temperature.cpp 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "sound.h"
  26. #include "temperature.h"
  27. #include "cardreader.h"
  28. #include "Sd2PinMap.h"
  29. #include <avr/wdt.h>
  30. #include "adc.h"
  31. #include "ConfigurationStore.h"
  32. #include "Timer.h"
  33. #include "Configuration_prusa.h"
  34. //===========================================================================
  35. //=============================public variables============================
  36. //===========================================================================
  37. int target_temperature[EXTRUDERS] = { 0 };
  38. int target_temperature_bed = 0;
  39. int current_temperature_raw[EXTRUDERS] = { 0 };
  40. float current_temperature[EXTRUDERS] = { 0.0 };
  41. #ifdef PINDA_THERMISTOR
  42. uint16_t current_temperature_raw_pinda = 0 ; //value with more averaging applied
  43. uint16_t current_temperature_raw_pinda_fast = 0; //value read from adc
  44. float current_temperature_pinda = 0.0;
  45. #endif //PINDA_THERMISTOR
  46. #ifdef AMBIENT_THERMISTOR
  47. int current_temperature_raw_ambient = 0 ;
  48. float current_temperature_ambient = 0.0;
  49. #endif //AMBIENT_THERMISTOR
  50. #ifdef VOLT_PWR_PIN
  51. int current_voltage_raw_pwr = 0;
  52. #endif
  53. #ifdef VOLT_BED_PIN
  54. int current_voltage_raw_bed = 0;
  55. #endif
  56. int current_temperature_bed_raw = 0;
  57. float current_temperature_bed = 0.0;
  58. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  59. int redundant_temperature_raw = 0;
  60. float redundant_temperature = 0.0;
  61. #endif
  62. #ifdef PIDTEMP
  63. float _Kp, _Ki, _Kd;
  64. int pid_cycle, pid_number_of_cycles;
  65. bool pid_tuning_finished = false;
  66. #ifdef PID_ADD_EXTRUSION_RATE
  67. float Kc=DEFAULT_Kc;
  68. #endif
  69. #endif //PIDTEMP
  70. #ifdef FAN_SOFT_PWM
  71. unsigned char fanSpeedSoftPwm;
  72. #endif
  73. #ifdef FANCHECK
  74. volatile uint8_t fan_check_error = EFCE_OK;
  75. #endif
  76. unsigned char soft_pwm_bed;
  77. #ifdef BABYSTEPPING
  78. volatile int babystepsTodo[3]={0,0,0};
  79. #endif
  80. //===========================================================================
  81. //=============================private variables============================
  82. //===========================================================================
  83. static volatile bool temp_meas_ready = false;
  84. #ifdef PIDTEMP
  85. //static cannot be external:
  86. static float iState_sum[EXTRUDERS] = { 0 };
  87. static float dState_last[EXTRUDERS] = { 0 };
  88. static float pTerm[EXTRUDERS];
  89. static float iTerm[EXTRUDERS];
  90. static float dTerm[EXTRUDERS];
  91. //int output;
  92. static float pid_error[EXTRUDERS];
  93. static float iState_sum_min[EXTRUDERS];
  94. static float iState_sum_max[EXTRUDERS];
  95. // static float pid_input[EXTRUDERS];
  96. // static float pid_output[EXTRUDERS];
  97. static bool pid_reset[EXTRUDERS];
  98. #endif //PIDTEMP
  99. #ifdef PIDTEMPBED
  100. //static cannot be external:
  101. static float temp_iState_bed = { 0 };
  102. static float temp_dState_bed = { 0 };
  103. static float pTerm_bed;
  104. static float iTerm_bed;
  105. static float dTerm_bed;
  106. //int output;
  107. static float pid_error_bed;
  108. static float temp_iState_min_bed;
  109. static float temp_iState_max_bed;
  110. #else //PIDTEMPBED
  111. static unsigned long previous_millis_bed_heater;
  112. #endif //PIDTEMPBED
  113. static unsigned char soft_pwm[EXTRUDERS];
  114. #ifdef FAN_SOFT_PWM
  115. static unsigned char soft_pwm_fan;
  116. #endif
  117. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  118. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  119. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  120. unsigned long extruder_autofan_last_check = _millis();
  121. uint8_t fanSpeedBckp = 255;
  122. bool fan_measuring = false;
  123. #endif
  124. #if EXTRUDERS > 3
  125. # error Unsupported number of extruders
  126. #elif EXTRUDERS > 2
  127. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2, v3 }
  128. #elif EXTRUDERS > 1
  129. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1, v2 }
  130. #else
  131. # define ARRAY_BY_EXTRUDERS(v1, v2, v3) { v1 }
  132. #endif
  133. static ShortTimer oTimer4minTempHeater,oTimer4minTempBed;
  134. // Init min and max temp with extreme values to prevent false errors during startup
  135. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP );
  136. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP );
  137. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0 );
  138. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383 );
  139. #ifdef BED_MINTEMP
  140. static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  141. #endif
  142. #ifdef BED_MAXTEMP
  143. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  144. #endif
  145. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  146. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  147. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  148. #else
  149. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE );
  150. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN );
  151. #endif
  152. static float analog2temp(int raw, uint8_t e);
  153. static float analog2tempBed(int raw);
  154. static float analog2tempAmbient(int raw);
  155. static void updateTemperaturesFromRawValues();
  156. enum TempRunawayStates
  157. {
  158. TempRunaway_INACTIVE = 0,
  159. TempRunaway_PREHEAT = 1,
  160. TempRunaway_ACTIVE = 2,
  161. };
  162. #ifdef WATCH_TEMP_PERIOD
  163. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  164. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0);
  165. #endif //WATCH_TEMP_PERIOD
  166. #ifndef SOFT_PWM_SCALE
  167. #define SOFT_PWM_SCALE 0
  168. #endif
  169. //===========================================================================
  170. //============================= functions ============================
  171. //===========================================================================
  172. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  173. static float temp_runaway_status[4];
  174. static float temp_runaway_target[4];
  175. static float temp_runaway_timer[4];
  176. static int temp_runaway_error_counter[4];
  177. static void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed);
  178. static void temp_runaway_stop(bool isPreheat, bool isBed);
  179. #endif
  180. void PID_autotune(float temp, int extruder, int ncycles)
  181. {
  182. pid_number_of_cycles = ncycles;
  183. pid_tuning_finished = false;
  184. float input = 0.0;
  185. pid_cycle=0;
  186. bool heating = true;
  187. unsigned long temp_millis = _millis();
  188. unsigned long t1=temp_millis;
  189. unsigned long t2=temp_millis;
  190. long t_high = 0;
  191. long t_low = 0;
  192. long bias, d;
  193. float Ku, Tu;
  194. float max = 0, min = 10000;
  195. uint8_t safety_check_cycles = 0;
  196. const uint8_t safety_check_cycles_count = (extruder < 0) ? 45 : 10; //10 cycles / 20s delay for extruder and 45 cycles / 90s for heatbed
  197. float temp_ambient;
  198. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  199. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  200. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  201. unsigned long extruder_autofan_last_check = _millis();
  202. #endif
  203. if ((extruder >= EXTRUDERS)
  204. #if (TEMP_BED_PIN <= -1)
  205. ||(extruder < 0)
  206. #endif
  207. ){
  208. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  209. pid_tuning_finished = true;
  210. pid_cycle = 0;
  211. return;
  212. }
  213. SERIAL_ECHOLN("PID Autotune start");
  214. disable_heater(); // switch off all heaters.
  215. if (extruder<0)
  216. {
  217. soft_pwm_bed = (MAX_BED_POWER)/2;
  218. timer02_set_pwm0(soft_pwm_bed << 1);
  219. bias = d = (MAX_BED_POWER)/2;
  220. target_temperature_bed = (int)temp; // to display the requested target bed temperature properly on the main screen
  221. }
  222. else
  223. {
  224. soft_pwm[extruder] = (PID_MAX)/2;
  225. bias = d = (PID_MAX)/2;
  226. target_temperature[extruder] = (int)temp; // to display the requested target extruder temperature properly on the main screen
  227. }
  228. for(;;) {
  229. #ifdef WATCHDOG
  230. wdt_reset();
  231. #endif //WATCHDOG
  232. if(temp_meas_ready == true) { // temp sample ready
  233. updateTemperaturesFromRawValues();
  234. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  235. max=max(max,input);
  236. min=min(min,input);
  237. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  238. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  239. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  240. if(_millis() - extruder_autofan_last_check > 2500) {
  241. checkExtruderAutoFans();
  242. extruder_autofan_last_check = _millis();
  243. }
  244. #endif
  245. if(heating == true && input > temp) {
  246. if(_millis() - t2 > 5000) {
  247. heating=false;
  248. if (extruder<0)
  249. {
  250. soft_pwm_bed = (bias - d) >> 1;
  251. timer02_set_pwm0(soft_pwm_bed << 1);
  252. }
  253. else
  254. soft_pwm[extruder] = (bias - d) >> 1;
  255. t1=_millis();
  256. t_high=t1 - t2;
  257. max=temp;
  258. }
  259. }
  260. if(heating == false && input < temp) {
  261. if(_millis() - t1 > 5000) {
  262. heating=true;
  263. t2=_millis();
  264. t_low=t2 - t1;
  265. if(pid_cycle > 0) {
  266. bias += (d*(t_high - t_low))/(t_low + t_high);
  267. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  268. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  269. else d = bias;
  270. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  271. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  272. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  273. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  274. if(pid_cycle > 2) {
  275. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  276. Tu = ((float)(t_low + t_high)/1000.0);
  277. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  278. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  279. _Kp = 0.6*Ku;
  280. _Ki = 2*_Kp/Tu;
  281. _Kd = _Kp*Tu/8;
  282. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  283. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  284. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  285. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  286. /*
  287. _Kp = 0.33*Ku;
  288. _Ki = _Kp/Tu;
  289. _Kd = _Kp*Tu/3;
  290. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  291. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  292. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  293. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  294. _Kp = 0.2*Ku;
  295. _Ki = 2*_Kp/Tu;
  296. _Kd = _Kp*Tu/3;
  297. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  298. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(_Kp);
  299. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(_Ki);
  300. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(_Kd);
  301. */
  302. }
  303. }
  304. if (extruder<0)
  305. {
  306. soft_pwm_bed = (bias + d) >> 1;
  307. timer02_set_pwm0(soft_pwm_bed << 1);
  308. }
  309. else
  310. soft_pwm[extruder] = (bias + d) >> 1;
  311. pid_cycle++;
  312. min=temp;
  313. }
  314. }
  315. }
  316. if(input > (temp + 20)) {
  317. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  318. pid_tuning_finished = true;
  319. pid_cycle = 0;
  320. return;
  321. }
  322. if(_millis() - temp_millis > 2000) {
  323. int p;
  324. if (extruder<0){
  325. p=soft_pwm_bed;
  326. SERIAL_PROTOCOLPGM("B:");
  327. }else{
  328. p=soft_pwm[extruder];
  329. SERIAL_PROTOCOLPGM("T:");
  330. }
  331. SERIAL_PROTOCOL(input);
  332. SERIAL_PROTOCOLPGM(" @:");
  333. SERIAL_PROTOCOLLN(p);
  334. if (safety_check_cycles == 0) { //save ambient temp
  335. temp_ambient = input;
  336. //SERIAL_ECHOPGM("Ambient T: ");
  337. //MYSERIAL.println(temp_ambient);
  338. safety_check_cycles++;
  339. }
  340. else if (safety_check_cycles < safety_check_cycles_count) { //delay
  341. safety_check_cycles++;
  342. }
  343. else if (safety_check_cycles == safety_check_cycles_count){ //check that temperature is rising
  344. safety_check_cycles++;
  345. //SERIAL_ECHOPGM("Time from beginning: ");
  346. //MYSERIAL.print(safety_check_cycles_count * 2);
  347. //SERIAL_ECHOPGM("s. Difference between current and ambient T: ");
  348. //MYSERIAL.println(input - temp_ambient);
  349. if (abs(input - temp_ambient) < 5.0) {
  350. temp_runaway_stop(false, (extruder<0));
  351. pid_tuning_finished = true;
  352. return;
  353. }
  354. }
  355. temp_millis = _millis();
  356. }
  357. if(((_millis() - t1) + (_millis() - t2)) > (10L*60L*1000L*2L)) {
  358. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  359. pid_tuning_finished = true;
  360. pid_cycle = 0;
  361. return;
  362. }
  363. if(pid_cycle > ncycles) {
  364. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  365. pid_tuning_finished = true;
  366. pid_cycle = 0;
  367. return;
  368. }
  369. lcd_update(0);
  370. }
  371. }
  372. void updatePID()
  373. {
  374. #ifdef PIDTEMP
  375. for(uint_least8_t e = 0; e < EXTRUDERS; e++) {
  376. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  377. }
  378. #endif
  379. #ifdef PIDTEMPBED
  380. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  381. #endif
  382. }
  383. int getHeaterPower(int heater) {
  384. if (heater<0)
  385. return soft_pwm_bed;
  386. return soft_pwm[heater];
  387. }
  388. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  389. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  390. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  391. #if defined(FAN_PIN) && FAN_PIN > -1
  392. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  393. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  394. #endif
  395. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  396. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  397. #endif
  398. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  399. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  400. #endif
  401. #endif
  402. void setExtruderAutoFanState(int pin, bool state)
  403. {
  404. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  405. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  406. pinMode(pin, OUTPUT);
  407. digitalWrite(pin, newFanSpeed);
  408. //analogWrite(pin, newFanSpeed);
  409. }
  410. #if (defined(FANCHECK) && (((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1)))))
  411. void countFanSpeed()
  412. {
  413. //SERIAL_ECHOPGM("edge counter 1:"); MYSERIAL.println(fan_edge_counter[1]);
  414. fan_speed[0] = (fan_edge_counter[0] * (float(250) / (_millis() - extruder_autofan_last_check)));
  415. fan_speed[1] = (fan_edge_counter[1] * (float(250) / (_millis() - extruder_autofan_last_check)));
  416. /*SERIAL_ECHOPGM("time interval: "); MYSERIAL.println(_millis() - extruder_autofan_last_check);
  417. SERIAL_ECHOPGM("extruder fan speed:"); MYSERIAL.print(fan_speed[0]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[0]);
  418. SERIAL_ECHOPGM("print fan speed:"); MYSERIAL.print(fan_speed[1]); SERIAL_ECHOPGM("; edge counter:"); MYSERIAL.println(fan_edge_counter[1]);
  419. SERIAL_ECHOLNPGM(" ");*/
  420. fan_edge_counter[0] = 0;
  421. fan_edge_counter[1] = 0;
  422. }
  423. void checkFanSpeed()
  424. {
  425. uint8_t max_print_fan_errors = 0;
  426. uint8_t max_extruder_fan_errors = 0;
  427. #ifdef FAN_SOFT_PWM
  428. max_print_fan_errors = 3; //15 seconds
  429. max_extruder_fan_errors = 2; //10seconds
  430. #else //FAN_SOFT_PWM
  431. max_print_fan_errors = 15; //15 seconds
  432. max_extruder_fan_errors = 5; //5 seconds
  433. #endif //FAN_SOFT_PWM
  434. fans_check_enabled = (eeprom_read_byte((uint8_t*)EEPROM_FAN_CHECK_ENABLED) > 0);
  435. static unsigned char fan_speed_errors[2] = { 0,0 };
  436. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 >-1))
  437. if ((fan_speed[0] == 0) && (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)) fan_speed_errors[0]++;
  438. else fan_speed_errors[0] = 0;
  439. #endif
  440. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  441. if ((fan_speed[1] < 5) && ((blocks_queued() ? block_buffer[block_buffer_tail].fan_speed : fanSpeed) > MIN_PRINT_FAN_SPEED)) fan_speed_errors[1]++;
  442. else fan_speed_errors[1] = 0;
  443. #endif
  444. // drop the fan_check_error flag when both fans are ok
  445. if( fan_speed_errors[0] == 0 && fan_speed_errors[1] == 0 && fan_check_error == EFCE_REPORTED){
  446. // we may even send some info to the LCD from here
  447. fan_check_error = EFCE_OK;
  448. }
  449. if ((fan_speed_errors[0] > max_extruder_fan_errors) && fans_check_enabled) {
  450. fan_speed_errors[0] = 0;
  451. fanSpeedError(0); //extruder fan
  452. }
  453. if ((fan_speed_errors[1] > max_print_fan_errors) && fans_check_enabled) {
  454. fan_speed_errors[1] = 0;
  455. fanSpeedError(1); //print fan
  456. }
  457. }
  458. //! Prints serialMsg to serial port, displays lcdMsg onto the LCD and beeps.
  459. //! Extracted from fanSpeedError to save some space.
  460. //! @param serialMsg pointer into PROGMEM, this text will be printed to the serial port
  461. //! @param lcdMsg pointer into PROGMEM, this text will be printed onto the LCD
  462. static void fanSpeedErrorBeep(const char *serialMsg, const char *lcdMsg){
  463. SERIAL_ECHOLNRPGM(serialMsg);
  464. if (get_message_level() == 0) {
  465. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT)){
  466. WRITE(BEEPER, HIGH);
  467. delayMicroseconds(200);
  468. WRITE(BEEPER, LOW);
  469. delayMicroseconds(100); // what is this wait for?
  470. }
  471. LCD_ALERTMESSAGERPGM(lcdMsg);
  472. }
  473. }
  474. void fanSpeedError(unsigned char _fan) {
  475. if (get_message_level() != 0 && isPrintPaused) return;
  476. //to ensure that target temp. is not set to zero in case taht we are resuming print
  477. if (card.sdprinting) {
  478. if (heating_status != 0) {
  479. lcd_print_stop();
  480. }
  481. else {
  482. fan_check_error = EFCE_DETECTED;
  483. }
  484. }
  485. else {
  486. setTargetHotend0(0);
  487. SERIAL_ECHOLNPGM("// action:pause"); //for octoprint
  488. }
  489. switch (_fan) {
  490. case 0: // extracting the same code from case 0 and case 1 into a function saves 72B
  491. fanSpeedErrorBeep(PSTR("Extruder fan speed is lower than expected"), PSTR("Err: EXTR. FAN ERROR") );
  492. break;
  493. case 1:
  494. fanSpeedErrorBeep(PSTR("Print fan speed is lower than expected"), PSTR("Err: PRINT FAN ERROR") );
  495. break;
  496. }
  497. }
  498. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  499. void checkExtruderAutoFans()
  500. {
  501. uint8_t fanState = 0;
  502. // which fan pins need to be turned on?
  503. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  504. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  505. fanState |= 1;
  506. #endif
  507. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  508. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  509. {
  510. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  511. fanState |= 1;
  512. else
  513. fanState |= 2;
  514. }
  515. #endif
  516. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  517. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  518. {
  519. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  520. fanState |= 1;
  521. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  522. fanState |= 2;
  523. else
  524. fanState |= 4;
  525. }
  526. #endif
  527. // update extruder auto fan states
  528. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  529. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  530. #endif
  531. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  532. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  533. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  534. #endif
  535. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  536. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  537. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  538. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  539. #endif
  540. }
  541. #endif // any extruder auto fan pins set
  542. // ready for eventually parameters adjusting
  543. void resetPID(uint8_t) // only for compiler-warning elimination (if function do nothing)
  544. //void resetPID(uint8_t extruder)
  545. {
  546. }
  547. void manage_heater()
  548. {
  549. #ifdef WATCHDOG
  550. wdt_reset();
  551. #endif //WATCHDOG
  552. float pid_input;
  553. float pid_output;
  554. if(temp_meas_ready != true) //better readability
  555. return;
  556. // more precisely - this condition partially stabilizes time interval for regulation values evaluation (@ ~ 230ms)
  557. updateTemperaturesFromRawValues();
  558. check_max_temp();
  559. check_min_temp();
  560. #ifdef TEMP_RUNAWAY_BED_HYSTERESIS
  561. temp_runaway_check(0, target_temperature_bed, current_temperature_bed, (int)soft_pwm_bed, true);
  562. #endif
  563. for(int e = 0; e < EXTRUDERS; e++)
  564. {
  565. #ifdef TEMP_RUNAWAY_EXTRUDER_HYSTERESIS
  566. temp_runaway_check(e+1, target_temperature[e], current_temperature[e], (int)soft_pwm[e], false);
  567. #endif
  568. #ifdef PIDTEMP
  569. pid_input = current_temperature[e];
  570. #ifndef PID_OPENLOOP
  571. if(target_temperature[e] == 0) {
  572. pid_output = 0;
  573. pid_reset[e] = true;
  574. } else {
  575. pid_error[e] = target_temperature[e] - pid_input;
  576. if(pid_reset[e]) {
  577. iState_sum[e] = 0.0;
  578. dTerm[e] = 0.0; // 'dState_last[e]' initial setting is not necessary (see end of if-statement)
  579. pid_reset[e] = false;
  580. }
  581. #ifndef PonM
  582. pTerm[e] = cs.Kp * pid_error[e];
  583. iState_sum[e] += pid_error[e];
  584. iState_sum[e] = constrain(iState_sum[e], iState_sum_min[e], iState_sum_max[e]);
  585. iTerm[e] = cs.Ki * iState_sum[e];
  586. // PID_K1 defined in Configuration.h in the PID settings
  587. #define K2 (1.0-PID_K1)
  588. dTerm[e] = (cs.Kd * (pid_input - dState_last[e]))*K2 + (PID_K1 * dTerm[e]); // e.g. digital filtration of derivative term changes
  589. pid_output = pTerm[e] + iTerm[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  590. if (pid_output > PID_MAX) {
  591. if (pid_error[e] > 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  592. pid_output=PID_MAX;
  593. } else if (pid_output < 0) {
  594. if (pid_error[e] < 0 ) iState_sum[e] -= pid_error[e]; // conditional un-integration
  595. pid_output=0;
  596. }
  597. #else // PonM ("Proportional on Measurement" method)
  598. iState_sum[e] += cs.Ki * pid_error[e];
  599. iState_sum[e] -= cs.Kp * (pid_input - dState_last[e]);
  600. iState_sum[e] = constrain(iState_sum[e], 0, PID_INTEGRAL_DRIVE_MAX);
  601. dTerm[e] = cs.Kd * (pid_input - dState_last[e]);
  602. pid_output = iState_sum[e] - dTerm[e]; // subtraction due to "Derivative on Measurement" method (i.e. derivative of input instead derivative of error is used)
  603. pid_output = constrain(pid_output, 0, PID_MAX);
  604. #endif // PonM
  605. }
  606. dState_last[e] = pid_input;
  607. #else
  608. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  609. #endif //PID_OPENLOOP
  610. #ifdef PID_DEBUG
  611. SERIAL_ECHO_START;
  612. SERIAL_ECHO(" PID_DEBUG ");
  613. SERIAL_ECHO(e);
  614. SERIAL_ECHO(": Input ");
  615. SERIAL_ECHO(pid_input);
  616. SERIAL_ECHO(" Output ");
  617. SERIAL_ECHO(pid_output);
  618. SERIAL_ECHO(" pTerm ");
  619. SERIAL_ECHO(pTerm[e]);
  620. SERIAL_ECHO(" iTerm ");
  621. SERIAL_ECHO(iTerm[e]);
  622. SERIAL_ECHO(" dTerm ");
  623. SERIAL_ECHOLN(-dTerm[e]);
  624. #endif //PID_DEBUG
  625. #else /* PID off */
  626. pid_output = 0;
  627. if(current_temperature[e] < target_temperature[e]) {
  628. pid_output = PID_MAX;
  629. }
  630. #endif
  631. // Check if temperature is within the correct range
  632. if((current_temperature[e] < maxttemp[e]) && (target_temperature[e] != 0))
  633. {
  634. soft_pwm[e] = (int)pid_output >> 1;
  635. }
  636. else
  637. {
  638. soft_pwm[e] = 0;
  639. }
  640. #ifdef WATCH_TEMP_PERIOD
  641. if(watchmillis[e] && _millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  642. {
  643. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  644. {
  645. setTargetHotend(0, e);
  646. LCD_MESSAGEPGM("Heating failed");
  647. SERIAL_ECHO_START;
  648. SERIAL_ECHOLN("Heating failed");
  649. }else{
  650. watchmillis[e] = 0;
  651. }
  652. }
  653. #endif
  654. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  655. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  656. disable_heater();
  657. if(IsStopped() == false) {
  658. SERIAL_ERROR_START;
  659. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  660. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  661. }
  662. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  663. Stop();
  664. #endif
  665. }
  666. #endif
  667. } // End extruder for loop
  668. #define FAN_CHECK_PERIOD 5000 //5s
  669. #define FAN_CHECK_DURATION 100 //100ms
  670. #ifndef DEBUG_DISABLE_FANCHECK
  671. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  672. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  673. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  674. #ifdef FAN_SOFT_PWM
  675. #ifdef FANCHECK
  676. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_PERIOD) && (!fan_measuring)) {
  677. extruder_autofan_last_check = _millis();
  678. fanSpeedBckp = fanSpeedSoftPwm;
  679. if (fanSpeedSoftPwm >= MIN_PRINT_FAN_SPEED) { //if we are in rage where we are doing fan check, set full PWM range for a short time to measure fan RPM by reading tacho signal without modulation by PWM signal
  680. // printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  681. fanSpeedSoftPwm = 255;
  682. }
  683. fan_measuring = true;
  684. }
  685. if ((_millis() - extruder_autofan_last_check > FAN_CHECK_DURATION) && (fan_measuring)) {
  686. countFanSpeed();
  687. checkFanSpeed();
  688. //printf_P(PSTR("fanSpeedSoftPwm 1: %d\n"), fanSpeedSoftPwm);
  689. fanSpeedSoftPwm = fanSpeedBckp;
  690. //printf_P(PSTR("fan PWM: %d; extr fanSpeed measured: %d; print fan speed measured: %d \n"), fanSpeedBckp, fan_speed[0], fan_speed[1]);
  691. extruder_autofan_last_check = _millis();
  692. fan_measuring = false;
  693. }
  694. #endif //FANCHECK
  695. checkExtruderAutoFans();
  696. #else //FAN_SOFT_PWM
  697. if(_millis() - extruder_autofan_last_check > 1000) // only need to check fan state very infrequently
  698. {
  699. #if (defined(FANCHECK) && ((defined(TACH_0) && (TACH_0 >-1)) || (defined(TACH_1) && (TACH_1 > -1))))
  700. countFanSpeed();
  701. checkFanSpeed();
  702. #endif //(defined(TACH_0) && TACH_0 >-1) || (defined(TACH_1) && TACH_1 > -1)
  703. checkExtruderAutoFans();
  704. extruder_autofan_last_check = _millis();
  705. }
  706. #endif //FAN_SOFT_PWM
  707. #endif
  708. #endif //DEBUG_DISABLE_FANCHECK
  709. #ifndef PIDTEMPBED
  710. if(_millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  711. return;
  712. previous_millis_bed_heater = _millis();
  713. #endif
  714. #if TEMP_SENSOR_BED != 0
  715. #ifdef PIDTEMPBED
  716. pid_input = current_temperature_bed;
  717. #ifndef PID_OPENLOOP
  718. pid_error_bed = target_temperature_bed - pid_input;
  719. pTerm_bed = cs.bedKp * pid_error_bed;
  720. temp_iState_bed += pid_error_bed;
  721. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  722. iTerm_bed = cs.bedKi * temp_iState_bed;
  723. //PID_K1 defined in Configuration.h in the PID settings
  724. #define K2 (1.0-PID_K1)
  725. dTerm_bed= (cs.bedKd * (pid_input - temp_dState_bed))*K2 + (PID_K1 * dTerm_bed);
  726. temp_dState_bed = pid_input;
  727. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  728. if (pid_output > MAX_BED_POWER) {
  729. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  730. pid_output=MAX_BED_POWER;
  731. } else if (pid_output < 0){
  732. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  733. pid_output=0;
  734. }
  735. #else
  736. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  737. #endif //PID_OPENLOOP
  738. if(current_temperature_bed < BED_MAXTEMP)
  739. {
  740. soft_pwm_bed = (int)pid_output >> 1;
  741. timer02_set_pwm0(soft_pwm_bed << 1);
  742. }
  743. else {
  744. soft_pwm_bed = 0;
  745. timer02_set_pwm0(soft_pwm_bed << 1);
  746. }
  747. #elif !defined(BED_LIMIT_SWITCHING)
  748. // Check if temperature is within the correct range
  749. if(current_temperature_bed < BED_MAXTEMP)
  750. {
  751. if(current_temperature_bed >= target_temperature_bed)
  752. {
  753. soft_pwm_bed = 0;
  754. timer02_set_pwm0(soft_pwm_bed << 1);
  755. }
  756. else
  757. {
  758. soft_pwm_bed = MAX_BED_POWER>>1;
  759. timer02_set_pwm0(soft_pwm_bed << 1);
  760. }
  761. }
  762. else
  763. {
  764. soft_pwm_bed = 0;
  765. timer02_set_pwm0(soft_pwm_bed << 1);
  766. WRITE(HEATER_BED_PIN,LOW);
  767. }
  768. #else //#ifdef BED_LIMIT_SWITCHING
  769. // Check if temperature is within the correct band
  770. if(current_temperature_bed < BED_MAXTEMP)
  771. {
  772. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  773. {
  774. soft_pwm_bed = 0;
  775. timer02_set_pwm0(soft_pwm_bed << 1);
  776. }
  777. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  778. {
  779. soft_pwm_bed = MAX_BED_POWER>>1;
  780. timer02_set_pwm0(soft_pwm_bed << 1);
  781. }
  782. }
  783. else
  784. {
  785. soft_pwm_bed = 0;
  786. timer02_set_pwm0(soft_pwm_bed << 1);
  787. WRITE(HEATER_BED_PIN,LOW);
  788. }
  789. #endif
  790. if(target_temperature_bed==0)
  791. {
  792. soft_pwm_bed = 0;
  793. timer02_set_pwm0(soft_pwm_bed << 1);
  794. }
  795. #endif
  796. host_keepalive();
  797. }
  798. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  799. // Derived from RepRap FiveD extruder::getTemperature()
  800. // For hot end temperature measurement.
  801. static float analog2temp(int raw, uint8_t e) {
  802. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  803. if(e > EXTRUDERS)
  804. #else
  805. if(e >= EXTRUDERS)
  806. #endif
  807. {
  808. SERIAL_ERROR_START;
  809. SERIAL_ERROR((int)e);
  810. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  811. kill(PSTR(""), 6);
  812. return 0.0;
  813. }
  814. #ifdef HEATER_0_USES_MAX6675
  815. if (e == 0)
  816. {
  817. return 0.25 * raw;
  818. }
  819. #endif
  820. if(heater_ttbl_map[e] != NULL)
  821. {
  822. float celsius = 0;
  823. uint8_t i;
  824. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  825. for (i=1; i<heater_ttbllen_map[e]; i++)
  826. {
  827. if (PGM_RD_W((*tt)[i][0]) > raw)
  828. {
  829. celsius = PGM_RD_W((*tt)[i-1][1]) +
  830. (raw - PGM_RD_W((*tt)[i-1][0])) *
  831. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  832. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  833. break;
  834. }
  835. }
  836. // Overflow: Set to last value in the table
  837. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  838. return celsius;
  839. }
  840. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  841. }
  842. // Derived from RepRap FiveD extruder::getTemperature()
  843. // For bed temperature measurement.
  844. static float analog2tempBed(int raw) {
  845. #ifdef BED_USES_THERMISTOR
  846. float celsius = 0;
  847. byte i;
  848. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  849. {
  850. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  851. {
  852. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  853. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  854. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  855. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  856. break;
  857. }
  858. }
  859. // Overflow: Set to last value in the table
  860. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  861. // temperature offset adjustment
  862. #ifdef BED_OFFSET
  863. float _offset = BED_OFFSET;
  864. float _offset_center = BED_OFFSET_CENTER;
  865. float _offset_start = BED_OFFSET_START;
  866. float _first_koef = (_offset / 2) / (_offset_center - _offset_start);
  867. float _second_koef = (_offset / 2) / (100 - _offset_center);
  868. if (celsius >= _offset_start && celsius <= _offset_center)
  869. {
  870. celsius = celsius + (_first_koef * (celsius - _offset_start));
  871. }
  872. else if (celsius > _offset_center && celsius <= 100)
  873. {
  874. celsius = celsius + (_first_koef * (_offset_center - _offset_start)) + ( _second_koef * ( celsius - ( 100 - _offset_center ) )) ;
  875. }
  876. else if (celsius > 100)
  877. {
  878. celsius = celsius + _offset;
  879. }
  880. #endif
  881. return celsius;
  882. #elif defined BED_USES_AD595
  883. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  884. #else
  885. return 0;
  886. #endif
  887. }
  888. #ifdef AMBIENT_THERMISTOR
  889. static float analog2tempAmbient(int raw)
  890. {
  891. float celsius = 0;
  892. byte i;
  893. for (i=1; i<AMBIENTTEMPTABLE_LEN; i++)
  894. {
  895. if (PGM_RD_W(AMBIENTTEMPTABLE[i][0]) > raw)
  896. {
  897. celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]) +
  898. (raw - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0])) *
  899. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][1]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][1])) /
  900. (float)(PGM_RD_W(AMBIENTTEMPTABLE[i][0]) - PGM_RD_W(AMBIENTTEMPTABLE[i-1][0]));
  901. break;
  902. }
  903. }
  904. // Overflow: Set to last value in the table
  905. if (i == AMBIENTTEMPTABLE_LEN) celsius = PGM_RD_W(AMBIENTTEMPTABLE[i-1][1]);
  906. return celsius;
  907. }
  908. #endif //AMBIENT_THERMISTOR
  909. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  910. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  911. static void updateTemperaturesFromRawValues()
  912. {
  913. for(uint8_t e=0;e<EXTRUDERS;e++)
  914. {
  915. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  916. }
  917. #ifdef PINDA_THERMISTOR
  918. current_temperature_raw_pinda = (uint16_t)((uint32_t)current_temperature_raw_pinda * 3 + current_temperature_raw_pinda_fast) >> 2;
  919. current_temperature_pinda = analog2tempBed(current_temperature_raw_pinda);
  920. #endif
  921. #ifdef AMBIENT_THERMISTOR
  922. current_temperature_ambient = analog2tempAmbient(current_temperature_raw_ambient); //thermistor for ambient is NTCG104LH104JT1 (2000)
  923. #endif
  924. #ifdef DEBUG_HEATER_BED_SIM
  925. current_temperature_bed = target_temperature_bed;
  926. #else //DEBUG_HEATER_BED_SIM
  927. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  928. #endif //DEBUG_HEATER_BED_SIM
  929. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  930. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  931. #endif
  932. CRITICAL_SECTION_START;
  933. temp_meas_ready = false;
  934. CRITICAL_SECTION_END;
  935. }
  936. void tp_init()
  937. {
  938. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  939. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  940. MCUCR=(1<<JTD);
  941. MCUCR=(1<<JTD);
  942. #endif
  943. // Finish init of mult extruder arrays
  944. for(int e = 0; e < EXTRUDERS; e++) {
  945. // populate with the first value
  946. maxttemp[e] = maxttemp[0];
  947. #ifdef PIDTEMP
  948. iState_sum_min[e] = 0.0;
  949. iState_sum_max[e] = PID_INTEGRAL_DRIVE_MAX / cs.Ki;
  950. #endif //PIDTEMP
  951. #ifdef PIDTEMPBED
  952. temp_iState_min_bed = 0.0;
  953. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / cs.bedKi;
  954. #endif //PIDTEMPBED
  955. }
  956. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  957. SET_OUTPUT(HEATER_0_PIN);
  958. #endif
  959. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  960. SET_OUTPUT(HEATER_1_PIN);
  961. #endif
  962. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  963. SET_OUTPUT(HEATER_2_PIN);
  964. #endif
  965. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  966. SET_OUTPUT(HEATER_BED_PIN);
  967. #endif
  968. #if defined(FAN_PIN) && (FAN_PIN > -1)
  969. SET_OUTPUT(FAN_PIN);
  970. #ifdef FAST_PWM_FAN
  971. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  972. #endif
  973. #ifdef FAN_SOFT_PWM
  974. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  975. #endif
  976. #endif
  977. #ifdef HEATER_0_USES_MAX6675
  978. #ifndef SDSUPPORT
  979. SET_OUTPUT(SCK_PIN);
  980. WRITE(SCK_PIN,0);
  981. SET_OUTPUT(MOSI_PIN);
  982. WRITE(MOSI_PIN,1);
  983. SET_INPUT(MISO_PIN);
  984. WRITE(MISO_PIN,1);
  985. #endif
  986. /* Using pinMode and digitalWrite, as that was the only way I could get it to compile */
  987. //Have to toggle SD card CS pin to low first, to enable firmware to talk with SD card
  988. pinMode(SS_PIN, OUTPUT);
  989. digitalWrite(SS_PIN,0);
  990. pinMode(MAX6675_SS, OUTPUT);
  991. digitalWrite(MAX6675_SS,1);
  992. #endif
  993. adc_init();
  994. #ifdef SYSTEM_TIMER_2
  995. timer02_init();
  996. OCR2B = 128;
  997. TIMSK2 |= (1<<OCIE2B);
  998. #else //SYSTEM_TIMER_2
  999. // Use timer0 for temperature measurement
  1000. // Interleave temperature interrupt with millies interrupt
  1001. OCR0B = 128;
  1002. TIMSK0 |= (1<<OCIE0B);
  1003. #endif //SYSTEM_TIMER_2
  1004. // Wait for temperature measurement to settle
  1005. _delay(250);
  1006. #ifdef HEATER_0_MINTEMP
  1007. minttemp[0] = HEATER_0_MINTEMP;
  1008. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  1009. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1010. minttemp_raw[0] += OVERSAMPLENR;
  1011. #else
  1012. minttemp_raw[0] -= OVERSAMPLENR;
  1013. #endif
  1014. }
  1015. #endif //MINTEMP
  1016. #ifdef HEATER_0_MAXTEMP
  1017. maxttemp[0] = HEATER_0_MAXTEMP;
  1018. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  1019. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  1020. maxttemp_raw[0] -= OVERSAMPLENR;
  1021. #else
  1022. maxttemp_raw[0] += OVERSAMPLENR;
  1023. #endif
  1024. }
  1025. #endif //MAXTEMP
  1026. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  1027. minttemp[1] = HEATER_1_MINTEMP;
  1028. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  1029. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1030. minttemp_raw[1] += OVERSAMPLENR;
  1031. #else
  1032. minttemp_raw[1] -= OVERSAMPLENR;
  1033. #endif
  1034. }
  1035. #endif // MINTEMP 1
  1036. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  1037. maxttemp[1] = HEATER_1_MAXTEMP;
  1038. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  1039. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  1040. maxttemp_raw[1] -= OVERSAMPLENR;
  1041. #else
  1042. maxttemp_raw[1] += OVERSAMPLENR;
  1043. #endif
  1044. }
  1045. #endif //MAXTEMP 1
  1046. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  1047. minttemp[2] = HEATER_2_MINTEMP;
  1048. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  1049. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1050. minttemp_raw[2] += OVERSAMPLENR;
  1051. #else
  1052. minttemp_raw[2] -= OVERSAMPLENR;
  1053. #endif
  1054. }
  1055. #endif //MINTEMP 2
  1056. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  1057. maxttemp[2] = HEATER_2_MAXTEMP;
  1058. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  1059. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  1060. maxttemp_raw[2] -= OVERSAMPLENR;
  1061. #else
  1062. maxttemp_raw[2] += OVERSAMPLENR;
  1063. #endif
  1064. }
  1065. #endif //MAXTEMP 2
  1066. #ifdef BED_MINTEMP
  1067. /* No bed MINTEMP error implemented?!? */
  1068. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1069. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1070. bed_minttemp_raw += OVERSAMPLENR;
  1071. #else
  1072. bed_minttemp_raw -= OVERSAMPLENR;
  1073. #endif
  1074. }
  1075. #endif //BED_MINTEMP
  1076. #ifdef BED_MAXTEMP
  1077. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1078. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1079. bed_maxttemp_raw -= OVERSAMPLENR;
  1080. #else
  1081. bed_maxttemp_raw += OVERSAMPLENR;
  1082. #endif
  1083. }
  1084. #endif //BED_MAXTEMP
  1085. }
  1086. void setWatch()
  1087. {
  1088. #ifdef WATCH_TEMP_PERIOD
  1089. for (int e = 0; e < EXTRUDERS; e++)
  1090. {
  1091. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  1092. {
  1093. watch_start_temp[e] = degHotend(e);
  1094. watchmillis[e] = _millis();
  1095. }
  1096. }
  1097. #endif
  1098. }
  1099. #if (defined (TEMP_RUNAWAY_BED_HYSTERESIS) && TEMP_RUNAWAY_BED_TIMEOUT > 0) || (defined (TEMP_RUNAWAY_EXTRUDER_HYSTERESIS) && TEMP_RUNAWAY_EXTRUDER_TIMEOUT > 0)
  1100. void temp_runaway_check(int _heater_id, float _target_temperature, float _current_temperature, float _output, bool _isbed)
  1101. {
  1102. float __delta;
  1103. float __hysteresis = 0;
  1104. int __timeout = 0;
  1105. bool temp_runaway_check_active = false;
  1106. static float __preheat_start[2] = { 0,0}; //currently just bed and one extruder
  1107. static int __preheat_counter[2] = { 0,0};
  1108. static int __preheat_errors[2] = { 0,0};
  1109. if (_millis() - temp_runaway_timer[_heater_id] > 2000)
  1110. {
  1111. #ifdef TEMP_RUNAWAY_BED_TIMEOUT
  1112. if (_isbed)
  1113. {
  1114. __hysteresis = TEMP_RUNAWAY_BED_HYSTERESIS;
  1115. __timeout = TEMP_RUNAWAY_BED_TIMEOUT;
  1116. }
  1117. #endif
  1118. #ifdef TEMP_RUNAWAY_EXTRUDER_TIMEOUT
  1119. if (!_isbed)
  1120. {
  1121. __hysteresis = TEMP_RUNAWAY_EXTRUDER_HYSTERESIS;
  1122. __timeout = TEMP_RUNAWAY_EXTRUDER_TIMEOUT;
  1123. }
  1124. #endif
  1125. temp_runaway_timer[_heater_id] = _millis();
  1126. if (_output == 0)
  1127. {
  1128. temp_runaway_check_active = false;
  1129. temp_runaway_error_counter[_heater_id] = 0;
  1130. }
  1131. if (temp_runaway_target[_heater_id] != _target_temperature)
  1132. {
  1133. if (_target_temperature > 0)
  1134. {
  1135. temp_runaway_status[_heater_id] = TempRunaway_PREHEAT;
  1136. temp_runaway_target[_heater_id] = _target_temperature;
  1137. __preheat_start[_heater_id] = _current_temperature;
  1138. __preheat_counter[_heater_id] = 0;
  1139. }
  1140. else
  1141. {
  1142. temp_runaway_status[_heater_id] = TempRunaway_INACTIVE;
  1143. temp_runaway_target[_heater_id] = _target_temperature;
  1144. }
  1145. }
  1146. if ((_current_temperature < _target_temperature) && (temp_runaway_status[_heater_id] == TempRunaway_PREHEAT))
  1147. {
  1148. __preheat_counter[_heater_id]++;
  1149. if (__preheat_counter[_heater_id] > ((_isbed) ? 16 : 8)) // periodicaly check if current temperature changes
  1150. {
  1151. /*SERIAL_ECHOPGM("Heater:");
  1152. MYSERIAL.print(_heater_id);
  1153. SERIAL_ECHOPGM(" T:");
  1154. MYSERIAL.print(_current_temperature);
  1155. SERIAL_ECHOPGM(" Tstart:");
  1156. MYSERIAL.print(__preheat_start[_heater_id]);
  1157. SERIAL_ECHOPGM(" delta:");
  1158. MYSERIAL.print(_current_temperature-__preheat_start[_heater_id]);*/
  1159. //-// if (_current_temperature - __preheat_start[_heater_id] < 2) {
  1160. //-// if (_current_temperature - __preheat_start[_heater_id] < ((_isbed && (_current_temperature>105.0))?0.6:2.0)) {
  1161. __delta=2.0;
  1162. if(_isbed)
  1163. {
  1164. __delta=3.0;
  1165. if(_current_temperature>90.0) __delta=2.0;
  1166. if(_current_temperature>105.0) __delta=0.6;
  1167. }
  1168. if (_current_temperature - __preheat_start[_heater_id] < __delta) {
  1169. __preheat_errors[_heater_id]++;
  1170. /*SERIAL_ECHOPGM(" Preheat errors:");
  1171. MYSERIAL.println(__preheat_errors[_heater_id]);*/
  1172. }
  1173. else {
  1174. //SERIAL_ECHOLNPGM("");
  1175. __preheat_errors[_heater_id] = 0;
  1176. }
  1177. if (__preheat_errors[_heater_id] > ((_isbed) ? 3 : 5))
  1178. {
  1179. if (farm_mode) { prusa_statistics(0); }
  1180. temp_runaway_stop(true, _isbed);
  1181. if (farm_mode) { prusa_statistics(91); }
  1182. }
  1183. __preheat_start[_heater_id] = _current_temperature;
  1184. __preheat_counter[_heater_id] = 0;
  1185. }
  1186. }
  1187. //-// if (_current_temperature >= _target_temperature && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1188. if ((_current_temperature > (_target_temperature - __hysteresis)) && temp_runaway_status[_heater_id] == TempRunaway_PREHEAT)
  1189. {
  1190. /*SERIAL_ECHOPGM("Heater:");
  1191. MYSERIAL.print(_heater_id);
  1192. MYSERIAL.println(" ->tempRunaway");*/
  1193. temp_runaway_status[_heater_id] = TempRunaway_ACTIVE;
  1194. temp_runaway_check_active = false;
  1195. temp_runaway_error_counter[_heater_id] = 0;
  1196. }
  1197. if (_output > 0)
  1198. {
  1199. temp_runaway_check_active = true;
  1200. }
  1201. if (temp_runaway_check_active)
  1202. {
  1203. // we are in range
  1204. if ((_current_temperature > (_target_temperature - __hysteresis)) && (_current_temperature < (_target_temperature + __hysteresis)))
  1205. {
  1206. temp_runaway_check_active = false;
  1207. temp_runaway_error_counter[_heater_id] = 0;
  1208. }
  1209. else
  1210. {
  1211. if (temp_runaway_status[_heater_id] > TempRunaway_PREHEAT)
  1212. {
  1213. temp_runaway_error_counter[_heater_id]++;
  1214. if (temp_runaway_error_counter[_heater_id] * 2 > __timeout)
  1215. {
  1216. if (farm_mode) { prusa_statistics(0); }
  1217. temp_runaway_stop(false, _isbed);
  1218. if (farm_mode) { prusa_statistics(90); }
  1219. }
  1220. }
  1221. }
  1222. }
  1223. }
  1224. }
  1225. void temp_runaway_stop(bool isPreheat, bool isBed)
  1226. {
  1227. cancel_heatup = true;
  1228. quickStop();
  1229. if (card.sdprinting)
  1230. {
  1231. card.sdprinting = false;
  1232. card.closefile();
  1233. }
  1234. // Clean the input command queue
  1235. // This is necessary, because in command queue there can be commands which would later set heater or bed temperature.
  1236. cmdqueue_reset();
  1237. disable_heater();
  1238. disable_x();
  1239. disable_y();
  1240. disable_e0();
  1241. disable_e1();
  1242. disable_e2();
  1243. manage_heater();
  1244. lcd_update(0);
  1245. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1246. WRITE(BEEPER, HIGH);
  1247. delayMicroseconds(500);
  1248. WRITE(BEEPER, LOW);
  1249. delayMicroseconds(100);
  1250. if (isPreheat)
  1251. {
  1252. Stop();
  1253. isBed ? LCD_ALERTMESSAGEPGM("BED PREHEAT ERROR") : LCD_ALERTMESSAGEPGM("PREHEAT ERROR");
  1254. SERIAL_ERROR_START;
  1255. isBed ? SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HEATBED)") : SERIAL_ERRORLNPGM(" THERMAL RUNAWAY ( PREHEAT HOTEND)");
  1256. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1257. SET_OUTPUT(FAN_PIN);
  1258. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1259. #ifdef FAN_SOFT_PWM
  1260. fanSpeedSoftPwm = 255;
  1261. #else //FAN_SOFT_PWM
  1262. analogWrite(FAN_PIN, 255);
  1263. #endif //FAN_SOFT_PWM
  1264. fanSpeed = 255;
  1265. delayMicroseconds(2000);
  1266. }
  1267. else
  1268. {
  1269. isBed ? LCD_ALERTMESSAGEPGM("BED THERMAL RUNAWAY") : LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1270. SERIAL_ERROR_START;
  1271. isBed ? SERIAL_ERRORLNPGM(" HEATBED THERMAL RUNAWAY") : SERIAL_ERRORLNPGM(" HOTEND THERMAL RUNAWAY");
  1272. }
  1273. }
  1274. #endif
  1275. void disable_heater()
  1276. {
  1277. setAllTargetHotends(0);
  1278. setTargetBed(0);
  1279. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1280. target_temperature[0]=0;
  1281. soft_pwm[0]=0;
  1282. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1283. WRITE(HEATER_0_PIN,LOW);
  1284. #endif
  1285. #endif
  1286. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1287. target_temperature[1]=0;
  1288. soft_pwm[1]=0;
  1289. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1290. WRITE(HEATER_1_PIN,LOW);
  1291. #endif
  1292. #endif
  1293. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1294. target_temperature[2]=0;
  1295. soft_pwm[2]=0;
  1296. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1297. WRITE(HEATER_2_PIN,LOW);
  1298. #endif
  1299. #endif
  1300. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1301. target_temperature_bed=0;
  1302. soft_pwm_bed=0;
  1303. timer02_set_pwm0(soft_pwm_bed << 1);
  1304. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1305. WRITE(HEATER_BED_PIN,LOW);
  1306. #endif
  1307. #endif
  1308. }
  1309. //! codes of alert messages for the LCD - it is shorter to compare an uin8_t
  1310. //! than raw const char * of the messages themselves.
  1311. //! Could be used for MAXTEMP situations too - after reaching MAXTEMP and turning off the heater automagically
  1312. //! the heater/bed may cool down and a similar alert message like "MAXTERM fixed..." may be displayed.
  1313. enum { LCDALERT_NONE = 0, LCDALERT_HEATERMINTEMP, LCDALERT_BEDMINTEMP, LCDALERT_MINTEMPFIXED, LCDALERT_PLEASERESTART };
  1314. //! remember the last alert message sent to the LCD
  1315. //! to prevent flicker and improve speed
  1316. uint8_t last_alert_sent_to_lcd = LCDALERT_NONE;
  1317. void max_temp_error(uint8_t e) {
  1318. disable_heater();
  1319. if(IsStopped() == false) {
  1320. SERIAL_ERROR_START;
  1321. SERIAL_ERRORLN((int)e);
  1322. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1323. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1324. }
  1325. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1326. Stop();
  1327. #endif
  1328. SET_OUTPUT(EXTRUDER_0_AUTO_FAN_PIN);
  1329. SET_OUTPUT(FAN_PIN);
  1330. SET_OUTPUT(BEEPER);
  1331. WRITE(FAN_PIN, 1);
  1332. WRITE(EXTRUDER_0_AUTO_FAN_PIN, 1);
  1333. if((eSoundMode==e_SOUND_MODE_LOUD)||(eSoundMode==e_SOUND_MODE_ONCE)||(eSoundMode==e_SOUND_MODE_SILENT))
  1334. WRITE(BEEPER, 1);
  1335. // fanSpeed will consumed by the check_axes_activity() routine.
  1336. fanSpeed=255;
  1337. if (farm_mode) { prusa_statistics(93); }
  1338. }
  1339. void min_temp_error(uint8_t e) {
  1340. #ifdef DEBUG_DISABLE_MINTEMP
  1341. return;
  1342. #endif
  1343. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1344. disable_heater();
  1345. static const char err[] PROGMEM = "Err: MINTEMP";
  1346. if(IsStopped() == false) {
  1347. SERIAL_ERROR_START;
  1348. SERIAL_ERRORLN((int)e);
  1349. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1350. lcd_setalertstatuspgm(err);
  1351. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1352. } else if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1353. // we are already stopped due to some error, only update the status message without flickering
  1354. lcd_updatestatuspgm(err);
  1355. last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1356. }
  1357. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1358. // if( last_alert_sent_to_lcd != LCDALERT_HEATERMINTEMP ){
  1359. // last_alert_sent_to_lcd = LCDALERT_HEATERMINTEMP;
  1360. // lcd_print_stop();
  1361. // }
  1362. Stop();
  1363. #endif
  1364. if (farm_mode) { prusa_statistics(92); }
  1365. }
  1366. void bed_max_temp_error(void) {
  1367. #if HEATER_BED_PIN > -1
  1368. WRITE(HEATER_BED_PIN, 0);
  1369. #endif
  1370. if(IsStopped() == false) {
  1371. SERIAL_ERROR_START;
  1372. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !");
  1373. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1374. }
  1375. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1376. Stop();
  1377. #endif
  1378. }
  1379. void bed_min_temp_error(void) {
  1380. #ifdef DEBUG_DISABLE_MINTEMP
  1381. return;
  1382. #endif
  1383. //if (current_temperature_ambient < MINTEMP_MINAMBIENT) return;
  1384. #if HEATER_BED_PIN > -1
  1385. WRITE(HEATER_BED_PIN, 0);
  1386. #endif
  1387. static const char err[] PROGMEM = "Err: MINTEMP BED";
  1388. if(IsStopped() == false) {
  1389. SERIAL_ERROR_START;
  1390. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MINTEMP triggered !");
  1391. lcd_setalertstatuspgm(err);
  1392. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1393. } else if( last_alert_sent_to_lcd != LCDALERT_BEDMINTEMP ){ // only update, if the lcd message is to be changed (i.e. not the same as last time)
  1394. // we are already stopped due to some error, only update the status message without flickering
  1395. lcd_updatestatuspgm(err);
  1396. last_alert_sent_to_lcd = LCDALERT_BEDMINTEMP;
  1397. }
  1398. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1399. Stop();
  1400. #endif
  1401. }
  1402. #ifdef HEATER_0_USES_MAX6675
  1403. #define MAX6675_HEAT_INTERVAL 250
  1404. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1405. int max6675_temp = 2000;
  1406. int read_max6675()
  1407. {
  1408. if (_millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1409. return max6675_temp;
  1410. max6675_previous_millis = _millis();
  1411. max6675_temp = 0;
  1412. #ifdef PRR
  1413. PRR &= ~(1<<PRSPI);
  1414. #elif defined PRR0
  1415. PRR0 &= ~(1<<PRSPI);
  1416. #endif
  1417. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1418. // enable TT_MAX6675
  1419. WRITE(MAX6675_SS, 0);
  1420. // ensure 100ns delay - a bit extra is fine
  1421. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1422. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1423. // read MSB
  1424. SPDR = 0;
  1425. for (;(SPSR & (1<<SPIF)) == 0;);
  1426. max6675_temp = SPDR;
  1427. max6675_temp <<= 8;
  1428. // read LSB
  1429. SPDR = 0;
  1430. for (;(SPSR & (1<<SPIF)) == 0;);
  1431. max6675_temp |= SPDR;
  1432. // disable TT_MAX6675
  1433. WRITE(MAX6675_SS, 1);
  1434. if (max6675_temp & 4)
  1435. {
  1436. // thermocouple open
  1437. max6675_temp = 2000;
  1438. }
  1439. else
  1440. {
  1441. max6675_temp = max6675_temp >> 3;
  1442. }
  1443. return max6675_temp;
  1444. }
  1445. #endif
  1446. extern "C" {
  1447. void adc_ready(void) //callback from adc when sampling finished
  1448. {
  1449. current_temperature_raw[0] = adc_values[ADC_PIN_IDX(TEMP_0_PIN)]; //heater
  1450. current_temperature_raw_pinda_fast = adc_values[ADC_PIN_IDX(TEMP_PINDA_PIN)];
  1451. current_temperature_bed_raw = adc_values[ADC_PIN_IDX(TEMP_BED_PIN)];
  1452. #ifdef VOLT_PWR_PIN
  1453. current_voltage_raw_pwr = adc_values[ADC_PIN_IDX(VOLT_PWR_PIN)];
  1454. #endif
  1455. #ifdef AMBIENT_THERMISTOR
  1456. current_temperature_raw_ambient = adc_values[ADC_PIN_IDX(TEMP_AMBIENT_PIN)];
  1457. #endif //AMBIENT_THERMISTOR
  1458. #ifdef VOLT_BED_PIN
  1459. current_voltage_raw_bed = adc_values[ADC_PIN_IDX(VOLT_BED_PIN)]; // 6->9
  1460. #endif
  1461. temp_meas_ready = true;
  1462. }
  1463. } // extern "C"
  1464. // Timer2 (originaly timer0) is shared with millies
  1465. #ifdef SYSTEM_TIMER_2
  1466. ISR(TIMER2_COMPB_vect)
  1467. #else //SYSTEM_TIMER_2
  1468. ISR(TIMER0_COMPB_vect)
  1469. #endif //SYSTEM_TIMER_2
  1470. {
  1471. static bool _lock = false;
  1472. if (_lock) return;
  1473. _lock = true;
  1474. asm("sei");
  1475. if (!temp_meas_ready) adc_cycle();
  1476. lcd_buttons_update();
  1477. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1478. static unsigned char soft_pwm_0;
  1479. #ifdef SLOW_PWM_HEATERS
  1480. static unsigned char slow_pwm_count = 0;
  1481. static unsigned char state_heater_0 = 0;
  1482. static unsigned char state_timer_heater_0 = 0;
  1483. #endif
  1484. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1485. static unsigned char soft_pwm_1;
  1486. #ifdef SLOW_PWM_HEATERS
  1487. static unsigned char state_heater_1 = 0;
  1488. static unsigned char state_timer_heater_1 = 0;
  1489. #endif
  1490. #endif
  1491. #if EXTRUDERS > 2
  1492. static unsigned char soft_pwm_2;
  1493. #ifdef SLOW_PWM_HEATERS
  1494. static unsigned char state_heater_2 = 0;
  1495. static unsigned char state_timer_heater_2 = 0;
  1496. #endif
  1497. #endif
  1498. #if HEATER_BED_PIN > -1
  1499. static unsigned char soft_pwm_b;
  1500. #ifdef SLOW_PWM_HEATERS
  1501. static unsigned char state_heater_b = 0;
  1502. static unsigned char state_timer_heater_b = 0;
  1503. #endif
  1504. #endif
  1505. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1506. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1507. #endif
  1508. #ifndef SLOW_PWM_HEATERS
  1509. /*
  1510. * standard PWM modulation
  1511. */
  1512. if (pwm_count == 0)
  1513. {
  1514. soft_pwm_0 = soft_pwm[0];
  1515. if(soft_pwm_0 > 0)
  1516. {
  1517. WRITE(HEATER_0_PIN,1);
  1518. #ifdef HEATERS_PARALLEL
  1519. WRITE(HEATER_1_PIN,1);
  1520. #endif
  1521. } else WRITE(HEATER_0_PIN,0);
  1522. #if EXTRUDERS > 1
  1523. soft_pwm_1 = soft_pwm[1];
  1524. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1525. #endif
  1526. #if EXTRUDERS > 2
  1527. soft_pwm_2 = soft_pwm[2];
  1528. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1529. #endif
  1530. }
  1531. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1532. if ((pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1)) == 0)
  1533. {
  1534. soft_pwm_b = soft_pwm_bed >> (7 - HEATER_BED_SOFT_PWM_BITS);
  1535. #ifndef SYSTEM_TIMER_2
  1536. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1537. #endif //SYSTEM_TIMER_2
  1538. }
  1539. #endif
  1540. #ifdef FAN_SOFT_PWM
  1541. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1542. {
  1543. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1544. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1545. }
  1546. #endif
  1547. if(soft_pwm_0 < pwm_count)
  1548. {
  1549. WRITE(HEATER_0_PIN,0);
  1550. #ifdef HEATERS_PARALLEL
  1551. WRITE(HEATER_1_PIN,0);
  1552. #endif
  1553. }
  1554. #if EXTRUDERS > 1
  1555. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1556. #endif
  1557. #if EXTRUDERS > 2
  1558. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1559. #endif
  1560. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1561. if (soft_pwm_b < (pwm_count & ((1 << HEATER_BED_SOFT_PWM_BITS) - 1))) WRITE(HEATER_BED_PIN,0);
  1562. #endif
  1563. #ifdef FAN_SOFT_PWM
  1564. if (soft_pwm_fan < (pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1))) WRITE(FAN_PIN,0);
  1565. #endif
  1566. pwm_count += (1 << SOFT_PWM_SCALE);
  1567. pwm_count &= 0x7f;
  1568. #else //ifndef SLOW_PWM_HEATERS
  1569. /*
  1570. * SLOW PWM HEATERS
  1571. *
  1572. * for heaters drived by relay
  1573. */
  1574. #ifndef MIN_STATE_TIME
  1575. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1576. #endif
  1577. if (slow_pwm_count == 0) {
  1578. // EXTRUDER 0
  1579. soft_pwm_0 = soft_pwm[0];
  1580. if (soft_pwm_0 > 0) {
  1581. // turn ON heather only if the minimum time is up
  1582. if (state_timer_heater_0 == 0) {
  1583. // if change state set timer
  1584. if (state_heater_0 == 0) {
  1585. state_timer_heater_0 = MIN_STATE_TIME;
  1586. }
  1587. state_heater_0 = 1;
  1588. WRITE(HEATER_0_PIN, 1);
  1589. #ifdef HEATERS_PARALLEL
  1590. WRITE(HEATER_1_PIN, 1);
  1591. #endif
  1592. }
  1593. } else {
  1594. // turn OFF heather only if the minimum time is up
  1595. if (state_timer_heater_0 == 0) {
  1596. // if change state set timer
  1597. if (state_heater_0 == 1) {
  1598. state_timer_heater_0 = MIN_STATE_TIME;
  1599. }
  1600. state_heater_0 = 0;
  1601. WRITE(HEATER_0_PIN, 0);
  1602. #ifdef HEATERS_PARALLEL
  1603. WRITE(HEATER_1_PIN, 0);
  1604. #endif
  1605. }
  1606. }
  1607. #if EXTRUDERS > 1
  1608. // EXTRUDER 1
  1609. soft_pwm_1 = soft_pwm[1];
  1610. if (soft_pwm_1 > 0) {
  1611. // turn ON heather only if the minimum time is up
  1612. if (state_timer_heater_1 == 0) {
  1613. // if change state set timer
  1614. if (state_heater_1 == 0) {
  1615. state_timer_heater_1 = MIN_STATE_TIME;
  1616. }
  1617. state_heater_1 = 1;
  1618. WRITE(HEATER_1_PIN, 1);
  1619. }
  1620. } else {
  1621. // turn OFF heather only if the minimum time is up
  1622. if (state_timer_heater_1 == 0) {
  1623. // if change state set timer
  1624. if (state_heater_1 == 1) {
  1625. state_timer_heater_1 = MIN_STATE_TIME;
  1626. }
  1627. state_heater_1 = 0;
  1628. WRITE(HEATER_1_PIN, 0);
  1629. }
  1630. }
  1631. #endif
  1632. #if EXTRUDERS > 2
  1633. // EXTRUDER 2
  1634. soft_pwm_2 = soft_pwm[2];
  1635. if (soft_pwm_2 > 0) {
  1636. // turn ON heather only if the minimum time is up
  1637. if (state_timer_heater_2 == 0) {
  1638. // if change state set timer
  1639. if (state_heater_2 == 0) {
  1640. state_timer_heater_2 = MIN_STATE_TIME;
  1641. }
  1642. state_heater_2 = 1;
  1643. WRITE(HEATER_2_PIN, 1);
  1644. }
  1645. } else {
  1646. // turn OFF heather only if the minimum time is up
  1647. if (state_timer_heater_2 == 0) {
  1648. // if change state set timer
  1649. if (state_heater_2 == 1) {
  1650. state_timer_heater_2 = MIN_STATE_TIME;
  1651. }
  1652. state_heater_2 = 0;
  1653. WRITE(HEATER_2_PIN, 0);
  1654. }
  1655. }
  1656. #endif
  1657. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1658. // BED
  1659. soft_pwm_b = soft_pwm_bed;
  1660. if (soft_pwm_b > 0) {
  1661. // turn ON heather only if the minimum time is up
  1662. if (state_timer_heater_b == 0) {
  1663. // if change state set timer
  1664. if (state_heater_b == 0) {
  1665. state_timer_heater_b = MIN_STATE_TIME;
  1666. }
  1667. state_heater_b = 1;
  1668. //WRITE(HEATER_BED_PIN, 1);
  1669. }
  1670. } else {
  1671. // turn OFF heather only if the minimum time is up
  1672. if (state_timer_heater_b == 0) {
  1673. // if change state set timer
  1674. if (state_heater_b == 1) {
  1675. state_timer_heater_b = MIN_STATE_TIME;
  1676. }
  1677. state_heater_b = 0;
  1678. WRITE(HEATER_BED_PIN, 0);
  1679. }
  1680. }
  1681. #endif
  1682. } // if (slow_pwm_count == 0)
  1683. // EXTRUDER 0
  1684. if (soft_pwm_0 < slow_pwm_count) {
  1685. // turn OFF heather only if the minimum time is up
  1686. if (state_timer_heater_0 == 0) {
  1687. // if change state set timer
  1688. if (state_heater_0 == 1) {
  1689. state_timer_heater_0 = MIN_STATE_TIME;
  1690. }
  1691. state_heater_0 = 0;
  1692. WRITE(HEATER_0_PIN, 0);
  1693. #ifdef HEATERS_PARALLEL
  1694. WRITE(HEATER_1_PIN, 0);
  1695. #endif
  1696. }
  1697. }
  1698. #if EXTRUDERS > 1
  1699. // EXTRUDER 1
  1700. if (soft_pwm_1 < slow_pwm_count) {
  1701. // turn OFF heather only if the minimum time is up
  1702. if (state_timer_heater_1 == 0) {
  1703. // if change state set timer
  1704. if (state_heater_1 == 1) {
  1705. state_timer_heater_1 = MIN_STATE_TIME;
  1706. }
  1707. state_heater_1 = 0;
  1708. WRITE(HEATER_1_PIN, 0);
  1709. }
  1710. }
  1711. #endif
  1712. #if EXTRUDERS > 2
  1713. // EXTRUDER 2
  1714. if (soft_pwm_2 < slow_pwm_count) {
  1715. // turn OFF heather only if the minimum time is up
  1716. if (state_timer_heater_2 == 0) {
  1717. // if change state set timer
  1718. if (state_heater_2 == 1) {
  1719. state_timer_heater_2 = MIN_STATE_TIME;
  1720. }
  1721. state_heater_2 = 0;
  1722. WRITE(HEATER_2_PIN, 0);
  1723. }
  1724. }
  1725. #endif
  1726. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1727. // BED
  1728. if (soft_pwm_b < slow_pwm_count) {
  1729. // turn OFF heather only if the minimum time is up
  1730. if (state_timer_heater_b == 0) {
  1731. // if change state set timer
  1732. if (state_heater_b == 1) {
  1733. state_timer_heater_b = MIN_STATE_TIME;
  1734. }
  1735. state_heater_b = 0;
  1736. WRITE(HEATER_BED_PIN, 0);
  1737. }
  1738. }
  1739. #endif
  1740. #ifdef FAN_SOFT_PWM
  1741. if ((pwm_count & ((1 << FAN_SOFT_PWM_BITS) - 1)) == 0)
  1742. soft_pwm_fan = fanSpeedSoftPwm / (1 << (8 - FAN_SOFT_PWM_BITS));
  1743. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1744. }
  1745. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1746. #endif
  1747. pwm_count += (1 << SOFT_PWM_SCALE);
  1748. pwm_count &= 0x7f;
  1749. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1750. if ((pwm_count % 64) == 0) {
  1751. slow_pwm_count++;
  1752. slow_pwm_count &= 0x7f;
  1753. // Extruder 0
  1754. if (state_timer_heater_0 > 0) {
  1755. state_timer_heater_0--;
  1756. }
  1757. #if EXTRUDERS > 1
  1758. // Extruder 1
  1759. if (state_timer_heater_1 > 0)
  1760. state_timer_heater_1--;
  1761. #endif
  1762. #if EXTRUDERS > 2
  1763. // Extruder 2
  1764. if (state_timer_heater_2 > 0)
  1765. state_timer_heater_2--;
  1766. #endif
  1767. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1768. // Bed
  1769. if (state_timer_heater_b > 0)
  1770. state_timer_heater_b--;
  1771. #endif
  1772. } //if ((pwm_count % 64) == 0) {
  1773. #endif //ifndef SLOW_PWM_HEATERS
  1774. #ifdef BABYSTEPPING
  1775. for(uint8_t axis=0;axis<3;axis++)
  1776. {
  1777. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1778. if(curTodo>0)
  1779. {
  1780. asm("cli");
  1781. babystep(axis,/*fwd*/true);
  1782. babystepsTodo[axis]--; //less to do next time
  1783. asm("sei");
  1784. }
  1785. else
  1786. if(curTodo<0)
  1787. {
  1788. asm("cli");
  1789. babystep(axis,/*fwd*/false);
  1790. babystepsTodo[axis]++; //less to do next time
  1791. asm("sei");
  1792. }
  1793. }
  1794. #endif //BABYSTEPPING
  1795. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1796. check_fans();
  1797. #endif //(defined(TACH_0))
  1798. _lock = false;
  1799. }
  1800. void check_max_temp()
  1801. {
  1802. //heater
  1803. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1804. if (current_temperature_raw[0] <= maxttemp_raw[0]) {
  1805. #else
  1806. if (current_temperature_raw[0] >= maxttemp_raw[0]) {
  1807. #endif
  1808. max_temp_error(0);
  1809. }
  1810. //bed
  1811. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1812. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1813. if (current_temperature_bed_raw <= bed_maxttemp_raw) {
  1814. #else
  1815. if (current_temperature_bed_raw >= bed_maxttemp_raw) {
  1816. #endif
  1817. target_temperature_bed = 0;
  1818. bed_max_temp_error();
  1819. }
  1820. #endif
  1821. }
  1822. //! number of repeating the same state with consecutive step() calls
  1823. //! used to slow down text switching
  1824. struct alert_automaton_mintemp {
  1825. private:
  1826. enum { ALERT_AUTOMATON_SPEED_DIV = 5 };
  1827. enum class States : uint8_t { Init = 0, TempAboveMintemp, ShowPleaseRestart, ShowMintemp };
  1828. States state = States::Init;
  1829. uint8_t repeat = ALERT_AUTOMATON_SPEED_DIV;
  1830. void substep(States next_state){
  1831. if( repeat == 0 ){
  1832. state = next_state; // advance to the next state
  1833. repeat = ALERT_AUTOMATON_SPEED_DIV; // and prepare repeating for it too
  1834. } else {
  1835. --repeat;
  1836. }
  1837. }
  1838. public:
  1839. //! brief state automaton step routine
  1840. //! @param current_temp current hotend/bed temperature (for computing simple hysteresis)
  1841. //! @param mintemp minimal temperature including hysteresis to check current_temp against
  1842. void step(float current_temp, float mintemp){
  1843. static const char m2[] PROGMEM = "MINTEMP fixed";
  1844. static const char m1[] PROGMEM = "Please restart";
  1845. switch(state){
  1846. case States::Init: // initial state - check hysteresis
  1847. if( current_temp > mintemp ){
  1848. state = States::TempAboveMintemp;
  1849. }
  1850. // otherwise keep the Err MINTEMP alert message on the display,
  1851. // i.e. do not transfer to state 1
  1852. break;
  1853. case States::TempAboveMintemp: // the temperature has risen above the hysteresis check
  1854. lcd_setalertstatuspgm(m2);
  1855. substep(States::ShowMintemp);
  1856. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1857. break;
  1858. case States::ShowPleaseRestart: // displaying "Please restart"
  1859. lcd_updatestatuspgm(m1);
  1860. substep(States::ShowMintemp);
  1861. last_alert_sent_to_lcd = LCDALERT_PLEASERESTART;
  1862. break;
  1863. case States::ShowMintemp: // displaying "MINTEMP fixed"
  1864. lcd_updatestatuspgm(m2);
  1865. substep(States::ShowPleaseRestart);
  1866. last_alert_sent_to_lcd = LCDALERT_MINTEMPFIXED;
  1867. break;
  1868. }
  1869. }
  1870. };
  1871. static alert_automaton_mintemp alert_automaton_hotend, alert_automaton_bed;
  1872. void check_min_temp_heater0()
  1873. {
  1874. //heater
  1875. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1876. if (current_temperature_raw[0] >= minttemp_raw[0]) {
  1877. #else
  1878. if (current_temperature_raw[0] <= minttemp_raw[0]) {
  1879. #endif
  1880. menu_set_serious_error(SERIOUS_ERR_MINTEMP_HEATER);
  1881. min_temp_error(0);
  1882. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_HEATER) ) {
  1883. // no recovery, just force the user to restart the printer
  1884. // which is a safer variant than just continuing printing
  1885. // The automaton also checks for hysteresis - the temperature must have reached a few degrees above the MINTEMP, before
  1886. // we shall signalize, that MINTEMP has been fixed
  1887. // Code notice: normally the alert_automaton instance would have been placed here
  1888. // as static alert_automaton_mintemp alert_automaton_hotend, but
  1889. // due to stupid compiler that takes 16 more bytes.
  1890. alert_automaton_hotend.step(current_temperature[0], minttemp[0] + TEMP_HYSTERESIS);
  1891. }
  1892. }
  1893. void check_min_temp_bed()
  1894. {
  1895. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1896. if (current_temperature_bed_raw >= bed_minttemp_raw) {
  1897. #else
  1898. if (current_temperature_bed_raw <= bed_minttemp_raw) {
  1899. #endif
  1900. menu_set_serious_error(SERIOUS_ERR_MINTEMP_BED);
  1901. bed_min_temp_error();
  1902. } else if( menu_is_serious_error(SERIOUS_ERR_MINTEMP_BED) ){
  1903. // no recovery, just force the user to restart the printer
  1904. // which is a safer variant than just continuing printing
  1905. alert_automaton_bed.step(current_temperature_bed, BED_MINTEMP + TEMP_HYSTERESIS);
  1906. }
  1907. }
  1908. void check_min_temp()
  1909. {
  1910. static bool bCheckingOnHeater=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over heaterMintemp)
  1911. static bool bCheckingOnBed=false; // state variable, which allows to short no-checking delay (is set, when temperature is (first time) over bedMintemp)
  1912. #ifdef AMBIENT_THERMISTOR
  1913. if(current_temperature_raw_ambient>(OVERSAMPLENR*MINTEMP_MINAMBIENT_RAW)) // thermistor is NTC type, so operator is ">" ;-)
  1914. { // ambient temperature is low
  1915. #endif //AMBIENT_THERMISTOR
  1916. // *** 'common' part of code for MK2.5 & MK3
  1917. // * nozzle checking
  1918. if(target_temperature[active_extruder]>minttemp[active_extruder])
  1919. { // ~ nozzle heating is on
  1920. bCheckingOnHeater=bCheckingOnHeater||(current_temperature[active_extruder]>(minttemp[active_extruder]+TEMP_HYSTERESIS)); // for eventually delay cutting
  1921. if(oTimer4minTempHeater.expired(HEATER_MINTEMP_DELAY)||(!oTimer4minTempHeater.running())||bCheckingOnHeater)
  1922. {
  1923. bCheckingOnHeater=true; // not necessary
  1924. check_min_temp_heater0(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1925. }
  1926. }
  1927. else { // ~ nozzle heating is off
  1928. oTimer4minTempHeater.start();
  1929. bCheckingOnHeater=false;
  1930. }
  1931. // * bed checking
  1932. if(target_temperature_bed>BED_MINTEMP)
  1933. { // ~ bed heating is on
  1934. bCheckingOnBed=bCheckingOnBed||(current_temperature_bed>(BED_MINTEMP+TEMP_HYSTERESIS)); // for eventually delay cutting
  1935. if(oTimer4minTempBed.expired(BED_MINTEMP_DELAY)||(!oTimer4minTempBed.running())||bCheckingOnBed)
  1936. {
  1937. bCheckingOnBed=true; // not necessary
  1938. check_min_temp_bed(); // delay is elapsed or temperature is/was over minTemp => periodical checking is active
  1939. }
  1940. }
  1941. else { // ~ bed heating is off
  1942. oTimer4minTempBed.start();
  1943. bCheckingOnBed=false;
  1944. }
  1945. // *** end of 'common' part
  1946. #ifdef AMBIENT_THERMISTOR
  1947. }
  1948. else { // ambient temperature is standard
  1949. check_min_temp_heater0();
  1950. check_min_temp_bed();
  1951. }
  1952. #endif //AMBIENT_THERMISTOR
  1953. }
  1954. #if (defined(FANCHECK) && defined(TACH_0) && (TACH_0 > -1))
  1955. void check_fans() {
  1956. #ifdef FAN_SOFT_PWM
  1957. if (READ(TACH_0) != fan_state[0]) {
  1958. if(fan_measuring) fan_edge_counter[0] ++;
  1959. fan_state[0] = !fan_state[0];
  1960. }
  1961. #else //FAN_SOFT_PWM
  1962. if (READ(TACH_0) != fan_state[0]) {
  1963. fan_edge_counter[0] ++;
  1964. fan_state[0] = !fan_state[0];
  1965. }
  1966. #endif
  1967. //if (READ(TACH_1) != fan_state[1]) {
  1968. // fan_edge_counter[1] ++;
  1969. // fan_state[1] = !fan_state[1];
  1970. //}
  1971. }
  1972. #endif //TACH_0
  1973. #ifdef PIDTEMP
  1974. // Apply the scale factors to the PID values
  1975. float scalePID_i(float i)
  1976. {
  1977. return i*PID_dT;
  1978. }
  1979. float unscalePID_i(float i)
  1980. {
  1981. return i/PID_dT;
  1982. }
  1983. float scalePID_d(float d)
  1984. {
  1985. return d/PID_dT;
  1986. }
  1987. float unscalePID_d(float d)
  1988. {
  1989. return d*PID_dT;
  1990. }
  1991. #endif //PIDTEMP