Marlin_main.cpp 172 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. union Data
  194. {
  195. byte b[2];
  196. int value;
  197. };
  198. // Number of baby steps applied
  199. int babystepLoadZ = 0;
  200. float homing_feedrate[] = HOMING_FEEDRATE;
  201. // Currently only the extruder axis may be switched to a relative mode.
  202. // Other axes are always absolute or relative based on the common relative_mode flag.
  203. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  204. int feedmultiply=100; //100->1 200->2
  205. int saved_feedmultiply;
  206. int extrudemultiply=100; //100->1 200->2
  207. int extruder_multiply[EXTRUDERS] = {100
  208. #if EXTRUDERS > 1
  209. , 100
  210. #if EXTRUDERS > 2
  211. , 100
  212. #endif
  213. #endif
  214. };
  215. bool is_usb_printing = false;
  216. bool _doMeshL = false;
  217. unsigned int usb_printing_counter;
  218. int lcd_change_fil_state = 0;
  219. int feedmultiplyBckp = 100;
  220. unsigned char lang_selected = 0;
  221. unsigned long total_filament_used;
  222. unsigned int heating_status;
  223. unsigned int heating_status_counter;
  224. bool custom_message;
  225. unsigned int custom_message_type;
  226. unsigned int custom_message_state;
  227. bool volumetric_enabled = false;
  228. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  229. #if EXTRUDERS > 1
  230. , DEFAULT_NOMINAL_FILAMENT_DIA
  231. #if EXTRUDERS > 2
  232. , DEFAULT_NOMINAL_FILAMENT_DIA
  233. #endif
  234. #endif
  235. };
  236. float volumetric_multiplier[EXTRUDERS] = {1.0
  237. #if EXTRUDERS > 1
  238. , 1.0
  239. #if EXTRUDERS > 2
  240. , 1.0
  241. #endif
  242. #endif
  243. };
  244. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  245. float add_homing[3]={0,0,0};
  246. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  247. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  248. bool axis_known_position[3] = {false, false, false};
  249. float zprobe_zoffset;
  250. // Extruder offset
  251. #if EXTRUDERS > 1
  252. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  253. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  254. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  255. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  256. #endif
  257. };
  258. #endif
  259. uint8_t active_extruder = 0;
  260. int fanSpeed=0;
  261. #ifdef FWRETRACT
  262. bool autoretract_enabled=false;
  263. bool retracted[EXTRUDERS]={false
  264. #if EXTRUDERS > 1
  265. , false
  266. #if EXTRUDERS > 2
  267. , false
  268. #endif
  269. #endif
  270. };
  271. bool retracted_swap[EXTRUDERS]={false
  272. #if EXTRUDERS > 1
  273. , false
  274. #if EXTRUDERS > 2
  275. , false
  276. #endif
  277. #endif
  278. };
  279. float retract_length = RETRACT_LENGTH;
  280. float retract_length_swap = RETRACT_LENGTH_SWAP;
  281. float retract_feedrate = RETRACT_FEEDRATE;
  282. float retract_zlift = RETRACT_ZLIFT;
  283. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  284. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  285. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  286. #endif
  287. #ifdef ULTIPANEL
  288. #ifdef PS_DEFAULT_OFF
  289. bool powersupply = false;
  290. #else
  291. bool powersupply = true;
  292. #endif
  293. #endif
  294. bool cancel_heatup = false ;
  295. #ifdef FILAMENT_SENSOR
  296. //Variables for Filament Sensor input
  297. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  298. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  299. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  300. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  301. int delay_index1=0; //index into ring buffer
  302. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  303. float delay_dist=0; //delay distance counter
  304. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  305. #endif
  306. const char errormagic[] PROGMEM = "Error:";
  307. const char echomagic[] PROGMEM = "echo:";
  308. //===========================================================================
  309. //=============================Private Variables=============================
  310. //===========================================================================
  311. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  312. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  313. static float delta[3] = {0.0, 0.0, 0.0};
  314. // For tracing an arc
  315. static float offset[3] = {0.0, 0.0, 0.0};
  316. static bool home_all_axis = true;
  317. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  318. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  319. // Determines Absolute or Relative Coordinates.
  320. // Also there is bool axis_relative_modes[] per axis flag.
  321. static bool relative_mode = false;
  322. // String circular buffer. Commands may be pushed to the buffer from both sides:
  323. // Chained commands will be pushed to the front, interactive (from LCD menu)
  324. // and printing commands (from serial line or from SD card) are pushed to the tail.
  325. // First character of each entry indicates the type of the entry:
  326. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  327. // Command in cmdbuffer was sent over USB.
  328. #define CMDBUFFER_CURRENT_TYPE_USB 1
  329. // Command in cmdbuffer was read from SDCARD.
  330. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  331. // Command in cmdbuffer was generated by the UI.
  332. #define CMDBUFFER_CURRENT_TYPE_UI 3
  333. // Command in cmdbuffer was generated by another G-code.
  334. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  335. // How much space to reserve for the chained commands
  336. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  337. // which are pushed to the front of the queue?
  338. // Maximum 5 commands of max length 20 + null terminator.
  339. #define CMDBUFFER_RESERVE_FRONT (5*21)
  340. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  341. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  342. // Head of the circular buffer, where to read.
  343. static int bufindr = 0;
  344. // Tail of the buffer, where to write.
  345. static int bufindw = 0;
  346. // Number of lines in cmdbuffer.
  347. static int buflen = 0;
  348. // Flag for processing the current command inside the main Arduino loop().
  349. // If a new command was pushed to the front of a command buffer while
  350. // processing another command, this replaces the command on the top.
  351. // Therefore don't remove the command from the queue in the loop() function.
  352. static bool cmdbuffer_front_already_processed = false;
  353. // Type of a command, which is to be executed right now.
  354. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  355. // String of a command, which is to be executed right now.
  356. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  357. // Enable debugging of the command buffer.
  358. // Debugging information will be sent to serial line.
  359. // #define CMDBUFFER_DEBUG
  360. static int serial_count = 0;
  361. static boolean comment_mode = false;
  362. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  363. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  364. //static float tt = 0;
  365. //static float bt = 0;
  366. //Inactivity shutdown variables
  367. static unsigned long previous_millis_cmd = 0;
  368. unsigned long max_inactive_time = 0;
  369. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  370. unsigned long starttime=0;
  371. unsigned long stoptime=0;
  372. unsigned long _usb_timer = 0;
  373. static uint8_t tmp_extruder;
  374. bool Stopped=false;
  375. #if NUM_SERVOS > 0
  376. Servo servos[NUM_SERVOS];
  377. #endif
  378. bool CooldownNoWait = true;
  379. bool target_direction;
  380. //Insert variables if CHDK is defined
  381. #ifdef CHDK
  382. unsigned long chdkHigh = 0;
  383. boolean chdkActive = false;
  384. #endif
  385. //===========================================================================
  386. //=============================Routines======================================
  387. //===========================================================================
  388. void get_arc_coordinates();
  389. bool setTargetedHotend(int code);
  390. void serial_echopair_P(const char *s_P, float v)
  391. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  392. void serial_echopair_P(const char *s_P, double v)
  393. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  394. void serial_echopair_P(const char *s_P, unsigned long v)
  395. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  396. #ifdef SDSUPPORT
  397. #include "SdFatUtil.h"
  398. int freeMemory() { return SdFatUtil::FreeRam(); }
  399. #else
  400. extern "C" {
  401. extern unsigned int __bss_end;
  402. extern unsigned int __heap_start;
  403. extern void *__brkval;
  404. int freeMemory() {
  405. int free_memory;
  406. if ((int)__brkval == 0)
  407. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  408. else
  409. free_memory = ((int)&free_memory) - ((int)__brkval);
  410. return free_memory;
  411. }
  412. }
  413. #endif //!SDSUPPORT
  414. // Pop the currently processed command from the queue.
  415. // It is expected, that there is at least one command in the queue.
  416. void cmdqueue_pop_front()
  417. {
  418. if (buflen > 0) {
  419. #ifdef CMDBUFFER_DEBUG
  420. SERIAL_ECHOPGM("Dequeing ");
  421. SERIAL_ECHO(cmdbuffer+bufindr+1);
  422. SERIAL_ECHOLNPGM("");
  423. SERIAL_ECHOPGM("Old indices: buflen ");
  424. SERIAL_ECHO(buflen);
  425. SERIAL_ECHOPGM(", bufindr ");
  426. SERIAL_ECHO(bufindr);
  427. SERIAL_ECHOPGM(", bufindw ");
  428. SERIAL_ECHO(bufindw);
  429. SERIAL_ECHOPGM(", serial_count ");
  430. SERIAL_ECHO(serial_count);
  431. SERIAL_ECHOPGM(", bufsize ");
  432. SERIAL_ECHO(sizeof(cmdbuffer));
  433. SERIAL_ECHOLNPGM("");
  434. #endif /* CMDBUFFER_DEBUG */
  435. if (-- buflen == 0) {
  436. // Empty buffer.
  437. if (serial_count == 0)
  438. // No serial communication is pending. Reset both pointers to zero.
  439. bufindw = 0;
  440. bufindr = bufindw;
  441. } else {
  442. // There is at least one ready line in the buffer.
  443. // First skip the current command ID and iterate up to the end of the string.
  444. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  445. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  446. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  447. // If the end of the buffer was empty,
  448. if (bufindr == sizeof(cmdbuffer)) {
  449. // skip to the start and find the nonzero command.
  450. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  451. }
  452. #ifdef CMDBUFFER_DEBUG
  453. SERIAL_ECHOPGM("New indices: buflen ");
  454. SERIAL_ECHO(buflen);
  455. SERIAL_ECHOPGM(", bufindr ");
  456. SERIAL_ECHO(bufindr);
  457. SERIAL_ECHOPGM(", bufindw ");
  458. SERIAL_ECHO(bufindw);
  459. SERIAL_ECHOPGM(", serial_count ");
  460. SERIAL_ECHO(serial_count);
  461. SERIAL_ECHOPGM(" new command on the top: ");
  462. SERIAL_ECHO(cmdbuffer+bufindr+1);
  463. SERIAL_ECHOLNPGM("");
  464. #endif /* CMDBUFFER_DEBUG */
  465. }
  466. }
  467. }
  468. // How long a string could be pushed to the front of the command queue?
  469. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  470. // len_asked does not contain the zero terminator size.
  471. bool cmdqueue_could_enqueue_front(int len_asked)
  472. {
  473. // MAX_CMD_SIZE has to accommodate the zero terminator.
  474. if (len_asked >= MAX_CMD_SIZE)
  475. return false;
  476. // Remove the currently processed command from the queue.
  477. if (! cmdbuffer_front_already_processed) {
  478. cmdqueue_pop_front();
  479. cmdbuffer_front_already_processed = true;
  480. }
  481. if (bufindr == bufindw && buflen > 0)
  482. // Full buffer.
  483. return false;
  484. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  485. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  486. if (bufindw < bufindr) {
  487. int bufindr_new = bufindr - len_asked - 2;
  488. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  489. if (endw <= bufindr_new) {
  490. bufindr = bufindr_new;
  491. return true;
  492. }
  493. } else {
  494. // Otherwise the free space is split between the start and end.
  495. if (len_asked + 2 <= bufindr) {
  496. // Could fit at the start.
  497. bufindr -= len_asked + 2;
  498. return true;
  499. }
  500. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  501. if (endw <= bufindr_new) {
  502. memset(cmdbuffer, 0, bufindr);
  503. bufindr = bufindr_new;
  504. return true;
  505. }
  506. }
  507. return false;
  508. }
  509. // Could one enqueue a command of lenthg len_asked into the buffer,
  510. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  511. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  512. // len_asked does not contain the zero terminator size.
  513. bool cmdqueue_could_enqueue_back(int len_asked)
  514. {
  515. // MAX_CMD_SIZE has to accommodate the zero terminator.
  516. if (len_asked >= MAX_CMD_SIZE)
  517. return false;
  518. if (bufindr == bufindw && buflen > 0)
  519. // Full buffer.
  520. return false;
  521. if (serial_count > 0) {
  522. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  523. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  524. // serial data.
  525. // How much memory to reserve for the commands pushed to the front?
  526. // End of the queue, when pushing to the end.
  527. int endw = bufindw + len_asked + 2;
  528. if (bufindw < bufindr)
  529. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  530. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  531. // Otherwise the free space is split between the start and end.
  532. if (// Could one fit to the end, including the reserve?
  533. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  534. // Could one fit to the end, and the reserve to the start?
  535. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  536. return true;
  537. // Could one fit both to the start?
  538. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  539. // Mark the rest of the buffer as used.
  540. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  541. // and point to the start.
  542. bufindw = 0;
  543. return true;
  544. }
  545. } else {
  546. // How much memory to reserve for the commands pushed to the front?
  547. // End of the queue, when pushing to the end.
  548. int endw = bufindw + len_asked + 2;
  549. if (bufindw < bufindr)
  550. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  551. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  552. // Otherwise the free space is split between the start and end.
  553. if (// Could one fit to the end, including the reserve?
  554. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  555. // Could one fit to the end, and the reserve to the start?
  556. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  557. return true;
  558. // Could one fit both to the start?
  559. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  560. // Mark the rest of the buffer as used.
  561. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  562. // and point to the start.
  563. bufindw = 0;
  564. return true;
  565. }
  566. }
  567. return false;
  568. }
  569. #ifdef CMDBUFFER_DEBUG
  570. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  571. {
  572. SERIAL_ECHOPGM("Entry nr: ");
  573. SERIAL_ECHO(nr);
  574. SERIAL_ECHOPGM(", type: ");
  575. SERIAL_ECHO(int(*p));
  576. SERIAL_ECHOPGM(", cmd: ");
  577. SERIAL_ECHO(p+1);
  578. SERIAL_ECHOLNPGM("");
  579. }
  580. static void cmdqueue_dump_to_serial()
  581. {
  582. if (buflen == 0) {
  583. SERIAL_ECHOLNPGM("The command buffer is empty.");
  584. } else {
  585. SERIAL_ECHOPGM("Content of the buffer: entries ");
  586. SERIAL_ECHO(buflen);
  587. SERIAL_ECHOPGM(", indr ");
  588. SERIAL_ECHO(bufindr);
  589. SERIAL_ECHOPGM(", indw ");
  590. SERIAL_ECHO(bufindw);
  591. SERIAL_ECHOLNPGM("");
  592. int nr = 0;
  593. if (bufindr < bufindw) {
  594. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  595. cmdqueue_dump_to_serial_single_line(nr, p);
  596. // Skip the command.
  597. for (++p; *p != 0; ++ p);
  598. // Skip the gaps.
  599. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  600. }
  601. } else {
  602. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  603. cmdqueue_dump_to_serial_single_line(nr, p);
  604. // Skip the command.
  605. for (++p; *p != 0; ++ p);
  606. // Skip the gaps.
  607. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  608. }
  609. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  610. cmdqueue_dump_to_serial_single_line(nr, p);
  611. // Skip the command.
  612. for (++p; *p != 0; ++ p);
  613. // Skip the gaps.
  614. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  615. }
  616. }
  617. SERIAL_ECHOLNPGM("End of the buffer.");
  618. }
  619. }
  620. #endif /* CMDBUFFER_DEBUG */
  621. //adds an command to the main command buffer
  622. //thats really done in a non-safe way.
  623. //needs overworking someday
  624. // Currently the maximum length of a command piped through this function is around 20 characters
  625. void enquecommand(const char *cmd, bool from_progmem)
  626. {
  627. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  628. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  629. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  630. if (cmdqueue_could_enqueue_back(len)) {
  631. // This is dangerous if a mixing of serial and this happens
  632. // This may easily be tested: If serial_count > 0, we have a problem.
  633. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  634. if (from_progmem)
  635. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  636. else
  637. strcpy(cmdbuffer + bufindw + 1, cmd);
  638. SERIAL_ECHO_START;
  639. SERIAL_ECHORPGM(MSG_Enqueing);
  640. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  641. SERIAL_ECHOLNPGM("\"");
  642. bufindw += len + 2;
  643. if (bufindw == sizeof(cmdbuffer))
  644. bufindw = 0;
  645. ++ buflen;
  646. #ifdef CMDBUFFER_DEBUG
  647. cmdqueue_dump_to_serial();
  648. #endif /* CMDBUFFER_DEBUG */
  649. } else {
  650. SERIAL_ERROR_START;
  651. SERIAL_ECHORPGM(MSG_Enqueing);
  652. if (from_progmem)
  653. SERIAL_PROTOCOLRPGM(cmd);
  654. else
  655. SERIAL_ECHO(cmd);
  656. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  657. #ifdef CMDBUFFER_DEBUG
  658. cmdqueue_dump_to_serial();
  659. #endif /* CMDBUFFER_DEBUG */
  660. }
  661. }
  662. void enquecommand_front(const char *cmd, bool from_progmem)
  663. {
  664. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  665. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  666. if (cmdqueue_could_enqueue_front(len)) {
  667. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  668. if (from_progmem)
  669. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  670. else
  671. strcpy(cmdbuffer + bufindr + 1, cmd);
  672. ++ buflen;
  673. SERIAL_ECHO_START;
  674. SERIAL_ECHOPGM("Enqueing to the front: \"");
  675. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  676. SERIAL_ECHOLNPGM("\"");
  677. #ifdef CMDBUFFER_DEBUG
  678. cmdqueue_dump_to_serial();
  679. #endif /* CMDBUFFER_DEBUG */
  680. } else {
  681. SERIAL_ERROR_START;
  682. SERIAL_ECHOPGM("Enqueing to the front: \"");
  683. if (from_progmem)
  684. SERIAL_PROTOCOLRPGM(cmd);
  685. else
  686. SERIAL_ECHO(cmd);
  687. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  688. #ifdef CMDBUFFER_DEBUG
  689. cmdqueue_dump_to_serial();
  690. #endif /* CMDBUFFER_DEBUG */
  691. }
  692. }
  693. // Mark the command at the top of the command queue as new.
  694. // Therefore it will not be removed from the queue.
  695. void repeatcommand_front()
  696. {
  697. cmdbuffer_front_already_processed = true;
  698. }
  699. void setup_killpin()
  700. {
  701. #if defined(KILL_PIN) && KILL_PIN > -1
  702. SET_INPUT(KILL_PIN);
  703. WRITE(KILL_PIN,HIGH);
  704. #endif
  705. }
  706. // Set home pin
  707. void setup_homepin(void)
  708. {
  709. #if defined(HOME_PIN) && HOME_PIN > -1
  710. SET_INPUT(HOME_PIN);
  711. WRITE(HOME_PIN,HIGH);
  712. #endif
  713. }
  714. void setup_photpin()
  715. {
  716. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  717. SET_OUTPUT(PHOTOGRAPH_PIN);
  718. WRITE(PHOTOGRAPH_PIN, LOW);
  719. #endif
  720. }
  721. void setup_powerhold()
  722. {
  723. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  724. SET_OUTPUT(SUICIDE_PIN);
  725. WRITE(SUICIDE_PIN, HIGH);
  726. #endif
  727. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  728. SET_OUTPUT(PS_ON_PIN);
  729. #if defined(PS_DEFAULT_OFF)
  730. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  731. #else
  732. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  733. #endif
  734. #endif
  735. }
  736. void suicide()
  737. {
  738. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  739. SET_OUTPUT(SUICIDE_PIN);
  740. WRITE(SUICIDE_PIN, LOW);
  741. #endif
  742. }
  743. void servo_init()
  744. {
  745. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  746. servos[0].attach(SERVO0_PIN);
  747. #endif
  748. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  749. servos[1].attach(SERVO1_PIN);
  750. #endif
  751. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  752. servos[2].attach(SERVO2_PIN);
  753. #endif
  754. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  755. servos[3].attach(SERVO3_PIN);
  756. #endif
  757. #if (NUM_SERVOS >= 5)
  758. #error "TODO: enter initalisation code for more servos"
  759. #endif
  760. }
  761. static void lcd_language_menu();
  762. #ifdef MESH_BED_LEVELING
  763. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  764. #endif
  765. // "Setup" function is called by the Arduino framework on startup.
  766. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  767. // are initialized by the main() routine provided by the Arduino framework.
  768. void setup()
  769. {
  770. setup_killpin();
  771. setup_powerhold();
  772. MYSERIAL.begin(BAUDRATE);
  773. SERIAL_PROTOCOLLNPGM("start");
  774. SERIAL_ECHO_START;
  775. #if 0
  776. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  777. for (int i = 0; i < 4096; ++ i) {
  778. int b = eeprom_read_byte((unsigned char*)i);
  779. if (b != 255) {
  780. SERIAL_ECHO(i);
  781. SERIAL_ECHO(":");
  782. SERIAL_ECHO(b);
  783. SERIAL_ECHOLN("");
  784. }
  785. }
  786. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  787. #endif
  788. // Check startup - does nothing if bootloader sets MCUSR to 0
  789. byte mcu = MCUSR;
  790. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  791. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  792. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  793. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  794. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  795. MCUSR=0;
  796. //SERIAL_ECHORPGM(MSG_MARLIN);
  797. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  798. #ifdef STRING_VERSION_CONFIG_H
  799. #ifdef STRING_CONFIG_H_AUTHOR
  800. SERIAL_ECHO_START;
  801. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  802. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  803. SERIAL_ECHORPGM(MSG_AUTHOR);
  804. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  805. SERIAL_ECHOPGM("Compiled: ");
  806. SERIAL_ECHOLNPGM(__DATE__);
  807. #endif
  808. #endif
  809. SERIAL_ECHO_START;
  810. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  811. SERIAL_ECHO(freeMemory());
  812. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  813. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  814. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  815. Config_RetrieveSettings();
  816. tp_init(); // Initialize temperature loop
  817. plan_init(); // Initialize planner;
  818. watchdog_init();
  819. st_init(); // Initialize stepper, this enables interrupts!
  820. setup_photpin();
  821. servo_init();
  822. // Reset the machine correction matrix.
  823. // It does not make sense to load the correction matrix until the machine is homed.
  824. world2machine_reset();
  825. lcd_init();
  826. if(!READ(BTN_ENC) ){
  827. _delay_ms(1000);
  828. if(!READ(BTN_ENC) ){
  829. SET_OUTPUT(BEEPER);
  830. WRITE(BEEPER,HIGH);
  831. lcd_force_language_selection();
  832. while(!READ(BTN_ENC));
  833. WRITE(BEEPER,LOW);
  834. }
  835. }else{
  836. _delay_ms(1000); // wait 1sec to display the splash screen
  837. }
  838. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  839. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  840. #endif
  841. #ifdef DIGIPOT_I2C
  842. digipot_i2c_init();
  843. #endif
  844. setup_homepin();
  845. #if defined(Z_AXIS_ALWAYS_ON)
  846. enable_z();
  847. #endif
  848. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  849. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  850. // is being written into the EEPROM, so the update procedure will be triggered only once.
  851. if (eeprom_read_byte((uint8_t*)EEPROM_BABYSTEP_Z_SET) == 0x0ff) {
  852. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  853. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_X, 0x0ff);
  854. // eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Y, 0x0ff);
  855. eeprom_update_byte((uint8_t*)EEPROM_BABYSTEP_Z, 0x0ff);
  856. // Get the selected laugnage index before display update.
  857. lang_selected = eeprom_read_byte((uint8_t*)EEPROM_LANG);
  858. if (lang_selected >= LANG_NUM)
  859. lang_selected = 1;
  860. // Show the message.
  861. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  862. lcd_update_enable(true);
  863. lcd_implementation_clear();
  864. }
  865. // Store the currently running firmware into an eeprom,
  866. // so the next time the firmware gets updated, it will know from which version it has been updated.
  867. update_current_firmware_version_to_eeprom();
  868. }
  869. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  870. // Before loop(), the setup() function is called by the main() routine.
  871. void loop()
  872. {
  873. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  874. {
  875. is_usb_printing = true;
  876. usb_printing_counter--;
  877. _usb_timer = millis();
  878. }
  879. if (usb_printing_counter == 0)
  880. {
  881. is_usb_printing = false;
  882. }
  883. get_command();
  884. #ifdef SDSUPPORT
  885. card.checkautostart(false);
  886. #endif
  887. if(buflen)
  888. {
  889. #ifdef SDSUPPORT
  890. if(card.saving)
  891. {
  892. // Saving a G-code file onto an SD-card is in progress.
  893. // Saving starts with M28, saving until M29 is seen.
  894. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  895. card.write_command(CMDBUFFER_CURRENT_STRING);
  896. if(card.logging)
  897. process_commands();
  898. else
  899. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  900. } else {
  901. card.closefile();
  902. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  903. }
  904. } else {
  905. process_commands();
  906. }
  907. #else
  908. process_commands();
  909. #endif //SDSUPPORT
  910. if (! cmdbuffer_front_already_processed)
  911. cmdqueue_pop_front();
  912. cmdbuffer_front_already_processed = false;
  913. }
  914. //check heater every n milliseconds
  915. manage_heater();
  916. manage_inactivity();
  917. checkHitEndstops();
  918. lcd_update();
  919. }
  920. void get_command()
  921. {
  922. // Test and reserve space for the new command string.
  923. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  924. return;
  925. while (MYSERIAL.available() > 0) {
  926. char serial_char = MYSERIAL.read();
  927. if (serial_char < 0)
  928. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  929. // and Marlin does not support such file names anyway.
  930. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  931. // to a hang-up of the print process from an SD card.
  932. continue;
  933. if(serial_char == '\n' ||
  934. serial_char == '\r' ||
  935. (serial_char == ':' && comment_mode == false) ||
  936. serial_count >= (MAX_CMD_SIZE - 1) )
  937. {
  938. if(!serial_count) { //if empty line
  939. comment_mode = false; //for new command
  940. return;
  941. }
  942. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  943. if(!comment_mode){
  944. comment_mode = false; //for new command
  945. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  946. {
  947. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  948. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  949. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  950. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  951. // M110 - set current line number.
  952. // Line numbers not sent in succession.
  953. SERIAL_ERROR_START;
  954. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  955. SERIAL_ERRORLN(gcode_LastN);
  956. //Serial.println(gcode_N);
  957. FlushSerialRequestResend();
  958. serial_count = 0;
  959. return;
  960. }
  961. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  962. {
  963. byte checksum = 0;
  964. char *p = cmdbuffer+bufindw+1;
  965. while (p != strchr_pointer)
  966. checksum = checksum^(*p++);
  967. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  968. SERIAL_ERROR_START;
  969. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  970. SERIAL_ERRORLN(gcode_LastN);
  971. FlushSerialRequestResend();
  972. serial_count = 0;
  973. return;
  974. }
  975. // If no errors, remove the checksum and continue parsing.
  976. *strchr_pointer = 0;
  977. }
  978. else
  979. {
  980. SERIAL_ERROR_START;
  981. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  982. SERIAL_ERRORLN(gcode_LastN);
  983. FlushSerialRequestResend();
  984. serial_count = 0;
  985. return;
  986. }
  987. gcode_LastN = gcode_N;
  988. //if no errors, continue parsing
  989. } // end of 'N' command
  990. else // if we don't receive 'N' but still see '*'
  991. {
  992. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  993. {
  994. SERIAL_ERROR_START;
  995. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  996. SERIAL_ERRORLN(gcode_LastN);
  997. serial_count = 0;
  998. return;
  999. }
  1000. } // end of '*' command
  1001. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  1002. if (! IS_SD_PRINTING) {
  1003. usb_printing_counter = 10;
  1004. is_usb_printing = true;
  1005. }
  1006. if (Stopped == true) {
  1007. int gcode = strtol(strchr_pointer+1, NULL, 10);
  1008. if (gcode >= 0 && gcode <= 3) {
  1009. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1010. LCD_MESSAGERPGM(MSG_STOPPED);
  1011. }
  1012. }
  1013. } // end of 'G' command
  1014. //If command was e-stop process now
  1015. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1016. kill();
  1017. // Store the current line into buffer, move to the next line.
  1018. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1019. #ifdef CMDBUFFER_DEBUG
  1020. SERIAL_ECHO_START;
  1021. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1022. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1023. SERIAL_ECHOLNPGM("");
  1024. #endif /* CMDBUFFER_DEBUG */
  1025. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1026. if (bufindw == sizeof(cmdbuffer))
  1027. bufindw = 0;
  1028. ++ buflen;
  1029. #ifdef CMDBUFFER_DEBUG
  1030. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1031. SERIAL_ECHO(buflen);
  1032. SERIAL_ECHOLNPGM("");
  1033. #endif /* CMDBUFFER_DEBUG */
  1034. } // end of 'not comment mode'
  1035. serial_count = 0; //clear buffer
  1036. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1037. // in the queue, as this function will reserve the memory.
  1038. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1039. return;
  1040. } // end of "end of line" processing
  1041. else {
  1042. // Not an "end of line" symbol. Store the new character into a buffer.
  1043. if(serial_char == ';') comment_mode = true;
  1044. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1045. }
  1046. } // end of serial line processing loop
  1047. #ifdef SDSUPPORT
  1048. if(!card.sdprinting || serial_count!=0){
  1049. // If there is a half filled buffer from serial line, wait until return before
  1050. // continuing with the serial line.
  1051. return;
  1052. }
  1053. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1054. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1055. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1056. static bool stop_buffering=false;
  1057. if(buflen==0) stop_buffering=false;
  1058. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1059. while( !card.eof() && !stop_buffering) {
  1060. int16_t n=card.get();
  1061. char serial_char = (char)n;
  1062. if(serial_char == '\n' ||
  1063. serial_char == '\r' ||
  1064. (serial_char == '#' && comment_mode == false) ||
  1065. (serial_char == ':' && comment_mode == false) ||
  1066. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1067. {
  1068. if(card.eof()){
  1069. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1070. stoptime=millis();
  1071. char time[30];
  1072. unsigned long t=(stoptime-starttime)/1000;
  1073. int hours, minutes;
  1074. minutes=(t/60)%60;
  1075. hours=t/60/60;
  1076. save_statistics(total_filament_used, t);
  1077. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1078. SERIAL_ECHO_START;
  1079. SERIAL_ECHOLN(time);
  1080. lcd_setstatus(time);
  1081. card.printingHasFinished();
  1082. card.checkautostart(true);
  1083. }
  1084. if(serial_char=='#')
  1085. stop_buffering=true;
  1086. if(!serial_count)
  1087. {
  1088. comment_mode = false; //for new command
  1089. return; //if empty line
  1090. }
  1091. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1092. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1093. ++ buflen;
  1094. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1095. if (bufindw == sizeof(cmdbuffer))
  1096. bufindw = 0;
  1097. comment_mode = false; //for new command
  1098. serial_count = 0; //clear buffer
  1099. // The following line will reserve buffer space if available.
  1100. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1101. return;
  1102. }
  1103. else
  1104. {
  1105. if(serial_char == ';') comment_mode = true;
  1106. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1107. }
  1108. }
  1109. #endif //SDSUPPORT
  1110. }
  1111. // Return True if a character was found
  1112. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1113. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1114. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1115. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1116. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1117. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1118. #define DEFINE_PGM_READ_ANY(type, reader) \
  1119. static inline type pgm_read_any(const type *p) \
  1120. { return pgm_read_##reader##_near(p); }
  1121. DEFINE_PGM_READ_ANY(float, float);
  1122. DEFINE_PGM_READ_ANY(signed char, byte);
  1123. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1124. static const PROGMEM type array##_P[3] = \
  1125. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1126. static inline type array(int axis) \
  1127. { return pgm_read_any(&array##_P[axis]); } \
  1128. type array##_ext(int axis) \
  1129. { return pgm_read_any(&array##_P[axis]); }
  1130. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1131. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1132. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1133. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1134. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1135. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1136. static void axis_is_at_home(int axis) {
  1137. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1138. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1139. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1140. }
  1141. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1142. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1143. static void setup_for_endstop_move() {
  1144. saved_feedrate = feedrate;
  1145. saved_feedmultiply = feedmultiply;
  1146. feedmultiply = 100;
  1147. previous_millis_cmd = millis();
  1148. enable_endstops(true);
  1149. }
  1150. static void clean_up_after_endstop_move() {
  1151. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1152. enable_endstops(false);
  1153. #endif
  1154. feedrate = saved_feedrate;
  1155. feedmultiply = saved_feedmultiply;
  1156. previous_millis_cmd = millis();
  1157. }
  1158. #ifdef ENABLE_AUTO_BED_LEVELING
  1159. #ifdef AUTO_BED_LEVELING_GRID
  1160. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1161. {
  1162. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1163. planeNormal.debug("planeNormal");
  1164. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1165. //bedLevel.debug("bedLevel");
  1166. //plan_bed_level_matrix.debug("bed level before");
  1167. //vector_3 uncorrected_position = plan_get_position_mm();
  1168. //uncorrected_position.debug("position before");
  1169. vector_3 corrected_position = plan_get_position();
  1170. // corrected_position.debug("position after");
  1171. current_position[X_AXIS] = corrected_position.x;
  1172. current_position[Y_AXIS] = corrected_position.y;
  1173. current_position[Z_AXIS] = corrected_position.z;
  1174. // put the bed at 0 so we don't go below it.
  1175. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1176. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1177. }
  1178. #else // not AUTO_BED_LEVELING_GRID
  1179. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1180. plan_bed_level_matrix.set_to_identity();
  1181. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1182. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1183. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1184. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1185. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1186. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1187. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1188. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1189. vector_3 corrected_position = plan_get_position();
  1190. current_position[X_AXIS] = corrected_position.x;
  1191. current_position[Y_AXIS] = corrected_position.y;
  1192. current_position[Z_AXIS] = corrected_position.z;
  1193. // put the bed at 0 so we don't go below it.
  1194. current_position[Z_AXIS] = zprobe_zoffset;
  1195. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1196. }
  1197. #endif // AUTO_BED_LEVELING_GRID
  1198. static void run_z_probe() {
  1199. plan_bed_level_matrix.set_to_identity();
  1200. feedrate = homing_feedrate[Z_AXIS];
  1201. // move down until you find the bed
  1202. float zPosition = -10;
  1203. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1204. st_synchronize();
  1205. // we have to let the planner know where we are right now as it is not where we said to go.
  1206. zPosition = st_get_position_mm(Z_AXIS);
  1207. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1208. // move up the retract distance
  1209. zPosition += home_retract_mm(Z_AXIS);
  1210. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1211. st_synchronize();
  1212. // move back down slowly to find bed
  1213. feedrate = homing_feedrate[Z_AXIS]/4;
  1214. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1216. st_synchronize();
  1217. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1218. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1219. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1220. }
  1221. static void do_blocking_move_to(float x, float y, float z) {
  1222. float oldFeedRate = feedrate;
  1223. feedrate = homing_feedrate[Z_AXIS];
  1224. current_position[Z_AXIS] = z;
  1225. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1226. st_synchronize();
  1227. feedrate = XY_TRAVEL_SPEED;
  1228. current_position[X_AXIS] = x;
  1229. current_position[Y_AXIS] = y;
  1230. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1231. st_synchronize();
  1232. feedrate = oldFeedRate;
  1233. }
  1234. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1235. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1236. }
  1237. /// Probe bed height at position (x,y), returns the measured z value
  1238. static float probe_pt(float x, float y, float z_before) {
  1239. // move to right place
  1240. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1241. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1242. run_z_probe();
  1243. float measured_z = current_position[Z_AXIS];
  1244. SERIAL_PROTOCOLRPGM(MSG_BED);
  1245. SERIAL_PROTOCOLPGM(" x: ");
  1246. SERIAL_PROTOCOL(x);
  1247. SERIAL_PROTOCOLPGM(" y: ");
  1248. SERIAL_PROTOCOL(y);
  1249. SERIAL_PROTOCOLPGM(" z: ");
  1250. SERIAL_PROTOCOL(measured_z);
  1251. SERIAL_PROTOCOLPGM("\n");
  1252. return measured_z;
  1253. }
  1254. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1255. void homeaxis(int axis) {
  1256. #define HOMEAXIS_DO(LETTER) \
  1257. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1258. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1259. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1260. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1261. 0) {
  1262. int axis_home_dir = home_dir(axis);
  1263. current_position[axis] = 0;
  1264. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1265. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1266. feedrate = homing_feedrate[axis];
  1267. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1268. st_synchronize();
  1269. current_position[axis] = 0;
  1270. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1271. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1272. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1273. st_synchronize();
  1274. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1275. feedrate = homing_feedrate[axis]/2 ;
  1276. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1277. st_synchronize();
  1278. axis_is_at_home(axis);
  1279. destination[axis] = current_position[axis];
  1280. feedrate = 0.0;
  1281. endstops_hit_on_purpose();
  1282. axis_known_position[axis] = true;
  1283. }
  1284. }
  1285. void home_xy()
  1286. {
  1287. set_destination_to_current();
  1288. homeaxis(X_AXIS);
  1289. homeaxis(Y_AXIS);
  1290. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1291. endstops_hit_on_purpose();
  1292. }
  1293. void refresh_cmd_timeout(void)
  1294. {
  1295. previous_millis_cmd = millis();
  1296. }
  1297. #ifdef FWRETRACT
  1298. void retract(bool retracting, bool swapretract = false) {
  1299. if(retracting && !retracted[active_extruder]) {
  1300. destination[X_AXIS]=current_position[X_AXIS];
  1301. destination[Y_AXIS]=current_position[Y_AXIS];
  1302. destination[Z_AXIS]=current_position[Z_AXIS];
  1303. destination[E_AXIS]=current_position[E_AXIS];
  1304. if (swapretract) {
  1305. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1306. } else {
  1307. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1308. }
  1309. plan_set_e_position(current_position[E_AXIS]);
  1310. float oldFeedrate = feedrate;
  1311. feedrate=retract_feedrate*60;
  1312. retracted[active_extruder]=true;
  1313. prepare_move();
  1314. current_position[Z_AXIS]-=retract_zlift;
  1315. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1316. prepare_move();
  1317. feedrate = oldFeedrate;
  1318. } else if(!retracting && retracted[active_extruder]) {
  1319. destination[X_AXIS]=current_position[X_AXIS];
  1320. destination[Y_AXIS]=current_position[Y_AXIS];
  1321. destination[Z_AXIS]=current_position[Z_AXIS];
  1322. destination[E_AXIS]=current_position[E_AXIS];
  1323. current_position[Z_AXIS]+=retract_zlift;
  1324. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1325. //prepare_move();
  1326. if (swapretract) {
  1327. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1328. } else {
  1329. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1330. }
  1331. plan_set_e_position(current_position[E_AXIS]);
  1332. float oldFeedrate = feedrate;
  1333. feedrate=retract_recover_feedrate*60;
  1334. retracted[active_extruder]=false;
  1335. prepare_move();
  1336. feedrate = oldFeedrate;
  1337. }
  1338. } //retract
  1339. #endif //FWRETRACT
  1340. void process_commands()
  1341. {
  1342. #ifdef FILAMENT_RUNOUT_SUPPORT
  1343. SET_INPUT(FR_SENS);
  1344. #endif
  1345. #ifdef CMDBUFFER_DEBUG
  1346. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1347. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1348. SERIAL_ECHOLNPGM("");
  1349. SERIAL_ECHOPGM("In cmdqueue: ");
  1350. SERIAL_ECHO(buflen);
  1351. SERIAL_ECHOLNPGM("");
  1352. #endif /* CMDBUFFER_DEBUG */
  1353. unsigned long codenum; //throw away variable
  1354. char *starpos = NULL;
  1355. #ifdef ENABLE_AUTO_BED_LEVELING
  1356. float x_tmp, y_tmp, z_tmp, real_z;
  1357. #endif
  1358. // PRUSA GCODES
  1359. if(code_seen("PRUSA")){
  1360. if(code_seen("Fir")){
  1361. SERIAL_PROTOCOLLN(FW_version);
  1362. } else if(code_seen("Rev")){
  1363. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1364. } else if(code_seen("Lang")) {
  1365. lcd_force_language_selection();
  1366. } else if(code_seen("Lz")) {
  1367. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1368. }
  1369. //else if (code_seen('Cal')) {
  1370. // lcd_calibration();
  1371. // }
  1372. }
  1373. else
  1374. if(code_seen('G'))
  1375. {
  1376. switch((int)code_value())
  1377. {
  1378. case 0: // G0 -> G1
  1379. case 1: // G1
  1380. if(Stopped == false) {
  1381. #ifdef FILAMENT_RUNOUT_SUPPORT
  1382. if(READ(FR_SENS)){
  1383. feedmultiplyBckp=feedmultiply;
  1384. float target[4];
  1385. float lastpos[4];
  1386. target[X_AXIS]=current_position[X_AXIS];
  1387. target[Y_AXIS]=current_position[Y_AXIS];
  1388. target[Z_AXIS]=current_position[Z_AXIS];
  1389. target[E_AXIS]=current_position[E_AXIS];
  1390. lastpos[X_AXIS]=current_position[X_AXIS];
  1391. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1392. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1393. lastpos[E_AXIS]=current_position[E_AXIS];
  1394. //retract by E
  1395. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1396. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1397. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1398. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1399. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1400. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1401. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1402. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1403. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1404. //finish moves
  1405. st_synchronize();
  1406. //disable extruder steppers so filament can be removed
  1407. disable_e0();
  1408. disable_e1();
  1409. disable_e2();
  1410. delay(100);
  1411. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1412. uint8_t cnt=0;
  1413. int counterBeep = 0;
  1414. lcd_wait_interact();
  1415. while(!lcd_clicked()){
  1416. cnt++;
  1417. manage_heater();
  1418. manage_inactivity(true);
  1419. //lcd_update();
  1420. if(cnt==0)
  1421. {
  1422. #if BEEPER > 0
  1423. if (counterBeep== 500){
  1424. counterBeep = 0;
  1425. }
  1426. SET_OUTPUT(BEEPER);
  1427. if (counterBeep== 0){
  1428. WRITE(BEEPER,HIGH);
  1429. }
  1430. if (counterBeep== 20){
  1431. WRITE(BEEPER,LOW);
  1432. }
  1433. counterBeep++;
  1434. #else
  1435. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1436. lcd_buzz(1000/6,100);
  1437. #else
  1438. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1439. #endif
  1440. #endif
  1441. }
  1442. }
  1443. WRITE(BEEPER,LOW);
  1444. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1445. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1446. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1447. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1448. lcd_change_fil_state = 0;
  1449. lcd_loading_filament();
  1450. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1451. lcd_change_fil_state = 0;
  1452. lcd_alright();
  1453. switch(lcd_change_fil_state){
  1454. case 2:
  1455. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1456. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1457. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1458. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1459. lcd_loading_filament();
  1460. break;
  1461. case 3:
  1462. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1463. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1464. lcd_loading_color();
  1465. break;
  1466. default:
  1467. lcd_change_success();
  1468. break;
  1469. }
  1470. }
  1471. target[E_AXIS]+= 5;
  1472. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1473. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1474. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1475. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1476. //plan_set_e_position(current_position[E_AXIS]);
  1477. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1478. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1479. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1480. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1481. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1482. plan_set_e_position(lastpos[E_AXIS]);
  1483. feedmultiply=feedmultiplyBckp;
  1484. char cmd[9];
  1485. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1486. enquecommand(cmd);
  1487. }
  1488. #endif
  1489. get_coordinates(); // For X Y Z E F
  1490. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1491. #ifdef FWRETRACT
  1492. if(autoretract_enabled)
  1493. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1494. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1495. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1496. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1497. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1498. retract(!retracted);
  1499. return;
  1500. }
  1501. }
  1502. #endif //FWRETRACT
  1503. prepare_move();
  1504. //ClearToSend();
  1505. }
  1506. break;
  1507. case 2: // G2 - CW ARC
  1508. if(Stopped == false) {
  1509. get_arc_coordinates();
  1510. prepare_arc_move(true);
  1511. }
  1512. break;
  1513. case 3: // G3 - CCW ARC
  1514. if(Stopped == false) {
  1515. get_arc_coordinates();
  1516. prepare_arc_move(false);
  1517. }
  1518. break;
  1519. case 4: // G4 dwell
  1520. LCD_MESSAGERPGM(MSG_DWELL);
  1521. codenum = 0;
  1522. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1523. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1524. st_synchronize();
  1525. codenum += millis(); // keep track of when we started waiting
  1526. previous_millis_cmd = millis();
  1527. while(millis() < codenum) {
  1528. manage_heater();
  1529. manage_inactivity();
  1530. lcd_update();
  1531. }
  1532. break;
  1533. #ifdef FWRETRACT
  1534. case 10: // G10 retract
  1535. #if EXTRUDERS > 1
  1536. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1537. retract(true,retracted_swap[active_extruder]);
  1538. #else
  1539. retract(true);
  1540. #endif
  1541. break;
  1542. case 11: // G11 retract_recover
  1543. #if EXTRUDERS > 1
  1544. retract(false,retracted_swap[active_extruder]);
  1545. #else
  1546. retract(false);
  1547. #endif
  1548. break;
  1549. #endif //FWRETRACT
  1550. case 28: //G28 Home all Axis one at a time
  1551. #ifdef ENABLE_AUTO_BED_LEVELING
  1552. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1553. #endif //ENABLE_AUTO_BED_LEVELING
  1554. _doMeshL = false;
  1555. // For mesh bed leveling deactivate the matrix temporarily
  1556. #ifdef MESH_BED_LEVELING
  1557. mbl.active = 0;
  1558. #endif
  1559. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1560. // the planner will not perform any adjustments in the XY plane.
  1561. // Wait for the motors to stop and update the current position with the absolute values.
  1562. world2machine_revert_to_uncorrected();
  1563. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1564. // consumed during the first movements following this statement.
  1565. babystepsTodoZsubtract(babystepLoadZ);
  1566. babystepLoadZ = 0;
  1567. saved_feedrate = feedrate;
  1568. saved_feedmultiply = feedmultiply;
  1569. feedmultiply = 100;
  1570. previous_millis_cmd = millis();
  1571. enable_endstops(true);
  1572. for(int8_t i=0; i < NUM_AXIS; i++)
  1573. destination[i] = current_position[i];
  1574. feedrate = 0.0;
  1575. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1576. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1577. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1578. homeaxis(Z_AXIS);
  1579. }
  1580. #endif
  1581. #ifdef QUICK_HOME
  1582. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1583. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1584. {
  1585. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1586. int x_axis_home_dir = home_dir(X_AXIS);
  1587. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1588. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1589. feedrate = homing_feedrate[X_AXIS];
  1590. if(homing_feedrate[Y_AXIS]<feedrate)
  1591. feedrate = homing_feedrate[Y_AXIS];
  1592. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1593. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1594. } else {
  1595. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1596. }
  1597. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1598. st_synchronize();
  1599. axis_is_at_home(X_AXIS);
  1600. axis_is_at_home(Y_AXIS);
  1601. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1602. destination[X_AXIS] = current_position[X_AXIS];
  1603. destination[Y_AXIS] = current_position[Y_AXIS];
  1604. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1605. feedrate = 0.0;
  1606. st_synchronize();
  1607. endstops_hit_on_purpose();
  1608. current_position[X_AXIS] = destination[X_AXIS];
  1609. current_position[Y_AXIS] = destination[Y_AXIS];
  1610. current_position[Z_AXIS] = destination[Z_AXIS];
  1611. }
  1612. #endif /* QUICK_HOME */
  1613. if (home_all_axis)
  1614. {
  1615. _doMeshL = true;
  1616. }
  1617. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1618. homeaxis(X_AXIS);
  1619. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS])))
  1620. homeaxis(Y_AXIS);
  1621. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  1622. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1623. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  1624. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1625. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1626. #ifndef Z_SAFE_HOMING
  1627. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1628. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1629. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1630. feedrate = max_feedrate[Z_AXIS];
  1631. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1632. st_synchronize();
  1633. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1634. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1635. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1636. {
  1637. homeaxis(X_AXIS);
  1638. homeaxis(Y_AXIS);
  1639. }
  1640. // 1st mesh bed leveling measurement point, corrected.
  1641. world2machine_initialize();
  1642. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1643. world2machine_reset();
  1644. if (destination[Y_AXIS] < Y_MIN_POS)
  1645. destination[Y_AXIS] = Y_MIN_POS;
  1646. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1647. feedrate = homing_feedrate[Z_AXIS]/10;
  1648. current_position[Z_AXIS] = 0;
  1649. enable_endstops(false);
  1650. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1651. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1652. st_synchronize();
  1653. current_position[X_AXIS] = destination[X_AXIS];
  1654. current_position[Y_AXIS] = destination[Y_AXIS];
  1655. enable_endstops(true);
  1656. endstops_hit_on_purpose();
  1657. homeaxis(Z_AXIS);
  1658. _doMeshL = true;
  1659. #else // MESH_BED_LEVELING
  1660. homeaxis(Z_AXIS);
  1661. #endif // MESH_BED_LEVELING
  1662. }
  1663. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1664. if(home_all_axis) {
  1665. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1666. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1667. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1668. feedrate = XY_TRAVEL_SPEED/60;
  1669. current_position[Z_AXIS] = 0;
  1670. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1671. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1672. st_synchronize();
  1673. current_position[X_AXIS] = destination[X_AXIS];
  1674. current_position[Y_AXIS] = destination[Y_AXIS];
  1675. homeaxis(Z_AXIS);
  1676. }
  1677. // Let's see if X and Y are homed and probe is inside bed area.
  1678. if(code_seen(axis_codes[Z_AXIS])) {
  1679. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1680. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1681. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1682. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1683. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1684. current_position[Z_AXIS] = 0;
  1685. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1686. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1687. feedrate = max_feedrate[Z_AXIS];
  1688. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1689. st_synchronize();
  1690. homeaxis(Z_AXIS);
  1691. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1692. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1693. SERIAL_ECHO_START;
  1694. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1695. } else {
  1696. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1697. SERIAL_ECHO_START;
  1698. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1699. }
  1700. }
  1701. #endif // Z_SAFE_HOMING
  1702. #endif // Z_HOME_DIR < 0
  1703. if(code_seen(axis_codes[Z_AXIS])) {
  1704. if(code_value_long() != 0) {
  1705. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1706. }
  1707. }
  1708. #ifdef ENABLE_AUTO_BED_LEVELING
  1709. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1710. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1711. }
  1712. #endif
  1713. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1714. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1715. enable_endstops(false);
  1716. #endif
  1717. feedrate = saved_feedrate;
  1718. feedmultiply = saved_feedmultiply;
  1719. previous_millis_cmd = millis();
  1720. endstops_hit_on_purpose();
  1721. #ifndef MESH_BED_LEVELING
  1722. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  1723. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  1724. if(card.sdprinting) {
  1725. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);
  1726. if(babystepLoadZ != 0)
  1727. lcd_adjust_z();
  1728. }
  1729. #endif
  1730. // Load the machine correction matrix
  1731. world2machine_initialize();
  1732. // and correct the current_position to match the transformed coordinate system.
  1733. world2machine_update_current();
  1734. #ifdef MESH_BED_LEVELING
  1735. if (code_seen('W'))
  1736. {
  1737. _doMeshL = false;
  1738. SERIAL_ECHOLN("G80 disabled");
  1739. }
  1740. if ( _doMeshL)
  1741. {
  1742. st_synchronize();
  1743. // Push the commands to the front of the message queue in the reverse order!
  1744. // There shall be always enough space reserved for these commands.
  1745. // enquecommand_front_P((PSTR("G80")));
  1746. goto case_G80;
  1747. }
  1748. #endif
  1749. break;
  1750. #ifdef ENABLE_AUTO_BED_LEVELING
  1751. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1752. {
  1753. #if Z_MIN_PIN == -1
  1754. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1755. #endif
  1756. // Prevent user from running a G29 without first homing in X and Y
  1757. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1758. {
  1759. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1760. SERIAL_ECHO_START;
  1761. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1762. break; // abort G29, since we don't know where we are
  1763. }
  1764. st_synchronize();
  1765. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1766. //vector_3 corrected_position = plan_get_position_mm();
  1767. //corrected_position.debug("position before G29");
  1768. plan_bed_level_matrix.set_to_identity();
  1769. vector_3 uncorrected_position = plan_get_position();
  1770. //uncorrected_position.debug("position durring G29");
  1771. current_position[X_AXIS] = uncorrected_position.x;
  1772. current_position[Y_AXIS] = uncorrected_position.y;
  1773. current_position[Z_AXIS] = uncorrected_position.z;
  1774. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1775. setup_for_endstop_move();
  1776. feedrate = homing_feedrate[Z_AXIS];
  1777. #ifdef AUTO_BED_LEVELING_GRID
  1778. // probe at the points of a lattice grid
  1779. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1780. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1781. // solve the plane equation ax + by + d = z
  1782. // A is the matrix with rows [x y 1] for all the probed points
  1783. // B is the vector of the Z positions
  1784. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1785. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1786. // "A" matrix of the linear system of equations
  1787. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1788. // "B" vector of Z points
  1789. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1790. int probePointCounter = 0;
  1791. bool zig = true;
  1792. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1793. {
  1794. int xProbe, xInc;
  1795. if (zig)
  1796. {
  1797. xProbe = LEFT_PROBE_BED_POSITION;
  1798. //xEnd = RIGHT_PROBE_BED_POSITION;
  1799. xInc = xGridSpacing;
  1800. zig = false;
  1801. } else // zag
  1802. {
  1803. xProbe = RIGHT_PROBE_BED_POSITION;
  1804. //xEnd = LEFT_PROBE_BED_POSITION;
  1805. xInc = -xGridSpacing;
  1806. zig = true;
  1807. }
  1808. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1809. {
  1810. float z_before;
  1811. if (probePointCounter == 0)
  1812. {
  1813. // raise before probing
  1814. z_before = Z_RAISE_BEFORE_PROBING;
  1815. } else
  1816. {
  1817. // raise extruder
  1818. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1819. }
  1820. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1821. eqnBVector[probePointCounter] = measured_z;
  1822. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1823. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1824. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1825. probePointCounter++;
  1826. xProbe += xInc;
  1827. }
  1828. }
  1829. clean_up_after_endstop_move();
  1830. // solve lsq problem
  1831. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1832. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1833. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1834. SERIAL_PROTOCOLPGM(" b: ");
  1835. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1836. SERIAL_PROTOCOLPGM(" d: ");
  1837. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1838. set_bed_level_equation_lsq(plane_equation_coefficients);
  1839. free(plane_equation_coefficients);
  1840. #else // AUTO_BED_LEVELING_GRID not defined
  1841. // Probe at 3 arbitrary points
  1842. // probe 1
  1843. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1844. // probe 2
  1845. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1846. // probe 3
  1847. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1848. clean_up_after_endstop_move();
  1849. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1850. #endif // AUTO_BED_LEVELING_GRID
  1851. st_synchronize();
  1852. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1853. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1854. // When the bed is uneven, this height must be corrected.
  1855. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1856. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1857. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1858. z_tmp = current_position[Z_AXIS];
  1859. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1860. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1861. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1862. }
  1863. break;
  1864. #ifndef Z_PROBE_SLED
  1865. case 30: // G30 Single Z Probe
  1866. {
  1867. st_synchronize();
  1868. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1869. setup_for_endstop_move();
  1870. feedrate = homing_feedrate[Z_AXIS];
  1871. run_z_probe();
  1872. SERIAL_PROTOCOLPGM(MSG_BED);
  1873. SERIAL_PROTOCOLPGM(" X: ");
  1874. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1875. SERIAL_PROTOCOLPGM(" Y: ");
  1876. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1877. SERIAL_PROTOCOLPGM(" Z: ");
  1878. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1879. SERIAL_PROTOCOLPGM("\n");
  1880. clean_up_after_endstop_move();
  1881. }
  1882. break;
  1883. #else
  1884. case 31: // dock the sled
  1885. dock_sled(true);
  1886. break;
  1887. case 32: // undock the sled
  1888. dock_sled(false);
  1889. break;
  1890. #endif // Z_PROBE_SLED
  1891. #endif // ENABLE_AUTO_BED_LEVELING
  1892. #ifdef MESH_BED_LEVELING
  1893. /**
  1894. * G80: Mesh-based Z probe, probes a grid and produces a
  1895. * mesh to compensate for variable bed height
  1896. *
  1897. * The S0 report the points as below
  1898. *
  1899. * +----> X-axis
  1900. * |
  1901. * |
  1902. * v Y-axis
  1903. *
  1904. */
  1905. case 80:
  1906. case_G80:
  1907. {
  1908. if (!IS_SD_PRINTING)
  1909. {
  1910. custom_message = true;
  1911. custom_message_type = 1;
  1912. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  1913. }
  1914. // Firstly check if we know where we are
  1915. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1916. // We don't know where we are! HOME!
  1917. // Push the commands to the front of the message queue in the reverse order!
  1918. // There shall be always enough space reserved for these commands.
  1919. repeatcommand_front(); // repeat G80 with all its parameters
  1920. enquecommand_front_P((PSTR("G28 W0")));
  1921. break;
  1922. }
  1923. mbl.reset();
  1924. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  1925. // consumed during the first movements following this statement.
  1926. babystepsTodoZsubtract(babystepLoadZ);
  1927. babystepLoadZ = 0;
  1928. // Cycle through all points and probe them
  1929. // First move up. During this first movement, the babystepping will be reverted.
  1930. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1931. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  1932. // The move to the first calibration point.
  1933. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  1934. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  1935. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  1936. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  1937. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  1938. // Wait until the move is finished.
  1939. st_synchronize();
  1940. int mesh_point = 0;
  1941. int ix = 0;
  1942. int iy = 0;
  1943. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  1944. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  1945. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  1946. bool has_z = is_bed_z_jitter_data_valid();
  1947. setup_for_endstop_move();
  1948. const char *kill_message = NULL;
  1949. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  1950. // Get coords of a measuring point.
  1951. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  1952. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  1953. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  1954. float z0 = 0.f;
  1955. if (has_z && mesh_point > 0) {
  1956. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  1957. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  1958. #if 0
  1959. SERIAL_ECHOPGM("Bed leveling, point: ");
  1960. MYSERIAL.print(mesh_point);
  1961. SERIAL_ECHOPGM(", calibration z: ");
  1962. MYSERIAL.print(z0, 5);
  1963. SERIAL_ECHOLNPGM("");
  1964. #endif
  1965. }
  1966. // Move Z to proper distance
  1967. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1968. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  1969. st_synchronize();
  1970. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  1971. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  1972. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  1973. // mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
  1974. enable_endstops(false);
  1975. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  1976. st_synchronize();
  1977. // Go down until endstop is hit
  1978. const float Z_CALIBRATION_THRESHOLD = 0.5f;
  1979. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  1980. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  1981. break;
  1982. }
  1983. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  1984. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  1985. break;
  1986. }
  1987. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1988. if (!IS_SD_PRINTING)
  1989. {
  1990. custom_message_state--;
  1991. }
  1992. mesh_point++;
  1993. }
  1994. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1995. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  1996. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  1997. st_synchronize();
  1998. kill(kill_message);
  1999. }
  2000. clean_up_after_endstop_move();
  2001. mbl.upsample_3x3();
  2002. mbl.active = 1;
  2003. current_position[X_AXIS] = X_MIN_POS+0.2;
  2004. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  2005. current_position[Z_AXIS] = Z_MIN_POS;
  2006. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2007. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2008. st_synchronize();
  2009. if(card.sdprinting || is_usb_printing )
  2010. {
  2011. if(eeprom_read_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET) == 0x01)
  2012. {
  2013. // End of G80: Apply the baby stepping value.
  2014. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoadZ);
  2015. babystepsTodoZadd(babystepLoadZ);
  2016. }
  2017. }
  2018. }
  2019. break;
  2020. /**
  2021. * G81: Print mesh bed leveling status and bed profile if activated
  2022. */
  2023. case 81:
  2024. if (mbl.active) {
  2025. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2026. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2027. SERIAL_PROTOCOLPGM(",");
  2028. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2029. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2030. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2031. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2032. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2033. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2034. SERIAL_PROTOCOLPGM(" ");
  2035. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2036. }
  2037. SERIAL_PROTOCOLPGM("\n");
  2038. }
  2039. }
  2040. else
  2041. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2042. break;
  2043. /**
  2044. * G82: Single Z probe at current location
  2045. *
  2046. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2047. *
  2048. */
  2049. case 82:
  2050. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2051. setup_for_endstop_move();
  2052. find_bed_induction_sensor_point_z();
  2053. clean_up_after_endstop_move();
  2054. SERIAL_PROTOCOLPGM("Bed found at: ");
  2055. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2056. SERIAL_PROTOCOLPGM("\n");
  2057. break;
  2058. /**
  2059. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  2060. */
  2061. case 83:
  2062. {
  2063. int babystepz = code_seen('S') ? code_value() : 0;
  2064. int BabyPosition = code_seen('P') ? code_value() : 0;
  2065. if (babystepz != 0) {
  2066. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  2067. // Is the axis indexed starting with zero or one?
  2068. if (BabyPosition > 4) {
  2069. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2070. }else{
  2071. // Save it to the eeprom
  2072. babystepLoadZ = babystepz;
  2073. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  2074. // adjust the Z
  2075. babystepsTodoZadd(babystepLoadZ);
  2076. }
  2077. }
  2078. }
  2079. break;
  2080. /**
  2081. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  2082. */
  2083. case 84:
  2084. babystepsTodoZsubtract(babystepLoadZ);
  2085. // babystepLoadZ = 0;
  2086. break;
  2087. /**
  2088. * G85: Prusa3D specific: Pick best babystep
  2089. */
  2090. case 85:
  2091. lcd_pick_babystep();
  2092. break;
  2093. /**
  2094. * G86: Prusa3D specific: Disable babystep correction after home.
  2095. * This G-code will be performed at the start of a calibration script.
  2096. */
  2097. case 86:
  2098. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2099. break;
  2100. /**
  2101. * G87: Prusa3D specific: Enable babystep correction after home
  2102. * This G-code will be performed at the end of a calibration script.
  2103. */
  2104. case 87:
  2105. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  2106. break;
  2107. case 88:
  2108. break;
  2109. #endif // ENABLE_MESH_BED_LEVELING
  2110. case 90: // G90
  2111. relative_mode = false;
  2112. break;
  2113. case 91: // G91
  2114. relative_mode = true;
  2115. break;
  2116. case 92: // G92
  2117. if(!code_seen(axis_codes[E_AXIS]))
  2118. st_synchronize();
  2119. for(int8_t i=0; i < NUM_AXIS; i++) {
  2120. if(code_seen(axis_codes[i])) {
  2121. if(i == E_AXIS) {
  2122. current_position[i] = code_value();
  2123. plan_set_e_position(current_position[E_AXIS]);
  2124. }
  2125. else {
  2126. current_position[i] = code_value()+add_homing[i];
  2127. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2128. }
  2129. }
  2130. }
  2131. break;
  2132. }
  2133. } // end if(code_seen('G'))
  2134. else if(code_seen('M'))
  2135. {
  2136. switch( (int)code_value() )
  2137. {
  2138. #ifdef ULTIPANEL
  2139. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2140. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2141. {
  2142. char *src = strchr_pointer + 2;
  2143. codenum = 0;
  2144. bool hasP = false, hasS = false;
  2145. if (code_seen('P')) {
  2146. codenum = code_value(); // milliseconds to wait
  2147. hasP = codenum > 0;
  2148. }
  2149. if (code_seen('S')) {
  2150. codenum = code_value() * 1000; // seconds to wait
  2151. hasS = codenum > 0;
  2152. }
  2153. starpos = strchr(src, '*');
  2154. if (starpos != NULL) *(starpos) = '\0';
  2155. while (*src == ' ') ++src;
  2156. if (!hasP && !hasS && *src != '\0') {
  2157. lcd_setstatus(src);
  2158. } else {
  2159. LCD_MESSAGERPGM(MSG_USERWAIT);
  2160. }
  2161. lcd_ignore_click();
  2162. st_synchronize();
  2163. previous_millis_cmd = millis();
  2164. if (codenum > 0){
  2165. codenum += millis(); // keep track of when we started waiting
  2166. while(millis() < codenum && !lcd_clicked()){
  2167. manage_heater();
  2168. manage_inactivity();
  2169. lcd_update();
  2170. }
  2171. lcd_ignore_click(false);
  2172. }else{
  2173. if (!lcd_detected())
  2174. break;
  2175. while(!lcd_clicked()){
  2176. manage_heater();
  2177. manage_inactivity();
  2178. lcd_update();
  2179. }
  2180. }
  2181. if (IS_SD_PRINTING)
  2182. LCD_MESSAGERPGM(MSG_RESUMING);
  2183. else
  2184. LCD_MESSAGERPGM(WELCOME_MSG);
  2185. }
  2186. break;
  2187. #endif
  2188. case 17:
  2189. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2190. enable_x();
  2191. enable_y();
  2192. enable_z();
  2193. enable_e0();
  2194. enable_e1();
  2195. enable_e2();
  2196. break;
  2197. #ifdef SDSUPPORT
  2198. case 20: // M20 - list SD card
  2199. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2200. card.ls();
  2201. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2202. break;
  2203. case 21: // M21 - init SD card
  2204. card.initsd();
  2205. break;
  2206. case 22: //M22 - release SD card
  2207. card.release();
  2208. break;
  2209. case 23: //M23 - Select file
  2210. starpos = (strchr(strchr_pointer + 4,'*'));
  2211. if(starpos!=NULL)
  2212. *(starpos)='\0';
  2213. card.openFile(strchr_pointer + 4,true);
  2214. break;
  2215. case 24: //M24 - Start SD print
  2216. card.startFileprint();
  2217. starttime=millis();
  2218. break;
  2219. case 25: //M25 - Pause SD print
  2220. card.pauseSDPrint();
  2221. break;
  2222. case 26: //M26 - Set SD index
  2223. if(card.cardOK && code_seen('S')) {
  2224. card.setIndex(code_value_long());
  2225. }
  2226. break;
  2227. case 27: //M27 - Get SD status
  2228. card.getStatus();
  2229. break;
  2230. case 28: //M28 - Start SD write
  2231. starpos = (strchr(strchr_pointer + 4,'*'));
  2232. if(starpos != NULL){
  2233. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2234. strchr_pointer = strchr(npos,' ') + 1;
  2235. *(starpos) = '\0';
  2236. }
  2237. card.openFile(strchr_pointer+4,false);
  2238. break;
  2239. case 29: //M29 - Stop SD write
  2240. //processed in write to file routine above
  2241. //card,saving = false;
  2242. break;
  2243. case 30: //M30 <filename> Delete File
  2244. if (card.cardOK){
  2245. card.closefile();
  2246. starpos = (strchr(strchr_pointer + 4,'*'));
  2247. if(starpos != NULL){
  2248. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2249. strchr_pointer = strchr(npos,' ') + 1;
  2250. *(starpos) = '\0';
  2251. }
  2252. card.removeFile(strchr_pointer + 4);
  2253. }
  2254. break;
  2255. case 32: //M32 - Select file and start SD print
  2256. {
  2257. if(card.sdprinting) {
  2258. st_synchronize();
  2259. }
  2260. starpos = (strchr(strchr_pointer + 4,'*'));
  2261. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2262. if(namestartpos==NULL)
  2263. {
  2264. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2265. }
  2266. else
  2267. namestartpos++; //to skip the '!'
  2268. if(starpos!=NULL)
  2269. *(starpos)='\0';
  2270. bool call_procedure=(code_seen('P'));
  2271. if(strchr_pointer>namestartpos)
  2272. call_procedure=false; //false alert, 'P' found within filename
  2273. if( card.cardOK )
  2274. {
  2275. card.openFile(namestartpos,true,!call_procedure);
  2276. if(code_seen('S'))
  2277. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2278. card.setIndex(code_value_long());
  2279. card.startFileprint();
  2280. if(!call_procedure)
  2281. starttime=millis(); //procedure calls count as normal print time.
  2282. }
  2283. } break;
  2284. case 928: //M928 - Start SD write
  2285. starpos = (strchr(strchr_pointer + 5,'*'));
  2286. if(starpos != NULL){
  2287. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2288. strchr_pointer = strchr(npos,' ') + 1;
  2289. *(starpos) = '\0';
  2290. }
  2291. card.openLogFile(strchr_pointer+5);
  2292. break;
  2293. #endif //SDSUPPORT
  2294. case 31: //M31 take time since the start of the SD print or an M109 command
  2295. {
  2296. stoptime=millis();
  2297. char time[30];
  2298. unsigned long t=(stoptime-starttime)/1000;
  2299. int sec,min;
  2300. min=t/60;
  2301. sec=t%60;
  2302. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2303. SERIAL_ECHO_START;
  2304. SERIAL_ECHOLN(time);
  2305. lcd_setstatus(time);
  2306. autotempShutdown();
  2307. }
  2308. break;
  2309. case 42: //M42 -Change pin status via gcode
  2310. if (code_seen('S'))
  2311. {
  2312. int pin_status = code_value();
  2313. int pin_number = LED_PIN;
  2314. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2315. pin_number = code_value();
  2316. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2317. {
  2318. if (sensitive_pins[i] == pin_number)
  2319. {
  2320. pin_number = -1;
  2321. break;
  2322. }
  2323. }
  2324. #if defined(FAN_PIN) && FAN_PIN > -1
  2325. if (pin_number == FAN_PIN)
  2326. fanSpeed = pin_status;
  2327. #endif
  2328. if (pin_number > -1)
  2329. {
  2330. pinMode(pin_number, OUTPUT);
  2331. digitalWrite(pin_number, pin_status);
  2332. analogWrite(pin_number, pin_status);
  2333. }
  2334. }
  2335. break;
  2336. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2337. // Reset the skew and offset in both RAM and EEPROM.
  2338. reset_bed_offset_and_skew();
  2339. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2340. // the planner will not perform any adjustments in the XY plane.
  2341. // Wait for the motors to stop and update the current position with the absolute values.
  2342. world2machine_revert_to_uncorrected();
  2343. break;
  2344. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2345. {
  2346. // Disable the default update procedure of the display. We will do a modal dialog.
  2347. lcd_update_enable(false);
  2348. // Let the planner use the uncorrected coordinates.
  2349. mbl.reset();
  2350. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2351. // the planner will not perform any adjustments in the XY plane.
  2352. // Wait for the motors to stop and update the current position with the absolute values.
  2353. world2machine_revert_to_uncorrected();
  2354. // Let the user move the Z axes up to the end stoppers.
  2355. if (lcd_calibrate_z_end_stop_manual()) {
  2356. refresh_cmd_timeout();
  2357. // Move the print head close to the bed.
  2358. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2359. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2360. st_synchronize();
  2361. // Home in the XY plane.
  2362. set_destination_to_current();
  2363. setup_for_endstop_move();
  2364. home_xy();
  2365. int8_t verbosity_level = 0;
  2366. if (code_seen('V')) {
  2367. // Just 'V' without a number counts as V1.
  2368. char c = strchr_pointer[1];
  2369. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2370. }
  2371. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2372. uint8_t point_too_far_mask = 0;
  2373. clean_up_after_endstop_move();
  2374. // Print head up.
  2375. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2376. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2377. st_synchronize();
  2378. if (result >= 0) {
  2379. // Second half: The fine adjustment.
  2380. // Let the planner use the uncorrected coordinates.
  2381. mbl.reset();
  2382. world2machine_reset();
  2383. // Home in the XY plane.
  2384. setup_for_endstop_move();
  2385. home_xy();
  2386. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2387. clean_up_after_endstop_move();
  2388. // Print head up.
  2389. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2390. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2391. st_synchronize();
  2392. }
  2393. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2394. } else {
  2395. // Timeouted.
  2396. }
  2397. lcd_update_enable(true);
  2398. lcd_implementation_clear();
  2399. // lcd_return_to_status();
  2400. lcd_update();
  2401. break;
  2402. }
  2403. case 46:
  2404. {
  2405. // M46: Prusa3D: Show the assigned IP address.
  2406. uint8_t ip[4];
  2407. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  2408. if (hasIP) {
  2409. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  2410. SERIAL_ECHO(int(ip[0]));
  2411. SERIAL_ECHOPGM(".");
  2412. SERIAL_ECHO(int(ip[1]));
  2413. SERIAL_ECHOPGM(".");
  2414. SERIAL_ECHO(int(ip[2]));
  2415. SERIAL_ECHOPGM(".");
  2416. SERIAL_ECHO(int(ip[3]));
  2417. SERIAL_ECHOLNPGM("");
  2418. } else {
  2419. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  2420. }
  2421. break;
  2422. }
  2423. case 47:
  2424. // M47: Prusa3D: Show end stops dialog on the display.
  2425. lcd_diag_show_end_stops();
  2426. break;
  2427. #if 0
  2428. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2429. {
  2430. // Disable the default update procedure of the display. We will do a modal dialog.
  2431. lcd_update_enable(false);
  2432. // Let the planner use the uncorrected coordinates.
  2433. mbl.reset();
  2434. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2435. // the planner will not perform any adjustments in the XY plane.
  2436. // Wait for the motors to stop and update the current position with the absolute values.
  2437. world2machine_revert_to_uncorrected();
  2438. // Move the print head close to the bed.
  2439. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2440. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2441. st_synchronize();
  2442. // Home in the XY plane.
  2443. set_destination_to_current();
  2444. setup_for_endstop_move();
  2445. home_xy();
  2446. int8_t verbosity_level = 0;
  2447. if (code_seen('V')) {
  2448. // Just 'V' without a number counts as V1.
  2449. char c = strchr_pointer[1];
  2450. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2451. }
  2452. bool success = scan_bed_induction_points(verbosity_level);
  2453. clean_up_after_endstop_move();
  2454. // Print head up.
  2455. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2456. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2457. st_synchronize();
  2458. lcd_update_enable(true);
  2459. lcd_implementation_clear();
  2460. // lcd_return_to_status();
  2461. lcd_update();
  2462. break;
  2463. }
  2464. #endif
  2465. // M48 Z-Probe repeatability measurement function.
  2466. //
  2467. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2468. //
  2469. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2470. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2471. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2472. // regenerated.
  2473. //
  2474. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2475. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2476. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2477. //
  2478. #ifdef ENABLE_AUTO_BED_LEVELING
  2479. #ifdef Z_PROBE_REPEATABILITY_TEST
  2480. case 48: // M48 Z-Probe repeatability
  2481. {
  2482. #if Z_MIN_PIN == -1
  2483. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2484. #endif
  2485. double sum=0.0;
  2486. double mean=0.0;
  2487. double sigma=0.0;
  2488. double sample_set[50];
  2489. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2490. double X_current, Y_current, Z_current;
  2491. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2492. if (code_seen('V') || code_seen('v')) {
  2493. verbose_level = code_value();
  2494. if (verbose_level<0 || verbose_level>4 ) {
  2495. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2496. goto Sigma_Exit;
  2497. }
  2498. }
  2499. if (verbose_level > 0) {
  2500. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2501. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2502. }
  2503. if (code_seen('n')) {
  2504. n_samples = code_value();
  2505. if (n_samples<4 || n_samples>50 ) {
  2506. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2507. goto Sigma_Exit;
  2508. }
  2509. }
  2510. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2511. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2512. Z_current = st_get_position_mm(Z_AXIS);
  2513. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2514. ext_position = st_get_position_mm(E_AXIS);
  2515. if (code_seen('X') || code_seen('x') ) {
  2516. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2517. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2518. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2519. goto Sigma_Exit;
  2520. }
  2521. }
  2522. if (code_seen('Y') || code_seen('y') ) {
  2523. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2524. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2525. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2526. goto Sigma_Exit;
  2527. }
  2528. }
  2529. if (code_seen('L') || code_seen('l') ) {
  2530. n_legs = code_value();
  2531. if ( n_legs==1 )
  2532. n_legs = 2;
  2533. if ( n_legs<0 || n_legs>15 ) {
  2534. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2535. goto Sigma_Exit;
  2536. }
  2537. }
  2538. //
  2539. // Do all the preliminary setup work. First raise the probe.
  2540. //
  2541. st_synchronize();
  2542. plan_bed_level_matrix.set_to_identity();
  2543. plan_buffer_line( X_current, Y_current, Z_start_location,
  2544. ext_position,
  2545. homing_feedrate[Z_AXIS]/60,
  2546. active_extruder);
  2547. st_synchronize();
  2548. //
  2549. // Now get everything to the specified probe point So we can safely do a probe to
  2550. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2551. // use that as a starting point for each probe.
  2552. //
  2553. if (verbose_level > 2)
  2554. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2555. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2556. ext_position,
  2557. homing_feedrate[X_AXIS]/60,
  2558. active_extruder);
  2559. st_synchronize();
  2560. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2561. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2562. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2563. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2564. //
  2565. // OK, do the inital probe to get us close to the bed.
  2566. // Then retrace the right amount and use that in subsequent probes
  2567. //
  2568. setup_for_endstop_move();
  2569. run_z_probe();
  2570. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2571. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2572. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2573. ext_position,
  2574. homing_feedrate[X_AXIS]/60,
  2575. active_extruder);
  2576. st_synchronize();
  2577. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2578. for( n=0; n<n_samples; n++) {
  2579. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2580. if ( n_legs) {
  2581. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2582. int rotational_direction, l;
  2583. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2584. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2585. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2586. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2587. //SERIAL_ECHOPAIR(" theta: ",theta);
  2588. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2589. //SERIAL_PROTOCOLLNPGM("");
  2590. for( l=0; l<n_legs-1; l++) {
  2591. if (rotational_direction==1)
  2592. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2593. else
  2594. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2595. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2596. if ( radius<0.0 )
  2597. radius = -radius;
  2598. X_current = X_probe_location + cos(theta) * radius;
  2599. Y_current = Y_probe_location + sin(theta) * radius;
  2600. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2601. X_current = X_MIN_POS;
  2602. if ( X_current>X_MAX_POS)
  2603. X_current = X_MAX_POS;
  2604. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2605. Y_current = Y_MIN_POS;
  2606. if ( Y_current>Y_MAX_POS)
  2607. Y_current = Y_MAX_POS;
  2608. if (verbose_level>3 ) {
  2609. SERIAL_ECHOPAIR("x: ", X_current);
  2610. SERIAL_ECHOPAIR("y: ", Y_current);
  2611. SERIAL_PROTOCOLLNPGM("");
  2612. }
  2613. do_blocking_move_to( X_current, Y_current, Z_current );
  2614. }
  2615. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2616. }
  2617. setup_for_endstop_move();
  2618. run_z_probe();
  2619. sample_set[n] = current_position[Z_AXIS];
  2620. //
  2621. // Get the current mean for the data points we have so far
  2622. //
  2623. sum=0.0;
  2624. for( j=0; j<=n; j++) {
  2625. sum = sum + sample_set[j];
  2626. }
  2627. mean = sum / (double (n+1));
  2628. //
  2629. // Now, use that mean to calculate the standard deviation for the
  2630. // data points we have so far
  2631. //
  2632. sum=0.0;
  2633. for( j=0; j<=n; j++) {
  2634. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2635. }
  2636. sigma = sqrt( sum / (double (n+1)) );
  2637. if (verbose_level > 1) {
  2638. SERIAL_PROTOCOL(n+1);
  2639. SERIAL_PROTOCOL(" of ");
  2640. SERIAL_PROTOCOL(n_samples);
  2641. SERIAL_PROTOCOLPGM(" z: ");
  2642. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2643. }
  2644. if (verbose_level > 2) {
  2645. SERIAL_PROTOCOL(" mean: ");
  2646. SERIAL_PROTOCOL_F(mean,6);
  2647. SERIAL_PROTOCOL(" sigma: ");
  2648. SERIAL_PROTOCOL_F(sigma,6);
  2649. }
  2650. if (verbose_level > 0)
  2651. SERIAL_PROTOCOLPGM("\n");
  2652. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2653. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2654. st_synchronize();
  2655. }
  2656. delay(1000);
  2657. clean_up_after_endstop_move();
  2658. // enable_endstops(true);
  2659. if (verbose_level > 0) {
  2660. SERIAL_PROTOCOLPGM("Mean: ");
  2661. SERIAL_PROTOCOL_F(mean, 6);
  2662. SERIAL_PROTOCOLPGM("\n");
  2663. }
  2664. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2665. SERIAL_PROTOCOL_F(sigma, 6);
  2666. SERIAL_PROTOCOLPGM("\n\n");
  2667. Sigma_Exit:
  2668. break;
  2669. }
  2670. #endif // Z_PROBE_REPEATABILITY_TEST
  2671. #endif // ENABLE_AUTO_BED_LEVELING
  2672. case 104: // M104
  2673. if(setTargetedHotend(104)){
  2674. break;
  2675. }
  2676. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2677. setWatch();
  2678. break;
  2679. case 112: // M112 -Emergency Stop
  2680. kill();
  2681. break;
  2682. case 140: // M140 set bed temp
  2683. if (code_seen('S')) setTargetBed(code_value());
  2684. break;
  2685. case 105 : // M105
  2686. if(setTargetedHotend(105)){
  2687. break;
  2688. }
  2689. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2690. SERIAL_PROTOCOLPGM("ok T:");
  2691. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2692. SERIAL_PROTOCOLPGM(" /");
  2693. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2694. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2695. SERIAL_PROTOCOLPGM(" B:");
  2696. SERIAL_PROTOCOL_F(degBed(),1);
  2697. SERIAL_PROTOCOLPGM(" /");
  2698. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2699. #endif //TEMP_BED_PIN
  2700. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2701. SERIAL_PROTOCOLPGM(" T");
  2702. SERIAL_PROTOCOL(cur_extruder);
  2703. SERIAL_PROTOCOLPGM(":");
  2704. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2705. SERIAL_PROTOCOLPGM(" /");
  2706. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2707. }
  2708. #else
  2709. SERIAL_ERROR_START;
  2710. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2711. #endif
  2712. SERIAL_PROTOCOLPGM(" @:");
  2713. #ifdef EXTRUDER_WATTS
  2714. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2715. SERIAL_PROTOCOLPGM("W");
  2716. #else
  2717. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2718. #endif
  2719. SERIAL_PROTOCOLPGM(" B@:");
  2720. #ifdef BED_WATTS
  2721. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2722. SERIAL_PROTOCOLPGM("W");
  2723. #else
  2724. SERIAL_PROTOCOL(getHeaterPower(-1));
  2725. #endif
  2726. #ifdef SHOW_TEMP_ADC_VALUES
  2727. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2728. SERIAL_PROTOCOLPGM(" ADC B:");
  2729. SERIAL_PROTOCOL_F(degBed(),1);
  2730. SERIAL_PROTOCOLPGM("C->");
  2731. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2732. #endif
  2733. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2734. SERIAL_PROTOCOLPGM(" T");
  2735. SERIAL_PROTOCOL(cur_extruder);
  2736. SERIAL_PROTOCOLPGM(":");
  2737. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2738. SERIAL_PROTOCOLPGM("C->");
  2739. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2740. }
  2741. #endif
  2742. SERIAL_PROTOCOLLN("");
  2743. return;
  2744. break;
  2745. case 109:
  2746. {// M109 - Wait for extruder heater to reach target.
  2747. if(setTargetedHotend(109)){
  2748. break;
  2749. }
  2750. LCD_MESSAGERPGM(MSG_HEATING);
  2751. heating_status = 1;
  2752. #ifdef AUTOTEMP
  2753. autotemp_enabled=false;
  2754. #endif
  2755. if (code_seen('S')) {
  2756. setTargetHotend(code_value(), tmp_extruder);
  2757. CooldownNoWait = true;
  2758. } else if (code_seen('R')) {
  2759. setTargetHotend(code_value(), tmp_extruder);
  2760. CooldownNoWait = false;
  2761. }
  2762. #ifdef AUTOTEMP
  2763. if (code_seen('S')) autotemp_min=code_value();
  2764. if (code_seen('B')) autotemp_max=code_value();
  2765. if (code_seen('F'))
  2766. {
  2767. autotemp_factor=code_value();
  2768. autotemp_enabled=true;
  2769. }
  2770. #endif
  2771. setWatch();
  2772. codenum = millis();
  2773. /* See if we are heating up or cooling down */
  2774. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2775. cancel_heatup = false;
  2776. #ifdef TEMP_RESIDENCY_TIME
  2777. long residencyStart;
  2778. residencyStart = -1;
  2779. /* continue to loop until we have reached the target temp
  2780. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2781. while((!cancel_heatup)&&((residencyStart == -1) ||
  2782. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2783. #else
  2784. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2785. #endif //TEMP_RESIDENCY_TIME
  2786. if( (millis() - codenum) > 1000UL )
  2787. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2788. SERIAL_PROTOCOLPGM("T:");
  2789. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2790. SERIAL_PROTOCOLPGM(" E:");
  2791. SERIAL_PROTOCOL((int)tmp_extruder);
  2792. #ifdef TEMP_RESIDENCY_TIME
  2793. SERIAL_PROTOCOLPGM(" W:");
  2794. if(residencyStart > -1)
  2795. {
  2796. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2797. SERIAL_PROTOCOLLN( codenum );
  2798. }
  2799. else
  2800. {
  2801. SERIAL_PROTOCOLLN( "?" );
  2802. }
  2803. #else
  2804. SERIAL_PROTOCOLLN("");
  2805. #endif
  2806. codenum = millis();
  2807. }
  2808. manage_heater();
  2809. manage_inactivity();
  2810. lcd_update();
  2811. #ifdef TEMP_RESIDENCY_TIME
  2812. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2813. or when current temp falls outside the hysteresis after target temp was reached */
  2814. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2815. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2816. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2817. {
  2818. residencyStart = millis();
  2819. }
  2820. #endif //TEMP_RESIDENCY_TIME
  2821. }
  2822. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2823. heating_status = 2;
  2824. starttime=millis();
  2825. previous_millis_cmd = millis();
  2826. }
  2827. break;
  2828. case 190: // M190 - Wait for bed heater to reach target.
  2829. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2830. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2831. heating_status = 3;
  2832. if (code_seen('S'))
  2833. {
  2834. setTargetBed(code_value());
  2835. CooldownNoWait = true;
  2836. }
  2837. else if (code_seen('R'))
  2838. {
  2839. setTargetBed(code_value());
  2840. CooldownNoWait = false;
  2841. }
  2842. codenum = millis();
  2843. cancel_heatup = false;
  2844. target_direction = isHeatingBed(); // true if heating, false if cooling
  2845. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2846. {
  2847. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2848. {
  2849. float tt=degHotend(active_extruder);
  2850. SERIAL_PROTOCOLPGM("T:");
  2851. SERIAL_PROTOCOL(tt);
  2852. SERIAL_PROTOCOLPGM(" E:");
  2853. SERIAL_PROTOCOL((int)active_extruder);
  2854. SERIAL_PROTOCOLPGM(" B:");
  2855. SERIAL_PROTOCOL_F(degBed(),1);
  2856. SERIAL_PROTOCOLLN("");
  2857. codenum = millis();
  2858. }
  2859. manage_heater();
  2860. manage_inactivity();
  2861. lcd_update();
  2862. }
  2863. LCD_MESSAGERPGM(MSG_BED_DONE);
  2864. heating_status = 4;
  2865. previous_millis_cmd = millis();
  2866. #endif
  2867. break;
  2868. #if defined(FAN_PIN) && FAN_PIN > -1
  2869. case 106: //M106 Fan On
  2870. if (code_seen('S')){
  2871. fanSpeed=constrain(code_value(),0,255);
  2872. }
  2873. else {
  2874. fanSpeed=255;
  2875. }
  2876. break;
  2877. case 107: //M107 Fan Off
  2878. fanSpeed = 0;
  2879. break;
  2880. #endif //FAN_PIN
  2881. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2882. case 80: // M80 - Turn on Power Supply
  2883. SET_OUTPUT(PS_ON_PIN); //GND
  2884. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2885. // If you have a switch on suicide pin, this is useful
  2886. // if you want to start another print with suicide feature after
  2887. // a print without suicide...
  2888. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2889. SET_OUTPUT(SUICIDE_PIN);
  2890. WRITE(SUICIDE_PIN, HIGH);
  2891. #endif
  2892. #ifdef ULTIPANEL
  2893. powersupply = true;
  2894. LCD_MESSAGERPGM(WELCOME_MSG);
  2895. lcd_update();
  2896. #endif
  2897. break;
  2898. #endif
  2899. case 81: // M81 - Turn off Power Supply
  2900. disable_heater();
  2901. st_synchronize();
  2902. disable_e0();
  2903. disable_e1();
  2904. disable_e2();
  2905. finishAndDisableSteppers();
  2906. fanSpeed = 0;
  2907. delay(1000); // Wait a little before to switch off
  2908. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2909. st_synchronize();
  2910. suicide();
  2911. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2912. SET_OUTPUT(PS_ON_PIN);
  2913. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2914. #endif
  2915. #ifdef ULTIPANEL
  2916. powersupply = false;
  2917. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  2918. /*
  2919. MACHNAME = "Prusa i3"
  2920. MSGOFF = "Vypnuto"
  2921. "Prusai3"" ""vypnuto""."
  2922. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  2923. */
  2924. lcd_update();
  2925. #endif
  2926. break;
  2927. case 82:
  2928. axis_relative_modes[3] = false;
  2929. break;
  2930. case 83:
  2931. axis_relative_modes[3] = true;
  2932. break;
  2933. case 18: //compatibility
  2934. case 84: // M84
  2935. if(code_seen('S')){
  2936. stepper_inactive_time = code_value() * 1000;
  2937. }
  2938. else
  2939. {
  2940. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2941. if(all_axis)
  2942. {
  2943. st_synchronize();
  2944. disable_e0();
  2945. disable_e1();
  2946. disable_e2();
  2947. finishAndDisableSteppers();
  2948. }
  2949. else
  2950. {
  2951. st_synchronize();
  2952. if(code_seen('X')) disable_x();
  2953. if(code_seen('Y')) disable_y();
  2954. if(code_seen('Z')) disable_z();
  2955. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2956. if(code_seen('E')) {
  2957. disable_e0();
  2958. disable_e1();
  2959. disable_e2();
  2960. }
  2961. #endif
  2962. }
  2963. }
  2964. break;
  2965. case 85: // M85
  2966. if(code_seen('S')) {
  2967. max_inactive_time = code_value() * 1000;
  2968. }
  2969. break;
  2970. case 92: // M92
  2971. for(int8_t i=0; i < NUM_AXIS; i++)
  2972. {
  2973. if(code_seen(axis_codes[i]))
  2974. {
  2975. if(i == 3) { // E
  2976. float value = code_value();
  2977. if(value < 20.0) {
  2978. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2979. max_e_jerk *= factor;
  2980. max_feedrate[i] *= factor;
  2981. axis_steps_per_sqr_second[i] *= factor;
  2982. }
  2983. axis_steps_per_unit[i] = value;
  2984. }
  2985. else {
  2986. axis_steps_per_unit[i] = code_value();
  2987. }
  2988. }
  2989. }
  2990. break;
  2991. case 115: // M115
  2992. if (code_seen('V')) {
  2993. // Report the Prusa version number.
  2994. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  2995. } else if (code_seen('U')) {
  2996. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  2997. // pause the print and ask the user to upgrade the firmware.
  2998. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  2999. } else {
  3000. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3001. }
  3002. break;
  3003. case 117: // M117 display message
  3004. starpos = (strchr(strchr_pointer + 5,'*'));
  3005. if(starpos!=NULL)
  3006. *(starpos)='\0';
  3007. lcd_setstatus(strchr_pointer + 5);
  3008. break;
  3009. case 114: // M114
  3010. SERIAL_PROTOCOLPGM("X:");
  3011. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3012. SERIAL_PROTOCOLPGM(" Y:");
  3013. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3014. SERIAL_PROTOCOLPGM(" Z:");
  3015. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3016. SERIAL_PROTOCOLPGM(" E:");
  3017. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3018. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3019. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3020. SERIAL_PROTOCOLPGM(" Y:");
  3021. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3022. SERIAL_PROTOCOLPGM(" Z:");
  3023. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3024. SERIAL_PROTOCOLLN("");
  3025. break;
  3026. case 120: // M120
  3027. enable_endstops(false) ;
  3028. break;
  3029. case 121: // M121
  3030. enable_endstops(true) ;
  3031. break;
  3032. case 119: // M119
  3033. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3034. SERIAL_PROTOCOLLN("");
  3035. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3036. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3037. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3038. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3039. }else{
  3040. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3041. }
  3042. SERIAL_PROTOCOLLN("");
  3043. #endif
  3044. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3045. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3046. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3047. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3048. }else{
  3049. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3050. }
  3051. SERIAL_PROTOCOLLN("");
  3052. #endif
  3053. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3054. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3055. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3056. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3057. }else{
  3058. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3059. }
  3060. SERIAL_PROTOCOLLN("");
  3061. #endif
  3062. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3063. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3064. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3065. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3066. }else{
  3067. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3068. }
  3069. SERIAL_PROTOCOLLN("");
  3070. #endif
  3071. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3072. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3073. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3074. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3075. }else{
  3076. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3077. }
  3078. SERIAL_PROTOCOLLN("");
  3079. #endif
  3080. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3081. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3082. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3083. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3084. }else{
  3085. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3086. }
  3087. SERIAL_PROTOCOLLN("");
  3088. #endif
  3089. break;
  3090. //TODO: update for all axis, use for loop
  3091. #ifdef BLINKM
  3092. case 150: // M150
  3093. {
  3094. byte red;
  3095. byte grn;
  3096. byte blu;
  3097. if(code_seen('R')) red = code_value();
  3098. if(code_seen('U')) grn = code_value();
  3099. if(code_seen('B')) blu = code_value();
  3100. SendColors(red,grn,blu);
  3101. }
  3102. break;
  3103. #endif //BLINKM
  3104. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3105. {
  3106. tmp_extruder = active_extruder;
  3107. if(code_seen('T')) {
  3108. tmp_extruder = code_value();
  3109. if(tmp_extruder >= EXTRUDERS) {
  3110. SERIAL_ECHO_START;
  3111. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3112. break;
  3113. }
  3114. }
  3115. float area = .0;
  3116. if(code_seen('D')) {
  3117. float diameter = (float)code_value();
  3118. if (diameter == 0.0) {
  3119. // setting any extruder filament size disables volumetric on the assumption that
  3120. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3121. // for all extruders
  3122. volumetric_enabled = false;
  3123. } else {
  3124. filament_size[tmp_extruder] = (float)code_value();
  3125. // make sure all extruders have some sane value for the filament size
  3126. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3127. #if EXTRUDERS > 1
  3128. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3129. #if EXTRUDERS > 2
  3130. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3131. #endif
  3132. #endif
  3133. volumetric_enabled = true;
  3134. }
  3135. } else {
  3136. //reserved for setting filament diameter via UFID or filament measuring device
  3137. break;
  3138. }
  3139. calculate_volumetric_multipliers();
  3140. }
  3141. break;
  3142. case 201: // M201
  3143. for(int8_t i=0; i < NUM_AXIS; i++)
  3144. {
  3145. if(code_seen(axis_codes[i]))
  3146. {
  3147. max_acceleration_units_per_sq_second[i] = code_value();
  3148. }
  3149. }
  3150. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3151. reset_acceleration_rates();
  3152. break;
  3153. #if 0 // Not used for Sprinter/grbl gen6
  3154. case 202: // M202
  3155. for(int8_t i=0; i < NUM_AXIS; i++) {
  3156. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3157. }
  3158. break;
  3159. #endif
  3160. case 203: // M203 max feedrate mm/sec
  3161. for(int8_t i=0; i < NUM_AXIS; i++) {
  3162. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3163. }
  3164. break;
  3165. case 204: // M204 acclereration S normal moves T filmanent only moves
  3166. {
  3167. if(code_seen('S')) acceleration = code_value() ;
  3168. if(code_seen('T')) retract_acceleration = code_value() ;
  3169. }
  3170. break;
  3171. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3172. {
  3173. if(code_seen('S')) minimumfeedrate = code_value();
  3174. if(code_seen('T')) mintravelfeedrate = code_value();
  3175. if(code_seen('B')) minsegmenttime = code_value() ;
  3176. if(code_seen('X')) max_xy_jerk = code_value() ;
  3177. if(code_seen('Z')) max_z_jerk = code_value() ;
  3178. if(code_seen('E')) max_e_jerk = code_value() ;
  3179. }
  3180. break;
  3181. case 206: // M206 additional homing offset
  3182. for(int8_t i=0; i < 3; i++)
  3183. {
  3184. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3185. }
  3186. break;
  3187. #ifdef FWRETRACT
  3188. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3189. {
  3190. if(code_seen('S'))
  3191. {
  3192. retract_length = code_value() ;
  3193. }
  3194. if(code_seen('F'))
  3195. {
  3196. retract_feedrate = code_value()/60 ;
  3197. }
  3198. if(code_seen('Z'))
  3199. {
  3200. retract_zlift = code_value() ;
  3201. }
  3202. }break;
  3203. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3204. {
  3205. if(code_seen('S'))
  3206. {
  3207. retract_recover_length = code_value() ;
  3208. }
  3209. if(code_seen('F'))
  3210. {
  3211. retract_recover_feedrate = code_value()/60 ;
  3212. }
  3213. }break;
  3214. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3215. {
  3216. if(code_seen('S'))
  3217. {
  3218. int t= code_value() ;
  3219. switch(t)
  3220. {
  3221. case 0:
  3222. {
  3223. autoretract_enabled=false;
  3224. retracted[0]=false;
  3225. #if EXTRUDERS > 1
  3226. retracted[1]=false;
  3227. #endif
  3228. #if EXTRUDERS > 2
  3229. retracted[2]=false;
  3230. #endif
  3231. }break;
  3232. case 1:
  3233. {
  3234. autoretract_enabled=true;
  3235. retracted[0]=false;
  3236. #if EXTRUDERS > 1
  3237. retracted[1]=false;
  3238. #endif
  3239. #if EXTRUDERS > 2
  3240. retracted[2]=false;
  3241. #endif
  3242. }break;
  3243. default:
  3244. SERIAL_ECHO_START;
  3245. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3246. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3247. SERIAL_ECHOLNPGM("\"");
  3248. }
  3249. }
  3250. }break;
  3251. #endif // FWRETRACT
  3252. #if EXTRUDERS > 1
  3253. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3254. {
  3255. if(setTargetedHotend(218)){
  3256. break;
  3257. }
  3258. if(code_seen('X'))
  3259. {
  3260. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3261. }
  3262. if(code_seen('Y'))
  3263. {
  3264. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3265. }
  3266. SERIAL_ECHO_START;
  3267. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3268. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3269. {
  3270. SERIAL_ECHO(" ");
  3271. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3272. SERIAL_ECHO(",");
  3273. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3274. }
  3275. SERIAL_ECHOLN("");
  3276. }break;
  3277. #endif
  3278. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3279. {
  3280. if(code_seen('S'))
  3281. {
  3282. feedmultiply = code_value() ;
  3283. }
  3284. }
  3285. break;
  3286. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3287. {
  3288. if(code_seen('S'))
  3289. {
  3290. int tmp_code = code_value();
  3291. if (code_seen('T'))
  3292. {
  3293. if(setTargetedHotend(221)){
  3294. break;
  3295. }
  3296. extruder_multiply[tmp_extruder] = tmp_code;
  3297. }
  3298. else
  3299. {
  3300. extrudemultiply = tmp_code ;
  3301. }
  3302. }
  3303. }
  3304. break;
  3305. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3306. {
  3307. if(code_seen('P')){
  3308. int pin_number = code_value(); // pin number
  3309. int pin_state = -1; // required pin state - default is inverted
  3310. if(code_seen('S')) pin_state = code_value(); // required pin state
  3311. if(pin_state >= -1 && pin_state <= 1){
  3312. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3313. {
  3314. if (sensitive_pins[i] == pin_number)
  3315. {
  3316. pin_number = -1;
  3317. break;
  3318. }
  3319. }
  3320. if (pin_number > -1)
  3321. {
  3322. int target = LOW;
  3323. st_synchronize();
  3324. pinMode(pin_number, INPUT);
  3325. switch(pin_state){
  3326. case 1:
  3327. target = HIGH;
  3328. break;
  3329. case 0:
  3330. target = LOW;
  3331. break;
  3332. case -1:
  3333. target = !digitalRead(pin_number);
  3334. break;
  3335. }
  3336. while(digitalRead(pin_number) != target){
  3337. manage_heater();
  3338. manage_inactivity();
  3339. lcd_update();
  3340. }
  3341. }
  3342. }
  3343. }
  3344. }
  3345. break;
  3346. #if NUM_SERVOS > 0
  3347. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3348. {
  3349. int servo_index = -1;
  3350. int servo_position = 0;
  3351. if (code_seen('P'))
  3352. servo_index = code_value();
  3353. if (code_seen('S')) {
  3354. servo_position = code_value();
  3355. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3356. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3357. servos[servo_index].attach(0);
  3358. #endif
  3359. servos[servo_index].write(servo_position);
  3360. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3361. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3362. servos[servo_index].detach();
  3363. #endif
  3364. }
  3365. else {
  3366. SERIAL_ECHO_START;
  3367. SERIAL_ECHO("Servo ");
  3368. SERIAL_ECHO(servo_index);
  3369. SERIAL_ECHOLN(" out of range");
  3370. }
  3371. }
  3372. else if (servo_index >= 0) {
  3373. SERIAL_PROTOCOL(MSG_OK);
  3374. SERIAL_PROTOCOL(" Servo ");
  3375. SERIAL_PROTOCOL(servo_index);
  3376. SERIAL_PROTOCOL(": ");
  3377. SERIAL_PROTOCOL(servos[servo_index].read());
  3378. SERIAL_PROTOCOLLN("");
  3379. }
  3380. }
  3381. break;
  3382. #endif // NUM_SERVOS > 0
  3383. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3384. case 300: // M300
  3385. {
  3386. int beepS = code_seen('S') ? code_value() : 110;
  3387. int beepP = code_seen('P') ? code_value() : 1000;
  3388. if (beepS > 0)
  3389. {
  3390. #if BEEPER > 0
  3391. tone(BEEPER, beepS);
  3392. delay(beepP);
  3393. noTone(BEEPER);
  3394. #elif defined(ULTRALCD)
  3395. lcd_buzz(beepS, beepP);
  3396. #elif defined(LCD_USE_I2C_BUZZER)
  3397. lcd_buzz(beepP, beepS);
  3398. #endif
  3399. }
  3400. else
  3401. {
  3402. delay(beepP);
  3403. }
  3404. }
  3405. break;
  3406. #endif // M300
  3407. #ifdef PIDTEMP
  3408. case 301: // M301
  3409. {
  3410. if(code_seen('P')) Kp = code_value();
  3411. if(code_seen('I')) Ki = scalePID_i(code_value());
  3412. if(code_seen('D')) Kd = scalePID_d(code_value());
  3413. #ifdef PID_ADD_EXTRUSION_RATE
  3414. if(code_seen('C')) Kc = code_value();
  3415. #endif
  3416. updatePID();
  3417. SERIAL_PROTOCOL(MSG_OK);
  3418. SERIAL_PROTOCOL(" p:");
  3419. SERIAL_PROTOCOL(Kp);
  3420. SERIAL_PROTOCOL(" i:");
  3421. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3422. SERIAL_PROTOCOL(" d:");
  3423. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3424. #ifdef PID_ADD_EXTRUSION_RATE
  3425. SERIAL_PROTOCOL(" c:");
  3426. //Kc does not have scaling applied above, or in resetting defaults
  3427. SERIAL_PROTOCOL(Kc);
  3428. #endif
  3429. SERIAL_PROTOCOLLN("");
  3430. }
  3431. break;
  3432. #endif //PIDTEMP
  3433. #ifdef PIDTEMPBED
  3434. case 304: // M304
  3435. {
  3436. if(code_seen('P')) bedKp = code_value();
  3437. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3438. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3439. updatePID();
  3440. SERIAL_PROTOCOL(MSG_OK);
  3441. SERIAL_PROTOCOL(" p:");
  3442. SERIAL_PROTOCOL(bedKp);
  3443. SERIAL_PROTOCOL(" i:");
  3444. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3445. SERIAL_PROTOCOL(" d:");
  3446. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3447. SERIAL_PROTOCOLLN("");
  3448. }
  3449. break;
  3450. #endif //PIDTEMP
  3451. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3452. {
  3453. #ifdef CHDK
  3454. SET_OUTPUT(CHDK);
  3455. WRITE(CHDK, HIGH);
  3456. chdkHigh = millis();
  3457. chdkActive = true;
  3458. #else
  3459. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3460. const uint8_t NUM_PULSES=16;
  3461. const float PULSE_LENGTH=0.01524;
  3462. for(int i=0; i < NUM_PULSES; i++) {
  3463. WRITE(PHOTOGRAPH_PIN, HIGH);
  3464. _delay_ms(PULSE_LENGTH);
  3465. WRITE(PHOTOGRAPH_PIN, LOW);
  3466. _delay_ms(PULSE_LENGTH);
  3467. }
  3468. delay(7.33);
  3469. for(int i=0; i < NUM_PULSES; i++) {
  3470. WRITE(PHOTOGRAPH_PIN, HIGH);
  3471. _delay_ms(PULSE_LENGTH);
  3472. WRITE(PHOTOGRAPH_PIN, LOW);
  3473. _delay_ms(PULSE_LENGTH);
  3474. }
  3475. #endif
  3476. #endif //chdk end if
  3477. }
  3478. break;
  3479. #ifdef DOGLCD
  3480. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3481. {
  3482. if (code_seen('C')) {
  3483. lcd_setcontrast( ((int)code_value())&63 );
  3484. }
  3485. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3486. SERIAL_PROTOCOL(lcd_contrast);
  3487. SERIAL_PROTOCOLLN("");
  3488. }
  3489. break;
  3490. #endif
  3491. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3492. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3493. {
  3494. float temp = .0;
  3495. if (code_seen('S')) temp=code_value();
  3496. set_extrude_min_temp(temp);
  3497. }
  3498. break;
  3499. #endif
  3500. case 303: // M303 PID autotune
  3501. {
  3502. float temp = 150.0;
  3503. int e=0;
  3504. int c=5;
  3505. if (code_seen('E')) e=code_value();
  3506. if (e<0)
  3507. temp=70;
  3508. if (code_seen('S')) temp=code_value();
  3509. if (code_seen('C')) c=code_value();
  3510. PID_autotune(temp, e, c);
  3511. }
  3512. break;
  3513. case 400: // M400 finish all moves
  3514. {
  3515. st_synchronize();
  3516. }
  3517. break;
  3518. #ifdef FILAMENT_SENSOR
  3519. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3520. {
  3521. #if (FILWIDTH_PIN > -1)
  3522. if(code_seen('N')) filament_width_nominal=code_value();
  3523. else{
  3524. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3525. SERIAL_PROTOCOLLN(filament_width_nominal);
  3526. }
  3527. #endif
  3528. }
  3529. break;
  3530. case 405: //M405 Turn on filament sensor for control
  3531. {
  3532. if(code_seen('D')) meas_delay_cm=code_value();
  3533. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3534. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3535. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3536. {
  3537. int temp_ratio = widthFil_to_size_ratio();
  3538. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3539. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3540. }
  3541. delay_index1=0;
  3542. delay_index2=0;
  3543. }
  3544. filament_sensor = true ;
  3545. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3546. //SERIAL_PROTOCOL(filament_width_meas);
  3547. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3548. //SERIAL_PROTOCOL(extrudemultiply);
  3549. }
  3550. break;
  3551. case 406: //M406 Turn off filament sensor for control
  3552. {
  3553. filament_sensor = false ;
  3554. }
  3555. break;
  3556. case 407: //M407 Display measured filament diameter
  3557. {
  3558. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3559. SERIAL_PROTOCOLLN(filament_width_meas);
  3560. }
  3561. break;
  3562. #endif
  3563. case 500: // M500 Store settings in EEPROM
  3564. {
  3565. Config_StoreSettings();
  3566. }
  3567. break;
  3568. case 501: // M501 Read settings from EEPROM
  3569. {
  3570. Config_RetrieveSettings();
  3571. }
  3572. break;
  3573. case 502: // M502 Revert to default settings
  3574. {
  3575. Config_ResetDefault();
  3576. }
  3577. break;
  3578. case 503: // M503 print settings currently in memory
  3579. {
  3580. Config_PrintSettings();
  3581. }
  3582. break;
  3583. case 509: //M509 Force language selection
  3584. {
  3585. lcd_force_language_selection();
  3586. SERIAL_ECHO_START;
  3587. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3588. }
  3589. break;
  3590. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3591. case 540:
  3592. {
  3593. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3594. }
  3595. break;
  3596. #endif
  3597. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3598. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3599. {
  3600. float value;
  3601. if (code_seen('Z'))
  3602. {
  3603. value = code_value();
  3604. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3605. {
  3606. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3607. SERIAL_ECHO_START;
  3608. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3609. SERIAL_PROTOCOLLN("");
  3610. }
  3611. else
  3612. {
  3613. SERIAL_ECHO_START;
  3614. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3615. SERIAL_ECHORPGM(MSG_Z_MIN);
  3616. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3617. SERIAL_ECHORPGM(MSG_Z_MAX);
  3618. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3619. SERIAL_PROTOCOLLN("");
  3620. }
  3621. }
  3622. else
  3623. {
  3624. SERIAL_ECHO_START;
  3625. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3626. SERIAL_ECHO(-zprobe_zoffset);
  3627. SERIAL_PROTOCOLLN("");
  3628. }
  3629. break;
  3630. }
  3631. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3632. #ifdef FILAMENTCHANGEENABLE
  3633. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3634. {
  3635. st_synchronize();
  3636. feedmultiplyBckp=feedmultiply;
  3637. int8_t TooLowZ = 0;
  3638. float target[4];
  3639. float lastpos[4];
  3640. target[X_AXIS]=current_position[X_AXIS];
  3641. target[Y_AXIS]=current_position[Y_AXIS];
  3642. target[Z_AXIS]=current_position[Z_AXIS];
  3643. target[E_AXIS]=current_position[E_AXIS];
  3644. lastpos[X_AXIS]=current_position[X_AXIS];
  3645. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3646. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3647. lastpos[E_AXIS]=current_position[E_AXIS];
  3648. //Restract extruder
  3649. if(code_seen('E'))
  3650. {
  3651. target[E_AXIS]+= code_value();
  3652. }
  3653. else
  3654. {
  3655. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3656. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3657. #endif
  3658. }
  3659. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3660. //Lift Z
  3661. if(code_seen('Z'))
  3662. {
  3663. target[Z_AXIS]+= code_value();
  3664. }
  3665. else
  3666. {
  3667. #ifdef FILAMENTCHANGE_ZADD
  3668. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3669. if(target[Z_AXIS] < 10){
  3670. target[Z_AXIS]+= 10 ;
  3671. TooLowZ = 1;
  3672. }else{
  3673. TooLowZ = 0;
  3674. }
  3675. #endif
  3676. }
  3677. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3678. //Move XY to side
  3679. if(code_seen('X'))
  3680. {
  3681. target[X_AXIS]+= code_value();
  3682. }
  3683. else
  3684. {
  3685. #ifdef FILAMENTCHANGE_XPOS
  3686. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3687. #endif
  3688. }
  3689. if(code_seen('Y'))
  3690. {
  3691. target[Y_AXIS]= code_value();
  3692. }
  3693. else
  3694. {
  3695. #ifdef FILAMENTCHANGE_YPOS
  3696. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3697. #endif
  3698. }
  3699. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3700. // Unload filament
  3701. if(code_seen('L'))
  3702. {
  3703. target[E_AXIS]+= code_value();
  3704. }
  3705. else
  3706. {
  3707. #ifdef FILAMENTCHANGE_FINALRETRACT
  3708. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3709. #endif
  3710. }
  3711. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3712. //finish moves
  3713. st_synchronize();
  3714. //disable extruder steppers so filament can be removed
  3715. disable_e0();
  3716. disable_e1();
  3717. disable_e2();
  3718. delay(100);
  3719. //Wait for user to insert filament
  3720. uint8_t cnt=0;
  3721. int counterBeep = 0;
  3722. lcd_wait_interact();
  3723. while(!lcd_clicked()){
  3724. cnt++;
  3725. manage_heater();
  3726. manage_inactivity(true);
  3727. if(cnt==0)
  3728. {
  3729. #if BEEPER > 0
  3730. if (counterBeep== 500){
  3731. counterBeep = 0;
  3732. }
  3733. SET_OUTPUT(BEEPER);
  3734. if (counterBeep== 0){
  3735. WRITE(BEEPER,HIGH);
  3736. }
  3737. if (counterBeep== 20){
  3738. WRITE(BEEPER,LOW);
  3739. }
  3740. counterBeep++;
  3741. #else
  3742. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3743. lcd_buzz(1000/6,100);
  3744. #else
  3745. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3746. #endif
  3747. #endif
  3748. }
  3749. }
  3750. //Filament inserted
  3751. WRITE(BEEPER,LOW);
  3752. //Feed the filament to the end of nozzle quickly
  3753. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3754. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3755. //Extrude some filament
  3756. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3757. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3758. //Wait for user to check the state
  3759. lcd_change_fil_state = 0;
  3760. lcd_loading_filament();
  3761. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3762. lcd_change_fil_state = 0;
  3763. lcd_alright();
  3764. switch(lcd_change_fil_state){
  3765. // Filament failed to load so load it again
  3766. case 2:
  3767. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3768. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3769. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3770. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3771. lcd_loading_filament();
  3772. break;
  3773. // Filament loaded properly but color is not clear
  3774. case 3:
  3775. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3776. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3777. lcd_loading_color();
  3778. break;
  3779. // Everything good
  3780. default:
  3781. lcd_change_success();
  3782. break;
  3783. }
  3784. }
  3785. //Not let's go back to print
  3786. //Feed a little of filament to stabilize pressure
  3787. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3788. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3789. //Retract
  3790. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3791. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3792. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3793. //Move XY back
  3794. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3795. //Move Z back
  3796. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3797. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3798. //Unretract
  3799. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3800. //Set E position to original
  3801. plan_set_e_position(lastpos[E_AXIS]);
  3802. //Recover feed rate
  3803. feedmultiply=feedmultiplyBckp;
  3804. char cmd[9];
  3805. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3806. enquecommand(cmd);
  3807. }
  3808. break;
  3809. #endif //FILAMENTCHANGEENABLE
  3810. case 907: // M907 Set digital trimpot motor current using axis codes.
  3811. {
  3812. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3813. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3814. if(code_seen('B')) digipot_current(4,code_value());
  3815. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3816. #endif
  3817. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3818. if(code_seen('X')) digipot_current(0, code_value());
  3819. #endif
  3820. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3821. if(code_seen('Z')) digipot_current(1, code_value());
  3822. #endif
  3823. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3824. if(code_seen('E')) digipot_current(2, code_value());
  3825. #endif
  3826. #ifdef DIGIPOT_I2C
  3827. // this one uses actual amps in floating point
  3828. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3829. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3830. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3831. #endif
  3832. }
  3833. break;
  3834. case 908: // M908 Control digital trimpot directly.
  3835. {
  3836. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3837. uint8_t channel,current;
  3838. if(code_seen('P')) channel=code_value();
  3839. if(code_seen('S')) current=code_value();
  3840. digitalPotWrite(channel, current);
  3841. #endif
  3842. }
  3843. break;
  3844. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3845. {
  3846. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3847. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3848. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3849. if(code_seen('B')) microstep_mode(4,code_value());
  3850. microstep_readings();
  3851. #endif
  3852. }
  3853. break;
  3854. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3855. {
  3856. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3857. if(code_seen('S')) switch((int)code_value())
  3858. {
  3859. case 1:
  3860. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3861. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3862. break;
  3863. case 2:
  3864. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3865. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3866. break;
  3867. }
  3868. microstep_readings();
  3869. #endif
  3870. }
  3871. break;
  3872. case 999: // M999: Restart after being stopped
  3873. Stopped = false;
  3874. lcd_reset_alert_level();
  3875. gcode_LastN = Stopped_gcode_LastN;
  3876. FlushSerialRequestResend();
  3877. break;
  3878. }
  3879. } // end if(code_seen('M')) (end of M codes)
  3880. else if(code_seen('T'))
  3881. {
  3882. tmp_extruder = code_value();
  3883. if(tmp_extruder >= EXTRUDERS) {
  3884. SERIAL_ECHO_START;
  3885. SERIAL_ECHO("T");
  3886. SERIAL_ECHO(tmp_extruder);
  3887. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3888. }
  3889. else {
  3890. boolean make_move = false;
  3891. if(code_seen('F')) {
  3892. make_move = true;
  3893. next_feedrate = code_value();
  3894. if(next_feedrate > 0.0) {
  3895. feedrate = next_feedrate;
  3896. }
  3897. }
  3898. #if EXTRUDERS > 1
  3899. if(tmp_extruder != active_extruder) {
  3900. // Save current position to return to after applying extruder offset
  3901. memcpy(destination, current_position, sizeof(destination));
  3902. // Offset extruder (only by XY)
  3903. int i;
  3904. for(i = 0; i < 2; i++) {
  3905. current_position[i] = current_position[i] -
  3906. extruder_offset[i][active_extruder] +
  3907. extruder_offset[i][tmp_extruder];
  3908. }
  3909. // Set the new active extruder and position
  3910. active_extruder = tmp_extruder;
  3911. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3912. // Move to the old position if 'F' was in the parameters
  3913. if(make_move && Stopped == false) {
  3914. prepare_move();
  3915. }
  3916. }
  3917. #endif
  3918. SERIAL_ECHO_START;
  3919. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3920. SERIAL_PROTOCOLLN((int)active_extruder);
  3921. }
  3922. } // end if(code_seen('T')) (end of T codes)
  3923. else
  3924. {
  3925. SERIAL_ECHO_START;
  3926. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3927. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3928. SERIAL_ECHOLNPGM("\"");
  3929. }
  3930. ClearToSend();
  3931. }
  3932. void FlushSerialRequestResend()
  3933. {
  3934. //char cmdbuffer[bufindr][100]="Resend:";
  3935. MYSERIAL.flush();
  3936. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  3937. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  3938. ClearToSend();
  3939. }
  3940. // Confirm the execution of a command, if sent from a serial line.
  3941. // Execution of a command from a SD card will not be confirmed.
  3942. void ClearToSend()
  3943. {
  3944. previous_millis_cmd = millis();
  3945. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  3946. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  3947. }
  3948. void get_coordinates()
  3949. {
  3950. bool seen[4]={false,false,false,false};
  3951. for(int8_t i=0; i < NUM_AXIS; i++) {
  3952. if(code_seen(axis_codes[i]))
  3953. {
  3954. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  3955. seen[i]=true;
  3956. }
  3957. else destination[i] = current_position[i]; //Are these else lines really needed?
  3958. }
  3959. if(code_seen('F')) {
  3960. next_feedrate = code_value();
  3961. if(next_feedrate > 0.0) feedrate = next_feedrate;
  3962. }
  3963. }
  3964. void get_arc_coordinates()
  3965. {
  3966. #ifdef SF_ARC_FIX
  3967. bool relative_mode_backup = relative_mode;
  3968. relative_mode = true;
  3969. #endif
  3970. get_coordinates();
  3971. #ifdef SF_ARC_FIX
  3972. relative_mode=relative_mode_backup;
  3973. #endif
  3974. if(code_seen('I')) {
  3975. offset[0] = code_value();
  3976. }
  3977. else {
  3978. offset[0] = 0.0;
  3979. }
  3980. if(code_seen('J')) {
  3981. offset[1] = code_value();
  3982. }
  3983. else {
  3984. offset[1] = 0.0;
  3985. }
  3986. }
  3987. void clamp_to_software_endstops(float target[3])
  3988. {
  3989. world2machine_clamp(target[0], target[1]);
  3990. // Clamp the Z coordinate.
  3991. if (min_software_endstops) {
  3992. float negative_z_offset = 0;
  3993. #ifdef ENABLE_AUTO_BED_LEVELING
  3994. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  3995. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  3996. #endif
  3997. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  3998. }
  3999. if (max_software_endstops) {
  4000. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4001. }
  4002. }
  4003. #ifdef MESH_BED_LEVELING
  4004. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4005. float dx = x - current_position[X_AXIS];
  4006. float dy = y - current_position[Y_AXIS];
  4007. float dz = z - current_position[Z_AXIS];
  4008. int n_segments = 0;
  4009. if (mbl.active) {
  4010. float len = abs(dx) + abs(dy) + abs(dz);
  4011. if (len > 0)
  4012. n_segments = int(floor(len / 30.f));
  4013. }
  4014. if (n_segments > 1) {
  4015. float de = e - current_position[E_AXIS];
  4016. for (int i = 1; i < n_segments; ++ i) {
  4017. float t = float(i) / float(n_segments);
  4018. plan_buffer_line(
  4019. current_position[X_AXIS] + t * dx,
  4020. current_position[Y_AXIS] + t * dy,
  4021. current_position[Z_AXIS] + t * dz,
  4022. current_position[E_AXIS] + t * de,
  4023. feed_rate, extruder);
  4024. }
  4025. }
  4026. // The rest of the path.
  4027. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4028. set_current_to_destination();
  4029. }
  4030. #endif // MESH_BED_LEVELING
  4031. void prepare_move()
  4032. {
  4033. clamp_to_software_endstops(destination);
  4034. previous_millis_cmd = millis();
  4035. // Do not use feedmultiply for E or Z only moves
  4036. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4037. #ifdef MESH_BED_LEVELING
  4038. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4039. #else
  4040. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4041. #endif
  4042. }
  4043. else {
  4044. #ifdef MESH_BED_LEVELING
  4045. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4046. #else
  4047. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4048. #endif
  4049. }
  4050. for(int8_t i=0; i < NUM_AXIS; i++) {
  4051. current_position[i] = destination[i];
  4052. }
  4053. }
  4054. void prepare_arc_move(char isclockwise) {
  4055. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4056. // Trace the arc
  4057. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4058. // As far as the parser is concerned, the position is now == target. In reality the
  4059. // motion control system might still be processing the action and the real tool position
  4060. // in any intermediate location.
  4061. for(int8_t i=0; i < NUM_AXIS; i++) {
  4062. current_position[i] = destination[i];
  4063. }
  4064. previous_millis_cmd = millis();
  4065. }
  4066. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4067. #if defined(FAN_PIN)
  4068. #if CONTROLLERFAN_PIN == FAN_PIN
  4069. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4070. #endif
  4071. #endif
  4072. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4073. unsigned long lastMotorCheck = 0;
  4074. void controllerFan()
  4075. {
  4076. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4077. {
  4078. lastMotorCheck = millis();
  4079. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4080. #if EXTRUDERS > 2
  4081. || !READ(E2_ENABLE_PIN)
  4082. #endif
  4083. #if EXTRUDER > 1
  4084. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4085. || !READ(X2_ENABLE_PIN)
  4086. #endif
  4087. || !READ(E1_ENABLE_PIN)
  4088. #endif
  4089. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4090. {
  4091. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4092. }
  4093. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4094. {
  4095. digitalWrite(CONTROLLERFAN_PIN, 0);
  4096. analogWrite(CONTROLLERFAN_PIN, 0);
  4097. }
  4098. else
  4099. {
  4100. // allows digital or PWM fan output to be used (see M42 handling)
  4101. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4102. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4103. }
  4104. }
  4105. }
  4106. #endif
  4107. #ifdef TEMP_STAT_LEDS
  4108. static bool blue_led = false;
  4109. static bool red_led = false;
  4110. static uint32_t stat_update = 0;
  4111. void handle_status_leds(void) {
  4112. float max_temp = 0.0;
  4113. if(millis() > stat_update) {
  4114. stat_update += 500; // Update every 0.5s
  4115. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4116. max_temp = max(max_temp, degHotend(cur_extruder));
  4117. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4118. }
  4119. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4120. max_temp = max(max_temp, degTargetBed());
  4121. max_temp = max(max_temp, degBed());
  4122. #endif
  4123. if((max_temp > 55.0) && (red_led == false)) {
  4124. digitalWrite(STAT_LED_RED, 1);
  4125. digitalWrite(STAT_LED_BLUE, 0);
  4126. red_led = true;
  4127. blue_led = false;
  4128. }
  4129. if((max_temp < 54.0) && (blue_led == false)) {
  4130. digitalWrite(STAT_LED_RED, 0);
  4131. digitalWrite(STAT_LED_BLUE, 1);
  4132. red_led = false;
  4133. blue_led = true;
  4134. }
  4135. }
  4136. }
  4137. #endif
  4138. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4139. {
  4140. #if defined(KILL_PIN) && KILL_PIN > -1
  4141. static int killCount = 0; // make the inactivity button a bit less responsive
  4142. const int KILL_DELAY = 10000;
  4143. #endif
  4144. if(buflen < (BUFSIZE-1))
  4145. get_command();
  4146. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4147. if(max_inactive_time)
  4148. kill();
  4149. if(stepper_inactive_time) {
  4150. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4151. {
  4152. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4153. disable_x();
  4154. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4155. disable_y();
  4156. disable_z();
  4157. disable_e0();
  4158. disable_e1();
  4159. disable_e2();
  4160. }
  4161. }
  4162. }
  4163. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4164. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4165. {
  4166. chdkActive = false;
  4167. WRITE(CHDK, LOW);
  4168. }
  4169. #endif
  4170. #if defined(KILL_PIN) && KILL_PIN > -1
  4171. // Check if the kill button was pressed and wait just in case it was an accidental
  4172. // key kill key press
  4173. // -------------------------------------------------------------------------------
  4174. if( 0 == READ(KILL_PIN) )
  4175. {
  4176. killCount++;
  4177. }
  4178. else if (killCount > 0)
  4179. {
  4180. killCount--;
  4181. }
  4182. // Exceeded threshold and we can confirm that it was not accidental
  4183. // KILL the machine
  4184. // ----------------------------------------------------------------
  4185. if ( killCount >= KILL_DELAY)
  4186. {
  4187. kill();
  4188. }
  4189. #endif
  4190. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4191. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4192. #endif
  4193. #ifdef EXTRUDER_RUNOUT_PREVENT
  4194. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4195. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4196. {
  4197. bool oldstatus=READ(E0_ENABLE_PIN);
  4198. enable_e0();
  4199. float oldepos=current_position[E_AXIS];
  4200. float oldedes=destination[E_AXIS];
  4201. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4202. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4203. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4204. current_position[E_AXIS]=oldepos;
  4205. destination[E_AXIS]=oldedes;
  4206. plan_set_e_position(oldepos);
  4207. previous_millis_cmd=millis();
  4208. st_synchronize();
  4209. WRITE(E0_ENABLE_PIN,oldstatus);
  4210. }
  4211. #endif
  4212. #ifdef TEMP_STAT_LEDS
  4213. handle_status_leds();
  4214. #endif
  4215. check_axes_activity();
  4216. }
  4217. void kill(const char *full_screen_message)
  4218. {
  4219. cli(); // Stop interrupts
  4220. disable_heater();
  4221. disable_x();
  4222. // SERIAL_ECHOLNPGM("kill - disable Y");
  4223. disable_y();
  4224. disable_z();
  4225. disable_e0();
  4226. disable_e1();
  4227. disable_e2();
  4228. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4229. pinMode(PS_ON_PIN,INPUT);
  4230. #endif
  4231. SERIAL_ERROR_START;
  4232. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4233. if (full_screen_message != NULL) {
  4234. SERIAL_ERRORLNRPGM(full_screen_message);
  4235. lcd_display_message_fullscreen_P(full_screen_message);
  4236. } else {
  4237. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4238. }
  4239. // FMC small patch to update the LCD before ending
  4240. sei(); // enable interrupts
  4241. for ( int i=5; i--; lcd_update())
  4242. {
  4243. delay(200);
  4244. }
  4245. cli(); // disable interrupts
  4246. suicide();
  4247. while(1) { /* Intentionally left empty */ } // Wait for reset
  4248. }
  4249. void Stop()
  4250. {
  4251. disable_heater();
  4252. if(Stopped == false) {
  4253. Stopped = true;
  4254. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4255. SERIAL_ERROR_START;
  4256. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4257. LCD_MESSAGERPGM(MSG_STOPPED);
  4258. }
  4259. }
  4260. bool IsStopped() { return Stopped; };
  4261. #ifdef FAST_PWM_FAN
  4262. void setPwmFrequency(uint8_t pin, int val)
  4263. {
  4264. val &= 0x07;
  4265. switch(digitalPinToTimer(pin))
  4266. {
  4267. #if defined(TCCR0A)
  4268. case TIMER0A:
  4269. case TIMER0B:
  4270. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4271. // TCCR0B |= val;
  4272. break;
  4273. #endif
  4274. #if defined(TCCR1A)
  4275. case TIMER1A:
  4276. case TIMER1B:
  4277. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4278. // TCCR1B |= val;
  4279. break;
  4280. #endif
  4281. #if defined(TCCR2)
  4282. case TIMER2:
  4283. case TIMER2:
  4284. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4285. TCCR2 |= val;
  4286. break;
  4287. #endif
  4288. #if defined(TCCR2A)
  4289. case TIMER2A:
  4290. case TIMER2B:
  4291. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4292. TCCR2B |= val;
  4293. break;
  4294. #endif
  4295. #if defined(TCCR3A)
  4296. case TIMER3A:
  4297. case TIMER3B:
  4298. case TIMER3C:
  4299. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4300. TCCR3B |= val;
  4301. break;
  4302. #endif
  4303. #if defined(TCCR4A)
  4304. case TIMER4A:
  4305. case TIMER4B:
  4306. case TIMER4C:
  4307. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4308. TCCR4B |= val;
  4309. break;
  4310. #endif
  4311. #if defined(TCCR5A)
  4312. case TIMER5A:
  4313. case TIMER5B:
  4314. case TIMER5C:
  4315. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4316. TCCR5B |= val;
  4317. break;
  4318. #endif
  4319. }
  4320. }
  4321. #endif //FAST_PWM_FAN
  4322. bool setTargetedHotend(int code){
  4323. tmp_extruder = active_extruder;
  4324. if(code_seen('T')) {
  4325. tmp_extruder = code_value();
  4326. if(tmp_extruder >= EXTRUDERS) {
  4327. SERIAL_ECHO_START;
  4328. switch(code){
  4329. case 104:
  4330. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4331. break;
  4332. case 105:
  4333. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4334. break;
  4335. case 109:
  4336. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4337. break;
  4338. case 218:
  4339. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4340. break;
  4341. case 221:
  4342. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4343. break;
  4344. }
  4345. SERIAL_ECHOLN(tmp_extruder);
  4346. return true;
  4347. }
  4348. }
  4349. return false;
  4350. }
  4351. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4352. {
  4353. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4354. {
  4355. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4356. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4357. }
  4358. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4359. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4360. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4361. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4362. total_filament_used = 0;
  4363. }
  4364. float calculate_volumetric_multiplier(float diameter) {
  4365. float area = .0;
  4366. float radius = .0;
  4367. radius = diameter * .5;
  4368. if (! volumetric_enabled || radius == 0) {
  4369. area = 1;
  4370. }
  4371. else {
  4372. area = M_PI * pow(radius, 2);
  4373. }
  4374. return 1.0 / area;
  4375. }
  4376. void calculate_volumetric_multipliers() {
  4377. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4378. #if EXTRUDERS > 1
  4379. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4380. #if EXTRUDERS > 2
  4381. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4382. #endif
  4383. #endif
  4384. }
  4385. void delay_keep_alive(int ms)
  4386. {
  4387. for (;;) {
  4388. manage_heater();
  4389. // Manage inactivity, but don't disable steppers on timeout.
  4390. manage_inactivity(true);
  4391. lcd_update();
  4392. if (ms == 0)
  4393. break;
  4394. else if (ms >= 50) {
  4395. delay(50);
  4396. ms -= 50;
  4397. } else {
  4398. delay(ms);
  4399. ms = 0;
  4400. }
  4401. }
  4402. }