Marlin_main.cpp 384 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. //-//
  45. #include "Configuration.h"
  46. #include "Marlin.h"
  47. #ifdef ENABLE_AUTO_BED_LEVELING
  48. #include "vector_3.h"
  49. #ifdef AUTO_BED_LEVELING_GRID
  50. #include "qr_solve.h"
  51. #endif
  52. #endif // ENABLE_AUTO_BED_LEVELING
  53. #ifdef MESH_BED_LEVELING
  54. #include "mesh_bed_leveling.h"
  55. #include "mesh_bed_calibration.h"
  56. #endif
  57. #include "printers.h"
  58. #include "menu.h"
  59. #include "ultralcd.h"
  60. #include "backlight.h"
  61. #include "planner.h"
  62. #include "stepper.h"
  63. #include "temperature.h"
  64. #include "motion_control.h"
  65. #include "cardreader.h"
  66. #include "ConfigurationStore.h"
  67. #include "language.h"
  68. #include "pins_arduino.h"
  69. #include "math.h"
  70. #include "util.h"
  71. #include "Timer.h"
  72. #include <avr/wdt.h>
  73. #include <avr/pgmspace.h>
  74. #include "Dcodes.h"
  75. #include "AutoDeplete.h"
  76. #ifndef LA_NOCOMPAT
  77. #include "la10compat.h"
  78. #endif
  79. #ifdef SWSPI
  80. #include "swspi.h"
  81. #endif //SWSPI
  82. #include "spi.h"
  83. #ifdef SWI2C
  84. #include "swi2c.h"
  85. #endif //SWI2C
  86. #ifdef FILAMENT_SENSOR
  87. #include "fsensor.h"
  88. #endif //FILAMENT_SENSOR
  89. #ifdef TMC2130
  90. #include "tmc2130.h"
  91. #endif //TMC2130
  92. #ifdef W25X20CL
  93. #include "w25x20cl.h"
  94. #include "optiboot_w25x20cl.h"
  95. #endif //W25X20CL
  96. #ifdef BLINKM
  97. #include "BlinkM.h"
  98. #include "Wire.h"
  99. #endif
  100. #ifdef ULTRALCD
  101. #include "ultralcd.h"
  102. #endif
  103. #if NUM_SERVOS > 0
  104. #include "Servo.h"
  105. #endif
  106. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  107. #include <SPI.h>
  108. #endif
  109. #include "mmu.h"
  110. #define VERSION_STRING "1.0.2"
  111. #include "ultralcd.h"
  112. #include "sound.h"
  113. #include "cmdqueue.h"
  114. #include "io_atmega2560.h"
  115. // Macros for bit masks
  116. #define BIT(b) (1<<(b))
  117. #define TEST(n,b) (((n)&BIT(b))!=0)
  118. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  119. //Macro for print fan speed
  120. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  121. //filament types
  122. #define FILAMENT_DEFAULT 0
  123. #define FILAMENT_FLEX 1
  124. #define FILAMENT_PVA 2
  125. #define FILAMENT_UNDEFINED 255
  126. //Stepper Movement Variables
  127. //===========================================================================
  128. //=============================imported variables============================
  129. //===========================================================================
  130. //===========================================================================
  131. //=============================public variables=============================
  132. //===========================================================================
  133. #ifdef SDSUPPORT
  134. CardReader card;
  135. #endif
  136. unsigned long PingTime = _millis();
  137. unsigned long NcTime;
  138. uint8_t mbl_z_probe_nr = 3; //numer of Z measurements for each point in mesh bed leveling calibration
  139. //used for PINDA temp calibration and pause print
  140. #define DEFAULT_RETRACTION 1
  141. #define DEFAULT_RETRACTION_MM 4 //MM
  142. float default_retraction = DEFAULT_RETRACTION;
  143. float homing_feedrate[] = HOMING_FEEDRATE;
  144. // Currently only the extruder axis may be switched to a relative mode.
  145. // Other axes are always absolute or relative based on the common relative_mode flag.
  146. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  147. int feedmultiply=100; //100->1 200->2
  148. int extrudemultiply=100; //100->1 200->2
  149. int extruder_multiply[EXTRUDERS] = {100
  150. #if EXTRUDERS > 1
  151. , 100
  152. #if EXTRUDERS > 2
  153. , 100
  154. #endif
  155. #endif
  156. };
  157. int bowden_length[4] = {385, 385, 385, 385};
  158. bool is_usb_printing = false;
  159. bool homing_flag = false;
  160. bool temp_cal_active = false;
  161. unsigned long kicktime = _millis()+100000;
  162. unsigned int usb_printing_counter;
  163. int8_t lcd_change_fil_state = 0;
  164. unsigned long pause_time = 0;
  165. unsigned long start_pause_print = _millis();
  166. unsigned long t_fan_rising_edge = _millis();
  167. LongTimer safetyTimer;
  168. static LongTimer crashDetTimer;
  169. //unsigned long load_filament_time;
  170. bool mesh_bed_leveling_flag = false;
  171. bool mesh_bed_run_from_menu = false;
  172. bool prusa_sd_card_upload = false;
  173. unsigned int status_number = 0;
  174. unsigned long total_filament_used;
  175. unsigned int heating_status;
  176. unsigned int heating_status_counter;
  177. bool loading_flag = false;
  178. char snmm_filaments_used = 0;
  179. bool fan_state[2];
  180. int fan_edge_counter[2];
  181. int fan_speed[2];
  182. char dir_names[3][9];
  183. bool sortAlpha = false;
  184. float extruder_multiplier[EXTRUDERS] = {1.0
  185. #if EXTRUDERS > 1
  186. , 1.0
  187. #if EXTRUDERS > 2
  188. , 1.0
  189. #endif
  190. #endif
  191. };
  192. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  193. //shortcuts for more readable code
  194. #define _x current_position[X_AXIS]
  195. #define _y current_position[Y_AXIS]
  196. #define _z current_position[Z_AXIS]
  197. #define _e current_position[E_AXIS]
  198. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  199. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  200. bool axis_known_position[3] = {false, false, false};
  201. // Extruder offset
  202. #if EXTRUDERS > 1
  203. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  204. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  205. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  206. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  207. #endif
  208. };
  209. #endif
  210. uint8_t active_extruder = 0;
  211. int fanSpeed=0;
  212. #ifdef FWRETRACT
  213. bool retracted[EXTRUDERS]={false
  214. #if EXTRUDERS > 1
  215. , false
  216. #if EXTRUDERS > 2
  217. , false
  218. #endif
  219. #endif
  220. };
  221. bool retracted_swap[EXTRUDERS]={false
  222. #if EXTRUDERS > 1
  223. , false
  224. #if EXTRUDERS > 2
  225. , false
  226. #endif
  227. #endif
  228. };
  229. float retract_length_swap = RETRACT_LENGTH_SWAP;
  230. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  231. #endif
  232. #ifdef PS_DEFAULT_OFF
  233. bool powersupply = false;
  234. #else
  235. bool powersupply = true;
  236. #endif
  237. bool cancel_heatup = false ;
  238. int8_t busy_state = NOT_BUSY;
  239. static long prev_busy_signal_ms = -1;
  240. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  241. const char errormagic[] PROGMEM = "Error:";
  242. const char echomagic[] PROGMEM = "echo:";
  243. bool no_response = false;
  244. uint8_t important_status;
  245. uint8_t saved_filament_type;
  246. #define SAVED_TARGET_UNSET (X_MIN_POS-1)
  247. float saved_target[NUM_AXIS] = {SAVED_TARGET_UNSET, 0, 0, 0};
  248. // save/restore printing in case that mmu was not responding
  249. bool mmu_print_saved = false;
  250. // storing estimated time to end of print counted by slicer
  251. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  252. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  253. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  254. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  255. //===========================================================================
  256. //=============================Private Variables=============================
  257. //===========================================================================
  258. #define MSG_BED_LEVELING_FAILED_TIMEOUT 30
  259. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  260. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  261. // For tracing an arc
  262. static float offset[3] = {0.0, 0.0, 0.0};
  263. // Current feedrate
  264. float feedrate = 1500.0;
  265. // Feedrate for the next move
  266. static float next_feedrate;
  267. // Original feedrate saved during homing moves
  268. static float saved_feedrate;
  269. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  270. //static float tt = 0;
  271. //static float bt = 0;
  272. //Inactivity shutdown variables
  273. static unsigned long previous_millis_cmd = 0;
  274. unsigned long max_inactive_time = 0;
  275. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  276. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  277. unsigned long starttime=0;
  278. unsigned long stoptime=0;
  279. unsigned long _usb_timer = 0;
  280. bool Stopped=false;
  281. #if NUM_SERVOS > 0
  282. Servo servos[NUM_SERVOS];
  283. #endif
  284. bool target_direction;
  285. //Insert variables if CHDK is defined
  286. #ifdef CHDK
  287. unsigned long chdkHigh = 0;
  288. boolean chdkActive = false;
  289. #endif
  290. //! @name RAM save/restore printing
  291. //! @{
  292. bool saved_printing = false; //!< Print is paused and saved in RAM
  293. static uint32_t saved_sdpos = 0; //!< SD card position, or line number in case of USB printing
  294. uint8_t saved_printing_type = PRINTING_TYPE_SD;
  295. static float saved_pos[4] = { 0, 0, 0, 0 };
  296. static uint16_t saved_feedrate2 = 0; //!< Default feedrate (truncated from float)
  297. static int saved_feedmultiply2 = 0;
  298. static uint8_t saved_active_extruder = 0;
  299. static float saved_extruder_temperature = 0.0; //!< Active extruder temperature
  300. static bool saved_extruder_relative_mode = false;
  301. static int saved_fanSpeed = 0; //!< Print fan speed
  302. //! @}
  303. static int saved_feedmultiply_mm = 100;
  304. //===========================================================================
  305. //=============================Routines======================================
  306. //===========================================================================
  307. static void get_arc_coordinates();
  308. static bool setTargetedHotend(int code, uint8_t &extruder);
  309. static void print_time_remaining_init();
  310. static void wait_for_heater(long codenum, uint8_t extruder);
  311. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis);
  312. static void temp_compensation_start();
  313. static void temp_compensation_apply();
  314. uint16_t gcode_in_progress = 0;
  315. uint16_t mcode_in_progress = 0;
  316. void serial_echopair_P(const char *s_P, float v)
  317. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  318. void serial_echopair_P(const char *s_P, double v)
  319. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  320. void serial_echopair_P(const char *s_P, unsigned long v)
  321. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  322. /*FORCE_INLINE*/ void serialprintPGM(const char *str)
  323. {
  324. #if 0
  325. char ch=pgm_read_byte(str);
  326. while(ch)
  327. {
  328. MYSERIAL.write(ch);
  329. ch=pgm_read_byte(++str);
  330. }
  331. #else
  332. // hmm, same size as the above version, the compiler did a good job optimizing the above
  333. while( uint8_t ch = pgm_read_byte(str) ){
  334. MYSERIAL.write((char)ch);
  335. ++str;
  336. }
  337. #endif
  338. }
  339. #ifdef SDSUPPORT
  340. #include "SdFatUtil.h"
  341. int freeMemory() { return SdFatUtil::FreeRam(); }
  342. #else
  343. extern "C" {
  344. extern unsigned int __bss_end;
  345. extern unsigned int __heap_start;
  346. extern void *__brkval;
  347. int freeMemory() {
  348. int free_memory;
  349. if ((int)__brkval == 0)
  350. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  351. else
  352. free_memory = ((int)&free_memory) - ((int)__brkval);
  353. return free_memory;
  354. }
  355. }
  356. #endif //!SDSUPPORT
  357. void setup_killpin()
  358. {
  359. #if defined(KILL_PIN) && KILL_PIN > -1
  360. SET_INPUT(KILL_PIN);
  361. WRITE(KILL_PIN,HIGH);
  362. #endif
  363. }
  364. // Set home pin
  365. void setup_homepin(void)
  366. {
  367. #if defined(HOME_PIN) && HOME_PIN > -1
  368. SET_INPUT(HOME_PIN);
  369. WRITE(HOME_PIN,HIGH);
  370. #endif
  371. }
  372. void setup_photpin()
  373. {
  374. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  375. SET_OUTPUT(PHOTOGRAPH_PIN);
  376. WRITE(PHOTOGRAPH_PIN, LOW);
  377. #endif
  378. }
  379. void setup_powerhold()
  380. {
  381. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  382. SET_OUTPUT(SUICIDE_PIN);
  383. WRITE(SUICIDE_PIN, HIGH);
  384. #endif
  385. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  386. SET_OUTPUT(PS_ON_PIN);
  387. #if defined(PS_DEFAULT_OFF)
  388. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  389. #else
  390. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  391. #endif
  392. #endif
  393. }
  394. void suicide()
  395. {
  396. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  397. SET_OUTPUT(SUICIDE_PIN);
  398. WRITE(SUICIDE_PIN, LOW);
  399. #endif
  400. }
  401. void servo_init()
  402. {
  403. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  404. servos[0].attach(SERVO0_PIN);
  405. #endif
  406. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  407. servos[1].attach(SERVO1_PIN);
  408. #endif
  409. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  410. servos[2].attach(SERVO2_PIN);
  411. #endif
  412. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  413. servos[3].attach(SERVO3_PIN);
  414. #endif
  415. #if (NUM_SERVOS >= 5)
  416. #error "TODO: enter initalisation code for more servos"
  417. #endif
  418. }
  419. bool fans_check_enabled = true;
  420. #ifdef TMC2130
  421. void crashdet_stop_and_save_print()
  422. {
  423. stop_and_save_print_to_ram(10, -default_retraction); //XY - no change, Z 10mm up, E -1mm retract
  424. }
  425. void crashdet_restore_print_and_continue()
  426. {
  427. restore_print_from_ram_and_continue(default_retraction); //XYZ = orig, E +1mm unretract
  428. // babystep_apply();
  429. }
  430. void crashdet_stop_and_save_print2()
  431. {
  432. cli();
  433. planner_abort_hard(); //abort printing
  434. cmdqueue_reset(); //empty cmdqueue
  435. card.sdprinting = false;
  436. card.closefile();
  437. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  438. st_reset_timer();
  439. sei();
  440. }
  441. void crashdet_detected(uint8_t mask)
  442. {
  443. st_synchronize();
  444. static uint8_t crashDet_counter = 0;
  445. bool automatic_recovery_after_crash = true;
  446. if (crashDet_counter++ == 0) {
  447. crashDetTimer.start();
  448. }
  449. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  450. crashDetTimer.stop();
  451. crashDet_counter = 0;
  452. }
  453. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  454. automatic_recovery_after_crash = false;
  455. crashDetTimer.stop();
  456. crashDet_counter = 0;
  457. }
  458. else {
  459. crashDetTimer.start();
  460. }
  461. lcd_update_enable(true);
  462. lcd_clear();
  463. lcd_update(2);
  464. if (mask & X_AXIS_MASK)
  465. {
  466. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  467. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  468. }
  469. if (mask & Y_AXIS_MASK)
  470. {
  471. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  472. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  473. }
  474. lcd_update_enable(true);
  475. lcd_update(2);
  476. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  477. gcode_G28(true, true, false); //home X and Y
  478. st_synchronize();
  479. if (automatic_recovery_after_crash) {
  480. enquecommand_P(PSTR("CRASH_RECOVER"));
  481. }else{
  482. setTargetHotend(0, active_extruder);
  483. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  484. lcd_update_enable(true);
  485. if (yesno)
  486. {
  487. enquecommand_P(PSTR("CRASH_RECOVER"));
  488. }
  489. else
  490. {
  491. enquecommand_P(PSTR("CRASH_CANCEL"));
  492. }
  493. }
  494. }
  495. void crashdet_recover()
  496. {
  497. crashdet_restore_print_and_continue();
  498. if (lcd_crash_detect_enabled()) tmc2130_sg_stop_on_crash = true;
  499. }
  500. void crashdet_cancel()
  501. {
  502. saved_printing = false;
  503. tmc2130_sg_stop_on_crash = true;
  504. if (saved_printing_type == PRINTING_TYPE_SD) {
  505. lcd_print_stop();
  506. }else if(saved_printing_type == PRINTING_TYPE_USB){
  507. SERIAL_ECHOLNRPGM(MSG_OCTOPRINT_CANCEL); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  508. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  509. }
  510. }
  511. #endif //TMC2130
  512. void failstats_reset_print()
  513. {
  514. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  515. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  516. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  517. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  518. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  519. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  520. }
  521. #ifdef MESH_BED_LEVELING
  522. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  523. #endif
  524. // Factory reset function
  525. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  526. // Level input parameter sets depth of reset
  527. int er_progress = 0;
  528. static void factory_reset(char level)
  529. {
  530. lcd_clear();
  531. switch (level) {
  532. // Level 0: Language reset
  533. case 0:
  534. Sound_MakeCustom(100,0,false);
  535. lang_reset();
  536. break;
  537. //Level 1: Reset statistics
  538. case 1:
  539. Sound_MakeCustom(100,0,false);
  540. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  541. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  542. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  543. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  544. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  545. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  546. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  547. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  548. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  549. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  550. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  551. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  552. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  553. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  554. lcd_menu_statistics();
  555. break;
  556. // Level 2: Prepare for shipping
  557. case 2:
  558. //lcd_puts_P(PSTR("Factory RESET"));
  559. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  560. // Force language selection at the next boot up.
  561. lang_reset();
  562. // Force the "Follow calibration flow" message at the next boot up.
  563. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  564. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  565. farm_no = 0;
  566. farm_mode = false;
  567. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  568. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  569. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  570. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  571. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  572. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  573. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  574. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  575. eeprom_update_word((uint16_t *)EEPROM_MMU_FAIL_TOT, 0);
  576. eeprom_update_word((uint16_t *)EEPROM_MMU_LOAD_FAIL_TOT, 0);
  577. eeprom_update_byte((uint8_t *)EEPROM_MMU_FAIL, 0);
  578. eeprom_update_byte((uint8_t *)EEPROM_MMU_LOAD_FAIL, 0);
  579. #ifdef FILAMENT_SENSOR
  580. fsensor_enable();
  581. fsensor_autoload_set(true);
  582. #endif //FILAMENT_SENSOR
  583. Sound_MakeCustom(100,0,false);
  584. //_delay_ms(2000);
  585. break;
  586. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  587. case 3:
  588. lcd_puts_P(PSTR("Factory RESET"));
  589. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  590. Sound_MakeCustom(100,0,false);
  591. er_progress = 0;
  592. lcd_puts_at_P(3, 3, PSTR(" "));
  593. lcd_set_cursor(3, 3);
  594. lcd_print(er_progress);
  595. // Erase EEPROM
  596. for (int i = 0; i < 4096; i++) {
  597. eeprom_update_byte((uint8_t*)i, 0xFF);
  598. if (i % 41 == 0) {
  599. er_progress++;
  600. lcd_puts_at_P(3, 3, PSTR(" "));
  601. lcd_set_cursor(3, 3);
  602. lcd_print(er_progress);
  603. lcd_puts_P(PSTR("%"));
  604. }
  605. }
  606. break;
  607. case 4:
  608. bowden_menu();
  609. break;
  610. default:
  611. break;
  612. }
  613. }
  614. extern "C" {
  615. FILE _uartout; //= {0}; Global variable is always zero initialized. No need to explicitly state this.
  616. }
  617. int uart_putchar(char c, FILE *)
  618. {
  619. MYSERIAL.write(c);
  620. return 0;
  621. }
  622. void lcd_splash()
  623. {
  624. lcd_clear(); // clears display and homes screen
  625. lcd_puts_P(PSTR("\n Original Prusa i3\n Prusa Research"));
  626. }
  627. void factory_reset()
  628. {
  629. KEEPALIVE_STATE(PAUSED_FOR_USER);
  630. if (!READ(BTN_ENC))
  631. {
  632. _delay_ms(1000);
  633. if (!READ(BTN_ENC))
  634. {
  635. lcd_clear();
  636. lcd_puts_P(PSTR("Factory RESET"));
  637. SET_OUTPUT(BEEPER);
  638. if(eSoundMode!=e_SOUND_MODE_SILENT)
  639. WRITE(BEEPER, HIGH);
  640. while (!READ(BTN_ENC));
  641. WRITE(BEEPER, LOW);
  642. _delay_ms(2000);
  643. char level = reset_menu();
  644. factory_reset(level);
  645. switch (level) {
  646. case 0: _delay_ms(0); break;
  647. case 1: _delay_ms(0); break;
  648. case 2: _delay_ms(0); break;
  649. case 3: _delay_ms(0); break;
  650. }
  651. }
  652. }
  653. KEEPALIVE_STATE(IN_HANDLER);
  654. }
  655. void show_fw_version_warnings() {
  656. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  657. switch (FW_DEV_VERSION) {
  658. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  659. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  660. case(FW_VERSION_DEVEL):
  661. case(FW_VERSION_DEBUG):
  662. lcd_update_enable(false);
  663. lcd_clear();
  664. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  665. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  666. #else
  667. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  668. #endif
  669. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  670. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  671. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  672. lcd_wait_for_click();
  673. break;
  674. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  675. }
  676. lcd_update_enable(true);
  677. }
  678. //! @brief try to check if firmware is on right type of printer
  679. static void check_if_fw_is_on_right_printer(){
  680. #ifdef FILAMENT_SENSOR
  681. if((PRINTER_TYPE == PRINTER_MK3) || (PRINTER_TYPE == PRINTER_MK3S)){
  682. #ifdef IR_SENSOR
  683. swi2c_init();
  684. const uint8_t pat9125_detected = swi2c_readByte_A8(PAT9125_I2C_ADDR,0x00,NULL);
  685. if (pat9125_detected){
  686. lcd_show_fullscreen_message_and_wait_P(_i("MK3S firmware detected on MK3 printer"));}
  687. #endif //IR_SENSOR
  688. #ifdef PAT9125
  689. //will return 1 only if IR can detect filament in bondtech extruder so this may fail even when we have IR sensor
  690. const uint8_t ir_detected = !(PIN_GET(IR_SENSOR_PIN));
  691. if (ir_detected){
  692. lcd_show_fullscreen_message_and_wait_P(_i("MK3 firmware detected on MK3S printer"));}
  693. #endif //PAT9125
  694. }
  695. #endif //FILAMENT_SENSOR
  696. }
  697. uint8_t check_printer_version()
  698. {
  699. uint8_t version_changed = 0;
  700. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  701. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  702. if (printer_type != PRINTER_TYPE) {
  703. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  704. else version_changed |= 0b10;
  705. }
  706. if (motherboard != MOTHERBOARD) {
  707. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  708. else version_changed |= 0b01;
  709. }
  710. return version_changed;
  711. }
  712. #ifdef BOOTAPP
  713. #include "bootapp.h" //bootloader support
  714. #endif //BOOTAPP
  715. #if (LANG_MODE != 0) //secondary language support
  716. #ifdef W25X20CL
  717. // language update from external flash
  718. #define LANGBOOT_BLOCKSIZE 0x1000u
  719. #define LANGBOOT_RAMBUFFER 0x0800
  720. void update_sec_lang_from_external_flash()
  721. {
  722. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  723. {
  724. uint8_t lang = boot_reserved >> 4;
  725. uint8_t state = boot_reserved & 0xf;
  726. lang_table_header_t header;
  727. uint32_t src_addr;
  728. if (lang_get_header(lang, &header, &src_addr))
  729. {
  730. lcd_puts_at_P(1,3,PSTR("Language update."));
  731. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  732. _delay(100);
  733. boot_reserved = (state + 1) | (lang << 4);
  734. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  735. {
  736. cli();
  737. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  738. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  739. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  740. if (state == 0)
  741. {
  742. //TODO - check header integrity
  743. }
  744. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  745. }
  746. else
  747. {
  748. //TODO - check sec lang data integrity
  749. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  750. }
  751. }
  752. }
  753. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  754. }
  755. #ifdef DEBUG_W25X20CL
  756. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  757. {
  758. lang_table_header_t header;
  759. uint8_t count = 0;
  760. uint32_t addr = 0x00000;
  761. while (1)
  762. {
  763. printf_P(_n("LANGTABLE%d:"), count);
  764. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  765. if (header.magic != LANG_MAGIC)
  766. {
  767. printf_P(_n("NG!\n"));
  768. break;
  769. }
  770. printf_P(_n("OK\n"));
  771. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  772. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  773. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  774. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  775. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  776. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  777. addr += header.size;
  778. codes[count] = header.code;
  779. count ++;
  780. }
  781. return count;
  782. }
  783. void list_sec_lang_from_external_flash()
  784. {
  785. uint16_t codes[8];
  786. uint8_t count = lang_xflash_enum_codes(codes);
  787. printf_P(_n("XFlash lang count = %hhd\n"), count);
  788. }
  789. #endif //DEBUG_W25X20CL
  790. #endif //W25X20CL
  791. #endif //(LANG_MODE != 0)
  792. static void w25x20cl_err_msg()
  793. {
  794. lcd_clear();
  795. lcd_puts_P(_n("External SPI flash\nW25X20CL is not res-\nponding. Language\nswitch unavailable."));
  796. }
  797. // "Setup" function is called by the Arduino framework on startup.
  798. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  799. // are initialized by the main() routine provided by the Arduino framework.
  800. void setup()
  801. {
  802. mmu_init();
  803. ultralcd_init();
  804. spi_init();
  805. lcd_splash();
  806. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  807. #ifdef W25X20CL
  808. bool w25x20cl_success = w25x20cl_init();
  809. if (w25x20cl_success)
  810. {
  811. optiboot_w25x20cl_enter();
  812. #if (LANG_MODE != 0) //secondary language support
  813. update_sec_lang_from_external_flash();
  814. #endif //(LANG_MODE != 0)
  815. }
  816. else
  817. {
  818. w25x20cl_err_msg();
  819. }
  820. #else
  821. const bool w25x20cl_success = true;
  822. #endif //W25X20CL
  823. setup_killpin();
  824. setup_powerhold();
  825. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  826. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  827. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  828. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  829. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  830. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  831. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  832. if (farm_mode)
  833. {
  834. no_response = true; //we need confirmation by recieving PRUSA thx
  835. important_status = 8;
  836. prusa_statistics(8);
  837. selectedSerialPort = 1;
  838. #ifdef TMC2130
  839. //increased extruder current (PFW363)
  840. tmc2130_current_h[E_AXIS] = 36;
  841. tmc2130_current_r[E_AXIS] = 36;
  842. #endif //TMC2130
  843. #ifdef FILAMENT_SENSOR
  844. //disabled filament autoload (PFW360)
  845. fsensor_autoload_set(false);
  846. #endif //FILAMENT_SENSOR
  847. // ~ FanCheck -> on
  848. if(!(eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED)))
  849. eeprom_update_byte((unsigned char *)EEPROM_FAN_CHECK_ENABLED,true);
  850. }
  851. MYSERIAL.begin(BAUDRATE);
  852. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  853. #ifndef W25X20CL
  854. SERIAL_PROTOCOLLNPGM("start");
  855. #endif //W25X20CL
  856. stdout = uartout;
  857. SERIAL_ECHO_START;
  858. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  859. //SERIAL_ECHOPAIR("Active sheet before:", static_cast<unsigned long int>(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet))));
  860. #ifdef DEBUG_SEC_LANG
  861. lang_table_header_t header;
  862. uint32_t src_addr = 0x00000;
  863. if (lang_get_header(1, &header, &src_addr))
  864. {
  865. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  866. #define LT_PRINT_TEST 2
  867. // flash usage
  868. // total p.test
  869. //0 252718 t+c text code
  870. //1 253142 424 170 254
  871. //2 253040 322 164 158
  872. //3 253248 530 135 395
  873. #if (LT_PRINT_TEST==1) //not optimized printf
  874. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  875. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  876. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  877. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  878. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  879. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  880. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  881. #elif (LT_PRINT_TEST==2) //optimized printf
  882. printf_P(
  883. _n(
  884. " _src_addr = 0x%08lx\n"
  885. " _lt_magic = 0x%08lx %S\n"
  886. " _lt_size = 0x%04x (%d)\n"
  887. " _lt_count = 0x%04x (%d)\n"
  888. " _lt_chsum = 0x%04x\n"
  889. " _lt_code = 0x%04x (%c%c)\n"
  890. " _lt_resv1 = 0x%08lx\n"
  891. ),
  892. src_addr,
  893. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  894. header.size, header.size,
  895. header.count, header.count,
  896. header.checksum,
  897. header.code, header.code >> 8, header.code & 0xff,
  898. header.signature
  899. );
  900. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  901. MYSERIAL.print(" _src_addr = 0x");
  902. MYSERIAL.println(src_addr, 16);
  903. MYSERIAL.print(" _lt_magic = 0x");
  904. MYSERIAL.print(header.magic, 16);
  905. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  906. MYSERIAL.print(" _lt_size = 0x");
  907. MYSERIAL.print(header.size, 16);
  908. MYSERIAL.print(" (");
  909. MYSERIAL.print(header.size, 10);
  910. MYSERIAL.println(")");
  911. MYSERIAL.print(" _lt_count = 0x");
  912. MYSERIAL.print(header.count, 16);
  913. MYSERIAL.print(" (");
  914. MYSERIAL.print(header.count, 10);
  915. MYSERIAL.println(")");
  916. MYSERIAL.print(" _lt_chsum = 0x");
  917. MYSERIAL.println(header.checksum, 16);
  918. MYSERIAL.print(" _lt_code = 0x");
  919. MYSERIAL.print(header.code, 16);
  920. MYSERIAL.print(" (");
  921. MYSERIAL.print((char)(header.code >> 8), 0);
  922. MYSERIAL.print((char)(header.code & 0xff), 0);
  923. MYSERIAL.println(")");
  924. MYSERIAL.print(" _lt_resv1 = 0x");
  925. MYSERIAL.println(header.signature, 16);
  926. #endif //(LT_PRINT_TEST==)
  927. #undef LT_PRINT_TEST
  928. #if 0
  929. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  930. for (uint16_t i = 0; i < 1024; i++)
  931. {
  932. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  933. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  934. if ((i % 16) == 15) putchar('\n');
  935. }
  936. #endif
  937. uint16_t sum = 0;
  938. for (uint16_t i = 0; i < header.size; i++)
  939. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  940. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  941. sum -= header.checksum; //subtract checksum
  942. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  943. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  944. if (sum == header.checksum)
  945. printf_P(_n("Checksum OK\n"), sum);
  946. else
  947. printf_P(_n("Checksum NG\n"), sum);
  948. }
  949. else
  950. printf_P(_n("lang_get_header failed!\n"));
  951. #if 0
  952. for (uint16_t i = 0; i < 1024*10; i++)
  953. {
  954. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  955. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  956. if ((i % 16) == 15) putchar('\n');
  957. }
  958. #endif
  959. #if 0
  960. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  961. for (int i = 0; i < 4096; ++i) {
  962. int b = eeprom_read_byte((unsigned char*)i);
  963. if (b != 255) {
  964. SERIAL_ECHO(i);
  965. SERIAL_ECHO(":");
  966. SERIAL_ECHO(b);
  967. SERIAL_ECHOLN("");
  968. }
  969. }
  970. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  971. #endif
  972. #endif //DEBUG_SEC_LANG
  973. // Check startup - does nothing if bootloader sets MCUSR to 0
  974. byte mcu = MCUSR;
  975. /* if (mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  976. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  977. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  978. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  979. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  980. if (mcu & 1) puts_P(MSG_POWERUP);
  981. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  982. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  983. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  984. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  985. MCUSR = 0;
  986. //SERIAL_ECHORPGM(MSG_MARLIN);
  987. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  988. #ifdef STRING_VERSION_CONFIG_H
  989. #ifdef STRING_CONFIG_H_AUTHOR
  990. SERIAL_ECHO_START;
  991. SERIAL_ECHORPGM(_n(" Last Updated: "));////MSG_CONFIGURATION_VER
  992. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  993. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR
  994. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  995. SERIAL_ECHOPGM("Compiled: ");
  996. SERIAL_ECHOLNPGM(__DATE__);
  997. #endif
  998. #endif
  999. SERIAL_ECHO_START;
  1000. SERIAL_ECHORPGM(_n(" Free Memory: "));////MSG_FREE_MEMORY
  1001. SERIAL_ECHO(freeMemory());
  1002. SERIAL_ECHORPGM(_n(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES
  1003. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1004. //lcd_update_enable(false); // why do we need this?? - andre
  1005. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1006. bool previous_settings_retrieved = false;
  1007. uint8_t hw_changed = check_printer_version();
  1008. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1009. previous_settings_retrieved = Config_RetrieveSettings();
  1010. }
  1011. else { //printer version was changed so use default settings
  1012. Config_ResetDefault();
  1013. }
  1014. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1015. tp_init(); // Initialize temperature loop
  1016. if (w25x20cl_success) lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1017. else
  1018. {
  1019. w25x20cl_err_msg();
  1020. printf_P(_n("W25X20CL not responding.\n"));
  1021. }
  1022. plan_init(); // Initialize planner;
  1023. factory_reset();
  1024. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1025. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff)
  1026. {
  1027. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1028. // where all the EEPROM entries are set to 0x0ff.
  1029. // Once a firmware boots up, it forces at least a language selection, which changes
  1030. // EEPROM_LANG to number lower than 0x0ff.
  1031. // 1) Set a high power mode.
  1032. eeprom_update_byte((uint8_t*)EEPROM_SILENT, SILENT_MODE_OFF);
  1033. #ifdef TMC2130
  1034. tmc2130_mode = TMC2130_MODE_NORMAL;
  1035. #endif //TMC2130
  1036. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1037. }
  1038. lcd_encoder_diff=0;
  1039. #ifdef TMC2130
  1040. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1041. if (silentMode == 0xff) silentMode = 0;
  1042. tmc2130_mode = TMC2130_MODE_NORMAL;
  1043. if (lcd_crash_detect_enabled() && !farm_mode)
  1044. {
  1045. lcd_crash_detect_enable();
  1046. puts_P(_N("CrashDetect ENABLED!"));
  1047. }
  1048. else
  1049. {
  1050. lcd_crash_detect_disable();
  1051. puts_P(_N("CrashDetect DISABLED"));
  1052. }
  1053. #ifdef TMC2130_LINEARITY_CORRECTION
  1054. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1055. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1056. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1057. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1058. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1059. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1060. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1061. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1062. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1063. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1064. #endif //TMC2130_LINEARITY_CORRECTION
  1065. #ifdef TMC2130_VARIABLE_RESOLUTION
  1066. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[X_AXIS]);
  1067. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Y_AXIS]);
  1068. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[Z_AXIS]);
  1069. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(cs.axis_ustep_resolution[E_AXIS]);
  1070. #else //TMC2130_VARIABLE_RESOLUTION
  1071. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1072. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1073. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1074. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1075. #endif //TMC2130_VARIABLE_RESOLUTION
  1076. #endif //TMC2130
  1077. st_init(); // Initialize stepper, this enables interrupts!
  1078. #ifdef UVLO_SUPPORT
  1079. setup_uvlo_interrupt();
  1080. #endif //UVLO_SUPPORT
  1081. #ifdef TMC2130
  1082. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1083. update_mode_profile();
  1084. tmc2130_init();
  1085. #endif //TMC2130
  1086. #ifdef PSU_Delta
  1087. init_force_z(); // ! important for correct Z-axis initialization
  1088. #endif // PSU_Delta
  1089. setup_photpin();
  1090. servo_init();
  1091. // Reset the machine correction matrix.
  1092. // It does not make sense to load the correction matrix until the machine is homed.
  1093. world2machine_reset();
  1094. #ifdef FILAMENT_SENSOR
  1095. fsensor_init();
  1096. #endif //FILAMENT_SENSOR
  1097. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1098. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1099. #endif
  1100. setup_homepin();
  1101. #ifdef TMC2130
  1102. if (1) {
  1103. // try to run to zero phase before powering the Z motor.
  1104. // Move in negative direction
  1105. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1106. // Round the current micro-micro steps to micro steps.
  1107. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1108. // Until the phase counter is reset to zero.
  1109. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1110. _delay(2);
  1111. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1112. _delay(2);
  1113. }
  1114. }
  1115. #endif //TMC2130
  1116. #if defined(Z_AXIS_ALWAYS_ON) && !defined(PSU_Delta)
  1117. enable_z();
  1118. #endif
  1119. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1120. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1121. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1122. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1123. if (farm_mode)
  1124. {
  1125. prusa_statistics(8);
  1126. }
  1127. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1128. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1129. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1130. // but this times out if a blocking dialog is shown in setup().
  1131. card.initsd();
  1132. #ifdef DEBUG_SD_SPEED_TEST
  1133. if (card.cardOK)
  1134. {
  1135. uint8_t* buff = (uint8_t*)block_buffer;
  1136. uint32_t block = 0;
  1137. uint32_t sumr = 0;
  1138. uint32_t sumw = 0;
  1139. for (int i = 0; i < 1024; i++)
  1140. {
  1141. uint32_t u = _micros();
  1142. bool res = card.card.readBlock(i, buff);
  1143. u = _micros() - u;
  1144. if (res)
  1145. {
  1146. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1147. sumr += u;
  1148. u = _micros();
  1149. res = card.card.writeBlock(i, buff);
  1150. u = _micros() - u;
  1151. if (res)
  1152. {
  1153. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1154. sumw += u;
  1155. }
  1156. else
  1157. {
  1158. printf_P(PSTR("writeBlock %4d error\n"), i);
  1159. break;
  1160. }
  1161. }
  1162. else
  1163. {
  1164. printf_P(PSTR("readBlock %4d error\n"), i);
  1165. break;
  1166. }
  1167. }
  1168. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1169. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1170. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1171. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1172. }
  1173. else
  1174. printf_P(PSTR("Card NG!\n"));
  1175. #endif //DEBUG_SD_SPEED_TEST
  1176. eeprom_init();
  1177. #ifdef SNMM
  1178. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1179. int _z = BOWDEN_LENGTH;
  1180. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1181. }
  1182. #endif
  1183. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1184. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1185. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1186. #if (LANG_MODE != 0) //secondary language support
  1187. #ifdef DEBUG_W25X20CL
  1188. W25X20CL_SPI_ENTER();
  1189. uint8_t uid[8]; // 64bit unique id
  1190. w25x20cl_rd_uid(uid);
  1191. puts_P(_n("W25X20CL UID="));
  1192. for (uint8_t i = 0; i < 8; i ++)
  1193. printf_P(PSTR("%02hhx"), uid[i]);
  1194. putchar('\n');
  1195. list_sec_lang_from_external_flash();
  1196. #endif //DEBUG_W25X20CL
  1197. // lang_reset();
  1198. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1199. lcd_language();
  1200. #ifdef DEBUG_SEC_LANG
  1201. uint16_t sec_lang_code = lang_get_code(1);
  1202. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1203. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1204. lang_print_sec_lang(uartout);
  1205. #endif //DEBUG_SEC_LANG
  1206. #endif //(LANG_MODE != 0)
  1207. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1208. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1209. temp_cal_active = false;
  1210. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1211. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1212. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1213. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1214. int16_t z_shift = 0;
  1215. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1216. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1217. temp_cal_active = false;
  1218. }
  1219. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1220. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1221. }
  1222. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1223. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1224. }
  1225. //mbl_mode_init();
  1226. mbl_settings_init();
  1227. SilentModeMenu_MMU = eeprom_read_byte((uint8_t*)EEPROM_MMU_STEALTH);
  1228. if (SilentModeMenu_MMU == 255) {
  1229. SilentModeMenu_MMU = 1;
  1230. eeprom_write_byte((uint8_t*)EEPROM_MMU_STEALTH, SilentModeMenu_MMU);
  1231. }
  1232. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1233. setup_fan_interrupt();
  1234. #endif //DEBUG_DISABLE_FANCHECK
  1235. #ifdef PAT9125
  1236. fsensor_setup_interrupt();
  1237. #endif //PAT9125
  1238. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1239. #ifndef DEBUG_DISABLE_STARTMSGS
  1240. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1241. if (!farm_mode) {
  1242. check_if_fw_is_on_right_printer();
  1243. show_fw_version_warnings();
  1244. }
  1245. switch (hw_changed) {
  1246. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1247. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1248. case(0b01):
  1249. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1250. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1251. break;
  1252. case(0b10):
  1253. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1254. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1255. break;
  1256. case(0b11):
  1257. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1258. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1259. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1260. break;
  1261. default: break; //no change, show no message
  1262. }
  1263. if (!previous_settings_retrieved) {
  1264. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1265. Config_StoreSettings();
  1266. }
  1267. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1268. lcd_wizard(WizState::Run);
  1269. }
  1270. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1271. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1272. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1273. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1274. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1275. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  1276. // Show the message.
  1277. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1278. }
  1279. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1280. // Show the message.
  1281. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1282. lcd_update_enable(true);
  1283. }
  1284. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1285. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1286. lcd_update_enable(true);
  1287. }
  1288. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1289. // Show the message.
  1290. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_Z_CALIBRATION_FLOW));
  1291. }
  1292. }
  1293. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1294. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1295. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1296. update_current_firmware_version_to_eeprom();
  1297. lcd_selftest();
  1298. }
  1299. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1300. KEEPALIVE_STATE(IN_PROCESS);
  1301. #endif //DEBUG_DISABLE_STARTMSGS
  1302. lcd_update_enable(true);
  1303. lcd_clear();
  1304. lcd_update(2);
  1305. // Store the currently running firmware into an eeprom,
  1306. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1307. update_current_firmware_version_to_eeprom();
  1308. #ifdef TMC2130
  1309. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1310. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1311. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1312. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1313. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1314. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1315. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1316. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1317. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1318. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1319. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1320. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1321. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1322. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1323. #endif //TMC2130
  1324. #ifdef UVLO_SUPPORT
  1325. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1326. /*
  1327. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1328. else {
  1329. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1330. lcd_update_enable(true);
  1331. lcd_update(2);
  1332. lcd_setstatuspgm(_T(WELCOME_MSG));
  1333. }
  1334. */
  1335. manage_heater(); // Update temperatures
  1336. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1337. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED));
  1338. #endif
  1339. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1340. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1341. puts_P(_N("Automatic recovery!"));
  1342. #endif
  1343. recover_print(1);
  1344. }
  1345. else{
  1346. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1347. puts_P(_N("Normal recovery!"));
  1348. #endif
  1349. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1350. else {
  1351. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1352. lcd_update_enable(true);
  1353. lcd_update(2);
  1354. lcd_setstatuspgm(_T(WELCOME_MSG));
  1355. }
  1356. }
  1357. }
  1358. #endif //UVLO_SUPPORT
  1359. fCheckModeInit();
  1360. fSetMmuMode(mmu_enabled);
  1361. KEEPALIVE_STATE(NOT_BUSY);
  1362. #ifdef WATCHDOG
  1363. wdt_enable(WDTO_4S);
  1364. #endif //WATCHDOG
  1365. }
  1366. void trace();
  1367. #define CHUNK_SIZE 64 // bytes
  1368. #define SAFETY_MARGIN 1
  1369. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1370. int chunkHead = 0;
  1371. void serial_read_stream() {
  1372. setAllTargetHotends(0);
  1373. setTargetBed(0);
  1374. lcd_clear();
  1375. lcd_puts_P(PSTR(" Upload in progress"));
  1376. // first wait for how many bytes we will receive
  1377. uint32_t bytesToReceive;
  1378. // receive the four bytes
  1379. char bytesToReceiveBuffer[4];
  1380. for (int i=0; i<4; i++) {
  1381. int data;
  1382. while ((data = MYSERIAL.read()) == -1) {};
  1383. bytesToReceiveBuffer[i] = data;
  1384. }
  1385. // make it a uint32
  1386. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1387. // we're ready, notify the sender
  1388. MYSERIAL.write('+');
  1389. // lock in the routine
  1390. uint32_t receivedBytes = 0;
  1391. while (prusa_sd_card_upload) {
  1392. int i;
  1393. for (i=0; i<CHUNK_SIZE; i++) {
  1394. int data;
  1395. // check if we're not done
  1396. if (receivedBytes == bytesToReceive) {
  1397. break;
  1398. }
  1399. // read the next byte
  1400. while ((data = MYSERIAL.read()) == -1) {};
  1401. receivedBytes++;
  1402. // save it to the chunk
  1403. chunk[i] = data;
  1404. }
  1405. // write the chunk to SD
  1406. card.write_command_no_newline(&chunk[0]);
  1407. // notify the sender we're ready for more data
  1408. MYSERIAL.write('+');
  1409. // for safety
  1410. manage_heater();
  1411. // check if we're done
  1412. if(receivedBytes == bytesToReceive) {
  1413. trace(); // beep
  1414. card.closefile();
  1415. prusa_sd_card_upload = false;
  1416. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1417. }
  1418. }
  1419. }
  1420. /**
  1421. * Output a "busy" message at regular intervals
  1422. * while the machine is not accepting commands.
  1423. */
  1424. void host_keepalive() {
  1425. #ifndef HOST_KEEPALIVE_FEATURE
  1426. return;
  1427. #endif //HOST_KEEPALIVE_FEATURE
  1428. if (farm_mode) return;
  1429. long ms = _millis();
  1430. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1431. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1432. switch (busy_state) {
  1433. case IN_HANDLER:
  1434. case IN_PROCESS:
  1435. SERIAL_ECHO_START;
  1436. SERIAL_ECHOLNPGM("busy: processing");
  1437. break;
  1438. case PAUSED_FOR_USER:
  1439. SERIAL_ECHO_START;
  1440. SERIAL_ECHOLNPGM("busy: paused for user");
  1441. break;
  1442. case PAUSED_FOR_INPUT:
  1443. SERIAL_ECHO_START;
  1444. SERIAL_ECHOLNPGM("busy: paused for input");
  1445. break;
  1446. default:
  1447. break;
  1448. }
  1449. }
  1450. prev_busy_signal_ms = ms;
  1451. }
  1452. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1453. // Before loop(), the setup() function is called by the main() routine.
  1454. void loop()
  1455. {
  1456. KEEPALIVE_STATE(NOT_BUSY);
  1457. if ((usb_printing_counter > 0) && ((_millis()-_usb_timer) > 1000))
  1458. {
  1459. is_usb_printing = true;
  1460. usb_printing_counter--;
  1461. _usb_timer = _millis();
  1462. }
  1463. if (usb_printing_counter == 0)
  1464. {
  1465. is_usb_printing = false;
  1466. }
  1467. if (isPrintPaused && saved_printing_type == PRINTING_TYPE_USB) //keep believing that usb is being printed. Prevents accessing dangerous menus while pausing.
  1468. {
  1469. is_usb_printing = true;
  1470. }
  1471. #ifdef FANCHECK
  1472. if (fan_check_error && isPrintPaused)
  1473. {
  1474. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1475. host_keepalive(); //prevent timeouts since usb processing is disabled until print is resumed. This is for a crude way of pausing a print on all hosts.
  1476. }
  1477. #endif
  1478. if (prusa_sd_card_upload)
  1479. {
  1480. //we read byte-by byte
  1481. serial_read_stream();
  1482. }
  1483. else
  1484. {
  1485. get_command();
  1486. #ifdef SDSUPPORT
  1487. card.checkautostart(false);
  1488. #endif
  1489. if(buflen)
  1490. {
  1491. cmdbuffer_front_already_processed = false;
  1492. #ifdef SDSUPPORT
  1493. if(card.saving)
  1494. {
  1495. // Saving a G-code file onto an SD-card is in progress.
  1496. // Saving starts with M28, saving until M29 is seen.
  1497. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1498. card.write_command(CMDBUFFER_CURRENT_STRING);
  1499. if(card.logging)
  1500. process_commands();
  1501. else
  1502. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  1503. } else {
  1504. card.closefile();
  1505. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1506. }
  1507. } else {
  1508. process_commands();
  1509. }
  1510. #else
  1511. process_commands();
  1512. #endif //SDSUPPORT
  1513. if (! cmdbuffer_front_already_processed && buflen)
  1514. {
  1515. // ptr points to the start of the block currently being processed.
  1516. // The first character in the block is the block type.
  1517. char *ptr = cmdbuffer + bufindr;
  1518. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1519. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1520. union {
  1521. struct {
  1522. char lo;
  1523. char hi;
  1524. } lohi;
  1525. uint16_t value;
  1526. } sdlen;
  1527. sdlen.value = 0;
  1528. {
  1529. // This block locks the interrupts globally for 3.25 us,
  1530. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1531. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1532. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1533. cli();
  1534. // Reset the command to something, which will be ignored by the power panic routine,
  1535. // so this buffer length will not be counted twice.
  1536. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1537. // Extract the current buffer length.
  1538. sdlen.lohi.lo = *ptr ++;
  1539. sdlen.lohi.hi = *ptr;
  1540. // and pass it to the planner queue.
  1541. planner_add_sd_length(sdlen.value);
  1542. sei();
  1543. }
  1544. }
  1545. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1546. cli();
  1547. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1548. // and one for each command to previous block in the planner queue.
  1549. planner_add_sd_length(1);
  1550. sei();
  1551. }
  1552. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1553. // this block's SD card length will not be counted twice as its command type has been replaced
  1554. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1555. cmdqueue_pop_front();
  1556. }
  1557. host_keepalive();
  1558. }
  1559. }
  1560. //check heater every n milliseconds
  1561. manage_heater();
  1562. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1563. checkHitEndstops();
  1564. lcd_update(0);
  1565. #ifdef TMC2130
  1566. tmc2130_check_overtemp();
  1567. if (tmc2130_sg_crash)
  1568. {
  1569. uint8_t crash = tmc2130_sg_crash;
  1570. tmc2130_sg_crash = 0;
  1571. // crashdet_stop_and_save_print();
  1572. switch (crash)
  1573. {
  1574. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1575. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1576. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1577. }
  1578. }
  1579. #endif //TMC2130
  1580. mmu_loop();
  1581. }
  1582. #define DEFINE_PGM_READ_ANY(type, reader) \
  1583. static inline type pgm_read_any(const type *p) \
  1584. { return pgm_read_##reader##_near(p); }
  1585. DEFINE_PGM_READ_ANY(float, float);
  1586. DEFINE_PGM_READ_ANY(signed char, byte);
  1587. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1588. static const PROGMEM type array##_P[3] = \
  1589. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1590. static inline type array(int axis) \
  1591. { return pgm_read_any(&array##_P[axis]); } \
  1592. type array##_ext(int axis) \
  1593. { return pgm_read_any(&array##_P[axis]); }
  1594. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1595. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1596. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1597. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1598. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1599. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1600. static void axis_is_at_home(int axis) {
  1601. current_position[axis] = base_home_pos(axis) + cs.add_homing[axis];
  1602. min_pos[axis] = base_min_pos(axis) + cs.add_homing[axis];
  1603. max_pos[axis] = base_max_pos(axis) + cs.add_homing[axis];
  1604. }
  1605. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1606. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1607. //! @return original feedmultiply
  1608. static int setup_for_endstop_move(bool enable_endstops_now = true) {
  1609. saved_feedrate = feedrate;
  1610. int l_feedmultiply = feedmultiply;
  1611. feedmultiply = 100;
  1612. previous_millis_cmd = _millis();
  1613. enable_endstops(enable_endstops_now);
  1614. return l_feedmultiply;
  1615. }
  1616. //! @param original_feedmultiply feedmultiply to restore
  1617. static void clean_up_after_endstop_move(int original_feedmultiply) {
  1618. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1619. enable_endstops(false);
  1620. #endif
  1621. feedrate = saved_feedrate;
  1622. feedmultiply = original_feedmultiply;
  1623. previous_millis_cmd = _millis();
  1624. }
  1625. #ifdef ENABLE_AUTO_BED_LEVELING
  1626. #ifdef AUTO_BED_LEVELING_GRID
  1627. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1628. {
  1629. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1630. planeNormal.debug("planeNormal");
  1631. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1632. //bedLevel.debug("bedLevel");
  1633. //plan_bed_level_matrix.debug("bed level before");
  1634. //vector_3 uncorrected_position = plan_get_position_mm();
  1635. //uncorrected_position.debug("position before");
  1636. vector_3 corrected_position = plan_get_position();
  1637. // corrected_position.debug("position after");
  1638. current_position[X_AXIS] = corrected_position.x;
  1639. current_position[Y_AXIS] = corrected_position.y;
  1640. current_position[Z_AXIS] = corrected_position.z;
  1641. // put the bed at 0 so we don't go below it.
  1642. current_position[Z_AXIS] = cs.zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1643. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1644. }
  1645. #else // not AUTO_BED_LEVELING_GRID
  1646. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1647. plan_bed_level_matrix.set_to_identity();
  1648. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1649. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1650. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1651. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1652. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1653. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1654. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1655. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1656. vector_3 corrected_position = plan_get_position();
  1657. current_position[X_AXIS] = corrected_position.x;
  1658. current_position[Y_AXIS] = corrected_position.y;
  1659. current_position[Z_AXIS] = corrected_position.z;
  1660. // put the bed at 0 so we don't go below it.
  1661. current_position[Z_AXIS] = cs.zprobe_zoffset;
  1662. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1663. }
  1664. #endif // AUTO_BED_LEVELING_GRID
  1665. static void run_z_probe() {
  1666. plan_bed_level_matrix.set_to_identity();
  1667. feedrate = homing_feedrate[Z_AXIS];
  1668. // move down until you find the bed
  1669. float zPosition = -10;
  1670. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1671. st_synchronize();
  1672. // we have to let the planner know where we are right now as it is not where we said to go.
  1673. zPosition = st_get_position_mm(Z_AXIS);
  1674. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1675. // move up the retract distance
  1676. zPosition += home_retract_mm(Z_AXIS);
  1677. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1678. st_synchronize();
  1679. // move back down slowly to find bed
  1680. feedrate = homing_feedrate[Z_AXIS]/4;
  1681. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1682. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1683. st_synchronize();
  1684. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1685. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1686. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1687. }
  1688. static void do_blocking_move_to(float x, float y, float z) {
  1689. float oldFeedRate = feedrate;
  1690. feedrate = homing_feedrate[Z_AXIS];
  1691. current_position[Z_AXIS] = z;
  1692. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1693. st_synchronize();
  1694. feedrate = XY_TRAVEL_SPEED;
  1695. current_position[X_AXIS] = x;
  1696. current_position[Y_AXIS] = y;
  1697. plan_buffer_line_curposXYZE(feedrate/60, active_extruder);
  1698. st_synchronize();
  1699. feedrate = oldFeedRate;
  1700. }
  1701. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1702. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1703. }
  1704. /// Probe bed height at position (x,y), returns the measured z value
  1705. static float probe_pt(float x, float y, float z_before) {
  1706. // move to right place
  1707. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1708. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1709. run_z_probe();
  1710. float measured_z = current_position[Z_AXIS];
  1711. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1712. SERIAL_PROTOCOLPGM(" x: ");
  1713. SERIAL_PROTOCOL(x);
  1714. SERIAL_PROTOCOLPGM(" y: ");
  1715. SERIAL_PROTOCOL(y);
  1716. SERIAL_PROTOCOLPGM(" z: ");
  1717. SERIAL_PROTOCOL(measured_z);
  1718. SERIAL_PROTOCOLPGM("\n");
  1719. return measured_z;
  1720. }
  1721. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1722. #ifdef LIN_ADVANCE
  1723. /**
  1724. * M900: Set and/or Get advance K factor
  1725. *
  1726. * K<factor> Set advance K factor
  1727. */
  1728. inline void gcode_M900() {
  1729. float newK = code_seen('K') ? code_value_float() : -2;
  1730. #ifdef LA_NOCOMPAT
  1731. if (newK >= 0 && newK < 10)
  1732. extruder_advance_K = newK;
  1733. else
  1734. SERIAL_ECHOLNPGM("K out of allowed range!");
  1735. #else
  1736. if (newK == 0)
  1737. extruder_advance_K = 0;
  1738. else if (newK == -1)
  1739. la10c_reset();
  1740. else
  1741. {
  1742. newK = la10c_value(newK);
  1743. if (newK < 0)
  1744. SERIAL_ECHOLNPGM("K out of allowed range!");
  1745. else
  1746. extruder_advance_K = newK;
  1747. }
  1748. #endif
  1749. SERIAL_ECHO_START;
  1750. SERIAL_ECHOPGM("Advance K=");
  1751. SERIAL_ECHOLN(extruder_advance_K);
  1752. }
  1753. #endif // LIN_ADVANCE
  1754. bool check_commands() {
  1755. bool end_command_found = false;
  1756. while (buflen)
  1757. {
  1758. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1759. if (!cmdbuffer_front_already_processed)
  1760. cmdqueue_pop_front();
  1761. cmdbuffer_front_already_processed = false;
  1762. }
  1763. return end_command_found;
  1764. }
  1765. // raise_z_above: slowly raise Z to the requested height
  1766. //
  1767. // contrarily to a simple move, this function will carefully plan a move
  1768. // when the current Z position is unknown. In such cases, stallguard is
  1769. // enabled and will prevent prolonged pushing against the Z tops
  1770. void raise_z_above(float target, bool plan)
  1771. {
  1772. if (current_position[Z_AXIS] >= target)
  1773. return;
  1774. // Z needs raising
  1775. current_position[Z_AXIS] = target;
  1776. #if defined(Z_MIN_PIN) && (Z_MIN_PIN > -1) && !defined(DEBUG_DISABLE_ZMINLIMIT)
  1777. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1778. #else
  1779. bool z_min_endstop = false;
  1780. #endif
  1781. if (axis_known_position[Z_AXIS] || z_min_endstop)
  1782. {
  1783. // current position is known or very low, it's safe to raise Z
  1784. if(plan) plan_buffer_line_curposXYZE(max_feedrate[Z_AXIS], active_extruder);
  1785. return;
  1786. }
  1787. // ensure Z is powered in normal mode to overcome initial load
  1788. enable_z();
  1789. st_synchronize();
  1790. // rely on crashguard to limit damage
  1791. bool z_endstop_enabled = enable_z_endstop(true);
  1792. #ifdef TMC2130
  1793. tmc2130_home_enter(Z_AXIS_MASK);
  1794. #endif //TMC2130
  1795. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  1796. st_synchronize();
  1797. #ifdef TMC2130
  1798. if (endstop_z_hit_on_purpose())
  1799. {
  1800. // not necessarily exact, but will avoid further vertical moves
  1801. current_position[Z_AXIS] = max_pos[Z_AXIS];
  1802. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS],
  1803. current_position[Z_AXIS], current_position[E_AXIS]);
  1804. }
  1805. tmc2130_home_exit();
  1806. #endif //TMC2130
  1807. enable_z_endstop(z_endstop_enabled);
  1808. }
  1809. #ifdef TMC2130
  1810. bool calibrate_z_auto()
  1811. {
  1812. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1813. lcd_clear();
  1814. lcd_puts_at_P(0, 1, _T(MSG_CALIBRATE_Z_AUTO));
  1815. bool endstops_enabled = enable_endstops(true);
  1816. int axis_up_dir = -home_dir(Z_AXIS);
  1817. tmc2130_home_enter(Z_AXIS_MASK);
  1818. current_position[Z_AXIS] = 0;
  1819. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1820. set_destination_to_current();
  1821. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1822. feedrate = homing_feedrate[Z_AXIS];
  1823. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1824. st_synchronize();
  1825. // current_position[axis] = 0;
  1826. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1827. tmc2130_home_exit();
  1828. enable_endstops(false);
  1829. current_position[Z_AXIS] = 0;
  1830. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1831. set_destination_to_current();
  1832. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1833. feedrate = homing_feedrate[Z_AXIS] / 2;
  1834. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate / 60, active_extruder);
  1835. st_synchronize();
  1836. enable_endstops(endstops_enabled);
  1837. if (PRINTER_TYPE == PRINTER_MK3) {
  1838. current_position[Z_AXIS] = Z_MAX_POS + 2.0;
  1839. }
  1840. else {
  1841. current_position[Z_AXIS] = Z_MAX_POS + 9.0;
  1842. }
  1843. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1844. return true;
  1845. }
  1846. #endif //TMC2130
  1847. #ifdef TMC2130
  1848. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1849. #else
  1850. void homeaxis(int axis, uint8_t cnt)
  1851. #endif //TMC2130
  1852. {
  1853. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1854. #define HOMEAXIS_DO(LETTER) \
  1855. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1856. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1857. {
  1858. int axis_home_dir = home_dir(axis);
  1859. feedrate = homing_feedrate[axis];
  1860. #ifdef TMC2130
  1861. tmc2130_home_enter(X_AXIS_MASK << axis);
  1862. #endif //TMC2130
  1863. // Move away a bit, so that the print head does not touch the end position,
  1864. // and the following movement to endstop has a chance to achieve the required velocity
  1865. // for the stall guard to work.
  1866. current_position[axis] = 0;
  1867. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1868. set_destination_to_current();
  1869. // destination[axis] = 11.f;
  1870. destination[axis] = -3.f * axis_home_dir;
  1871. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1872. st_synchronize();
  1873. // Move away from the possible collision with opposite endstop with the collision detection disabled.
  1874. endstops_hit_on_purpose();
  1875. enable_endstops(false);
  1876. current_position[axis] = 0;
  1877. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1878. destination[axis] = 1. * axis_home_dir;
  1879. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1880. st_synchronize();
  1881. // Now continue to move up to the left end stop with the collision detection enabled.
  1882. enable_endstops(true);
  1883. destination[axis] = 1.1 * axis_home_dir * max_length(axis);
  1884. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1885. st_synchronize();
  1886. for (uint8_t i = 0; i < cnt; i++)
  1887. {
  1888. // Move away from the collision to a known distance from the left end stop with the collision detection disabled.
  1889. endstops_hit_on_purpose();
  1890. enable_endstops(false);
  1891. current_position[axis] = 0;
  1892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1893. destination[axis] = -10.f * axis_home_dir;
  1894. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1895. st_synchronize();
  1896. endstops_hit_on_purpose();
  1897. // Now move left up to the collision, this time with a repeatable velocity.
  1898. enable_endstops(true);
  1899. destination[axis] = 11.f * axis_home_dir;
  1900. #ifdef TMC2130
  1901. feedrate = homing_feedrate[axis];
  1902. #else //TMC2130
  1903. feedrate = homing_feedrate[axis] / 2;
  1904. #endif //TMC2130
  1905. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1906. st_synchronize();
  1907. #ifdef TMC2130
  1908. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1909. if (pstep) pstep[i] = mscnt >> 4;
  1910. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1911. #endif //TMC2130
  1912. }
  1913. endstops_hit_on_purpose();
  1914. enable_endstops(false);
  1915. #ifdef TMC2130
  1916. uint8_t orig = tmc2130_home_origin[axis];
  1917. uint8_t back = tmc2130_home_bsteps[axis];
  1918. if (tmc2130_home_enabled && (orig <= 63))
  1919. {
  1920. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1921. if (back > 0)
  1922. tmc2130_do_steps(axis, back, -axis_home_dir, 1000);
  1923. }
  1924. else
  1925. tmc2130_do_steps(axis, 8, -axis_home_dir, 1000);
  1926. tmc2130_home_exit();
  1927. #endif //TMC2130
  1928. axis_is_at_home(axis);
  1929. axis_known_position[axis] = true;
  1930. // Move from minimum
  1931. #ifdef TMC2130
  1932. float dist = - axis_home_dir * 0.01f * tmc2130_home_fsteps[axis];
  1933. #else //TMC2130
  1934. float dist = - axis_home_dir * 0.01f * 64;
  1935. #endif //TMC2130
  1936. current_position[axis] -= dist;
  1937. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1938. current_position[axis] += dist;
  1939. destination[axis] = current_position[axis];
  1940. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1941. st_synchronize();
  1942. feedrate = 0.0;
  1943. }
  1944. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  1945. {
  1946. #ifdef TMC2130
  1947. FORCE_HIGH_POWER_START;
  1948. #endif
  1949. int axis_home_dir = home_dir(axis);
  1950. current_position[axis] = 0;
  1951. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1952. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1953. feedrate = homing_feedrate[axis];
  1954. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1955. st_synchronize();
  1956. #ifdef TMC2130
  1957. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1958. FORCE_HIGH_POWER_END;
  1959. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1960. return;
  1961. }
  1962. #endif //TMC2130
  1963. current_position[axis] = 0;
  1964. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1965. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1966. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1967. st_synchronize();
  1968. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1969. feedrate = homing_feedrate[axis]/2 ;
  1970. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1971. st_synchronize();
  1972. #ifdef TMC2130
  1973. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  1974. FORCE_HIGH_POWER_END;
  1975. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  1976. return;
  1977. }
  1978. #endif //TMC2130
  1979. axis_is_at_home(axis);
  1980. destination[axis] = current_position[axis];
  1981. feedrate = 0.0;
  1982. endstops_hit_on_purpose();
  1983. axis_known_position[axis] = true;
  1984. #ifdef TMC2130
  1985. FORCE_HIGH_POWER_END;
  1986. #endif
  1987. }
  1988. enable_endstops(endstops_enabled);
  1989. }
  1990. /**/
  1991. void home_xy()
  1992. {
  1993. set_destination_to_current();
  1994. homeaxis(X_AXIS);
  1995. homeaxis(Y_AXIS);
  1996. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1997. endstops_hit_on_purpose();
  1998. }
  1999. void refresh_cmd_timeout(void)
  2000. {
  2001. previous_millis_cmd = _millis();
  2002. }
  2003. #ifdef FWRETRACT
  2004. void retract(bool retracting, bool swapretract = false) {
  2005. if(retracting && !retracted[active_extruder]) {
  2006. destination[X_AXIS]=current_position[X_AXIS];
  2007. destination[Y_AXIS]=current_position[Y_AXIS];
  2008. destination[Z_AXIS]=current_position[Z_AXIS];
  2009. destination[E_AXIS]=current_position[E_AXIS];
  2010. current_position[E_AXIS]+=(swapretract?retract_length_swap:cs.retract_length)*float(extrudemultiply)*0.01f;
  2011. plan_set_e_position(current_position[E_AXIS]);
  2012. float oldFeedrate = feedrate;
  2013. feedrate=cs.retract_feedrate*60;
  2014. retracted[active_extruder]=true;
  2015. prepare_move();
  2016. current_position[Z_AXIS]-=cs.retract_zlift;
  2017. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2018. prepare_move();
  2019. feedrate = oldFeedrate;
  2020. } else if(!retracting && retracted[active_extruder]) {
  2021. destination[X_AXIS]=current_position[X_AXIS];
  2022. destination[Y_AXIS]=current_position[Y_AXIS];
  2023. destination[Z_AXIS]=current_position[Z_AXIS];
  2024. destination[E_AXIS]=current_position[E_AXIS];
  2025. current_position[Z_AXIS]+=cs.retract_zlift;
  2026. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2027. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(cs.retract_length+cs.retract_recover_length))*float(extrudemultiply)*0.01f;
  2028. plan_set_e_position(current_position[E_AXIS]);
  2029. float oldFeedrate = feedrate;
  2030. feedrate=cs.retract_recover_feedrate*60;
  2031. retracted[active_extruder]=false;
  2032. prepare_move();
  2033. feedrate = oldFeedrate;
  2034. }
  2035. } //retract
  2036. #endif //FWRETRACT
  2037. void trace() {
  2038. Sound_MakeCustom(25,440,true);
  2039. }
  2040. /*
  2041. void ramming() {
  2042. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2043. if (current_temperature[0] < 230) {
  2044. //PLA
  2045. max_feedrate[E_AXIS] = 50;
  2046. //current_position[E_AXIS] -= 8;
  2047. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2048. //current_position[E_AXIS] += 8;
  2049. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2050. current_position[E_AXIS] += 5.4;
  2051. plan_buffer_line_curposXYZE(2800 / 60, active_extruder);
  2052. current_position[E_AXIS] += 3.2;
  2053. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2054. current_position[E_AXIS] += 3;
  2055. plan_buffer_line_curposXYZE(3400 / 60, active_extruder);
  2056. st_synchronize();
  2057. max_feedrate[E_AXIS] = 80;
  2058. current_position[E_AXIS] -= 82;
  2059. plan_buffer_line_curposXYZE(9500 / 60, active_extruder);
  2060. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2061. current_position[E_AXIS] -= 20;
  2062. plan_buffer_line_curposXYZE(1200 / 60, active_extruder);
  2063. current_position[E_AXIS] += 5;
  2064. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2065. current_position[E_AXIS] += 5;
  2066. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2067. current_position[E_AXIS] -= 10;
  2068. st_synchronize();
  2069. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2070. current_position[E_AXIS] += 10;
  2071. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2072. current_position[E_AXIS] -= 10;
  2073. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2074. current_position[E_AXIS] += 10;
  2075. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2076. current_position[E_AXIS] -= 10;
  2077. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2078. st_synchronize();
  2079. }
  2080. else {
  2081. //ABS
  2082. max_feedrate[E_AXIS] = 50;
  2083. //current_position[E_AXIS] -= 8;
  2084. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2085. //current_position[E_AXIS] += 8;
  2086. //plan_buffer_line_curposXYZE(2100 / 60, active_extruder);
  2087. current_position[E_AXIS] += 3.1;
  2088. plan_buffer_line_curposXYZE(2000 / 60, active_extruder);
  2089. current_position[E_AXIS] += 3.1;
  2090. plan_buffer_line_curposXYZE(2500 / 60, active_extruder);
  2091. current_position[E_AXIS] += 4;
  2092. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  2093. st_synchronize();
  2094. //current_position[X_AXIS] += 23; //delay
  2095. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2096. //current_position[X_AXIS] -= 23; //delay
  2097. //plan_buffer_line_curposXYZE(600/60, active_extruder); //delay
  2098. _delay(4700);
  2099. max_feedrate[E_AXIS] = 80;
  2100. current_position[E_AXIS] -= 92;
  2101. plan_buffer_line_curposXYZE(9900 / 60, active_extruder);
  2102. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2103. current_position[E_AXIS] -= 5;
  2104. plan_buffer_line_curposXYZE(800 / 60, active_extruder);
  2105. current_position[E_AXIS] += 5;
  2106. plan_buffer_line_curposXYZE(400 / 60, active_extruder);
  2107. current_position[E_AXIS] -= 5;
  2108. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2109. st_synchronize();
  2110. current_position[E_AXIS] += 5;
  2111. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2112. current_position[E_AXIS] -= 5;
  2113. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2114. current_position[E_AXIS] += 5;
  2115. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2116. current_position[E_AXIS] -= 5;
  2117. plan_buffer_line_curposXYZE(600 / 60, active_extruder);
  2118. st_synchronize();
  2119. }
  2120. }
  2121. */
  2122. #ifdef TMC2130
  2123. void force_high_power_mode(bool start_high_power_section) {
  2124. #ifdef PSU_Delta
  2125. if (start_high_power_section == true) enable_force_z();
  2126. #endif //PSU_Delta
  2127. uint8_t silent;
  2128. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2129. if (silent == 1) {
  2130. //we are in silent mode, set to normal mode to enable crash detection
  2131. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2132. st_synchronize();
  2133. cli();
  2134. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2135. update_mode_profile();
  2136. tmc2130_init();
  2137. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2138. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2139. st_reset_timer();
  2140. sei();
  2141. }
  2142. }
  2143. #endif //TMC2130
  2144. #ifdef TMC2130
  2145. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl)
  2146. #else
  2147. static void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool without_mbl)
  2148. #endif //TMC2130
  2149. {
  2150. st_synchronize();
  2151. #if 0
  2152. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2153. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2154. #endif
  2155. // Flag for the display update routine and to disable the print cancelation during homing.
  2156. homing_flag = true;
  2157. // Which axes should be homed?
  2158. bool home_x = home_x_axis;
  2159. bool home_y = home_y_axis;
  2160. bool home_z = home_z_axis;
  2161. // Either all X,Y,Z codes are present, or none of them.
  2162. bool home_all_axes = home_x == home_y && home_x == home_z;
  2163. if (home_all_axes)
  2164. // No X/Y/Z code provided means to home all axes.
  2165. home_x = home_y = home_z = true;
  2166. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2167. if (home_all_axes) {
  2168. raise_z_above(MESH_HOME_Z_SEARCH);
  2169. st_synchronize();
  2170. }
  2171. #ifdef ENABLE_AUTO_BED_LEVELING
  2172. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2173. #endif //ENABLE_AUTO_BED_LEVELING
  2174. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2175. // the planner will not perform any adjustments in the XY plane.
  2176. // Wait for the motors to stop and update the current position with the absolute values.
  2177. world2machine_revert_to_uncorrected();
  2178. // For mesh bed leveling deactivate the matrix temporarily.
  2179. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2180. // in a single axis only.
  2181. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2182. #ifdef MESH_BED_LEVELING
  2183. uint8_t mbl_was_active = mbl.active;
  2184. mbl.active = 0;
  2185. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2186. #endif
  2187. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2188. // consumed during the first movements following this statement.
  2189. if (home_z)
  2190. babystep_undo();
  2191. saved_feedrate = feedrate;
  2192. int l_feedmultiply = feedmultiply;
  2193. feedmultiply = 100;
  2194. previous_millis_cmd = _millis();
  2195. enable_endstops(true);
  2196. memcpy(destination, current_position, sizeof(destination));
  2197. feedrate = 0.0;
  2198. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2199. if(home_z)
  2200. homeaxis(Z_AXIS);
  2201. #endif
  2202. #ifdef QUICK_HOME
  2203. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2204. if(home_x && home_y) //first diagonal move
  2205. {
  2206. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2207. int x_axis_home_dir = home_dir(X_AXIS);
  2208. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2209. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2210. feedrate = homing_feedrate[X_AXIS];
  2211. if(homing_feedrate[Y_AXIS]<feedrate)
  2212. feedrate = homing_feedrate[Y_AXIS];
  2213. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2214. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2215. } else {
  2216. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2217. }
  2218. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2219. st_synchronize();
  2220. axis_is_at_home(X_AXIS);
  2221. axis_is_at_home(Y_AXIS);
  2222. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2223. destination[X_AXIS] = current_position[X_AXIS];
  2224. destination[Y_AXIS] = current_position[Y_AXIS];
  2225. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2226. feedrate = 0.0;
  2227. st_synchronize();
  2228. endstops_hit_on_purpose();
  2229. current_position[X_AXIS] = destination[X_AXIS];
  2230. current_position[Y_AXIS] = destination[Y_AXIS];
  2231. current_position[Z_AXIS] = destination[Z_AXIS];
  2232. }
  2233. #endif /* QUICK_HOME */
  2234. #ifdef TMC2130
  2235. if(home_x)
  2236. {
  2237. if (!calib)
  2238. homeaxis(X_AXIS);
  2239. else
  2240. tmc2130_home_calibrate(X_AXIS);
  2241. }
  2242. if(home_y)
  2243. {
  2244. if (!calib)
  2245. homeaxis(Y_AXIS);
  2246. else
  2247. tmc2130_home_calibrate(Y_AXIS);
  2248. }
  2249. #else //TMC2130
  2250. if(home_x) homeaxis(X_AXIS);
  2251. if(home_y) homeaxis(Y_AXIS);
  2252. #endif //TMC2130
  2253. if(home_x_axis && home_x_value != 0)
  2254. current_position[X_AXIS]=home_x_value+cs.add_homing[X_AXIS];
  2255. if(home_y_axis && home_y_value != 0)
  2256. current_position[Y_AXIS]=home_y_value+cs.add_homing[Y_AXIS];
  2257. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2258. #ifndef Z_SAFE_HOMING
  2259. if(home_z) {
  2260. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2261. raise_z_above(Z_RAISE_BEFORE_HOMING);
  2262. st_synchronize();
  2263. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2264. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2265. raise_z_above(MESH_HOME_Z_SEARCH);
  2266. st_synchronize();
  2267. if (!axis_known_position[X_AXIS]) homeaxis(X_AXIS);
  2268. if (!axis_known_position[Y_AXIS]) homeaxis(Y_AXIS);
  2269. // 1st mesh bed leveling measurement point, corrected.
  2270. world2machine_initialize();
  2271. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2272. world2machine_reset();
  2273. if (destination[Y_AXIS] < Y_MIN_POS)
  2274. destination[Y_AXIS] = Y_MIN_POS;
  2275. feedrate = homing_feedrate[X_AXIS] / 20;
  2276. enable_endstops(false);
  2277. #ifdef DEBUG_BUILD
  2278. SERIAL_ECHOLNPGM("plan_set_position()");
  2279. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2280. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2281. #endif
  2282. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2283. #ifdef DEBUG_BUILD
  2284. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2285. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2286. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2287. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2288. #endif
  2289. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2290. st_synchronize();
  2291. current_position[X_AXIS] = destination[X_AXIS];
  2292. current_position[Y_AXIS] = destination[Y_AXIS];
  2293. enable_endstops(true);
  2294. endstops_hit_on_purpose();
  2295. homeaxis(Z_AXIS);
  2296. #else // MESH_BED_LEVELING
  2297. homeaxis(Z_AXIS);
  2298. #endif // MESH_BED_LEVELING
  2299. }
  2300. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2301. if(home_all_axes) {
  2302. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2303. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2304. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2305. feedrate = XY_TRAVEL_SPEED/60;
  2306. current_position[Z_AXIS] = 0;
  2307. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2308. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2309. st_synchronize();
  2310. current_position[X_AXIS] = destination[X_AXIS];
  2311. current_position[Y_AXIS] = destination[Y_AXIS];
  2312. homeaxis(Z_AXIS);
  2313. }
  2314. // Let's see if X and Y are homed and probe is inside bed area.
  2315. if(home_z) {
  2316. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2317. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2318. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2319. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2320. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2321. current_position[Z_AXIS] = 0;
  2322. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2323. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2324. feedrate = max_feedrate[Z_AXIS];
  2325. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2326. st_synchronize();
  2327. homeaxis(Z_AXIS);
  2328. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2329. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2330. SERIAL_ECHO_START;
  2331. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2332. } else {
  2333. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2334. SERIAL_ECHO_START;
  2335. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2336. }
  2337. }
  2338. #endif // Z_SAFE_HOMING
  2339. #endif // Z_HOME_DIR < 0
  2340. if(home_z_axis && home_z_value != 0)
  2341. current_position[Z_AXIS]=home_z_value+cs.add_homing[Z_AXIS];
  2342. #ifdef ENABLE_AUTO_BED_LEVELING
  2343. if(home_z)
  2344. current_position[Z_AXIS] += cs.zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2345. #endif
  2346. // Set the planner and stepper routine positions.
  2347. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2348. // contains the machine coordinates.
  2349. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2350. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2351. enable_endstops(false);
  2352. #endif
  2353. feedrate = saved_feedrate;
  2354. feedmultiply = l_feedmultiply;
  2355. previous_millis_cmd = _millis();
  2356. endstops_hit_on_purpose();
  2357. #ifndef MESH_BED_LEVELING
  2358. //-// Oct 2019 :: this part of code is (from) now probably un-compilable
  2359. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2360. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2361. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2362. lcd_adjust_z();
  2363. #endif
  2364. // Load the machine correction matrix
  2365. world2machine_initialize();
  2366. // and correct the current_position XY axes to match the transformed coordinate system.
  2367. world2machine_update_current();
  2368. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2369. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2370. {
  2371. if (! home_z && mbl_was_active) {
  2372. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2373. mbl.active = true;
  2374. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2375. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2376. }
  2377. }
  2378. else
  2379. {
  2380. st_synchronize();
  2381. homing_flag = false;
  2382. }
  2383. #endif
  2384. if (farm_mode) { prusa_statistics(20); };
  2385. homing_flag = false;
  2386. #if 0
  2387. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2388. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2389. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2390. #endif
  2391. }
  2392. static void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis)
  2393. {
  2394. #ifdef TMC2130
  2395. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2396. #else
  2397. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, true);
  2398. #endif //TMC2130
  2399. }
  2400. void adjust_bed_reset()
  2401. {
  2402. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID, 1);
  2403. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_LEFT, 0);
  2404. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_RIGHT, 0);
  2405. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_FRONT, 0);
  2406. eeprom_update_byte((unsigned char*)EEPROM_BED_CORRECTION_REAR, 0);
  2407. }
  2408. //! @brief Calibrate XYZ
  2409. //! @param onlyZ if true, calibrate only Z axis
  2410. //! @param verbosity_level
  2411. //! @retval true Succeeded
  2412. //! @retval false Failed
  2413. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2414. {
  2415. bool final_result = false;
  2416. #ifdef TMC2130
  2417. FORCE_HIGH_POWER_START;
  2418. #endif // TMC2130
  2419. FORCE_BL_ON_START;
  2420. // Only Z calibration?
  2421. if (!onlyZ)
  2422. {
  2423. setTargetBed(0);
  2424. setAllTargetHotends(0);
  2425. adjust_bed_reset(); //reset bed level correction
  2426. }
  2427. // Disable the default update procedure of the display. We will do a modal dialog.
  2428. lcd_update_enable(false);
  2429. // Let the planner use the uncorrected coordinates.
  2430. mbl.reset();
  2431. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2432. // the planner will not perform any adjustments in the XY plane.
  2433. // Wait for the motors to stop and update the current position with the absolute values.
  2434. world2machine_revert_to_uncorrected();
  2435. // Reset the baby step value applied without moving the axes.
  2436. babystep_reset();
  2437. // Mark all axes as in a need for homing.
  2438. memset(axis_known_position, 0, sizeof(axis_known_position));
  2439. // Home in the XY plane.
  2440. //set_destination_to_current();
  2441. int l_feedmultiply = setup_for_endstop_move();
  2442. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2443. home_xy();
  2444. enable_endstops(false);
  2445. current_position[X_AXIS] += 5;
  2446. current_position[Y_AXIS] += 5;
  2447. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2448. st_synchronize();
  2449. // Let the user move the Z axes up to the end stoppers.
  2450. #ifdef TMC2130
  2451. if (calibrate_z_auto())
  2452. {
  2453. #else //TMC2130
  2454. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2455. {
  2456. #endif //TMC2130
  2457. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2458. if(onlyZ){
  2459. lcd_display_message_fullscreen_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE1));
  2460. lcd_set_cursor(0, 3);
  2461. lcd_print(1);
  2462. lcd_puts_P(_T(MSG_MEASURE_BED_REFERENCE_HEIGHT_LINE2));
  2463. }else{
  2464. //lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2465. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2466. lcd_set_cursor(0, 2);
  2467. lcd_print(1);
  2468. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2469. }
  2470. refresh_cmd_timeout();
  2471. #ifndef STEEL_SHEET
  2472. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2473. {
  2474. lcd_wait_for_cool_down();
  2475. }
  2476. #endif //STEEL_SHEET
  2477. if(!onlyZ)
  2478. {
  2479. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2480. #ifdef STEEL_SHEET
  2481. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2482. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2483. #endif //STEEL_SHEET
  2484. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2485. KEEPALIVE_STATE(IN_HANDLER);
  2486. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2487. lcd_set_cursor(0, 2);
  2488. lcd_print(1);
  2489. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2490. }
  2491. bool endstops_enabled = enable_endstops(false);
  2492. current_position[Z_AXIS] -= 1; //move 1mm down with disabled endstop
  2493. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2494. st_synchronize();
  2495. // Move the print head close to the bed.
  2496. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2497. enable_endstops(true);
  2498. #ifdef TMC2130
  2499. tmc2130_home_enter(Z_AXIS_MASK);
  2500. #endif //TMC2130
  2501. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2502. st_synchronize();
  2503. #ifdef TMC2130
  2504. tmc2130_home_exit();
  2505. #endif //TMC2130
  2506. enable_endstops(endstops_enabled);
  2507. if ((st_get_position_mm(Z_AXIS) <= (MESH_HOME_Z_SEARCH + HOME_Z_SEARCH_THRESHOLD)) &&
  2508. (st_get_position_mm(Z_AXIS) >= (MESH_HOME_Z_SEARCH - HOME_Z_SEARCH_THRESHOLD)))
  2509. {
  2510. if (onlyZ)
  2511. {
  2512. clean_up_after_endstop_move(l_feedmultiply);
  2513. // Z only calibration.
  2514. // Load the machine correction matrix
  2515. world2machine_initialize();
  2516. // and correct the current_position to match the transformed coordinate system.
  2517. world2machine_update_current();
  2518. //FIXME
  2519. bool result = sample_mesh_and_store_reference();
  2520. if (result)
  2521. {
  2522. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2523. // Shipped, the nozzle height has been set already. The user can start printing now.
  2524. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2525. final_result = true;
  2526. // babystep_apply();
  2527. }
  2528. }
  2529. else
  2530. {
  2531. // Reset the baby step value and the baby step applied flag.
  2532. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2533. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  2534. // Complete XYZ calibration.
  2535. uint8_t point_too_far_mask = 0;
  2536. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2537. clean_up_after_endstop_move(l_feedmultiply);
  2538. // Print head up.
  2539. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2540. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2541. st_synchronize();
  2542. //#ifndef NEW_XYZCAL
  2543. if (result >= 0)
  2544. {
  2545. #ifdef HEATBED_V2
  2546. sample_z();
  2547. #else //HEATBED_V2
  2548. point_too_far_mask = 0;
  2549. // Second half: The fine adjustment.
  2550. // Let the planner use the uncorrected coordinates.
  2551. mbl.reset();
  2552. world2machine_reset();
  2553. // Home in the XY plane.
  2554. int l_feedmultiply = setup_for_endstop_move();
  2555. home_xy();
  2556. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2557. clean_up_after_endstop_move(l_feedmultiply);
  2558. // Print head up.
  2559. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2560. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  2561. st_synchronize();
  2562. // if (result >= 0) babystep_apply();
  2563. #endif //HEATBED_V2
  2564. }
  2565. //#endif //NEW_XYZCAL
  2566. lcd_update_enable(true);
  2567. lcd_update(2);
  2568. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2569. if (result >= 0)
  2570. {
  2571. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2572. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2573. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2574. final_result = true;
  2575. }
  2576. }
  2577. #ifdef TMC2130
  2578. tmc2130_home_exit();
  2579. #endif
  2580. }
  2581. else
  2582. {
  2583. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2584. final_result = false;
  2585. }
  2586. }
  2587. else
  2588. {
  2589. // Timeouted.
  2590. }
  2591. lcd_update_enable(true);
  2592. #ifdef TMC2130
  2593. FORCE_HIGH_POWER_END;
  2594. #endif // TMC2130
  2595. FORCE_BL_ON_END;
  2596. return final_result;
  2597. }
  2598. void gcode_M114()
  2599. {
  2600. SERIAL_PROTOCOLPGM("X:");
  2601. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2602. SERIAL_PROTOCOLPGM(" Y:");
  2603. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2604. SERIAL_PROTOCOLPGM(" Z:");
  2605. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2606. SERIAL_PROTOCOLPGM(" E:");
  2607. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2608. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X
  2609. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / cs.axis_steps_per_unit[X_AXIS]);
  2610. SERIAL_PROTOCOLPGM(" Y:");
  2611. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / cs.axis_steps_per_unit[Y_AXIS]);
  2612. SERIAL_PROTOCOLPGM(" Z:");
  2613. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / cs.axis_steps_per_unit[Z_AXIS]);
  2614. SERIAL_PROTOCOLPGM(" E:");
  2615. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / cs.axis_steps_per_unit[E_AXIS]);
  2616. SERIAL_PROTOCOLLN("");
  2617. }
  2618. //! extracted code to compute z_shift for M600 in case of filament change operation
  2619. //! requested from fsensors.
  2620. //! The function ensures, that the printhead lifts to at least 25mm above the heat bed
  2621. //! unlike the previous implementation, which was adding 25mm even when the head was
  2622. //! printing at e.g. 24mm height.
  2623. //! A safety margin of FILAMENTCHANGE_ZADD is added in all cases to avoid touching
  2624. //! the printout.
  2625. //! This function is templated to enable fast change of computation data type.
  2626. //! @return new z_shift value
  2627. template<typename T>
  2628. static T gcode_M600_filament_change_z_shift()
  2629. {
  2630. #ifdef FILAMENTCHANGE_ZADD
  2631. static_assert(Z_MAX_POS < (255 - FILAMENTCHANGE_ZADD), "Z-range too high, change the T type from uint8_t to uint16_t");
  2632. // avoid floating point arithmetics when not necessary - results in shorter code
  2633. T ztmp = T( current_position[Z_AXIS] );
  2634. T z_shift = 0;
  2635. if(ztmp < T(25)){
  2636. z_shift = T(25) - ztmp; // make sure to be at least 25mm above the heat bed
  2637. }
  2638. return z_shift + T(FILAMENTCHANGE_ZADD); // always move above printout
  2639. #else
  2640. return T(0);
  2641. #endif
  2642. }
  2643. static void gcode_M600(bool automatic, float x_position, float y_position, float z_shift, float e_shift, float /*e_shift_late*/)
  2644. {
  2645. st_synchronize();
  2646. float lastpos[4];
  2647. if (farm_mode)
  2648. {
  2649. prusa_statistics(22);
  2650. }
  2651. //First backup current position and settings
  2652. int feedmultiplyBckp = feedmultiply;
  2653. float HotendTempBckp = degTargetHotend(active_extruder);
  2654. int fanSpeedBckp = fanSpeed;
  2655. lastpos[X_AXIS] = current_position[X_AXIS];
  2656. lastpos[Y_AXIS] = current_position[Y_AXIS];
  2657. lastpos[Z_AXIS] = current_position[Z_AXIS];
  2658. lastpos[E_AXIS] = current_position[E_AXIS];
  2659. //Retract E
  2660. current_position[E_AXIS] += e_shift;
  2661. plan_buffer_line_curposXYZE(FILAMENTCHANGE_RFEED, active_extruder);
  2662. st_synchronize();
  2663. //Lift Z
  2664. current_position[Z_AXIS] += z_shift;
  2665. plan_buffer_line_curposXYZE(FILAMENTCHANGE_ZFEED, active_extruder);
  2666. st_synchronize();
  2667. //Move XY to side
  2668. current_position[X_AXIS] = x_position;
  2669. current_position[Y_AXIS] = y_position;
  2670. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2671. st_synchronize();
  2672. //Beep, manage nozzle heater and wait for user to start unload filament
  2673. if(!mmu_enabled) M600_wait_for_user(HotendTempBckp);
  2674. lcd_change_fil_state = 0;
  2675. // Unload filament
  2676. if (mmu_enabled) extr_unload(); //unload just current filament for multimaterial printers (used also in M702)
  2677. else unload_filament(); //unload filament for single material (used also in M702)
  2678. //finish moves
  2679. st_synchronize();
  2680. if (!mmu_enabled)
  2681. {
  2682. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2683. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"),
  2684. false, true); ////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  2685. if (lcd_change_fil_state == 0)
  2686. {
  2687. lcd_clear();
  2688. lcd_set_cursor(0, 2);
  2689. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2690. current_position[X_AXIS] -= 100;
  2691. plan_buffer_line_curposXYZE(FILAMENTCHANGE_XYFEED, active_extruder);
  2692. st_synchronize();
  2693. lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  2694. }
  2695. }
  2696. if (mmu_enabled)
  2697. {
  2698. if (!automatic) {
  2699. if (saved_printing) mmu_eject_filament(mmu_extruder, false); //if M600 was invoked by filament senzor (FINDA) eject filament so user can easily remove it
  2700. mmu_M600_wait_and_beep();
  2701. if (saved_printing) {
  2702. lcd_clear();
  2703. lcd_set_cursor(0, 2);
  2704. lcd_puts_P(_T(MSG_PLEASE_WAIT));
  2705. mmu_command(MmuCmd::R0);
  2706. manage_response(false, false);
  2707. }
  2708. }
  2709. mmu_M600_load_filament(automatic, HotendTempBckp);
  2710. }
  2711. else
  2712. M600_load_filament();
  2713. if (!automatic) M600_check_state(HotendTempBckp);
  2714. lcd_update_enable(true);
  2715. //Not let's go back to print
  2716. fanSpeed = fanSpeedBckp;
  2717. //Feed a little of filament to stabilize pressure
  2718. if (!automatic)
  2719. {
  2720. current_position[E_AXIS] += FILAMENTCHANGE_RECFEED;
  2721. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EXFEED, active_extruder);
  2722. }
  2723. //Move XY back
  2724. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  2725. FILAMENTCHANGE_XYFEED, active_extruder);
  2726. st_synchronize();
  2727. //Move Z back
  2728. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS],
  2729. FILAMENTCHANGE_ZFEED, active_extruder);
  2730. st_synchronize();
  2731. //Set E position to original
  2732. plan_set_e_position(lastpos[E_AXIS]);
  2733. memcpy(current_position, lastpos, sizeof(lastpos));
  2734. memcpy(destination, current_position, sizeof(current_position));
  2735. //Recover feed rate
  2736. feedmultiply = feedmultiplyBckp;
  2737. char cmd[9];
  2738. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  2739. enquecommand(cmd);
  2740. #ifdef IR_SENSOR
  2741. //this will set fsensor_watch_autoload to correct value and prevent possible M701 gcode enqueuing when M600 is finished
  2742. fsensor_check_autoload();
  2743. #endif //IR_SENSOR
  2744. lcd_setstatuspgm(_T(WELCOME_MSG));
  2745. custom_message_type = CustomMsg::Status;
  2746. }
  2747. void gcode_M701()
  2748. {
  2749. printf_P(PSTR("gcode_M701 begin\n"));
  2750. if (farm_mode)
  2751. {
  2752. prusa_statistics(22);
  2753. }
  2754. if (mmu_enabled)
  2755. {
  2756. extr_adj(tmp_extruder);//loads current extruder
  2757. mmu_extruder = tmp_extruder;
  2758. }
  2759. else
  2760. {
  2761. enable_z();
  2762. custom_message_type = CustomMsg::FilamentLoading;
  2763. #ifdef FSENSOR_QUALITY
  2764. fsensor_oq_meassure_start(40);
  2765. #endif //FSENSOR_QUALITY
  2766. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2767. current_position[E_AXIS] += 40;
  2768. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2769. st_synchronize();
  2770. raise_z_above(MIN_Z_FOR_LOAD, false);
  2771. current_position[E_AXIS] += 30;
  2772. plan_buffer_line_curposXYZE(400 / 60, active_extruder); //fast sequence
  2773. load_filament_final_feed(); //slow sequence
  2774. st_synchronize();
  2775. Sound_MakeCustom(50,500,false);
  2776. if (!farm_mode && loading_flag) {
  2777. lcd_load_filament_color_check();
  2778. }
  2779. lcd_update_enable(true);
  2780. lcd_update(2);
  2781. lcd_setstatuspgm(_T(WELCOME_MSG));
  2782. disable_z();
  2783. loading_flag = false;
  2784. custom_message_type = CustomMsg::Status;
  2785. #ifdef FSENSOR_QUALITY
  2786. fsensor_oq_meassure_stop();
  2787. if (!fsensor_oq_result())
  2788. {
  2789. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2790. lcd_update_enable(true);
  2791. lcd_update(2);
  2792. if (disable)
  2793. fsensor_disable();
  2794. }
  2795. #endif //FSENSOR_QUALITY
  2796. }
  2797. }
  2798. /**
  2799. * @brief Get serial number from 32U2 processor
  2800. *
  2801. * Typical format of S/N is:CZPX0917X003XC13518
  2802. *
  2803. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2804. *
  2805. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2806. * reply is transmitted to serial port 1 character by character.
  2807. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2808. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2809. * in any case.
  2810. */
  2811. static void gcode_PRUSA_SN()
  2812. {
  2813. if (farm_mode) {
  2814. selectedSerialPort = 0;
  2815. putchar(';');
  2816. putchar('S');
  2817. int numbersRead = 0;
  2818. ShortTimer timeout;
  2819. timeout.start();
  2820. while (numbersRead < 19) {
  2821. while (MSerial.available() > 0) {
  2822. uint8_t serial_char = MSerial.read();
  2823. selectedSerialPort = 1;
  2824. putchar(serial_char);
  2825. numbersRead++;
  2826. selectedSerialPort = 0;
  2827. }
  2828. if (timeout.expired(100u)) break;
  2829. }
  2830. selectedSerialPort = 1;
  2831. putchar('\n');
  2832. #if 0
  2833. for (int b = 0; b < 3; b++) {
  2834. _tone(BEEPER, 110);
  2835. _delay(50);
  2836. _noTone(BEEPER);
  2837. _delay(50);
  2838. }
  2839. #endif
  2840. } else {
  2841. puts_P(_N("Not in farm mode."));
  2842. }
  2843. }
  2844. //! Detection of faulty RAMBo 1.1b boards equipped with bigger capacitors
  2845. //! at the TACH_1 pin, which causes bad detection of print fan speed.
  2846. //! Warning: This function is not to be used by ordinary users, it is here only for automated testing purposes,
  2847. //! it may even interfere with other functions of the printer! You have been warned!
  2848. //! The test idea is to measure the time necessary to charge the capacitor.
  2849. //! So the algorithm is as follows:
  2850. //! 1. Set TACH_1 pin to INPUT mode and LOW
  2851. //! 2. Wait a few ms
  2852. //! 3. disable interrupts and measure the time until the TACH_1 pin reaches HIGH
  2853. //! Repeat 1.-3. several times
  2854. //! Good RAMBo's times are in the range of approx. 260-320 us
  2855. //! Bad RAMBo's times are approx. 260-1200 us
  2856. //! So basically we are interested in maximum time, the minima are mostly the same.
  2857. //! May be that's why the bad RAMBo's still produce some fan RPM reading, but not corresponding to reality
  2858. static void gcode_PRUSA_BadRAMBoFanTest(){
  2859. //printf_P(PSTR("Enter fan pin test\n"));
  2860. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  2861. fan_measuring = false; // prevent EXTINT7 breaking into the measurement
  2862. unsigned long tach1max = 0;
  2863. uint8_t tach1cntr = 0;
  2864. for( /* nothing */; tach1cntr < 100; ++tach1cntr){
  2865. //printf_P(PSTR("TACH_1: %d\n"), tach1cntr);
  2866. SET_OUTPUT(TACH_1);
  2867. WRITE(TACH_1, LOW);
  2868. _delay(20); // the delay may be lower
  2869. unsigned long tachMeasure = _micros();
  2870. cli();
  2871. SET_INPUT(TACH_1);
  2872. // just wait brutally in an endless cycle until we reach HIGH
  2873. // if this becomes a problem it may be improved to non-endless cycle
  2874. while( READ(TACH_1) == 0 ) ;
  2875. sei();
  2876. tachMeasure = _micros() - tachMeasure;
  2877. if( tach1max < tachMeasure )
  2878. tach1max = tachMeasure;
  2879. //printf_P(PSTR("TACH_1: %d: capacitor check time=%lu us\n"), (int)tach1cntr, tachMeasure);
  2880. }
  2881. //printf_P(PSTR("TACH_1: max=%lu us\n"), tach1max);
  2882. SERIAL_PROTOCOLPGM("RAMBo FAN ");
  2883. if( tach1max > 500 ){
  2884. // bad RAMBo
  2885. SERIAL_PROTOCOLLNPGM("BAD");
  2886. } else {
  2887. SERIAL_PROTOCOLLNPGM("OK");
  2888. }
  2889. // cleanup after the test function
  2890. SET_INPUT(TACH_1);
  2891. WRITE(TACH_1, HIGH);
  2892. #endif
  2893. }
  2894. // G92 - Set current position to coordinates given
  2895. static void gcode_G92()
  2896. {
  2897. bool codes[NUM_AXIS];
  2898. float values[NUM_AXIS];
  2899. // Check which axes need to be set
  2900. for(uint8_t i = 0; i < NUM_AXIS; ++i)
  2901. {
  2902. codes[i] = code_seen(axis_codes[i]);
  2903. if(codes[i])
  2904. values[i] = code_value();
  2905. }
  2906. if((codes[E_AXIS] && values[E_AXIS] == 0) &&
  2907. (!codes[X_AXIS] && !codes[Y_AXIS] && !codes[Z_AXIS]))
  2908. {
  2909. // As a special optimization, when _just_ clearing the E position
  2910. // we schedule a flag asynchronously along with the next block to
  2911. // reset the starting E position instead of stopping the planner
  2912. current_position[E_AXIS] = 0;
  2913. plan_reset_next_e();
  2914. }
  2915. else
  2916. {
  2917. // In any other case we're forced to synchronize
  2918. st_synchronize();
  2919. for(uint8_t i = 0; i < 3; ++i)
  2920. {
  2921. if(codes[i])
  2922. current_position[i] = values[i] + cs.add_homing[i];
  2923. }
  2924. if(codes[E_AXIS])
  2925. current_position[E_AXIS] = values[E_AXIS];
  2926. // Set all at once
  2927. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS],
  2928. current_position[Z_AXIS], current_position[E_AXIS]);
  2929. }
  2930. }
  2931. #ifdef BACKLASH_X
  2932. extern uint8_t st_backlash_x;
  2933. #endif //BACKLASH_X
  2934. #ifdef BACKLASH_Y
  2935. extern uint8_t st_backlash_y;
  2936. #endif //BACKLASH_Y
  2937. //! \ingroup marlin_main
  2938. //! @brief Parse and process commands
  2939. //!
  2940. //! look here for descriptions of G-codes: https://reprap.org/wiki/G-code
  2941. //!
  2942. //!
  2943. //! Implemented Codes
  2944. //! -------------------
  2945. //!
  2946. //! * _This list is not updated. Current documentation is maintained inside the process_cmd function._
  2947. //!
  2948. //!@n PRUSA CODES
  2949. //!@n P F - Returns FW versions
  2950. //!@n P R - Returns revision of printer
  2951. //!
  2952. //!@n G0 -> G1
  2953. //!@n G1 - Coordinated Movement X Y Z E
  2954. //!@n G2 - CW ARC
  2955. //!@n G3 - CCW ARC
  2956. //!@n G4 - Dwell S<seconds> or P<milliseconds>
  2957. //!@n G10 - retract filament according to settings of M207
  2958. //!@n G11 - retract recover filament according to settings of M208
  2959. //!@n G28 - Home all Axis
  2960. //!@n G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  2961. //!@n G30 - Single Z Probe, probes bed at current XY location.
  2962. //!@n G31 - Dock sled (Z_PROBE_SLED only)
  2963. //!@n G32 - Undock sled (Z_PROBE_SLED only)
  2964. //!@n G80 - Automatic mesh bed leveling
  2965. //!@n G81 - Print bed profile
  2966. //!@n G90 - Use Absolute Coordinates
  2967. //!@n G91 - Use Relative Coordinates
  2968. //!@n G92 - Set current position to coordinates given
  2969. //!
  2970. //!@n M Codes
  2971. //!@n M0 - Unconditional stop - Wait for user to press a button on the LCD
  2972. //!@n M1 - Same as M0
  2973. //!@n M17 - Enable/Power all stepper motors
  2974. //!@n M18 - Disable all stepper motors; same as M84
  2975. //!@n M20 - List SD card
  2976. //!@n M21 - Init SD card
  2977. //!@n M22 - Release SD card
  2978. //!@n M23 - Select SD file (M23 filename.g)
  2979. //!@n M24 - Start/resume SD print
  2980. //!@n M25 - Pause SD print
  2981. //!@n M26 - Set SD position in bytes (M26 S12345)
  2982. //!@n M27 - Report SD print status
  2983. //!@n M28 - Start SD write (M28 filename.g)
  2984. //!@n M29 - Stop SD write
  2985. //!@n M30 - Delete file from SD (M30 filename.g)
  2986. //!@n M31 - Output time since last M109 or SD card start to serial
  2987. //!@n M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  2988. //! syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  2989. //! Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  2990. //! The '#' is necessary when calling from within sd files, as it stops buffer prereading
  2991. //!@n M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  2992. //!@n M73 - Show percent done and print time remaining
  2993. //!@n M80 - Turn on Power Supply
  2994. //!@n M81 - Turn off Power Supply
  2995. //!@n M82 - Set E codes absolute (default)
  2996. //!@n M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  2997. //!@n M84 - Disable steppers until next move,
  2998. //! or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  2999. //!@n M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3000. //!@n M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  3001. //!@n M92 - Set axis_steps_per_unit - same syntax as G92
  3002. //!@n M104 - Set extruder target temp
  3003. //!@n M105 - Read current temp
  3004. //!@n M106 - Fan on
  3005. //!@n M107 - Fan off
  3006. //!@n M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  3007. //! Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  3008. //! IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  3009. //!@n M112 - Emergency stop
  3010. //!@n M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  3011. //!@n M114 - Output current position to serial port
  3012. //!@n M115 - Capabilities string
  3013. //!@n M117 - display message
  3014. //!@n M119 - Output Endstop status to serial port
  3015. //!@n M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  3016. //!@n M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  3017. //!@n M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3018. //!@n M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  3019. //!@n M140 - Set bed target temp
  3020. //!@n M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  3021. //!@n M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3022. //! Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3023. //!@n M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3024. //!@n M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3025. //!@n M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  3026. //!@n M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3027. //!@n M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3028. //!@n M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  3029. //!@n M206 - set additional homing offset
  3030. //!@n M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  3031. //!@n M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  3032. //!@n M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3033. //!@n M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3034. //!@n M220 S<factor in percent>- set speed factor override percentage
  3035. //!@n M221 S<factor in percent>- set extrude factor override percentage
  3036. //!@n M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3037. //!@n M240 - Trigger a camera to take a photograph
  3038. //!@n M250 - Set LCD contrast C<contrast value> (value 0..63)
  3039. //!@n M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3040. //!@n M300 - Play beep sound S<frequency Hz> P<duration ms>
  3041. //!@n M301 - Set PID parameters P I and D
  3042. //!@n M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  3043. //!@n M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  3044. //!@n M304 - Set bed PID parameters P I and D
  3045. //!@n M400 - Finish all moves
  3046. //!@n M401 - Lower z-probe if present
  3047. //!@n M402 - Raise z-probe if present
  3048. //!@n M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  3049. //!@n M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  3050. //!@n M406 - Turn off Filament Sensor extrusion control
  3051. //!@n M407 - Displays measured filament diameter
  3052. //!@n M500 - stores parameters in EEPROM
  3053. //!@n M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  3054. //!@n M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  3055. //!@n M503 - print the current settings (from memory not from EEPROM)
  3056. //!@n M509 - force language selection on next restart
  3057. //!@n M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  3058. //!@n M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3059. //!@n M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  3060. //!@n M860 - Wait for PINDA thermistor to reach target temperature.
  3061. //!@n M861 - Set / Read PINDA temperature compensation offsets
  3062. //!@n M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  3063. //!@n M907 - Set digital trimpot motor current using axis codes.
  3064. //!@n M908 - Control digital trimpot directly.
  3065. //!@n M350 - Set microstepping mode.
  3066. //!@n M351 - Toggle MS1 MS2 pins directly.
  3067. //!
  3068. //!@n M928 - Start SD logging (M928 filename.g) - ended by M29
  3069. //!@n M999 - Restart after being stopped by error
  3070. //! <br><br>
  3071. /** @defgroup marlin_main Marlin main */
  3072. /** \ingroup GCodes */
  3073. //! _This is a list of currently implemented G Codes in Prusa firmware (dynamically generated from doxygen)._
  3074. /**
  3075. They are shown in order of appierence in the code.
  3076. There are reasons why some G Codes aren't in numerical order.
  3077. */
  3078. void process_commands()
  3079. {
  3080. #ifdef FANCHECK
  3081. if(fan_check_error){
  3082. if(fan_check_error == EFCE_DETECTED){
  3083. fan_check_error = EFCE_REPORTED;
  3084. // SERIAL_PROTOCOLLNRPGM(MSG_OCTOPRINT_PAUSED);
  3085. lcd_pause_print();
  3086. } // otherwise it has already been reported, so just ignore further processing
  3087. return; //ignore usb stream. It is reenabled by selecting resume from the lcd.
  3088. }
  3089. #endif
  3090. if (!buflen) return; //empty command
  3091. #ifdef FILAMENT_RUNOUT_SUPPORT
  3092. SET_INPUT(FR_SENS);
  3093. #endif
  3094. #ifdef CMDBUFFER_DEBUG
  3095. SERIAL_ECHOPGM("Processing a GCODE command: ");
  3096. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  3097. SERIAL_ECHOLNPGM("");
  3098. SERIAL_ECHOPGM("In cmdqueue: ");
  3099. SERIAL_ECHO(buflen);
  3100. SERIAL_ECHOLNPGM("");
  3101. #endif /* CMDBUFFER_DEBUG */
  3102. unsigned long codenum; //throw away variable
  3103. char *starpos = NULL;
  3104. #ifdef ENABLE_AUTO_BED_LEVELING
  3105. float x_tmp, y_tmp, z_tmp, real_z;
  3106. #endif
  3107. // PRUSA GCODES
  3108. KEEPALIVE_STATE(IN_HANDLER);
  3109. #ifdef SNMM
  3110. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  3111. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  3112. int8_t SilentMode;
  3113. #endif
  3114. /*!
  3115. ---------------------------------------------------------------------------------
  3116. ### M117 - Display Message <a href="https://reprap.org/wiki/G-code#M117:_Display_Message">M117: Display Message</a>
  3117. This causes the given message to be shown in the status line on an attached LCD.
  3118. It is also used by internal to display status messages on LCD.
  3119. Here the internal status messages:
  3120. Only on MK3/s (TMC2130)
  3121. - CRASH DETECTED
  3122. - CRASH RECOVER
  3123. - CRASH_CANCEL
  3124. - TMC_SET_WAVE
  3125. - TMC_SET_STEP
  3126. - TMC_SET_CHOP
  3127. */
  3128. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  3129. starpos = (strchr(strchr_pointer + 5, '*'));
  3130. if (starpos != NULL)
  3131. *(starpos) = '\0';
  3132. lcd_setstatus(strchr_pointer + 5);
  3133. }
  3134. #ifdef TMC2130
  3135. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  3136. {
  3137. // ### CRASH_DETECTED - TMC2130
  3138. // ---------------------------------
  3139. if(code_seen("CRASH_DETECTED"))
  3140. {
  3141. uint8_t mask = 0;
  3142. if (code_seen('X')) mask |= X_AXIS_MASK;
  3143. if (code_seen('Y')) mask |= Y_AXIS_MASK;
  3144. crashdet_detected(mask);
  3145. }
  3146. // ### CRASH_RECOVER - TMC2130
  3147. // ----------------------------------
  3148. else if(code_seen("CRASH_RECOVER"))
  3149. crashdet_recover();
  3150. // ### CRASH_CANCEL - TMC2130
  3151. // ----------------------------------
  3152. else if(code_seen("CRASH_CANCEL"))
  3153. crashdet_cancel();
  3154. }
  3155. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  3156. {
  3157. // ### TMC_SET_WAVE_
  3158. // --------------------
  3159. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  3160. {
  3161. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3162. axis = (axis == 'E')?3:(axis - 'X');
  3163. if (axis < 4)
  3164. {
  3165. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3166. tmc2130_set_wave(axis, 247, fac);
  3167. }
  3168. }
  3169. // ### TMC_SET_STEP_
  3170. // ------------------
  3171. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  3172. {
  3173. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3174. axis = (axis == 'E')?3:(axis - 'X');
  3175. if (axis < 4)
  3176. {
  3177. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  3178. uint16_t res = tmc2130_get_res(axis);
  3179. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  3180. }
  3181. }
  3182. // ### TMC_SET_CHOP_
  3183. // -------------------
  3184. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  3185. {
  3186. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  3187. axis = (axis == 'E')?3:(axis - 'X');
  3188. if (axis < 4)
  3189. {
  3190. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  3191. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  3192. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  3193. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  3194. char* str_end = 0;
  3195. if (CMDBUFFER_CURRENT_STRING[14])
  3196. {
  3197. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  3198. if (str_end && *str_end)
  3199. {
  3200. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  3201. if (str_end && *str_end)
  3202. {
  3203. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  3204. if (str_end && *str_end)
  3205. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  3206. }
  3207. }
  3208. }
  3209. tmc2130_chopper_config[axis].toff = chop0;
  3210. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  3211. tmc2130_chopper_config[axis].hend = chop2 & 15;
  3212. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  3213. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  3214. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  3215. }
  3216. }
  3217. }
  3218. #ifdef BACKLASH_X
  3219. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  3220. {
  3221. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3222. st_backlash_x = bl;
  3223. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  3224. }
  3225. #endif //BACKLASH_X
  3226. #ifdef BACKLASH_Y
  3227. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  3228. {
  3229. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  3230. st_backlash_y = bl;
  3231. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  3232. }
  3233. #endif //BACKLASH_Y
  3234. #endif //TMC2130
  3235. else if(code_seen("PRUSA")){
  3236. /*!
  3237. ---------------------------------------------------------------------------------
  3238. ### PRUSA - Internal command set <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode - Notes</a>
  3239. Set of internal PRUSA commands
  3240. #### Usage
  3241. P RUSA [ Ping | PRN | FAN | fn | thx | uvlo | MMURES | RESET | fv | M28 | SN | Fir | Rev | Lang | Lz | Beat | FR ]
  3242. #### Parameters
  3243. - `Ping`
  3244. - `PRN` - Prints revision of the printer
  3245. - `FAN` - Prints fan details
  3246. - `fn` - Prints farm no.
  3247. - `thx`
  3248. - `uvlo`
  3249. - `MMURES` - Reset MMU
  3250. - `RESET` - (Careful!)
  3251. - `fv` - ?
  3252. - `M28`
  3253. - `SN`
  3254. - `Fir` - Prints firmware version
  3255. - `Rev`- Prints filament size, elelectronics, nozzle type
  3256. - `Lang` - Reset the language
  3257. - `Lz`
  3258. - `Beat` - Kick farm link timer
  3259. - `FR` - Full factory reset
  3260. - `nozzle set <diameter>` - set nozzle diameter (farm mode only), e.g. `PRUSA nozzle set 0.4`
  3261. - `nozzle D<diameter>` - check the nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle D0.4`
  3262. - `nozzle` - prints nozzle diameter (farm mode only), works like M862.1 P, e.g. `PRUSA nozzle`
  3263. */
  3264. if (code_seen("Ping")) { // PRUSA Ping
  3265. if (farm_mode) {
  3266. PingTime = _millis();
  3267. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  3268. }
  3269. }
  3270. else if (code_seen("PRN")) { // PRUSA PRN
  3271. printf_P(_N("%d"), status_number);
  3272. } else if( code_seen("FANPINTST") ){
  3273. gcode_PRUSA_BadRAMBoFanTest();
  3274. }else if (code_seen("FAN")) { // PRUSA FAN
  3275. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  3276. }else if (code_seen("fn")) { // PRUSA fn
  3277. if (farm_mode) {
  3278. printf_P(_N("%d"), farm_no);
  3279. }
  3280. else {
  3281. puts_P(_N("Not in farm mode."));
  3282. }
  3283. }
  3284. else if (code_seen("thx")) // PRUSA thx
  3285. {
  3286. no_response = false;
  3287. }
  3288. else if (code_seen("uvlo")) // PRUSA uvlo
  3289. {
  3290. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  3291. enquecommand_P(PSTR("M24"));
  3292. }
  3293. else if (code_seen("MMURES")) // PRUSA MMURES
  3294. {
  3295. mmu_reset();
  3296. }
  3297. else if (code_seen("RESET")) { // PRUSA RESET
  3298. // careful!
  3299. if (farm_mode) {
  3300. #if (defined(WATCHDOG) && (MOTHERBOARD == BOARD_EINSY_1_0a))
  3301. boot_app_magic = BOOT_APP_MAGIC;
  3302. boot_app_flags = BOOT_APP_FLG_RUN;
  3303. wdt_enable(WDTO_15MS);
  3304. cli();
  3305. while(1);
  3306. #else //WATCHDOG
  3307. asm volatile("jmp 0x3E000");
  3308. #endif //WATCHDOG
  3309. }
  3310. else {
  3311. MYSERIAL.println("Not in farm mode.");
  3312. }
  3313. }else if (code_seen("fv")) { // PRUSA fv
  3314. // get file version
  3315. #ifdef SDSUPPORT
  3316. card.openFile(strchr_pointer + 3,true);
  3317. while (true) {
  3318. uint16_t readByte = card.get();
  3319. MYSERIAL.write(readByte);
  3320. if (readByte=='\n') {
  3321. break;
  3322. }
  3323. }
  3324. card.closefile();
  3325. #endif // SDSUPPORT
  3326. } else if (code_seen("M28")) { // PRUSA M28
  3327. trace();
  3328. prusa_sd_card_upload = true;
  3329. card.openFile(strchr_pointer+4,false);
  3330. } else if (code_seen("SN")) { // PRUSA SN
  3331. gcode_PRUSA_SN();
  3332. } else if(code_seen("Fir")){ // PRUSA Fir
  3333. SERIAL_PROTOCOLLN(FW_VERSION_FULL);
  3334. } else if(code_seen("Rev")){ // PRUSA Rev
  3335. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  3336. } else if(code_seen("Lang")) { // PRUSA Lang
  3337. lang_reset();
  3338. } else if(code_seen("Lz")) { // PRUSA Lz
  3339. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  3340. } else if(code_seen("Beat")) { // PRUSA Beat
  3341. // Kick farm link timer
  3342. kicktime = _millis();
  3343. } else if(code_seen("FR")) { // PRUSA FR
  3344. // Factory full reset
  3345. factory_reset(0);
  3346. //-//
  3347. /*
  3348. } else if(code_seen("rrr")) {
  3349. MYSERIAL.println("=== checking ===");
  3350. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_CHECK_MODE),DEC);
  3351. MYSERIAL.println(eeprom_read_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER),DEC);
  3352. MYSERIAL.println(eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM),DEC);
  3353. MYSERIAL.println(farm_mode,DEC);
  3354. MYSERIAL.println(eCheckMode,DEC);
  3355. } else if(code_seen("www")) {
  3356. MYSERIAL.println("=== @ FF ===");
  3357. eeprom_update_byte((uint8_t*)EEPROM_CHECK_MODE,0xFF);
  3358. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,0xFF);
  3359. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,0xFFFF);
  3360. */
  3361. } else if (code_seen("nozzle")) { // PRUSA nozzle
  3362. uint16_t nDiameter;
  3363. if(code_seen('D'))
  3364. {
  3365. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3366. nozzle_diameter_check(nDiameter);
  3367. }
  3368. else if(code_seen("set") && farm_mode)
  3369. {
  3370. strchr_pointer++; // skip 1st char (~ 's')
  3371. strchr_pointer++; // skip 2nd char (~ 'e')
  3372. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  3373. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  3374. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  3375. }
  3376. else SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  3377. //-// !!! SupportMenu
  3378. /*
  3379. // musi byt PRED "PRUSA model"
  3380. } else if (code_seen("smodel")) { //! PRUSA smodel
  3381. size_t nOffset;
  3382. // ! -> "l"
  3383. strchr_pointer+=5*sizeof(*strchr_pointer); // skip 1st - 5th char (~ 'smode')
  3384. nOffset=strspn(strchr_pointer+1," \t\n\r\v\f");
  3385. if(*(strchr_pointer+1+nOffset))
  3386. printer_smodel_check(strchr_pointer);
  3387. else SERIAL_PROTOCOLLN(PRINTER_NAME);
  3388. } else if (code_seen("model")) { //! PRUSA model
  3389. uint16_t nPrinterModel;
  3390. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'mode')
  3391. nPrinterModel=(uint16_t)code_value_long();
  3392. if(nPrinterModel!=0)
  3393. printer_model_check(nPrinterModel);
  3394. else SERIAL_PROTOCOLLN(PRINTER_TYPE);
  3395. } else if (code_seen("version")) { //! PRUSA version
  3396. strchr_pointer+=7*sizeof(*strchr_pointer); // skip 1st - 7th char (~ 'version')
  3397. while(*strchr_pointer==' ') // skip leading spaces
  3398. strchr_pointer++;
  3399. if(*strchr_pointer!=0)
  3400. fw_version_check(strchr_pointer);
  3401. else SERIAL_PROTOCOLLN(FW_VERSION);
  3402. } else if (code_seen("gcode")) { //! PRUSA gcode
  3403. uint16_t nGcodeLevel;
  3404. strchr_pointer+=4*sizeof(*strchr_pointer); // skip 1st - 4th char (~ 'gcod')
  3405. nGcodeLevel=(uint16_t)code_value_long();
  3406. if(nGcodeLevel!=0)
  3407. gcode_level_check(nGcodeLevel);
  3408. else SERIAL_PROTOCOLLN(GCODE_LEVEL);
  3409. */
  3410. }
  3411. //else if (code_seen('Cal')) {
  3412. // lcd_calibration();
  3413. // }
  3414. }
  3415. // This prevents reading files with "^" in their names.
  3416. // Since it is unclear, if there is some usage of this construct,
  3417. // it will be deprecated in 3.9 alpha a possibly completely removed in the future:
  3418. // else if (code_seen('^')) {
  3419. // // nothing, this is a version line
  3420. // }
  3421. else if(code_seen('G'))
  3422. {
  3423. gcode_in_progress = (int)code_value();
  3424. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  3425. switch (gcode_in_progress)
  3426. {
  3427. /*!
  3428. ---------------------------------------------------------------------------------
  3429. # G Codes
  3430. ### G0, G1 - Coordinated movement X Y Z E <a href="https://reprap.org/wiki/G-code#G0_.26_G1:_Move">G0 & G1: Move</a>
  3431. In Prusa Frimware G0 and G1 are the same.
  3432. #### Usage
  3433. G0 [ X | Y | Z | E | F | S ]
  3434. G1 [ X | Y | Z | E | F | S ]
  3435. #### Parameters
  3436. - `X` - The position to move to on the X axis
  3437. - `Y` - The position to move to on the Y axis
  3438. - `Z` - The position to move to on the Z axis
  3439. - `E` - The amount to extrude between the starting point and ending point
  3440. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3441. */
  3442. case 0: // G0 -> G1
  3443. case 1: // G1
  3444. if(Stopped == false) {
  3445. #ifdef FILAMENT_RUNOUT_SUPPORT
  3446. if(READ(FR_SENS)){
  3447. int feedmultiplyBckp=feedmultiply;
  3448. float target[4];
  3449. float lastpos[4];
  3450. target[X_AXIS]=current_position[X_AXIS];
  3451. target[Y_AXIS]=current_position[Y_AXIS];
  3452. target[Z_AXIS]=current_position[Z_AXIS];
  3453. target[E_AXIS]=current_position[E_AXIS];
  3454. lastpos[X_AXIS]=current_position[X_AXIS];
  3455. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3456. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3457. lastpos[E_AXIS]=current_position[E_AXIS];
  3458. //retract by E
  3459. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3460. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3461. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3462. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  3463. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3464. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3465. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  3466. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3467. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3468. //finish moves
  3469. st_synchronize();
  3470. //disable extruder steppers so filament can be removed
  3471. disable_e0();
  3472. disable_e1();
  3473. disable_e2();
  3474. _delay(100);
  3475. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3476. uint8_t cnt=0;
  3477. int counterBeep = 0;
  3478. lcd_wait_interact();
  3479. while(!lcd_clicked()){
  3480. cnt++;
  3481. manage_heater();
  3482. manage_inactivity(true);
  3483. //lcd_update(0);
  3484. if(cnt==0)
  3485. {
  3486. #if BEEPER > 0
  3487. if (counterBeep== 500){
  3488. counterBeep = 0;
  3489. }
  3490. SET_OUTPUT(BEEPER);
  3491. if (counterBeep== 0){
  3492. if(eSoundMode!=e_SOUND_MODE_SILENT)
  3493. WRITE(BEEPER,HIGH);
  3494. }
  3495. if (counterBeep== 20){
  3496. WRITE(BEEPER,LOW);
  3497. }
  3498. counterBeep++;
  3499. #else
  3500. #endif
  3501. }
  3502. }
  3503. WRITE(BEEPER,LOW);
  3504. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3505. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3506. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3507. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3508. lcd_change_fil_state = 0;
  3509. lcd_loading_filament();
  3510. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3511. lcd_change_fil_state = 0;
  3512. lcd_alright();
  3513. switch(lcd_change_fil_state){
  3514. case 2:
  3515. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3516. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3517. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3518. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3519. lcd_loading_filament();
  3520. break;
  3521. case 3:
  3522. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3523. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3524. lcd_loading_color();
  3525. break;
  3526. default:
  3527. lcd_change_success();
  3528. break;
  3529. }
  3530. }
  3531. target[E_AXIS]+= 5;
  3532. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3533. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3534. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3535. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3536. //plan_set_e_position(current_position[E_AXIS]);
  3537. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3538. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3539. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3540. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3541. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3542. plan_set_e_position(lastpos[E_AXIS]);
  3543. feedmultiply=feedmultiplyBckp;
  3544. char cmd[9];
  3545. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3546. enquecommand(cmd);
  3547. }
  3548. #endif
  3549. get_coordinates(); // For X Y Z E F
  3550. // When recovering from a previous print move, restore the originally
  3551. // calculated target position on the first USB/SD command. This accounts
  3552. // properly for relative moves
  3553. if ((saved_target[0] != SAVED_TARGET_UNSET) &&
  3554. ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_SDCARD) ||
  3555. (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR)))
  3556. {
  3557. memcpy(destination, saved_target, sizeof(destination));
  3558. saved_target[0] = SAVED_TARGET_UNSET;
  3559. }
  3560. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3561. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3562. }
  3563. #ifdef FWRETRACT
  3564. if(cs.autoretract_enabled)
  3565. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3566. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3567. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3568. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3569. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3570. retract(!retracted[active_extruder]);
  3571. return;
  3572. }
  3573. }
  3574. #endif //FWRETRACT
  3575. prepare_move();
  3576. //ClearToSend();
  3577. }
  3578. break;
  3579. /*!
  3580. ### G2, G3 - Controlled Arc Move <a href="https://reprap.org/wiki/G-code#G2_.26_G3:_Controlled_Arc_Move">G2 & G3: Controlled Arc Move</a>
  3581. #### Usage
  3582. G2 [ X | Y | I | E | F ] (Clockwise Arc)
  3583. G3 [ X | Y | I | E | F ] (Counter-Clockwise Arc)
  3584. #### Parameters
  3585. - `X` - The position to move to on the X axis
  3586. - `Y` - The position to move to on the Y axis
  3587. - `I` - The point in X space from the current X position to maintain a constant distance from
  3588. - `J` - The point in Y space from the current Y position to maintain a constant distance from
  3589. - `E` - The amount to extrude between the starting point and ending point
  3590. - `F` - The feedrate per minute of the move between the starting point and ending point (if supplied)
  3591. */
  3592. case 2:
  3593. if(Stopped == false) {
  3594. get_arc_coordinates();
  3595. prepare_arc_move(true);
  3596. }
  3597. break;
  3598. // -------------------------------
  3599. case 3:
  3600. if(Stopped == false) {
  3601. get_arc_coordinates();
  3602. prepare_arc_move(false);
  3603. }
  3604. break;
  3605. /*!
  3606. ### G4 - Dwell <a href="https://reprap.org/wiki/G-code#G4:_Dwell">G4: Dwell</a>
  3607. Pause the machine for a period of time.
  3608. #### Usage
  3609. G4 [ P | S ]
  3610. #### Parameters
  3611. - `P` - Time to wait, in milliseconds
  3612. - `S` - Time to wait, in seconds
  3613. */
  3614. case 4:
  3615. codenum = 0;
  3616. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3617. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3618. if(codenum != 0) LCD_MESSAGERPGM(_n("Sleep..."));////MSG_DWELL
  3619. st_synchronize();
  3620. codenum += _millis(); // keep track of when we started waiting
  3621. previous_millis_cmd = _millis();
  3622. while(_millis() < codenum) {
  3623. manage_heater();
  3624. manage_inactivity();
  3625. lcd_update(0);
  3626. }
  3627. break;
  3628. #ifdef FWRETRACT
  3629. /*!
  3630. ### G10 - Retract <a href="https://reprap.org/wiki/G-code#G10:_Retract">G10: Retract</a>
  3631. Retracts filament according to settings of `M207`
  3632. #### Usage
  3633. G10
  3634. */
  3635. case 10:
  3636. #if EXTRUDERS > 1
  3637. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3638. retract(true,retracted_swap[active_extruder]);
  3639. #else
  3640. retract(true);
  3641. #endif
  3642. break;
  3643. /*!
  3644. ### G11 - Retract recover <a href="https://reprap.org/wiki/G-code#G11:_Unretract">G11: Unretract</a>
  3645. Unretracts/recovers filament according to settings of `M208`
  3646. #### Usage
  3647. G11
  3648. */
  3649. case 11:
  3650. #if EXTRUDERS > 1
  3651. retract(false,retracted_swap[active_extruder]);
  3652. #else
  3653. retract(false);
  3654. #endif
  3655. break;
  3656. #endif //FWRETRACT
  3657. /*!
  3658. ### G28 - Home all Axis one at a time <a href="https://reprap.org/wiki/G-code#G28:_Move_to_Origin_.28Home.29">G28: Move to Origin (Home)</a>
  3659. Unsing `G28` without any paramters will perfom on the Prusa i3 printers home AND mesh bed leveling, while `G28 W` will just home the printer
  3660. #### Usage
  3661. G28 [ X | Y | Z | W | C ]
  3662. #### Parameters
  3663. - `X` - Flag to go back to the X axis origin
  3664. - `Y` - Flag to go back to the Y axis origin
  3665. - `Z` - Flag to go back to the Z axis origin
  3666. - `W` - Suppress mesh bed leveling
  3667. - `C` - Calibrate X and Y origin (home) - Only on MK3/s
  3668. */
  3669. case 28:
  3670. {
  3671. long home_x_value = 0;
  3672. long home_y_value = 0;
  3673. long home_z_value = 0;
  3674. // Which axes should be homed?
  3675. bool home_x = code_seen(axis_codes[X_AXIS]);
  3676. home_x_value = code_value_long();
  3677. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3678. home_y_value = code_value_long();
  3679. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3680. home_z_value = code_value_long();
  3681. bool without_mbl = code_seen('W');
  3682. // calibrate?
  3683. #ifdef TMC2130
  3684. bool calib = code_seen('C');
  3685. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3686. #else
  3687. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, without_mbl);
  3688. #endif //TMC2130
  3689. if ((home_x || home_y || without_mbl || home_z) == false) {
  3690. // Push the commands to the front of the message queue in the reverse order!
  3691. // There shall be always enough space reserved for these commands.
  3692. goto case_G80;
  3693. }
  3694. break;
  3695. }
  3696. #ifdef ENABLE_AUTO_BED_LEVELING
  3697. /*!
  3698. ### G29 - Detailed Z-Probe <a href="https://reprap.org/wiki/G-code#G29:_Detailed_Z-Probe">G29: Detailed Z-Probe</a>
  3699. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3700. See `G81`
  3701. */
  3702. case 29:
  3703. {
  3704. #if Z_MIN_PIN == -1
  3705. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3706. #endif
  3707. // Prevent user from running a G29 without first homing in X and Y
  3708. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3709. {
  3710. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3711. SERIAL_ECHO_START;
  3712. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3713. break; // abort G29, since we don't know where we are
  3714. }
  3715. st_synchronize();
  3716. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3717. //vector_3 corrected_position = plan_get_position_mm();
  3718. //corrected_position.debug("position before G29");
  3719. plan_bed_level_matrix.set_to_identity();
  3720. vector_3 uncorrected_position = plan_get_position();
  3721. //uncorrected_position.debug("position durring G29");
  3722. current_position[X_AXIS] = uncorrected_position.x;
  3723. current_position[Y_AXIS] = uncorrected_position.y;
  3724. current_position[Z_AXIS] = uncorrected_position.z;
  3725. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3726. int l_feedmultiply = setup_for_endstop_move();
  3727. feedrate = homing_feedrate[Z_AXIS];
  3728. #ifdef AUTO_BED_LEVELING_GRID
  3729. // probe at the points of a lattice grid
  3730. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3731. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3732. // solve the plane equation ax + by + d = z
  3733. // A is the matrix with rows [x y 1] for all the probed points
  3734. // B is the vector of the Z positions
  3735. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3736. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3737. // "A" matrix of the linear system of equations
  3738. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3739. // "B" vector of Z points
  3740. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3741. int probePointCounter = 0;
  3742. bool zig = true;
  3743. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3744. {
  3745. int xProbe, xInc;
  3746. if (zig)
  3747. {
  3748. xProbe = LEFT_PROBE_BED_POSITION;
  3749. //xEnd = RIGHT_PROBE_BED_POSITION;
  3750. xInc = xGridSpacing;
  3751. zig = false;
  3752. } else // zag
  3753. {
  3754. xProbe = RIGHT_PROBE_BED_POSITION;
  3755. //xEnd = LEFT_PROBE_BED_POSITION;
  3756. xInc = -xGridSpacing;
  3757. zig = true;
  3758. }
  3759. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3760. {
  3761. float z_before;
  3762. if (probePointCounter == 0)
  3763. {
  3764. // raise before probing
  3765. z_before = Z_RAISE_BEFORE_PROBING;
  3766. } else
  3767. {
  3768. // raise extruder
  3769. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3770. }
  3771. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3772. eqnBVector[probePointCounter] = measured_z;
  3773. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3774. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3775. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3776. probePointCounter++;
  3777. xProbe += xInc;
  3778. }
  3779. }
  3780. clean_up_after_endstop_move(l_feedmultiply);
  3781. // solve lsq problem
  3782. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3783. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3784. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3785. SERIAL_PROTOCOLPGM(" b: ");
  3786. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3787. SERIAL_PROTOCOLPGM(" d: ");
  3788. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3789. set_bed_level_equation_lsq(plane_equation_coefficients);
  3790. free(plane_equation_coefficients);
  3791. #else // AUTO_BED_LEVELING_GRID not defined
  3792. // Probe at 3 arbitrary points
  3793. // probe 1
  3794. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3795. // probe 2
  3796. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3797. // probe 3
  3798. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3799. clean_up_after_endstop_move(l_feedmultiply);
  3800. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3801. #endif // AUTO_BED_LEVELING_GRID
  3802. st_synchronize();
  3803. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3804. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3805. // When the bed is uneven, this height must be corrected.
  3806. real_z = float(st_get_position(Z_AXIS))/cs.axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3807. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3808. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3809. z_tmp = current_position[Z_AXIS];
  3810. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3811. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3812. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3813. }
  3814. break;
  3815. #ifndef Z_PROBE_SLED
  3816. /*!
  3817. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3818. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3819. */
  3820. case 30:
  3821. {
  3822. st_synchronize();
  3823. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3824. int l_feedmultiply = setup_for_endstop_move();
  3825. feedrate = homing_feedrate[Z_AXIS];
  3826. run_z_probe();
  3827. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3828. SERIAL_PROTOCOLPGM(" X: ");
  3829. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3830. SERIAL_PROTOCOLPGM(" Y: ");
  3831. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3832. SERIAL_PROTOCOLPGM(" Z: ");
  3833. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3834. SERIAL_PROTOCOLPGM("\n");
  3835. clean_up_after_endstop_move(l_feedmultiply);
  3836. }
  3837. break;
  3838. #else
  3839. /*!
  3840. ### G31 - Dock the sled <a href="https://reprap.org/wiki/G-code#G31:_Dock_Z_Probe_sled">G31: Dock Z Probe sled</a>
  3841. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3842. */
  3843. case 31:
  3844. dock_sled(true);
  3845. break;
  3846. /*!
  3847. ### G32 - Undock the sled <a href="https://reprap.org/wiki/G-code#G32:_Undock_Z_Probe_sled">G32: Undock Z Probe sled</a>
  3848. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  3849. */
  3850. case 32:
  3851. dock_sled(false);
  3852. break;
  3853. #endif // Z_PROBE_SLED
  3854. #endif // ENABLE_AUTO_BED_LEVELING
  3855. #ifdef MESH_BED_LEVELING
  3856. /*!
  3857. ### G30 - Single Z Probe <a href="https://reprap.org/wiki/G-code#G30:_Single_Z-Probe">G30: Single Z-Probe</a>
  3858. */
  3859. case 30:
  3860. {
  3861. st_synchronize();
  3862. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3863. int l_feedmultiply = setup_for_endstop_move();
  3864. feedrate = homing_feedrate[Z_AXIS];
  3865. find_bed_induction_sensor_point_z(-10.f, 3);
  3866. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3867. clean_up_after_endstop_move(l_feedmultiply);
  3868. }
  3869. break;
  3870. /*!
  3871. ### G75 - Print temperature interpolation <a href="https://reprap.org/wiki/G-code#G75:_Print_temperature_interpolation">G75: Print temperature interpolation</a>
  3872. Show/print PINDA temperature interpolating.
  3873. #### Usage
  3874. G75
  3875. */
  3876. case 75:
  3877. {
  3878. for (int i = 40; i <= 110; i++)
  3879. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3880. }
  3881. break;
  3882. /*!
  3883. ### G76 - PINDA probe temperature calibration <a href="https://reprap.org/wiki/G-code#G76:_PINDA_probe_temperature_calibration">G76: PINDA probe temperature calibration</a>
  3884. This G-code is used to calibrate the temperature drift of the PINDA (inductive Sensor).
  3885. The PINDAv2 sensor has a built-in thermistor which has the advantage that the calibration can be done once for all materials.
  3886. The Original i3 Prusa MK2/s uses PINDAv1 and this calibration improves the temperature drift, but not as good as the PINDAv2.
  3887. #### Usage
  3888. G76
  3889. #### Example
  3890. ```
  3891. G76
  3892. echo PINDA probe calibration start
  3893. echo start temperature: 35.0°
  3894. echo ...
  3895. echo PINDA temperature -- Z shift (mm): 0.---
  3896. ```
  3897. */
  3898. case 76:
  3899. {
  3900. #ifdef PINDA_THERMISTOR
  3901. if (true)
  3902. {
  3903. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3904. //we need to know accurate position of first calibration point
  3905. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3906. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3907. break;
  3908. }
  3909. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3910. {
  3911. // We don't know where we are! HOME!
  3912. // Push the commands to the front of the message queue in the reverse order!
  3913. // There shall be always enough space reserved for these commands.
  3914. repeatcommand_front(); // repeat G76 with all its parameters
  3915. enquecommand_front_P((PSTR("G28 W0")));
  3916. break;
  3917. }
  3918. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3919. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3920. if (result)
  3921. {
  3922. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3923. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3924. current_position[Z_AXIS] = 50;
  3925. current_position[Y_AXIS] = 180;
  3926. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3927. st_synchronize();
  3928. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3929. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3930. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3931. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3932. st_synchronize();
  3933. gcode_G28(false, false, true);
  3934. }
  3935. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3936. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3937. current_position[Z_AXIS] = 100;
  3938. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3939. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3940. lcd_temp_cal_show_result(false);
  3941. break;
  3942. }
  3943. }
  3944. lcd_update_enable(true);
  3945. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3946. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3947. float zero_z;
  3948. int z_shift = 0; //unit: steps
  3949. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3950. if (start_temp < 35) start_temp = 35;
  3951. if (start_temp < current_temperature_pinda) start_temp += 5;
  3952. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3953. // setTargetHotend(200, 0);
  3954. setTargetBed(70 + (start_temp - 30));
  3955. custom_message_type = CustomMsg::TempCal;
  3956. custom_message_state = 1;
  3957. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  3958. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3959. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3960. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3961. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3962. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3963. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3964. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3965. st_synchronize();
  3966. while (current_temperature_pinda < start_temp)
  3967. {
  3968. delay_keep_alive(1000);
  3969. serialecho_temperatures();
  3970. }
  3971. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3972. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3973. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3974. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3975. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3976. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  3977. st_synchronize();
  3978. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3979. if (find_z_result == false) {
  3980. lcd_temp_cal_show_result(find_z_result);
  3981. break;
  3982. }
  3983. zero_z = current_position[Z_AXIS];
  3984. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3985. int i = -1; for (; i < 5; i++)
  3986. {
  3987. float temp = (40 + i * 5);
  3988. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3989. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3990. if (start_temp <= temp) break;
  3991. }
  3992. for (i++; i < 5; i++)
  3993. {
  3994. float temp = (40 + i * 5);
  3995. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3996. custom_message_state = i + 2;
  3997. setTargetBed(50 + 10 * (temp - 30) / 5);
  3998. // setTargetHotend(255, 0);
  3999. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4000. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4001. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4002. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4003. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4004. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4005. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4006. st_synchronize();
  4007. while (current_temperature_pinda < temp)
  4008. {
  4009. delay_keep_alive(1000);
  4010. serialecho_temperatures();
  4011. }
  4012. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4013. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4014. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  4015. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  4016. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4017. st_synchronize();
  4018. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  4019. if (find_z_result == false) {
  4020. lcd_temp_cal_show_result(find_z_result);
  4021. break;
  4022. }
  4023. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4024. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  4025. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  4026. }
  4027. lcd_temp_cal_show_result(true);
  4028. break;
  4029. }
  4030. #endif //PINDA_THERMISTOR
  4031. setTargetBed(PINDA_MIN_T);
  4032. float zero_z;
  4033. int z_shift = 0; //unit: steps
  4034. int t_c; // temperature
  4035. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4036. // We don't know where we are! HOME!
  4037. // Push the commands to the front of the message queue in the reverse order!
  4038. // There shall be always enough space reserved for these commands.
  4039. repeatcommand_front(); // repeat G76 with all its parameters
  4040. enquecommand_front_P((PSTR("G28 W0")));
  4041. break;
  4042. }
  4043. puts_P(_N("PINDA probe calibration start"));
  4044. custom_message_type = CustomMsg::TempCal;
  4045. custom_message_state = 1;
  4046. lcd_setstatuspgm(_T(MSG_TEMP_CALIBRATION));
  4047. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4048. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4049. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4050. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4051. st_synchronize();
  4052. while (abs(degBed() - PINDA_MIN_T) > 1) {
  4053. delay_keep_alive(1000);
  4054. serialecho_temperatures();
  4055. }
  4056. //enquecommand_P(PSTR("M190 S50"));
  4057. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4058. delay_keep_alive(1000);
  4059. serialecho_temperatures();
  4060. }
  4061. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  4062. current_position[Z_AXIS] = 5;
  4063. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4064. current_position[X_AXIS] = BED_X0;
  4065. current_position[Y_AXIS] = BED_Y0;
  4066. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4067. st_synchronize();
  4068. find_bed_induction_sensor_point_z(-1.f);
  4069. zero_z = current_position[Z_AXIS];
  4070. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  4071. for (int i = 0; i<5; i++) {
  4072. printf_P(_N("\nStep: %d/6\n"), i + 2);
  4073. custom_message_state = i + 2;
  4074. t_c = 60 + i * 10;
  4075. setTargetBed(t_c);
  4076. current_position[X_AXIS] = PINDA_PREHEAT_X;
  4077. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  4078. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  4079. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4080. st_synchronize();
  4081. while (degBed() < t_c) {
  4082. delay_keep_alive(1000);
  4083. serialecho_temperatures();
  4084. }
  4085. for (int i = 0; i < PINDA_HEAT_T; i++) {
  4086. delay_keep_alive(1000);
  4087. serialecho_temperatures();
  4088. }
  4089. current_position[Z_AXIS] = 5;
  4090. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4091. current_position[X_AXIS] = BED_X0;
  4092. current_position[Y_AXIS] = BED_Y0;
  4093. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  4094. st_synchronize();
  4095. find_bed_induction_sensor_point_z(-1.f);
  4096. z_shift = (int)((current_position[Z_AXIS] - zero_z)*cs.axis_steps_per_unit[Z_AXIS]);
  4097. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  4098. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  4099. }
  4100. custom_message_type = CustomMsg::Status;
  4101. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  4102. puts_P(_N("Temperature calibration done."));
  4103. disable_x();
  4104. disable_y();
  4105. disable_z();
  4106. disable_e0();
  4107. disable_e1();
  4108. disable_e2();
  4109. setTargetBed(0); //set bed target temperature back to 0
  4110. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  4111. temp_cal_active = true;
  4112. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  4113. lcd_update_enable(true);
  4114. lcd_update(2);
  4115. }
  4116. break;
  4117. /*!
  4118. ### G80 - Mesh-based Z probe <a href="https://reprap.org/wiki/G-code#G80:_Mesh-based_Z_probe">G80: Mesh-based Z probe</a>
  4119. Default 3x3 grid can be changed on MK2.5/s and MK3/s to 7x7 grid.
  4120. #### Usage
  4121. G80 [ N | R | V | L | R | F | B ]
  4122. #### Parameters
  4123. - `N` - Number of mesh points on x axis. Default is 3. Valid values are 3 and 7.
  4124. - `R` - Probe retries. Default 3 max. 10
  4125. - `V` - Verbosity level 1=low, 10=mid, 20=high. It can be only used if firmware has been compiled with SUPPORT_VERBOSITY active.
  4126. Using the following parameters enables additional "manual" bed leveling correction. Valid values are -100 microns to 100 microns.
  4127. #### Additional Parameters
  4128. - `L` - Left Bed Level correct value in um.
  4129. - `R` - Right Bed Level correct value in um.
  4130. - `F` - Front Bed Level correct value in um.
  4131. - `B` - Back Bed Level correct value in um.
  4132. */
  4133. /*
  4134. * Probes a grid and produces a mesh to compensate for variable bed height
  4135. * The S0 report the points as below
  4136. * +----> X-axis
  4137. * |
  4138. * |
  4139. * v Y-axis
  4140. */
  4141. case 80:
  4142. #ifdef MK1BP
  4143. break;
  4144. #endif //MK1BP
  4145. case_G80:
  4146. {
  4147. mesh_bed_leveling_flag = true;
  4148. #ifndef LA_NOCOMPAT
  4149. // When printing via USB there's no clear boundary between prints. Abuse MBL to indicate
  4150. // the beginning of a new print, allowing a new autodetected setting just after G80.
  4151. la10c_reset();
  4152. #endif
  4153. #ifndef PINDA_THERMISTOR
  4154. static bool run = false; // thermistor-less PINDA temperature compensation is running
  4155. #endif // ndef PINDA_THERMISTOR
  4156. #ifdef SUPPORT_VERBOSITY
  4157. int8_t verbosity_level = 0;
  4158. if (code_seen('V')) {
  4159. // Just 'V' without a number counts as V1.
  4160. char c = strchr_pointer[1];
  4161. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4162. }
  4163. #endif //SUPPORT_VERBOSITY
  4164. // Firstly check if we know where we are
  4165. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  4166. // We don't know where we are! HOME!
  4167. // Push the commands to the front of the message queue in the reverse order!
  4168. // There shall be always enough space reserved for these commands.
  4169. repeatcommand_front(); // repeat G80 with all its parameters
  4170. enquecommand_front_P((PSTR("G28 W0")));
  4171. break;
  4172. }
  4173. uint8_t nMeasPoints = MESH_MEAS_NUM_X_POINTS;
  4174. if (code_seen('N')) {
  4175. nMeasPoints = code_value_uint8();
  4176. if (nMeasPoints != 7) {
  4177. nMeasPoints = 3;
  4178. }
  4179. }
  4180. else {
  4181. nMeasPoints = eeprom_read_byte((uint8_t*)EEPROM_MBL_POINTS_NR);
  4182. }
  4183. uint8_t nProbeRetry = 3;
  4184. if (code_seen('R')) {
  4185. nProbeRetry = code_value_uint8();
  4186. if (nProbeRetry > 10) {
  4187. nProbeRetry = 10;
  4188. }
  4189. }
  4190. else {
  4191. nProbeRetry = eeprom_read_byte((uint8_t*)EEPROM_MBL_PROBE_NR);
  4192. }
  4193. bool magnet_elimination = (eeprom_read_byte((uint8_t*)EEPROM_MBL_MAGNET_ELIMINATION) > 0);
  4194. #ifndef PINDA_THERMISTOR
  4195. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50)
  4196. {
  4197. temp_compensation_start();
  4198. run = true;
  4199. repeatcommand_front(); // repeat G80 with all its parameters
  4200. enquecommand_front_P((PSTR("G28 W0")));
  4201. break;
  4202. }
  4203. run = false;
  4204. #endif //PINDA_THERMISTOR
  4205. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  4206. CustomMsg custom_message_type_old = custom_message_type;
  4207. unsigned int custom_message_state_old = custom_message_state;
  4208. custom_message_type = CustomMsg::MeshBedLeveling;
  4209. custom_message_state = (nMeasPoints * nMeasPoints) + 10;
  4210. lcd_update(1);
  4211. mbl.reset(); //reset mesh bed leveling
  4212. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  4213. // consumed during the first movements following this statement.
  4214. babystep_undo();
  4215. // Cycle through all points and probe them
  4216. // First move up. During this first movement, the babystepping will be reverted.
  4217. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4218. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  4219. // The move to the first calibration point.
  4220. current_position[X_AXIS] = BED_X0;
  4221. current_position[Y_AXIS] = BED_Y0;
  4222. #ifdef SUPPORT_VERBOSITY
  4223. if (verbosity_level >= 1)
  4224. {
  4225. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4226. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  4227. }
  4228. #else //SUPPORT_VERBOSITY
  4229. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4230. #endif //SUPPORT_VERBOSITY
  4231. plan_buffer_line_curposXYZE(homing_feedrate[X_AXIS] / 30, active_extruder);
  4232. // Wait until the move is finished.
  4233. st_synchronize();
  4234. uint8_t mesh_point = 0; //index number of calibration point
  4235. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  4236. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  4237. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  4238. #ifdef SUPPORT_VERBOSITY
  4239. if (verbosity_level >= 1) {
  4240. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  4241. }
  4242. #endif // SUPPORT_VERBOSITY
  4243. int l_feedmultiply = setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  4244. const char *kill_message = NULL;
  4245. while (mesh_point != nMeasPoints * nMeasPoints) {
  4246. // Get coords of a measuring point.
  4247. uint8_t ix = mesh_point % nMeasPoints; // from 0 to MESH_NUM_X_POINTS - 1
  4248. uint8_t iy = mesh_point / nMeasPoints;
  4249. /*if (!mbl_point_measurement_valid(ix, iy, nMeasPoints, true)) {
  4250. printf_P(PSTR("Skipping point [%d;%d] \n"), ix, iy);
  4251. custom_message_state--;
  4252. mesh_point++;
  4253. continue; //skip
  4254. }*/
  4255. if (iy & 1) ix = (nMeasPoints - 1) - ix; // Zig zag
  4256. if (nMeasPoints == 7) //if we have 7x7 mesh, compare with Z-calibration for points which are in 3x3 mesh
  4257. {
  4258. has_z = ((ix % 3 == 0) && (iy % 3 == 0)) && is_bed_z_jitter_data_valid();
  4259. }
  4260. float z0 = 0.f;
  4261. if (has_z && (mesh_point > 0)) {
  4262. uint16_t z_offset_u = 0;
  4263. if (nMeasPoints == 7) {
  4264. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * ((ix/3) + iy - 1)));
  4265. }
  4266. else {
  4267. z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  4268. }
  4269. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  4270. #ifdef SUPPORT_VERBOSITY
  4271. if (verbosity_level >= 1) {
  4272. printf_P(PSTR("Bed leveling, point: %d, calibration Z stored in eeprom: %d, calibration z: %f \n"), mesh_point, z_offset_u, z0);
  4273. }
  4274. #endif // SUPPORT_VERBOSITY
  4275. }
  4276. // Move Z up to MESH_HOME_Z_SEARCH.
  4277. if((ix == 0) && (iy == 0)) current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4278. else current_position[Z_AXIS] += 2.f / nMeasPoints; //use relative movement from Z coordinate where PINDa triggered on previous point. This makes calibration faster.
  4279. float init_z_bckp = current_position[Z_AXIS];
  4280. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4281. st_synchronize();
  4282. // Move to XY position of the sensor point.
  4283. current_position[X_AXIS] = BED_X(ix, nMeasPoints);
  4284. current_position[Y_AXIS] = BED_Y(iy, nMeasPoints);
  4285. //printf_P(PSTR("[%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4286. #ifdef SUPPORT_VERBOSITY
  4287. if (verbosity_level >= 1) {
  4288. clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4289. SERIAL_PROTOCOL(mesh_point);
  4290. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  4291. }
  4292. #else //SUPPORT_VERBOSITY
  4293. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  4294. #endif // SUPPORT_VERBOSITY
  4295. //printf_P(PSTR("after clamping: [%f;%f]\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  4296. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  4297. st_synchronize();
  4298. // Go down until endstop is hit
  4299. const float Z_CALIBRATION_THRESHOLD = 1.f;
  4300. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4301. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4302. break;
  4303. }
  4304. if (init_z_bckp - current_position[Z_AXIS] < 0.1f) { //broken cable or initial Z coordinate too low. Go to MESH_HOME_Z_SEARCH and repeat last step (z-probe) again to distinguish between these two cases.
  4305. //printf_P(PSTR("Another attempt! Current Z position: %f\n"), current_position[Z_AXIS]);
  4306. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4307. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4308. st_synchronize();
  4309. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f, nProbeRetry)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  4310. printf_P(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  4311. break;
  4312. }
  4313. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  4314. printf_P(PSTR("Bed leveling failed. Sensor disconnected or cable broken.\n"));
  4315. break;
  4316. }
  4317. }
  4318. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  4319. printf_P(PSTR("Bed leveling failed. Sensor triggered too high.\n"));
  4320. break;
  4321. }
  4322. #ifdef SUPPORT_VERBOSITY
  4323. if (verbosity_level >= 10) {
  4324. SERIAL_ECHOPGM("X: ");
  4325. MYSERIAL.print(current_position[X_AXIS], 5);
  4326. SERIAL_ECHOLNPGM("");
  4327. SERIAL_ECHOPGM("Y: ");
  4328. MYSERIAL.print(current_position[Y_AXIS], 5);
  4329. SERIAL_PROTOCOLPGM("\n");
  4330. }
  4331. #endif // SUPPORT_VERBOSITY
  4332. float offset_z = 0;
  4333. #ifdef PINDA_THERMISTOR
  4334. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  4335. #endif //PINDA_THERMISTOR
  4336. // #ifdef SUPPORT_VERBOSITY
  4337. /* if (verbosity_level >= 1)
  4338. {
  4339. SERIAL_ECHOPGM("mesh bed leveling: ");
  4340. MYSERIAL.print(current_position[Z_AXIS], 5);
  4341. SERIAL_ECHOPGM(" offset: ");
  4342. MYSERIAL.print(offset_z, 5);
  4343. SERIAL_ECHOLNPGM("");
  4344. }*/
  4345. // #endif // SUPPORT_VERBOSITY
  4346. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  4347. custom_message_state--;
  4348. mesh_point++;
  4349. lcd_update(1);
  4350. }
  4351. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4352. #ifdef SUPPORT_VERBOSITY
  4353. if (verbosity_level >= 20) {
  4354. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  4355. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  4356. MYSERIAL.print(current_position[Z_AXIS], 5);
  4357. }
  4358. #endif // SUPPORT_VERBOSITY
  4359. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  4360. st_synchronize();
  4361. if (mesh_point != nMeasPoints * nMeasPoints) {
  4362. Sound_MakeSound(e_SOUND_TYPE_StandardAlert);
  4363. bool bState;
  4364. do { // repeat until Z-leveling o.k.
  4365. lcd_display_message_fullscreen_P(_i("Some problem encountered, Z-leveling enforced ..."));
  4366. #ifdef TMC2130
  4367. lcd_wait_for_click_delay(MSG_BED_LEVELING_FAILED_TIMEOUT);
  4368. calibrate_z_auto(); // Z-leveling (X-assembly stay up!!!)
  4369. #else // TMC2130
  4370. lcd_wait_for_click_delay(0); // ~ no timeout
  4371. lcd_calibrate_z_end_stop_manual(true); // Z-leveling (X-assembly stay up!!!)
  4372. #endif // TMC2130
  4373. // ~ Z-homing (can not be used "G28", because X & Y-homing would have been done before (Z-homing))
  4374. bState=enable_z_endstop(false);
  4375. current_position[Z_AXIS] -= 1;
  4376. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4377. st_synchronize();
  4378. enable_z_endstop(true);
  4379. #ifdef TMC2130
  4380. tmc2130_home_enter(Z_AXIS_MASK);
  4381. #endif // TMC2130
  4382. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4383. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 40, active_extruder);
  4384. st_synchronize();
  4385. #ifdef TMC2130
  4386. tmc2130_home_exit();
  4387. #endif // TMC2130
  4388. enable_z_endstop(bState);
  4389. } while (st_get_position_mm(Z_AXIS) > MESH_HOME_Z_SEARCH); // i.e. Z-leveling not o.k.
  4390. // plan_set_z_position(MESH_HOME_Z_SEARCH); // is not necessary ('do-while' loop always ends at the expected Z-position)
  4391. custom_message_type=CustomMsg::Status; // display / status-line recovery
  4392. lcd_update_enable(true); // display / status-line recovery
  4393. gcode_G28(true, true, true); // X & Y & Z-homing (must be after individual Z-homing (problem with spool-holder)!)
  4394. repeatcommand_front(); // re-run (i.e. of "G80")
  4395. break;
  4396. }
  4397. clean_up_after_endstop_move(l_feedmultiply);
  4398. // SERIAL_ECHOLNPGM("clean up finished ");
  4399. #ifndef PINDA_THERMISTOR
  4400. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  4401. #endif
  4402. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  4403. // SERIAL_ECHOLNPGM("babystep applied");
  4404. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  4405. #ifdef SUPPORT_VERBOSITY
  4406. if (verbosity_level >= 1) {
  4407. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  4408. }
  4409. #endif // SUPPORT_VERBOSITY
  4410. for (uint8_t i = 0; i < 4; ++i) {
  4411. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  4412. long correction = 0;
  4413. if (code_seen(codes[i]))
  4414. correction = code_value_long();
  4415. else if (eeprom_bed_correction_valid) {
  4416. unsigned char *addr = (i < 2) ?
  4417. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  4418. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  4419. correction = eeprom_read_int8(addr);
  4420. }
  4421. if (correction == 0)
  4422. continue;
  4423. if (labs(correction) > BED_ADJUSTMENT_UM_MAX) {
  4424. SERIAL_ERROR_START;
  4425. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  4426. SERIAL_ECHO(correction);
  4427. SERIAL_ECHOLNPGM(" microns");
  4428. }
  4429. else {
  4430. float offset = float(correction) * 0.001f;
  4431. switch (i) {
  4432. case 0:
  4433. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4434. for (uint8_t col = 0; col < nMeasPoints - 1; ++col) {
  4435. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - col) / (nMeasPoints - 1);
  4436. }
  4437. }
  4438. break;
  4439. case 1:
  4440. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4441. for (uint8_t col = 1; col < nMeasPoints; ++col) {
  4442. mbl.z_values[row][col] += offset * col / (nMeasPoints - 1);
  4443. }
  4444. }
  4445. break;
  4446. case 2:
  4447. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4448. for (uint8_t row = 0; row < nMeasPoints; ++row) {
  4449. mbl.z_values[row][col] += offset * (nMeasPoints - 1 - row) / (nMeasPoints - 1);
  4450. }
  4451. }
  4452. break;
  4453. case 3:
  4454. for (uint8_t col = 0; col < nMeasPoints; ++col) {
  4455. for (uint8_t row = 1; row < nMeasPoints; ++row) {
  4456. mbl.z_values[row][col] += offset * row / (nMeasPoints - 1);
  4457. }
  4458. }
  4459. break;
  4460. }
  4461. }
  4462. }
  4463. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  4464. if (nMeasPoints == 3) {
  4465. mbl.upsample_3x3(); //interpolation from 3x3 to 7x7 points using largrangian polynomials while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  4466. }
  4467. /*
  4468. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4469. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4470. SERIAL_PROTOCOLPGM(",");
  4471. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4472. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4473. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4474. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4475. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4476. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4477. SERIAL_PROTOCOLPGM(" ");
  4478. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4479. }
  4480. SERIAL_PROTOCOLPGM("\n");
  4481. }
  4482. */
  4483. if (nMeasPoints == 7 && magnet_elimination) {
  4484. mbl_interpolation(nMeasPoints);
  4485. }
  4486. /*
  4487. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4488. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4489. SERIAL_PROTOCOLPGM(",");
  4490. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4491. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4492. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4493. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4494. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4495. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4496. SERIAL_PROTOCOLPGM(" ");
  4497. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4498. }
  4499. SERIAL_PROTOCOLPGM("\n");
  4500. }
  4501. */
  4502. // SERIAL_ECHOLNPGM("Upsample finished");
  4503. mbl.active = 1; //activate mesh bed leveling
  4504. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  4505. go_home_with_z_lift();
  4506. // SERIAL_ECHOLNPGM("Go home finished");
  4507. //unretract (after PINDA preheat retraction)
  4508. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  4509. current_position[E_AXIS] += default_retraction;
  4510. plan_buffer_line_curposXYZE(400, active_extruder);
  4511. }
  4512. KEEPALIVE_STATE(NOT_BUSY);
  4513. // Restore custom message state
  4514. lcd_setstatuspgm(_T(WELCOME_MSG));
  4515. custom_message_type = custom_message_type_old;
  4516. custom_message_state = custom_message_state_old;
  4517. mesh_bed_leveling_flag = false;
  4518. mesh_bed_run_from_menu = false;
  4519. lcd_update(2);
  4520. }
  4521. break;
  4522. /*!
  4523. ### G81 - Mesh bed leveling status <a href="https://reprap.org/wiki/G-code#G81:_Mesh_bed_leveling_status">G81: Mesh bed leveling status</a>
  4524. Prints mesh bed leveling status and bed profile if activated.
  4525. #### Usage
  4526. G81
  4527. */
  4528. case 81:
  4529. if (mbl.active) {
  4530. SERIAL_PROTOCOLPGM("Num X,Y: ");
  4531. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  4532. SERIAL_PROTOCOLPGM(",");
  4533. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  4534. SERIAL_PROTOCOLPGM("\nZ search height: ");
  4535. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  4536. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  4537. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  4538. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  4539. SERIAL_PROTOCOLPGM(" ");
  4540. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  4541. }
  4542. SERIAL_PROTOCOLPGM("\n");
  4543. }
  4544. }
  4545. else
  4546. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  4547. break;
  4548. #if 0
  4549. /*!
  4550. ### G82: Single Z probe at current location - Not active <a href="https://reprap.org/wiki/G-code#G82:_Single_Z_probe_at_current_location">G82: Single Z probe at current location</a>
  4551. WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  4552. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4553. */
  4554. case 82:
  4555. SERIAL_PROTOCOLLNPGM("Finding bed ");
  4556. int l_feedmultiply = setup_for_endstop_move();
  4557. find_bed_induction_sensor_point_z();
  4558. clean_up_after_endstop_move(l_feedmultiply);
  4559. SERIAL_PROTOCOLPGM("Bed found at: ");
  4560. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  4561. SERIAL_PROTOCOLPGM("\n");
  4562. break;
  4563. /*!
  4564. ### G83: Babystep in Z and store to EEPROM - Not active <a href="https://reprap.org/wiki/G-code#G83:_Babystep_in_Z_and_store_to_EEPROM">G83: Babystep in Z and store to EEPROM</a>
  4565. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4566. */
  4567. case 83:
  4568. {
  4569. int babystepz = code_seen('S') ? code_value() : 0;
  4570. int BabyPosition = code_seen('P') ? code_value() : 0;
  4571. if (babystepz != 0) {
  4572. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  4573. // Is the axis indexed starting with zero or one?
  4574. if (BabyPosition > 4) {
  4575. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  4576. }else{
  4577. // Save it to the eeprom
  4578. babystepLoadZ = babystepz;
  4579. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  4580. // adjust the Z
  4581. babystepsTodoZadd(babystepLoadZ);
  4582. }
  4583. }
  4584. }
  4585. break;
  4586. /*!
  4587. ### G84: UNDO Babystep Z (move Z axis back) - Not active <a href="https://reprap.org/wiki/G-code#G84:_UNDO_Babystep_Z_.28move_Z_axis_back.29">G84: UNDO Babystep Z (move Z axis back)</a>
  4588. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4589. */
  4590. case 84:
  4591. babystepsTodoZsubtract(babystepLoadZ);
  4592. // babystepLoadZ = 0;
  4593. break;
  4594. /*!
  4595. ### G85: Pick best babystep - Not active <a href="https://reprap.org/wiki/G-code#G85:_Pick_best_babystep>G85: Pick best babystep</a>
  4596. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  4597. */
  4598. case 85:
  4599. lcd_pick_babystep();
  4600. break;
  4601. #endif
  4602. /*!
  4603. ### G86 - Disable babystep correction after home <a href="https://reprap.org/wiki/G-code#G86:_Disable_babystep_correction_after_home">G86: Disable babystep correction after home</a>
  4604. This G-code will be performed at the start of a calibration script.
  4605. (Prusa3D specific)
  4606. */
  4607. case 86:
  4608. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  4609. break;
  4610. /*!
  4611. ### G87 - Enable babystep correction after home <a href="https://reprap.org/wiki/G-code#G87:_Enable_babystep_correction_after_home">G87: Enable babystep correction after home</a>
  4612. This G-code will be performed at the end of a calibration script.
  4613. (Prusa3D specific)
  4614. */
  4615. case 87:
  4616. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  4617. break;
  4618. /*!
  4619. ### G88 - Reserved <a href="https://reprap.org/wiki/G-code#G88:_Reserved">G88: Reserved</a>
  4620. Currently has no effect.
  4621. */
  4622. // Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  4623. case 88:
  4624. break;
  4625. #endif // ENABLE_MESH_BED_LEVELING
  4626. /*!
  4627. ### G90 - Switch off relative mode <a href="https://reprap.org/wiki/G-code#G90:_Set_to_Absolute_Positioning">G90: Set to Absolute Positioning</a>
  4628. #### Usage
  4629. G90
  4630. All coordinates from now on are absolute relative to the origin of the machine.
  4631. */
  4632. case 90: {
  4633. for(uint8_t i = 0; i != NUM_AXIS; ++i)
  4634. axis_relative_modes[i] = false;
  4635. }
  4636. break;
  4637. /*!
  4638. ### G91 - Switch on relative mode <a href="https://reprap.org/wiki/G-code#G91:_Set_to_Relative_Positioning">G91: Set to Relative Positioning</a>
  4639. #### Usage
  4640. G91
  4641. All coordinates from now on are relative to the last position.
  4642. */
  4643. case 91: {
  4644. for(uint8_t i = 0; i != NUM_AXIS; ++i)
  4645. axis_relative_modes[i] = true;
  4646. }
  4647. break;
  4648. /*!
  4649. ### G92 - Set position <a href="https://reprap.org/wiki/G-code#G92:_Set_Position">G92: Set Position</a>
  4650. #### Usage
  4651. G92 [ X | Y | Z | E ]
  4652. #### Parameters
  4653. - `X` - new X axis position
  4654. - `Y` - new Y axis position
  4655. - `Z` - new Z axis position
  4656. - `E` - new extruder position
  4657. Allows programming of absolute zero point, by reseting the current position to the values specified. This would set the machine's X coordinate to 10, and the extrude coordinate to 90. No physical motion will occur.
  4658. A G92 without coordinates will reset all axes to zero on some firmware.
  4659. */
  4660. case 92: {
  4661. gcode_G92();
  4662. }
  4663. break;
  4664. /*!
  4665. ### G98 - Activate farm mode <a href="https://reprap.org/wiki/G-code#G98:_Activate_farm_mode">G98: Activate farm mode</a>
  4666. Enable Prusa-specific Farm functions and g-code.
  4667. #### Usage
  4668. G98
  4669. See Internal Prusa commands
  4670. */
  4671. case 98:
  4672. farm_mode = 1;
  4673. PingTime = _millis();
  4674. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4675. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  4676. SilentModeMenu = SILENT_MODE_OFF;
  4677. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  4678. fCheckModeInit(); // alternatively invoke printer reset
  4679. break;
  4680. /*! ### G99 - Deactivate farm mode <a href="https://reprap.org/wiki/G-code#G99:_Deactivate_farm_mode">G99: Deactivate farm mode</a>
  4681. Disables Prusa-specific Farm functions and g-code.
  4682. #### Usage
  4683. G99
  4684. */
  4685. case 99:
  4686. farm_mode = 0;
  4687. lcd_printer_connected();
  4688. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  4689. lcd_update(2);
  4690. fCheckModeInit(); // alternatively invoke printer reset
  4691. break;
  4692. default:
  4693. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4694. }
  4695. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  4696. gcode_in_progress = 0;
  4697. } // end if(code_seen('G'))
  4698. /*!
  4699. ### End of G-Codes
  4700. */
  4701. /*!
  4702. ---------------------------------------------------------------------------------
  4703. # M Commands
  4704. */
  4705. else if(code_seen('M'))
  4706. {
  4707. int index;
  4708. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4709. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4710. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4711. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4712. } else
  4713. {
  4714. mcode_in_progress = (int)code_value();
  4715. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4716. switch(mcode_in_progress)
  4717. {
  4718. /*!
  4719. ### M0, M1 - Stop the printer <a href="https://reprap.org/wiki/G-code#M0:_Stop_or_Unconditional_stop">M0: Stop or Unconditional stop</a>
  4720. */
  4721. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4722. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4723. {
  4724. char *src = strchr_pointer + 2;
  4725. codenum = 0;
  4726. bool hasP = false, hasS = false;
  4727. if (code_seen('P')) {
  4728. codenum = code_value(); // milliseconds to wait
  4729. hasP = codenum > 0;
  4730. }
  4731. if (code_seen('S')) {
  4732. codenum = code_value() * 1000; // seconds to wait
  4733. hasS = codenum > 0;
  4734. }
  4735. starpos = strchr(src, '*');
  4736. if (starpos != NULL) *(starpos) = '\0';
  4737. while (*src == ' ') ++src;
  4738. if (!hasP && !hasS && *src != '\0') {
  4739. lcd_setstatus(src);
  4740. } else {
  4741. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT
  4742. }
  4743. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4744. st_synchronize();
  4745. previous_millis_cmd = _millis();
  4746. if (codenum > 0){
  4747. codenum += _millis(); // keep track of when we started waiting
  4748. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4749. while(_millis() < codenum && !lcd_clicked()){
  4750. manage_heater();
  4751. manage_inactivity(true);
  4752. lcd_update(0);
  4753. }
  4754. KEEPALIVE_STATE(IN_HANDLER);
  4755. lcd_ignore_click(false);
  4756. }else{
  4757. marlin_wait_for_click();
  4758. }
  4759. if (IS_SD_PRINTING)
  4760. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4761. else
  4762. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4763. }
  4764. break;
  4765. /*!
  4766. ### M17 - Enable axes <a href="https://reprap.org/wiki/G-code#M17:_Enable.2FPower_all_stepper_motors">M17: Enable/Power all stepper motors</a>
  4767. */
  4768. case 17:
  4769. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE
  4770. enable_x();
  4771. enable_y();
  4772. enable_z();
  4773. enable_e0();
  4774. enable_e1();
  4775. enable_e2();
  4776. break;
  4777. #ifdef SDSUPPORT
  4778. /*!
  4779. ### M20 - SD Card file list <a href="https://reprap.org/wiki/G-code#M20:_List_SD_card">M20: List SD card</a>
  4780. */
  4781. case 20:
  4782. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST
  4783. card.ls();
  4784. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST
  4785. break;
  4786. /*!
  4787. ### M21 - Init SD card <a href="https://reprap.org/wiki/G-code#M21:_Initialize_SD_card">M21: Initialize SD card</a>
  4788. */
  4789. case 21:
  4790. card.initsd();
  4791. break;
  4792. /*!
  4793. ### M22 - Release SD card <a href="https://reprap.org/wiki/G-code#M22:_Release_SD_card">M22: Release SD card</a>
  4794. */
  4795. case 22:
  4796. card.release();
  4797. break;
  4798. /*!
  4799. ### M23 - Select file <a href="https://reprap.org/wiki/G-code#M23:_Select_SD_file">M23: Select SD file</a>
  4800. */
  4801. case 23:
  4802. starpos = (strchr(strchr_pointer + 4,'*'));
  4803. if(starpos!=NULL)
  4804. *(starpos)='\0';
  4805. card.openFile(strchr_pointer + 4,true);
  4806. break;
  4807. /*!
  4808. ### M24 - Start SD print <a href="https://reprap.org/wiki/G-code#M24:_Start.2Fresume_SD_print">M24: Start/resume SD print</a>
  4809. */
  4810. case 24:
  4811. if (isPrintPaused)
  4812. lcd_resume_print();
  4813. else
  4814. {
  4815. failstats_reset_print();
  4816. #ifndef LA_NOCOMPAT
  4817. la10c_reset();
  4818. #endif
  4819. card.startFileprint();
  4820. starttime=_millis();
  4821. }
  4822. break;
  4823. /*!
  4824. ### M26 - Set SD index <a href="https://reprap.org/wiki/G-code#M26:_Set_SD_position">M26: Set SD position</a>
  4825. Set position in SD card file to index in bytes.
  4826. This command is expected to be called after M23 and before M24.
  4827. Otherwise effect of this command is undefined.
  4828. M26 [ S ]
  4829. - `S` - Index in bytes
  4830. */
  4831. case 26:
  4832. if(card.cardOK && code_seen('S')) {
  4833. long index = code_value_long();
  4834. card.setIndex(index);
  4835. // We don't disable interrupt during update of sdpos_atomic
  4836. // as we expect, that SD card print is not active in this moment
  4837. sdpos_atomic = index;
  4838. }
  4839. break;
  4840. /*!
  4841. ### M27 - Get SD status <a href="https://reprap.org/wiki/G-code#M27:_Report_SD_print_status">M27: Report SD print status</a>
  4842. */
  4843. case 27:
  4844. card.getStatus();
  4845. break;
  4846. /*!
  4847. ### M28 - Start SD write <a href="https://reprap.org/wiki/G-code#M28:_Begin_write_to_SD_card">M28: Begin write to SD card</a>
  4848. */
  4849. case 28:
  4850. starpos = (strchr(strchr_pointer + 4,'*'));
  4851. if(starpos != NULL){
  4852. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4853. strchr_pointer = strchr(npos,' ') + 1;
  4854. *(starpos) = '\0';
  4855. }
  4856. card.openFile(strchr_pointer+4,false);
  4857. break;
  4858. /*! ### M29 - Stop SD write <a href="https://reprap.org/wiki/G-code#M29:_Stop_writing_to_SD_card">M29: Stop writing to SD card</a>
  4859. Currently has no effect.
  4860. */
  4861. case 29:
  4862. //processed in write to file routine above
  4863. //card,saving = false;
  4864. break;
  4865. /*!
  4866. ### M30 - Delete file <filename> <a href="https://reprap.org/wiki/G-code#M30:_Delete_a_file_on_the_SD_card">M30: Delete a file on the SD card</a>
  4867. */
  4868. case 30:
  4869. if (card.cardOK){
  4870. card.closefile();
  4871. starpos = (strchr(strchr_pointer + 4,'*'));
  4872. if(starpos != NULL){
  4873. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4874. strchr_pointer = strchr(npos,' ') + 1;
  4875. *(starpos) = '\0';
  4876. }
  4877. card.removeFile(strchr_pointer + 4);
  4878. }
  4879. break;
  4880. /*!
  4881. ### M32 - Select file and start SD print <a href="https://reprap.org/wiki/G-code#M32:_Select_file_and_start_SD_print">M32: Select file and start SD print</a>
  4882. @todo What are the parameters P and S for in M32?
  4883. */
  4884. case 32:
  4885. {
  4886. if(card.sdprinting) {
  4887. st_synchronize();
  4888. }
  4889. starpos = (strchr(strchr_pointer + 4,'*'));
  4890. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4891. if(namestartpos==NULL)
  4892. {
  4893. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4894. }
  4895. else
  4896. namestartpos++; //to skip the '!'
  4897. if(starpos!=NULL)
  4898. *(starpos)='\0';
  4899. bool call_procedure=(code_seen('P'));
  4900. if(strchr_pointer>namestartpos)
  4901. call_procedure=false; //false alert, 'P' found within filename
  4902. if( card.cardOK )
  4903. {
  4904. card.openFile(namestartpos,true,!call_procedure);
  4905. if(code_seen('S'))
  4906. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4907. card.setIndex(code_value_long());
  4908. #ifndef LA_NOCOMPAT
  4909. la10c_reset();
  4910. #endif
  4911. card.startFileprint();
  4912. if(!call_procedure)
  4913. starttime=_millis(); //procedure calls count as normal print time.
  4914. }
  4915. } break;
  4916. /*!
  4917. ### M982 - Start SD logging <a href="https://reprap.org/wiki/G-code#M928:_Start_SD_logging">M928: Start SD logging</a>
  4918. */
  4919. case 928:
  4920. starpos = (strchr(strchr_pointer + 5,'*'));
  4921. if(starpos != NULL){
  4922. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4923. strchr_pointer = strchr(npos,' ') + 1;
  4924. *(starpos) = '\0';
  4925. }
  4926. card.openLogFile(strchr_pointer+5);
  4927. break;
  4928. #endif //SDSUPPORT
  4929. /*!
  4930. ### M31 - Report current print time <a href="https://reprap.org/wiki/G-code#M31:_Output_time_since_last_M109_or_SD_card_start_to_serial">M31: Output time since last M109 or SD card start to serial</a>
  4931. */
  4932. case 31: //M31 take time since the start of the SD print or an M109 command
  4933. {
  4934. stoptime=_millis();
  4935. char time[30];
  4936. unsigned long t=(stoptime-starttime)/1000;
  4937. int sec,min;
  4938. min=t/60;
  4939. sec=t%60;
  4940. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4941. SERIAL_ECHO_START;
  4942. SERIAL_ECHOLN(time);
  4943. lcd_setstatus(time);
  4944. autotempShutdown();
  4945. }
  4946. break;
  4947. /*!
  4948. ### M42 - Set pin state <a href="https://reprap.org/wiki/G-code#M42:_Switch_I.2FO_pin">M42: Switch I/O pin</a>
  4949. */
  4950. case 42:
  4951. if (code_seen('S'))
  4952. {
  4953. int pin_status = code_value();
  4954. int pin_number = LED_PIN;
  4955. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4956. pin_number = code_value();
  4957. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4958. {
  4959. if (sensitive_pins[i] == pin_number)
  4960. {
  4961. pin_number = -1;
  4962. break;
  4963. }
  4964. }
  4965. #if defined(FAN_PIN) && FAN_PIN > -1
  4966. if (pin_number == FAN_PIN)
  4967. fanSpeed = pin_status;
  4968. #endif
  4969. if (pin_number > -1)
  4970. {
  4971. pinMode(pin_number, OUTPUT);
  4972. digitalWrite(pin_number, pin_status);
  4973. analogWrite(pin_number, pin_status);
  4974. }
  4975. }
  4976. break;
  4977. /*!
  4978. ### M44 - Reset the bed skew and offset calibration <a href="https://reprap.org/wiki/G-code#M44:_Reset_the_bed_skew_and_offset_calibration">M44: Reset the bed skew and offset calibration</a>
  4979. */
  4980. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4981. // Reset the baby step value and the baby step applied flag.
  4982. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4983. eeprom_update_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),0);
  4984. // Reset the skew and offset in both RAM and EEPROM.
  4985. reset_bed_offset_and_skew();
  4986. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4987. // the planner will not perform any adjustments in the XY plane.
  4988. // Wait for the motors to stop and update the current position with the absolute values.
  4989. world2machine_revert_to_uncorrected();
  4990. break;
  4991. /*!
  4992. ### M45 - Bed skew and offset with manual Z up <a href="https://reprap.org/wiki/G-code#M45:_Bed_skew_and_offset_with_manual_Z_up">M45: Bed skew and offset with manual Z up</a>
  4993. M45 [ V ]
  4994. - `V` - Verbosity level 1, 10 and 20 (low, mid, high). Only when SUPPORT_VERBOSITY is defined.
  4995. */
  4996. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4997. {
  4998. int8_t verbosity_level = 0;
  4999. bool only_Z = code_seen('Z');
  5000. #ifdef SUPPORT_VERBOSITY
  5001. if (code_seen('V'))
  5002. {
  5003. // Just 'V' without a number counts as V1.
  5004. char c = strchr_pointer[1];
  5005. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5006. }
  5007. #endif //SUPPORT_VERBOSITY
  5008. gcode_M45(only_Z, verbosity_level);
  5009. }
  5010. break;
  5011. /*!
  5012. ### M46 - Show the assigned IP address <a href="https://reprap.org/wiki/G-code#M46:_Show_the_assigned_IP_address">M46: Show the assigned IP address.</a>
  5013. */
  5014. /*
  5015. case 46:
  5016. {
  5017. // M46: Prusa3D: Show the assigned IP address.
  5018. uint8_t ip[4];
  5019. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  5020. if (hasIP) {
  5021. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  5022. SERIAL_ECHO(int(ip[0]));
  5023. SERIAL_ECHOPGM(".");
  5024. SERIAL_ECHO(int(ip[1]));
  5025. SERIAL_ECHOPGM(".");
  5026. SERIAL_ECHO(int(ip[2]));
  5027. SERIAL_ECHOPGM(".");
  5028. SERIAL_ECHO(int(ip[3]));
  5029. SERIAL_ECHOLNPGM("");
  5030. } else {
  5031. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  5032. }
  5033. break;
  5034. }
  5035. */
  5036. /*!
  5037. ### M47 - Show end stops dialog on the display <a href="https://reprap.org/wiki/G-code#M47:_Show_end_stops_dialog_on_the_display">M47: Show end stops dialog on the display</a>
  5038. */
  5039. case 47:
  5040. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5041. lcd_diag_show_end_stops();
  5042. KEEPALIVE_STATE(IN_HANDLER);
  5043. break;
  5044. #if 0
  5045. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  5046. {
  5047. // Disable the default update procedure of the display. We will do a modal dialog.
  5048. lcd_update_enable(false);
  5049. // Let the planner use the uncorrected coordinates.
  5050. mbl.reset();
  5051. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  5052. // the planner will not perform any adjustments in the XY plane.
  5053. // Wait for the motors to stop and update the current position with the absolute values.
  5054. world2machine_revert_to_uncorrected();
  5055. // Move the print head close to the bed.
  5056. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5057. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5058. st_synchronize();
  5059. // Home in the XY plane.
  5060. set_destination_to_current();
  5061. int l_feedmultiply = setup_for_endstop_move();
  5062. home_xy();
  5063. int8_t verbosity_level = 0;
  5064. if (code_seen('V')) {
  5065. // Just 'V' without a number counts as V1.
  5066. char c = strchr_pointer[1];
  5067. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  5068. }
  5069. bool success = scan_bed_induction_points(verbosity_level);
  5070. clean_up_after_endstop_move(l_feedmultiply);
  5071. // Print head up.
  5072. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  5073. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  5074. st_synchronize();
  5075. lcd_update_enable(true);
  5076. break;
  5077. }
  5078. #endif
  5079. #ifdef ENABLE_AUTO_BED_LEVELING
  5080. #ifdef Z_PROBE_REPEATABILITY_TEST
  5081. /*!
  5082. ### M48 - Z-Probe repeatability measurement function <a href="https://reprap.org/wiki/G-code#M48:_Measure_Z-Probe_repeatability">M48: Measure Z-Probe repeatability</a>
  5083. This function assumes the bed has been homed. Specifically, that a G28 command as been issued prior to invoking the M48 Z-Probe repeatability measurement function. Any information generated by a prior G29 Bed leveling command will be lost and need to be regenerated.
  5084. The number of samples will default to 10 if not specified. You can use upper or lower case letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital N for its communication protocol and will get horribly confused if you send it a capital N.
  5085. M48 [ n | X | Y | V | L ]
  5086. - `n` - Number of samples. Valid values 4-50
  5087. - `X` - X position for samples
  5088. - `Y` - Y position for samples
  5089. - `V` - Verbose level. Valid values 1-4
  5090. - `L` - Legs of movementprior to doing probe. Valid values 1-15
  5091. */
  5092. case 48: // M48 Z-Probe repeatability
  5093. {
  5094. #if Z_MIN_PIN == -1
  5095. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  5096. #endif
  5097. double sum=0.0;
  5098. double mean=0.0;
  5099. double sigma=0.0;
  5100. double sample_set[50];
  5101. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  5102. double X_current, Y_current, Z_current;
  5103. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  5104. if (code_seen('V') || code_seen('v')) {
  5105. verbose_level = code_value();
  5106. if (verbose_level<0 || verbose_level>4 ) {
  5107. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  5108. goto Sigma_Exit;
  5109. }
  5110. }
  5111. if (verbose_level > 0) {
  5112. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  5113. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  5114. }
  5115. if (code_seen('n')) {
  5116. n_samples = code_value();
  5117. if (n_samples<4 || n_samples>50 ) {
  5118. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  5119. goto Sigma_Exit;
  5120. }
  5121. }
  5122. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  5123. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  5124. Z_current = st_get_position_mm(Z_AXIS);
  5125. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5126. ext_position = st_get_position_mm(E_AXIS);
  5127. if (code_seen('X') || code_seen('x') ) {
  5128. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  5129. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  5130. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  5131. goto Sigma_Exit;
  5132. }
  5133. }
  5134. if (code_seen('Y') || code_seen('y') ) {
  5135. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  5136. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  5137. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  5138. goto Sigma_Exit;
  5139. }
  5140. }
  5141. if (code_seen('L') || code_seen('l') ) {
  5142. n_legs = code_value();
  5143. if ( n_legs==1 )
  5144. n_legs = 2;
  5145. if ( n_legs<0 || n_legs>15 ) {
  5146. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  5147. goto Sigma_Exit;
  5148. }
  5149. }
  5150. //
  5151. // Do all the preliminary setup work. First raise the probe.
  5152. //
  5153. st_synchronize();
  5154. plan_bed_level_matrix.set_to_identity();
  5155. plan_buffer_line( X_current, Y_current, Z_start_location,
  5156. ext_position,
  5157. homing_feedrate[Z_AXIS]/60,
  5158. active_extruder);
  5159. st_synchronize();
  5160. //
  5161. // Now get everything to the specified probe point So we can safely do a probe to
  5162. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  5163. // use that as a starting point for each probe.
  5164. //
  5165. if (verbose_level > 2)
  5166. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  5167. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5168. ext_position,
  5169. homing_feedrate[X_AXIS]/60,
  5170. active_extruder);
  5171. st_synchronize();
  5172. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  5173. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  5174. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5175. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  5176. //
  5177. // OK, do the inital probe to get us close to the bed.
  5178. // Then retrace the right amount and use that in subsequent probes
  5179. //
  5180. int l_feedmultiply = setup_for_endstop_move();
  5181. run_z_probe();
  5182. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5183. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  5184. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5185. ext_position,
  5186. homing_feedrate[X_AXIS]/60,
  5187. active_extruder);
  5188. st_synchronize();
  5189. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  5190. for( n=0; n<n_samples; n++) {
  5191. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  5192. if ( n_legs) {
  5193. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  5194. int rotational_direction, l;
  5195. rotational_direction = (unsigned long) _millis() & 0x0001; // clockwise or counter clockwise
  5196. radius = (unsigned long) _millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  5197. theta = (float) ((unsigned long) _millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  5198. //SERIAL_ECHOPAIR("starting radius: ",radius);
  5199. //SERIAL_ECHOPAIR(" theta: ",theta);
  5200. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  5201. //SERIAL_PROTOCOLLNPGM("");
  5202. for( l=0; l<n_legs-1; l++) {
  5203. if (rotational_direction==1)
  5204. theta += (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5205. else
  5206. theta -= (float) ((unsigned long) _millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  5207. radius += (float) ( ((long) ((unsigned long) _millis() % (long) 10)) - 5);
  5208. if ( radius<0.0 )
  5209. radius = -radius;
  5210. X_current = X_probe_location + cos(theta) * radius;
  5211. Y_current = Y_probe_location + sin(theta) * radius;
  5212. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  5213. X_current = X_MIN_POS;
  5214. if ( X_current>X_MAX_POS)
  5215. X_current = X_MAX_POS;
  5216. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  5217. Y_current = Y_MIN_POS;
  5218. if ( Y_current>Y_MAX_POS)
  5219. Y_current = Y_MAX_POS;
  5220. if (verbose_level>3 ) {
  5221. SERIAL_ECHOPAIR("x: ", X_current);
  5222. SERIAL_ECHOPAIR("y: ", Y_current);
  5223. SERIAL_PROTOCOLLNPGM("");
  5224. }
  5225. do_blocking_move_to( X_current, Y_current, Z_current );
  5226. }
  5227. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  5228. }
  5229. int l_feedmultiply = setup_for_endstop_move();
  5230. run_z_probe();
  5231. sample_set[n] = current_position[Z_AXIS];
  5232. //
  5233. // Get the current mean for the data points we have so far
  5234. //
  5235. sum=0.0;
  5236. for( j=0; j<=n; j++) {
  5237. sum = sum + sample_set[j];
  5238. }
  5239. mean = sum / (double (n+1));
  5240. //
  5241. // Now, use that mean to calculate the standard deviation for the
  5242. // data points we have so far
  5243. //
  5244. sum=0.0;
  5245. for( j=0; j<=n; j++) {
  5246. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  5247. }
  5248. sigma = sqrt( sum / (double (n+1)) );
  5249. if (verbose_level > 1) {
  5250. SERIAL_PROTOCOL(n+1);
  5251. SERIAL_PROTOCOL(" of ");
  5252. SERIAL_PROTOCOL(n_samples);
  5253. SERIAL_PROTOCOLPGM(" z: ");
  5254. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  5255. }
  5256. if (verbose_level > 2) {
  5257. SERIAL_PROTOCOL(" mean: ");
  5258. SERIAL_PROTOCOL_F(mean,6);
  5259. SERIAL_PROTOCOL(" sigma: ");
  5260. SERIAL_PROTOCOL_F(sigma,6);
  5261. }
  5262. if (verbose_level > 0)
  5263. SERIAL_PROTOCOLPGM("\n");
  5264. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  5265. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  5266. st_synchronize();
  5267. }
  5268. _delay(1000);
  5269. clean_up_after_endstop_move(l_feedmultiply);
  5270. // enable_endstops(true);
  5271. if (verbose_level > 0) {
  5272. SERIAL_PROTOCOLPGM("Mean: ");
  5273. SERIAL_PROTOCOL_F(mean, 6);
  5274. SERIAL_PROTOCOLPGM("\n");
  5275. }
  5276. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  5277. SERIAL_PROTOCOL_F(sigma, 6);
  5278. SERIAL_PROTOCOLPGM("\n\n");
  5279. Sigma_Exit:
  5280. break;
  5281. }
  5282. #endif // Z_PROBE_REPEATABILITY_TEST
  5283. #endif // ENABLE_AUTO_BED_LEVELING
  5284. /*!
  5285. ### M73 - Set/get print progress <a href="https://reprap.org/wiki/G-code#M73:_Set.2FGet_build_percentage">M73: Set/Get build percentage</a>
  5286. Prusa firmware just shows percent done and time remaining.
  5287. M73 [ P | R | Q | S ]
  5288. - `P` - Percent in normal mode
  5289. - `R` - Time remaining in normal mode
  5290. - `Q` - Percent in silent mode
  5291. - `S` - Time in silent mode
  5292. */
  5293. case 73: //M73 show percent done and time remaining
  5294. if(code_seen('P')) print_percent_done_normal = code_value();
  5295. if(code_seen('R')) print_time_remaining_normal = code_value();
  5296. if(code_seen('Q')) print_percent_done_silent = code_value();
  5297. if(code_seen('S')) print_time_remaining_silent = code_value();
  5298. {
  5299. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  5300. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  5301. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  5302. }
  5303. break;
  5304. /*!
  5305. ### M104 - Set hotend temperature <a href="https://reprap.org/wiki/G-code#M104:_Set_Extruder_Temperature">M104: Set Extruder Temperature</a>
  5306. M104 [ S ]
  5307. - `S` - Target temperature
  5308. */
  5309. case 104: // M104
  5310. {
  5311. uint8_t extruder;
  5312. if(setTargetedHotend(104,extruder)){
  5313. break;
  5314. }
  5315. if (code_seen('S'))
  5316. {
  5317. setTargetHotendSafe(code_value(), extruder);
  5318. }
  5319. break;
  5320. }
  5321. /*!
  5322. ### M112 - Emergency stop <a href="https://reprap.org/wiki/G-code#M112:_Full_.28Emergency.29_Stop">M112: Full (Emergency) Stop</a>
  5323. */
  5324. case 112:
  5325. kill(MSG_M112_KILL, 3);
  5326. break;
  5327. /*!
  5328. ### M140 - Set bed temperature <a href="https://reprap.org/wiki/G-code#M140:_Set_Bed_Temperature_.28Fast.29">M140: Set Bed Temperature (Fast)</a>
  5329. */
  5330. case 140:
  5331. if (code_seen('S')) setTargetBed(code_value());
  5332. break;
  5333. /*!
  5334. ### M105 - Report temperatures <a href="https://reprap.org/wiki/G-code#M105:_Get_Extruder_Temperature">M105: Get Extruder Temperature</a>
  5335. Prints temperatures:
  5336. - `T:` - Hotend (actual / target)
  5337. - `B:` - Bed (actual / target)
  5338. - `Tx:` - x Tool (actual / target)
  5339. - `@:` - Hotend power
  5340. - `B@:` - Bed power
  5341. - `P:` - PINDAv2 actual (only MK2.5/s and MK3.5/s)
  5342. - `A:` - Ambient actual (only MK3/s)
  5343. _Example:_
  5344. ok T:20.2 /0.0 B:19.1 /0.0 T0:20.2 /0.0 @:0 B@:0 P:19.8 A:26.4
  5345. */
  5346. case 105:
  5347. {
  5348. uint8_t extruder;
  5349. if(setTargetedHotend(105, extruder)){
  5350. break;
  5351. }
  5352. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  5353. SERIAL_PROTOCOLPGM("ok T:");
  5354. SERIAL_PROTOCOL_F(degHotend(extruder),1);
  5355. SERIAL_PROTOCOLPGM(" /");
  5356. SERIAL_PROTOCOL_F(degTargetHotend(extruder),1);
  5357. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5358. SERIAL_PROTOCOLPGM(" B:");
  5359. SERIAL_PROTOCOL_F(degBed(),1);
  5360. SERIAL_PROTOCOLPGM(" /");
  5361. SERIAL_PROTOCOL_F(degTargetBed(),1);
  5362. #endif //TEMP_BED_PIN
  5363. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5364. SERIAL_PROTOCOLPGM(" T");
  5365. SERIAL_PROTOCOL(cur_extruder);
  5366. SERIAL_PROTOCOLPGM(":");
  5367. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5368. SERIAL_PROTOCOLPGM(" /");
  5369. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  5370. }
  5371. #else
  5372. SERIAL_ERROR_START;
  5373. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS
  5374. #endif
  5375. SERIAL_PROTOCOLPGM(" @:");
  5376. #ifdef EXTRUDER_WATTS
  5377. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  5378. SERIAL_PROTOCOLPGM("W");
  5379. #else
  5380. SERIAL_PROTOCOL(getHeaterPower(extruder));
  5381. #endif
  5382. SERIAL_PROTOCOLPGM(" B@:");
  5383. #ifdef BED_WATTS
  5384. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  5385. SERIAL_PROTOCOLPGM("W");
  5386. #else
  5387. SERIAL_PROTOCOL(getHeaterPower(-1));
  5388. #endif
  5389. #ifdef PINDA_THERMISTOR
  5390. SERIAL_PROTOCOLPGM(" P:");
  5391. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  5392. #endif //PINDA_THERMISTOR
  5393. #ifdef AMBIENT_THERMISTOR
  5394. SERIAL_PROTOCOLPGM(" A:");
  5395. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  5396. #endif //AMBIENT_THERMISTOR
  5397. #ifdef SHOW_TEMP_ADC_VALUES
  5398. {float raw = 0.0;
  5399. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5400. SERIAL_PROTOCOLPGM(" ADC B:");
  5401. SERIAL_PROTOCOL_F(degBed(),1);
  5402. SERIAL_PROTOCOLPGM("C->");
  5403. raw = rawBedTemp();
  5404. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5405. SERIAL_PROTOCOLPGM(" Rb->");
  5406. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5407. SERIAL_PROTOCOLPGM(" Rxb->");
  5408. SERIAL_PROTOCOL_F(raw, 5);
  5409. #endif
  5410. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  5411. SERIAL_PROTOCOLPGM(" T");
  5412. SERIAL_PROTOCOL(cur_extruder);
  5413. SERIAL_PROTOCOLPGM(":");
  5414. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  5415. SERIAL_PROTOCOLPGM("C->");
  5416. raw = rawHotendTemp(cur_extruder);
  5417. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  5418. SERIAL_PROTOCOLPGM(" Rt");
  5419. SERIAL_PROTOCOL(cur_extruder);
  5420. SERIAL_PROTOCOLPGM("->");
  5421. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  5422. SERIAL_PROTOCOLPGM(" Rx");
  5423. SERIAL_PROTOCOL(cur_extruder);
  5424. SERIAL_PROTOCOLPGM("->");
  5425. SERIAL_PROTOCOL_F(raw, 5);
  5426. }}
  5427. #endif
  5428. SERIAL_PROTOCOLLN("");
  5429. KEEPALIVE_STATE(NOT_BUSY);
  5430. return;
  5431. break;
  5432. }
  5433. /*!
  5434. ### M109 - Wait for extruder temperature <a href="https://reprap.org/wiki/G-code#M109:_Set_Extruder_Temperature_and_Wait">M109: Set Extruder Temperature and Wait</a>
  5435. Parameters (not mandatory):
  5436. - `S` - Set extruder temperature
  5437. - `R` - Set extruder temperature
  5438. - `B` - Set max. extruder temperature, while `S` is min. temperature. Not active in default, only if AUTOTEMP is defined in source code.
  5439. Parameters S and R are treated identically.
  5440. Command always waits for both cool down and heat up.
  5441. If no parameters are supplied waits for previously
  5442. set extruder temperature.
  5443. */
  5444. case 109:
  5445. {
  5446. uint8_t extruder;
  5447. if(setTargetedHotend(109, extruder)){
  5448. break;
  5449. }
  5450. LCD_MESSAGERPGM(_T(MSG_HEATING));
  5451. heating_status = 1;
  5452. if (farm_mode) { prusa_statistics(1); };
  5453. #ifdef AUTOTEMP
  5454. autotemp_enabled=false;
  5455. #endif
  5456. if (code_seen('S')) {
  5457. setTargetHotendSafe(code_value(), extruder);
  5458. } else if (code_seen('R')) {
  5459. setTargetHotendSafe(code_value(), extruder);
  5460. }
  5461. #ifdef AUTOTEMP
  5462. if (code_seen('S')) autotemp_min=code_value();
  5463. if (code_seen('B')) autotemp_max=code_value();
  5464. if (code_seen('F'))
  5465. {
  5466. autotemp_factor=code_value();
  5467. autotemp_enabled=true;
  5468. }
  5469. #endif
  5470. codenum = _millis();
  5471. /* See if we are heating up or cooling down */
  5472. target_direction = isHeatingHotend(extruder); // true if heating, false if cooling
  5473. KEEPALIVE_STATE(NOT_BUSY);
  5474. cancel_heatup = false;
  5475. wait_for_heater(codenum, extruder); //loops until target temperature is reached
  5476. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  5477. KEEPALIVE_STATE(IN_HANDLER);
  5478. heating_status = 2;
  5479. if (farm_mode) { prusa_statistics(2); };
  5480. //starttime=_millis();
  5481. previous_millis_cmd = _millis();
  5482. }
  5483. break;
  5484. /*!
  5485. ### M190 - Wait for bed temperature <a href="https://reprap.org/wiki/G-code#M190:_Wait_for_bed_temperature_to_reach_target_temp">M190: Wait for bed temperature to reach target temp</a>
  5486. Parameters (not mandatory):
  5487. - `S` - Set extruder temperature and wait for heating
  5488. - `R` - Set extruder temperature and wait for heating or cooling
  5489. If no parameter is supplied, waits for heating or cooling to previously set temperature.
  5490. */
  5491. case 190:
  5492. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  5493. {
  5494. bool CooldownNoWait = false;
  5495. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  5496. heating_status = 3;
  5497. if (farm_mode) { prusa_statistics(1); };
  5498. if (code_seen('S'))
  5499. {
  5500. setTargetBed(code_value());
  5501. CooldownNoWait = true;
  5502. }
  5503. else if (code_seen('R'))
  5504. {
  5505. setTargetBed(code_value());
  5506. }
  5507. codenum = _millis();
  5508. cancel_heatup = false;
  5509. target_direction = isHeatingBed(); // true if heating, false if cooling
  5510. KEEPALIVE_STATE(NOT_BUSY);
  5511. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  5512. {
  5513. if(( _millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  5514. {
  5515. if (!farm_mode) {
  5516. float tt = degHotend(active_extruder);
  5517. SERIAL_PROTOCOLPGM("T:");
  5518. SERIAL_PROTOCOL(tt);
  5519. SERIAL_PROTOCOLPGM(" E:");
  5520. SERIAL_PROTOCOL((int)active_extruder);
  5521. SERIAL_PROTOCOLPGM(" B:");
  5522. SERIAL_PROTOCOL_F(degBed(), 1);
  5523. SERIAL_PROTOCOLLN("");
  5524. }
  5525. codenum = _millis();
  5526. }
  5527. manage_heater();
  5528. manage_inactivity();
  5529. lcd_update(0);
  5530. }
  5531. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  5532. KEEPALIVE_STATE(IN_HANDLER);
  5533. heating_status = 4;
  5534. previous_millis_cmd = _millis();
  5535. }
  5536. #endif
  5537. break;
  5538. #if defined(FAN_PIN) && FAN_PIN > -1
  5539. /*!
  5540. ### M106 - Set fan speed <a href="https://reprap.org/wiki/G-code#M106:_Fan_On">M106: Fan On</a>
  5541. */
  5542. case 106: // M106 Sxxx Fan On S<speed> 0 .. 255
  5543. if (code_seen('S')){
  5544. fanSpeed=constrain(code_value(),0,255);
  5545. }
  5546. else {
  5547. fanSpeed=255;
  5548. }
  5549. break;
  5550. /*!
  5551. ### M107 - Fan off <a href="https://reprap.org/wiki/G-code#M107:_Fan_Off">M107: Fan Off</a>
  5552. */
  5553. case 107:
  5554. fanSpeed = 0;
  5555. break;
  5556. #endif //FAN_PIN
  5557. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5558. /*!
  5559. ### M80 - Turn on the Power Supply <a href="https://reprap.org/wiki/G-code#M80:_ATX_Power_On">M80: ATX Power On</a>
  5560. */
  5561. case 80:
  5562. SET_OUTPUT(PS_ON_PIN); //GND
  5563. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  5564. // If you have a switch on suicide pin, this is useful
  5565. // if you want to start another print with suicide feature after
  5566. // a print without suicide...
  5567. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  5568. SET_OUTPUT(SUICIDE_PIN);
  5569. WRITE(SUICIDE_PIN, HIGH);
  5570. #endif
  5571. powersupply = true;
  5572. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  5573. lcd_update(0);
  5574. break;
  5575. /*!
  5576. ### M81 - Turn off Power Supply <a href="https://reprap.org/wiki/G-code#M81:_ATX_Power_Off">M81: ATX Power Off</a>
  5577. */
  5578. case 81:
  5579. disable_heater();
  5580. st_synchronize();
  5581. disable_e0();
  5582. disable_e1();
  5583. disable_e2();
  5584. finishAndDisableSteppers();
  5585. fanSpeed = 0;
  5586. _delay(1000); // Wait a little before to switch off
  5587. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  5588. st_synchronize();
  5589. suicide();
  5590. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  5591. SET_OUTPUT(PS_ON_PIN);
  5592. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  5593. #endif
  5594. powersupply = false;
  5595. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  5596. lcd_update(0);
  5597. break;
  5598. #endif
  5599. /*!
  5600. ### M82 - Set E axis to absolute mode <a href="https://reprap.org/wiki/G-code#M82:_Set_extruder_to_absolute_mode">M82: Set extruder to absolute mode</a>
  5601. Makes the extruder interpret extrusion as absolute positions.
  5602. */
  5603. case 82:
  5604. axis_relative_modes[E_AXIS] = false;
  5605. break;
  5606. /*!
  5607. ### M83 - Set E axis to relative mode <a href="https://reprap.org/wiki/G-code#M83:_Set_extruder_to_relative_mode">M83: Set extruder to relative mode</a>
  5608. Makes the extruder interpret extrusion values as relative positions.
  5609. */
  5610. case 83:
  5611. axis_relative_modes[E_AXIS] = true;
  5612. break;
  5613. /*!
  5614. ### M84 - Disable steppers <a href="https://reprap.org/wiki/G-code#M84:_Stop_idle_hold">M84: Stop idle hold</a>
  5615. This command can be used to set the stepper inactivity timeout (`S`) or to disable steppers (`X`,`Y`,`Z`,`E`)
  5616. _This command can be used without any additional parameters._
  5617. M84 [ S | X | Y | Z | E ]
  5618. - `S` - Seconds
  5619. - `X` - X axsis
  5620. - `Y` - Y axis
  5621. - `Z` - Z axis
  5622. - `E` - Exruder drive(s)
  5623. ### M18 - Disable steppers <a href="https://reprap.org/wiki/G-code#M18:_Disable_all_stepper_motors">M18: Disable all stepper motors</a>
  5624. Equal to M84 (compatibility)
  5625. */
  5626. case 18: //compatibility
  5627. case 84: // M84
  5628. if(code_seen('S')){
  5629. stepper_inactive_time = code_value() * 1000;
  5630. }
  5631. else
  5632. {
  5633. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  5634. if(all_axis)
  5635. {
  5636. st_synchronize();
  5637. disable_e0();
  5638. disable_e1();
  5639. disable_e2();
  5640. finishAndDisableSteppers();
  5641. }
  5642. else
  5643. {
  5644. st_synchronize();
  5645. if (code_seen('X')) disable_x();
  5646. if (code_seen('Y')) disable_y();
  5647. if (code_seen('Z')) disable_z();
  5648. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  5649. if (code_seen('E')) {
  5650. disable_e0();
  5651. disable_e1();
  5652. disable_e2();
  5653. }
  5654. #endif
  5655. }
  5656. }
  5657. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  5658. print_time_remaining_init();
  5659. snmm_filaments_used = 0;
  5660. break;
  5661. /*!
  5662. ### M85 - Set max inactive time <a href="https://reprap.org/wiki/G-code#M85:_Set_Inactivity_Shutdown_Timer">M85: Set Inactivity Shutdown Timer</a>
  5663. Set Inactivity Shutdown Timer with parameter S<seconds>. "M85 S0" will disable the inactivity shutdown time (default)
  5664. */
  5665. case 85: // M85
  5666. if(code_seen('S')) {
  5667. max_inactive_time = code_value() * 1000;
  5668. }
  5669. break;
  5670. #ifdef SAFETYTIMER
  5671. /*!
  5672. ### M86 - Set safety timer expiration time <a href="https://reprap.org/wiki/G-code#M86:_Set_Safety_Timer_expiration_time">M86: Set Safety Timer expiration time</a>
  5673. Sets the safety timer expiration time in seconds.
  5674. When safety timer expires, heatbed and nozzle target temperatures are set to zero.
  5675. M86 [ S ]
  5676. - `S` - Seconds Setting it to 0 will disable safety timer.
  5677. */
  5678. case 86:
  5679. if (code_seen('S')) {
  5680. safetytimer_inactive_time = code_value() * 1000;
  5681. safetyTimer.start();
  5682. }
  5683. break;
  5684. #endif
  5685. /*!
  5686. ### M92 Set Axis steps-per-unit <a href="https://reprap.org/wiki/G-code#M92:_Set_axis_steps_per_unit">M92: Set axis_steps_per_unit</a>
  5687. Allows programming of steps per unit (usually mm) for motor drives. These values are reset to firmware defaults on power on, unless saved to EEPROM if available (M500 in Marlin)
  5688. M92 [ X | Y | Z | E ]
  5689. - `X` - Steps per unit for the X drive
  5690. - `Y` - Steps per unit for the Y drive
  5691. - `Z` - Steps per unit for the Z drive
  5692. - `E` - Steps per unit for the extruder drive(s)
  5693. */
  5694. case 92:
  5695. for(int8_t i=0; i < NUM_AXIS; i++)
  5696. {
  5697. if(code_seen(axis_codes[i]))
  5698. {
  5699. if(i == 3) { // E
  5700. float value = code_value();
  5701. if(value < 20.0) {
  5702. float factor = cs.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  5703. cs.max_jerk[E_AXIS] *= factor;
  5704. max_feedrate[i] *= factor;
  5705. axis_steps_per_sqr_second[i] *= factor;
  5706. }
  5707. cs.axis_steps_per_unit[i] = value;
  5708. }
  5709. else {
  5710. cs.axis_steps_per_unit[i] = code_value();
  5711. }
  5712. }
  5713. }
  5714. break;
  5715. /*!
  5716. ### M110 - Set Line number <a href="https://reprap.org/wiki/G-code#M110:_Set_Current_Line_Number">M110: Set Current Line Number</a>
  5717. Sets the line number in G-code
  5718. M110 [ N ]
  5719. - `N` - Line number
  5720. */
  5721. case 110:
  5722. if (code_seen('N'))
  5723. gcode_LastN = code_value_long();
  5724. break;
  5725. /*!
  5726. ### M113 - Get or set host keep-alive interval <a href="https://reprap.org/wiki/G-code#M113:_Host_Keepalive">M113: Host Keepalive</a>
  5727. During some lengthy processes, such as G29, Marlin may appear to the host to have “gone away.” The “host keepalive” feature will send messages to the host when Marlin is busy or waiting for user response so the host won’t try to reconnect.
  5728. M113 [ S ]
  5729. - `S` - Seconds Default is 2 seconds between "busy" messages
  5730. */
  5731. case 113:
  5732. if (code_seen('S')) {
  5733. host_keepalive_interval = (uint8_t)code_value_short();
  5734. // NOMORE(host_keepalive_interval, 60);
  5735. }
  5736. else {
  5737. SERIAL_ECHO_START;
  5738. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  5739. SERIAL_PROTOCOLLN("");
  5740. }
  5741. break;
  5742. /*!
  5743. ### M115 - Firmware info <a href="https://reprap.org/wiki/G-code#M115:_Get_Firmware_Version_and_Capabilities">M115: Get Firmware Version and Capabilities</a>
  5744. Print the firmware info and capabilities
  5745. M115 [ V | U ]
  5746. - V - Report current installed firmware version
  5747. - U - Firmware version provided by G-code to be compared to current one.
  5748. Without any arguments, prints Prusa firmware version number, machine type, extruder count and UUID.
  5749. `M115 U` Checks the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware, it will pause the print for 30s and ask the user to upgrade the firmware.
  5750. _Examples:_
  5751. `M115` results:
  5752. `FIRMWARE_NAME:Prusa-Firmware 3.8.1 based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:1.0 MACHINE_TYPE:Prusa i3 MK3S EXTRUDER_COUNT:1 UUID:00000000-0000-0000-0000-000000000000`
  5753. `M115 V` results:
  5754. `3.8.1`
  5755. `M115 U3.8.2-RC1` results on LCD display for 30s or user interaction:
  5756. `New firmware version available: 3.8.2-RC1 Please upgrade.`
  5757. */
  5758. case 115: // M115
  5759. if (code_seen('V')) {
  5760. // Report the Prusa version number.
  5761. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  5762. } else if (code_seen('U')) {
  5763. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  5764. // pause the print for 30s and ask the user to upgrade the firmware.
  5765. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  5766. } else {
  5767. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  5768. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  5769. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  5770. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  5771. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  5772. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  5773. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  5774. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  5775. SERIAL_ECHOPGM(" UUID:");
  5776. SERIAL_ECHOLNPGM(MACHINE_UUID);
  5777. }
  5778. break;
  5779. /*!
  5780. ### M114 - Get current position <a href="https://reprap.org/wiki/G-code#M114:_Get_Current_Position">M114: Get Current Position</a>
  5781. */
  5782. case 114:
  5783. gcode_M114();
  5784. break;
  5785. /*
  5786. M117 moved up to get the high priority
  5787. case 117: // M117 display message
  5788. starpos = (strchr(strchr_pointer + 5,'*'));
  5789. if(starpos!=NULL)
  5790. *(starpos)='\0';
  5791. lcd_setstatus(strchr_pointer + 5);
  5792. break;*/
  5793. /*!
  5794. ### M120 - Enable endstops <a href="https://reprap.org/wiki/G-code#M120:_Enable_endstop_detection">M120: Enable endstop detection</a>
  5795. */
  5796. case 120:
  5797. enable_endstops(false) ;
  5798. break;
  5799. /*!
  5800. ### M121 - Disable endstops <a href="https://reprap.org/wiki/G-code#M121:_Disable_endstop_detection">M121: Disable endstop detection</a>
  5801. */
  5802. case 121:
  5803. enable_endstops(true) ;
  5804. break;
  5805. /*!
  5806. ### M119 - Get endstop states <a href="https://reprap.org/wiki/G-code#M119:_Get_Endstop_Status">M119: Get Endstop Status</a>
  5807. Returns the current state of the configured X, Y, Z endstops. Takes into account any 'inverted endstop' settings, so one can confirm that the machine is interpreting the endstops correctly.
  5808. */
  5809. case 119:
  5810. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT
  5811. SERIAL_PROTOCOLLN("");
  5812. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  5813. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN
  5814. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  5815. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5816. }else{
  5817. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5818. }
  5819. SERIAL_PROTOCOLLN("");
  5820. #endif
  5821. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  5822. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX
  5823. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  5824. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5825. }else{
  5826. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5827. }
  5828. SERIAL_PROTOCOLLN("");
  5829. #endif
  5830. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  5831. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN
  5832. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  5833. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5834. }else{
  5835. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5836. }
  5837. SERIAL_PROTOCOLLN("");
  5838. #endif
  5839. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  5840. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX
  5841. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  5842. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5843. }else{
  5844. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5845. }
  5846. SERIAL_PROTOCOLLN("");
  5847. #endif
  5848. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  5849. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  5850. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  5851. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5852. }else{
  5853. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5854. }
  5855. SERIAL_PROTOCOLLN("");
  5856. #endif
  5857. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  5858. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  5859. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  5860. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  5861. }else{
  5862. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  5863. }
  5864. SERIAL_PROTOCOLLN("");
  5865. #endif
  5866. break;
  5867. //TODO: update for all axis, use for loop
  5868. #ifdef BLINKM
  5869. /*!
  5870. ### M150 - Set RGB(W) Color <a href="https://reprap.org/wiki/G-code#M150:_Set_LED_color">M150: Set LED color</a>
  5871. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code by defining BLINKM and its dependencies.
  5872. */
  5873. case 150:
  5874. {
  5875. byte red;
  5876. byte grn;
  5877. byte blu;
  5878. if(code_seen('R')) red = code_value();
  5879. if(code_seen('U')) grn = code_value();
  5880. if(code_seen('B')) blu = code_value();
  5881. SendColors(red,grn,blu);
  5882. }
  5883. break;
  5884. #endif //BLINKM
  5885. /*!
  5886. ### M200 - Set filament diameter <a href="https://reprap.org/wiki/G-code#M200:_Set_filament_diameter">M200: Set filament diameter</a>
  5887. M200 [ D | T ]
  5888. - `D` - Diameter in mm
  5889. - `T` - Number of extruder (MMUs)
  5890. */
  5891. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5892. {
  5893. uint8_t extruder = active_extruder;
  5894. if(code_seen('T')) {
  5895. extruder = code_value();
  5896. if(extruder >= EXTRUDERS) {
  5897. SERIAL_ECHO_START;
  5898. SERIAL_ECHO(_n("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER
  5899. break;
  5900. }
  5901. }
  5902. if(code_seen('D')) {
  5903. float diameter = (float)code_value();
  5904. if (diameter == 0.0) {
  5905. // setting any extruder filament size disables volumetric on the assumption that
  5906. // slicers either generate in extruder values as cubic mm or as as filament feeds
  5907. // for all extruders
  5908. cs.volumetric_enabled = false;
  5909. } else {
  5910. cs.filament_size[extruder] = (float)code_value();
  5911. // make sure all extruders have some sane value for the filament size
  5912. cs.filament_size[0] = (cs.filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[0]);
  5913. #if EXTRUDERS > 1
  5914. cs.filament_size[1] = (cs.filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[1]);
  5915. #if EXTRUDERS > 2
  5916. cs.filament_size[2] = (cs.filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : cs.filament_size[2]);
  5917. #endif
  5918. #endif
  5919. cs.volumetric_enabled = true;
  5920. }
  5921. } else {
  5922. //reserved for setting filament diameter via UFID or filament measuring device
  5923. break;
  5924. }
  5925. calculate_extruder_multipliers();
  5926. }
  5927. break;
  5928. /*!
  5929. ### M201 - Set Print Max Acceleration <a href="https://reprap.org/wiki/G-code#M201:_Set_max_printing_acceleration">M201: Set max printing acceleration</a>
  5930. */
  5931. case 201:
  5932. for (int8_t i = 0; i < NUM_AXIS; i++)
  5933. {
  5934. if (code_seen(axis_codes[i]))
  5935. {
  5936. unsigned long val = code_value();
  5937. #ifdef TMC2130
  5938. unsigned long val_silent = val;
  5939. if ((i == X_AXIS) || (i == Y_AXIS))
  5940. {
  5941. if (val > NORMAL_MAX_ACCEL_XY)
  5942. val = NORMAL_MAX_ACCEL_XY;
  5943. if (val_silent > SILENT_MAX_ACCEL_XY)
  5944. val_silent = SILENT_MAX_ACCEL_XY;
  5945. }
  5946. cs.max_acceleration_units_per_sq_second_normal[i] = val;
  5947. cs.max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5948. #else //TMC2130
  5949. max_acceleration_units_per_sq_second[i] = val;
  5950. #endif //TMC2130
  5951. }
  5952. }
  5953. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5954. reset_acceleration_rates();
  5955. break;
  5956. #if 0 // Not used for Sprinter/grbl gen6
  5957. case 202: // M202
  5958. for(int8_t i=0; i < NUM_AXIS; i++) {
  5959. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * cs.axis_steps_per_unit[i];
  5960. }
  5961. break;
  5962. #endif
  5963. /*!
  5964. ### M203 - Set Max Feedrate <a href="https://reprap.org/wiki/G-code#M203:_Set_maximum_feedrate">M203: Set maximum feedrate</a>
  5965. */
  5966. case 203: // M203 max feedrate mm/sec
  5967. for (int8_t i = 0; i < NUM_AXIS; i++)
  5968. {
  5969. if (code_seen(axis_codes[i]))
  5970. {
  5971. float val = code_value();
  5972. #ifdef TMC2130
  5973. float val_silent = val;
  5974. if ((i == X_AXIS) || (i == Y_AXIS))
  5975. {
  5976. if (val > NORMAL_MAX_FEEDRATE_XY)
  5977. val = NORMAL_MAX_FEEDRATE_XY;
  5978. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5979. val_silent = SILENT_MAX_FEEDRATE_XY;
  5980. }
  5981. cs.max_feedrate_normal[i] = val;
  5982. cs.max_feedrate_silent[i] = val_silent;
  5983. #else //TMC2130
  5984. max_feedrate[i] = val;
  5985. #endif //TMC2130
  5986. }
  5987. }
  5988. break;
  5989. /*!
  5990. ### M204 - Acceleration settings <a href="https://reprap.org/wiki/G-code#M204:_Set_default_acceleration">M204: Set default acceleration</a>
  5991. */
  5992. /*! Supporting old format:
  5993. M204 [ S | T ]
  5994. - `S` - normal moves
  5995. - `T` - filmanent only moves
  5996. and new format:
  5997. M204 [ P | R | T ]
  5998. - `P` - printing moves
  5999. - `R` - filmanent only moves
  6000. - `T` - travel moves (as of now T is ignored)
  6001. */
  6002. case 204:
  6003. {
  6004. if(code_seen('S')) {
  6005. // Legacy acceleration format. This format is used by the legacy Marlin, MK2 or MK3 firmware,
  6006. // and it is also generated by Slic3r to control acceleration per extrusion type
  6007. // (there is a separate acceleration settings in Slicer for perimeter, first layer etc).
  6008. cs.acceleration = code_value();
  6009. // Interpret the T value as retract acceleration in the old Marlin format.
  6010. if(code_seen('T'))
  6011. cs.retract_acceleration = code_value();
  6012. } else {
  6013. // New acceleration format, compatible with the upstream Marlin.
  6014. if(code_seen('P'))
  6015. cs.acceleration = code_value();
  6016. if(code_seen('R'))
  6017. cs.retract_acceleration = code_value();
  6018. if(code_seen('T')) {
  6019. // Interpret the T value as the travel acceleration in the new Marlin format.
  6020. //FIXME Prusa3D firmware currently does not support travel acceleration value independent from the extruding acceleration value.
  6021. // travel_acceleration = code_value();
  6022. }
  6023. }
  6024. }
  6025. break;
  6026. /*!
  6027. ### M205 - Set advanced settings <a href="https://reprap.org/wiki/G-code#M205:_Advanced_settings">M205: Advanced settings</a>
  6028. */
  6029. /*! Set some advanced settings related to movement.
  6030. M205 [ S | T | B | X | Y | Z | E ]
  6031. - `S` - Minimum feedrate for print moves (unit/s)
  6032. - `T` - Minimum feedrate for travel moves (units/s)
  6033. - `B` - Minimum segment time (us)
  6034. - `X` - Maximum X jerk (units/s)
  6035. - `Y` - Maximum Y jerk (units/s)
  6036. - `Z` - Maximum Z jerk (units/s)
  6037. - `E` - Maximum E jerk (units/s)
  6038. */
  6039. case 205:
  6040. {
  6041. if(code_seen('S')) cs.minimumfeedrate = code_value();
  6042. if(code_seen('T')) cs.mintravelfeedrate = code_value();
  6043. if(code_seen('B')) cs.minsegmenttime = code_value() ;
  6044. if(code_seen('X')) cs.max_jerk[X_AXIS] = cs.max_jerk[Y_AXIS] = code_value();
  6045. if(code_seen('Y')) cs.max_jerk[Y_AXIS] = code_value();
  6046. if(code_seen('Z')) cs.max_jerk[Z_AXIS] = code_value();
  6047. if(code_seen('E')) cs.max_jerk[E_AXIS] = code_value();
  6048. if (cs.max_jerk[X_AXIS] > DEFAULT_XJERK) cs.max_jerk[X_AXIS] = DEFAULT_XJERK;
  6049. if (cs.max_jerk[Y_AXIS] > DEFAULT_YJERK) cs.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  6050. }
  6051. break;
  6052. /*!
  6053. ### M206 - Set additional homing offsets <a href="https://reprap.org/wiki/G-code#M206:_Offset_axes">M206: Offset axes</a>
  6054. M206 [ X | Y | Z]
  6055. - `X` - X axis offset
  6056. - `Y` - Y axis offset
  6057. - `Z` - Z axis offset
  6058. */
  6059. case 206:
  6060. for(int8_t i=0; i < 3; i++)
  6061. {
  6062. if(code_seen(axis_codes[i])) cs.add_homing[i] = code_value();
  6063. }
  6064. break;
  6065. #ifdef FWRETRACT
  6066. /*!
  6067. ### M207 - Set firmware retraction <a href="https://reprap.org/wiki/G-code#M207:_Set_retract_length">M207: Set retract length</a>
  6068. M207 [ S | F | Z]
  6069. - `S` - positive length to retract, in mm
  6070. - `F` - retraction feedrate, in mm/min
  6071. - `Z` - additional zlift/hop
  6072. */
  6073. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  6074. {
  6075. if(code_seen('S'))
  6076. {
  6077. cs.retract_length = code_value() ;
  6078. }
  6079. if(code_seen('F'))
  6080. {
  6081. cs.retract_feedrate = code_value()/60 ;
  6082. }
  6083. if(code_seen('Z'))
  6084. {
  6085. cs.retract_zlift = code_value() ;
  6086. }
  6087. }break;
  6088. /*!
  6089. ### M208 - Set retract recover length <a href="https://reprap.org/wiki/G-code#M208:_Set_unretract_length">M208: Set unretract length</a>
  6090. M208 [ S | F ]
  6091. - `S` - positive length surplus to the M207 Snnn, in mm
  6092. - `F` - feedrate, in mm/sec
  6093. */
  6094. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  6095. {
  6096. if(code_seen('S'))
  6097. {
  6098. cs.retract_recover_length = code_value() ;
  6099. }
  6100. if(code_seen('F'))
  6101. {
  6102. cs.retract_recover_feedrate = code_value()/60 ;
  6103. }
  6104. }break;
  6105. /*!
  6106. ### M209 - Enable/disable automatict retract <a href="https://reprap.org/wiki/G-code#M209:_Enable_automatic_retract">M209: Enable automatic retract</a>
  6107. M209 [ S ]
  6108. - `S` - 1=true or 0=false
  6109. This boolean value S 1=true or 0=false enables automatic retract detect if the slicer did not support G10/G11: every normal extrude-only move will be classified as retract depending on the direction.
  6110. */
  6111. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  6112. {
  6113. if(code_seen('S'))
  6114. {
  6115. int t= code_value() ;
  6116. switch(t)
  6117. {
  6118. case 0:
  6119. {
  6120. cs.autoretract_enabled=false;
  6121. retracted[0]=false;
  6122. #if EXTRUDERS > 1
  6123. retracted[1]=false;
  6124. #endif
  6125. #if EXTRUDERS > 2
  6126. retracted[2]=false;
  6127. #endif
  6128. }break;
  6129. case 1:
  6130. {
  6131. cs.autoretract_enabled=true;
  6132. retracted[0]=false;
  6133. #if EXTRUDERS > 1
  6134. retracted[1]=false;
  6135. #endif
  6136. #if EXTRUDERS > 2
  6137. retracted[2]=false;
  6138. #endif
  6139. }break;
  6140. default:
  6141. SERIAL_ECHO_START;
  6142. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6143. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6144. SERIAL_ECHOLNPGM("\"(1)");
  6145. }
  6146. }
  6147. }break;
  6148. #endif // FWRETRACT
  6149. #if EXTRUDERS > 1
  6150. /*!
  6151. ### M218 - Set hotend offset <a href="https://reprap.org/wiki/G-code#M218:_Set_Hotend_Offset">M218: Set Hotend Offset</a>
  6152. In Prusa Firmware this G-code is only active if `EXTRUDERS` is higher then 1 in the source code. On Original i3 Prusa MK2/s MK2.5/s MK3/s it is not active.
  6153. */
  6154. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  6155. {
  6156. uint8_t extruder;
  6157. if(setTargetedHotend(218, extruder)){
  6158. break;
  6159. }
  6160. if(code_seen('X'))
  6161. {
  6162. extruder_offset[X_AXIS][extruder] = code_value();
  6163. }
  6164. if(code_seen('Y'))
  6165. {
  6166. extruder_offset[Y_AXIS][extruder] = code_value();
  6167. }
  6168. SERIAL_ECHO_START;
  6169. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  6170. for(extruder = 0; extruder < EXTRUDERS; extruder++)
  6171. {
  6172. SERIAL_ECHO(" ");
  6173. SERIAL_ECHO(extruder_offset[X_AXIS][extruder]);
  6174. SERIAL_ECHO(",");
  6175. SERIAL_ECHO(extruder_offset[Y_AXIS][extruder]);
  6176. }
  6177. SERIAL_ECHOLN("");
  6178. }break;
  6179. #endif
  6180. /*!
  6181. ### M220 Set feedrate percentage <a href="https://reprap.org/wiki/G-code#M220:_Set_speed_factor_override_percentage">M220: Set speed factor override percentage</a>
  6182. M220 [ B | S | R ]
  6183. - `B` - Backup current speed factor
  6184. - `S` - Speed factor override percentage (0..100 or higher)
  6185. - `R` - Restore previous speed factor
  6186. */
  6187. case 220: // M220 S<factor in percent>- set speed factor override percentage
  6188. {
  6189. if (code_seen('B')) //backup current speed factor
  6190. {
  6191. saved_feedmultiply_mm = feedmultiply;
  6192. }
  6193. if(code_seen('S'))
  6194. {
  6195. feedmultiply = code_value() ;
  6196. }
  6197. if (code_seen('R')) { //restore previous feedmultiply
  6198. feedmultiply = saved_feedmultiply_mm;
  6199. }
  6200. }
  6201. break;
  6202. /*!
  6203. ### M221 - Set extrude factor override percentage <a href="https://reprap.org/wiki/G-code#M221:_Set_extrude_factor_override_percentage">M221: Set extrude factor override percentage</a>
  6204. M221 [ S | T ]
  6205. - `S` - Extrude factor override percentage (0..100 or higher), default 100%
  6206. - `T` - Extruder drive number (Prusa Firmware only), default 0 if not set.
  6207. */
  6208. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  6209. {
  6210. if(code_seen('S'))
  6211. {
  6212. int tmp_code = code_value();
  6213. if (code_seen('T'))
  6214. {
  6215. uint8_t extruder;
  6216. if(setTargetedHotend(221, extruder)){
  6217. break;
  6218. }
  6219. extruder_multiply[extruder] = tmp_code;
  6220. }
  6221. else
  6222. {
  6223. extrudemultiply = tmp_code ;
  6224. }
  6225. }
  6226. calculate_extruder_multipliers();
  6227. }
  6228. break;
  6229. /*!
  6230. ### M226 - Wait for Pin state <a href="https://reprap.org/wiki/G-code#M226:_Wait_for_pin_state">M226: Wait for pin state</a>
  6231. M226 [ P | S ]
  6232. - `P` - pin number
  6233. - `S` - pin state
  6234. Wait until the specified pin reaches the state required
  6235. */
  6236. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6237. {
  6238. if(code_seen('P')){
  6239. int pin_number = code_value(); // pin number
  6240. int pin_state = -1; // required pin state - default is inverted
  6241. if(code_seen('S')) pin_state = code_value(); // required pin state
  6242. if(pin_state >= -1 && pin_state <= 1){
  6243. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  6244. {
  6245. if (sensitive_pins[i] == pin_number)
  6246. {
  6247. pin_number = -1;
  6248. break;
  6249. }
  6250. }
  6251. if (pin_number > -1)
  6252. {
  6253. int target = LOW;
  6254. st_synchronize();
  6255. pinMode(pin_number, INPUT);
  6256. switch(pin_state){
  6257. case 1:
  6258. target = HIGH;
  6259. break;
  6260. case 0:
  6261. target = LOW;
  6262. break;
  6263. case -1:
  6264. target = !digitalRead(pin_number);
  6265. break;
  6266. }
  6267. while(digitalRead(pin_number) != target){
  6268. manage_heater();
  6269. manage_inactivity();
  6270. lcd_update(0);
  6271. }
  6272. }
  6273. }
  6274. }
  6275. }
  6276. break;
  6277. #if NUM_SERVOS > 0
  6278. /*!
  6279. ### M280 - Set/Get servo position <a href="https://reprap.org/wiki/G-code#M280:_Set_servo_position">M280: Set servo position</a>
  6280. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6281. */
  6282. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6283. {
  6284. int servo_index = -1;
  6285. int servo_position = 0;
  6286. if (code_seen('P'))
  6287. servo_index = code_value();
  6288. if (code_seen('S')) {
  6289. servo_position = code_value();
  6290. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  6291. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6292. servos[servo_index].attach(0);
  6293. #endif
  6294. servos[servo_index].write(servo_position);
  6295. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  6296. _delay(PROBE_SERVO_DEACTIVATION_DELAY);
  6297. servos[servo_index].detach();
  6298. #endif
  6299. }
  6300. else {
  6301. SERIAL_ECHO_START;
  6302. SERIAL_ECHO("Servo ");
  6303. SERIAL_ECHO(servo_index);
  6304. SERIAL_ECHOLN(" out of range");
  6305. }
  6306. }
  6307. else if (servo_index >= 0) {
  6308. SERIAL_PROTOCOL(MSG_OK);
  6309. SERIAL_PROTOCOL(" Servo ");
  6310. SERIAL_PROTOCOL(servo_index);
  6311. SERIAL_PROTOCOL(": ");
  6312. SERIAL_PROTOCOL(servos[servo_index].read());
  6313. SERIAL_PROTOCOLLN("");
  6314. }
  6315. }
  6316. break;
  6317. #endif // NUM_SERVOS > 0
  6318. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  6319. /*!
  6320. ### M300 - Play tone <a href="https://reprap.org/wiki/G-code#M300:_Play_beep_sound">M300: Play beep sound</a>
  6321. M300 [ S | P ]
  6322. - `S` - frequency in Hz
  6323. - `P` - duration in milliseconds
  6324. In Prusa Firmware the defaults are `100Hz` and `1000ms`, so that `M300` without parameters will beep for a second.
  6325. */
  6326. case 300: // M300
  6327. {
  6328. int beepS = code_seen('S') ? code_value() : 110;
  6329. int beepP = code_seen('P') ? code_value() : 1000;
  6330. if (beepS > 0)
  6331. {
  6332. #if BEEPER > 0
  6333. Sound_MakeCustom(beepP,beepS,false);
  6334. #endif
  6335. }
  6336. else
  6337. {
  6338. _delay(beepP);
  6339. }
  6340. }
  6341. break;
  6342. #endif // M300
  6343. #ifdef PIDTEMP
  6344. /*!
  6345. ### M301 - Set hotend PID <a href="https://reprap.org/wiki/G-code#M301:_Set_PID_parameters">M301: Set PID parameters</a>
  6346. M301 [ P | I | D | C ]
  6347. - `P` - proportional (Kp)
  6348. - `I` - integral (Ki)
  6349. - `D` - derivative (Kd)
  6350. - `C` - heating power=Kc*(e_speed0)
  6351. Sets Proportional (P), Integral (I) and Derivative (D) values for hot end.
  6352. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6353. */
  6354. case 301:
  6355. {
  6356. if(code_seen('P')) cs.Kp = code_value();
  6357. if(code_seen('I')) cs.Ki = scalePID_i(code_value());
  6358. if(code_seen('D')) cs.Kd = scalePID_d(code_value());
  6359. #ifdef PID_ADD_EXTRUSION_RATE
  6360. if(code_seen('C')) Kc = code_value();
  6361. #endif
  6362. updatePID();
  6363. SERIAL_PROTOCOLRPGM(MSG_OK);
  6364. SERIAL_PROTOCOL(" p:");
  6365. SERIAL_PROTOCOL(cs.Kp);
  6366. SERIAL_PROTOCOL(" i:");
  6367. SERIAL_PROTOCOL(unscalePID_i(cs.Ki));
  6368. SERIAL_PROTOCOL(" d:");
  6369. SERIAL_PROTOCOL(unscalePID_d(cs.Kd));
  6370. #ifdef PID_ADD_EXTRUSION_RATE
  6371. SERIAL_PROTOCOL(" c:");
  6372. //Kc does not have scaling applied above, or in resetting defaults
  6373. SERIAL_PROTOCOL(Kc);
  6374. #endif
  6375. SERIAL_PROTOCOLLN("");
  6376. }
  6377. break;
  6378. #endif //PIDTEMP
  6379. #ifdef PIDTEMPBED
  6380. /*!
  6381. ### M304 - Set bed PID <a href="https://reprap.org/wiki/G-code#M304:_Set_PID_parameters_-_Bed">M304: Set PID parameters - Bed</a>
  6382. M304 [ P | I | D ]
  6383. - `P` - proportional (Kp)
  6384. - `I` - integral (Ki)
  6385. - `D` - derivative (Kd)
  6386. Sets Proportional (P), Integral (I) and Derivative (D) values for bed.
  6387. See also <a href="https://reprap.org/wiki/PID_Tuning">PID Tuning.</a>
  6388. */
  6389. case 304:
  6390. {
  6391. if(code_seen('P')) cs.bedKp = code_value();
  6392. if(code_seen('I')) cs.bedKi = scalePID_i(code_value());
  6393. if(code_seen('D')) cs.bedKd = scalePID_d(code_value());
  6394. updatePID();
  6395. SERIAL_PROTOCOLRPGM(MSG_OK);
  6396. SERIAL_PROTOCOL(" p:");
  6397. SERIAL_PROTOCOL(cs.bedKp);
  6398. SERIAL_PROTOCOL(" i:");
  6399. SERIAL_PROTOCOL(unscalePID_i(cs.bedKi));
  6400. SERIAL_PROTOCOL(" d:");
  6401. SERIAL_PROTOCOL(unscalePID_d(cs.bedKd));
  6402. SERIAL_PROTOCOLLN("");
  6403. }
  6404. break;
  6405. #endif //PIDTEMP
  6406. /*!
  6407. ### M240 - Trigger camera <a href="https://reprap.org/wiki/G-code#M240:_Trigger_camera">M240: Trigger camera</a>
  6408. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6409. You need to define `CHDK` and assign a `PHOTOGRAPH_PIN` to bea ble to use it.
  6410. */
  6411. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6412. {
  6413. #ifdef CHDK
  6414. SET_OUTPUT(CHDK);
  6415. WRITE(CHDK, HIGH);
  6416. chdkHigh = _millis();
  6417. chdkActive = true;
  6418. #else
  6419. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  6420. const uint8_t NUM_PULSES=16;
  6421. const float PULSE_LENGTH=0.01524;
  6422. for(int i=0; i < NUM_PULSES; i++) {
  6423. WRITE(PHOTOGRAPH_PIN, HIGH);
  6424. _delay_ms(PULSE_LENGTH);
  6425. WRITE(PHOTOGRAPH_PIN, LOW);
  6426. _delay_ms(PULSE_LENGTH);
  6427. }
  6428. _delay(7.33);
  6429. for(int i=0; i < NUM_PULSES; i++) {
  6430. WRITE(PHOTOGRAPH_PIN, HIGH);
  6431. _delay_ms(PULSE_LENGTH);
  6432. WRITE(PHOTOGRAPH_PIN, LOW);
  6433. _delay_ms(PULSE_LENGTH);
  6434. }
  6435. #endif
  6436. #endif //chdk end if
  6437. }
  6438. break;
  6439. #ifdef PREVENT_DANGEROUS_EXTRUDE
  6440. /*!
  6441. ### M302 - Allow cold extrude, or set minimum extrude temperature <a href="https://reprap.org/wiki/G-code#M302:_Allow_cold_extrudes">M302: Allow cold extrudes</a>
  6442. M302 [ S ]
  6443. - `S` - Cold extrude minimum temperature
  6444. This tells the printer to allow movement of the extruder motor above a certain temperature, or if disabled, to allow extruder movement when the hotend is below a safe printing temperature.
  6445. */
  6446. case 302:
  6447. {
  6448. float temp = .0;
  6449. if (code_seen('S')) temp=code_value();
  6450. set_extrude_min_temp(temp);
  6451. }
  6452. break;
  6453. #endif
  6454. /*!
  6455. ### M303 - PID autotune <a href="https://reprap.org/wiki/G-code#M303:_Run_PID_tuning">M303: Run PID tuning</a>
  6456. M303 [ E | S | C ]
  6457. - `E` - Extruder, default `E0`.
  6458. - `S` - Target temperature, default `210°C`
  6459. - `C` - Cycles, default `5`
  6460. PID Tuning refers to a control algorithm used in some repraps to tune heating behavior for hot ends and heated beds. This command generates Proportional (Kp), Integral (Ki), and Derivative (Kd) values for the hotend or bed (`E-1`). Send the appropriate code and wait for the output to update the firmware.
  6461. */
  6462. case 303:
  6463. {
  6464. float temp = 150.0;
  6465. int e=0;
  6466. int c=5;
  6467. if (code_seen('E')) e=code_value();
  6468. if (e<0)
  6469. temp=70;
  6470. if (code_seen('S')) temp=code_value();
  6471. if (code_seen('C')) c=code_value();
  6472. PID_autotune(temp, e, c);
  6473. }
  6474. break;
  6475. /*!
  6476. ### M400 - Wait for all moves to finish <a href="https://reprap.org/wiki/G-code#M400:_Wait_for_current_moves_to_finish">M400: Wait for current moves to finish</a>
  6477. Finishes all current moves and and thus clears the buffer.
  6478. */
  6479. case 400:
  6480. {
  6481. st_synchronize();
  6482. }
  6483. break;
  6484. /*!
  6485. ### M403 - Set filament type (material) for particular extruder and notify the MMU <a href="https://reprap.org/wiki/G-code#M403:_Set_filament_type_.28material.29_for_particular_extruder_and_notify_the_MMU.">M403 - Set filament type (material) for particular extruder and notify the MMU</a>
  6486. M403 [ E | F ]
  6487. - `E` - Extruder number
  6488. - `F` - Filament type
  6489. Currently three different materials are needed (default, flex and PVA).
  6490. And storing this information for different load/unload profiles etc. in the future firmware does not have to wait for "ok" from MMU.
  6491. */
  6492. case 403:
  6493. {
  6494. // currently three different materials are needed (default, flex and PVA)
  6495. // add storing this information for different load/unload profiles etc. in the future
  6496. // firmware does not wait for "ok" from mmu
  6497. if (mmu_enabled)
  6498. {
  6499. uint8_t extruder = 255;
  6500. uint8_t filament = FILAMENT_UNDEFINED;
  6501. if(code_seen('E')) extruder = code_value();
  6502. if(code_seen('F')) filament = code_value();
  6503. mmu_set_filament_type(extruder, filament);
  6504. }
  6505. }
  6506. break;
  6507. /*!
  6508. ### M500 - Store settings in EEPROM <a href="https://reprap.org/wiki/G-code#M500:_Store_parameters_in_non-volatile_storage">M500: Store parameters in non-volatile storage</a>
  6509. Save current parameters to EEPROM, SD card or other non-volatile storage.
  6510. */
  6511. case 500:
  6512. {
  6513. Config_StoreSettings();
  6514. }
  6515. break;
  6516. /*!
  6517. ### M501 - Read settings from EEPROM <a href="https://reprap.org/wiki/G-code#M501:_Read_parameters_from_EEPROM">M501: Read parameters from EEPROM</a>
  6518. Set the active parameters to those stored in the EEPROM, SD card or other non-volatile storage. This is useful to revert parameters after experimenting with them.
  6519. */
  6520. case 501:
  6521. {
  6522. Config_RetrieveSettings();
  6523. }
  6524. break;
  6525. /*!
  6526. ### M502 - Revert all settings to factory default <a href="https://reprap.org/wiki/G-code#M502:_Restore_Default_Settings">M502: Restore Default Settings</a>
  6527. This command resets all tunable parameters to their default values, as set in the firmware's configuration files. This doesn't reset any parameters stored in the EEPROM, so it must be followed with M500 to reboot with default settings.
  6528. */
  6529. case 502:
  6530. {
  6531. Config_ResetDefault();
  6532. }
  6533. break;
  6534. /*!
  6535. ### M503 - Repport all settings currently in memory <a href="https://reprap.org/wiki/G-code#M503:_Report_Current_Settings">M503: Report Current Settings</a>
  6536. This command asks the firmware to reply with the current print settings as set in memory. Settings will differ from EEPROM contents if changed since the last load / save. The reply output includes the G-Code commands to produce each setting. For example, Steps-Per-Unit values are displayed as an M92 command.
  6537. */
  6538. case 503:
  6539. {
  6540. Config_PrintSettings();
  6541. }
  6542. break;
  6543. /*!
  6544. ### M509 - Force language selection <a href="https://reprap.org/wiki/G-code#M509:_Force_language_selection">M509: Force language selection</a>
  6545. Resets the language to English.
  6546. Only on Original Prusa i3 MK2.5/s and MK3/s with multiple languages.
  6547. */
  6548. case 509:
  6549. {
  6550. lang_reset();
  6551. SERIAL_ECHO_START;
  6552. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  6553. }
  6554. break;
  6555. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  6556. /*!
  6557. ### M540 - Abort print on endstop hit (enable/disable) <a href="https://reprap.org/wiki/G-code#M540_in_Marlin:_Enable.2FDisable_.22Stop_SD_Print_on_Endstop_Hit.22">M540 in Marlin: Enable/Disable "Stop SD Print on Endstop Hit"</a>
  6558. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code. You must define `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED`.
  6559. */
  6560. case 540:
  6561. {
  6562. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  6563. }
  6564. break;
  6565. #endif
  6566. /*!
  6567. ### M851 - Set Z-Probe Offset <a href="https://reprap.org/wiki/G-code#M851:_Set_Z-Probe_Offset">M851: Set Z-Probe Offset"</a>
  6568. M4861 [ Z ]
  6569. - `Z` - Z offset probe to nozzle.
  6570. Sets the Z-probe Z offset. This offset is used to determine the actual Z position of the nozzle when using a probe to home Z with G28. This value may also be used by G81 (Prusa) / G29 (Marlin) to apply correction to the Z position.
  6571. This value represents the distance from nozzle to the bed surface at the point where the probe is triggered. This value will be negative for typical switch probes, inductive probes, and setups where the nozzle makes a circuit with a raised metal contact. This setting will be greater than zero on machines where the nozzle itself is used as the probe, pressing down on the bed to press a switch. (This is a common setup on delta machines.)
  6572. */
  6573. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6574. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  6575. {
  6576. float value;
  6577. if (code_seen('Z'))
  6578. {
  6579. value = code_value();
  6580. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  6581. {
  6582. cs.zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  6583. SERIAL_ECHO_START;
  6584. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  6585. SERIAL_PROTOCOLLN("");
  6586. }
  6587. else
  6588. {
  6589. SERIAL_ECHO_START;
  6590. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  6591. SERIAL_ECHORPGM(MSG_Z_MIN);
  6592. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  6593. SERIAL_ECHORPGM(MSG_Z_MAX);
  6594. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  6595. SERIAL_PROTOCOLLN("");
  6596. }
  6597. }
  6598. else
  6599. {
  6600. SERIAL_ECHO_START;
  6601. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  6602. SERIAL_ECHO(-cs.zprobe_zoffset);
  6603. SERIAL_PROTOCOLLN("");
  6604. }
  6605. break;
  6606. }
  6607. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  6608. #ifdef FILAMENTCHANGEENABLE
  6609. /*!
  6610. ### M600 - Initiate Filament change procedure <a href="https://reprap.org/wiki/G-code#M600:_Filament_change_pause">M600: Filament change pause</a>
  6611. M600 [ X | Y | Z | E | L | AUTO ]
  6612. - `X` - X position, default 211
  6613. - `Y` - Y position, default 0
  6614. - `Z` - relative lift Z, default 2.
  6615. - `E` - initial retract, default -2
  6616. - `L` - later retract distance for removal, default -80
  6617. - `AUTO` - Automatically (only with MMU)
  6618. Initiates Filament change, it is also used during Filament Runout Sensor process.
  6619. If the `M600` is triggered under 25mm it will do a Z-lift of 25mm to prevent a filament blob.
  6620. */
  6621. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6622. {
  6623. st_synchronize();
  6624. float x_position = current_position[X_AXIS];
  6625. float y_position = current_position[Y_AXIS];
  6626. float z_shift = 0; // is it necessary to be a float?
  6627. float e_shift_init = 0;
  6628. float e_shift_late = 0;
  6629. bool automatic = false;
  6630. //Retract extruder
  6631. if(code_seen('E'))
  6632. {
  6633. e_shift_init = code_value();
  6634. }
  6635. else
  6636. {
  6637. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  6638. e_shift_init = FILAMENTCHANGE_FIRSTRETRACT ;
  6639. #endif
  6640. }
  6641. //currently don't work as we are using the same unload sequence as in M702, needs re-work
  6642. if (code_seen('L'))
  6643. {
  6644. e_shift_late = code_value();
  6645. }
  6646. else
  6647. {
  6648. #ifdef FILAMENTCHANGE_FINALRETRACT
  6649. e_shift_late = FILAMENTCHANGE_FINALRETRACT;
  6650. #endif
  6651. }
  6652. //Lift Z
  6653. if(code_seen('Z'))
  6654. {
  6655. z_shift = code_value();
  6656. }
  6657. else
  6658. {
  6659. z_shift = gcode_M600_filament_change_z_shift<uint8_t>();
  6660. }
  6661. //Move XY to side
  6662. if(code_seen('X'))
  6663. {
  6664. x_position = code_value();
  6665. }
  6666. else
  6667. {
  6668. #ifdef FILAMENTCHANGE_XPOS
  6669. x_position = FILAMENTCHANGE_XPOS;
  6670. #endif
  6671. }
  6672. if(code_seen('Y'))
  6673. {
  6674. y_position = code_value();
  6675. }
  6676. else
  6677. {
  6678. #ifdef FILAMENTCHANGE_YPOS
  6679. y_position = FILAMENTCHANGE_YPOS ;
  6680. #endif
  6681. }
  6682. if (mmu_enabled && code_seen("AUTO"))
  6683. automatic = true;
  6684. gcode_M600(automatic, x_position, y_position, z_shift, e_shift_init, e_shift_late);
  6685. }
  6686. break;
  6687. #endif //FILAMENTCHANGEENABLE
  6688. /*!
  6689. ### M601 - Pause print <a href="https://reprap.org/wiki/G-code#M601:_Pause_print">M601: Pause print</a>
  6690. */
  6691. /*!
  6692. ### M125 - Pause print (TODO: not implemented)
  6693. */
  6694. /*!
  6695. ### M25 - Pause SD print <a href="https://reprap.org/wiki/G-code#M25:_Pause_SD_print">M25: Pause SD print</a>
  6696. */
  6697. case 25:
  6698. case 601:
  6699. {
  6700. if (!isPrintPaused)
  6701. {
  6702. st_synchronize();
  6703. cmdqueue_pop_front(); //trick because we want skip this command (M601) after restore
  6704. lcd_pause_print();
  6705. }
  6706. }
  6707. break;
  6708. /*!
  6709. ### M602 - Resume print <a href="https://reprap.org/wiki/G-code#M602:_Resume_print">M602: Resume print</a>
  6710. */
  6711. case 602: {
  6712. if (isPrintPaused)
  6713. lcd_resume_print();
  6714. }
  6715. break;
  6716. /*!
  6717. ### M603 - Stop print <a href="https://reprap.org/wiki/G-code#M603:_Stop_print">M603: Stop print</a>
  6718. */
  6719. case 603: {
  6720. lcd_print_stop();
  6721. }
  6722. break;
  6723. #ifdef PINDA_THERMISTOR
  6724. /*!
  6725. ### M860 - Wait for extruder temperature (PINDA) <a href="https://reprap.org/wiki/G-code#M860_Wait_for_Probe_Temperature">M860 Wait for Probe Temperature</a>
  6726. M860 [ S ]
  6727. - `S` - Target temperature
  6728. Wait for PINDA thermistor to reach target temperature
  6729. */
  6730. case 860:
  6731. {
  6732. int set_target_pinda = 0;
  6733. if (code_seen('S')) {
  6734. set_target_pinda = code_value();
  6735. }
  6736. else {
  6737. break;
  6738. }
  6739. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  6740. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  6741. SERIAL_PROTOCOL(set_target_pinda);
  6742. SERIAL_PROTOCOLLN("");
  6743. codenum = _millis();
  6744. cancel_heatup = false;
  6745. bool is_pinda_cooling = false;
  6746. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  6747. is_pinda_cooling = true;
  6748. }
  6749. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  6750. if ((_millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  6751. {
  6752. SERIAL_PROTOCOLPGM("P:");
  6753. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  6754. SERIAL_PROTOCOLPGM("/");
  6755. SERIAL_PROTOCOL(set_target_pinda);
  6756. SERIAL_PROTOCOLLN("");
  6757. codenum = _millis();
  6758. }
  6759. manage_heater();
  6760. manage_inactivity();
  6761. lcd_update(0);
  6762. }
  6763. LCD_MESSAGERPGM(MSG_OK);
  6764. break;
  6765. }
  6766. /*!
  6767. ### M861 - Set/Get PINDA temperature compensation offsets <a href="https://reprap.org/wiki/G-code#M861_Set_Probe_Thermal_Compensation">M861 Set Probe Thermal Compensation</a>
  6768. M861 [ ? | ! | Z | S | I ]
  6769. - `?` - Print current EEPROM offset values
  6770. - `!` - Set factory default values
  6771. - `Z` - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6772. - `S` - Microsteps
  6773. - `I` - Table index
  6774. Set compensation ustep value `S` for compensation table index `I`.
  6775. */
  6776. case 861:
  6777. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  6778. uint8_t cal_status = calibration_status_pinda();
  6779. int16_t usteps = 0;
  6780. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  6781. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6782. for (uint8_t i = 0; i < 6; i++)
  6783. {
  6784. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  6785. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6786. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6787. SERIAL_PROTOCOLPGM(", ");
  6788. SERIAL_PROTOCOL(35 + (i * 5));
  6789. SERIAL_PROTOCOLPGM(", ");
  6790. SERIAL_PROTOCOL(usteps);
  6791. SERIAL_PROTOCOLPGM(", ");
  6792. SERIAL_PROTOCOL(mm * 1000);
  6793. SERIAL_PROTOCOLLN("");
  6794. }
  6795. }
  6796. else if (code_seen('!')) { // ! - Set factory default values
  6797. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6798. int16_t z_shift = 8; //40C - 20um - 8usteps
  6799. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  6800. z_shift = 24; //45C - 60um - 24usteps
  6801. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  6802. z_shift = 48; //50C - 120um - 48usteps
  6803. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  6804. z_shift = 80; //55C - 200um - 80usteps
  6805. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  6806. z_shift = 120; //60C - 300um - 120usteps
  6807. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  6808. SERIAL_PROTOCOLLN("factory restored");
  6809. }
  6810. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  6811. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  6812. int16_t z_shift = 0;
  6813. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  6814. SERIAL_PROTOCOLLN("zerorized");
  6815. }
  6816. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  6817. int16_t usteps = code_value();
  6818. if (code_seen('I')) {
  6819. uint8_t index = code_value();
  6820. if (index < 5) {
  6821. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  6822. SERIAL_PROTOCOLLN("OK");
  6823. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  6824. for (uint8_t i = 0; i < 6; i++)
  6825. {
  6826. usteps = 0;
  6827. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  6828. float mm = ((float)usteps) / cs.axis_steps_per_unit[Z_AXIS];
  6829. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  6830. SERIAL_PROTOCOLPGM(", ");
  6831. SERIAL_PROTOCOL(35 + (i * 5));
  6832. SERIAL_PROTOCOLPGM(", ");
  6833. SERIAL_PROTOCOL(usteps);
  6834. SERIAL_PROTOCOLPGM(", ");
  6835. SERIAL_PROTOCOL(mm * 1000);
  6836. SERIAL_PROTOCOLLN("");
  6837. }
  6838. }
  6839. }
  6840. }
  6841. else {
  6842. SERIAL_PROTOCOLPGM("no valid command");
  6843. }
  6844. break;
  6845. #endif //PINDA_THERMISTOR
  6846. /*!
  6847. ### M862 - Print checking <a href="https://reprap.org/wiki/G-code#M862:_Print_checking">M862: Print checking</a>
  6848. Checks the parameters of the printer and gcode and performs compatibility check
  6849. - M862.1 { P<nozzle_diameter> | Q } 0.25/0.40/0.60
  6850. - M862.2 { P<model_code> | Q }
  6851. - M862.3 { P"<model_name>" | Q }
  6852. - M862.4 { P<fw_version> | Q }
  6853. - M862.5 { P<gcode_level> | Q }
  6854. When run with P<> argument, the check is performed against the input value.
  6855. When run with Q argument, the current value is shown.
  6856. M862.3 accepts text identifiers of printer types too.
  6857. The syntax of M862.3 is (note the quotes around the type):
  6858. M862.3 P "MK3S"
  6859. Accepted printer type identifiers and their numeric counterparts:
  6860. - MK1 (100)
  6861. - MK2 (200)
  6862. - MK2MM (201)
  6863. - MK2S (202)
  6864. - MK2SMM (203)
  6865. - MK2.5 (250)
  6866. - MK2.5MMU2 (20250)
  6867. - MK2.5S (252)
  6868. - MK2.5SMMU2S (20252)
  6869. - MK3 (300)
  6870. - MK3MMU2 (20300)
  6871. - MK3S (302)
  6872. - MK3SMMU2S (20302)
  6873. */
  6874. case 862: // M862: print checking
  6875. float nDummy;
  6876. uint8_t nCommand;
  6877. nCommand=(uint8_t)(modff(code_value_float(),&nDummy)*10.0+0.5);
  6878. switch((ClPrintChecking)nCommand)
  6879. {
  6880. case ClPrintChecking::_Nozzle: // ~ .1
  6881. uint16_t nDiameter;
  6882. if(code_seen('P'))
  6883. {
  6884. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6885. nozzle_diameter_check(nDiameter);
  6886. }
  6887. /*
  6888. else if(code_seen('S')&&farm_mode)
  6889. {
  6890. nDiameter=(uint16_t)(code_value()*1000.0+0.5); // [,um]
  6891. eeprom_update_byte((uint8_t*)EEPROM_NOZZLE_DIAMETER,(uint8_t)ClNozzleDiameter::_Diameter_Undef); // for correct synchronization after farm-mode exiting
  6892. eeprom_update_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM,nDiameter);
  6893. }
  6894. */
  6895. else if(code_seen('Q'))
  6896. SERIAL_PROTOCOLLN((float)eeprom_read_word((uint16_t*)EEPROM_NOZZLE_DIAMETER_uM)/1000.0);
  6897. break;
  6898. case ClPrintChecking::_Model: // ~ .2
  6899. if(code_seen('P'))
  6900. {
  6901. uint16_t nPrinterModel;
  6902. nPrinterModel=(uint16_t)code_value_long();
  6903. printer_model_check(nPrinterModel);
  6904. }
  6905. else if(code_seen('Q'))
  6906. SERIAL_PROTOCOLLN(nPrinterType);
  6907. break;
  6908. case ClPrintChecking::_Smodel: // ~ .3
  6909. if(code_seen('P'))
  6910. printer_smodel_check(strchr_pointer);
  6911. else if(code_seen('Q'))
  6912. SERIAL_PROTOCOLLNRPGM(sPrinterName);
  6913. break;
  6914. case ClPrintChecking::_Version: // ~ .4
  6915. if(code_seen('P'))
  6916. fw_version_check(++strchr_pointer);
  6917. else if(code_seen('Q'))
  6918. SERIAL_PROTOCOLLN(FW_VERSION);
  6919. break;
  6920. case ClPrintChecking::_Gcode: // ~ .5
  6921. if(code_seen('P'))
  6922. {
  6923. uint16_t nGcodeLevel;
  6924. nGcodeLevel=(uint16_t)code_value_long();
  6925. gcode_level_check(nGcodeLevel);
  6926. }
  6927. else if(code_seen('Q'))
  6928. SERIAL_PROTOCOLLN(GCODE_LEVEL);
  6929. break;
  6930. }
  6931. break;
  6932. #ifdef LIN_ADVANCE
  6933. /*!
  6934. ### M900 - Set Linear advance options <a href="https://reprap.org/wiki/G-code#M900_Set_Linear_Advance_Scaling_Factors">M900 Set Linear Advance Scaling Factors</a>
  6935. Sets the advance extrusion factors for Linear Advance. If any of the R, W, H, or D parameters are set to zero the ratio will be computed dynamically during printing.
  6936. M900 [ K | R | W | H | D]
  6937. - `K` - Advance K factor
  6938. - `R` - Set ratio directly (overrides WH/D)
  6939. - `W` - Width
  6940. - `H` - Height
  6941. - `D` - Diameter Set ratio from WH/D
  6942. */
  6943. case 900:
  6944. gcode_M900();
  6945. break;
  6946. #endif
  6947. /*!
  6948. ### M907 - Set digital trimpot motor current in mA using axis codes <a href="https://reprap.org/wiki/G-code#M907:_Set_digital_trimpot_motor">M907: Set digital trimpot motor</a>
  6949. Set digital trimpot motor current using axis codes (X, Y, Z, E, B, S).
  6950. M907 [ X | Y | Z | E | B | S ]
  6951. - `X` - X motor driver
  6952. - `Y` - Y motor driver
  6953. - `Z` - Z motor driver
  6954. - `E` - Extruder motor driver
  6955. - `B` - ??
  6956. - `S` - ??
  6957. @todo What are `B` and `S` in M907?
  6958. */
  6959. case 907:
  6960. {
  6961. #ifdef TMC2130
  6962. // See tmc2130_cur2val() for translation to 0 .. 63 range
  6963. for (int i = 0; i < NUM_AXIS; i++)
  6964. if(code_seen(axis_codes[i]))
  6965. {
  6966. long cur_mA = code_value_long();
  6967. uint8_t val = tmc2130_cur2val(cur_mA);
  6968. tmc2130_set_current_h(i, val);
  6969. tmc2130_set_current_r(i, val);
  6970. //if (i == E_AXIS) printf_P(PSTR("E-axis current=%ldmA\n"), cur_mA);
  6971. }
  6972. #else //TMC2130
  6973. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6974. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  6975. if(code_seen('B')) st_current_set(4,code_value());
  6976. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  6977. #endif
  6978. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  6979. if(code_seen('X')) st_current_set(0, code_value());
  6980. #endif
  6981. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  6982. if(code_seen('Z')) st_current_set(1, code_value());
  6983. #endif
  6984. #ifdef MOTOR_CURRENT_PWM_E_PIN
  6985. if(code_seen('E')) st_current_set(2, code_value());
  6986. #endif
  6987. #endif //TMC2130
  6988. }
  6989. break;
  6990. /*!
  6991. ### M908 - Control digital trimpot directly <a href="https://reprap.org/wiki/G-code#M908:_Control_digital_trimpot_directly">M908: Control digital trimpot directly</a>
  6992. In Prusa Firmware this G-code is deactivated by default, must be turned on in the source code.
  6993. */
  6994. case 908:
  6995. {
  6996. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  6997. uint8_t channel,current;
  6998. if(code_seen('P')) channel=code_value();
  6999. if(code_seen('S')) current=code_value();
  7000. digitalPotWrite(channel, current);
  7001. #endif
  7002. }
  7003. break;
  7004. #ifdef TMC2130_SERVICE_CODES_M910_M918
  7005. /*!
  7006. ### M910 - TMC2130 init <a href="https://reprap.org/wiki/G-code#M910:_TMC2130_init">M910: TMC2130 init</a>
  7007. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7008. */
  7009. case 910:
  7010. {
  7011. tmc2130_init();
  7012. }
  7013. break;
  7014. /*!
  7015. ### M911 - Set TMC2130 holding currents <a href="https://reprap.org/wiki/G-code#M911:_Set_TMC2130_holding_currents">M911: Set TMC2130 holding currents</a>
  7016. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7017. M911 [ X | Y | Z | E ]
  7018. - `X` - X stepper driver holding current value
  7019. - `Y` - Y stepper driver holding current value
  7020. - `Z` - Z stepper driver holding current value
  7021. - `E` - Extruder stepper driver holding current value
  7022. */
  7023. case 911:
  7024. {
  7025. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  7026. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  7027. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  7028. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  7029. }
  7030. break;
  7031. /*!
  7032. ### M912 - Set TMC2130 running currents <a href="https://reprap.org/wiki/G-code#M912:_Set_TMC2130_running_currents">M912: Set TMC2130 running currents</a>
  7033. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7034. M912 [ X | Y | Z | E ]
  7035. - `X` - X stepper driver running current value
  7036. - `Y` - Y stepper driver running current value
  7037. - `Z` - Z stepper driver running current value
  7038. - `E` - Extruder stepper driver running current value
  7039. */
  7040. case 912:
  7041. {
  7042. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  7043. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  7044. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  7045. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  7046. }
  7047. break;
  7048. /*!
  7049. ### M913 - Print TMC2130 currents <a href="https://reprap.org/wiki/G-code#M913:_Print_TMC2130_currents">M913: Print TMC2130 currents</a>
  7050. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7051. Shows TMC2130 currents.
  7052. */
  7053. case 913:
  7054. {
  7055. tmc2130_print_currents();
  7056. }
  7057. break;
  7058. /*!
  7059. ### M914 - Set TMC2130 normal mode <a href="https://reprap.org/wiki/G-code#M914:_Set_TMC2130_normal_mode">M914: Set TMC2130 normal mode</a>
  7060. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7061. */
  7062. case 914:
  7063. {
  7064. tmc2130_mode = TMC2130_MODE_NORMAL;
  7065. update_mode_profile();
  7066. tmc2130_init();
  7067. }
  7068. break;
  7069. /*!
  7070. ### M915 - Set TMC2130 silent mode <a href="https://reprap.org/wiki/G-code#M915:_Set_TMC2130_silent_mode">M915: Set TMC2130 silent mode</a>
  7071. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7072. */
  7073. case 915:
  7074. {
  7075. tmc2130_mode = TMC2130_MODE_SILENT;
  7076. update_mode_profile();
  7077. tmc2130_init();
  7078. }
  7079. break;
  7080. /*!
  7081. ### M916 - Set TMC2130 Stallguard sensitivity threshold <a href="https://reprap.org/wiki/G-code#M916:_Set_TMC2130_Stallguard_sensitivity_threshold">M916: Set TMC2130 Stallguard sensitivity threshold</a>
  7082. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7083. M916 [ X | Y | Z | E ]
  7084. - `X` - X stepper driver stallguard sensitivity threshold value
  7085. - `Y` - Y stepper driver stallguard sensitivity threshold value
  7086. - `Z` - Z stepper driver stallguard sensitivity threshold value
  7087. - `E` - Extruder stepper driver stallguard sensitivity threshold value
  7088. */
  7089. case 916:
  7090. {
  7091. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  7092. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  7093. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  7094. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  7095. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  7096. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  7097. }
  7098. break;
  7099. /*!
  7100. ### M917 - Set TMC2130 PWM amplitude offset (pwm_ampl) <a href="https://reprap.org/wiki/G-code#M917:_Set_TMC2130_PWM_amplitude_offset_.28pwm_ampl.29">M917: Set TMC2130 PWM amplitude offset (pwm_ampl)</a>
  7101. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7102. M917 [ X | Y | Z | E ]
  7103. - `X` - X stepper driver PWM amplitude offset value
  7104. - `Y` - Y stepper driver PWM amplitude offset value
  7105. - `Z` - Z stepper driver PWM amplitude offset value
  7106. - `E` - Extruder stepper driver PWM amplitude offset value
  7107. */
  7108. case 917:
  7109. {
  7110. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  7111. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  7112. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  7113. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  7114. }
  7115. break;
  7116. /*!
  7117. ### M918 - Set TMC2130 PWM amplitude gradient (pwm_grad) <a href="https://reprap.org/wiki/G-code#M918:_Set_TMC2130_PWM_amplitude_gradient_.28pwm_grad.29">M918: Set TMC2130 PWM amplitude gradient (pwm_grad)</a>
  7118. Not active in default, only if `TMC2130_SERVICE_CODES_M910_M918` is defined in source code.
  7119. M918 [ X | Y | Z | E ]
  7120. - `X` - X stepper driver PWM amplitude gradient value
  7121. - `Y` - Y stepper driver PWM amplitude gradient value
  7122. - `Z` - Z stepper driver PWM amplitude gradient value
  7123. - `E` - Extruder stepper driver PWM amplitude gradient value
  7124. */
  7125. case 918:
  7126. {
  7127. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  7128. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  7129. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  7130. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  7131. }
  7132. break;
  7133. #endif //TMC2130_SERVICE_CODES_M910_M918
  7134. /*!
  7135. ### M350 - Set microstepping mode <a href="https://reprap.org/wiki/G-code#M350:_Set_microstepping_mode">M350: Set microstepping mode</a>
  7136. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7137. */
  7138. case 350:
  7139. {
  7140. #ifdef TMC2130
  7141. for (int i=0; i<NUM_AXIS; i++)
  7142. {
  7143. if(code_seen(axis_codes[i]))
  7144. {
  7145. uint16_t res_new = code_value();
  7146. bool res_valid = (res_new == 8) || (res_new == 16) || (res_new == 32); // resolutions valid for all axis
  7147. res_valid |= (i != E_AXIS) && ((res_new == 1) || (res_new == 2) || (res_new == 4)); // resolutions valid for X Y Z only
  7148. res_valid |= (i == E_AXIS) && ((res_new == 64) || (res_new == 128)); // resolutions valid for E only
  7149. if (res_valid)
  7150. {
  7151. st_synchronize();
  7152. uint16_t res = tmc2130_get_res(i);
  7153. tmc2130_set_res(i, res_new);
  7154. cs.axis_ustep_resolution[i] = res_new;
  7155. if (res_new > res)
  7156. {
  7157. uint16_t fac = (res_new / res);
  7158. cs.axis_steps_per_unit[i] *= fac;
  7159. position[i] *= fac;
  7160. }
  7161. else
  7162. {
  7163. uint16_t fac = (res / res_new);
  7164. cs.axis_steps_per_unit[i] /= fac;
  7165. position[i] /= fac;
  7166. }
  7167. }
  7168. }
  7169. }
  7170. #else //TMC2130
  7171. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7172. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  7173. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  7174. if(code_seen('B')) microstep_mode(4,code_value());
  7175. microstep_readings();
  7176. #endif
  7177. #endif //TMC2130
  7178. }
  7179. break;
  7180. /*!
  7181. ### M351 - Toggle Microstep Pins <a href="https://reprap.org/wiki/G-code#M351:_Toggle_MS1_MS2_pins_directly">M351: Toggle MS1 MS2 pins directly</a>
  7182. Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7183. M351 [B<0|1>] [E<0|1>] S<1|2> [X<0|1>] [Y<0|1>] [Z<0|1>]
  7184. */
  7185. case 351:
  7186. {
  7187. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  7188. if(code_seen('S')) switch((int)code_value())
  7189. {
  7190. case 1:
  7191. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  7192. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  7193. break;
  7194. case 2:
  7195. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  7196. if(code_seen('B')) microstep_ms(4,-1,code_value());
  7197. break;
  7198. }
  7199. microstep_readings();
  7200. #endif
  7201. }
  7202. break;
  7203. /*!
  7204. ### M701 - Load filament <a href="https://reprap.org/wiki/G-code#M701:_Load_filament">M701: Load filament</a>
  7205. */
  7206. case 701:
  7207. {
  7208. if (mmu_enabled && code_seen('E'))
  7209. tmp_extruder = code_value();
  7210. gcode_M701();
  7211. }
  7212. break;
  7213. /*!
  7214. ### M702 - Unload filament <a href="https://reprap.org/wiki/G-code#M702:_Unload_filament">G32: Undock Z Probe sled</a>
  7215. M702 [ U | C]
  7216. - `U` - Unload all filaments used in current print
  7217. - `C` - Unload just current filament
  7218. - without any parameters unload all filaments
  7219. */
  7220. case 702:
  7221. {
  7222. #ifdef SNMM
  7223. if (code_seen('U'))
  7224. extr_unload_used(); //! if "U" unload all filaments which were used in current print
  7225. else if (code_seen('C'))
  7226. extr_unload(); //! if "C" unload just current filament
  7227. else
  7228. extr_unload_all(); //! otherwise unload all filaments
  7229. #else
  7230. if (code_seen('C')) {
  7231. if(mmu_enabled) extr_unload(); //! if "C" unload current filament; if mmu is not present no action is performed
  7232. }
  7233. else {
  7234. if(mmu_enabled) extr_unload(); //! unload current filament
  7235. else unload_filament();
  7236. }
  7237. #endif //SNMM
  7238. }
  7239. break;
  7240. /*!
  7241. ### M999 - Restart after being stopped <a href="https://reprap.org/wiki/G-code#M999:_Restart_after_being_stopped_by_error">M999: Restart after being stopped by error</a>
  7242. */
  7243. case 999:
  7244. Stopped = false;
  7245. lcd_reset_alert_level();
  7246. gcode_LastN = Stopped_gcode_LastN;
  7247. FlushSerialRequestResend();
  7248. break;
  7249. /*!
  7250. #### End of M-Commands
  7251. */
  7252. default:
  7253. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  7254. }
  7255. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  7256. mcode_in_progress = 0;
  7257. }
  7258. }
  7259. // end if(code_seen('M')) (end of M codes)
  7260. //! -----------------------------------------------------------------------------------------
  7261. //! # T Codes
  7262. //!
  7263. //! T<extruder nr.> - select extruder in case of multi extruder printer
  7264. //! select filament in case of MMU_V2
  7265. //! if extruder is "?", open menu to let the user select extruder/filament
  7266. //!
  7267. //! For MMU_V2:
  7268. //! @n T<n> Gcode to extrude at least 38.10 mm at feedrate 19.02 mm/s must follow immediately to load to extruder wheels.
  7269. //! @n T? Gcode to extrude shouldn't have to follow, load to extruder wheels is done automatically
  7270. //! @n Tx Same as T?, except nozzle doesn't have to be preheated. Tc must be placed after extruder nozzle is preheated to finish filament load.
  7271. //! @n Tc Load to nozzle after filament was prepared by Tc and extruder nozzle is already heated.
  7272. else if(code_seen('T'))
  7273. {
  7274. int index;
  7275. bool load_to_nozzle = false;
  7276. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  7277. *(strchr_pointer + index) = tolower(*(strchr_pointer + index));
  7278. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '4') && *(strchr_pointer + index) != '?' && *(strchr_pointer + index) != 'x' && *(strchr_pointer + index) != 'c') {
  7279. SERIAL_ECHOLNPGM("Invalid T code.");
  7280. }
  7281. else if (*(strchr_pointer + index) == 'x'){ //load to bondtech gears; if mmu is not present do nothing
  7282. if (mmu_enabled)
  7283. {
  7284. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7285. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7286. {
  7287. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7288. }
  7289. else
  7290. {
  7291. st_synchronize();
  7292. mmu_command(MmuCmd::T0 + tmp_extruder);
  7293. manage_response(true, true, MMU_TCODE_MOVE);
  7294. }
  7295. }
  7296. }
  7297. else if (*(strchr_pointer + index) == 'c') { //load to from bondtech gears to nozzle (nozzle should be preheated)
  7298. if (mmu_enabled)
  7299. {
  7300. st_synchronize();
  7301. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7302. mmu_extruder = tmp_extruder; //filament change is finished
  7303. mmu_load_to_nozzle();
  7304. }
  7305. }
  7306. else {
  7307. if (*(strchr_pointer + index) == '?')
  7308. {
  7309. if(mmu_enabled)
  7310. {
  7311. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_FILAMENT), _T(MSG_FILAMENT));
  7312. load_to_nozzle = true;
  7313. } else
  7314. {
  7315. tmp_extruder = choose_menu_P(_T(MSG_CHOOSE_EXTRUDER), _T(MSG_EXTRUDER));
  7316. }
  7317. }
  7318. else {
  7319. tmp_extruder = code_value();
  7320. if (mmu_enabled && lcd_autoDepleteEnabled())
  7321. {
  7322. tmp_extruder = ad_getAlternative(tmp_extruder);
  7323. }
  7324. }
  7325. st_synchronize();
  7326. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7327. if (mmu_enabled)
  7328. {
  7329. if ((tmp_extruder == mmu_extruder) && mmu_fil_loaded) //dont execute the same T-code twice in a row
  7330. {
  7331. printf_P(PSTR("Duplicate T-code ignored.\n"));
  7332. }
  7333. else
  7334. {
  7335. #if defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7336. if (EEPROM_MMU_CUTTER_ENABLED_always == eeprom_read_byte((uint8_t*)EEPROM_MMU_CUTTER_ENABLED))
  7337. {
  7338. mmu_command(MmuCmd::K0 + tmp_extruder);
  7339. manage_response(true, true, MMU_UNLOAD_MOVE);
  7340. }
  7341. #endif //defined(MMU_HAS_CUTTER) && defined(MMU_ALWAYS_CUT)
  7342. mmu_command(MmuCmd::T0 + tmp_extruder);
  7343. manage_response(true, true, MMU_TCODE_MOVE);
  7344. mmu_continue_loading(is_usb_printing || (lcd_commands_type == LcdCommands::Layer1Cal));
  7345. mmu_extruder = tmp_extruder; //filament change is finished
  7346. if (load_to_nozzle)// for single material usage with mmu
  7347. {
  7348. mmu_load_to_nozzle();
  7349. }
  7350. }
  7351. }
  7352. else
  7353. {
  7354. #ifdef SNMM
  7355. mmu_extruder = tmp_extruder;
  7356. _delay(100);
  7357. disable_e0();
  7358. disable_e1();
  7359. disable_e2();
  7360. pinMode(E_MUX0_PIN, OUTPUT);
  7361. pinMode(E_MUX1_PIN, OUTPUT);
  7362. _delay(100);
  7363. SERIAL_ECHO_START;
  7364. SERIAL_ECHO("T:");
  7365. SERIAL_ECHOLN((int)tmp_extruder);
  7366. switch (tmp_extruder) {
  7367. case 1:
  7368. WRITE(E_MUX0_PIN, HIGH);
  7369. WRITE(E_MUX1_PIN, LOW);
  7370. break;
  7371. case 2:
  7372. WRITE(E_MUX0_PIN, LOW);
  7373. WRITE(E_MUX1_PIN, HIGH);
  7374. break;
  7375. case 3:
  7376. WRITE(E_MUX0_PIN, HIGH);
  7377. WRITE(E_MUX1_PIN, HIGH);
  7378. break;
  7379. default:
  7380. WRITE(E_MUX0_PIN, LOW);
  7381. WRITE(E_MUX1_PIN, LOW);
  7382. break;
  7383. }
  7384. _delay(100);
  7385. #else //SNMM
  7386. if (tmp_extruder >= EXTRUDERS) {
  7387. SERIAL_ECHO_START;
  7388. SERIAL_ECHOPGM("T");
  7389. SERIAL_PROTOCOLLN((int)tmp_extruder);
  7390. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER
  7391. }
  7392. else {
  7393. #if EXTRUDERS > 1
  7394. boolean make_move = false;
  7395. #endif
  7396. if (code_seen('F')) {
  7397. #if EXTRUDERS > 1
  7398. make_move = true;
  7399. #endif
  7400. next_feedrate = code_value();
  7401. if (next_feedrate > 0.0) {
  7402. feedrate = next_feedrate;
  7403. }
  7404. }
  7405. #if EXTRUDERS > 1
  7406. if (tmp_extruder != active_extruder) {
  7407. // Save current position to return to after applying extruder offset
  7408. memcpy(destination, current_position, sizeof(destination));
  7409. // Offset extruder (only by XY)
  7410. int i;
  7411. for (i = 0; i < 2; i++) {
  7412. current_position[i] = current_position[i] -
  7413. extruder_offset[i][active_extruder] +
  7414. extruder_offset[i][tmp_extruder];
  7415. }
  7416. // Set the new active extruder and position
  7417. active_extruder = tmp_extruder;
  7418. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7419. // Move to the old position if 'F' was in the parameters
  7420. if (make_move && Stopped == false) {
  7421. prepare_move();
  7422. }
  7423. }
  7424. #endif
  7425. SERIAL_ECHO_START;
  7426. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER
  7427. SERIAL_PROTOCOLLN((int)active_extruder);
  7428. }
  7429. #endif //SNMM
  7430. }
  7431. }
  7432. } // end if(code_seen('T')) (end of T codes)
  7433. /*!
  7434. #### End of T-Codes
  7435. */
  7436. /**
  7437. *---------------------------------------------------------------------------------
  7438. *# D codes
  7439. */
  7440. else if (code_seen('D')) // D codes (debug)
  7441. {
  7442. switch((int)code_value())
  7443. {
  7444. /*!
  7445. *
  7446. ### D-1 - Endless Loop <a href="https://reprap.org/wiki/G-code#D-1:_Endless_Loop">D-1: Endless Loop</a>
  7447. D-1
  7448. *
  7449. */
  7450. case -1:
  7451. dcode__1(); break;
  7452. #ifdef DEBUG_DCODES
  7453. /*!
  7454. *
  7455. ### D0 - Reset <a href="https://reprap.org/wiki/G-code#D0:_Reset">D0: Reset</a>
  7456. D0 [ B ]
  7457. - `B` - Bootloader
  7458. *
  7459. */
  7460. case 0:
  7461. dcode_0(); break;
  7462. /*!
  7463. *
  7464. ### D1 - Clear EEPROM and RESET <a href="https://reprap.org/wiki/G-code#D1:_Clear_EEPROM_and_RESET">D1: Clear EEPROM and RESET</a>
  7465. D1
  7466. *
  7467. */
  7468. case 1:
  7469. dcode_1(); break;
  7470. /*!
  7471. *
  7472. ### D2 - Read/Write RAM <a href="https://reprap.org/wiki/G-code#D2:_Read.2FWrite_RAM">D3: Read/Write RAM</a>
  7473. This command can be used without any additional parameters. It will read the entire RAM.
  7474. D3 [ A | C | X ]
  7475. - `A` - Address (0x0000-0x1fff)
  7476. - `C` - Count (0x0001-0x2000)
  7477. - `X` - Data
  7478. *
  7479. */
  7480. case 2:
  7481. dcode_2(); break;
  7482. #endif //DEBUG_DCODES
  7483. #ifdef DEBUG_DCODE3
  7484. /*!
  7485. *
  7486. ### D3 - Read/Write EEPROM <a href="https://reprap.org/wiki/G-code#D3:_Read.2FWrite_EEPROM">D3: Read/Write EEPROM</a>
  7487. This command can be used without any additional parameters. It will read the entire eeprom.
  7488. D3 [ A | C | X ]
  7489. - `A` - Address (0x0000-0x0fff)
  7490. - `C` - Count (0x0001-0x1000)
  7491. - `X` - Data
  7492. *
  7493. */
  7494. case 3:
  7495. dcode_3(); break;
  7496. #endif //DEBUG_DCODE3
  7497. #ifdef DEBUG_DCODES
  7498. /*!
  7499. *
  7500. ### D4 - Read/Write PIN <a href="https://reprap.org/wiki/G-code#D4:_Read.2FWrite_PIN">D4: Read/Write PIN</a>
  7501. To read the digital value of a pin you need only to define the pin number.
  7502. D4 [ P | F | V ]
  7503. - `P` - Pin (0-255)
  7504. - `F` - Function in/out (0/1)
  7505. - `V` - Value (0/1)
  7506. *
  7507. */
  7508. case 4:
  7509. dcode_4(); break;
  7510. #endif //DEBUG_DCODES
  7511. #ifdef DEBUG_DCODE5
  7512. /*!
  7513. *
  7514. ### D5 - Read/Write FLASH <a href="https://reprap.org/wiki/G-code#D5:_Read.2FWrite_FLASH">D5: Read/Write Flash</a>
  7515. This command can be used without any additional parameters. It will read the 1kb FLASH.
  7516. D3 [ A | C | X | E ]
  7517. - `A` - Address (0x00000-0x3ffff)
  7518. - `C` - Count (0x0001-0x2000)
  7519. - `X` - Data
  7520. - `E` - Erase
  7521. *
  7522. */
  7523. case 5:
  7524. dcode_5(); break;
  7525. break;
  7526. #endif //DEBUG_DCODE5
  7527. #ifdef DEBUG_DCODES
  7528. /*!
  7529. *
  7530. ### D6 - Read/Write external FLASH <a href="https://reprap.org/wiki/G-code#D6:_Read.2FWrite_external_FLASH">D6: Read/Write external Flash</a>
  7531. Reserved
  7532. *
  7533. */
  7534. case 6:
  7535. dcode_6(); break;
  7536. /*!
  7537. *
  7538. ### D7 - Read/Write Bootloader <a href="https://reprap.org/wiki/G-code#D7:_Read.2FWrite_Bootloader">D7: Read/Write Bootloader</a>
  7539. Reserved
  7540. *
  7541. */
  7542. case 7:
  7543. dcode_7(); break;
  7544. /*!
  7545. *
  7546. ### D8 - Read/Write PINDA <a href="https://reprap.org/wiki/G-code#D8:_Read.2FWrite_PINDA">D8: Read/Write PINDA</a>
  7547. D8 [ ? | ! | P | Z ]
  7548. - `?` - Read PINDA temperature shift values
  7549. - `!` - Reset PINDA temperature shift values to default
  7550. - `P` - Pinda temperature [C]
  7551. - `Z` - Z Offset [mm]
  7552. *
  7553. */
  7554. case 8:
  7555. dcode_8(); break;
  7556. /*!
  7557. *
  7558. ### D9 - Read ADC <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9: Read ADC</a>
  7559. D9 [ I | V ]
  7560. - `I` - ADC channel index
  7561. - `0` - Heater 0 temperature
  7562. - `1` - Heater 1 temperature
  7563. - `2` - Bed temperature
  7564. - `3` - PINDA temperature
  7565. - `4` - PWR voltage
  7566. - `5` - Ambient temperature
  7567. - `6` - BED voltage
  7568. - `V` Value to be written as simulated
  7569. *
  7570. */
  7571. case 9:
  7572. dcode_9(); break;
  7573. /*!
  7574. *
  7575. ### D10 - Set XYZ calibration = OK <a href="https://reprap.org/wiki/G-code#D10:_Set_XYZ_calibration_.3D_OK">D10: Set XYZ calibration = OK</a>
  7576. *
  7577. */
  7578. case 10:
  7579. dcode_10(); break;
  7580. /*!
  7581. *
  7582. ### D12 - Time <a href="https://reprap.org/wiki/G-code#D12:_Time">D12: Time</a>
  7583. Writes the actual time in the log file.
  7584. *
  7585. */
  7586. #endif //DEBUG_DCODES
  7587. #ifdef HEATBED_ANALYSIS
  7588. /*!
  7589. *
  7590. ### D80 - Bed check <a href="https://reprap.org/wiki/G-code#D80:_Bed_check">D80: Bed check</a>
  7591. This command will log data to SD card file "mesh.txt".
  7592. D80 [ E | F | G | H | I | J ]
  7593. - `E` - Dimension X (default 40)
  7594. - `F` - Dimention Y (default 40)
  7595. - `G` - Points X (default 40)
  7596. - `H` - Points Y (default 40)
  7597. - `I` - Offset X (default 74)
  7598. - `J` - Offset Y (default 34)
  7599. */
  7600. case 80:
  7601. {
  7602. float dimension_x = 40;
  7603. float dimension_y = 40;
  7604. int points_x = 40;
  7605. int points_y = 40;
  7606. float offset_x = 74;
  7607. float offset_y = 33;
  7608. if (code_seen('E')) dimension_x = code_value();
  7609. if (code_seen('F')) dimension_y = code_value();
  7610. if (code_seen('G')) {points_x = code_value(); }
  7611. if (code_seen('H')) {points_y = code_value(); }
  7612. if (code_seen('I')) {offset_x = code_value(); }
  7613. if (code_seen('J')) {offset_y = code_value(); }
  7614. printf_P(PSTR("DIM X: %f\n"), dimension_x);
  7615. printf_P(PSTR("DIM Y: %f\n"), dimension_y);
  7616. printf_P(PSTR("POINTS X: %d\n"), points_x);
  7617. printf_P(PSTR("POINTS Y: %d\n"), points_y);
  7618. printf_P(PSTR("OFFSET X: %f\n"), offset_x);
  7619. printf_P(PSTR("OFFSET Y: %f\n"), offset_y);
  7620. bed_check(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7621. }break;
  7622. /*!
  7623. *
  7624. ### D81 - Bed analysis <a href="https://reprap.org/wiki/G-code#D81:_Bed_analysis">D80: Bed analysis</a>
  7625. This command will log data to SD card file "wldsd.txt".
  7626. D81 [ E | F | G | H | I | J ]
  7627. - `E` - Dimension X (default 40)
  7628. - `F` - Dimention Y (default 40)
  7629. - `G` - Points X (default 40)
  7630. - `H` - Points Y (default 40)
  7631. - `I` - Offset X (default 74)
  7632. - `J` - Offset Y (default 34)
  7633. */
  7634. case 81:
  7635. {
  7636. float dimension_x = 40;
  7637. float dimension_y = 40;
  7638. int points_x = 40;
  7639. int points_y = 40;
  7640. float offset_x = 74;
  7641. float offset_y = 33;
  7642. if (code_seen('E')) dimension_x = code_value();
  7643. if (code_seen('F')) dimension_y = code_value();
  7644. if (code_seen("G")) { strchr_pointer+=1; points_x = code_value(); }
  7645. if (code_seen("H")) { strchr_pointer+=1; points_y = code_value(); }
  7646. if (code_seen("I")) { strchr_pointer+=1; offset_x = code_value(); }
  7647. if (code_seen("J")) { strchr_pointer+=1; offset_y = code_value(); }
  7648. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  7649. } break;
  7650. #endif //HEATBED_ANALYSIS
  7651. #ifdef DEBUG_DCODES
  7652. /*!
  7653. *
  7654. ### D106 - Print measured fan speed for different pwm values <a href="https://reprap.org/wiki/G-code#D106:_Print_measured_fan_speed_for_different_pwm_values">D106: Print measured fan speed for different pwm values</a>
  7655. */
  7656. case 106:
  7657. {
  7658. for (int i = 255; i > 0; i = i - 5) {
  7659. fanSpeed = i;
  7660. //delay_keep_alive(2000);
  7661. for (int j = 0; j < 100; j++) {
  7662. delay_keep_alive(100);
  7663. }
  7664. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  7665. }
  7666. }break;
  7667. #ifdef TMC2130
  7668. /*!
  7669. *
  7670. ### D2130 - Trinamic stepper controller <a href="https://reprap.org/wiki/G-code#D2130:_Trinamic_stepper_controller">D2130: Trinamic stepper controller</a>
  7671. @todo Please review by owner of the code. RepRap Wiki Gcode needs to be updated after review of owner as well.
  7672. D2130 [ Axis | Command | Subcommand | Value ]
  7673. - Axis
  7674. - `X` - X stepper driver
  7675. - `Y` - Y stepper driver
  7676. - `Z` - Z stepper driver
  7677. - `E` - Extruder stepper driver
  7678. - Commands
  7679. - `0` - Current off
  7680. - `1` - Current on
  7681. - `+` - Single step
  7682. - `-` - Single step oposite direction
  7683. - `NNN` - Value sereval steps
  7684. - `?` - Read register
  7685. - Subcommands for read register
  7686. - `mres` - Micro step resolution. More information in datasheet '5.5.2 CHOPCONF – Chopper Configuration'
  7687. - `step` - Step
  7688. - `mscnt` - Microstep counter. More information in datasheet '5.5 Motor Driver Registers'
  7689. - `mscuract` - Actual microstep current for motor. More information in datasheet '5.5 Motor Driver Registers'
  7690. - `wave` - Microstep linearity compensation curve
  7691. - `!` - Set register
  7692. - Subcommands for set register
  7693. - `mres` - Micro step resolution
  7694. - `step` - Step
  7695. - `wave` - Microstep linearity compensation curve
  7696. - Values for set register
  7697. - `0, 180 --> 250` - Off
  7698. - `0.9 --> 1.25` - Valid values (recommended is 1.1)
  7699. - `@` - Home calibrate axis
  7700. Examples:
  7701. D2130E?wave
  7702. Print extruder microstep linearity compensation curve
  7703. D2130E!wave0
  7704. Disable extruder linearity compensation curve, (sine curve is used)
  7705. D2130E!wave220
  7706. (sin(x))^1.1 extruder microstep compensation curve used
  7707. Notes:
  7708. For more information see https://www.trinamic.com/fileadmin/assets/Products/ICs_Documents/TMC2130_datasheet.pdf
  7709. *
  7710. */
  7711. case 2130:
  7712. dcode_2130(); break;
  7713. #endif //TMC2130
  7714. #if (defined (FILAMENT_SENSOR) && defined(PAT9125))
  7715. /*!
  7716. *
  7717. ### D9125 - PAT9125 filament sensor <a href="https://reprap.org/wiki/G-code#D9:_Read.2FWrite_ADC">D9125: PAT9125 filament sensor</a>
  7718. D9125 [ ? | ! | R | X | Y | L ]
  7719. - `?` - Print values
  7720. - `!` - Print values
  7721. - `R` - Resolution. Not active in code
  7722. - `X` - X values
  7723. - `Y` - Y values
  7724. - `L` - Activate filament sensor log
  7725. *
  7726. */
  7727. case 9125:
  7728. dcode_9125(); break;
  7729. #endif //FILAMENT_SENSOR
  7730. #endif //DEBUG_DCODES
  7731. }
  7732. }
  7733. else
  7734. {
  7735. SERIAL_ECHO_START;
  7736. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  7737. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  7738. SERIAL_ECHOLNPGM("\"(2)");
  7739. }
  7740. KEEPALIVE_STATE(NOT_BUSY);
  7741. ClearToSend();
  7742. }
  7743. /*!
  7744. #### End of D-Codes
  7745. */
  7746. /** @defgroup GCodes G-Code List
  7747. */
  7748. // ---------------------------------------------------
  7749. void FlushSerialRequestResend()
  7750. {
  7751. //char cmdbuffer[bufindr][100]="Resend:";
  7752. MYSERIAL.flush();
  7753. printf_P(_N("%S: %ld\n%S\n"), _n("Resend"), gcode_LastN + 1, MSG_OK);
  7754. }
  7755. // Confirm the execution of a command, if sent from a serial line.
  7756. // Execution of a command from a SD card will not be confirmed.
  7757. void ClearToSend()
  7758. {
  7759. previous_millis_cmd = _millis();
  7760. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  7761. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  7762. }
  7763. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7764. void update_currents() {
  7765. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  7766. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  7767. float tmp_motor[3];
  7768. //SERIAL_ECHOLNPGM("Currents updated: ");
  7769. if (destination[Z_AXIS] < Z_SILENT) {
  7770. //SERIAL_ECHOLNPGM("LOW");
  7771. for (uint8_t i = 0; i < 3; i++) {
  7772. st_current_set(i, current_low[i]);
  7773. /*MYSERIAL.print(int(i));
  7774. SERIAL_ECHOPGM(": ");
  7775. MYSERIAL.println(current_low[i]);*/
  7776. }
  7777. }
  7778. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  7779. //SERIAL_ECHOLNPGM("HIGH");
  7780. for (uint8_t i = 0; i < 3; i++) {
  7781. st_current_set(i, current_high[i]);
  7782. /*MYSERIAL.print(int(i));
  7783. SERIAL_ECHOPGM(": ");
  7784. MYSERIAL.println(current_high[i]);*/
  7785. }
  7786. }
  7787. else {
  7788. for (uint8_t i = 0; i < 3; i++) {
  7789. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  7790. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  7791. st_current_set(i, tmp_motor[i]);
  7792. /*MYSERIAL.print(int(i));
  7793. SERIAL_ECHOPGM(": ");
  7794. MYSERIAL.println(tmp_motor[i]);*/
  7795. }
  7796. }
  7797. }
  7798. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7799. void get_coordinates()
  7800. {
  7801. bool seen[4]={false,false,false,false};
  7802. for(int8_t i=0; i < NUM_AXIS; i++) {
  7803. if(code_seen(axis_codes[i]))
  7804. {
  7805. bool relative = axis_relative_modes[i];
  7806. destination[i] = (float)code_value();
  7807. if (i == E_AXIS) {
  7808. float emult = extruder_multiplier[active_extruder];
  7809. if (emult != 1.) {
  7810. if (! relative) {
  7811. destination[i] -= current_position[i];
  7812. relative = true;
  7813. }
  7814. destination[i] *= emult;
  7815. }
  7816. }
  7817. if (relative)
  7818. destination[i] += current_position[i];
  7819. seen[i]=true;
  7820. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7821. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  7822. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  7823. }
  7824. else destination[i] = current_position[i]; //Are these else lines really needed?
  7825. }
  7826. if(code_seen('F')) {
  7827. next_feedrate = code_value();
  7828. #ifdef MAX_SILENT_FEEDRATE
  7829. if (tmc2130_mode == TMC2130_MODE_SILENT)
  7830. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  7831. #endif //MAX_SILENT_FEEDRATE
  7832. if(next_feedrate > 0.0) feedrate = next_feedrate;
  7833. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  7834. {
  7835. // float e_max_speed =
  7836. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  7837. }
  7838. }
  7839. }
  7840. void get_arc_coordinates()
  7841. {
  7842. #ifdef SF_ARC_FIX
  7843. bool relative_mode_backup = relative_mode;
  7844. relative_mode = true;
  7845. #endif
  7846. get_coordinates();
  7847. #ifdef SF_ARC_FIX
  7848. relative_mode=relative_mode_backup;
  7849. #endif
  7850. if(code_seen('I')) {
  7851. offset[0] = code_value();
  7852. }
  7853. else {
  7854. offset[0] = 0.0;
  7855. }
  7856. if(code_seen('J')) {
  7857. offset[1] = code_value();
  7858. }
  7859. else {
  7860. offset[1] = 0.0;
  7861. }
  7862. }
  7863. void clamp_to_software_endstops(float target[3])
  7864. {
  7865. #ifdef DEBUG_DISABLE_SWLIMITS
  7866. return;
  7867. #endif //DEBUG_DISABLE_SWLIMITS
  7868. world2machine_clamp(target[0], target[1]);
  7869. // Clamp the Z coordinate.
  7870. if (min_software_endstops) {
  7871. float negative_z_offset = 0;
  7872. #ifdef ENABLE_AUTO_BED_LEVELING
  7873. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  7874. if (cs.add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + cs.add_homing[Z_AXIS];
  7875. #endif
  7876. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  7877. }
  7878. if (max_software_endstops) {
  7879. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  7880. }
  7881. }
  7882. #ifdef MESH_BED_LEVELING
  7883. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  7884. float dx = x - current_position[X_AXIS];
  7885. float dy = y - current_position[Y_AXIS];
  7886. int n_segments = 0;
  7887. if (mbl.active) {
  7888. float len = abs(dx) + abs(dy);
  7889. if (len > 0)
  7890. // Split to 3cm segments or shorter.
  7891. n_segments = int(ceil(len / 30.f));
  7892. }
  7893. if (n_segments > 1) {
  7894. // In a multi-segment move explicitly set the final target in the plan
  7895. // as the move will be recalculated in it's entirety
  7896. float gcode_target[NUM_AXIS];
  7897. gcode_target[X_AXIS] = x;
  7898. gcode_target[Y_AXIS] = y;
  7899. gcode_target[Z_AXIS] = z;
  7900. gcode_target[E_AXIS] = e;
  7901. float dz = z - current_position[Z_AXIS];
  7902. float de = e - current_position[E_AXIS];
  7903. for (int i = 1; i < n_segments; ++ i) {
  7904. float t = float(i) / float(n_segments);
  7905. plan_buffer_line(current_position[X_AXIS] + t * dx,
  7906. current_position[Y_AXIS] + t * dy,
  7907. current_position[Z_AXIS] + t * dz,
  7908. current_position[E_AXIS] + t * de,
  7909. feed_rate, extruder, gcode_target);
  7910. if (waiting_inside_plan_buffer_line_print_aborted)
  7911. return;
  7912. }
  7913. }
  7914. // The rest of the path.
  7915. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  7916. }
  7917. #endif // MESH_BED_LEVELING
  7918. void prepare_move()
  7919. {
  7920. clamp_to_software_endstops(destination);
  7921. previous_millis_cmd = _millis();
  7922. // Do not use feedmultiply for E or Z only moves
  7923. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  7924. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  7925. }
  7926. else {
  7927. #ifdef MESH_BED_LEVELING
  7928. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7929. #else
  7930. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  7931. #endif
  7932. }
  7933. set_current_to_destination();
  7934. }
  7935. void prepare_arc_move(char isclockwise) {
  7936. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  7937. // Trace the arc
  7938. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  7939. // As far as the parser is concerned, the position is now == target. In reality the
  7940. // motion control system might still be processing the action and the real tool position
  7941. // in any intermediate location.
  7942. for(int8_t i=0; i < NUM_AXIS; i++) {
  7943. current_position[i] = destination[i];
  7944. }
  7945. previous_millis_cmd = _millis();
  7946. }
  7947. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  7948. #if defined(FAN_PIN)
  7949. #if CONTROLLERFAN_PIN == FAN_PIN
  7950. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  7951. #endif
  7952. #endif
  7953. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  7954. unsigned long lastMotorCheck = 0;
  7955. void controllerFan()
  7956. {
  7957. if ((_millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  7958. {
  7959. lastMotorCheck = _millis();
  7960. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  7961. #if EXTRUDERS > 2
  7962. || !READ(E2_ENABLE_PIN)
  7963. #endif
  7964. #if EXTRUDER > 1
  7965. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  7966. || !READ(X2_ENABLE_PIN)
  7967. #endif
  7968. || !READ(E1_ENABLE_PIN)
  7969. #endif
  7970. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  7971. {
  7972. lastMotor = _millis(); //... set time to NOW so the fan will turn on
  7973. }
  7974. if ((_millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  7975. {
  7976. digitalWrite(CONTROLLERFAN_PIN, 0);
  7977. analogWrite(CONTROLLERFAN_PIN, 0);
  7978. }
  7979. else
  7980. {
  7981. // allows digital or PWM fan output to be used (see M42 handling)
  7982. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7983. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  7984. }
  7985. }
  7986. }
  7987. #endif
  7988. #ifdef TEMP_STAT_LEDS
  7989. static bool blue_led = false;
  7990. static bool red_led = false;
  7991. static uint32_t stat_update = 0;
  7992. void handle_status_leds(void) {
  7993. float max_temp = 0.0;
  7994. if(_millis() > stat_update) {
  7995. stat_update += 500; // Update every 0.5s
  7996. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  7997. max_temp = max(max_temp, degHotend(cur_extruder));
  7998. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  7999. }
  8000. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  8001. max_temp = max(max_temp, degTargetBed());
  8002. max_temp = max(max_temp, degBed());
  8003. #endif
  8004. if((max_temp > 55.0) && (red_led == false)) {
  8005. digitalWrite(STAT_LED_RED, 1);
  8006. digitalWrite(STAT_LED_BLUE, 0);
  8007. red_led = true;
  8008. blue_led = false;
  8009. }
  8010. if((max_temp < 54.0) && (blue_led == false)) {
  8011. digitalWrite(STAT_LED_RED, 0);
  8012. digitalWrite(STAT_LED_BLUE, 1);
  8013. red_led = false;
  8014. blue_led = true;
  8015. }
  8016. }
  8017. }
  8018. #endif
  8019. #ifdef SAFETYTIMER
  8020. /**
  8021. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  8022. *
  8023. * Full screen blocking notification message is shown after heater turning off.
  8024. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  8025. * damage print.
  8026. *
  8027. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  8028. */
  8029. static void handleSafetyTimer()
  8030. {
  8031. #if (EXTRUDERS > 1)
  8032. #error Implemented only for one extruder.
  8033. #endif //(EXTRUDERS > 1)
  8034. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  8035. {
  8036. safetyTimer.stop();
  8037. }
  8038. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  8039. {
  8040. safetyTimer.start();
  8041. }
  8042. else if (safetyTimer.expired(farm_mode?FARM_DEFAULT_SAFETYTIMER_TIME_ms:safetytimer_inactive_time))
  8043. {
  8044. setTargetBed(0);
  8045. setAllTargetHotends(0);
  8046. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED
  8047. }
  8048. }
  8049. #endif //SAFETYTIMER
  8050. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  8051. {
  8052. bool bInhibitFlag;
  8053. #ifdef FILAMENT_SENSOR
  8054. if (mmu_enabled == false)
  8055. {
  8056. //-// if (mcode_in_progress != 600) //M600 not in progress
  8057. #ifdef PAT9125
  8058. bInhibitFlag=(menu_menu==lcd_menu_extruder_info); // Support::ExtruderInfo menu active
  8059. #endif // PAT9125
  8060. #ifdef IR_SENSOR
  8061. bInhibitFlag=(menu_menu==lcd_menu_show_sensors_state); // Support::SensorInfo menu active
  8062. #endif // IR_SENSOR
  8063. if ((mcode_in_progress != 600) && (eFilamentAction != FilamentAction::AutoLoad) && (!bInhibitFlag)) //M600 not in progress, preHeat @ autoLoad menu not active, Support::ExtruderInfo/SensorInfo menu not active
  8064. {
  8065. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LcdCommands::Layer1Cal) && ! eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE))
  8066. {
  8067. if (fsensor_check_autoload())
  8068. {
  8069. #ifdef PAT9125
  8070. fsensor_autoload_check_stop();
  8071. #endif //PAT9125
  8072. //-// if (degHotend0() > EXTRUDE_MINTEMP)
  8073. if(0)
  8074. {
  8075. Sound_MakeCustom(50,1000,false);
  8076. loading_flag = true;
  8077. enquecommand_front_P((PSTR("M701")));
  8078. }
  8079. else
  8080. {
  8081. /*
  8082. lcd_update_enable(false);
  8083. show_preheat_nozzle_warning();
  8084. lcd_update_enable(true);
  8085. */
  8086. eFilamentAction=FilamentAction::AutoLoad;
  8087. bFilamentFirstRun=false;
  8088. if(target_temperature[0]>=EXTRUDE_MINTEMP)
  8089. {
  8090. bFilamentPreheatState=true;
  8091. // mFilamentItem(target_temperature[0],target_temperature_bed);
  8092. menu_submenu(mFilamentItemForce);
  8093. }
  8094. else
  8095. {
  8096. menu_submenu(lcd_generic_preheat_menu);
  8097. lcd_timeoutToStatus.start();
  8098. }
  8099. }
  8100. }
  8101. }
  8102. else
  8103. {
  8104. #ifdef PAT9125
  8105. fsensor_autoload_check_stop();
  8106. #endif //PAT9125
  8107. fsensor_update();
  8108. }
  8109. }
  8110. }
  8111. #endif //FILAMENT_SENSOR
  8112. #ifdef SAFETYTIMER
  8113. handleSafetyTimer();
  8114. #endif //SAFETYTIMER
  8115. #if defined(KILL_PIN) && KILL_PIN > -1
  8116. static int killCount = 0; // make the inactivity button a bit less responsive
  8117. const int KILL_DELAY = 10000;
  8118. #endif
  8119. if(buflen < (BUFSIZE-1)){
  8120. get_command();
  8121. }
  8122. if( (_millis() - previous_millis_cmd) > max_inactive_time )
  8123. if(max_inactive_time)
  8124. kill(_n("Inactivity Shutdown"), 4);
  8125. if(stepper_inactive_time) {
  8126. if( (_millis() - previous_millis_cmd) > stepper_inactive_time )
  8127. {
  8128. if(blocks_queued() == false && ignore_stepper_queue == false) {
  8129. disable_x();
  8130. disable_y();
  8131. disable_z();
  8132. disable_e0();
  8133. disable_e1();
  8134. disable_e2();
  8135. }
  8136. }
  8137. }
  8138. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  8139. if (chdkActive && (_millis() - chdkHigh > CHDK_DELAY))
  8140. {
  8141. chdkActive = false;
  8142. WRITE(CHDK, LOW);
  8143. }
  8144. #endif
  8145. #if defined(KILL_PIN) && KILL_PIN > -1
  8146. // Check if the kill button was pressed and wait just in case it was an accidental
  8147. // key kill key press
  8148. // -------------------------------------------------------------------------------
  8149. if( 0 == READ(KILL_PIN) )
  8150. {
  8151. killCount++;
  8152. }
  8153. else if (killCount > 0)
  8154. {
  8155. killCount--;
  8156. }
  8157. // Exceeded threshold and we can confirm that it was not accidental
  8158. // KILL the machine
  8159. // ----------------------------------------------------------------
  8160. if ( killCount >= KILL_DELAY)
  8161. {
  8162. kill(NULL, 5);
  8163. }
  8164. #endif
  8165. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  8166. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  8167. #endif
  8168. #ifdef EXTRUDER_RUNOUT_PREVENT
  8169. if( (_millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  8170. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  8171. {
  8172. bool oldstatus=READ(E0_ENABLE_PIN);
  8173. enable_e0();
  8174. float oldepos=current_position[E_AXIS];
  8175. float oldedes=destination[E_AXIS];
  8176. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  8177. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS],
  8178. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/cs.axis_steps_per_unit[E_AXIS], active_extruder);
  8179. current_position[E_AXIS]=oldepos;
  8180. destination[E_AXIS]=oldedes;
  8181. plan_set_e_position(oldepos);
  8182. previous_millis_cmd=_millis();
  8183. st_synchronize();
  8184. WRITE(E0_ENABLE_PIN,oldstatus);
  8185. }
  8186. #endif
  8187. #ifdef TEMP_STAT_LEDS
  8188. handle_status_leds();
  8189. #endif
  8190. check_axes_activity();
  8191. mmu_loop();
  8192. }
  8193. void kill(const char *full_screen_message, unsigned char id)
  8194. {
  8195. printf_P(_N("KILL: %d\n"), id);
  8196. //return;
  8197. cli(); // Stop interrupts
  8198. disable_heater();
  8199. disable_x();
  8200. // SERIAL_ECHOLNPGM("kill - disable Y");
  8201. disable_y();
  8202. disable_z();
  8203. disable_e0();
  8204. disable_e1();
  8205. disable_e2();
  8206. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  8207. pinMode(PS_ON_PIN,INPUT);
  8208. #endif
  8209. SERIAL_ERROR_START;
  8210. SERIAL_ERRORLNRPGM(_n("Printer halted. kill() called!"));////MSG_ERR_KILLED
  8211. if (full_screen_message != NULL) {
  8212. SERIAL_ERRORLNRPGM(full_screen_message);
  8213. lcd_display_message_fullscreen_P(full_screen_message);
  8214. } else {
  8215. LCD_ALERTMESSAGERPGM(_n("KILLED. "));////MSG_KILLED
  8216. }
  8217. // FMC small patch to update the LCD before ending
  8218. sei(); // enable interrupts
  8219. for ( int i=5; i--; lcd_update(0))
  8220. {
  8221. _delay(200);
  8222. }
  8223. cli(); // disable interrupts
  8224. suicide();
  8225. while(1)
  8226. {
  8227. #ifdef WATCHDOG
  8228. wdt_reset();
  8229. #endif //WATCHDOG
  8230. /* Intentionally left empty */
  8231. } // Wait for reset
  8232. }
  8233. // Stop: Emergency stop used by overtemp functions which allows recovery
  8234. //
  8235. // In addition to stopping the print, this prevents subsequent G[0-3] commands to be
  8236. // processed via USB (using "Stopped") until the print is resumed via M999 or
  8237. // manually started from scratch with the LCD.
  8238. //
  8239. // Note that the current instruction is completely discarded, so resuming from Stop()
  8240. // will introduce either over/under extrusion on the current segment, and will not
  8241. // survive a power panic. Switching Stop() to use the pause machinery instead (with
  8242. // the addition of disabling the headers) could allow true recovery in the future.
  8243. void Stop()
  8244. {
  8245. disable_heater();
  8246. if(Stopped == false) {
  8247. Stopped = true;
  8248. lcd_print_stop();
  8249. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8250. SERIAL_ERROR_START;
  8251. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  8252. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  8253. }
  8254. }
  8255. bool IsStopped() { return Stopped; };
  8256. #ifdef FAST_PWM_FAN
  8257. void setPwmFrequency(uint8_t pin, int val)
  8258. {
  8259. val &= 0x07;
  8260. switch(digitalPinToTimer(pin))
  8261. {
  8262. #if defined(TCCR0A)
  8263. case TIMER0A:
  8264. case TIMER0B:
  8265. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8266. // TCCR0B |= val;
  8267. break;
  8268. #endif
  8269. #if defined(TCCR1A)
  8270. case TIMER1A:
  8271. case TIMER1B:
  8272. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8273. // TCCR1B |= val;
  8274. break;
  8275. #endif
  8276. #if defined(TCCR2)
  8277. case TIMER2:
  8278. case TIMER2:
  8279. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8280. TCCR2 |= val;
  8281. break;
  8282. #endif
  8283. #if defined(TCCR2A)
  8284. case TIMER2A:
  8285. case TIMER2B:
  8286. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8287. TCCR2B |= val;
  8288. break;
  8289. #endif
  8290. #if defined(TCCR3A)
  8291. case TIMER3A:
  8292. case TIMER3B:
  8293. case TIMER3C:
  8294. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8295. TCCR3B |= val;
  8296. break;
  8297. #endif
  8298. #if defined(TCCR4A)
  8299. case TIMER4A:
  8300. case TIMER4B:
  8301. case TIMER4C:
  8302. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8303. TCCR4B |= val;
  8304. break;
  8305. #endif
  8306. #if defined(TCCR5A)
  8307. case TIMER5A:
  8308. case TIMER5B:
  8309. case TIMER5C:
  8310. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8311. TCCR5B |= val;
  8312. break;
  8313. #endif
  8314. }
  8315. }
  8316. #endif //FAST_PWM_FAN
  8317. //! @brief Get and validate extruder number
  8318. //!
  8319. //! If it is not specified, active_extruder is returned in parameter extruder.
  8320. //! @param [in] code M code number
  8321. //! @param [out] extruder
  8322. //! @return error
  8323. //! @retval true Invalid extruder specified in T code
  8324. //! @retval false Valid extruder specified in T code, or not specifiead
  8325. bool setTargetedHotend(int code, uint8_t &extruder)
  8326. {
  8327. extruder = active_extruder;
  8328. if(code_seen('T')) {
  8329. extruder = code_value();
  8330. if(extruder >= EXTRUDERS) {
  8331. SERIAL_ECHO_START;
  8332. switch(code){
  8333. case 104:
  8334. SERIAL_ECHORPGM(_n("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER
  8335. break;
  8336. case 105:
  8337. SERIAL_ECHO(_n("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER
  8338. break;
  8339. case 109:
  8340. SERIAL_ECHO(_n("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER
  8341. break;
  8342. case 218:
  8343. SERIAL_ECHO(_n("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER
  8344. break;
  8345. case 221:
  8346. SERIAL_ECHO(_n("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER
  8347. break;
  8348. }
  8349. SERIAL_PROTOCOLLN((int)extruder);
  8350. return true;
  8351. }
  8352. }
  8353. return false;
  8354. }
  8355. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  8356. {
  8357. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  8358. {
  8359. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  8360. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  8361. }
  8362. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  8363. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  8364. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  8365. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  8366. total_filament_used = 0;
  8367. }
  8368. float calculate_extruder_multiplier(float diameter) {
  8369. float out = 1.f;
  8370. if (cs.volumetric_enabled && diameter > 0.f) {
  8371. float area = M_PI * diameter * diameter * 0.25;
  8372. out = 1.f / area;
  8373. }
  8374. if (extrudemultiply != 100)
  8375. out *= float(extrudemultiply) * 0.01f;
  8376. return out;
  8377. }
  8378. void calculate_extruder_multipliers() {
  8379. extruder_multiplier[0] = calculate_extruder_multiplier(cs.filament_size[0]);
  8380. #if EXTRUDERS > 1
  8381. extruder_multiplier[1] = calculate_extruder_multiplier(cs.filament_size[1]);
  8382. #if EXTRUDERS > 2
  8383. extruder_multiplier[2] = calculate_extruder_multiplier(cs.filament_size[2]);
  8384. #endif
  8385. #endif
  8386. }
  8387. void delay_keep_alive(unsigned int ms)
  8388. {
  8389. for (;;) {
  8390. manage_heater();
  8391. // Manage inactivity, but don't disable steppers on timeout.
  8392. manage_inactivity(true);
  8393. lcd_update(0);
  8394. if (ms == 0)
  8395. break;
  8396. else if (ms >= 50) {
  8397. _delay(50);
  8398. ms -= 50;
  8399. } else {
  8400. _delay(ms);
  8401. ms = 0;
  8402. }
  8403. }
  8404. }
  8405. static void wait_for_heater(long codenum, uint8_t extruder) {
  8406. if (!degTargetHotend(extruder))
  8407. return;
  8408. #ifdef TEMP_RESIDENCY_TIME
  8409. long residencyStart;
  8410. residencyStart = -1;
  8411. /* continue to loop until we have reached the target temp
  8412. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  8413. cancel_heatup = false;
  8414. while ((!cancel_heatup) && ((residencyStart == -1) ||
  8415. (residencyStart >= 0 && (((unsigned int)(_millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  8416. #else
  8417. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  8418. #endif //TEMP_RESIDENCY_TIME
  8419. if ((_millis() - codenum) > 1000UL)
  8420. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  8421. if (!farm_mode) {
  8422. SERIAL_PROTOCOLPGM("T:");
  8423. SERIAL_PROTOCOL_F(degHotend(extruder), 1);
  8424. SERIAL_PROTOCOLPGM(" E:");
  8425. SERIAL_PROTOCOL((int)extruder);
  8426. #ifdef TEMP_RESIDENCY_TIME
  8427. SERIAL_PROTOCOLPGM(" W:");
  8428. if (residencyStart > -1)
  8429. {
  8430. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (_millis() - residencyStart)) / 1000UL;
  8431. SERIAL_PROTOCOLLN(codenum);
  8432. }
  8433. else
  8434. {
  8435. SERIAL_PROTOCOLLN("?");
  8436. }
  8437. }
  8438. #else
  8439. SERIAL_PROTOCOLLN("");
  8440. #endif
  8441. codenum = _millis();
  8442. }
  8443. manage_heater();
  8444. manage_inactivity(true); //do not disable steppers
  8445. lcd_update(0);
  8446. #ifdef TEMP_RESIDENCY_TIME
  8447. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  8448. or when current temp falls outside the hysteresis after target temp was reached */
  8449. if ((residencyStart == -1 && target_direction && (degHotend(extruder) >= (degTargetHotend(extruder) - TEMP_WINDOW))) ||
  8450. (residencyStart == -1 && !target_direction && (degHotend(extruder) <= (degTargetHotend(extruder) + TEMP_WINDOW))) ||
  8451. (residencyStart > -1 && labs(degHotend(extruder) - degTargetHotend(extruder)) > TEMP_HYSTERESIS))
  8452. {
  8453. residencyStart = _millis();
  8454. }
  8455. #endif //TEMP_RESIDENCY_TIME
  8456. }
  8457. }
  8458. void check_babystep()
  8459. {
  8460. int babystep_z = eeprom_read_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8461. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)));
  8462. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  8463. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  8464. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  8465. eeprom_write_word(reinterpret_cast<uint16_t *>(&(EEPROM_Sheets_base->
  8466. s[(eeprom_read_byte(&(EEPROM_Sheets_base->active_sheet)))].z_offset)),
  8467. babystep_z);
  8468. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  8469. lcd_update_enable(true);
  8470. }
  8471. }
  8472. #ifdef HEATBED_ANALYSIS
  8473. void d_setup()
  8474. {
  8475. pinMode(D_DATACLOCK, INPUT_PULLUP);
  8476. pinMode(D_DATA, INPUT_PULLUP);
  8477. pinMode(D_REQUIRE, OUTPUT);
  8478. digitalWrite(D_REQUIRE, HIGH);
  8479. }
  8480. float d_ReadData()
  8481. {
  8482. int digit[13];
  8483. String mergeOutput;
  8484. float output;
  8485. digitalWrite(D_REQUIRE, HIGH);
  8486. for (int i = 0; i<13; i++)
  8487. {
  8488. for (int j = 0; j < 4; j++)
  8489. {
  8490. while (digitalRead(D_DATACLOCK) == LOW) {}
  8491. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8492. bitWrite(digit[i], j, digitalRead(D_DATA));
  8493. }
  8494. }
  8495. digitalWrite(D_REQUIRE, LOW);
  8496. mergeOutput = "";
  8497. output = 0;
  8498. for (int r = 5; r <= 10; r++) //Merge digits
  8499. {
  8500. mergeOutput += digit[r];
  8501. }
  8502. output = mergeOutput.toFloat();
  8503. if (digit[4] == 8) //Handle sign
  8504. {
  8505. output *= -1;
  8506. }
  8507. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8508. {
  8509. output /= 10;
  8510. }
  8511. return output;
  8512. }
  8513. void bed_check(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8514. int t1 = 0;
  8515. int t_delay = 0;
  8516. int digit[13];
  8517. int m;
  8518. char str[3];
  8519. //String mergeOutput;
  8520. char mergeOutput[15];
  8521. float output;
  8522. int mesh_point = 0; //index number of calibration point
  8523. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8524. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8525. float mesh_home_z_search = 4;
  8526. float measure_z_height = 0.2f;
  8527. float row[x_points_num];
  8528. int ix = 0;
  8529. int iy = 0;
  8530. const char* filename_wldsd = "mesh.txt";
  8531. char data_wldsd[x_points_num * 7 + 1]; //6 chars(" -A.BCD")for each measurement + null
  8532. char numb_wldsd[8]; // (" -A.BCD" + null)
  8533. #ifdef MICROMETER_LOGGING
  8534. d_setup();
  8535. #endif //MICROMETER_LOGGING
  8536. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8537. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8538. unsigned int custom_message_type_old = custom_message_type;
  8539. unsigned int custom_message_state_old = custom_message_state;
  8540. custom_message_type = CustomMsg::MeshBedLeveling;
  8541. custom_message_state = (x_points_num * y_points_num) + 10;
  8542. lcd_update(1);
  8543. //mbl.reset();
  8544. babystep_undo();
  8545. card.openFile(filename_wldsd, false);
  8546. /*destination[Z_AXIS] = mesh_home_z_search;
  8547. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8548. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8549. for(int8_t i=0; i < NUM_AXIS; i++) {
  8550. current_position[i] = destination[i];
  8551. }
  8552. st_synchronize();
  8553. */
  8554. destination[Z_AXIS] = measure_z_height;
  8555. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8556. for(int8_t i=0; i < NUM_AXIS; i++) {
  8557. current_position[i] = destination[i];
  8558. }
  8559. st_synchronize();
  8560. /*int l_feedmultiply = */setup_for_endstop_move(false);
  8561. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8562. SERIAL_PROTOCOL(x_points_num);
  8563. SERIAL_PROTOCOLPGM(",");
  8564. SERIAL_PROTOCOL(y_points_num);
  8565. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8566. SERIAL_PROTOCOL(mesh_home_z_search);
  8567. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8568. SERIAL_PROTOCOL(x_dimension);
  8569. SERIAL_PROTOCOLPGM(",");
  8570. SERIAL_PROTOCOL(y_dimension);
  8571. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8572. while (mesh_point != x_points_num * y_points_num) {
  8573. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8574. iy = mesh_point / x_points_num;
  8575. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8576. float z0 = 0.f;
  8577. /*destination[Z_AXIS] = mesh_home_z_search;
  8578. //plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8579. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  8580. for(int8_t i=0; i < NUM_AXIS; i++) {
  8581. current_position[i] = destination[i];
  8582. }
  8583. st_synchronize();*/
  8584. //current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8585. //current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8586. destination[X_AXIS] = ix * (x_dimension / (x_points_num - 1)) + shift_x;
  8587. destination[Y_AXIS] = iy * (y_dimension / (y_points_num - 1)) + shift_y;
  8588. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], XY_AXIS_FEEDRATE/6, active_extruder);
  8589. set_current_to_destination();
  8590. st_synchronize();
  8591. // printf_P(PSTR("X = %f; Y= %f \n"), current_position[X_AXIS], current_position[Y_AXIS]);
  8592. delay_keep_alive(1000);
  8593. #ifdef MICROMETER_LOGGING
  8594. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8595. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8596. //strcat(data_wldsd, numb_wldsd);
  8597. //MYSERIAL.println(data_wldsd);
  8598. //delay(1000);
  8599. //delay(3000);
  8600. //t1 = millis();
  8601. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8602. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8603. memset(digit, 0, sizeof(digit));
  8604. //cli();
  8605. digitalWrite(D_REQUIRE, LOW);
  8606. for (int i = 0; i<13; i++)
  8607. {
  8608. //t1 = millis();
  8609. for (int j = 0; j < 4; j++)
  8610. {
  8611. while (digitalRead(D_DATACLOCK) == LOW) {}
  8612. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8613. //printf_P(PSTR("Done %d\n"), j);
  8614. bitWrite(digit[i], j, digitalRead(D_DATA));
  8615. }
  8616. //t_delay = (millis() - t1);
  8617. //SERIAL_PROTOCOLPGM(" ");
  8618. //SERIAL_PROTOCOL_F(t_delay, 5);
  8619. //SERIAL_PROTOCOLPGM(" ");
  8620. }
  8621. //sei();
  8622. digitalWrite(D_REQUIRE, HIGH);
  8623. mergeOutput[0] = '\0';
  8624. output = 0;
  8625. for (int r = 5; r <= 10; r++) //Merge digits
  8626. {
  8627. sprintf(str, "%d", digit[r]);
  8628. strcat(mergeOutput, str);
  8629. }
  8630. output = atof(mergeOutput);
  8631. if (digit[4] == 8) //Handle sign
  8632. {
  8633. output *= -1;
  8634. }
  8635. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8636. {
  8637. output *= 0.1;
  8638. }
  8639. //output = d_ReadData();
  8640. //row[ix] = current_position[Z_AXIS];
  8641. //row[ix] = d_ReadData();
  8642. row[ix] = output;
  8643. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8644. memset(data_wldsd, 0, sizeof(data_wldsd));
  8645. for (int i = 0; i < x_points_num; i++) {
  8646. SERIAL_PROTOCOLPGM(" ");
  8647. SERIAL_PROTOCOL_F(row[i], 5);
  8648. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8649. dtostrf(row[i], 7, 3, numb_wldsd);
  8650. strcat(data_wldsd, numb_wldsd);
  8651. }
  8652. card.write_command(data_wldsd);
  8653. SERIAL_PROTOCOLPGM("\n");
  8654. }
  8655. custom_message_state--;
  8656. mesh_point++;
  8657. lcd_update(1);
  8658. }
  8659. #endif //MICROMETER_LOGGING
  8660. card.closefile();
  8661. //clean_up_after_endstop_move(l_feedmultiply);
  8662. }
  8663. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  8664. int t1 = 0;
  8665. int t_delay = 0;
  8666. int digit[13];
  8667. int m;
  8668. char str[3];
  8669. //String mergeOutput;
  8670. char mergeOutput[15];
  8671. float output;
  8672. int mesh_point = 0; //index number of calibration point
  8673. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  8674. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  8675. float mesh_home_z_search = 4;
  8676. float row[x_points_num];
  8677. int ix = 0;
  8678. int iy = 0;
  8679. const char* filename_wldsd = "wldsd.txt";
  8680. char data_wldsd[70];
  8681. char numb_wldsd[10];
  8682. d_setup();
  8683. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  8684. // We don't know where we are! HOME!
  8685. // Push the commands to the front of the message queue in the reverse order!
  8686. // There shall be always enough space reserved for these commands.
  8687. repeatcommand_front(); // repeat G80 with all its parameters
  8688. enquecommand_front_P((PSTR("G28 W0")));
  8689. enquecommand_front_P((PSTR("G1 Z5")));
  8690. return;
  8691. }
  8692. unsigned int custom_message_type_old = custom_message_type;
  8693. unsigned int custom_message_state_old = custom_message_state;
  8694. custom_message_type = CustomMsg::MeshBedLeveling;
  8695. custom_message_state = (x_points_num * y_points_num) + 10;
  8696. lcd_update(1);
  8697. mbl.reset();
  8698. babystep_undo();
  8699. card.openFile(filename_wldsd, false);
  8700. current_position[Z_AXIS] = mesh_home_z_search;
  8701. plan_buffer_line_curposXYZE(homing_feedrate[Z_AXIS] / 60, active_extruder);
  8702. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  8703. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  8704. int l_feedmultiply = setup_for_endstop_move(false);
  8705. SERIAL_PROTOCOLPGM("Num X,Y: ");
  8706. SERIAL_PROTOCOL(x_points_num);
  8707. SERIAL_PROTOCOLPGM(",");
  8708. SERIAL_PROTOCOL(y_points_num);
  8709. SERIAL_PROTOCOLPGM("\nZ search height: ");
  8710. SERIAL_PROTOCOL(mesh_home_z_search);
  8711. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  8712. SERIAL_PROTOCOL(x_dimension);
  8713. SERIAL_PROTOCOLPGM(",");
  8714. SERIAL_PROTOCOL(y_dimension);
  8715. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  8716. while (mesh_point != x_points_num * y_points_num) {
  8717. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  8718. iy = mesh_point / x_points_num;
  8719. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  8720. float z0 = 0.f;
  8721. current_position[Z_AXIS] = mesh_home_z_search;
  8722. plan_buffer_line_curposXYZE(Z_LIFT_FEEDRATE, active_extruder);
  8723. st_synchronize();
  8724. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  8725. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  8726. plan_buffer_line_curposXYZE(XY_AXIS_FEEDRATE, active_extruder);
  8727. st_synchronize();
  8728. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  8729. break;
  8730. card.closefile();
  8731. }
  8732. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8733. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  8734. //strcat(data_wldsd, numb_wldsd);
  8735. //MYSERIAL.println(data_wldsd);
  8736. //_delay(1000);
  8737. //_delay(3000);
  8738. //t1 = _millis();
  8739. //while (digitalRead(D_DATACLOCK) == LOW) {}
  8740. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  8741. memset(digit, 0, sizeof(digit));
  8742. //cli();
  8743. digitalWrite(D_REQUIRE, LOW);
  8744. for (int i = 0; i<13; i++)
  8745. {
  8746. //t1 = _millis();
  8747. for (int j = 0; j < 4; j++)
  8748. {
  8749. while (digitalRead(D_DATACLOCK) == LOW) {}
  8750. while (digitalRead(D_DATACLOCK) == HIGH) {}
  8751. bitWrite(digit[i], j, digitalRead(D_DATA));
  8752. }
  8753. //t_delay = (_millis() - t1);
  8754. //SERIAL_PROTOCOLPGM(" ");
  8755. //SERIAL_PROTOCOL_F(t_delay, 5);
  8756. //SERIAL_PROTOCOLPGM(" ");
  8757. }
  8758. //sei();
  8759. digitalWrite(D_REQUIRE, HIGH);
  8760. mergeOutput[0] = '\0';
  8761. output = 0;
  8762. for (int r = 5; r <= 10; r++) //Merge digits
  8763. {
  8764. sprintf(str, "%d", digit[r]);
  8765. strcat(mergeOutput, str);
  8766. }
  8767. output = atof(mergeOutput);
  8768. if (digit[4] == 8) //Handle sign
  8769. {
  8770. output *= -1;
  8771. }
  8772. for (int i = digit[11]; i > 0; i--) //Handle floating point
  8773. {
  8774. output *= 0.1;
  8775. }
  8776. //output = d_ReadData();
  8777. //row[ix] = current_position[Z_AXIS];
  8778. memset(data_wldsd, 0, sizeof(data_wldsd));
  8779. for (int i = 0; i <3; i++) {
  8780. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8781. dtostrf(current_position[i], 8, 5, numb_wldsd);
  8782. strcat(data_wldsd, numb_wldsd);
  8783. strcat(data_wldsd, ";");
  8784. }
  8785. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  8786. dtostrf(output, 8, 5, numb_wldsd);
  8787. strcat(data_wldsd, numb_wldsd);
  8788. //strcat(data_wldsd, ";");
  8789. card.write_command(data_wldsd);
  8790. //row[ix] = d_ReadData();
  8791. row[ix] = output; // current_position[Z_AXIS];
  8792. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  8793. for (int i = 0; i < x_points_num; i++) {
  8794. SERIAL_PROTOCOLPGM(" ");
  8795. SERIAL_PROTOCOL_F(row[i], 5);
  8796. }
  8797. SERIAL_PROTOCOLPGM("\n");
  8798. }
  8799. custom_message_state--;
  8800. mesh_point++;
  8801. lcd_update(1);
  8802. }
  8803. card.closefile();
  8804. clean_up_after_endstop_move(l_feedmultiply);
  8805. }
  8806. #endif //HEATBED_ANALYSIS
  8807. #ifndef PINDA_THERMISTOR
  8808. static void temp_compensation_start() {
  8809. custom_message_type = CustomMsg::TempCompPreheat;
  8810. custom_message_state = PINDA_HEAT_T + 1;
  8811. lcd_update(2);
  8812. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  8813. current_position[E_AXIS] -= default_retraction;
  8814. }
  8815. plan_buffer_line_curposXYZE(400, active_extruder);
  8816. current_position[X_AXIS] = PINDA_PREHEAT_X;
  8817. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  8818. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  8819. plan_buffer_line_curposXYZE(3000 / 60, active_extruder);
  8820. st_synchronize();
  8821. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  8822. for (int i = 0; i < PINDA_HEAT_T; i++) {
  8823. delay_keep_alive(1000);
  8824. custom_message_state = PINDA_HEAT_T - i;
  8825. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  8826. else lcd_update(1);
  8827. }
  8828. custom_message_type = CustomMsg::Status;
  8829. custom_message_state = 0;
  8830. }
  8831. static void temp_compensation_apply() {
  8832. int i_add;
  8833. int z_shift = 0;
  8834. float z_shift_mm;
  8835. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  8836. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  8837. i_add = (target_temperature_bed - 60) / 10;
  8838. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  8839. z_shift_mm = z_shift / cs.axis_steps_per_unit[Z_AXIS];
  8840. }else {
  8841. //interpolation
  8842. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / cs.axis_steps_per_unit[Z_AXIS];
  8843. }
  8844. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  8845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  8846. st_synchronize();
  8847. plan_set_z_position(current_position[Z_AXIS]);
  8848. }
  8849. else {
  8850. //we have no temp compensation data
  8851. }
  8852. }
  8853. #endif //ndef PINDA_THERMISTOR
  8854. float temp_comp_interpolation(float inp_temperature) {
  8855. //cubic spline interpolation
  8856. int n, i, j;
  8857. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  8858. int shift[10];
  8859. int temp_C[10];
  8860. n = 6; //number of measured points
  8861. shift[0] = 0;
  8862. for (i = 0; i < n; i++) {
  8863. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  8864. temp_C[i] = 50 + i * 10; //temperature in C
  8865. #ifdef PINDA_THERMISTOR
  8866. temp_C[i] = 35 + i * 5; //temperature in C
  8867. #else
  8868. temp_C[i] = 50 + i * 10; //temperature in C
  8869. #endif
  8870. x[i] = (float)temp_C[i];
  8871. f[i] = (float)shift[i];
  8872. }
  8873. if (inp_temperature < x[0]) return 0;
  8874. for (i = n - 1; i>0; i--) {
  8875. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  8876. h[i - 1] = x[i] - x[i - 1];
  8877. }
  8878. //*********** formation of h, s , f matrix **************
  8879. for (i = 1; i<n - 1; i++) {
  8880. m[i][i] = 2 * (h[i - 1] + h[i]);
  8881. if (i != 1) {
  8882. m[i][i - 1] = h[i - 1];
  8883. m[i - 1][i] = h[i - 1];
  8884. }
  8885. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  8886. }
  8887. //*********** forward elimination **************
  8888. for (i = 1; i<n - 2; i++) {
  8889. temp = (m[i + 1][i] / m[i][i]);
  8890. for (j = 1; j <= n - 1; j++)
  8891. m[i + 1][j] -= temp*m[i][j];
  8892. }
  8893. //*********** backward substitution *********
  8894. for (i = n - 2; i>0; i--) {
  8895. sum = 0;
  8896. for (j = i; j <= n - 2; j++)
  8897. sum += m[i][j] * s[j];
  8898. s[i] = (m[i][n - 1] - sum) / m[i][i];
  8899. }
  8900. for (i = 0; i<n - 1; i++)
  8901. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  8902. a = (s[i + 1] - s[i]) / (6 * h[i]);
  8903. b = s[i] / 2;
  8904. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  8905. d = f[i];
  8906. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  8907. }
  8908. return sum;
  8909. }
  8910. #ifdef PINDA_THERMISTOR
  8911. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  8912. {
  8913. if (!temp_cal_active) return 0;
  8914. if (!calibration_status_pinda()) return 0;
  8915. return temp_comp_interpolation(temperature_pinda) / cs.axis_steps_per_unit[Z_AXIS];
  8916. }
  8917. #endif //PINDA_THERMISTOR
  8918. void long_pause() //long pause print
  8919. {
  8920. st_synchronize();
  8921. start_pause_print = _millis();
  8922. // Stop heaters
  8923. setAllTargetHotends(0);
  8924. //lift z
  8925. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  8926. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  8927. plan_buffer_line_curposXYZE(15, active_extruder);
  8928. //Move XY to side
  8929. current_position[X_AXIS] = X_PAUSE_POS;
  8930. current_position[Y_AXIS] = Y_PAUSE_POS;
  8931. plan_buffer_line_curposXYZE(50, active_extruder);
  8932. // Turn off the print fan
  8933. fanSpeed = 0;
  8934. }
  8935. void serialecho_temperatures() {
  8936. float tt = degHotend(active_extruder);
  8937. SERIAL_PROTOCOLPGM("T:");
  8938. SERIAL_PROTOCOL(tt);
  8939. SERIAL_PROTOCOLPGM(" E:");
  8940. SERIAL_PROTOCOL((int)active_extruder);
  8941. SERIAL_PROTOCOLPGM(" B:");
  8942. SERIAL_PROTOCOL_F(degBed(), 1);
  8943. SERIAL_PROTOCOLLN("");
  8944. }
  8945. #ifdef UVLO_SUPPORT
  8946. void uvlo_()
  8947. {
  8948. unsigned long time_start = _millis();
  8949. bool sd_print = card.sdprinting;
  8950. // Conserve power as soon as possible.
  8951. #ifdef LCD_BL_PIN
  8952. backlightMode = BACKLIGHT_MODE_DIM;
  8953. backlightLevel_LOW = 0;
  8954. backlight_update();
  8955. #endif //LCD_BL_PIN
  8956. disable_x();
  8957. disable_y();
  8958. #ifdef TMC2130
  8959. tmc2130_set_current_h(Z_AXIS, 20);
  8960. tmc2130_set_current_r(Z_AXIS, 20);
  8961. tmc2130_set_current_h(E_AXIS, 20);
  8962. tmc2130_set_current_r(E_AXIS, 20);
  8963. #endif //TMC2130
  8964. // Indicate that the interrupt has been triggered.
  8965. // SERIAL_ECHOLNPGM("UVLO");
  8966. // Read out the current Z motor microstep counter. This will be later used
  8967. // for reaching the zero full step before powering off.
  8968. uint16_t z_microsteps = 0;
  8969. #ifdef TMC2130
  8970. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  8971. #endif //TMC2130
  8972. // Calculate the file position, from which to resume this print.
  8973. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  8974. {
  8975. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  8976. sd_position -= sdlen_planner;
  8977. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  8978. sd_position -= sdlen_cmdqueue;
  8979. if (sd_position < 0) sd_position = 0;
  8980. }
  8981. // save the global state at planning time
  8982. uint16_t feedrate_bckp;
  8983. if (blocks_queued())
  8984. {
  8985. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  8986. feedrate_bckp = current_block->gcode_feedrate;
  8987. }
  8988. else
  8989. {
  8990. saved_target[0] = SAVED_TARGET_UNSET;
  8991. feedrate_bckp = feedrate;
  8992. }
  8993. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  8994. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  8995. // are in action.
  8996. planner_abort_hard();
  8997. // Store the current extruder position.
  8998. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  8999. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  9000. // Clean the input command queue.
  9001. cmdqueue_reset();
  9002. card.sdprinting = false;
  9003. // card.closefile();
  9004. // Enable stepper driver interrupt to move Z axis.
  9005. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  9006. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  9007. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  9008. sei();
  9009. plan_buffer_line(
  9010. current_position[X_AXIS],
  9011. current_position[Y_AXIS],
  9012. current_position[Z_AXIS],
  9013. current_position[E_AXIS] - default_retraction,
  9014. 95, active_extruder);
  9015. st_synchronize();
  9016. disable_e0();
  9017. plan_buffer_line(
  9018. current_position[X_AXIS],
  9019. current_position[Y_AXIS],
  9020. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  9021. current_position[E_AXIS] - default_retraction,
  9022. 40, active_extruder);
  9023. st_synchronize();
  9024. disable_e0();
  9025. plan_buffer_line(
  9026. current_position[X_AXIS],
  9027. current_position[Y_AXIS],
  9028. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS],
  9029. current_position[E_AXIS] - default_retraction,
  9030. 40, active_extruder);
  9031. st_synchronize();
  9032. disable_e0();
  9033. // Move Z up to the next 0th full step.
  9034. // Write the file position.
  9035. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  9036. // Store the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9037. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9038. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9039. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9040. // Scale the z value to 1u resolution.
  9041. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy][ix] * 1000.f + 0.5f)) : 0;
  9042. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL +2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  9043. }
  9044. // Read out the current Z motor microstep counter. This will be later used
  9045. // for reaching the zero full step before powering off.
  9046. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  9047. // Store the current position.
  9048. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  9049. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  9050. eeprom_update_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z , current_position[Z_AXIS]);
  9051. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  9052. eeprom_update_word((uint16_t*)EEPROM_UVLO_FEEDRATE, feedrate_bckp);
  9053. EEPROM_save_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply);
  9054. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  9055. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  9056. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  9057. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  9058. #if EXTRUDERS > 1
  9059. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  9060. #if EXTRUDERS > 2
  9061. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  9062. #endif
  9063. #endif
  9064. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  9065. // Store the saved target
  9066. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4), saved_target[X_AXIS]);
  9067. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4), saved_target[Y_AXIS]);
  9068. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4), saved_target[Z_AXIS]);
  9069. eeprom_update_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4), saved_target[E_AXIS]);
  9070. #ifdef LIN_ADVANCE
  9071. eeprom_update_float((float*)(EEPROM_UVLO_LA_K), extruder_advance_K);
  9072. #endif
  9073. // Finaly store the "power outage" flag.
  9074. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  9075. st_synchronize();
  9076. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  9077. // Increment power failure counter
  9078. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9079. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9080. printf_P(_N("UVLO - end %d\n"), _millis() - time_start);
  9081. #if 0
  9082. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  9083. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  9084. plan_buffer_line_curposXYZE(500, active_extruder);
  9085. st_synchronize();
  9086. #endif
  9087. wdt_enable(WDTO_500MS);
  9088. WRITE(BEEPER,HIGH);
  9089. while(1)
  9090. ;
  9091. }
  9092. void uvlo_tiny()
  9093. {
  9094. uint16_t z_microsteps=0;
  9095. // Conserve power as soon as possible.
  9096. disable_x();
  9097. disable_y();
  9098. disable_e0();
  9099. #ifdef TMC2130
  9100. tmc2130_set_current_h(Z_AXIS, 20);
  9101. tmc2130_set_current_r(Z_AXIS, 20);
  9102. #endif //TMC2130
  9103. // Read out the current Z motor microstep counter
  9104. #ifdef TMC2130
  9105. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  9106. #endif //TMC2130
  9107. planner_abort_hard();
  9108. //save current position only in case, where the printer is moving on Z axis, which is only when EEPROM_UVLO is 1
  9109. //EEPROM_UVLO is 1 after normal uvlo or after recover_print(), when the extruder is moving on Z axis after rehome
  9110. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)!=2){
  9111. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  9112. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  9113. }
  9114. //after multiple power panics current Z axis is unknow
  9115. //in this case we set EEPROM_UVLO_TINY_CURRENT_POSITION_Z to last know position which is EEPROM_UVLO_CURRENT_POSITION_Z
  9116. if(eeprom_read_float((float*)EEPROM_UVLO_TINY_CURRENT_POSITION_Z) < 0.001f){
  9117. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), eeprom_read_float((float*)EEPROM_UVLO_CURRENT_POSITION_Z));
  9118. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS), eeprom_read_word((uint16_t*)EEPROM_UVLO_Z_MICROSTEPS));
  9119. }
  9120. // Finaly store the "power outage" flag.
  9121. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  9122. // Increment power failure counter
  9123. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  9124. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  9125. wdt_enable(WDTO_500MS);
  9126. WRITE(BEEPER,HIGH);
  9127. while(1)
  9128. ;
  9129. }
  9130. #endif //UVLO_SUPPORT
  9131. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  9132. void setup_fan_interrupt() {
  9133. //INT7
  9134. DDRE &= ~(1 << 7); //input pin
  9135. PORTE &= ~(1 << 7); //no internal pull-up
  9136. //start with sensing rising edge
  9137. EICRB &= ~(1 << 6);
  9138. EICRB |= (1 << 7);
  9139. //enable INT7 interrupt
  9140. EIMSK |= (1 << 7);
  9141. }
  9142. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  9143. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  9144. ISR(INT7_vect) {
  9145. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  9146. #ifdef FAN_SOFT_PWM
  9147. if (!fan_measuring || (fanSpeedSoftPwm < MIN_PRINT_FAN_SPEED)) return;
  9148. #else //FAN_SOFT_PWM
  9149. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  9150. #endif //FAN_SOFT_PWM
  9151. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  9152. t_fan_rising_edge = millis_nc();
  9153. }
  9154. else { //interrupt was triggered by falling edge
  9155. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  9156. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  9157. }
  9158. }
  9159. EICRB ^= (1 << 6); //change edge
  9160. }
  9161. #endif
  9162. #ifdef UVLO_SUPPORT
  9163. void setup_uvlo_interrupt() {
  9164. DDRE &= ~(1 << 4); //input pin
  9165. PORTE &= ~(1 << 4); //no internal pull-up
  9166. //sensing falling edge
  9167. EICRB |= (1 << 0);
  9168. EICRB &= ~(1 << 1);
  9169. //enable INT4 interrupt
  9170. EIMSK |= (1 << 4);
  9171. }
  9172. ISR(INT4_vect) {
  9173. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  9174. SERIAL_ECHOLNPGM("INT4");
  9175. //fire normal uvlo only in case where EEPROM_UVLO is 0 or if IS_SD_PRINTING is 1.
  9176. if(PRINTER_ACTIVE && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO)))) uvlo_();
  9177. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  9178. }
  9179. void recover_print(uint8_t automatic) {
  9180. char cmd[30];
  9181. lcd_update_enable(true);
  9182. lcd_update(2);
  9183. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  9184. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  9185. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  9186. // Lift the print head, so one may remove the excess priming material.
  9187. if(!bTiny&&(current_position[Z_AXIS]<25))
  9188. enquecommand_P(PSTR("G1 Z25 F800"));
  9189. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  9190. enquecommand_P(PSTR("G28 X Y"));
  9191. // Set the target bed and nozzle temperatures and wait.
  9192. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  9193. enquecommand(cmd);
  9194. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  9195. enquecommand(cmd);
  9196. enquecommand_P(PSTR("M83")); //E axis relative mode
  9197. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  9198. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  9199. if(automatic == 0){
  9200. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  9201. }
  9202. enquecommand_P(PSTR("G1 E" STRINGIFY(-default_retraction)" F480"));
  9203. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  9204. // Restart the print.
  9205. restore_print_from_eeprom();
  9206. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  9207. }
  9208. void recover_machine_state_after_power_panic(bool bTiny)
  9209. {
  9210. char cmd[30];
  9211. // 1) Recover the logical cordinates at the time of the power panic.
  9212. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  9213. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  9214. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  9215. // 2) Restore the mesh bed leveling offsets. This is 2*7*7=98 bytes, which takes 98*3.4us=333us in worst case.
  9216. mbl.active = false;
  9217. for (int8_t mesh_point = 0; mesh_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS; ++ mesh_point) {
  9218. uint8_t ix = mesh_point % MESH_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  9219. uint8_t iy = mesh_point / MESH_NUM_X_POINTS;
  9220. // Scale the z value to 10u resolution.
  9221. int16_t v;
  9222. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING_FULL+2*mesh_point), 2);
  9223. if (v != 0)
  9224. mbl.active = true;
  9225. mbl.z_values[iy][ix] = float(v) * 0.001f;
  9226. }
  9227. // Recover the logical coordinate of the Z axis at the time of the power panic.
  9228. // The current position after power panic is moved to the next closest 0th full step.
  9229. if(bTiny){
  9230. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z))
  9231. + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS))
  9232. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  9233. //after multiple power panics the print is slightly in the air so get it little bit down.
  9234. //Not exactly sure why is this happening, but it has something to do with bed leveling and world2machine coordinates
  9235. current_position[Z_AXIS] -= 0.4*mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  9236. }
  9237. else{
  9238. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  9239. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS))
  9240. + 7) >> 4) / cs.axis_steps_per_unit[Z_AXIS];
  9241. }
  9242. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  9243. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  9244. sprintf_P(cmd, PSTR("G92 E"));
  9245. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  9246. enquecommand(cmd);
  9247. }
  9248. memcpy(destination, current_position, sizeof(destination));
  9249. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9250. print_world_coordinates();
  9251. // 3) Initialize the logical to physical coordinate system transformation.
  9252. world2machine_initialize();
  9253. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9254. // print_mesh_bed_leveling_table();
  9255. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  9256. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  9257. babystep_load();
  9258. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  9259. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  9260. // 6) Power up the motors, mark their positions as known.
  9261. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  9262. axis_known_position[X_AXIS] = true; enable_x();
  9263. axis_known_position[Y_AXIS] = true; enable_y();
  9264. axis_known_position[Z_AXIS] = true; enable_z();
  9265. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  9266. print_physical_coordinates();
  9267. // 7) Recover the target temperatures.
  9268. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  9269. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  9270. // 8) Recover extruder multipilers
  9271. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  9272. #if EXTRUDERS > 1
  9273. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  9274. #if EXTRUDERS > 2
  9275. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  9276. #endif
  9277. #endif
  9278. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  9279. // 9) Recover the saved target
  9280. saved_target[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+0*4));
  9281. saved_target[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+1*4));
  9282. saved_target[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+2*4));
  9283. saved_target[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_SAVED_TARGET+3*4));
  9284. #ifdef LIN_ADVANCE
  9285. extruder_advance_K = eeprom_read_float((float*)EEPROM_UVLO_LA_K);
  9286. #endif
  9287. }
  9288. void restore_print_from_eeprom() {
  9289. int feedrate_rec;
  9290. int feedmultiply_rec;
  9291. uint8_t fan_speed_rec;
  9292. char cmd[30];
  9293. char filename[13];
  9294. uint8_t depth = 0;
  9295. char dir_name[9];
  9296. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  9297. feedrate_rec = eeprom_read_word((uint16_t*)EEPROM_UVLO_FEEDRATE);
  9298. EEPROM_read_B(EEPROM_UVLO_FEEDMULTIPLY, &feedmultiply_rec);
  9299. SERIAL_ECHOPGM("Feedrate:");
  9300. MYSERIAL.print(feedrate_rec);
  9301. SERIAL_ECHOPGM(", feedmultiply:");
  9302. MYSERIAL.println(feedmultiply_rec);
  9303. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  9304. MYSERIAL.println(int(depth));
  9305. for (int i = 0; i < depth; i++) {
  9306. for (int j = 0; j < 8; j++) {
  9307. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  9308. }
  9309. dir_name[8] = '\0';
  9310. MYSERIAL.println(dir_name);
  9311. strcpy(dir_names[i], dir_name);
  9312. card.chdir(dir_name);
  9313. }
  9314. for (int i = 0; i < 8; i++) {
  9315. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  9316. }
  9317. filename[8] = '\0';
  9318. MYSERIAL.print(filename);
  9319. strcat_P(filename, PSTR(".gco"));
  9320. sprintf_P(cmd, PSTR("M23 %s"), filename);
  9321. enquecommand(cmd);
  9322. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  9323. SERIAL_ECHOPGM("Position read from eeprom:");
  9324. MYSERIAL.println(position);
  9325. // E axis relative mode.
  9326. enquecommand_P(PSTR("M83"));
  9327. // Move to the XY print position in logical coordinates, where the print has been killed.
  9328. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  9329. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  9330. strcat_P(cmd, PSTR(" F2000"));
  9331. enquecommand(cmd);
  9332. //moving on Z axis ahead, set EEPROM_UVLO to 1, so normal uvlo can fire
  9333. eeprom_update_byte((uint8_t*)EEPROM_UVLO,1);
  9334. // Move the Z axis down to the print, in logical coordinates.
  9335. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  9336. enquecommand(cmd);
  9337. // Unretract.
  9338. enquecommand_P(PSTR("G1 E" STRINGIFY(2*default_retraction)" F480"));
  9339. // Set the feedrates saved at the power panic.
  9340. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  9341. enquecommand(cmd);
  9342. sprintf_P(cmd, PSTR("M220 S%d"), feedmultiply_rec);
  9343. enquecommand(cmd);
  9344. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  9345. {
  9346. enquecommand_P(PSTR("M82")); //E axis abslute mode
  9347. }
  9348. // Set the fan speed saved at the power panic.
  9349. strcpy_P(cmd, PSTR("M106 S"));
  9350. strcat(cmd, itostr3(int(fan_speed_rec)));
  9351. enquecommand(cmd);
  9352. // Set a position in the file.
  9353. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  9354. enquecommand(cmd);
  9355. enquecommand_P(PSTR("G4 S0"));
  9356. enquecommand_P(PSTR("PRUSA uvlo"));
  9357. }
  9358. #endif //UVLO_SUPPORT
  9359. //! @brief Immediately stop print moves
  9360. //!
  9361. //! Immediately stop print moves, save current extruder temperature and position to RAM.
  9362. //! If printing from sd card, position in file is saved.
  9363. //! If printing from USB, line number is saved.
  9364. //!
  9365. //! @param z_move
  9366. //! @param e_move
  9367. void stop_and_save_print_to_ram(float z_move, float e_move)
  9368. {
  9369. if (saved_printing) return;
  9370. #if 0
  9371. unsigned char nplanner_blocks;
  9372. #endif
  9373. unsigned char nlines;
  9374. uint16_t sdlen_planner;
  9375. uint16_t sdlen_cmdqueue;
  9376. cli();
  9377. if (card.sdprinting) {
  9378. #if 0
  9379. nplanner_blocks = number_of_blocks();
  9380. #endif
  9381. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  9382. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  9383. saved_sdpos -= sdlen_planner;
  9384. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  9385. saved_sdpos -= sdlen_cmdqueue;
  9386. saved_printing_type = PRINTING_TYPE_SD;
  9387. }
  9388. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  9389. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  9390. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  9391. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  9392. saved_sdpos -= nlines;
  9393. saved_sdpos -= buflen; //number of blocks in cmd buffer
  9394. saved_printing_type = PRINTING_TYPE_USB;
  9395. }
  9396. else {
  9397. saved_printing_type = PRINTING_TYPE_NONE;
  9398. //not sd printing nor usb printing
  9399. }
  9400. #if 0
  9401. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  9402. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  9403. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  9404. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  9405. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  9406. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  9407. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  9408. {
  9409. card.setIndex(saved_sdpos);
  9410. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  9411. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  9412. MYSERIAL.print(char(card.get()));
  9413. SERIAL_ECHOLNPGM("Content of command buffer: ");
  9414. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  9415. MYSERIAL.print(char(card.get()));
  9416. SERIAL_ECHOLNPGM("End of command buffer");
  9417. }
  9418. {
  9419. // Print the content of the planner buffer, line by line:
  9420. card.setIndex(saved_sdpos);
  9421. int8_t iline = 0;
  9422. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  9423. SERIAL_ECHOPGM("Planner line (from file): ");
  9424. MYSERIAL.print(int(iline), DEC);
  9425. SERIAL_ECHOPGM(", length: ");
  9426. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  9427. SERIAL_ECHOPGM(", steps: (");
  9428. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  9429. SERIAL_ECHOPGM(",");
  9430. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  9431. SERIAL_ECHOPGM(",");
  9432. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  9433. SERIAL_ECHOPGM(",");
  9434. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  9435. SERIAL_ECHOPGM("), events: ");
  9436. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  9437. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  9438. MYSERIAL.print(char(card.get()));
  9439. }
  9440. }
  9441. {
  9442. // Print the content of the command buffer, line by line:
  9443. int8_t iline = 0;
  9444. union {
  9445. struct {
  9446. char lo;
  9447. char hi;
  9448. } lohi;
  9449. uint16_t value;
  9450. } sdlen_single;
  9451. int _bufindr = bufindr;
  9452. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  9453. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  9454. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  9455. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  9456. }
  9457. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  9458. MYSERIAL.print(int(iline), DEC);
  9459. SERIAL_ECHOPGM(", type: ");
  9460. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  9461. SERIAL_ECHOPGM(", len: ");
  9462. MYSERIAL.println(sdlen_single.value, DEC);
  9463. // Print the content of the buffer line.
  9464. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  9465. SERIAL_ECHOPGM("Buffer line (from file): ");
  9466. MYSERIAL.println(int(iline), DEC);
  9467. for (; sdlen_single.value > 0; -- sdlen_single.value)
  9468. MYSERIAL.print(char(card.get()));
  9469. if (-- _buflen == 0)
  9470. break;
  9471. // First skip the current command ID and iterate up to the end of the string.
  9472. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  9473. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  9474. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9475. // If the end of the buffer was empty,
  9476. if (_bufindr == sizeof(cmdbuffer)) {
  9477. // skip to the start and find the nonzero command.
  9478. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  9479. }
  9480. }
  9481. }
  9482. #endif
  9483. // save the global state at planning time
  9484. if (blocks_queued())
  9485. {
  9486. memcpy(saved_target, current_block->gcode_target, sizeof(saved_target));
  9487. saved_feedrate2 = current_block->gcode_feedrate;
  9488. }
  9489. else
  9490. {
  9491. saved_target[0] = SAVED_TARGET_UNSET;
  9492. saved_feedrate2 = feedrate;
  9493. }
  9494. planner_abort_hard(); //abort printing
  9495. memcpy(saved_pos, current_position, sizeof(saved_pos));
  9496. saved_feedmultiply2 = feedmultiply; //save feedmultiply
  9497. saved_active_extruder = active_extruder; //save active_extruder
  9498. saved_extruder_temperature = degTargetHotend(active_extruder);
  9499. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  9500. saved_fanSpeed = fanSpeed;
  9501. cmdqueue_reset(); //empty cmdqueue
  9502. card.sdprinting = false;
  9503. // card.closefile();
  9504. saved_printing = true;
  9505. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  9506. st_reset_timer();
  9507. sei();
  9508. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  9509. #if 1
  9510. // Rather than calling plan_buffer_line directly, push the move into the command queue so that
  9511. // the caller can continue processing. This is used during powerpanic to save the state as we
  9512. // move away from the print.
  9513. char buf[48];
  9514. if(e_move)
  9515. {
  9516. // First unretract (relative extrusion)
  9517. if(!saved_extruder_relative_mode){
  9518. enquecommand(PSTR("M83"), true);
  9519. }
  9520. //retract 45mm/s
  9521. // A single sprintf may not be faster, but is definitely 20B shorter
  9522. // than a sequence of commands building the string piece by piece
  9523. // A snprintf would have been a safer call, but since it is not used
  9524. // in the whole program, its implementation would bring more bytes to the total size
  9525. // The behavior of dtostrf 8,3 should be roughly the same as %-0.3
  9526. sprintf_P(buf, PSTR("G1 E%-0.3f F2700"), e_move);
  9527. enquecommand(buf, false);
  9528. }
  9529. if(z_move)
  9530. {
  9531. // Then lift Z axis
  9532. sprintf_P(buf, PSTR("G1 Z%-0.3f F%-0.3f"), saved_pos[Z_AXIS] + z_move, homing_feedrate[Z_AXIS]);
  9533. enquecommand(buf, false);
  9534. }
  9535. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  9536. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  9537. repeatcommand_front();
  9538. #else
  9539. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  9540. st_synchronize(); //wait moving
  9541. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9542. memcpy(destination, current_position, sizeof(destination));
  9543. #endif
  9544. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9545. }
  9546. }
  9547. //! @brief Restore print from ram
  9548. //!
  9549. //! Restore print saved by stop_and_save_print_to_ram(). Is blocking, restores
  9550. //! print fan speed, waits for extruder temperature restore, then restores
  9551. //! position and continues print moves.
  9552. //!
  9553. //! Internally lcd_update() is called by wait_for_heater().
  9554. //!
  9555. //! @param e_move
  9556. void restore_print_from_ram_and_continue(float e_move)
  9557. {
  9558. if (!saved_printing) return;
  9559. #ifdef FANCHECK
  9560. // Do not allow resume printing if fans are still not ok
  9561. if ((fan_check_error != EFCE_OK) && (fan_check_error != EFCE_FIXED)) return;
  9562. if (fan_check_error == EFCE_FIXED) fan_check_error = EFCE_OK; //reenable serial stream processing if printing from usb
  9563. #endif
  9564. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  9565. // current_position[axis] = st_get_position_mm(axis);
  9566. active_extruder = saved_active_extruder; //restore active_extruder
  9567. fanSpeed = saved_fanSpeed;
  9568. if (degTargetHotend(saved_active_extruder) != saved_extruder_temperature)
  9569. {
  9570. setTargetHotendSafe(saved_extruder_temperature, saved_active_extruder);
  9571. heating_status = 1;
  9572. wait_for_heater(_millis(), saved_active_extruder);
  9573. heating_status = 2;
  9574. }
  9575. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  9576. float e = saved_pos[E_AXIS] - e_move;
  9577. plan_set_e_position(e);
  9578. #ifdef FANCHECK
  9579. fans_check_enabled = false;
  9580. #endif
  9581. //first move print head in XY to the saved position:
  9582. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9583. //then move Z
  9584. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  9585. //and finaly unretract (35mm/s)
  9586. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  9587. st_synchronize();
  9588. #ifdef FANCHECK
  9589. fans_check_enabled = true;
  9590. #endif
  9591. // restore original feedrate/feedmultiply _after_ restoring the extruder position
  9592. feedrate = saved_feedrate2;
  9593. feedmultiply = saved_feedmultiply2;
  9594. memcpy(current_position, saved_pos, sizeof(saved_pos));
  9595. memcpy(destination, current_position, sizeof(destination));
  9596. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  9597. card.setIndex(saved_sdpos);
  9598. sdpos_atomic = saved_sdpos;
  9599. card.sdprinting = true;
  9600. }
  9601. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  9602. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  9603. serial_count = 0;
  9604. FlushSerialRequestResend();
  9605. }
  9606. else {
  9607. //not sd printing nor usb printing
  9608. }
  9609. SERIAL_PROTOCOLLNRPGM(MSG_OK); //dummy response because of octoprint is waiting for this
  9610. lcd_setstatuspgm(_T(WELCOME_MSG));
  9611. saved_printing_type = PRINTING_TYPE_NONE;
  9612. saved_printing = false;
  9613. waiting_inside_plan_buffer_line_print_aborted = true; //unroll the stack
  9614. }
  9615. // Cancel the state related to a currently saved print
  9616. void cancel_saved_printing()
  9617. {
  9618. saved_target[0] = SAVED_TARGET_UNSET;
  9619. saved_printing_type = PRINTING_TYPE_NONE;
  9620. saved_printing = false;
  9621. }
  9622. void print_world_coordinates()
  9623. {
  9624. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  9625. }
  9626. void print_physical_coordinates()
  9627. {
  9628. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  9629. }
  9630. void print_mesh_bed_leveling_table()
  9631. {
  9632. SERIAL_ECHOPGM("mesh bed leveling: ");
  9633. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  9634. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  9635. MYSERIAL.print(mbl.z_values[y][x], 3);
  9636. SERIAL_ECHOPGM(" ");
  9637. }
  9638. SERIAL_ECHOLNPGM("");
  9639. }
  9640. uint16_t print_time_remaining() {
  9641. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  9642. #ifdef TMC2130
  9643. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  9644. else print_t = print_time_remaining_silent;
  9645. #else
  9646. print_t = print_time_remaining_normal;
  9647. #endif //TMC2130
  9648. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100ul * print_t / feedmultiply;
  9649. return print_t;
  9650. }
  9651. uint8_t calc_percent_done()
  9652. {
  9653. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  9654. uint8_t percent_done = 0;
  9655. #ifdef TMC2130
  9656. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  9657. percent_done = print_percent_done_normal;
  9658. }
  9659. else if (print_percent_done_silent <= 100) {
  9660. percent_done = print_percent_done_silent;
  9661. }
  9662. #else
  9663. if (print_percent_done_normal <= 100) {
  9664. percent_done = print_percent_done_normal;
  9665. }
  9666. #endif //TMC2130
  9667. else {
  9668. percent_done = card.percentDone();
  9669. }
  9670. return percent_done;
  9671. }
  9672. static void print_time_remaining_init()
  9673. {
  9674. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  9675. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  9676. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  9677. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  9678. }
  9679. void load_filament_final_feed()
  9680. {
  9681. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED;
  9682. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FINAL, active_extruder);
  9683. }
  9684. //! @brief Wait for user to check the state
  9685. //! @par nozzle_temp nozzle temperature to load filament
  9686. void M600_check_state(float nozzle_temp)
  9687. {
  9688. lcd_change_fil_state = 0;
  9689. while (lcd_change_fil_state != 1)
  9690. {
  9691. lcd_change_fil_state = 0;
  9692. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9693. lcd_alright();
  9694. KEEPALIVE_STATE(IN_HANDLER);
  9695. switch(lcd_change_fil_state)
  9696. {
  9697. // Filament failed to load so load it again
  9698. case 2:
  9699. if (mmu_enabled)
  9700. mmu_M600_load_filament(false, nozzle_temp); //nonautomatic load; change to "wrong filament loaded" option?
  9701. else
  9702. M600_load_filament_movements();
  9703. break;
  9704. // Filament loaded properly but color is not clear
  9705. case 3:
  9706. st_synchronize();
  9707. load_filament_final_feed();
  9708. lcd_loading_color();
  9709. st_synchronize();
  9710. break;
  9711. // Everything good
  9712. default:
  9713. lcd_change_success();
  9714. break;
  9715. }
  9716. }
  9717. }
  9718. //! @brief Wait for user action
  9719. //!
  9720. //! Beep, manage nozzle heater and wait for user to start unload filament
  9721. //! If times out, active extruder temperature is set to 0.
  9722. //!
  9723. //! @param HotendTempBckp Temperature to be restored for active extruder, after user resolves MMU problem.
  9724. void M600_wait_for_user(float HotendTempBckp) {
  9725. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9726. int counterBeep = 0;
  9727. unsigned long waiting_start_time = _millis();
  9728. uint8_t wait_for_user_state = 0;
  9729. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9730. bool bFirst=true;
  9731. while (!(wait_for_user_state == 0 && lcd_clicked())){
  9732. manage_heater();
  9733. manage_inactivity(true);
  9734. #if BEEPER > 0
  9735. if (counterBeep == 500) {
  9736. counterBeep = 0;
  9737. }
  9738. SET_OUTPUT(BEEPER);
  9739. if (counterBeep == 0) {
  9740. if((eSoundMode==e_SOUND_MODE_BLIND)|| (eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst))
  9741. {
  9742. bFirst=false;
  9743. WRITE(BEEPER, HIGH);
  9744. }
  9745. }
  9746. if (counterBeep == 20) {
  9747. WRITE(BEEPER, LOW);
  9748. }
  9749. counterBeep++;
  9750. #endif //BEEPER > 0
  9751. switch (wait_for_user_state) {
  9752. case 0: //nozzle is hot, waiting for user to press the knob to unload filament
  9753. delay_keep_alive(4);
  9754. if (_millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  9755. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  9756. wait_for_user_state = 1;
  9757. setAllTargetHotends(0);
  9758. st_synchronize();
  9759. disable_e0();
  9760. disable_e1();
  9761. disable_e2();
  9762. }
  9763. break;
  9764. case 1: //nozzle target temperature is set to zero, waiting for user to start nozzle preheat
  9765. delay_keep_alive(4);
  9766. if (lcd_clicked()) {
  9767. setTargetHotend(HotendTempBckp, active_extruder);
  9768. lcd_wait_for_heater();
  9769. wait_for_user_state = 2;
  9770. }
  9771. break;
  9772. case 2: //waiting for nozzle to reach target temperature
  9773. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  9774. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  9775. waiting_start_time = _millis();
  9776. wait_for_user_state = 0;
  9777. }
  9778. else {
  9779. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  9780. lcd_set_cursor(1, 4);
  9781. lcd_print(ftostr3(degHotend(active_extruder)));
  9782. }
  9783. break;
  9784. }
  9785. }
  9786. WRITE(BEEPER, LOW);
  9787. }
  9788. void M600_load_filament_movements()
  9789. {
  9790. #ifdef SNMM
  9791. display_loading();
  9792. do
  9793. {
  9794. current_position[E_AXIS] += 0.002;
  9795. plan_buffer_line_curposXYZE(500, active_extruder);
  9796. delay_keep_alive(2);
  9797. }
  9798. while (!lcd_clicked());
  9799. st_synchronize();
  9800. current_position[E_AXIS] += bowden_length[mmu_extruder];
  9801. plan_buffer_line_curposXYZE(3000, active_extruder);
  9802. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  9803. plan_buffer_line_curposXYZE(1400, active_extruder);
  9804. current_position[E_AXIS] += 40;
  9805. plan_buffer_line_curposXYZE(400, active_extruder);
  9806. current_position[E_AXIS] += 10;
  9807. plan_buffer_line_curposXYZE(50, active_extruder);
  9808. #else
  9809. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  9810. plan_buffer_line_curposXYZE(FILAMENTCHANGE_EFEED_FIRST, active_extruder);
  9811. #endif
  9812. load_filament_final_feed();
  9813. lcd_loading_filament();
  9814. st_synchronize();
  9815. }
  9816. void M600_load_filament() {
  9817. //load filament for single material and SNMM
  9818. lcd_wait_interact();
  9819. //load_filament_time = _millis();
  9820. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9821. #ifdef PAT9125
  9822. fsensor_autoload_check_start();
  9823. #endif //PAT9125
  9824. while(!lcd_clicked())
  9825. {
  9826. manage_heater();
  9827. manage_inactivity(true);
  9828. #ifdef FILAMENT_SENSOR
  9829. if (fsensor_check_autoload())
  9830. {
  9831. Sound_MakeCustom(50,1000,false);
  9832. break;
  9833. }
  9834. #endif //FILAMENT_SENSOR
  9835. }
  9836. #ifdef PAT9125
  9837. fsensor_autoload_check_stop();
  9838. #endif //PAT9125
  9839. KEEPALIVE_STATE(IN_HANDLER);
  9840. #ifdef FSENSOR_QUALITY
  9841. fsensor_oq_meassure_start(70);
  9842. #endif //FSENSOR_QUALITY
  9843. M600_load_filament_movements();
  9844. Sound_MakeCustom(50,1000,false);
  9845. #ifdef FSENSOR_QUALITY
  9846. fsensor_oq_meassure_stop();
  9847. if (!fsensor_oq_result())
  9848. {
  9849. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  9850. lcd_update_enable(true);
  9851. lcd_update(2);
  9852. if (disable)
  9853. fsensor_disable();
  9854. }
  9855. #endif //FSENSOR_QUALITY
  9856. lcd_update_enable(false);
  9857. }
  9858. //! @brief Wait for click
  9859. //!
  9860. //! Set
  9861. void marlin_wait_for_click()
  9862. {
  9863. int8_t busy_state_backup = busy_state;
  9864. KEEPALIVE_STATE(PAUSED_FOR_USER);
  9865. lcd_consume_click();
  9866. while(!lcd_clicked())
  9867. {
  9868. manage_heater();
  9869. manage_inactivity(true);
  9870. lcd_update(0);
  9871. }
  9872. KEEPALIVE_STATE(busy_state_backup);
  9873. }
  9874. #define FIL_LOAD_LENGTH 60
  9875. #ifdef PSU_Delta
  9876. bool bEnableForce_z;
  9877. void init_force_z()
  9878. {
  9879. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON);
  9880. bEnableForce_z=true; // "true"-value enforce "disable_force_z()" executing
  9881. disable_force_z();
  9882. }
  9883. void check_force_z()
  9884. {
  9885. if(!(bEnableForce_z||eeprom_read_byte((uint8_t*)EEPROM_SILENT)))
  9886. init_force_z(); // causes enforced switching into disable-state
  9887. }
  9888. void disable_force_z()
  9889. {
  9890. uint16_t z_microsteps=0;
  9891. if(!bEnableForce_z) return; // motor already disabled (may be ;-p )
  9892. bEnableForce_z=false;
  9893. // switching to silent mode
  9894. #ifdef TMC2130
  9895. tmc2130_mode=TMC2130_MODE_SILENT;
  9896. update_mode_profile();
  9897. tmc2130_init(true);
  9898. #endif // TMC2130
  9899. axis_known_position[Z_AXIS]=false;
  9900. }
  9901. void enable_force_z()
  9902. {
  9903. if(bEnableForce_z)
  9904. return; // motor already enabled (may be ;-p )
  9905. bEnableForce_z=true;
  9906. // mode recovering
  9907. #ifdef TMC2130
  9908. tmc2130_mode=eeprom_read_byte((uint8_t*)EEPROM_SILENT)?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  9909. update_mode_profile();
  9910. tmc2130_init(true);
  9911. #endif // TMC2130
  9912. WRITE(Z_ENABLE_PIN,Z_ENABLE_ON); // slightly redundant ;-p
  9913. }
  9914. #endif // PSU_Delta