| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016 | //xyzcal.cpp - xyz calibration with image processing#include "Configuration_var.h"#ifdef NEW_XYZCAL#include "xyzcal.h"#include <avr/wdt.h>#include "stepper.h"#include "temperature.h"#include "sm4.h"#define XYZCAL_PINDA_HYST_MIN 20  //50um#define XYZCAL_PINDA_HYST_MAX 100 //250um#define XYZCAL_PINDA_HYST_DIF 5   //12.5um#define ENABLE_FANCHECK_INTERRUPT()  EIMSK |= (1<<7)#define DISABLE_FANCHECK_INTERRUPT() EIMSK &= ~(1<<7)#define _PINDA ((READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)?1:0)static const char endl[2] PROGMEM = "\n";#define DBG(args...) printf_P(args)//#define DBG(args...)#ifndef _n#define _n PSTR#endif //_n#define _X ((int16_t)count_position[X_AXIS])#define _Y ((int16_t)count_position[Y_AXIS])#define _Z ((int16_t)count_position[Z_AXIS])#define _E ((int16_t)count_position[E_AXIS])#define _X_ (count_position[X_AXIS])#define _Y_ (count_position[Y_AXIS])#define _Z_ (count_position[Z_AXIS])#define _E_ (count_position[E_AXIS])#ifndef M_PIconst constexpr float M_PI = 3.1415926535897932384626433832795f;#endifconst constexpr uint8_t X_PLUS = 0;const constexpr uint8_t X_MINUS = 1;const constexpr uint8_t Y_PLUS = 0;const constexpr uint8_t Y_MINUS = 1;const constexpr uint8_t Z_PLUS = 0;const constexpr uint8_t Z_MINUS = 1;const constexpr uint8_t X_PLUS_MASK = 0;const constexpr uint8_t X_MINUS_MASK = X_AXIS_MASK;const constexpr uint8_t Y_PLUS_MASK = 0;const constexpr uint8_t Y_MINUS_MASK = Y_AXIS_MASK;const constexpr uint8_t Z_PLUS_MASK = 0;const constexpr uint8_t Z_MINUS_MASK = Z_AXIS_MASK;/// Max. jerk in PrusaSlicer, 10000 = 1 mm/sconst constexpr uint16_t MAX_DELAY = 10000;const constexpr float MIN_SPEED = 0.01f / (MAX_DELAY * 0.000001f);/// 200 = 50 mm/sconst constexpr uint16_t Z_MIN_DELAY = 200;const constexpr uint16_t Z_ACCEL = 1000;/// \returns positive value always#define ABS(a) \    ({ __typeof__ (a) _a = (a); \    _a >= 0 ? _a : (-_a); })/// \returns maximum of the two#define MAX(a, b) \    ({ __typeof__ (a) _a = (a); \    __typeof__ (b) _b = (b); \    _a >= _b ? _a : _b; })/// \returns minimum of the two#define MIN(a, b) \    ({ __typeof__ (a) _a = (a); \    __typeof__ (b) _b = (b); \    _a <= _b ? _a : _b; })/// swap values#define SWAP(a, b) \    ({ __typeof__ (a) c = (a); \        a = (b); \        b = c; })/// Saturates value/// \returns min if value is less than min/// \returns max if value is more than min/// \returns value otherwise#define CLAMP(value, min, max) \    ({ __typeof__ (value) a_ = (value); \		__typeof__ (min) min_ = (min); \		__typeof__ (max) max_ = (max); \        ( a_ < min_ ? min_ : (a_ <= max_ ? a_ : max_)); })/// \returns square of the value#define SQR(a) \    ({ __typeof__ (a) a_ = (a); \        (a_ * a_); })/// position typestypedef int16_t pos_i16_t;typedef long pos_i32_t;typedef float pos_mm_t;typedef int16_t usteps_t;uint8_t check_pinda_0();uint8_t check_pinda_1();void xyzcal_update_pos(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t de);uint16_t xyzcal_calc_delay(uint16_t nd, uint16_t dd);uint8_t round_to_u8(float f){	return (uint8_t)(f + .5f);}uint16_t round_to_u16(float f){	return (uint16_t)(f + .5f);}int16_t round_to_i16(float f){	return (int16_t)(f + .5f);}/// converts millimeters to integer positionpos_i16_t mm_2_pos(pos_mm_t mm){	return (pos_i16_t)(0.5f + mm * 100);}/// converts integer position to millimeterspos_mm_t pos_2_mm(pos_i16_t pos){	return pos * 0.01f;}pos_mm_t pos_2_mm(float pos){	return pos * 0.01f;}void xyzcal_measure_enter(void){	DBG(_n("xyzcal_measure_enter\n"));	lcd_puts_at_P(4,3,PSTR("Measure center  ")); ////MSG_MEASURE_CENTER c=16	// disable heaters and stop motion before we initialize sm4	disable_heater();	st_synchronize();	// disable incompatible interrupts	DISABLE_STEPPER_DRIVER_INTERRUPT();#ifdef WATCHDOG	wdt_disable();#endif //WATCHDOG	// setup internal callbacks	sm4_stop_cb = 0;	sm4_update_pos_cb = xyzcal_update_pos;	sm4_calc_delay_cb = xyzcal_calc_delay;}void xyzcal_measure_leave(void){	DBG(_n("xyzcal_measure_leave\n"));	lcd_set_cursor(4,3);	lcd_space(16);	// resync planner position from counters (changed by xyzcal_update_pos)	planner_reset_position();	// re-enable interrupts#ifdef WATCHDOG	wdt_enable(WDTO_4S);#ifdef EMERGENCY_HANDLERS	WDTCSR |= (1 << WDIE);#endif //EMERGENCY_HANDLERS#endif //WATCHDOG	ENABLE_STEPPER_DRIVER_INTERRUPT();}uint8_t check_pinda_0(){	return _PINDA?0:1;}uint8_t check_pinda_1(){	return _PINDA?1:0;}uint8_t xyzcal_dm = 0;void xyzcal_update_pos(uint16_t dx, uint16_t dy, uint16_t dz, uint16_t){//	DBG(_n("xyzcal_update_pos dx=%d dy=%d dz=%d dir=%02x\n"), dx, dy, dz, xyzcal_dm);	if (xyzcal_dm&1) count_position[0] -= dx; else count_position[0] += dx;	if (xyzcal_dm&2) count_position[1] -= dy; else count_position[1] += dy;	if (xyzcal_dm&4) count_position[2] -= dz; else count_position[2] += dz;//	DBG(_n(" after xyzcal_update_pos x=%ld y=%ld z=%ld\n"), count_position[0], count_position[1], count_position[2]);}uint16_t xyzcal_sm4_delay = 0;//#define SM4_ACCEL_TEST#ifdef SM4_ACCEL_TESTuint16_t xyzcal_sm4_v0 = 2000;uint16_t xyzcal_sm4_vm = 45000;uint16_t xyzcal_sm4_v = xyzcal_sm4_v0;uint16_t xyzcal_sm4_ac = 2000;uint16_t xyzcal_sm4_ac2 = (uint32_t)xyzcal_sm4_ac * 1024 / 10000;//float xyzcal_sm4_vm = 10000;#endif //SM4_ACCEL_TEST#ifdef SM4_ACCEL_TESTuint16_t xyzcal_calc_delay(uint16_t nd, uint16_t dd){	uint16_t del_us = 0;	if (xyzcal_sm4_v & 0xf000) //>=4096	{		del_us = (uint16_t)62500 / (uint16_t)(xyzcal_sm4_v >> 4);		xyzcal_sm4_v += (xyzcal_sm4_ac2 * del_us + 512) >> 10;		if (xyzcal_sm4_v > xyzcal_sm4_vm) xyzcal_sm4_v = xyzcal_sm4_vm;		if (del_us > 25) return del_us - 25;	}	else	{		del_us = (uint32_t)1000000 / xyzcal_sm4_v;		xyzcal_sm4_v += ((uint32_t)xyzcal_sm4_ac2 * del_us + 512) >> 10;		if (xyzcal_sm4_v > xyzcal_sm4_vm) xyzcal_sm4_v = xyzcal_sm4_vm;		if (del_us > 50) return del_us - 50;	}//	uint16_t del_us = (uint16_t)(((float)1000000 / xyzcal_sm4_v) + 0.5);		//	uint16_t del_us = (uint32_t)1000000 / xyzcal_sm4_v;		//	uint16_t del_us = 100;		//	uint16_t del_us = (uint16_t)10000 / xyzcal_sm4_v;//	v += (ac * del_us + 500) / 1000;//	xyzcal_sm4_v += (xyzcal_sm4_ac * del_us) / 1000;//	return xyzcal_sm4_delay;//	DBG(_n("xyzcal_calc_delay nd=%d dd=%d v=%d  del_us=%d\n"), nd, dd, xyzcal_sm4_v, del_us);	return 0;}#else //SM4_ACCEL_TESTuint16_t xyzcal_calc_delay(uint16_t, uint16_t){    return xyzcal_sm4_delay;}#endif //SM4_ACCEL_TEST/// Moves printer to absolute position [x,y,z] defined in integer position system/// check_pinda == 0: ordinary move/// check_pinda == 1: stop when PINDA triggered/// check_pinda == -1: stop when PINDA untriggeredbool xyzcal_lineXYZ_to(int16_t x, int16_t y, int16_t z, uint16_t delay_us, int8_t check_pinda){//	DBG(_n("xyzcal_lineXYZ_to x=%d y=%d z=%d  check=%d\n"), x, y, z, check_pinda);	x -= (int16_t)count_position[0];	y -= (int16_t)count_position[1];	z -= (int16_t)count_position[2];	xyzcal_dm = ((x<0)?1:0) | ((y<0)?2:0) | ((z<0)?4:0);	sm4_set_dir_bits(xyzcal_dm);	sm4_stop_cb = check_pinda?((check_pinda<0)?check_pinda_0:check_pinda_1):0;	xyzcal_sm4_delay = delay_us;	//	uint32_t u = _micros();	bool ret = sm4_line_xyz_ui(abs(x), abs(y), abs(z)) ? true : false;	//	u = _micros() - u;	return ret;}/// Moves printer to absolute position [x,y,z] defined in millimetersbool xyzcal_lineXYZ_to_float(pos_mm_t x, pos_mm_t y, pos_mm_t z, uint16_t delay_us, int8_t check_pinda){	return xyzcal_lineXYZ_to(mm_2_pos(x), mm_2_pos(y), mm_2_pos(z), delay_us, check_pinda);}bool xyzcal_spiral2(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radius, int16_t rotation, uint16_t delay_us, int8_t check_pinda, uint16_t* pad){	bool ret = false;	float r = 0; //radius	uint16_t ad = 0; //angle [deg]	float ar; //angle [rad]	uint8_t dad = 0; //delta angle [deg]	uint8_t dad_min = 4; //delta angle min [deg]	uint8_t dad_max = 16; //delta angle max [deg]	uint8_t k = 720 / (dad_max - dad_min); //delta calculation constant	ad = 0;	if (pad) ad = *pad % 720;	    //@size=214	DBG(_n("xyzcal_spiral2 cx=%d cy=%d z0=%d dz=%d radius=%d ad=%d\n"), cx, cy, z0, dz, radius, ad);	// lcd_set_cursor(0, 4);	// char text[10];	// snprintf(text, 10, "%4d", z0);	// lcd_print(text);	for (; ad < 720; ad++)	{		if (radius > 0)		{			dad = dad_max - (ad / k);			r = (float)(((uint32_t)ad) * radius) / 720;		}		else		{			dad = dad_max - ((719 - ad) / k);			r = (float)(((uint32_t)(719 - ad)) * (-radius)) / 720;		}		ar = radians(ad + rotation);		int x = (int)(cx + (cos(ar) * r));		int y = (int)(cy + (sin(ar) * r));		int z = (int)(z0 - ((float)((int32_t)dz * ad) / 720));		if (xyzcal_lineXYZ_to(x, y, z, delay_us, check_pinda))		{			ad += dad + 1;			ret = true;			break;		}		ad += dad;	}	if (pad) *pad = ad;	// if(ret){	// 	lcd_set_cursor(0, 4);	// 	lcd_print("         ");	// }	return ret;}bool xyzcal_spiral8(int16_t cx, int16_t cy, int16_t z0, int16_t dz, int16_t radius, uint16_t delay_us, int8_t check_pinda, uint16_t* pad){	bool ret = false;	uint16_t ad = 0;	if (pad) ad = *pad;    //@size=274	DBG(_n("xyzcal_spiral8 cx=%d cy=%d z0=%d dz=%d radius=%d ad=%d\n"), cx, cy, z0, dz, radius, ad);	if (!ret && (ad < 720))		if ((ret = xyzcal_spiral2(cx, cy, z0 - 0*dz, dz, radius, 0, delay_us, check_pinda, &ad)) != 0)			ad += 0;	if (!ret && (ad < 1440))		if ((ret = xyzcal_spiral2(cx, cy, z0 - 1*dz, dz, -radius, 0, delay_us, check_pinda, &ad)) != 0)			ad += 720;	if (!ret && (ad < 2160))		if ((ret = xyzcal_spiral2(cx, cy, z0 - 2*dz, dz, radius, 180, delay_us, check_pinda, &ad)) != 0)			ad += 1440;	if (!ret && (ad < 2880))		if ((ret = xyzcal_spiral2(cx, cy, z0 - 3*dz, dz, -radius, 180, delay_us, check_pinda, &ad)) != 0)			ad += 2160;	if (pad) *pad = ad;	return ret;}#ifdef XYZCAL_MEASURE_PINDA_HYSTERESISint8_t xyzcal_measure_pinda_hysteresis(int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t samples){	DBG(_n("xyzcal_measure_pinda_hysteresis\n"));	int8_t ret = -1; // PINDA signal error	int16_t z = _Z;	int16_t sum_up = 0;	int16_t sum_dn = 0;	int16_t up;	int16_t dn;	uint8_t sample;	xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1);	xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1);	if (!_PINDA)	{		for (sample = 0; sample < samples; sample++)		{			dn = _Z;			if (!xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1)) break;			dn = dn - _Z;			up = _Z;			if (!xyzcal_lineXYZ_to(_X, _Y, max_z, delay_us, -1)) break;			up = _Z - up;			DBG(_n("%d. up=%d dn=%d\n"), sample, up, dn);			sum_up += up;			sum_dn += dn;			if (abs(up - dn) > XYZCAL_PINDA_HYST_DIF)			{				ret = -2; // difference between up-dn to high				break;			}		}		if (sample == samples)		{			up = sum_up / samples;			dn = sum_dn / samples;			uint16_t hyst = (up + dn) / 2;			if (abs(up - dn) > XYZCAL_PINDA_HYST_DIF)				ret = -2; // difference between up-dn to high			else if ((hyst < XYZCAL_PINDA_HYST_MIN) || (hyst > XYZCAL_PINDA_HYST_MAX))				ret = -3; // hysteresis out of range			else				ret = hyst;		}	}	xyzcal_lineXYZ_to(_X, _Y, z, delay_us, 0);	return ret;}#endif //XYZCAL_MEASURE_PINDA_HYSTERESISvoid print_hysteresis(int16_t min_z, int16_t max_z, int16_t step){	int16_t delay_us = 600;	int16_t trigger = 0;	int16_t untrigger = 0;	DBG(_n("Hysteresis\n"));	xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 0);	for (int16_t z = min_z; z <= max_z; z += step){		xyzcal_lineXYZ_to(_X, _Y, z, delay_us, -1);		untrigger = _Z;		xyzcal_lineXYZ_to(_X, _Y, z, delay_us, 0);		xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 1);		trigger = _Z;		//xyzcal_lineXYZ_to(_X, _Y, min_z, delay_us, 0);        //@size=114		DBG(_n("min, trigger, untrigger, max: [%d %d %d %d]\n"), _Z, trigger, untrigger, z);	}}void update_position_1_step(uint8_t axis, uint8_t dir){	if (axis & X_AXIS_MASK)		_X_ += dir & X_AXIS_MASK ? -1 : 1;	if (axis & Y_AXIS_MASK)		_Y_ += dir & Y_AXIS_MASK ? -1 : 1;	if (axis & Z_AXIS_MASK)		_Z_ += dir & Z_AXIS_MASK ? -1 : 1;}void set_axes_dir(uint8_t axes, uint8_t dir){	if (axes & X_AXIS_MASK)		sm4_set_dir(X_AXIS, dir & X_AXIS_MASK);	if (axes & Y_AXIS_MASK)		sm4_set_dir(Y_AXIS, dir & Y_AXIS_MASK);	if (axes & Z_AXIS_MASK)		sm4_set_dir(Z_AXIS, dir & Z_AXIS_MASK);}/// Accelerate up to max.speed (defined by @min_delay_us)/// does not update global positionsvoid accelerate_1_step(uint8_t axes, int16_t acc, uint16_t &delay_us, uint16_t min_delay_us){	sm4_do_step(axes);	/// keep max speed (avoid extra computation)	if (acc > 0 && delay_us == min_delay_us){		delayMicroseconds(delay_us);		return;	}	// v1 = v0 + a * t	// 0.01 = length of a step	const float t0 = delay_us * 0.000001f;	const float v1 = (0.01f / t0 + acc * t0);	uint16_t t1;	if (v1 <= 0.16f){ ///< slowest speed convertible to uint16_t delay		t1 = MAX_DELAY; ///< already too slow so it wants to move back	} else {		/// don't exceed max.speed		t1 = MAX(min_delay_us, round_to_u16(0.01f / v1 * 1000000.f));	}	/// make sure delay has changed a bit at least	if (t1 == delay_us && acc != 0){		if (acc > 0)			t1--;		else			t1++;	}		//DBG(_n("%d "), t1);	delayMicroseconds(t1);	delay_us = t1;}/// Goes defined number of steps while accelerating/// updates global positionsvoid accelerate(uint8_t axes, uint8_t dir, int16_t acc, uint16_t &delay_us, uint16_t min_delay_us, uint16_t steps){	set_axes_dir(axes, dir);	while (steps--){		accelerate_1_step(axes, acc, delay_us, min_delay_us);		update_position_1_step(axes, dir);	}}/// keeps speed and then it decelerates to a complete stop (if possible)/// it goes defined number of steps/// returns after each step/// \returns true if step was done/// does not update global positionsbool go_and_stop_1_step(uint8_t axes, int16_t dec, uint16_t &delay_us, uint16_t &steps){	if (steps <= 0 || dec <= 0)		return false;	/// deceleration distance in steps, s = 1/2 v^2 / a	uint16_t s = round_to_u16(100 * 0.5f * SQR(0.01f) / (SQR((float)delay_us) * dec));	if (steps > s){		/// go steady		sm4_do_step(axes);		delayMicroseconds(delay_us);	} else {		/// decelerate		accelerate_1_step(axes, -dec, delay_us, delay_us);	}	--steps;	return true;}/// \param dir sets direction of movement/// updates global positionsvoid go_and_stop(uint8_t axes, uint8_t dir, int16_t dec, uint16_t &delay_us, uint16_t steps){	set_axes_dir(axes, dir);	while (go_and_stop_1_step(axes, dec, delay_us, steps)){		update_position_1_step(axes, dir);	}}/// goes all the way to stop/// \returns steps done/// updates global positionsvoid stop_smoothly(uint8_t axes, uint8_t dir, int16_t dec, uint16_t &delay_us){	if (dec <= 0)		return;	set_axes_dir(axes, dir);	while (delay_us < MAX_DELAY){		accelerate_1_step(axes, -dec, delay_us, delay_us);		update_position_1_step(axes, dir);	}}void go_start_stop(uint8_t axes, uint8_t dir, int16_t acc, uint16_t min_delay_us, uint16_t steps){	if (steps == 0)		return;	uint16_t current_delay_us = MAX_DELAY;	const uint16_t half = steps / 2;	accelerate(axes, dir, acc, current_delay_us, min_delay_us, half);	go_and_stop(axes, dir, -acc, current_delay_us, steps - half);}/// moves X, Y, Z one after each other/// starts and ends at 0 speedvoid go_manhattan(int16_t x, int16_t y, int16_t z, int16_t acc, uint16_t min_delay_us){	int32_t length;	// DBG(_n("x %d -> %d, "), x, _X);	length = x - _X;	go_start_stop(X_AXIS_MASK, length < 0 ? X_MINUS_MASK : X_PLUS_MASK, acc, min_delay_us, ABS(length));	// DBG(_n("y %d -> %d, "), y, _Y);	length = y - _Y;	go_start_stop(Y_AXIS_MASK, length < 0 ? Y_MINUS_MASK : Y_PLUS_MASK, acc, min_delay_us, ABS(length));	// DBG(_n("z %d -> %d\n"), z, _Z);	length = z - _Z;	go_start_stop(Z_AXIS_MASK, length < 0 ? Z_MINUS_MASK : Z_PLUS_MASK, acc, min_delay_us, ABS(length));	// DBG(_n("\n"));}void __attribute__((noinline)) xyzcal_scan_pixels_32x32_Zhop(int16_t cx, int16_t cy, int16_t min_z, int16_t max_z, uint16_t delay_us, uint8_t *pixels){	if (!pixels)		return;	int16_t z_trig;	uint16_t line_buffer[32];	uint16_t current_delay_us = MAX_DELAY; ///< defines current speed	int16_t start_z;	uint16_t steps_to_go;	DBG(_n("Scan countdown: "));	for (uint8_t r = 0; r < 32; r++){ ///< Y axis		for (uint8_t d = 0; d < 2; ++d){			go_manhattan((d & 1) ? (cx + 992) : (cx - 992), cy - 992 + r * 64, _Z, Z_ACCEL, Z_MIN_DELAY);			xyzcal_lineXYZ_to((d & 1) ? (cx + 992) : (cx - 992), cy - 992 + r * 64, _Z, delay_us, 0);			sm4_set_dir(X_AXIS, d);            //@size=242			DBG(_n("%d\n"), 64 - (r * 2 + d)); ///< to keep OctoPrint connection alive			lcd_set_cursor(4,3);			lcd_printf_P(PSTR("Countdown: %d "),64 - (r * 2 + d)); ////MSG_COUNTDOWN c=12			for (uint8_t c = 0; c < 32; c++){ ///< X axis				/// move to the next point and move Z up diagonally (if needed)				current_delay_us = MAX_DELAY;				const int16_t end_x = ((d & 1) ? 1 : -1) * (64 * (16 - c) - 32) + cx;				const int16_t length_x = ABS(end_x - _X);				const int16_t half_x = length_x / 2;				/// don't go up if PINDA not triggered (optimization)				const bool up = _PINDA;				const uint8_t axes = up ? X_AXIS_MASK | Z_AXIS_MASK : X_AXIS_MASK;				const uint8_t dir = Z_PLUS_MASK | (d & 1 ? X_MINUS_MASK : X_PLUS_MASK);				accelerate(axes, dir, Z_ACCEL, current_delay_us, Z_MIN_DELAY, half_x);				go_and_stop(axes, dir, Z_ACCEL, current_delay_us, length_x - half_x);												z_trig = min_z;				/// move up to un-trigger (surpress hysteresis)				sm4_set_dir(Z_AXIS, Z_PLUS);				/// speed up from stop, go half the way				current_delay_us = MAX_DELAY;				for (start_z = _Z; _Z < (max_z + start_z) / 2; ++_Z_){					if (!_PINDA){						break;					}					accelerate_1_step(Z_AXIS_MASK, Z_ACCEL, current_delay_us, Z_MIN_DELAY);				}				if (_PINDA){					steps_to_go = MAX(0, max_z - _Z);					while (_PINDA && _Z < max_z){						go_and_stop_1_step(Z_AXIS_MASK, Z_ACCEL, current_delay_us, steps_to_go);						++_Z_;					}				}				stop_smoothly(Z_AXIS_MASK, Z_PLUS_MASK, Z_ACCEL, current_delay_us);				/// move down to trigger				sm4_set_dir(Z_AXIS, Z_MINUS);				/// speed up				current_delay_us = MAX_DELAY;				for (start_z = _Z; _Z > (min_z + start_z) / 2; --_Z_){					if (_PINDA){						z_trig = _Z;						break;					}					accelerate_1_step(Z_AXIS_MASK, Z_ACCEL, current_delay_us, Z_MIN_DELAY);				}				/// slow down				if (!_PINDA){					steps_to_go = MAX(0, _Z - min_z);					while (!_PINDA && _Z > min_z){						go_and_stop_1_step(Z_AXIS_MASK, Z_ACCEL, current_delay_us, steps_to_go);						--_Z_;					}					z_trig = _Z;				}				/// slow down to stop but not lower than min_z				while (_Z > min_z && current_delay_us < MAX_DELAY){					accelerate_1_step(Z_AXIS_MASK, -Z_ACCEL, current_delay_us, Z_MIN_DELAY);					--_Z_;				}				if (d == 0){					line_buffer[c] = (uint16_t)(z_trig - min_z);				} else {					/// !!! data reversed in X					// DBG(_n("%04x"), ((uint32_t)line_buffer[31 - c] + (z_trig - min_z)) / 2);					/// save average of both directions (filters effect of hysteresis)					pixels[(uint16_t)r * 32 + (31 - c)] = (uint8_t)MIN((uint32_t)255, ((uint32_t)line_buffer[31 - c] + (z_trig - min_z)) / 2);				}			}		}	}	DBG(endl);}/// Returns rate of match/// max match = 132, min match = 0uint8_t xyzcal_match_pattern_12x12_in_32x32(uint16_t* pattern, uint8_t* pixels, uint8_t c, uint8_t r){	uint8_t thr = 16;	uint8_t match = 0;	for (uint8_t i = 0; i < 12; ++i){		for (uint8_t j = 0; j < 12; ++j){			/// skip corners (3 pixels in each)			if (((i == 0) || (i == 11)) && ((j < 2) || (j >= 10))) continue;			if (((j == 0) || (j == 11)) && ((i < 2) || (i >= 10))) continue;			const uint16_t idx = (c + j) + 32 * ((uint16_t)r + i);			const bool high_pix = pixels[idx] > thr;			const bool high_pat = pattern[i] & (1 << j);			if (high_pix == high_pat)				match++;		}	}	return match;}/// Searches for best match of pattern by shifting it/// Returns rate of match and the best location/// max match = 132, min match = 0uint8_t xyzcal_find_pattern_12x12_in_32x32(uint8_t* pixels, uint16_t* pattern, uint8_t* pc, uint8_t* pr){	if (!pixels || !pattern || !pc || !pr)		return -1;	uint8_t max_c = 0;	uint8_t max_r = 0;	uint8_t max_match = 0;	// DBG(_n("Matching:\n"));	/// pixel precision	for (uint8_t r = 0; r < (32 - 12); ++r){		for (uint8_t c = 0; c < (32 - 12); ++c){			const uint8_t match = xyzcal_match_pattern_12x12_in_32x32(pattern, pixels, c, r);			if (max_match < match){				max_c = c;				max_r = r;				max_match = match;			}			// DBG(_n("%d "), match);		}		// DBG(_n("\n"));	}    //@size=278	DBG(_n("Pattern center [%f %f], match %f%%\n"), max_c + 5.5f, max_r + 5.5f, max_match / 1.32f);	*pc = max_c;	*pr = max_r;	return max_match;}const uint16_t xyzcal_point_pattern_10[12] PROGMEM = {0x000, 0x0f0, 0x1f8, 0x3fc, 0x7fe, 0x7fe, 0x7fe, 0x7fe, 0x3fc, 0x1f8, 0x0f0, 0x000};const uint16_t xyzcal_point_pattern_08[12] PROGMEM = {0x000, 0x000, 0x0f0, 0x1f8, 0x3fc, 0x3fc, 0x3fc, 0x3fc, 0x1f8, 0x0f0, 0x000, 0x000};bool xyzcal_searchZ(void) {	//@size=118	DBG(_n("xyzcal_searchZ x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);	int16_t x0 = _X;	int16_t y0 = _Y;	int16_t z = _Z;//	int16_t min_z = -6000;//	int16_t dz = 100;	while (z > -2300) { //-6mm + 0.25mm		uint16_t ad = 0;		if (xyzcal_spiral8(x0, y0, z, 100, 900, 320, 1, &ad)) { //dz=100 radius=900 delay=400			//@size=82			DBG(_n(" ON-SIGNAL at x=%d y=%d z=%d ad=%d\n"), _X, _Y, _Z, ad);			/// return to starting XY position			/// magic constant, lowers min_z after searchZ to obtain more dense data in scan			const pos_i16_t lower_z = 72;			xyzcal_lineXYZ_to(x0, y0, _Z - lower_z, 200, 0);			return true;		}		z -= 400;	}	//@size=138	DBG(_n("xyzcal_searchZ no signal\n x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);	return false;}/// returns value of any location within data/// uses bilinear interpolationfloat get_value(uint8_t * matrix_32x32, float c, float r){	if (c <= 0 || r <= 0 || c >= 31 || r >= 31)		return 0;	/// calculate weights of nearby points	const float wc1 = c - floor(c);	const float wr1 = r - floor(r);	const float wc0 = 1 - wc1;	const float wr0 = 1 - wr1;	const float w00 = wc0 * wr0;	const float w01 = wc0 * wr1;	const float w10 = wc1 * wr0;	const float w11 = wc1 * wr1;	const uint16_t c0 = c;	const uint16_t c1 = c0 + 1;	const uint16_t r0 = r;	const uint16_t r1 = r0 + 1;	const uint16_t idx00 = c0 + 32 * r0;	const uint16_t idx01 = c0 + 32 * r1;	const uint16_t idx10 = c1 + 32 * r0;	const uint16_t idx11 = c1 + 32 * r1;	/// bilinear resampling	return w00 * matrix_32x32[idx00] + w01 * matrix_32x32[idx01] + w10 * matrix_32x32[idx10] + w11 * matrix_32x32[idx11];}const constexpr float m_infinity = -1000.f;/// replaces the highest number by m_infinityvoid remove_highest(float *points, const uint8_t num_points){	if (num_points <= 0)		return;	float max = points[0];	uint8_t max_i = 0;	for (uint8_t i = 0; i < num_points; ++i){		if (max < points[i]){			max = points[i];			max_i = i;		}	}	points[max_i] = m_infinity;}/// return the highest number in the listfloat highest(float *points, const uint8_t num_points){	if (num_points <= 0)		return 0;	float max = points[0];	for (uint8_t i = 0; i < num_points; ++i){		if (max < points[i]){			max = points[i];		}	}	return max;}/// slow bubble sort but shortvoid sort(float *points, const uint8_t num_points){	/// one direction bubble sort	for (uint8_t i = 0; i < num_points; ++i){		for (uint8_t j = 0; j < num_points - i - 1; ++j){			if (points[j] > points[j + 1])				SWAP(points[j], points[j + 1]);		}	}		// DBG(_n("Sorted: "));	// for (uint8_t i = 0; i < num_points; ++i)	// 	DBG(_n("%f "), points[i]);	// DBG(_n("\n"));}/// sort array and returns median value/// don't send empty array or nullptrfloat median(float *points, const uint8_t num_points){	sort(points, num_points);	return points[num_points / 2];}float __attribute__ ((noinline)) CLAMP_median(float *shifts, uint8_t blocks, float norm){    const constexpr float max_change = 0.5f; ///< avoids too fast changes (avoid oscillation)    return CLAMP( median(shifts, blocks) * norm, -max_change, max_change);}/// Searches for circle iteratively/// Uses points on the perimeter. If point is high it pushes circle out of the center (shift or change of radius),/// otherwise to the center./// Algorithm is stopped after fixed number of iterations. Move is limited to 0.5 px per iteration.void dynamic_circle(uint8_t *matrix_32x32, float &x, float &y, float &r, uint8_t iterations){	/// circle of 10.5 diameter has 33 in circumference, don't go much above	const constexpr uint8_t num_points = 33;	const float pi_2_div_num_points = 2 * M_PI / num_points;	const constexpr uint8_t target_z = 32; ///< target z height of the circle	const uint8_t blocks = num_points;	float shifts_x[blocks];	float shifts_y[blocks];		float shifts_r[blocks];		// DBG(_n(" [%f, %f][%f] start circle\n"), x, y, r);	for (int8_t i = iterations; i > 0; --i){	        //@size=128B		// DBG(_n(" [%f, %f][%f] circle\n"), x, y, r);		/// read points on the circle		for (uint8_t p = 0; p < num_points; ++p){			const float angle = p * pi_2_div_num_points;			const float height = get_value(matrix_32x32, r * cos(angle) + x, r * sin(angle) + y) - target_z;			// DBG(_n("%f "), point);			shifts_x[p] = cos(angle) * height;			shifts_y[p] = sin(angle) * height;			shifts_r[p] = height;		}		// DBG(_n(" points\n"));		const float reducer = 32.f; ///< reduces speed of convergency to avoid oscillation		const float norm = 1.f / reducer;//		x += CLAMP(median(shifts_x, blocks) * norm, -max_change, max_change);//		y += CLAMP(median(shifts_y, blocks) * norm, -max_change, max_change);//		r += CLAMP(median(shifts_r, blocks) * norm * .5f, -max_change, max_change);        //104B down        x += CLAMP_median(shifts_x, blocks, norm);        y += CLAMP_median(shifts_y, blocks, norm);        r += CLAMP_median(shifts_r, blocks, norm * .5f);		r = MAX(2, r);	}    //@size=118	DBG(_n(" [%f, %f][%f] final circle\n"), x, y, r);}/// Prints matrix in hex to debug output (serial line)void print_image(const uint8_t *matrix_32x32){	for (uint8_t y = 0; y < 32; ++y){		const uint16_t idx_y = y * 32;		for (uint8_t x = 0; x < 32; ++x){			DBG(_n("%02x"), matrix_32x32[idx_y + x]);		}		DBG(endl);	}	DBG(endl);}/// Takes two patterns and searches them in matrix32/// \returns best matchuint8_t find_patterns(uint8_t *matrix32, uint16_t *pattern08, uint16_t *pattern10, uint8_t &col, uint8_t &row){	uint8_t c08 = 0;	uint8_t r08 = 0;	uint8_t match08 = 0;	uint8_t c10 = 0;	uint8_t r10 = 0;	uint8_t match10 = 0;	match08 = xyzcal_find_pattern_12x12_in_32x32(matrix32, pattern08, &c08, &r08);	match10 = xyzcal_find_pattern_12x12_in_32x32(matrix32, pattern10, &c10, &r10);	if (match08 > match10){		col = c08;		row = r08;		return match08;	}		col = c10;	row = r10;	return match10;}/// Scan should include normal data./// If it's too extreme (00, FF) it could be caused by biased sensor./// \return true if data looks normalbool check_scan(uint8_t *matrix32){	/// magic constants that define normality	const int16_t threshold_total = 900;	const int threshold_extreme = 50;	int16_t mins = 0;	int16_t maxs = 0;	for (int16_t i = 0; i < 32*32;++i){		if (matrix32[i] == 0) {			++mins;		} else if (matrix32[i] == 0xFF){			++maxs;		}	}	const int16_t rest = 1024 - mins - maxs;	if (mins + maxs > threshold_total		&& mins > threshold_extreme		&& maxs > threshold_extreme		&& mins > rest		&& maxs > rest)		return false;	return true;}/// scans area around the current head location and/// searches for the center of the calibration pinBedSkewOffsetDetectionResultType xyzcal_scan_and_process(){    //@size=44	// DBG(_n("sizeof(block_buffer)=%d\n"), sizeof(block_t)*BLOCK_BUFFER_SIZE);	BedSkewOffsetDetectionResultType ret = BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;	int16_t x = _X;	int16_t y = _Y;	const int16_t z = _Z;	uint8_t *matrix32 = (uint8_t *)block_buffer;	uint16_t *pattern08 = (uint16_t *)(matrix32 + 32 * 32);	uint16_t *pattern10 = (uint16_t *)(pattern08 + 12);	for (uint8_t i = 0; i < 12; i++){		pattern08[i] = pgm_read_word((uint16_t*)(xyzcal_point_pattern_08 + i));		pattern10[i] = pgm_read_word((uint16_t*)(xyzcal_point_pattern_10 + i));	}	xyzcal_scan_pixels_32x32_Zhop(x, y, z, 2400, 200, matrix32);	print_image(matrix32);	if (!check_scan(matrix32))		return BED_SKEW_OFFSET_DETECTION_POINT_SCAN_FAILED;	/// SEARCH FOR BINARY CIRCLE	uint8_t uc = 0;	uint8_t ur = 0;	/// max match = 132, 1/2 good = 66, 2/3 good = 88	if (find_patterns(matrix32, pattern08, pattern10, uc, ur) >= 88){		/// find precise circle		/// move to the center of the pattern (+5.5)		float xf = uc + 5.5f;		float yf = ur + 5.5f;		float radius = 4.5f; ///< default radius		constexpr const uint8_t iterations = 20;		dynamic_circle(matrix32, xf, yf, radius, iterations);		if (fabs(xf - (uc + 5.5f)) > 3 || fabs(yf - (ur + 5.5f)) > 3 || fabs(radius - 5) > 3){			//@size=88            DBG(_n(" [%f %f][%f] mm divergence\n"), xf - (uc + 5.5f), yf - (ur + 5.5f), radius - 5);			/// dynamic algorithm diverged, use original position instead			xf = uc + 5.5f;			yf = ur + 5.5f;		}		/// move to the center of area and convert to position		xf = (float)x + (xf - 15.5f) * 64;		yf = (float)y + (yf - 15.5f) * 64;		//@size=114        DBG(_n(" [%f %f] mm pattern center\n"), pos_2_mm(xf), pos_2_mm(yf));		x = round_to_i16(xf);		y = round_to_i16(yf);		xyzcal_lineXYZ_to(x, y, z, 200, 0);		ret = BED_SKEW_OFFSET_DETECTION_POINT_FOUND;	}	/// wipe buffer	for (uint16_t i = 0; i < sizeof(block_t)*BLOCK_BUFFER_SIZE; i++)		matrix32[i] = 0;	return ret;}BedSkewOffsetDetectionResultType xyzcal_find_bed_induction_sensor_point_xy(void) {    // DBG(_n("xyzcal_find_bed_induction_sensor_point_xy x=%ld y=%ld z=%ld\n"), count_position[X_AXIS], count_position[Y_AXIS], count_position[Z_AXIS]);	BedSkewOffsetDetectionResultType ret = BED_SKEW_OFFSET_DETECTION_POINT_NOT_FOUND;	xyzcal_measure_enter();	if (xyzcal_searchZ())		ret = xyzcal_scan_and_process();	xyzcal_measure_leave();	return ret;}#endif //NEW_XYZCAL
 |