ambient();#endif#if AMBIENT_RAW_LO_TEMP > AMBIENT_RAW_HI_TEMP    if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type#else    if(current_temperature_raw_ambient=<(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW))#endif    {        // ambient temperature is low#endif //AMBIENT_THERMISTOR        // *** 'common' part of code for MK2.5 & MK3        // * nozzle checking        if(target_temperature_isr[active_extruder]>minttemp[active_extruder]) {            // ~ nozzle heating is on            bCheckingOnHeater=bCheckingOnHeater||(current_temperature_isr[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting            if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater) {                bCheckingOnHeater=true;   // not necessary                check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active            }        }        else {            // ~ nozzle heating is off            oTimer4minTempHeater.start();            bCheckingOnHeater=false;        }        // * bed checking        if(target_temperature_bed_isr>BED_MINTEMP) {            // ~ bed heating is on            bCheckingOnBed=bCheckingOnBed||(current_temperature_bed_isr>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting            if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed) {                bCheckingOnBed=true;  // not necessary                check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active            }        }        else {            // ~ bed heating is off            oTimer4minTempBed.start();            bCheckingOnBed=false;        }        // *** end of 'common' part#ifdef AMBIENT_THERMISTOR    }    else {        // ambient temperature is standard        check_min_temp_heater0();        check_min_temp_bed();    }#endif //AMBIENT_THERMISTOR}static void check_temp_raw(){    // order is relevant: check_min_temp_raw requires max to be reliable due to    // ambient temperature being used for low handling temperatures    check_max_temp_raw();    check_min_temp_raw();}#ifdef TEMP_MODELnamespace temp_model {void model_data::reset(uint8_t heater_pwm _UNUSED, uint8_t fan_pwm _UNUSED,    float heater_temp _UNUSED, float ambient_temp _UNUSED){    // pre-compute invariant values    C_i = (TEMP_MGR_INTV / C);    warn_s = warn * TEMP_MGR_INTV;    err_s = err * TEMP_MGR_INTV;    // initial values    for(uint8_t i = 0; i != TEMP_MODEL_LAG_SIZE; ++i)        dT_lag_buf[i] = NAN;    dT_lag_idx = 0;    dT_err_prev = 0;    T_prev = NAN;    // clear the initialization flag    flag_bits.uninitialized = false;}static constexpr float iir_mul(const float a, const float b, const float f, const float nanv){    const float a_ = !isnan(a) ? a : nanv;    return (a_ * (1.f - f)) + (b * f);}void model_data::step(uint8_t heater_pwm, uint8_t fan_pwm, float heater_temp, float ambient_temp){    constexpr float soft_pwm_inv = 1. / ((1 << 7) - 1);    // input values    const float heater_scale = soft_pwm_inv * heater_pwm;    const float cur_heater_temp = heater_temp;    const float cur_ambient_temp = ambient_temp + Ta_corr;    const float cur_R = R[fan_pwm]; // resistance at current fan power (K/W)    float dP = P * heater_scale; // current power [W]    float dPl = (cur_heater_temp - cur_ambient_temp) / cur_R; // [W] leakage power    float dT = (dP - dPl) * C_i; // expected temperature difference (K)    // filter and lag dT    uint8_t dT_next_idx = (dT_lag_idx == (TEMP_MODEL_LAG_SIZE - 1) ? 0: dT_lag_idx + 1);    float dT_lag = dT_lag_buf[dT_next_idx];    float dT_lag_prev = dT_lag_buf[dT_lag_idx];    float dT_f = iir_mul(dT_lag_prev, dT, TEMP_MODEL_fS, dT);    dT_lag_buf[dT_next_idx] = dT_f;    dT_lag_idx = dT_next_idx;    // calculate and filter dT_err    float dT_err = (cur_heater_temp - T_prev) - dT_lag;    float dT_err_f = iir_mul(dT_err_prev, dT_err, TEMP_MODEL_fE, 0.);    T_prev = cur_heater_temp;    dT_err_prev = dT_err_f;    // check and trigger errors    flag_bits.error = (fabsf(dT_err_f) > err_s);    flag_bits.warning = (fabsf(dT_err_f) > warn_s);}// verify calibration status and trigger a model reset if validvoid setup(){    if(!calibrated()) enabled = false;    data.flag_bits.uninitialized = true;}bool calibrated(){    if(!(data.P >= 0)) return false;    if(!(data.C >= 0)) return false;    if(!(data.Ta_corr != NAN)) return false;    for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i) {        if(!(temp_model::data.R[i] >= 0))            return false;    }    if(!(data.warn != NAN)) return false;    if(!(data.err != NAN)) return false;    return true;}void check(){    if(!enabled) return;    uint8_t heater_pwm = soft_pwm[0];    uint8_t fan_pwm = soft_pwm_fan;    float heater_temp = current_temperature_isr[0];    float ambient_temp = current_temperature_ambient_isr;    // check if a reset is required to seed the model: this needs to be done with valid    // ADC values, so we can't do that directly in init()    if(data.flag_bits.uninitialized)        data.reset(heater_pwm, fan_pwm, heater_temp, ambient_temp);    // step the model    data.step(heater_pwm, fan_pwm, heater_temp, ambient_temp);    // handle errors    if(data.flag_bits.error)        set_temp_error(TempErrorSource::hotend, 0, TempErrorType::model);    // handle warning conditions as lower-priority but with greater feedback    warning_state.assert = data.flag_bits.warning;    if(warning_state.assert) {        warning_state.warning = true;        warning_state.dT_err = temp_model::data.dT_err_prev;    }}void handle_warning(){    // update values    float warn = data.warn;    float dT_err;    {        TempMgrGuard temp_mgr_guard;        dT_err = warning_state.dT_err;    }    dT_err /= TEMP_MGR_INTV; // per-sample => K/s    printf_P(PSTR("TM: error |%f|>%f\n"), (double)dT_err, (double)warn);    static bool first = true;    if(warning_state.assert) {        if (first) {            if(warn_beep) {                lcd_setalertstatuspgm(_T(MSG_THERMAL_ANOMALY), LCD_STATUS_INFO);                WRITE(BEEPER, HIGH);            }            first = false;        } else {            if(warn_beep) TOGGLE(BEEPER);        }    } else {        // warning cleared, reset state        warning_state.warning = false;        if(warn_beep) WRITE(BEEPER, LOW);        first = true;    }}#ifdef TEMP_MODEL_DEBUGvoid log_usr(){    if(!log_buf.enabled) return;    uint8_t counter = log_buf.entry.counter;    if (counter == log_buf.serial) return;    int8_t delta_ms;    uint8_t cur_pwm;    // avoid strict-aliasing warnings    union { float cur_temp; uint32_t cur_temp_b; };    union { float cur_amb; uint32_t cur_amb_b; };    {        TempMgrGuard temp_mgr_guard;        delta_ms = log_buf.entry.delta_ms;        counter = log_buf.entry.counter;        cur_pwm = log_buf.entry.cur_pwm;        cur_temp = log_buf.entry.cur_temp;        cur_amb = log_buf.entry.cur_amb;    }    uint8_t d = counter - log_buf.serial;    log_buf.serial = counter;    printf_P(PSTR("TML %d %d %x %lx %lx\n"), (unsigned)d - 1, (int)delta_ms + 1,        (int)cur_pwm, (unsigned long)cur_temp_b, (unsigned long)cur_amb_b);}void log_isr(){    if(!log_buf.enabled) return;    uint32_t stamp = _millis();    uint8_t delta_ms = stamp - log_buf.entry.stamp - (uint32_t)(TEMP_MGR_INTV * 1000);    log_buf.entry.stamp = stamp;    ++log_buf.entry.counter;    log_buf.entry.delta_ms = delta_ms;    log_buf.entry.cur_pwm = soft_pwm[0];    log_buf.entry.cur_temp = current_temperature_isr[0];    log_buf.entry.cur_amb = current_temperature_ambient_isr;}#endif} // namespace temp_modelstatic void temp_model_reset_enabled(bool enabled){    TempMgrGuard temp_mgr_guard;    temp_model::enabled = enabled;    temp_model::data.flag_bits.uninitialized = true;}bool temp_model_enabled(){    return temp_model::enabled;}void temp_model_set_enabled(bool enabled){    // set the enabled flag    {        TempMgrGuard temp_mgr_guard;        temp_model::enabled = enabled;        temp_model::setup();    }    // verify that the model has been enabled    if(enabled && !temp_model::enabled)        SERIAL_ECHOLNPGM("TM: invalid parameters, cannot enable");}void temp_model_set_warn_beep(bool enabled){    temp_model::warn_beep = enabled;}void temp_model_set_params(float C, float P, float Ta_corr, float warn, float err){    TempMgrGuard temp_mgr_guard;    if(!isnan(C) && C > 0) temp_model::data.C = C;    if(!isnan(P) && P > 0) temp_model::data.P = P;    if(!isnan(Ta_corr)) temp_model::data.Ta_corr = Ta_corr;    if(!isnan(err) && err > 0) temp_model::data.err = err;    if(!isnan(warn) && warn > 0) temp_model::data.warn = warn;    // ensure warn <= err    if (temp_model::data.warn > temp_model::data.err)        temp_model::data.warn = temp_model::data.err;    temp_model::setup();}void temp_model_set_resistance(uint8_t index, float R){    if(index >= TEMP_MODEL_R_SIZE || R <= 0)        return;    TempMgrGuard temp_mgr_guard;    temp_model::data.R[index] = R;    temp_model::setup();}void temp_model_report_settings(){    SERIAL_ECHO_START;    SERIAL_ECHOLNPGM("Temperature Model settings:");    for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)        printf_P(PSTR("%S  M310 I%u R%.2f\n"), echomagic, (unsigned)i, (double)temp_model::data.R[i]);    printf_P(PSTR("%S  M310 P%.2f C%.2f S%u B%u E%.2f W%.2f T%.2f\n"),        echomagic, (double)temp_model::data.P, (double)temp_model::data.C,        (unsigned)temp_model::enabled, (unsigned)temp_model::warn_beep,        (double)temp_model::data.err, (double)temp_model::data.warn,        (double)temp_model::data.Ta_corr);}void temp_model_reset_settings(){    TempMgrGuard temp_mgr_guard;    temp_model::data.P = TEMP_MODEL_P;    temp_model::data.C = TEMP_MODEL_C;    for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)        temp_model::data.R[i] = pgm_read_float(TEMP_MODEL_R_DEFAULT + i);    temp_model::data.Ta_corr = TEMP_MODEL_Ta_corr;    temp_model::data.warn = TEMP_MODEL_W;    temp_model::data.err = TEMP_MODEL_E;    temp_model::warn_beep = true;    temp_model::enabled = true;    temp_model::data.flag_bits.uninitialized = true;}void temp_model_load_settings(){    static_assert(TEMP_MODEL_R_SIZE == 16); // ensure we don't desync with the eeprom table    TempMgrGuard temp_mgr_guard;    temp_model::enabled = eeprom_read_byte((uint8_t*)EEPROM_TEMP_MODEL_ENABLE);    temp_model::data.P = eeprom_read_float((float*)EEPROM_TEMP_MODEL_P);    temp_model::data.C = eeprom_read_float((float*)EEPROM_TEMP_MODEL_C);    for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)        temp_model::data.R[i] = eeprom_read_float((float*)EEPROM_TEMP_MODEL_R + i);    temp_model::data.Ta_corr = eeprom_read_float((float*)EEPROM_TEMP_MODEL_Ta_corr);    temp_model::data.warn = eeprom_read_float((float*)EEPROM_TEMP_MODEL_W);    temp_model::data.err = eeprom_read_float((float*)EEPROM_TEMP_MODEL_E);    if(!temp_model::calibrated()) {        SERIAL_ECHOLNPGM("TM: stored calibration invalid, resetting");        temp_model_reset_settings();    }    temp_model::setup();}void temp_model_save_settings(){    eeprom_update_byte((uint8_t*)EEPROM_TEMP_MODEL_ENABLE, temp_model::enabled);    eeprom_update_float((float*)EEPROM_TEMP_MODEL_P, temp_model::data.P);    eeprom_update_float((float*)EEPROM_TEMP_MODEL_C, temp_model::data.C);    for(uint8_t i = 0; i != TEMP_MODEL_R_SIZE; ++i)        eeprom_update_float((float*)EEPROM_TEMP_MODEL_R + i, temp_model::data.R[i]);    eeprom_update_float((float*)EEPROM_TEMP_MODEL_Ta_corr, temp_model::data.Ta_corr);    eeprom_update_float((float*)EEPROM_TEMP_MODEL_W, temp_model::data.warn);    eeprom_update_float((float*)EEPROM_TEMP_MODEL_E, temp_model::data.err);}namespace temp_model_cal {// set current fan speed for both front/backendstatic __attribute__((noinline)) void set_fan_speed(uint8_t fan_speed){#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1)    // reset the fan measuring state due to missing hysteresis handling on the checking side    fan_measuring = false;    extruder_autofan_last_check = _millis();#endif    fanSpeed = fan_speed;#ifdef FAN_SOFT_PWM    fanSpeedSoftPwm = fan_speed;#endif}static void waiting_handler(){    manage_heater();    host_keepalive();    host_autoreport();    checkFans();    lcd_update(0);}static void wait(unsigned ms){    unsigned long mark = _millis() + ms;    while(_millis() < mark) {        if(temp_error_state.v) break;        waiting_handler();    }}static void __attribute__((noinline)) wait_temp(){    while(current_temperature[0] < (target_temperature[0] - TEMP_HYSTERESIS)) {        if(temp_error_state.v) break;        waiting_handler();    }}static void cooldown(float temp){    uint8_t old_speed = fanSpeed;    set_fan_speed(255);    while(current_temperature[0] >= temp) {        if(temp_error_state.v) break;        float ambient = current_temperature_ambient + temp_model::data.Ta_corr;        if(current_temperature[0] < (ambient + TEMP_HYSTERESIS)) {            // do not get stuck waiting very close to ambient temperature            break;        }        waiting_handler();    }    set_fan_speed(old_speed);}static uint16_t record(uint16_t samples = REC_BUFFER_SIZE) {    TempMgrGuard temp_mgr_guard;    uint16_t pos = 0;    while(pos < samples) {        if(!TEMP_MGR_INT_FLAG_STATE()) {            // temperatures not ready yet, just manage heaters while waiting to reduce jitter            manage_heater();            continue;        }        TEMP_MGR_INT_FLAG_CLEAR();        // manually repeat what the regular isr would do        if(adc_values_ready != true) continue;        adc_values_ready = false;        adc_start_cycle();        temp_mgr_isr();        // stop recording for an hard error condition        if(temp_error_state.v)            return 0;        // record a new entry        rec_entry& entry = rec_buffer[pos];        entry.temp = current_temperature_isr[0];        entry.pwm = soft_pwm[0];        ++pos;        // it's now safer to give regular serial/lcd updates a shot        waiting_handler();    }    return pos;}static float cost_fn(uint16_t samples, float* const var, float v, uint8_t fan_pwm, float ambient){    *var = v;    temp_model::data.reset(rec_buffer[0].pwm, fan_pwm, rec_buffer[0].temp, ambient);    float err = 0;    uint16_t cnt = 0;    for(uint16_t i = 1; i < samples; ++i) {        temp_model::data.step(rec_buffer[i].pwm, fan_pwm, rec_buffer[i].temp, ambient);        float err_v = temp_model::data.dT_err_prev;        if(!isnan(err_v)) {            err += err_v * err_v;            ++cnt;        }    }    return cnt ? (err / cnt) : NAN;}constexpr float GOLDEN_RATIO = 0.6180339887498949;static void update_section(float points[2], const float bounds[2]){    float d = GOLDEN_RATIO * (bounds[1] - bounds[0]);    points[0] = bounds[0] + d;    points[1] = bounds[1] - d;}static float estimate(uint16_t samples,    float* const var, float min, float max,    float thr, uint16_t max_itr,    uint8_t fan_pwm, float ambient){    // during estimation we alter the model values without an extra copy to conserve memory    // so we cannot keep the main checker active until a value has been found    bool was_enabled = temp_model::enabled;    temp_model_reset_enabled(false);    float orig = *var;    float e = NAN;    float points[2];    float bounds[2] = {min, max};    update_section(points, bounds);    for(uint8_t it = 0; it != max_itr; ++it) {        float c1 = cost_fn(samples, var, points[0], fan_pwm, ambient);        float c2 = cost_fn(samples, var, points[1], fan_pwm, ambient);        bool dir = (c2 < c1);        bounds[dir] = points[!dir];        update_section(points, bounds);        float x = points[!dir];        e = (1-GOLDEN_RATIO) * fabsf((bounds[0]-bounds[1]) / x);        printf_P(PSTR("TM iter:%u v:%.2f e:%.3f\n"), it, x, e);        if(e < thr) {            if(x == min || x == max) {                // real value likely outside of the search boundaries                break;            }            *var = x;            temp_model_reset_enabled(was_enabled);            return e;        }    }    SERIAL_ECHOLNPGM("TM estimation did not converge");    *var = orig;    temp_model_reset_enabled(was_enabled);    return NAN;}static bool autotune(int16_t cal_temp){    uint16_t samples;    float e;    char tm_message[LCD_WIDTH+1];    // bootstrap C/R values without fan    set_fan_speed(0);    for(uint8_t i = 0; i != 2; ++i) {        const char* PROGMEM verb = (i == 0? PSTR("initial"): PSTR("refine"));        target_temperature[0] = 0;        if(current_temperature[0] >= TEMP_MODEL_CAL_Tl) {            sprintf_P(tm_message, PSTR("TM: cool down <%dC"), TEMP_MODEL_CAL_Tl);            lcd_setstatus_serial(tm_message);            cooldown(TEMP_MODEL_CAL_Tl);            wait(10000);        }        sprintf_P(tm_message, PSTR("TM: %S C est."), verb);        lcd_setstatus_serial(tm_message);        target_temperature[0] = cal_temp;        samples = record();        if(temp_error_state.v || !samples)            return true;        // we need a high R value for the initial C guess        if(isnan(temp_model::data.R[0]))            temp_model::data.R[0] = TEMP_MODEL_Rh;        e = estimate(samples, &temp_model::data.C,            TEMP_MODEL_Cl, TEMP_MODEL_Ch, TEMP_MODEL_C_thr, TEMP_MODEL_C_itr,            0, current_temperature_ambient);        if(isnan(e))            return true;        wait_temp();        if(i) break; // we don't need to refine R        wait(30000); // settle PID regulation        sprintf_P(tm_message, PSTR("TM: %S R %dC"), verb, cal_temp);        lcd_setstatus_serial(tm_message);        samples = record();        if(temp_error_state.v || !samples)            return true;        e = estimate(samples, &temp_model::data.R[0],            TEMP_MODEL_Rl, TEMP_MODEL_Rh, TEMP_MODEL_R_thr, TEMP_MODEL_R_itr,            0, current_temperature_ambient);        if(isnan(e))            return true;    }    // Estimate fan losses at regular intervals, starting from full speed to avoid low-speed    // kickstart issues, although this requires us to wait more for the PID stabilization.    // Normally exhibits logarithmic behavior with the stock fan+shroud, so the shorter interval    // at lower speeds is helpful to increase the resolution of the interpolation.    set_fan_speed(255);    wait(30000);    for(int8_t i = TEMP_MODEL_R_SIZE - 1; i > 0; i -= TEMP_MODEL_CAL_R_STEP) {        // always disable the checker while estimating fan resistance as the difference        // (esp with 3rd-party blowers) can be massive        temp_model::data.R[i] = NAN;        uint8_t speed = 256 / TEMP_MODEL_R_SIZE * (i + 1) - 1;        set_fan_speed(speed);        wait(10000);        sprintf_P(tm_message, PSTR("TM: R[%u] estimat."), (unsigned)i);        lcd_setstatus_serial(tm_message);        samples = record();        if(temp_error_state.v || !samples)            return true;        // a fixed fan pwm (the norminal value) is used here, as soft_pwm_fan will be modified        // during fan measurements and we'd like to include that skew during normal operation.        e = estimate(samples, &temp_model::data.R[i],            TEMP_MODEL_Rl, temp_model::data.R[0], TEMP_MODEL_R_thr, TEMP_MODEL_R_itr,            i, current_temperature_ambient);        if(isnan(e))            return true;    }    // interpolate remaining steps to speed-up calibration    // TODO: verify that the sampled values are monotically increasing?    int8_t next = TEMP_MODEL_R_SIZE - 1;    for(uint8_t i = TEMP_MODEL_R_SIZE - 2; i != 0; --i) {        if(!((TEMP_MODEL_R_SIZE - i - 1) % TEMP_MODEL_CAL_R_STEP)) {            next = i;            continue;        }        int8_t prev = next - TEMP_MODEL_CAL_R_STEP;        if(prev < 0) prev = 0;        float f = (float)(i - prev) / TEMP_MODEL_CAL_R_STEP;        float d = (temp_model::data.R[next] - temp_model::data.R[prev]);        temp_model::data.R[i] = temp_model::data.R[prev] + d * f;    }    return false;}} // namespace temp_model_calstatic bool temp_model_autotune_err = true;void temp_model_autotune(int16_t temp, bool selftest){    float orig_C, orig_R[TEMP_MODEL_R_SIZE];    bool orig_enabled;    static_assert(sizeof(orig_R) == sizeof(temp_model::data.R));    // fail-safe error state    temp_model_autotune_err = true;    char tm_message[LCD_WIDTH+1];    if(moves_planned() || printer_active()) {        sprintf_P(tm_message, PSTR("TM: Cal. NOT IDLE"));        lcd_setstatus_serial(tm_message);        return;    }    // lockout the printer during calibration    KEEPALIVE_STATE(IN_PROCESS);    menu_set_block(MENU_BLOCK_TEMP_MODEL_AUTOTUNE);    lcd_return_to_status();    // save the original model data and set the model checking state during self-calibration    orig_C = temp_model::data.C;    memcpy(orig_R, temp_model::data.R, sizeof(temp_model::data.R));    orig_enabled = temp_model::enabled;    temp_model_reset_enabled(selftest);    // autotune    SERIAL_ECHOLNPGM("TM: calibration start");    temp_model_autotune_err = temp_model_cal::autotune(temp > 0 ? temp : TEMP_MODEL_CAL_Th);    // always reset temperature    disable_heater();    if(temp_model_autotune_err) {        sprintf_P(tm_message, PSTR("TM: calibr. failed!"));        lcd_setstatus_serial(tm_message);        if(temp_error_state.v)            temp_model_cal::set_fan_speed(255);        // show calibrated values before overwriting them        temp_model_report_settings();        // restore original state        temp_model::data.C = orig_C;        memcpy(temp_model::data.R, orig_R, sizeof(temp_model::data.R));        temp_model_set_enabled(orig_enabled);    } else {        lcd_setstatuspgm(MSG_WELCOME);        temp_model_cal::set_fan_speed(0);        temp_model_set_enabled(orig_enabled);        temp_model_report_settings();    }    lcd_consume_click();    menu_unset_block(MENU_BLOCK_TEMP_MODEL_AUTOTUNE);}bool temp_model_autotune_result(){    return !temp_model_autotune_err;}#ifdef TEMP_MODEL_DEBUGvoid temp_model_log_enable(bool enable){    if(enable) {        TempMgrGuard temp_mgr_guard;        temp_model::log_buf.entry.stamp = _millis();    }    temp_model::log_buf.enabled = enable;}#endif#endif
 |