temperature.cpp 56 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. //===========================================================================
  33. //=============================public variables============================
  34. //===========================================================================
  35. int target_temperature[EXTRUDERS] = { 0 };
  36. int target_temperature_bed = 0;
  37. int current_temperature_raw[EXTRUDERS] = { 0 };
  38. float current_temperature[EXTRUDERS] = { 0.0 };
  39. #ifdef PINDA_THERMISTOR
  40. int current_temperature_raw_pinda = 0 ;
  41. float current_temperature_pinda = 0.0;
  42. #endif //PINDA_THERMISTOR
  43. #ifdef AMBIENT_THERMISTOR
  44. int current_temperature_raw_ambient = 0 ;
  45. float current_temperature_ambient = 0.0;
  46. #endif //AMBIENT_THERMISTOR
  47. #ifdef VOLT_PWR_PIN
  48. int current_voltage_raw_pwr = 0;
  49. #endif
  50. #ifdef VOLT_BED_PIN
  51. int current_voltage_raw_bed = 0;
  52. #endif
  53. int current_temperature_bed_raw = 0;
  54. float current_temperature_bed = 0.0;
  55. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  56. int redundant_temperature_raw = 0;
  57. float redundant_temperature = 0.0;
  58. #endif
  59. #ifdef PIDTEMP
  60. float _Kp, _Ki, _Kd;
  61. int pid_cycle, pid_number_of_cycles;
  62. bool pid_tuning_finished = false;
  63. #ifdef PID_ADD_EXTRUSION_RATE
  64. float Kc=DEFAULT_Kc;
  65. #endif
  66. #endif //PIDTEMP
  67. #ifdef PIDTEMPBED
  68. float bedKp=DEFAULT_bedKp;
  69. float bedKi=(DEFAULT_bedKi*PID_dT);
  70. float bedKd=(DEFAULT_bedKd/PID_dT);
  71. #endif //PIDTEMPBED
  72. #ifdef FAN_SOFT_PWM
  73. unsigned char fanSpeedSoftPwm;
  74. #endif
  75. unsigned char soft_pwm_bed;
  76. #ifdef BABYSTEPPING
  77. volatile int babystepsTodo[3]={0,0,0};
  78. #endif
  79. //===========================================================================
  80. //=============================private variables============================
  81. //===========================================================================
  82. static volatile bool temp_meas_ready = false;
  83. #ifdef PIDTEMP
  84. //static cannot be external:
  85. static float temp_iState[EXTRUDERS] = { 0 };
  86. static float temp_dState[EXTRUDERS] = { 0 };
  87. static float pTerm[EXTRUDERS];
  88. static float iTerm[EXTRUDERS];
  89. static float dTerm[EXTRUDERS];
  90. //int output;
  91. static float pid_error[EXTRUDERS];
  92. static float temp_iState_min[EXTRUDERS];
  93. static float temp_iState_max[EXTRUDERS];
  94. // static float pid_input[EXTRUDERS];
  95. // static float pid_output[EXTRUDERS];
  96. static bool pid_reset[EXTRUDERS];
  97. #endif //PIDTEMP
  98. #ifdef PIDTEMPBED
  99. //static cannot be external:
  100. static float temp_iState_bed = { 0 };
  101. static float temp_dState_bed = { 0 };
  102. static float pTerm_bed;
  103. static float iTerm_bed;
  104. static float dTerm_bed;
  105. //int output;
  106. static float pid_error_bed;
  107. static float temp_iState_min_bed;
  108. static float temp_iState_max_bed;
  109. #else //PIDTEMPBED
  110. static unsigned long previous_millis_bed_heater;
  111. #endif //PIDTEMPBED
  112. static unsigned char soft_pwm[EXTRUDERS];
  113. #ifdef FAN_SOFT_PWM
  114. static unsigned char soft_pwm_fan;
  115. #endif
  116. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  117. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  118. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  119. static unsigned long extruder_autofan_last_check;
  120. #endif
  121. #if EXTRUDERS > 3
  122. # error Unsupported number of extruders
  123. #elif EXTRUDERS > 2
  124. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  125. #elif EXTRUDERS > 1
  126. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  127. #else
  128. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  129. #endif
  130. // Init min and max temp with extreme values to prevent false errors during startup
  131. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  132. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  133. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  134. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  135. #ifdef BED_MINTEMP
  136. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  137. #endif
  138. #ifdef BED_MAXTEMP
  139. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  140. #endif
  141. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  142. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  143. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  144. #else
  145. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  146. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  147. #endif
  148. static float analog2temp(int raw, uint8_t e);
  149. static float analog2tempBed(int raw);
  150. static float analog2tempAmbient(int raw);
  151. static float analog2tempPINDA(int raw);
  152. static void updateTemperaturesFromRawValues();
  153. enum TempRunawayStates
  154. {
  155. TempRunaway_INACTIVE = 0,
  156. TempRunaway_PREHEAT = 1,
  157. TempRunaway_ACTIVE = 2,
  158. };
  159. #ifdef WATCH_TEMP_PERIOD
  160. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  161. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  162. #endif //WATCH_TEMP_PERIOD
  163. #ifndef SOFT_PWM_SCALE
  164. #define SOFT_PWM_SCALE 0
  165. #endif
  166. //===========================================================================
  167. //============================= functions ============================
  168. //===========================================================================
  169. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  170. static float temp_runaway_status[4];
  171. static float temp_runaway_target[4];
  172. static float temp_runaway_timer[4];
  173. static int temp_runaway_error_counter[4];
  174. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  175. static void temp_runaway_stop(bool isPreheat, bool isBed);
  176. #endif
  177. void PID_autotune(float temp, int extruder, int ncycles)
  178. {
  179. pid_number_of_cycles = ncycles;
  180. pid_tuning_finished = false;
  181. float input = 0.0;
  182. pid_cycle=0;
  183. bool heating = true;
  184. unsigned long temp_millis = millis();
  185. unsigned long t1=temp_millis;
  186. unsigned long t2=temp_millis;
  187. long t_high = 0;
  188. long t_low = 0;
  189. long bias, d;
  190. float Ku, Tu;
  191. float max = 0, min = 10000;
  192. uint8_t safety_check_cycles = 0;
  193. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  194. float temp_ambient;
  195. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  196. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  197. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  198. unsigned long extruder_autofan_last_check = millis();
  199. #endif
  200. if ((extruder >= EXTRUDERS)
  201. #if (TEMP_BED_PIN <= -1)
  202. ||(extruder < 0)
  203. #endif
  204. ){
  205. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  206. pid_tuning_finished = true;
  207. pid_cycle = 0;
  208. return;
  209. }
  210. SERIAL_ECHOLN("PID Autotune start");
  211. disable_heater(); // switch off all heaters.
  212. if (extruder<0)
  213. {
  214. soft_pwm_bed = (MAX_BED_POWER)/2;
  215. bias = d = (MAX_BED_POWER)/2;
  216. }
  217. else
  218. {
  219. soft_pwm[extruder] = (PID_MAX)/2;
  220. bias = d = (PID_MAX)/2;
  221. }
  222. for(;;) {
  223. #ifdef WATCHDOG
  224. wdt_reset();
  225. #endif //WATCHDOG
  226. if(temp_meas_ready == true) { // temp sample ready
  227. updateTemperaturesFromRawValues();
  228. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  229. max=max(max,input);
  230. min=min(min,input);
  231. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  232. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  233. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  234. if(millis() - extruder_autofan_last_check > 2500) {
  235. checkExtruderAutoFans();
  236. extruder_autofan_last_check = millis();
  237. }
  238. #endif
  239. if(heating == true && input > temp) {
  240. if(millis() - t2 > 5000) {
  241. heating=false;
  242. if (extruder<0)
  243. soft_pwm_bed = (bias - d) >> 1;
  244. else
  245. soft_pwm[extruder] = (bias - d) >> 1;
  246. t1=millis();
  247. t_high=t1 - t2;
  248. max=temp;
  249. }
  250. }
  251. if(heating == false && input < temp) {
  252. if(millis() - t1 > 5000) {
  253. heating=true;
  254. t2=millis();
  255. t_low=t2 - t1;
  256. if(pid_cycle > 0) {
  257. bias += (d*(t_high - t_low))/(t_low + t_high);
  258. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  259. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  260. else d = bias;
  261. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  262. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  263. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  264. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  265. if(pid_cycle > 2) {
  266. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  267. Tu = ((float)(t_low + t_high)/1000.0);
  268. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  269. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  270. _Kp = 0.6*Ku;
  271. _Ki = 2*_Kp/Tu;
  272. _Kd = _Kp*Tu/8;
  273. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  274. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  275. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  276. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  277. /*
  278. _Kp = 0.33*Ku;
  279. _Ki = _Kp/Tu;
  280. _Kd = _Kp*Tu/3;
  281. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  282. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  283. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  284. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  285. _Kp = 0.2*Ku;
  286. _Ki = 2*_Kp/Tu;
  287. _Kd = _Kp*Tu/3;
  288. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  289. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  290. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  291. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  292. */
  293. }
  294. }
  295. if (extruder<0)
  296. soft_pwm_bed = (bias + d) >> 1;
  297. else
  298. soft_pwm[extruder] = (bias + d) >> 1;
  299. pid_cycle++;
  300. min=temp;
  301. }
  302. }
  303. }
  304. if(input > (temp + 20)) {
  305. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  306. pid_tuning_finished = true;
  307. pid_cycle = 0;
  308. return;
  309. }
  310. if(millis() - temp_millis > 2000) {
  311. int p;
  312. if (extruder<0){
  313. p=soft_pwm_bed;
  314. SERIAL_PROTOCOLPGM("B:");
  315. }else{
  316. p=soft_pwm[extruder];
  317. SERIAL_PROTOCOLPGM("T:");
  318. }
  319. SERIAL_PROTOCOL(input);
  320. SERIAL_PROTOCOLPGM(" @:");
  321. SERIAL_PROTOCOLLN(p);
  322. if (safety_check_cycles == 0) { //save ambient temp
  323. temp_ambient = input;
  324. //SERIAL_ECHOPGM("Ambient T: ");
  325. //MYSERIAL.println(temp_ambient);
  326. safety_check_cycles++;
  327. }
  328. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  329. safety_check_cycles++;
  330. }
  331. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  332. safety_check_cycles++;
  333. //SERIAL_ECHOPGM("Time from beginning: ");
  334. //MYSERIAL.print(safety_check_cycles_count * 2);
  335. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  336. //MYSERIAL.println(input - temp_ambient);
  337. if (abs(input - temp_ambient) < 5.0) {
  338. temp_runaway_stop(false, (extruder<0));
  339. pid_tuning_finished = true;
  340. return;
  341. }
  342. }
  343. temp_millis = millis();
  344. }
  345. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  346. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  347. pid_tuning_finished = true;
  348. pid_cycle = 0;
  349. return;
  350. }
  351. if(pid_cycle > ncycles) {
  352. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  353. pid_tuning_finished = true;
  354. pid_cycle = 0;
  355. return;
  356. }
  357. lcd_update(0);
  358. }
  359. }
  360. void updatePID()
  361. {
  362. #ifdef PIDTEMP
  363. for(int e = 0; e < EXTRUDERS; e++) {
  364. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  365. }
  366. #endif
  367. #ifdef PIDTEMPBED
  368. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  369. #endif
  370. }
  371. int getHeaterPower(int heater) {
  372. if (heater<0)
  373. return soft_pwm_bed;
  374. return soft_pwm[heater];
  375. }
  376. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  377. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  378. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  379. #if defined(FAN_PIN) && FAN_PIN > -1
  380. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  381. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  382. #endif
  383. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  384. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  385. #endif
  386. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  387. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  388. #endif
  389. #endif
  390. void setExtruderAutoFanState(int pin, bool state)
  391. {
  392. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  393. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  394. pinMode(pin, OUTPUT);
  395. digitalWrite(pin, newFanSpeed);
  396. analogWrite(pin, newFanSpeed);
  397. }
  398. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  399. void countFanSpeed()
  400. {
  401. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  402. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  403. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  404. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  405. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  406. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  407. SERIAL_ECHOLNPGM(" ");*/
  408. fan_edge_counter[0] = 0;
  409. fan_edge_counter[1] = 0;
  410. }
  411. extern bool fans_check_enabled;
  412. void checkFanSpeed()
  413. {
  414. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  415. static unsigned char fan_speed_errors[2] = { 0,0 };
  416. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  417. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  418. else fan_speed_errors[0] = 0;
  419. #endif
  420. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  421. if ((fan_speed[1] == 0) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  422. else fan_speed_errors[1] = 0;
  423. #endif
  424. if ((fan_speed_errors[0] > 5) && fans_check_enabled) {
  425. fan_speed_errors[0] = 0;
  426. fanSpeedError(0); //extruder fan
  427. }
  428. if ((fan_speed_errors[1] > 15) && fans_check_enabled) {
  429. fan_speed_errors[1] = 0;
  430. fanSpeedError(1); //print fan
  431. }
  432. }
  433. extern void stop_and_save_print_to_ram(float z_move, float e_move);
  434. extern void restore_print_from_ram_and_continue(float e_move);
  435. void fanSpeedError(unsigned char _fan) {
  436. if (get_message_level() != 0 && isPrintPaused) return;
  437. //to ensure that target temp. is not set to zero in case taht we are resuming print
  438. if (card.sdprinting) {
  439. if (heating_status != 0) {
  440. lcd_print_stop();
  441. }
  442. else {
  443. isPrintPaused = true;
  444. lcd_sdcard_pause();
  445. }
  446. }
  447. else {
  448. setTargetHotend0(0);
  449. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  450. }
  451. switch (_fan) {
  452. case 0:
  453. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  454. if (get_message_level() == 0) {
  455. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  456. WRITE(BEEPER, HIGH);
  457. delayMicroseconds(200);
  458. WRITE(BEEPER, LOW);
  459. delayMicroseconds(100);
  460. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  461. }
  462. break;
  463. case 1:
  464. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  465. if (get_message_level() == 0) {
  466. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  467. WRITE(BEEPER, HIGH);
  468. delayMicroseconds(200);
  469. WRITE(BEEPER, LOW);
  470. delayMicroseconds(100);
  471. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  472. }
  473. break;
  474. }
  475. }
  476. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  477. void checkExtruderAutoFans()
  478. {
  479. uint8_t fanState = 0;
  480. // which fan pins need to be turned on?
  481. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  482. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  483. fanState |= 1;
  484. #endif
  485. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  486. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  487. {
  488. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  489. fanState |= 1;
  490. else
  491. fanState |= 2;
  492. }
  493. #endif
  494. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  495. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  496. {
  497. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  498. fanState |= 1;
  499. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  500. fanState |= 2;
  501. else
  502. fanState |= 4;
  503. }
  504. #endif
  505. // update extruder auto fan states
  506. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  507. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  508. #endif
  509. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  510. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  511. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  512. #endif
  513. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  514. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  515. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  516. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  517. #endif
  518. }
  519. #endif // any extruder auto fan pins set
  520. void manage_heater()
  521. {
  522. #ifdef WATCHDOG
  523. wdt_reset();
  524. #endif //WATCHDOG
  525. float pid_input;
  526. float pid_output;
  527. if(temp_meas_ready != true) //better readability
  528. return;
  529. updateTemperaturesFromRawValues();
  530. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  531. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  532. #endif
  533. for(int e = 0; e < EXTRUDERS; e++)
  534. {
  535. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  536. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  537. #endif
  538. #ifdef PIDTEMP
  539. pid_input = current_temperature[e];
  540. #ifndef PID_OPENLOOP
  541. pid_error[e] = target_temperature[e] - pid_input;
  542. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  543. pid_output = BANG_MAX;
  544. pid_reset[e] = true;
  545. }
  546. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  547. pid_output = 0;
  548. pid_reset[e] = true;
  549. }
  550. else {
  551. if(pid_reset[e] == true) {
  552. temp_iState[e] = 0.0;
  553. pid_reset[e] = false;
  554. }
  555. pTerm[e] = cs.Kp * pid_error[e];
  556. temp_iState[e] += pid_error[e];
  557. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  558. iTerm[e] = cs.Ki * temp_iState[e];
  559. //K1 defined in Configuration.h in the PID settings
  560. #define K2 (1.0-K1)
  561. dTerm[e] = (cs.Kd * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  562. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  563. if (pid_output > PID_MAX) {
  564. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  565. pid_output=PID_MAX;
  566. } else if (pid_output < 0){
  567. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  568. pid_output=0;
  569. }
  570. }
  571. temp_dState[e] = pid_input;
  572. #else
  573. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  574. #endif //PID_OPENLOOP
  575. #ifdef PID_DEBUG
  576. SERIAL_ECHO_START;
  577. SERIAL_ECHO(" PID_DEBUG ");
  578. SERIAL_ECHO(e);
  579. SERIAL_ECHO(": Input ");
  580. SERIAL_ECHO(pid_input);
  581. SERIAL_ECHO(" Output ");
  582. SERIAL_ECHO(pid_output);
  583. SERIAL_ECHO(" pTerm ");
  584. SERIAL_ECHO(pTerm[e]);
  585. SERIAL_ECHO(" iTerm ");
  586. SERIAL_ECHO(iTerm[e]);
  587. SERIAL_ECHO(" dTerm ");
  588. SERIAL_ECHOLN(dTerm[e]);
  589. #endif //PID_DEBUG
  590. #else /* PID off */
  591. pid_output = 0;
  592. if(current_temperature[e] < target_temperature[e]) {
  593. pid_output = PID_MAX;
  594. }
  595. #endif
  596. // Check if temperature is within the correct range
  597. #ifdef AMBIENT_THERMISTOR
  598. if(((current_temperature_ambient < MINTEMP_MINAMBIENT) || (current_temperature[e] > minttemp[e])) && (current_temperature[e] < maxttemp[e]))
  599. #else //AMBIENT_THERMISTOR
  600. if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
  601. #endif //AMBIENT_THERMISTOR
  602. {
  603. soft_pwm[e] = (int)pid_output >> 1;
  604. }
  605. else
  606. {
  607. soft_pwm[e] = 0;
  608. }
  609. #ifdef WATCH_TEMP_PERIOD
  610. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  611. {
  612. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  613. {
  614. setTargetHotend(0, e);
  615. LCD_MESSAGEPGM("Heating failed");
  616. SERIAL_ECHO_START;
  617. SERIAL_ECHOLN("Heating failed");
  618. }else{
  619. watchmillis[e] = 0;
  620. }
  621. }
  622. #endif
  623. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  624. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  625. disable_heater();
  626. if(IsStopped() == false) {
  627. SERIAL_ERROR_START;
  628. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  629. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  630. }
  631. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  632. Stop();
  633. #endif
  634. }
  635. #endif
  636. } // End extruder for loop
  637. #ifndef DEBUG_DISABLE_FANCHECK
  638. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  639. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  640. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  641. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  642. {
  643. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  644. countFanSpeed();
  645. checkFanSpeed();
  646. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  647. checkExtruderAutoFans();
  648. extruder_autofan_last_check = millis();
  649. }
  650. #endif
  651. #endif //DEBUG_DISABLE_FANCHECK
  652. #ifndef PIDTEMPBED
  653. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  654. return;
  655. previous_millis_bed_heater = millis();
  656. #endif
  657. #if TEMP_SENSOR_BED != 0
  658. #ifdef PIDTEMPBED
  659. pid_input = current_temperature_bed;
  660. #ifndef PID_OPENLOOP
  661. pid_error_bed = target_temperature_bed - pid_input;
  662. pTerm_bed = bedKp * pid_error_bed;
  663. temp_iState_bed += pid_error_bed;
  664. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  665. iTerm_bed = bedKi * temp_iState_bed;
  666. //K1 defined in Configuration.h in the PID settings
  667. #define K2 (1.0-K1)
  668. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  669. temp_dState_bed = pid_input;
  670. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  671. if (pid_output > MAX_BED_POWER) {
  672. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  673. pid_output=MAX_BED_POWER;
  674. } else if (pid_output < 0){
  675. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  676. pid_output=0;
  677. }
  678. #else
  679. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  680. #endif //PID_OPENLOOP
  681. #ifdef AMBIENT_THERMISTOR
  682. if(((current_temperature_bed > BED_MINTEMP) || (current_temperature_ambient < MINTEMP_MINAMBIENT)) && (current_temperature_bed < BED_MAXTEMP))
  683. #else //AMBIENT_THERMISTOR
  684. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  685. #endif //AMBIENT_THERMISTOR
  686. {
  687. soft_pwm_bed = (int)pid_output >> 1;
  688. }
  689. else {
  690. soft_pwm_bed = 0;
  691. }
  692. #elif !defined(BED_LIMIT_SWITCHING)
  693. // Check if temperature is within the correct range
  694. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  695. {
  696. if(current_temperature_bed >= target_temperature_bed)
  697. {
  698. soft_pwm_bed = 0;
  699. }
  700. else
  701. {
  702. soft_pwm_bed = MAX_BED_POWER>>1;
  703. }
  704. }
  705. else
  706. {
  707. soft_pwm_bed = 0;
  708. WRITE(HEATER_BED_PIN,LOW);
  709. }
  710. #else //#ifdef BED_LIMIT_SWITCHING
  711. // Check if temperature is within the correct band
  712. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  713. {
  714. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  715. {
  716. soft_pwm_bed = 0;
  717. }
  718. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  719. {
  720. soft_pwm_bed = MAX_BED_POWER>>1;
  721. }
  722. }
  723. else
  724. {
  725. soft_pwm_bed = 0;
  726. WRITE(HEATER_BED_PIN,LOW);
  727. }
  728. #endif
  729. #endif
  730. #ifdef HOST_KEEPALIVE_FEATURE
  731. host_keepalive();
  732. #endif
  733. }
  734. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  735. // Derived from RepRap FiveD extruder::getTemperature()
  736. // For hot end temperature measurement.
  737. static float analog2temp(int raw, uint8_t e) {
  738. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  739. if(e > EXTRUDERS)
  740. #else
  741. if(e >= EXTRUDERS)
  742. #endif
  743. {
  744. SERIAL_ERROR_START;
  745. SERIAL_ERROR((int)e);
  746. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  747. kill(PSTR(""), 6);
  748. return 0.0;
  749. }
  750. #ifdef HEATER_0_USES_MAX6675
  751. if (e == 0)
  752. {
  753. return 0.25 * raw;
  754. }
  755. #endif
  756. if(heater_ttbl_map[e] != NULL)
  757. {
  758. float celsius = 0;
  759. uint8_t i;
  760. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  761. for (i=1; i<heater_ttbllen_map[e]; i++)
  762. {
  763. if (PGM_RD_W((*tt)[i][0]) > raw)
  764. {
  765. celsius = PGM_RD_W((*tt)[i-1][1]) +
  766. (raw - PGM_RD_W((*tt)[i-1][0])) *
  767. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  768. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  769. break;
  770. }
  771. }
  772. // Overflow: Set to last value in the table
  773. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  774. return celsius;
  775. }
  776. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  777. }
  778. // Derived from RepRap FiveD extruder::getTemperature()
  779. // For bed temperature measurement.
  780. static float analog2tempBed(int raw) {
  781. #ifdef BED_USES_THERMISTOR
  782. float celsius = 0;
  783. byte i;
  784. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  785. {
  786. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  787. {
  788. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  789. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  790. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  791. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  792. break;
  793. }
  794. }
  795. // Overflow: Set to last value in the table
  796. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  797. // temperature offset adjustment
  798. #ifdef BED_OFFSET
  799. float _offset = BED_OFFSET;
  800. float _offset_center = BED_OFFSET_CENTER;
  801. float _offset_start = BED_OFFSET_START;
  802. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  803. float _second_koef = (_offset / 2) / (100 - _offset_center);
  804. if (celsius >= _offset_start && celsius <= _offset_center)
  805. {
  806. celsius = celsius + (_first_koef * (celsius - _offset_start));
  807. }
  808. else if (celsius > _offset_center && celsius <= 100)
  809. {
  810. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  811. }
  812. else if (celsius > 100)
  813. {
  814. celsius = celsius + _offset;
  815. }
  816. #endif
  817. return celsius;
  818. #elif defined BED_USES_AD595
  819. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  820. #else
  821. return 0;
  822. #endif
  823. }
  824. #ifdef PINDA_THERMISTOR
  825. static float analog2tempPINDA(int raw) {
  826. float celsius = 0;
  827. byte i;
  828. for (i = 1; i<BEDTEMPTABLE_LEN; i++)
  829. {
  830. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  831. {
  832. celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
  833. (raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
  834. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
  835. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
  836. break;
  837. }
  838. }
  839. // Overflow: Set to last value in the table
  840. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
  841. return celsius;
  842. }
  843. #endif //PINDA_THERMISTOR
  844. #ifdef AMBIENT_THERMISTOR
  845. static float analog2tempAmbient(int raw)
  846. {
  847. float celsius = 0;
  848. byte i;
  849. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  850. {
  851. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  852. {
  853. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  854. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  855. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  856. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  857. break;
  858. }
  859. }
  860. // Overflow: Set to last value in the table
  861. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  862. return celsius;
  863. }
  864. #endif //AMBIENT_THERMISTOR
  865. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  866. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  867. static void updateTemperaturesFromRawValues()
  868. {
  869. for(uint8_t e=0;e<EXTRUDERS;e++)
  870. {
  871. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  872. }
  873. #ifdef PINDA_THERMISTOR
  874. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  875. #endif
  876. #ifdef AMBIENT_THERMISTOR
  877. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  878. #endif
  879. #ifdef DEBUG_HEATER_BED_SIM
  880. current_temperature_bed = target_temperature_bed;
  881. #else //DEBUG_HEATER_BED_SIM
  882. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  883. #endif //DEBUG_HEATER_BED_SIM
  884. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  885. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  886. #endif
  887. //Reset the watchdog after we know we have a temperature measurement.
  888. #ifdef WATCHDOG
  889. wdt_reset();
  890. #endif //WATCHDOG
  891. CRITICAL_SECTION_START;
  892. temp_meas_ready = false;
  893. CRITICAL_SECTION_END;
  894. }
  895. void tp_init()
  896. {
  897. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  898. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  899. MCUCR=(1<<JTD);
  900. MCUCR=(1<<JTD);
  901. #endif
  902. // Finish init of mult extruder arrays
  903. for(int e = 0; e < EXTRUDERS; e++) {
  904. // populate with the first value
  905. maxttemp[e] = maxttemp[0];
  906. #ifdef PIDTEMP
  907. temp_iState_min[e] = 0.0;
  908. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  909. #endif //PIDTEMP
  910. #ifdef PIDTEMPBED
  911. temp_iState_min_bed = 0.0;
  912. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  913. #endif //PIDTEMPBED
  914. }
  915. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  916. SET_OUTPUT(HEATER_0_PIN);
  917. #endif
  918. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  919. SET_OUTPUT(HEATER_1_PIN);
  920. #endif
  921. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  922. SET_OUTPUT(HEATER_2_PIN);
  923. #endif
  924. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  925. SET_OUTPUT(HEATER_BED_PIN);
  926. #endif
  927. #if defined(FAN_PIN) && (FAN_PIN > -1)
  928. SET_OUTPUT(FAN_PIN);
  929. #ifdef FAST_PWM_FAN
  930. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  931. #endif
  932. #ifdef FAN_SOFT_PWM
  933. soft_pwm_fan = fanSpeedSoftPwm / 2;
  934. #endif
  935. #endif
  936. #ifdef HEATER_0_USES_MAX6675
  937. #ifndef SDSUPPORT
  938. SET_OUTPUT(SCK_PIN);
  939. WRITE(SCK_PIN,0);
  940. SET_OUTPUT(MOSI_PIN);
  941. WRITE(MOSI_PIN,1);
  942. SET_INPUT(MISO_PIN);
  943. WRITE(MISO_PIN,1);
  944. #endif
  945. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  946. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  947. pinMode(SS_PIN, OUTPUT);
  948. digitalWrite(SS_PIN,0);
  949. pinMode(MAX6675_SS, OUTPUT);
  950. digitalWrite(MAX6675_SS,1);
  951. #endif
  952. adc_init();
  953. // Use timer0 for temperature measurement
  954. // Interleave temperature interrupt with millies interrupt
  955. OCR0B = 128;
  956. TIMSK0 |= (1<<OCIE0B);
  957. // Wait for temperature measurement to settle
  958. delay(250);
  959. #ifdef HEATER_0_MINTEMP
  960. minttemp[0] = HEATER_0_MINTEMP;
  961. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  962. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  963. minttemp_raw[0] += OVERSAMPLENR;
  964. #else
  965. minttemp_raw[0] -= OVERSAMPLENR;
  966. #endif
  967. }
  968. #endif //MINTEMP
  969. #ifdef HEATER_0_MAXTEMP
  970. maxttemp[0] = HEATER_0_MAXTEMP;
  971. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  972. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  973. maxttemp_raw[0] -= OVERSAMPLENR;
  974. #else
  975. maxttemp_raw[0] += OVERSAMPLENR;
  976. #endif
  977. }
  978. #endif //MAXTEMP
  979. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  980. minttemp[1] = HEATER_1_MINTEMP;
  981. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  982. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  983. minttemp_raw[1] += OVERSAMPLENR;
  984. #else
  985. minttemp_raw[1] -= OVERSAMPLENR;
  986. #endif
  987. }
  988. #endif // MINTEMP 1
  989. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  990. maxttemp[1] = HEATER_1_MAXTEMP;
  991. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  992. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  993. maxttemp_raw[1] -= OVERSAMPLENR;
  994. #else
  995. maxttemp_raw[1] += OVERSAMPLENR;
  996. #endif
  997. }
  998. #endif //MAXTEMP 1
  999. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1000. minttemp[2] = HEATER_2_MINTEMP;
  1001. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1002. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1003. minttemp_raw[2] += OVERSAMPLENR;
  1004. #else
  1005. minttemp_raw[2] -= OVERSAMPLENR;
  1006. #endif
  1007. }
  1008. #endif //MINTEMP 2
  1009. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1010. maxttemp[2] = HEATER_2_MAXTEMP;
  1011. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1012. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1013. maxttemp_raw[2] -= OVERSAMPLENR;
  1014. #else
  1015. maxttemp_raw[2] += OVERSAMPLENR;
  1016. #endif
  1017. }
  1018. #endif //MAXTEMP 2
  1019. #ifdef BED_MINTEMP
  1020. /* No bed MINTEMP error implemented?!? */
  1021. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1022. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1023. bed_minttemp_raw += OVERSAMPLENR;
  1024. #else
  1025. bed_minttemp_raw -= OVERSAMPLENR;
  1026. #endif
  1027. }
  1028. #endif //BED_MINTEMP
  1029. #ifdef BED_MAXTEMP
  1030. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1031. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1032. bed_maxttemp_raw -= OVERSAMPLENR;
  1033. #else
  1034. bed_maxttemp_raw += OVERSAMPLENR;
  1035. #endif
  1036. }
  1037. #endif //BED_MAXTEMP
  1038. }
  1039. void setWatch()
  1040. {
  1041. #ifdef WATCH_TEMP_PERIOD
  1042. for (int e = 0; e < EXTRUDERS; e++)
  1043. {
  1044. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1045. {
  1046. watch_start_temp[e] = degHotend(e);
  1047. watchmillis[e] = millis();
  1048. }
  1049. }
  1050. #endif
  1051. }
  1052. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1053. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1054. {
  1055. float __hysteresis = 0;
  1056. int __timeout = 0;
  1057. bool temp_runaway_check_active = false;
  1058. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1059. static int __preheat_counter[2] = { 0,0};
  1060. static int __preheat_errors[2] = { 0,0};
  1061. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1062. if (_isbed)
  1063. {
  1064. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1065. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1066. }
  1067. #endif
  1068. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1069. if (!_isbed)
  1070. {
  1071. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1072. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1073. }
  1074. #endif
  1075. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1076. {
  1077. temp_runaway_timer[_heater_id] = millis();
  1078. if (_output == 0)
  1079. {
  1080. temp_runaway_check_active = false;
  1081. temp_runaway_error_counter[_heater_id] = 0;
  1082. }
  1083. if (temp_runaway_target[_heater_id] != _target_temperature)
  1084. {
  1085. if (_target_temperature > 0)
  1086. {
  1087. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1088. temp_runaway_target[_heater_id] = _target_temperature;
  1089. __preheat_start[_heater_id] = _current_temperature;
  1090. __preheat_counter[_heater_id] = 0;
  1091. }
  1092. else
  1093. {
  1094. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1095. temp_runaway_target[_heater_id] = _target_temperature;
  1096. }
  1097. }
  1098. if (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1099. {
  1100. if (_current_temperature < ((_isbed) ? (0.8 * _target_temperature) : 150)) //check only in area where temperature is changing fastly for heater, check to 0.8 x target temperature for bed
  1101. {
  1102. __preheat_counter[_heater_id]++;
  1103. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1104. {
  1105. /*SERIAL_ECHOPGM("Heater:");
  1106. MYSERIAL.print(_heater_id);
  1107. SERIAL_ECHOPGM(" T:");
  1108. MYSERIAL.print(_current_temperature);
  1109. SERIAL_ECHOPGM(" Tstart:");
  1110. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1111. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1112. __preheat_errors[_heater_id]++;
  1113. /*SERIAL_ECHOPGM(" Preheat errors:");
  1114. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1115. }
  1116. else {
  1117. //SERIAL_ECHOLNPGM("");
  1118. __preheat_errors[_heater_id] = 0;
  1119. }
  1120. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1121. {
  1122. if (farm_mode) { prusa_statistics(0); }
  1123. temp_runaway_stop(true, _isbed);
  1124. if (farm_mode) { prusa_statistics(91); }
  1125. }
  1126. __preheat_start[_heater_id] = _current_temperature;
  1127. __preheat_counter[_heater_id] = 0;
  1128. }
  1129. }
  1130. }
  1131. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1132. {
  1133. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1134. temp_runaway_check_active = false;
  1135. }
  1136. if (!temp_runaway_check_active && _output > 0)
  1137. {
  1138. temp_runaway_check_active = true;
  1139. }
  1140. if (temp_runaway_check_active)
  1141. {
  1142. // we are in range
  1143. if (_target_temperature - __hysteresis < _current_temperature && _current_temperature < _target_temperature + __hysteresis)
  1144. {
  1145. temp_runaway_check_active = false;
  1146. temp_runaway_error_counter[_heater_id] = 0;
  1147. }
  1148. else
  1149. {
  1150. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1151. {
  1152. temp_runaway_error_counter[_heater_id]++;
  1153. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1154. {
  1155. if (farm_mode) { prusa_statistics(0); }
  1156. temp_runaway_stop(false, _isbed);
  1157. if (farm_mode) { prusa_statistics(90); }
  1158. }
  1159. }
  1160. }
  1161. }
  1162. }
  1163. }
  1164. void temp_runaway_stop(bool isPreheat, bool isBed)
  1165. {
  1166. cancel_heatup = true;
  1167. quickStop();
  1168. if (card.sdprinting)
  1169. {
  1170. card.sdprinting = false;
  1171. card.closefile();
  1172. }
  1173. // Clean the input command queue
  1174. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1175. cmdqueue_reset();
  1176. disable_heater();
  1177. disable_x();
  1178. disable_y();
  1179. disable_e0();
  1180. disable_e1();
  1181. disable_e2();
  1182. manage_heater();
  1183. lcd_update(0);
  1184. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1185. WRITE(BEEPER, HIGH);
  1186. delayMicroseconds(500);
  1187. WRITE(BEEPER, LOW);
  1188. delayMicroseconds(100);
  1189. if (isPreheat)
  1190. {
  1191. Stop();
  1192. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1193. SERIAL_ERROR_START;
  1194. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1195. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1196. SET_OUTPUT(FAN_PIN);
  1197. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1198. analogWrite(FAN_PIN, 255);
  1199. fanSpeed = 255;
  1200. delayMicroseconds(2000);
  1201. }
  1202. else
  1203. {
  1204. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1205. SERIAL_ERROR_START;
  1206. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1207. }
  1208. }
  1209. #endif
  1210. void disable_heater()
  1211. {
  1212. setAllTargetHotends(0);
  1213. setTargetBed(0);
  1214. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1215. target_temperature[0]=0;
  1216. soft_pwm[0]=0;
  1217. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1218. WRITE(HEATER_0_PIN,LOW);
  1219. #endif
  1220. #endif
  1221. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1222. target_temperature[1]=0;
  1223. soft_pwm[1]=0;
  1224. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1225. WRITE(HEATER_1_PIN,LOW);
  1226. #endif
  1227. #endif
  1228. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1229. target_temperature[2]=0;
  1230. soft_pwm[2]=0;
  1231. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1232. WRITE(HEATER_2_PIN,LOW);
  1233. #endif
  1234. #endif
  1235. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1236. target_temperature_bed=0;
  1237. soft_pwm_bed=0;
  1238. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1239. WRITE(HEATER_BED_PIN,LOW);
  1240. #endif
  1241. #endif
  1242. }
  1243. void max_temp_error(uint8_t e) {
  1244. disable_heater();
  1245. if(IsStopped() == false) {
  1246. SERIAL_ERROR_START;
  1247. SERIAL_ERRORLN((int)e);
  1248. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1249. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1250. }
  1251. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1252. Stop();
  1253. #endif
  1254. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1255. SET_OUTPUT(FAN_PIN);
  1256. SET_OUTPUT(BEEPER);
  1257. WRITE(FAN_PIN, 1);
  1258. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1259. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1260. WRITE(BEEPER, 1);
  1261. // fanSpeed will consumed by the check_axes_activity() routine.
  1262. fanSpeed=255;
  1263. if (farm_mode) { prusa_statistics(93); }
  1264. }
  1265. void min_temp_error(uint8_t e) {
  1266. #ifdef DEBUG_DISABLE_MINTEMP
  1267. return;
  1268. #endif
  1269. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1270. disable_heater();
  1271. if(IsStopped() == false) {
  1272. SERIAL_ERROR_START;
  1273. SERIAL_ERRORLN((int)e);
  1274. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1275. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1276. }
  1277. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1278. Stop();
  1279. #endif
  1280. if (farm_mode) { prusa_statistics(92); }
  1281. }
  1282. void bed_max_temp_error(void) {
  1283. #if HEATER_BED_PIN > -1
  1284. WRITE(HEATER_BED_PIN, 0);
  1285. #endif
  1286. if(IsStopped() == false) {
  1287. SERIAL_ERROR_START;
  1288. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1289. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1290. }
  1291. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1292. Stop();
  1293. #endif
  1294. }
  1295. void bed_min_temp_error(void) {
  1296. #ifdef DEBUG_DISABLE_MINTEMP
  1297. return;
  1298. #endif
  1299. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1300. #if HEATER_BED_PIN > -1
  1301. WRITE(HEATER_BED_PIN, 0);
  1302. #endif
  1303. if(IsStopped() == false) {
  1304. SERIAL_ERROR_START;
  1305. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1306. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1307. }
  1308. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1309. Stop();
  1310. #endif
  1311. }
  1312. #ifdef HEATER_0_USES_MAX6675
  1313. #define MAX6675_HEAT_INTERVAL 250
  1314. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1315. int max6675_temp = 2000;
  1316. int read_max6675()
  1317. {
  1318. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1319. return max6675_temp;
  1320. max6675_previous_millis = millis();
  1321. max6675_temp = 0;
  1322. #ifdef PRR
  1323. PRR &= ~(1<<PRSPI);
  1324. #elif defined PRR0
  1325. PRR0 &= ~(1<<PRSPI);
  1326. #endif
  1327. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1328. // enable TT_MAX6675
  1329. WRITE(MAX6675_SS, 0);
  1330. // ensure 100ns delay - a bit extra is fine
  1331. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1332. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1333. // read MSB
  1334. SPDR = 0;
  1335. for (;(SPSR & (1<<SPIF)) == 0;);
  1336. max6675_temp = SPDR;
  1337. max6675_temp <<= 8;
  1338. // read LSB
  1339. SPDR = 0;
  1340. for (;(SPSR & (1<<SPIF)) == 0;);
  1341. max6675_temp |= SPDR;
  1342. // disable TT_MAX6675
  1343. WRITE(MAX6675_SS, 1);
  1344. if (max6675_temp & 4)
  1345. {
  1346. // thermocouple open
  1347. max6675_temp = 2000;
  1348. }
  1349. else
  1350. {
  1351. max6675_temp = max6675_temp >> 3;
  1352. }
  1353. return max6675_temp;
  1354. }
  1355. #endif
  1356. extern "C" {
  1357. void adc_ready(void) //callback from adc when sampling finished
  1358. {
  1359. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1360. current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1361. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1362. #ifdef VOLT_PWR_PIN
  1363. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1364. #endif
  1365. #ifdef AMBIENT_THERMISTOR
  1366. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1367. #endif //AMBIENT_THERMISTOR
  1368. #ifdef VOLT_BED_PIN
  1369. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1370. #endif
  1371. temp_meas_ready = true;
  1372. }
  1373. } // extern "C"
  1374. // Timer 0 is shared with millies
  1375. ISR(TIMER0_COMPB_vect)
  1376. {
  1377. static bool _lock = false;
  1378. if (_lock) return;
  1379. _lock = true;
  1380. asm("sei");
  1381. if (!temp_meas_ready) adc_cycle();
  1382. else
  1383. {
  1384. check_max_temp();
  1385. check_min_temp();
  1386. }
  1387. lcd_buttons_update();
  1388. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1389. static unsigned char soft_pwm_0;
  1390. #ifdef SLOW_PWM_HEATERS
  1391. static unsigned char slow_pwm_count = 0;
  1392. static unsigned char state_heater_0 = 0;
  1393. static unsigned char state_timer_heater_0 = 0;
  1394. #endif
  1395. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1396. static unsigned char soft_pwm_1;
  1397. #ifdef SLOW_PWM_HEATERS
  1398. static unsigned char state_heater_1 = 0;
  1399. static unsigned char state_timer_heater_1 = 0;
  1400. #endif
  1401. #endif
  1402. #if EXTRUDERS > 2
  1403. static unsigned char soft_pwm_2;
  1404. #ifdef SLOW_PWM_HEATERS
  1405. static unsigned char state_heater_2 = 0;
  1406. static unsigned char state_timer_heater_2 = 0;
  1407. #endif
  1408. #endif
  1409. #if HEATER_BED_PIN > -1
  1410. static unsigned char soft_pwm_b;
  1411. #ifdef SLOW_PWM_HEATERS
  1412. static unsigned char state_heater_b = 0;
  1413. static unsigned char state_timer_heater_b = 0;
  1414. #endif
  1415. #endif
  1416. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1417. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1418. #endif
  1419. #ifndef SLOW_PWM_HEATERS
  1420. /*
  1421. * standard PWM modulation
  1422. */
  1423. if (pwm_count == 0)
  1424. {
  1425. soft_pwm_0 = soft_pwm[0];
  1426. if(soft_pwm_0 > 0)
  1427. {
  1428. WRITE(HEATER_0_PIN,1);
  1429. #ifdef HEATERS_PARALLEL
  1430. WRITE(HEATER_1_PIN,1);
  1431. #endif
  1432. } else WRITE(HEATER_0_PIN,0);
  1433. #if EXTRUDERS > 1
  1434. soft_pwm_1 = soft_pwm[1];
  1435. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1436. #endif
  1437. #if EXTRUDERS > 2
  1438. soft_pwm_2 = soft_pwm[2];
  1439. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1440. #endif
  1441. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1442. soft_pwm_b = soft_pwm_bed;
  1443. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1444. #endif
  1445. #ifdef FAN_SOFT_PWM
  1446. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1447. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1448. #endif
  1449. }
  1450. if(soft_pwm_0 < pwm_count)
  1451. {
  1452. WRITE(HEATER_0_PIN,0);
  1453. #ifdef HEATERS_PARALLEL
  1454. WRITE(HEATER_1_PIN,0);
  1455. #endif
  1456. }
  1457. #if EXTRUDERS > 1
  1458. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1459. #endif
  1460. #if EXTRUDERS > 2
  1461. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1462. #endif
  1463. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1464. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1465. #endif
  1466. #ifdef FAN_SOFT_PWM
  1467. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1468. #endif
  1469. pwm_count += (1 << SOFT_PWM_SCALE);
  1470. pwm_count &= 0x7f;
  1471. #else //ifndef SLOW_PWM_HEATERS
  1472. /*
  1473. * SLOW PWM HEATERS
  1474. *
  1475. * for heaters drived by relay
  1476. */
  1477. #ifndef MIN_STATE_TIME
  1478. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1479. #endif
  1480. if (slow_pwm_count == 0) {
  1481. // EXTRUDER 0
  1482. soft_pwm_0 = soft_pwm[0];
  1483. if (soft_pwm_0 > 0) {
  1484. // turn ON heather only if the minimum time is up
  1485. if (state_timer_heater_0 == 0) {
  1486. // if change state set timer
  1487. if (state_heater_0 == 0) {
  1488. state_timer_heater_0 = MIN_STATE_TIME;
  1489. }
  1490. state_heater_0 = 1;
  1491. WRITE(HEATER_0_PIN, 1);
  1492. #ifdef HEATERS_PARALLEL
  1493. WRITE(HEATER_1_PIN, 1);
  1494. #endif
  1495. }
  1496. } else {
  1497. // turn OFF heather only if the minimum time is up
  1498. if (state_timer_heater_0 == 0) {
  1499. // if change state set timer
  1500. if (state_heater_0 == 1) {
  1501. state_timer_heater_0 = MIN_STATE_TIME;
  1502. }
  1503. state_heater_0 = 0;
  1504. WRITE(HEATER_0_PIN, 0);
  1505. #ifdef HEATERS_PARALLEL
  1506. WRITE(HEATER_1_PIN, 0);
  1507. #endif
  1508. }
  1509. }
  1510. #if EXTRUDERS > 1
  1511. // EXTRUDER 1
  1512. soft_pwm_1 = soft_pwm[1];
  1513. if (soft_pwm_1 > 0) {
  1514. // turn ON heather only if the minimum time is up
  1515. if (state_timer_heater_1 == 0) {
  1516. // if change state set timer
  1517. if (state_heater_1 == 0) {
  1518. state_timer_heater_1 = MIN_STATE_TIME;
  1519. }
  1520. state_heater_1 = 1;
  1521. WRITE(HEATER_1_PIN, 1);
  1522. }
  1523. } else {
  1524. // turn OFF heather only if the minimum time is up
  1525. if (state_timer_heater_1 == 0) {
  1526. // if change state set timer
  1527. if (state_heater_1 == 1) {
  1528. state_timer_heater_1 = MIN_STATE_TIME;
  1529. }
  1530. state_heater_1 = 0;
  1531. WRITE(HEATER_1_PIN, 0);
  1532. }
  1533. }
  1534. #endif
  1535. #if EXTRUDERS > 2
  1536. // EXTRUDER 2
  1537. soft_pwm_2 = soft_pwm[2];
  1538. if (soft_pwm_2 > 0) {
  1539. // turn ON heather only if the minimum time is up
  1540. if (state_timer_heater_2 == 0) {
  1541. // if change state set timer
  1542. if (state_heater_2 == 0) {
  1543. state_timer_heater_2 = MIN_STATE_TIME;
  1544. }
  1545. state_heater_2 = 1;
  1546. WRITE(HEATER_2_PIN, 1);
  1547. }
  1548. } else {
  1549. // turn OFF heather only if the minimum time is up
  1550. if (state_timer_heater_2 == 0) {
  1551. // if change state set timer
  1552. if (state_heater_2 == 1) {
  1553. state_timer_heater_2 = MIN_STATE_TIME;
  1554. }
  1555. state_heater_2 = 0;
  1556. WRITE(HEATER_2_PIN, 0);
  1557. }
  1558. }
  1559. #endif
  1560. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1561. // BED
  1562. soft_pwm_b = soft_pwm_bed;
  1563. if (soft_pwm_b > 0) {
  1564. // turn ON heather only if the minimum time is up
  1565. if (state_timer_heater_b == 0) {
  1566. // if change state set timer
  1567. if (state_heater_b == 0) {
  1568. state_timer_heater_b = MIN_STATE_TIME;
  1569. }
  1570. state_heater_b = 1;
  1571. WRITE(HEATER_BED_PIN, 1);
  1572. }
  1573. } else {
  1574. // turn OFF heather only if the minimum time is up
  1575. if (state_timer_heater_b == 0) {
  1576. // if change state set timer
  1577. if (state_heater_b == 1) {
  1578. state_timer_heater_b = MIN_STATE_TIME;
  1579. }
  1580. state_heater_b = 0;
  1581. WRITE(HEATER_BED_PIN, 0);
  1582. }
  1583. }
  1584. #endif
  1585. } // if (slow_pwm_count == 0)
  1586. // EXTRUDER 0
  1587. if (soft_pwm_0 < slow_pwm_count) {
  1588. // turn OFF heather only if the minimum time is up
  1589. if (state_timer_heater_0 == 0) {
  1590. // if change state set timer
  1591. if (state_heater_0 == 1) {
  1592. state_timer_heater_0 = MIN_STATE_TIME;
  1593. }
  1594. state_heater_0 = 0;
  1595. WRITE(HEATER_0_PIN, 0);
  1596. #ifdef HEATERS_PARALLEL
  1597. WRITE(HEATER_1_PIN, 0);
  1598. #endif
  1599. }
  1600. }
  1601. #if EXTRUDERS > 1
  1602. // EXTRUDER 1
  1603. if (soft_pwm_1 < slow_pwm_count) {
  1604. // turn OFF heather only if the minimum time is up
  1605. if (state_timer_heater_1 == 0) {
  1606. // if change state set timer
  1607. if (state_heater_1 == 1) {
  1608. state_timer_heater_1 = MIN_STATE_TIME;
  1609. }
  1610. state_heater_1 = 0;
  1611. WRITE(HEATER_1_PIN, 0);
  1612. }
  1613. }
  1614. #endif
  1615. #if EXTRUDERS > 2
  1616. // EXTRUDER 2
  1617. if (soft_pwm_2 < slow_pwm_count) {
  1618. // turn OFF heather only if the minimum time is up
  1619. if (state_timer_heater_2 == 0) {
  1620. // if change state set timer
  1621. if (state_heater_2 == 1) {
  1622. state_timer_heater_2 = MIN_STATE_TIME;
  1623. }
  1624. state_heater_2 = 0;
  1625. WRITE(HEATER_2_PIN, 0);
  1626. }
  1627. }
  1628. #endif
  1629. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1630. // BED
  1631. if (soft_pwm_b < slow_pwm_count) {
  1632. // turn OFF heather only if the minimum time is up
  1633. if (state_timer_heater_b == 0) {
  1634. // if change state set timer
  1635. if (state_heater_b == 1) {
  1636. state_timer_heater_b = MIN_STATE_TIME;
  1637. }
  1638. state_heater_b = 0;
  1639. WRITE(HEATER_BED_PIN, 0);
  1640. }
  1641. }
  1642. #endif
  1643. #ifdef FAN_SOFT_PWM
  1644. if (pwm_count == 0){
  1645. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1646. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1647. }
  1648. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1649. #endif
  1650. pwm_count += (1 << SOFT_PWM_SCALE);
  1651. pwm_count &= 0x7f;
  1652. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1653. if ((pwm_count % 64) == 0) {
  1654. slow_pwm_count++;
  1655. slow_pwm_count &= 0x7f;
  1656. // Extruder 0
  1657. if (state_timer_heater_0 > 0) {
  1658. state_timer_heater_0--;
  1659. }
  1660. #if EXTRUDERS > 1
  1661. // Extruder 1
  1662. if (state_timer_heater_1 > 0)
  1663. state_timer_heater_1--;
  1664. #endif
  1665. #if EXTRUDERS > 2
  1666. // Extruder 2
  1667. if (state_timer_heater_2 > 0)
  1668. state_timer_heater_2--;
  1669. #endif
  1670. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1671. // Bed
  1672. if (state_timer_heater_b > 0)
  1673. state_timer_heater_b--;
  1674. #endif
  1675. } //if ((pwm_count % 64) == 0) {
  1676. #endif //ifndef SLOW_PWM_HEATERS
  1677. #ifdef BABYSTEPPING
  1678. for(uint8_t axis=0;axis<3;axis++)
  1679. {
  1680. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1681. if(curTodo>0)
  1682. {
  1683. asm("cli");
  1684. babystep(axis,/*fwd*/true);
  1685. babystepsTodo[axis]--; //less to do next time
  1686. asm("sei");
  1687. }
  1688. else
  1689. if(curTodo<0)
  1690. {
  1691. asm("cli");
  1692. babystep(axis,/*fwd*/false);
  1693. babystepsTodo[axis]++; //less to do next time
  1694. asm("sei");
  1695. }
  1696. }
  1697. #endif //BABYSTEPPING
  1698. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1699. check_fans();
  1700. #endif //(defined(TACH_0))
  1701. _lock = false;
  1702. }
  1703. void check_max_temp()
  1704. {
  1705. //heater
  1706. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1707. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1708. #else
  1709. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1710. #endif
  1711. max_temp_error(0);
  1712. }
  1713. //bed
  1714. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1715. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1716. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1717. #else
  1718. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1719. #endif
  1720. target_temperature_bed = 0;
  1721. bed_max_temp_error();
  1722. }
  1723. #endif
  1724. }
  1725. void check_min_temp_heater0()
  1726. {
  1727. //heater
  1728. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1729. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1730. #else
  1731. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1732. #endif
  1733. min_temp_error(0);
  1734. }
  1735. }
  1736. void check_min_temp_bed()
  1737. {
  1738. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1739. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1740. #else
  1741. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1742. #endif
  1743. bed_min_temp_error();
  1744. }
  1745. }
  1746. void check_min_temp()
  1747. {
  1748. #ifdef AMBIENT_THERMISTOR
  1749. static uint8_t heat_cycles = 0;
  1750. if (current_temperature_raw_ambient > OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)
  1751. {
  1752. if (READ(HEATER_0_PIN) == HIGH)
  1753. {
  1754. // if ((heat_cycles % 10) == 0)
  1755. // printf_P(PSTR("X%d\n"), heat_cycles);
  1756. if (heat_cycles > 50) //reaction time 5-10s
  1757. check_min_temp_heater0();
  1758. else
  1759. heat_cycles++;
  1760. }
  1761. else
  1762. heat_cycles = 0;
  1763. return;
  1764. }
  1765. #endif //AMBIENT_THERMISTOR
  1766. check_min_temp_heater0();
  1767. check_min_temp_bed();
  1768. }
  1769. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1770. void check_fans() {
  1771. if (READ(TACH_0) != fan_state[0]) {
  1772. fan_edge_counter[0] ++;
  1773. fan_state[0] = !fan_state[0];
  1774. }
  1775. //if (READ(TACH_1) != fan_state[1]) {
  1776. // fan_edge_counter[1] ++;
  1777. // fan_state[1] = !fan_state[1];
  1778. //}
  1779. }
  1780. #endif //TACH_0
  1781. #ifdef PIDTEMP
  1782. // Apply the scale factors to the PID values
  1783. float scalePID_i(float i)
  1784. {
  1785. return i*PID_dT;
  1786. }
  1787. float unscalePID_i(float i)
  1788. {
  1789. return i/PID_dT;
  1790. }
  1791. float scalePID_d(float d)
  1792. {
  1793. return d/PID_dT;
  1794. }
  1795. float unscalePID_d(float d)
  1796. {
  1797. return d*PID_dT;
  1798. }
  1799. #endif //PIDTEMP