temperature.cpp 58 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. int current_temperature_raw_pinda = 0 ;
  43. float current_temperature_pinda = 0.0;
  44. #endif //PINDA_THERMISTOR
  45. #ifdef AMBIENT_THERMISTOR
  46. int current_temperature_raw_ambient = 0 ;
  47. float current_temperature_ambient = 0.0;
  48. #endif //AMBIENT_THERMISTOR
  49. #ifdef VOLT_PWR_PIN
  50. int current_voltage_raw_pwr = 0;
  51. #endif
  52. #ifdef VOLT_BED_PIN
  53. int current_voltage_raw_bed = 0;
  54. #endif
  55. int current_temperature_bed_raw = 0;
  56. float current_temperature_bed = 0.0;
  57. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  58. int redundant_temperature_raw = 0;
  59. float redundant_temperature = 0.0;
  60. #endif
  61. #ifdef PIDTEMP
  62. float _Kp, _Ki, _Kd;
  63. int pid_cycle, pid_number_of_cycles;
  64. bool pid_tuning_finished = false;
  65. #ifdef PID_ADD_EXTRUSION_RATE
  66. float Kc=DEFAULT_Kc;
  67. #endif
  68. #endif //PIDTEMP
  69. #ifdef FAN_SOFT_PWM
  70. unsigned char fanSpeedSoftPwm;
  71. #endif
  72. unsigned char soft_pwm_bed;
  73. #ifdef BABYSTEPPING
  74. volatile int babystepsTodo[3]={0,0,0};
  75. #endif
  76. //===========================================================================
  77. //=============================private variables============================
  78. //===========================================================================
  79. static volatile bool temp_meas_ready = false;
  80. #ifdef PIDTEMP
  81. //static cannot be external:
  82. static float iState_sum[EXTRUDERS] = { 0 };
  83. static float dState_last[EXTRUDERS] = { 0 };
  84. static float pTerm[EXTRUDERS];
  85. static float iTerm[EXTRUDERS];
  86. static float dTerm[EXTRUDERS];
  87. //int output;
  88. static float pid_error[EXTRUDERS];
  89. static float iState_sum_min[EXTRUDERS];
  90. static float iState_sum_max[EXTRUDERS];
  91. // static float pid_input[EXTRUDERS];
  92. // static float pid_output[EXTRUDERS];
  93. static bool pid_reset[EXTRUDERS];
  94. #endif //PIDTEMP
  95. #ifdef PIDTEMPBED
  96. //static cannot be external:
  97. static float temp_iState_bed = { 0 };
  98. static float temp_dState_bed = { 0 };
  99. static float pTerm_bed;
  100. static float iTerm_bed;
  101. static float dTerm_bed;
  102. //int output;
  103. static float pid_error_bed;
  104. static float temp_iState_min_bed;
  105. static float temp_iState_max_bed;
  106. #else //PIDTEMPBED
  107. static unsigned long previous_millis_bed_heater;
  108. #endif //PIDTEMPBED
  109. static unsigned char soft_pwm[EXTRUDERS];
  110. #ifdef FAN_SOFT_PWM
  111. static unsigned char soft_pwm_fan;
  112. #endif
  113. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  114. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  115. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  116. static unsigned long extruder_autofan_last_check;
  117. #endif
  118. #if EXTRUDERS > 3
  119. # error Unsupported number of extruders
  120. #elif EXTRUDERS > 2
  121. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  122. #elif EXTRUDERS > 1
  123. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  124. #else
  125. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  126. #endif
  127. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  128. // Init min and max temp with extreme values to prevent false errors during startup
  129. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  130. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  131. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  132. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  133. #ifdef BED_MINTEMP
  134. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  135. #endif
  136. #ifdef BED_MAXTEMP
  137. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  138. #endif
  139. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  140. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  141. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  142. #else
  143. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  144. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  145. #endif
  146. static float analog2temp(int raw, uint8_t e);
  147. static float analog2tempBed(int raw);
  148. static float analog2tempAmbient(int raw);
  149. static void updateTemperaturesFromRawValues();
  150. enum TempRunawayStates
  151. {
  152. TempRunaway_INACTIVE = 0,
  153. TempRunaway_PREHEAT = 1,
  154. TempRunaway_ACTIVE = 2,
  155. };
  156. #ifdef WATCH_TEMP_PERIOD
  157. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  158. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  159. #endif //WATCH_TEMP_PERIOD
  160. #ifndef SOFT_PWM_SCALE
  161. #define SOFT_PWM_SCALE 0
  162. #endif
  163. //===========================================================================
  164. //============================= functions ============================
  165. //===========================================================================
  166. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  167. static float temp_runaway_status[4];
  168. static float temp_runaway_target[4];
  169. static float temp_runaway_timer[4];
  170. static int temp_runaway_error_counter[4];
  171. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  172. static void temp_runaway_stop(bool isPreheat, bool isBed);
  173. #endif
  174. void PID_autotune(float temp, int extruder, int ncycles)
  175. {
  176. pid_number_of_cycles = ncycles;
  177. pid_tuning_finished = false;
  178. float input = 0.0;
  179. pid_cycle=0;
  180. bool heating = true;
  181. unsigned long temp_millis = millis();
  182. unsigned long t1=temp_millis;
  183. unsigned long t2=temp_millis;
  184. long t_high = 0;
  185. long t_low = 0;
  186. long bias, d;
  187. float Ku, Tu;
  188. float max = 0, min = 10000;
  189. uint8_t safety_check_cycles = 0;
  190. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  191. float temp_ambient;
  192. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  193. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  194. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  195. unsigned long extruder_autofan_last_check = millis();
  196. #endif
  197. if ((extruder >= EXTRUDERS)
  198. #if (TEMP_BED_PIN <= -1)
  199. ||(extruder < 0)
  200. #endif
  201. ){
  202. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  203. pid_tuning_finished = true;
  204. pid_cycle = 0;
  205. return;
  206. }
  207. SERIAL_ECHOLN("PID Autotune start");
  208. disable_heater(); // switch off all heaters.
  209. if (extruder<0)
  210. {
  211. soft_pwm_bed = (MAX_BED_POWER)/2;
  212. bias = d = (MAX_BED_POWER)/2;
  213. }
  214. else
  215. {
  216. soft_pwm[extruder] = (PID_MAX)/2;
  217. bias = d = (PID_MAX)/2;
  218. }
  219. for(;;) {
  220. #ifdef WATCHDOG
  221. wdt_reset();
  222. #endif //WATCHDOG
  223. if(temp_meas_ready == true) { // temp sample ready
  224. updateTemperaturesFromRawValues();
  225. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  226. max=max(max,input);
  227. min=min(min,input);
  228. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  229. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  230. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  231. if(millis() - extruder_autofan_last_check > 2500) {
  232. checkExtruderAutoFans();
  233. extruder_autofan_last_check = millis();
  234. }
  235. #endif
  236. if(heating == true && input > temp) {
  237. if(millis() - t2 > 5000) {
  238. heating=false;
  239. if (extruder<0)
  240. soft_pwm_bed = (bias - d) >> 1;
  241. else
  242. soft_pwm[extruder] = (bias - d) >> 1;
  243. t1=millis();
  244. t_high=t1 - t2;
  245. max=temp;
  246. }
  247. }
  248. if(heating == false && input < temp) {
  249. if(millis() - t1 > 5000) {
  250. heating=true;
  251. t2=millis();
  252. t_low=t2 - t1;
  253. if(pid_cycle > 0) {
  254. bias += (d*(t_high - t_low))/(t_low + t_high);
  255. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  256. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  257. else d = bias;
  258. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  259. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  260. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  261. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  262. if(pid_cycle > 2) {
  263. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  264. Tu = ((float)(t_low + t_high)/1000.0);
  265. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  266. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  267. _Kp = 0.6*Ku;
  268. _Ki = 2*_Kp/Tu;
  269. _Kd = _Kp*Tu/8;
  270. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  271. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  272. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  273. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  274. /*
  275. _Kp = 0.33*Ku;
  276. _Ki = _Kp/Tu;
  277. _Kd = _Kp*Tu/3;
  278. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  279. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  280. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  281. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  282. _Kp = 0.2*Ku;
  283. _Ki = 2*_Kp/Tu;
  284. _Kd = _Kp*Tu/3;
  285. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  286. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  287. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  288. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  289. */
  290. }
  291. }
  292. if (extruder<0)
  293. soft_pwm_bed = (bias + d) >> 1;
  294. else
  295. soft_pwm[extruder] = (bias + d) >> 1;
  296. pid_cycle++;
  297. min=temp;
  298. }
  299. }
  300. }
  301. if(input > (temp + 20)) {
  302. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  303. pid_tuning_finished = true;
  304. pid_cycle = 0;
  305. return;
  306. }
  307. if(millis() - temp_millis > 2000) {
  308. int p;
  309. if (extruder<0){
  310. p=soft_pwm_bed;
  311. SERIAL_PROTOCOLPGM("B:");
  312. }else{
  313. p=soft_pwm[extruder];
  314. SERIAL_PROTOCOLPGM("T:");
  315. }
  316. SERIAL_PROTOCOL(input);
  317. SERIAL_PROTOCOLPGM(" @:");
  318. SERIAL_PROTOCOLLN(p);
  319. if (safety_check_cycles == 0) { //save ambient temp
  320. temp_ambient = input;
  321. //SERIAL_ECHOPGM("Ambient T: ");
  322. //MYSERIAL.println(temp_ambient);
  323. safety_check_cycles++;
  324. }
  325. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  326. safety_check_cycles++;
  327. }
  328. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  329. safety_check_cycles++;
  330. //SERIAL_ECHOPGM("Time from beginning: ");
  331. //MYSERIAL.print(safety_check_cycles_count * 2);
  332. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  333. //MYSERIAL.println(input - temp_ambient);
  334. if (abs(input - temp_ambient) < 5.0) {
  335. temp_runaway_stop(false, (extruder<0));
  336. pid_tuning_finished = true;
  337. return;
  338. }
  339. }
  340. temp_millis = millis();
  341. }
  342. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  343. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  344. pid_tuning_finished = true;
  345. pid_cycle = 0;
  346. return;
  347. }
  348. if(pid_cycle > ncycles) {
  349. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  350. pid_tuning_finished = true;
  351. pid_cycle = 0;
  352. return;
  353. }
  354. lcd_update(0);
  355. }
  356. }
  357. void updatePID()
  358. {
  359. #ifdef PIDTEMP
  360. for(int e = 0; e < EXTRUDERS; e++) {
  361. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  362. }
  363. #endif
  364. #ifdef PIDTEMPBED
  365. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  366. #endif
  367. }
  368. int getHeaterPower(int heater) {
  369. if (heater<0)
  370. return soft_pwm_bed;
  371. return soft_pwm[heater];
  372. }
  373. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  374. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  375. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  376. #if defined(FAN_PIN) && FAN_PIN > -1
  377. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  378. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  379. #endif
  380. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  381. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  382. #endif
  383. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  384. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  385. #endif
  386. #endif
  387. void setExtruderAutoFanState(int pin, bool state)
  388. {
  389. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  390. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  391. pinMode(pin, OUTPUT);
  392. digitalWrite(pin, newFanSpeed);
  393. analogWrite(pin, newFanSpeed);
  394. }
  395. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  396. void countFanSpeed()
  397. {
  398. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  399. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (millis() - extruder_autofan_last_check)));
  400. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (millis() - extruder_autofan_last_check)));
  401. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(millis() - extruder_autofan_last_check);
  402. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  403. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  404. SERIAL_ECHOLNPGM(" ");*/
  405. fan_edge_counter[0] = 0;
  406. fan_edge_counter[1] = 0;
  407. }
  408. extern bool fans_check_enabled;
  409. void checkFanSpeed()
  410. {
  411. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  412. static unsigned char fan_speed_errors[2] = { 0,0 };
  413. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  414. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  415. else fan_speed_errors[0] = 0;
  416. #endif
  417. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  418. if ((fan_speed[1] == 0) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  419. else fan_speed_errors[1] = 0;
  420. #endif
  421. if ((fan_speed_errors[0] > 5) && fans_check_enabled) {
  422. fan_speed_errors[0] = 0;
  423. fanSpeedError(0); //extruder fan
  424. }
  425. if ((fan_speed_errors[1] > 15) && fans_check_enabled) {
  426. fan_speed_errors[1] = 0;
  427. fanSpeedError(1); //print fan
  428. }
  429. }
  430. void fanSpeedError(unsigned char _fan) {
  431. if (get_message_level() != 0 && isPrintPaused) return;
  432. //to ensure that target temp. is not set to zero in case taht we are resuming print
  433. if (card.sdprinting) {
  434. if (heating_status != 0) {
  435. lcd_print_stop();
  436. }
  437. else {
  438. lcd_pause_print();
  439. }
  440. }
  441. else {
  442. setTargetHotend0(0);
  443. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  444. }
  445. switch (_fan) {
  446. case 0:
  447. SERIAL_ECHOLNPGM("Extruder fan speed is lower then expected");
  448. if (get_message_level() == 0) {
  449. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  450. WRITE(BEEPER, HIGH);
  451. delayMicroseconds(200);
  452. WRITE(BEEPER, LOW);
  453. delayMicroseconds(100);
  454. LCD_ALERTMESSAGEPGM("Err: EXTR. FAN ERROR");
  455. }
  456. break;
  457. case 1:
  458. SERIAL_ECHOLNPGM("Print fan speed is lower then expected");
  459. if (get_message_level() == 0) {
  460. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  461. WRITE(BEEPER, HIGH);
  462. delayMicroseconds(200);
  463. WRITE(BEEPER, LOW);
  464. delayMicroseconds(100);
  465. LCD_ALERTMESSAGEPGM("Err: PRINT FAN ERROR");
  466. }
  467. break;
  468. }
  469. }
  470. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  471. void checkExtruderAutoFans()
  472. {
  473. uint8_t fanState = 0;
  474. // which fan pins need to be turned on?
  475. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  476. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  477. fanState |= 1;
  478. #endif
  479. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  480. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  481. {
  482. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  483. fanState |= 1;
  484. else
  485. fanState |= 2;
  486. }
  487. #endif
  488. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  489. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  490. {
  491. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  492. fanState |= 1;
  493. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  494. fanState |= 2;
  495. else
  496. fanState |= 4;
  497. }
  498. #endif
  499. // update extruder auto fan states
  500. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  501. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  502. #endif
  503. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  504. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  505. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  506. #endif
  507. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  508. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  509. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  510. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  511. #endif
  512. }
  513. #endif // any extruder auto fan pins set
  514. void resetPID(uint8_t extruder) // ready for eventually parameters adjusting
  515. {
  516. extruder=extruder; // only for compiler-warning elimination (if function do nothing)
  517. }
  518. void manage_heater()
  519. {
  520. #ifdef WATCHDOG
  521. wdt_reset();
  522. #endif //WATCHDOG
  523. float pid_input;
  524. float pid_output;
  525. if(temp_meas_ready != true) //better readability
  526. return;
  527. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  528. updateTemperaturesFromRawValues();
  529. check_max_temp();
  530. check_min_temp();
  531. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  532. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  533. #endif
  534. for(int e = 0; e < EXTRUDERS; e++)
  535. {
  536. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  537. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  538. #endif
  539. #ifdef PIDTEMP
  540. pid_input = current_temperature[e];
  541. #ifndef PID_OPENLOOP
  542. if(target_temperature[e] == 0) {
  543. pid_output = 0;
  544. pid_reset[e] = true;
  545. } else {
  546. pid_error[e] = target_temperature[e] - pid_input;
  547. if(pid_reset[e]) {
  548. iState_sum[e] = 0.0;
  549. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  550. pid_reset[e] = false;
  551. }
  552. #ifndef PonM
  553. pTerm[e] = cs.Kp * pid_error[e];
  554. iState_sum[e] += pid_error[e];
  555. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  556. iTerm[e] = cs.Ki * iState_sum[e];
  557. // K1 defined in Configuration.h in the PID settings
  558. #define K2 (1.0-K1)
  559. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  560. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  561. if (pid_output > PID_MAX) {
  562. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  563. pid_output=PID_MAX;
  564. } else if (pid_output < 0) {
  565. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  566. pid_output=0;
  567. }
  568. #else // PonM ("Proportional on Measurement" method)
  569. iState_sum[e] += cs.Ki * pid_error[e];
  570. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  571. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  572. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  573. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  574. pid_output = constrain(pid_output, 0, PID_MAX);
  575. #endif // PonM
  576. }
  577. dState_last[e] = pid_input;
  578. #else
  579. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  580. #endif //PID_OPENLOOP
  581. #ifdef PID_DEBUG
  582. SERIAL_ECHO_START;
  583. SERIAL_ECHO(" PID_DEBUG ");
  584. SERIAL_ECHO(e);
  585. SERIAL_ECHO(": Input ");
  586. SERIAL_ECHO(pid_input);
  587. SERIAL_ECHO(" Output ");
  588. SERIAL_ECHO(pid_output);
  589. SERIAL_ECHO(" pTerm ");
  590. SERIAL_ECHO(pTerm[e]);
  591. SERIAL_ECHO(" iTerm ");
  592. SERIAL_ECHO(iTerm[e]);
  593. SERIAL_ECHO(" dTerm ");
  594. SERIAL_ECHOLN(-dTerm[e]);
  595. #endif //PID_DEBUG
  596. #else /* PID off */
  597. pid_output = 0;
  598. if(current_temperature[e] < target_temperature[e]) {
  599. pid_output = PID_MAX;
  600. }
  601. #endif
  602. // Check if temperature is within the correct range
  603. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  604. {
  605. soft_pwm[e] = (int)pid_output >> 1;
  606. }
  607. else
  608. {
  609. soft_pwm[e] = 0;
  610. }
  611. #ifdef WATCH_TEMP_PERIOD
  612. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  613. {
  614. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  615. {
  616. setTargetHotend(0, e);
  617. LCD_MESSAGEPGM("Heating failed");
  618. SERIAL_ECHO_START;
  619. SERIAL_ECHOLN("Heating failed");
  620. }else{
  621. watchmillis[e] = 0;
  622. }
  623. }
  624. #endif
  625. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  626. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  627. disable_heater();
  628. if(IsStopped() == false) {
  629. SERIAL_ERROR_START;
  630. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  631. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  632. }
  633. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  634. Stop();
  635. #endif
  636. }
  637. #endif
  638. } // End extruder for loop
  639. #ifndef DEBUG_DISABLE_FANCHECK
  640. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  641. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  642. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  643. if(millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  644. {
  645. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  646. countFanSpeed();
  647. checkFanSpeed();
  648. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  649. checkExtruderAutoFans();
  650. extruder_autofan_last_check = millis();
  651. }
  652. #endif
  653. #endif //DEBUG_DISABLE_FANCHECK
  654. #ifndef PIDTEMPBED
  655. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  656. return;
  657. previous_millis_bed_heater = millis();
  658. #endif
  659. #if TEMP_SENSOR_BED != 0
  660. #ifdef PIDTEMPBED
  661. pid_input = current_temperature_bed;
  662. #ifndef PID_OPENLOOP
  663. pid_error_bed = target_temperature_bed - pid_input;
  664. pTerm_bed = cs.bedKp * pid_error_bed;
  665. temp_iState_bed += pid_error_bed;
  666. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  667. iTerm_bed = cs.bedKi * temp_iState_bed;
  668. //K1 defined in Configuration.h in the PID settings
  669. #define K2 (1.0-K1)
  670. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  671. temp_dState_bed = pid_input;
  672. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  673. if (pid_output > MAX_BED_POWER) {
  674. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  675. pid_output=MAX_BED_POWER;
  676. } else if (pid_output < 0){
  677. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  678. pid_output=0;
  679. }
  680. #else
  681. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  682. #endif //PID_OPENLOOP
  683. if(current_temperature_bed < BED_MAXTEMP)
  684. {
  685. soft_pwm_bed = (int)pid_output >> 1;
  686. }
  687. else {
  688. soft_pwm_bed = 0;
  689. }
  690. #elif !defined(BED_LIMIT_SWITCHING)
  691. // Check if temperature is within the correct range
  692. if(current_temperature_bed < BED_MAXTEMP)
  693. {
  694. if(current_temperature_bed >= target_temperature_bed)
  695. {
  696. soft_pwm_bed = 0;
  697. }
  698. else
  699. {
  700. soft_pwm_bed = MAX_BED_POWER>>1;
  701. }
  702. }
  703. else
  704. {
  705. soft_pwm_bed = 0;
  706. WRITE(HEATER_BED_PIN,LOW);
  707. }
  708. #else //#ifdef BED_LIMIT_SWITCHING
  709. // Check if temperature is within the correct band
  710. if(current_temperature_bed < BED_MAXTEMP)
  711. {
  712. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  713. {
  714. soft_pwm_bed = 0;
  715. }
  716. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  717. {
  718. soft_pwm_bed = MAX_BED_POWER>>1;
  719. }
  720. }
  721. else
  722. {
  723. soft_pwm_bed = 0;
  724. WRITE(HEATER_BED_PIN,LOW);
  725. }
  726. #endif
  727. if(target_temperature_bed==0)
  728. soft_pwm_bed = 0;
  729. #endif
  730. #ifdef HOST_KEEPALIVE_FEATURE
  731. host_keepalive();
  732. #endif
  733. }
  734. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  735. // Derived from RepRap FiveD extruder::getTemperature()
  736. // For hot end temperature measurement.
  737. static float analog2temp(int raw, uint8_t e) {
  738. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  739. if(e > EXTRUDERS)
  740. #else
  741. if(e >= EXTRUDERS)
  742. #endif
  743. {
  744. SERIAL_ERROR_START;
  745. SERIAL_ERROR((int)e);
  746. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  747. kill(PSTR(""), 6);
  748. return 0.0;
  749. }
  750. #ifdef HEATER_0_USES_MAX6675
  751. if (e == 0)
  752. {
  753. return 0.25 * raw;
  754. }
  755. #endif
  756. if(heater_ttbl_map[e] != NULL)
  757. {
  758. float celsius = 0;
  759. uint8_t i;
  760. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  761. for (i=1; i<heater_ttbllen_map[e]; i++)
  762. {
  763. if (PGM_RD_W((*tt)[i][0]) > raw)
  764. {
  765. celsius = PGM_RD_W((*tt)[i-1][1]) +
  766. (raw - PGM_RD_W((*tt)[i-1][0])) *
  767. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  768. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  769. break;
  770. }
  771. }
  772. // Overflow: Set to last value in the table
  773. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  774. return celsius;
  775. }
  776. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  777. }
  778. // Derived from RepRap FiveD extruder::getTemperature()
  779. // For bed temperature measurement.
  780. static float analog2tempBed(int raw) {
  781. #ifdef BED_USES_THERMISTOR
  782. float celsius = 0;
  783. byte i;
  784. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  785. {
  786. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  787. {
  788. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  789. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  790. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  791. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  792. break;
  793. }
  794. }
  795. // Overflow: Set to last value in the table
  796. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  797. // temperature offset adjustment
  798. #ifdef BED_OFFSET
  799. float _offset = BED_OFFSET;
  800. float _offset_center = BED_OFFSET_CENTER;
  801. float _offset_start = BED_OFFSET_START;
  802. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  803. float _second_koef = (_offset / 2) / (100 - _offset_center);
  804. if (celsius >= _offset_start && celsius <= _offset_center)
  805. {
  806. celsius = celsius + (_first_koef * (celsius - _offset_start));
  807. }
  808. else if (celsius > _offset_center && celsius <= 100)
  809. {
  810. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  811. }
  812. else if (celsius > 100)
  813. {
  814. celsius = celsius + _offset;
  815. }
  816. #endif
  817. return celsius;
  818. #elif defined BED_USES_AD595
  819. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  820. #else
  821. return 0;
  822. #endif
  823. }
  824. #ifdef AMBIENT_THERMISTOR
  825. static float analog2tempAmbient(int raw)
  826. {
  827. float celsius = 0;
  828. byte i;
  829. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  830. {
  831. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  832. {
  833. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  834. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  835. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  836. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  837. break;
  838. }
  839. }
  840. // Overflow: Set to last value in the table
  841. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  842. return celsius;
  843. }
  844. #endif //AMBIENT_THERMISTOR
  845. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  846. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  847. static void updateTemperaturesFromRawValues()
  848. {
  849. for(uint8_t e=0;e<EXTRUDERS;e++)
  850. {
  851. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  852. }
  853. #ifdef PINDA_THERMISTOR
  854. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  855. #endif
  856. #ifdef AMBIENT_THERMISTOR
  857. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  858. #endif
  859. #ifdef DEBUG_HEATER_BED_SIM
  860. current_temperature_bed = target_temperature_bed;
  861. #else //DEBUG_HEATER_BED_SIM
  862. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  863. #endif //DEBUG_HEATER_BED_SIM
  864. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  865. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  866. #endif
  867. //Reset the watchdog after we know we have a temperature measurement.
  868. #ifdef WATCHDOG
  869. wdt_reset();
  870. #endif //WATCHDOG
  871. CRITICAL_SECTION_START;
  872. temp_meas_ready = false;
  873. CRITICAL_SECTION_END;
  874. }
  875. void tp_init()
  876. {
  877. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  878. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  879. MCUCR=(1<<JTD);
  880. MCUCR=(1<<JTD);
  881. #endif
  882. // Finish init of mult extruder arrays
  883. for(int e = 0; e < EXTRUDERS; e++) {
  884. // populate with the first value
  885. maxttemp[e] = maxttemp[0];
  886. #ifdef PIDTEMP
  887. iState_sum_min[e] = 0.0;
  888. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  889. #endif //PIDTEMP
  890. #ifdef PIDTEMPBED
  891. temp_iState_min_bed = 0.0;
  892. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  893. #endif //PIDTEMPBED
  894. }
  895. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  896. SET_OUTPUT(HEATER_0_PIN);
  897. #endif
  898. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  899. SET_OUTPUT(HEATER_1_PIN);
  900. #endif
  901. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  902. SET_OUTPUT(HEATER_2_PIN);
  903. #endif
  904. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  905. SET_OUTPUT(HEATER_BED_PIN);
  906. #endif
  907. #if defined(FAN_PIN) && (FAN_PIN > -1)
  908. SET_OUTPUT(FAN_PIN);
  909. #ifdef FAST_PWM_FAN
  910. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  911. #endif
  912. #ifdef FAN_SOFT_PWM
  913. soft_pwm_fan = fanSpeedSoftPwm / 2;
  914. #endif
  915. #endif
  916. #ifdef HEATER_0_USES_MAX6675
  917. #ifndef SDSUPPORT
  918. SET_OUTPUT(SCK_PIN);
  919. WRITE(SCK_PIN,0);
  920. SET_OUTPUT(MOSI_PIN);
  921. WRITE(MOSI_PIN,1);
  922. SET_INPUT(MISO_PIN);
  923. WRITE(MISO_PIN,1);
  924. #endif
  925. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  926. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  927. pinMode(SS_PIN, OUTPUT);
  928. digitalWrite(SS_PIN,0);
  929. pinMode(MAX6675_SS, OUTPUT);
  930. digitalWrite(MAX6675_SS,1);
  931. #endif
  932. adc_init();
  933. // Use timer0 for temperature measurement
  934. // Interleave temperature interrupt with millies interrupt
  935. OCR0B = 128;
  936. TIMSK0 |= (1<<OCIE0B);
  937. // Wait for temperature measurement to settle
  938. delay(250);
  939. #ifdef HEATER_0_MINTEMP
  940. minttemp[0] = HEATER_0_MINTEMP;
  941. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  942. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  943. minttemp_raw[0] += OVERSAMPLENR;
  944. #else
  945. minttemp_raw[0] -= OVERSAMPLENR;
  946. #endif
  947. }
  948. #endif //MINTEMP
  949. #ifdef HEATER_0_MAXTEMP
  950. maxttemp[0] = HEATER_0_MAXTEMP;
  951. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  952. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  953. maxttemp_raw[0] -= OVERSAMPLENR;
  954. #else
  955. maxttemp_raw[0] += OVERSAMPLENR;
  956. #endif
  957. }
  958. #endif //MAXTEMP
  959. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  960. minttemp[1] = HEATER_1_MINTEMP;
  961. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  962. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  963. minttemp_raw[1] += OVERSAMPLENR;
  964. #else
  965. minttemp_raw[1] -= OVERSAMPLENR;
  966. #endif
  967. }
  968. #endif // MINTEMP 1
  969. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  970. maxttemp[1] = HEATER_1_MAXTEMP;
  971. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  972. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  973. maxttemp_raw[1] -= OVERSAMPLENR;
  974. #else
  975. maxttemp_raw[1] += OVERSAMPLENR;
  976. #endif
  977. }
  978. #endif //MAXTEMP 1
  979. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  980. minttemp[2] = HEATER_2_MINTEMP;
  981. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  982. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  983. minttemp_raw[2] += OVERSAMPLENR;
  984. #else
  985. minttemp_raw[2] -= OVERSAMPLENR;
  986. #endif
  987. }
  988. #endif //MINTEMP 2
  989. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  990. maxttemp[2] = HEATER_2_MAXTEMP;
  991. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  992. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  993. maxttemp_raw[2] -= OVERSAMPLENR;
  994. #else
  995. maxttemp_raw[2] += OVERSAMPLENR;
  996. #endif
  997. }
  998. #endif //MAXTEMP 2
  999. #ifdef BED_MINTEMP
  1000. /* No bed MINTEMP error implemented?!? */
  1001. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1002. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1003. bed_minttemp_raw += OVERSAMPLENR;
  1004. #else
  1005. bed_minttemp_raw -= OVERSAMPLENR;
  1006. #endif
  1007. }
  1008. #endif //BED_MINTEMP
  1009. #ifdef BED_MAXTEMP
  1010. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1011. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1012. bed_maxttemp_raw -= OVERSAMPLENR;
  1013. #else
  1014. bed_maxttemp_raw += OVERSAMPLENR;
  1015. #endif
  1016. }
  1017. #endif //BED_MAXTEMP
  1018. }
  1019. void setWatch()
  1020. {
  1021. #ifdef WATCH_TEMP_PERIOD
  1022. for (int e = 0; e < EXTRUDERS; e++)
  1023. {
  1024. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1025. {
  1026. watch_start_temp[e] = degHotend(e);
  1027. watchmillis[e] = millis();
  1028. }
  1029. }
  1030. #endif
  1031. }
  1032. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1033. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1034. {
  1035. float __hysteresis = 0;
  1036. int __timeout = 0;
  1037. bool temp_runaway_check_active = false;
  1038. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1039. static int __preheat_counter[2] = { 0,0};
  1040. static int __preheat_errors[2] = { 0,0};
  1041. if (millis() - temp_runaway_timer[_heater_id] > 2000)
  1042. {
  1043. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1044. if (_isbed)
  1045. {
  1046. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1047. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1048. }
  1049. #endif
  1050. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1051. if (!_isbed)
  1052. {
  1053. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1054. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1055. }
  1056. #endif
  1057. temp_runaway_timer[_heater_id] = millis();
  1058. if (_output == 0)
  1059. {
  1060. temp_runaway_check_active = false;
  1061. temp_runaway_error_counter[_heater_id] = 0;
  1062. }
  1063. if (temp_runaway_target[_heater_id] != _target_temperature)
  1064. {
  1065. if (_target_temperature > 0)
  1066. {
  1067. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1068. temp_runaway_target[_heater_id] = _target_temperature;
  1069. __preheat_start[_heater_id] = _current_temperature;
  1070. __preheat_counter[_heater_id] = 0;
  1071. }
  1072. else
  1073. {
  1074. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1075. temp_runaway_target[_heater_id] = _target_temperature;
  1076. }
  1077. }
  1078. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1079. {
  1080. __preheat_counter[_heater_id]++;
  1081. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1082. {
  1083. /*SERIAL_ECHOPGM("Heater:");
  1084. MYSERIAL.print(_heater_id);
  1085. SERIAL_ECHOPGM(" T:");
  1086. MYSERIAL.print(_current_temperature);
  1087. SERIAL_ECHOPGM(" Tstart:");
  1088. MYSERIAL.print(__preheat_start[_heater_id]);*/
  1089. if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1090. __preheat_errors[_heater_id]++;
  1091. /*SERIAL_ECHOPGM(" Preheat errors:");
  1092. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1093. }
  1094. else {
  1095. //SERIAL_ECHOLNPGM("");
  1096. __preheat_errors[_heater_id] = 0;
  1097. }
  1098. if (__preheat_errors[_heater_id] > ((_isbed) ? 2 : 5))
  1099. {
  1100. if (farm_mode) { prusa_statistics(0); }
  1101. temp_runaway_stop(true, _isbed);
  1102. if (farm_mode) { prusa_statistics(91); }
  1103. }
  1104. __preheat_start[_heater_id] = _current_temperature;
  1105. __preheat_counter[_heater_id] = 0;
  1106. }
  1107. }
  1108. if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1109. {
  1110. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1111. temp_runaway_check_active = false;
  1112. }
  1113. if (_output > 0)
  1114. {
  1115. temp_runaway_check_active = true;
  1116. }
  1117. if (temp_runaway_check_active)
  1118. {
  1119. // we are in range
  1120. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1121. {
  1122. temp_runaway_check_active = false;
  1123. temp_runaway_error_counter[_heater_id] = 0;
  1124. }
  1125. else
  1126. {
  1127. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1128. {
  1129. temp_runaway_error_counter[_heater_id]++;
  1130. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1131. {
  1132. if (farm_mode) { prusa_statistics(0); }
  1133. temp_runaway_stop(false, _isbed);
  1134. if (farm_mode) { prusa_statistics(90); }
  1135. }
  1136. }
  1137. }
  1138. }
  1139. }
  1140. }
  1141. void temp_runaway_stop(bool isPreheat, bool isBed)
  1142. {
  1143. cancel_heatup = true;
  1144. quickStop();
  1145. if (card.sdprinting)
  1146. {
  1147. card.sdprinting = false;
  1148. card.closefile();
  1149. }
  1150. // Clean the input command queue
  1151. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1152. cmdqueue_reset();
  1153. disable_heater();
  1154. disable_x();
  1155. disable_y();
  1156. disable_e0();
  1157. disable_e1();
  1158. disable_e2();
  1159. manage_heater();
  1160. lcd_update(0);
  1161. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1162. WRITE(BEEPER, HIGH);
  1163. delayMicroseconds(500);
  1164. WRITE(BEEPER, LOW);
  1165. delayMicroseconds(100);
  1166. if (isPreheat)
  1167. {
  1168. Stop();
  1169. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1170. SERIAL_ERROR_START;
  1171. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1172. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1173. SET_OUTPUT(FAN_PIN);
  1174. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1175. analogWrite(FAN_PIN, 255);
  1176. fanSpeed = 255;
  1177. delayMicroseconds(2000);
  1178. }
  1179. else
  1180. {
  1181. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1182. SERIAL_ERROR_START;
  1183. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1184. }
  1185. }
  1186. #endif
  1187. void disable_heater()
  1188. {
  1189. setAllTargetHotends(0);
  1190. setTargetBed(0);
  1191. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1192. target_temperature[0]=0;
  1193. soft_pwm[0]=0;
  1194. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1195. WRITE(HEATER_0_PIN,LOW);
  1196. #endif
  1197. #endif
  1198. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1199. target_temperature[1]=0;
  1200. soft_pwm[1]=0;
  1201. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1202. WRITE(HEATER_1_PIN,LOW);
  1203. #endif
  1204. #endif
  1205. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1206. target_temperature[2]=0;
  1207. soft_pwm[2]=0;
  1208. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1209. WRITE(HEATER_2_PIN,LOW);
  1210. #endif
  1211. #endif
  1212. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1213. target_temperature_bed=0;
  1214. soft_pwm_bed=0;
  1215. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1216. WRITE(HEATER_BED_PIN,LOW);
  1217. #endif
  1218. #endif
  1219. }
  1220. void max_temp_error(uint8_t e) {
  1221. disable_heater();
  1222. if(IsStopped() == false) {
  1223. SERIAL_ERROR_START;
  1224. SERIAL_ERRORLN((int)e);
  1225. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1226. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1227. }
  1228. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1229. Stop();
  1230. #endif
  1231. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1232. SET_OUTPUT(FAN_PIN);
  1233. SET_OUTPUT(BEEPER);
  1234. WRITE(FAN_PIN, 1);
  1235. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1236. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1237. WRITE(BEEPER, 1);
  1238. // fanSpeed will consumed by the check_axes_activity() routine.
  1239. fanSpeed=255;
  1240. if (farm_mode) { prusa_statistics(93); }
  1241. }
  1242. void min_temp_error(uint8_t e) {
  1243. #ifdef DEBUG_DISABLE_MINTEMP
  1244. return;
  1245. #endif
  1246. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1247. disable_heater();
  1248. if(IsStopped() == false) {
  1249. SERIAL_ERROR_START;
  1250. SERIAL_ERRORLN((int)e);
  1251. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1252. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1253. }
  1254. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1255. Stop();
  1256. #endif
  1257. if (farm_mode) { prusa_statistics(92); }
  1258. }
  1259. void bed_max_temp_error(void) {
  1260. #if HEATER_BED_PIN > -1
  1261. WRITE(HEATER_BED_PIN, 0);
  1262. #endif
  1263. if(IsStopped() == false) {
  1264. SERIAL_ERROR_START;
  1265. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1266. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1267. }
  1268. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1269. Stop();
  1270. #endif
  1271. }
  1272. void bed_min_temp_error(void) {
  1273. #ifdef DEBUG_DISABLE_MINTEMP
  1274. return;
  1275. #endif
  1276. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1277. #if HEATER_BED_PIN > -1
  1278. WRITE(HEATER_BED_PIN, 0);
  1279. #endif
  1280. if(IsStopped() == false) {
  1281. SERIAL_ERROR_START;
  1282. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1283. LCD_ALERTMESSAGEPGM("Err: MINTEMP BED");
  1284. }
  1285. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1286. Stop();
  1287. #endif
  1288. }
  1289. #ifdef HEATER_0_USES_MAX6675
  1290. #define MAX6675_HEAT_INTERVAL 250
  1291. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1292. int max6675_temp = 2000;
  1293. int read_max6675()
  1294. {
  1295. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1296. return max6675_temp;
  1297. max6675_previous_millis = millis();
  1298. max6675_temp = 0;
  1299. #ifdef PRR
  1300. PRR &= ~(1<<PRSPI);
  1301. #elif defined PRR0
  1302. PRR0 &= ~(1<<PRSPI);
  1303. #endif
  1304. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1305. // enable TT_MAX6675
  1306. WRITE(MAX6675_SS, 0);
  1307. // ensure 100ns delay - a bit extra is fine
  1308. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1309. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1310. // read MSB
  1311. SPDR = 0;
  1312. for (;(SPSR & (1<<SPIF)) == 0;);
  1313. max6675_temp = SPDR;
  1314. max6675_temp <<= 8;
  1315. // read LSB
  1316. SPDR = 0;
  1317. for (;(SPSR & (1<<SPIF)) == 0;);
  1318. max6675_temp |= SPDR;
  1319. // disable TT_MAX6675
  1320. WRITE(MAX6675_SS, 1);
  1321. if (max6675_temp & 4)
  1322. {
  1323. // thermocouple open
  1324. max6675_temp = 2000;
  1325. }
  1326. else
  1327. {
  1328. max6675_temp = max6675_temp >> 3;
  1329. }
  1330. return max6675_temp;
  1331. }
  1332. #endif
  1333. extern "C" {
  1334. void adc_ready(void) //callback from adc when sampling finished
  1335. {
  1336. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1337. current_temperature_raw_pinda = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1338. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1339. #ifdef VOLT_PWR_PIN
  1340. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1341. #endif
  1342. #ifdef AMBIENT_THERMISTOR
  1343. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1344. #endif //AMBIENT_THERMISTOR
  1345. #ifdef VOLT_BED_PIN
  1346. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1347. #endif
  1348. temp_meas_ready = true;
  1349. }
  1350. } // extern "C"
  1351. // Timer 0 is shared with millies
  1352. ISR(TIMER0_COMPB_vect) // @ 1kHz ~ 1ms
  1353. {
  1354. static bool _lock = false;
  1355. if (_lock) return;
  1356. _lock = true;
  1357. asm("sei");
  1358. if (!temp_meas_ready) adc_cycle();
  1359. lcd_buttons_update();
  1360. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1361. static unsigned char soft_pwm_0;
  1362. #ifdef SLOW_PWM_HEATERS
  1363. static unsigned char slow_pwm_count = 0;
  1364. static unsigned char state_heater_0 = 0;
  1365. static unsigned char state_timer_heater_0 = 0;
  1366. #endif
  1367. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1368. static unsigned char soft_pwm_1;
  1369. #ifdef SLOW_PWM_HEATERS
  1370. static unsigned char state_heater_1 = 0;
  1371. static unsigned char state_timer_heater_1 = 0;
  1372. #endif
  1373. #endif
  1374. #if EXTRUDERS > 2
  1375. static unsigned char soft_pwm_2;
  1376. #ifdef SLOW_PWM_HEATERS
  1377. static unsigned char state_heater_2 = 0;
  1378. static unsigned char state_timer_heater_2 = 0;
  1379. #endif
  1380. #endif
  1381. #if HEATER_BED_PIN > -1
  1382. static unsigned char soft_pwm_b;
  1383. #ifdef SLOW_PWM_HEATERS
  1384. static unsigned char state_heater_b = 0;
  1385. static unsigned char state_timer_heater_b = 0;
  1386. #endif
  1387. #endif
  1388. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1389. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1390. #endif
  1391. #ifndef SLOW_PWM_HEATERS
  1392. /*
  1393. * standard PWM modulation
  1394. */
  1395. if (pwm_count == 0)
  1396. {
  1397. soft_pwm_0 = soft_pwm[0];
  1398. if(soft_pwm_0 > 0)
  1399. {
  1400. WRITE(HEATER_0_PIN,1);
  1401. #ifdef HEATERS_PARALLEL
  1402. WRITE(HEATER_1_PIN,1);
  1403. #endif
  1404. } else WRITE(HEATER_0_PIN,0);
  1405. #if EXTRUDERS > 1
  1406. soft_pwm_1 = soft_pwm[1];
  1407. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1408. #endif
  1409. #if EXTRUDERS > 2
  1410. soft_pwm_2 = soft_pwm[2];
  1411. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1412. #endif
  1413. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1414. soft_pwm_b = soft_pwm_bed;
  1415. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1416. #endif
  1417. #ifdef FAN_SOFT_PWM
  1418. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1419. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1420. #endif
  1421. }
  1422. if(soft_pwm_0 < pwm_count)
  1423. {
  1424. WRITE(HEATER_0_PIN,0);
  1425. #ifdef HEATERS_PARALLEL
  1426. WRITE(HEATER_1_PIN,0);
  1427. #endif
  1428. }
  1429. #if EXTRUDERS > 1
  1430. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1431. #endif
  1432. #if EXTRUDERS > 2
  1433. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1434. #endif
  1435. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1436. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1437. #endif
  1438. #ifdef FAN_SOFT_PWM
  1439. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1440. #endif
  1441. pwm_count += (1 << SOFT_PWM_SCALE);
  1442. pwm_count &= 0x7f;
  1443. #else //ifndef SLOW_PWM_HEATERS
  1444. /*
  1445. * SLOW PWM HEATERS
  1446. *
  1447. * for heaters drived by relay
  1448. */
  1449. #ifndef MIN_STATE_TIME
  1450. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1451. #endif
  1452. if (slow_pwm_count == 0) {
  1453. // EXTRUDER 0
  1454. soft_pwm_0 = soft_pwm[0];
  1455. if (soft_pwm_0 > 0) {
  1456. // turn ON heather only if the minimum time is up
  1457. if (state_timer_heater_0 == 0) {
  1458. // if change state set timer
  1459. if (state_heater_0 == 0) {
  1460. state_timer_heater_0 = MIN_STATE_TIME;
  1461. }
  1462. state_heater_0 = 1;
  1463. WRITE(HEATER_0_PIN, 1);
  1464. #ifdef HEATERS_PARALLEL
  1465. WRITE(HEATER_1_PIN, 1);
  1466. #endif
  1467. }
  1468. } else {
  1469. // turn OFF heather only if the minimum time is up
  1470. if (state_timer_heater_0 == 0) {
  1471. // if change state set timer
  1472. if (state_heater_0 == 1) {
  1473. state_timer_heater_0 = MIN_STATE_TIME;
  1474. }
  1475. state_heater_0 = 0;
  1476. WRITE(HEATER_0_PIN, 0);
  1477. #ifdef HEATERS_PARALLEL
  1478. WRITE(HEATER_1_PIN, 0);
  1479. #endif
  1480. }
  1481. }
  1482. #if EXTRUDERS > 1
  1483. // EXTRUDER 1
  1484. soft_pwm_1 = soft_pwm[1];
  1485. if (soft_pwm_1 > 0) {
  1486. // turn ON heather only if the minimum time is up
  1487. if (state_timer_heater_1 == 0) {
  1488. // if change state set timer
  1489. if (state_heater_1 == 0) {
  1490. state_timer_heater_1 = MIN_STATE_TIME;
  1491. }
  1492. state_heater_1 = 1;
  1493. WRITE(HEATER_1_PIN, 1);
  1494. }
  1495. } else {
  1496. // turn OFF heather only if the minimum time is up
  1497. if (state_timer_heater_1 == 0) {
  1498. // if change state set timer
  1499. if (state_heater_1 == 1) {
  1500. state_timer_heater_1 = MIN_STATE_TIME;
  1501. }
  1502. state_heater_1 = 0;
  1503. WRITE(HEATER_1_PIN, 0);
  1504. }
  1505. }
  1506. #endif
  1507. #if EXTRUDERS > 2
  1508. // EXTRUDER 2
  1509. soft_pwm_2 = soft_pwm[2];
  1510. if (soft_pwm_2 > 0) {
  1511. // turn ON heather only if the minimum time is up
  1512. if (state_timer_heater_2 == 0) {
  1513. // if change state set timer
  1514. if (state_heater_2 == 0) {
  1515. state_timer_heater_2 = MIN_STATE_TIME;
  1516. }
  1517. state_heater_2 = 1;
  1518. WRITE(HEATER_2_PIN, 1);
  1519. }
  1520. } else {
  1521. // turn OFF heather only if the minimum time is up
  1522. if (state_timer_heater_2 == 0) {
  1523. // if change state set timer
  1524. if (state_heater_2 == 1) {
  1525. state_timer_heater_2 = MIN_STATE_TIME;
  1526. }
  1527. state_heater_2 = 0;
  1528. WRITE(HEATER_2_PIN, 0);
  1529. }
  1530. }
  1531. #endif
  1532. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1533. // BED
  1534. soft_pwm_b = soft_pwm_bed;
  1535. if (soft_pwm_b > 0) {
  1536. // turn ON heather only if the minimum time is up
  1537. if (state_timer_heater_b == 0) {
  1538. // if change state set timer
  1539. if (state_heater_b == 0) {
  1540. state_timer_heater_b = MIN_STATE_TIME;
  1541. }
  1542. state_heater_b = 1;
  1543. WRITE(HEATER_BED_PIN, 1);
  1544. }
  1545. } else {
  1546. // turn OFF heather only if the minimum time is up
  1547. if (state_timer_heater_b == 0) {
  1548. // if change state set timer
  1549. if (state_heater_b == 1) {
  1550. state_timer_heater_b = MIN_STATE_TIME;
  1551. }
  1552. state_heater_b = 0;
  1553. WRITE(HEATER_BED_PIN, 0);
  1554. }
  1555. }
  1556. #endif
  1557. } // if (slow_pwm_count == 0)
  1558. // EXTRUDER 0
  1559. if (soft_pwm_0 < slow_pwm_count) {
  1560. // turn OFF heather only if the minimum time is up
  1561. if (state_timer_heater_0 == 0) {
  1562. // if change state set timer
  1563. if (state_heater_0 == 1) {
  1564. state_timer_heater_0 = MIN_STATE_TIME;
  1565. }
  1566. state_heater_0 = 0;
  1567. WRITE(HEATER_0_PIN, 0);
  1568. #ifdef HEATERS_PARALLEL
  1569. WRITE(HEATER_1_PIN, 0);
  1570. #endif
  1571. }
  1572. }
  1573. #if EXTRUDERS > 1
  1574. // EXTRUDER 1
  1575. if (soft_pwm_1 < slow_pwm_count) {
  1576. // turn OFF heather only if the minimum time is up
  1577. if (state_timer_heater_1 == 0) {
  1578. // if change state set timer
  1579. if (state_heater_1 == 1) {
  1580. state_timer_heater_1 = MIN_STATE_TIME;
  1581. }
  1582. state_heater_1 = 0;
  1583. WRITE(HEATER_1_PIN, 0);
  1584. }
  1585. }
  1586. #endif
  1587. #if EXTRUDERS > 2
  1588. // EXTRUDER 2
  1589. if (soft_pwm_2 < slow_pwm_count) {
  1590. // turn OFF heather only if the minimum time is up
  1591. if (state_timer_heater_2 == 0) {
  1592. // if change state set timer
  1593. if (state_heater_2 == 1) {
  1594. state_timer_heater_2 = MIN_STATE_TIME;
  1595. }
  1596. state_heater_2 = 0;
  1597. WRITE(HEATER_2_PIN, 0);
  1598. }
  1599. }
  1600. #endif
  1601. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1602. // BED
  1603. if (soft_pwm_b < slow_pwm_count) {
  1604. // turn OFF heather only if the minimum time is up
  1605. if (state_timer_heater_b == 0) {
  1606. // if change state set timer
  1607. if (state_heater_b == 1) {
  1608. state_timer_heater_b = MIN_STATE_TIME;
  1609. }
  1610. state_heater_b = 0;
  1611. WRITE(HEATER_BED_PIN, 0);
  1612. }
  1613. }
  1614. #endif
  1615. #ifdef FAN_SOFT_PWM
  1616. if (pwm_count == 0){
  1617. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1618. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1619. }
  1620. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1621. #endif
  1622. pwm_count += (1 << SOFT_PWM_SCALE);
  1623. pwm_count &= 0x7f;
  1624. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1625. if ((pwm_count % 64) == 0) {
  1626. slow_pwm_count++;
  1627. slow_pwm_count &= 0x7f;
  1628. // Extruder 0
  1629. if (state_timer_heater_0 > 0) {
  1630. state_timer_heater_0--;
  1631. }
  1632. #if EXTRUDERS > 1
  1633. // Extruder 1
  1634. if (state_timer_heater_1 > 0)
  1635. state_timer_heater_1--;
  1636. #endif
  1637. #if EXTRUDERS > 2
  1638. // Extruder 2
  1639. if (state_timer_heater_2 > 0)
  1640. state_timer_heater_2--;
  1641. #endif
  1642. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1643. // Bed
  1644. if (state_timer_heater_b > 0)
  1645. state_timer_heater_b--;
  1646. #endif
  1647. } //if ((pwm_count % 64) == 0) {
  1648. #endif //ifndef SLOW_PWM_HEATERS
  1649. #ifdef BABYSTEPPING
  1650. for(uint8_t axis=0;axis<3;axis++)
  1651. {
  1652. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1653. if(curTodo>0)
  1654. {
  1655. asm("cli");
  1656. babystep(axis,/*fwd*/true);
  1657. babystepsTodo[axis]--; //less to do next time
  1658. asm("sei");
  1659. }
  1660. else
  1661. if(curTodo<0)
  1662. {
  1663. asm("cli");
  1664. babystep(axis,/*fwd*/false);
  1665. babystepsTodo[axis]++; //less to do next time
  1666. asm("sei");
  1667. }
  1668. }
  1669. #endif //BABYSTEPPING
  1670. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1671. check_fans();
  1672. #endif //(defined(TACH_0))
  1673. _lock = false;
  1674. }
  1675. void check_max_temp()
  1676. {
  1677. //heater
  1678. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1679. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1680. #else
  1681. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1682. #endif
  1683. max_temp_error(0);
  1684. }
  1685. //bed
  1686. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1687. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1688. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1689. #else
  1690. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1691. #endif
  1692. target_temperature_bed = 0;
  1693. bed_max_temp_error();
  1694. }
  1695. #endif
  1696. }
  1697. void check_min_temp_heater0()
  1698. {
  1699. //heater
  1700. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1701. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1702. #else
  1703. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1704. #endif
  1705. min_temp_error(0);
  1706. }
  1707. }
  1708. void check_min_temp_bed()
  1709. {
  1710. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1711. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1712. #else
  1713. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1714. #endif
  1715. bed_min_temp_error();
  1716. }
  1717. }
  1718. void check_min_temp()
  1719. {
  1720. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1721. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1722. #ifdef AMBIENT_THERMISTOR
  1723. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1724. { // ambient temperature is low
  1725. #endif //AMBIENT_THERMISTOR
  1726. // *** 'common' part of code for MK2.5 & MK3
  1727. // * nozzle checking
  1728. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1729. { // ~ nozzle heating is on
  1730. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>=minttemp[active_extruder]); // for eventually delay cutting
  1731. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1732. {
  1733. bCheckingOnHeater=true; // not necessary
  1734. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1735. }
  1736. }
  1737. else { // ~ nozzle heating is off
  1738. oTimer4minTempHeater.start();
  1739. bCheckingOnHeater=false;
  1740. }
  1741. // * bed checking
  1742. if(target_temperature_bed>BED_MINTEMP)
  1743. { // ~ bed heating is on
  1744. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>=BED_MINTEMP); // for eventually delay cutting
  1745. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1746. {
  1747. bCheckingOnBed=true; // not necessary
  1748. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1749. }
  1750. }
  1751. else { // ~ bed heating is off
  1752. oTimer4minTempBed.start();
  1753. bCheckingOnBed=false;
  1754. }
  1755. // *** end of 'common' part
  1756. #ifdef AMBIENT_THERMISTOR
  1757. }
  1758. else { // ambient temperature is standard
  1759. check_min_temp_heater0();
  1760. check_min_temp_bed();
  1761. }
  1762. #endif //AMBIENT_THERMISTOR
  1763. }
  1764. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1765. void check_fans() {
  1766. if (READ(TACH_0) != fan_state[0]) {
  1767. fan_edge_counter[0] ++;
  1768. fan_state[0] = !fan_state[0];
  1769. }
  1770. //if (READ(TACH_1) != fan_state[1]) {
  1771. // fan_edge_counter[1] ++;
  1772. // fan_state[1] = !fan_state[1];
  1773. //}
  1774. }
  1775. #endif //TACH_0
  1776. #ifdef PIDTEMP
  1777. // Apply the scale factors to the PID values
  1778. float scalePID_i(float i)
  1779. {
  1780. return i*PID_dT;
  1781. }
  1782. float unscalePID_i(float i)
  1783. {
  1784. return i/PID_dT;
  1785. }
  1786. float scalePID_d(float d)
  1787. {
  1788. return d/PID_dT;
  1789. }
  1790. float unscalePID_d(float d)
  1791. {
  1792. return d*PID_dT;
  1793. }
  1794. #endif //PIDTEMP