Marlin_main.cpp 308 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "menu.h"
  57. #include "ultralcd.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef FILAMENT_SENSOR
  81. #include "fsensor.h"
  82. #endif //FILAMENT_SENSOR
  83. #ifdef TMC2130
  84. #include "tmc2130.h"
  85. #endif //TMC2130
  86. #ifdef W25X20CL
  87. #include "w25x20cl.h"
  88. #include "optiboot_w25x20cl.h"
  89. #endif //W25X20CL
  90. #ifdef BLINKM
  91. #include "BlinkM.h"
  92. #include "Wire.h"
  93. #endif
  94. #ifdef ULTRALCD
  95. #include "ultralcd.h"
  96. #endif
  97. #if NUM_SERVOS > 0
  98. #include "Servo.h"
  99. #endif
  100. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  101. #include <SPI.h>
  102. #endif
  103. #define VERSION_STRING "1.0.2"
  104. #include "ultralcd.h"
  105. #include "sound.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M73 - Show percent done and print time remaining
  162. // M80 - Turn on Power Supply
  163. // M81 - Turn off Power Supply
  164. // M82 - Set E codes absolute (default)
  165. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  166. // M84 - Disable steppers until next move,
  167. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  168. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  169. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  170. // M92 - Set axis_steps_per_unit - same syntax as G92
  171. // M104 - Set extruder target temp
  172. // M105 - Read current temp
  173. // M106 - Fan on
  174. // M107 - Fan off
  175. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  176. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  177. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  178. // M112 - Emergency stop
  179. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  180. // M114 - Output current position to serial port
  181. // M115 - Capabilities string
  182. // M117 - display message
  183. // M119 - Output Endstop status to serial port
  184. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  185. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  186. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  188. // M140 - Set bed target temp
  189. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  190. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  191. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  192. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  193. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  194. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  195. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  196. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  197. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  198. // M206 - set additional homing offset
  199. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  200. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  201. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  202. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  203. // M220 S<factor in percent>- set speed factor override percentage
  204. // M221 S<factor in percent>- set extrude factor override percentage
  205. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  206. // M240 - Trigger a camera to take a photograph
  207. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  208. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  209. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  210. // M301 - Set PID parameters P I and D
  211. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  212. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  213. // M304 - Set bed PID parameters P I and D
  214. // M400 - Finish all moves
  215. // M401 - Lower z-probe if present
  216. // M402 - Raise z-probe if present
  217. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  218. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  219. // M406 - Turn off Filament Sensor extrusion control
  220. // M407 - Displays measured filament diameter
  221. // M500 - stores parameters in EEPROM
  222. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  223. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  224. // M503 - print the current settings (from memory not from EEPROM)
  225. // M509 - force language selection on next restart
  226. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  227. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  228. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. // M860 - Wait for PINDA thermistor to reach target temperature.
  230. // M861 - Set / Read PINDA temperature compensation offsets
  231. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  232. // M907 - Set digital trimpot motor current using axis codes.
  233. // M908 - Control digital trimpot directly.
  234. // M350 - Set microstepping mode.
  235. // M351 - Toggle MS1 MS2 pins directly.
  236. // M928 - Start SD logging (M928 filename.g) - ended by M29
  237. // M999 - Restart after being stopped by error
  238. //Stepper Movement Variables
  239. //===========================================================================
  240. //=============================imported variables============================
  241. //===========================================================================
  242. //===========================================================================
  243. //=============================public variables=============================
  244. //===========================================================================
  245. #ifdef SDSUPPORT
  246. CardReader card;
  247. #endif
  248. unsigned long PingTime = millis();
  249. unsigned long NcTime;
  250. union Data
  251. {
  252. byte b[2];
  253. int value;
  254. };
  255. float homing_feedrate[] = HOMING_FEEDRATE;
  256. // Currently only the extruder axis may be switched to a relative mode.
  257. // Other axes are always absolute or relative based on the common relative_mode flag.
  258. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  259. int feedmultiply=100; //100->1 200->2
  260. int saved_feedmultiply;
  261. int extrudemultiply=100; //100->1 200->2
  262. int extruder_multiply[EXTRUDERS] = {100
  263. #if EXTRUDERS > 1
  264. , 100
  265. #if EXTRUDERS > 2
  266. , 100
  267. #endif
  268. #endif
  269. };
  270. int bowden_length[4] = {385, 385, 385, 385};
  271. bool is_usb_printing = false;
  272. bool homing_flag = false;
  273. bool temp_cal_active = false;
  274. unsigned long kicktime = millis()+100000;
  275. unsigned int usb_printing_counter;
  276. int lcd_change_fil_state = 0;
  277. int feedmultiplyBckp = 100;
  278. float HotendTempBckp = 0;
  279. int fanSpeedBckp = 0;
  280. float pause_lastpos[4];
  281. unsigned long pause_time = 0;
  282. unsigned long start_pause_print = millis();
  283. unsigned long t_fan_rising_edge = millis();
  284. static LongTimer safetyTimer;
  285. static LongTimer crashDetTimer;
  286. //unsigned long load_filament_time;
  287. bool mesh_bed_leveling_flag = false;
  288. bool mesh_bed_run_from_menu = false;
  289. int8_t FarmMode = 0;
  290. bool prusa_sd_card_upload = false;
  291. unsigned int status_number = 0;
  292. unsigned long total_filament_used;
  293. unsigned int heating_status;
  294. unsigned int heating_status_counter;
  295. bool custom_message;
  296. bool loading_flag = false;
  297. unsigned int custom_message_type;
  298. unsigned int custom_message_state;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. //shortcuts for more readable code
  324. #define _x current_position[X_AXIS]
  325. #define _y current_position[Y_AXIS]
  326. #define _z current_position[Z_AXIS]
  327. #define _e current_position[E_AXIS]
  328. float add_homing[3]={0,0,0};
  329. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  330. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  331. bool axis_known_position[3] = {false, false, false};
  332. float zprobe_zoffset;
  333. // Extruder offset
  334. #if EXTRUDERS > 1
  335. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  336. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  337. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  338. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  339. #endif
  340. };
  341. #endif
  342. uint8_t active_extruder = 0;
  343. int fanSpeed=0;
  344. #ifdef FWRETRACT
  345. bool autoretract_enabled=false;
  346. bool retracted[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. bool retracted_swap[EXTRUDERS]={false
  355. #if EXTRUDERS > 1
  356. , false
  357. #if EXTRUDERS > 2
  358. , false
  359. #endif
  360. #endif
  361. };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif
  370. #ifdef PS_DEFAULT_OFF
  371. bool powersupply = false;
  372. #else
  373. bool powersupply = true;
  374. #endif
  375. bool cancel_heatup = false ;
  376. #ifdef HOST_KEEPALIVE_FEATURE
  377. int busy_state = NOT_BUSY;
  378. static long prev_busy_signal_ms = -1;
  379. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  380. #else
  381. #define host_keepalive();
  382. #define KEEPALIVE_STATE(n);
  383. #endif
  384. const char errormagic[] PROGMEM = "Error:";
  385. const char echomagic[] PROGMEM = "echo:";
  386. bool no_response = false;
  387. uint8_t important_status;
  388. uint8_t saved_filament_type;
  389. // save/restore printing
  390. bool saved_printing = false;
  391. // storing estimated time to end of print counted by slicer
  392. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  393. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  394. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. //===========================================================================
  397. //=============================Private Variables=============================
  398. //===========================================================================
  399. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  400. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  401. // For tracing an arc
  402. static float offset[3] = {0.0, 0.0, 0.0};
  403. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  404. // Determines Absolute or Relative Coordinates.
  405. // Also there is bool axis_relative_modes[] per axis flag.
  406. static bool relative_mode = false;
  407. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  408. //static float tt = 0;
  409. //static float bt = 0;
  410. //Inactivity shutdown variables
  411. static unsigned long previous_millis_cmd = 0;
  412. unsigned long max_inactive_time = 0;
  413. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  414. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  415. unsigned long starttime=0;
  416. unsigned long stoptime=0;
  417. unsigned long _usb_timer = 0;
  418. static uint8_t tmp_extruder;
  419. bool extruder_under_pressure = true;
  420. bool Stopped=false;
  421. #if NUM_SERVOS > 0
  422. Servo servos[NUM_SERVOS];
  423. #endif
  424. bool CooldownNoWait = true;
  425. bool target_direction;
  426. //Insert variables if CHDK is defined
  427. #ifdef CHDK
  428. unsigned long chdkHigh = 0;
  429. boolean chdkActive = false;
  430. #endif
  431. // save/restore printing
  432. static uint32_t saved_sdpos = 0;
  433. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  434. static float saved_pos[4] = { 0, 0, 0, 0 };
  435. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  436. static float saved_feedrate2 = 0;
  437. static uint8_t saved_active_extruder = 0;
  438. static bool saved_extruder_under_pressure = false;
  439. static bool saved_extruder_relative_mode = false;
  440. //===========================================================================
  441. //=============================Routines======================================
  442. //===========================================================================
  443. static void get_arc_coordinates();
  444. static bool setTargetedHotend(int code);
  445. static void print_time_remaining_init();
  446. void serial_echopair_P(const char *s_P, float v)
  447. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  448. void serial_echopair_P(const char *s_P, double v)
  449. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  450. void serial_echopair_P(const char *s_P, unsigned long v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. #ifdef SDSUPPORT
  453. #include "SdFatUtil.h"
  454. int freeMemory() { return SdFatUtil::FreeRam(); }
  455. #else
  456. extern "C" {
  457. extern unsigned int __bss_end;
  458. extern unsigned int __heap_start;
  459. extern void *__brkval;
  460. int freeMemory() {
  461. int free_memory;
  462. if ((int)__brkval == 0)
  463. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  464. else
  465. free_memory = ((int)&free_memory) - ((int)__brkval);
  466. return free_memory;
  467. }
  468. }
  469. #endif //!SDSUPPORT
  470. void setup_killpin()
  471. {
  472. #if defined(KILL_PIN) && KILL_PIN > -1
  473. SET_INPUT(KILL_PIN);
  474. WRITE(KILL_PIN,HIGH);
  475. #endif
  476. }
  477. // Set home pin
  478. void setup_homepin(void)
  479. {
  480. #if defined(HOME_PIN) && HOME_PIN > -1
  481. SET_INPUT(HOME_PIN);
  482. WRITE(HOME_PIN,HIGH);
  483. #endif
  484. }
  485. void setup_photpin()
  486. {
  487. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  488. SET_OUTPUT(PHOTOGRAPH_PIN);
  489. WRITE(PHOTOGRAPH_PIN, LOW);
  490. #endif
  491. }
  492. void setup_powerhold()
  493. {
  494. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  495. SET_OUTPUT(SUICIDE_PIN);
  496. WRITE(SUICIDE_PIN, HIGH);
  497. #endif
  498. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  499. SET_OUTPUT(PS_ON_PIN);
  500. #if defined(PS_DEFAULT_OFF)
  501. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  502. #else
  503. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  504. #endif
  505. #endif
  506. }
  507. void suicide()
  508. {
  509. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  510. SET_OUTPUT(SUICIDE_PIN);
  511. WRITE(SUICIDE_PIN, LOW);
  512. #endif
  513. }
  514. void servo_init()
  515. {
  516. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  517. servos[0].attach(SERVO0_PIN);
  518. #endif
  519. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  520. servos[1].attach(SERVO1_PIN);
  521. #endif
  522. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  523. servos[2].attach(SERVO2_PIN);
  524. #endif
  525. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  526. servos[3].attach(SERVO3_PIN);
  527. #endif
  528. #if (NUM_SERVOS >= 5)
  529. #error "TODO: enter initalisation code for more servos"
  530. #endif
  531. }
  532. void stop_and_save_print_to_ram(float z_move, float e_move);
  533. void restore_print_from_ram_and_continue(float e_move);
  534. bool fans_check_enabled = true;
  535. #ifdef TMC2130
  536. extern int8_t CrashDetectMenu;
  537. void crashdet_enable()
  538. {
  539. tmc2130_sg_stop_on_crash = true;
  540. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  541. CrashDetectMenu = 1;
  542. }
  543. void crashdet_disable()
  544. {
  545. tmc2130_sg_stop_on_crash = false;
  546. tmc2130_sg_crash = 0;
  547. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  548. CrashDetectMenu = 0;
  549. }
  550. void crashdet_stop_and_save_print()
  551. {
  552. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  553. }
  554. void crashdet_restore_print_and_continue()
  555. {
  556. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  557. // babystep_apply();
  558. }
  559. void crashdet_stop_and_save_print2()
  560. {
  561. cli();
  562. planner_abort_hard(); //abort printing
  563. cmdqueue_reset(); //empty cmdqueue
  564. card.sdprinting = false;
  565. card.closefile();
  566. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  567. st_reset_timer();
  568. sei();
  569. }
  570. void crashdet_detected(uint8_t mask)
  571. {
  572. st_synchronize();
  573. static uint8_t crashDet_counter = 0;
  574. bool automatic_recovery_after_crash = true;
  575. if (crashDet_counter++ == 0) {
  576. crashDetTimer.start();
  577. }
  578. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  579. crashDetTimer.stop();
  580. crashDet_counter = 0;
  581. }
  582. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  583. automatic_recovery_after_crash = false;
  584. crashDetTimer.stop();
  585. crashDet_counter = 0;
  586. }
  587. else {
  588. crashDetTimer.start();
  589. }
  590. lcd_update_enable(true);
  591. lcd_clear();
  592. lcd_update(2);
  593. if (mask & X_AXIS_MASK)
  594. {
  595. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  596. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  597. }
  598. if (mask & Y_AXIS_MASK)
  599. {
  600. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  601. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  602. }
  603. lcd_update_enable(true);
  604. lcd_update(2);
  605. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  606. gcode_G28(true, true, false); //home X and Y
  607. st_synchronize();
  608. if (automatic_recovery_after_crash) {
  609. enquecommand_P(PSTR("CRASH_RECOVER"));
  610. }else{
  611. HotendTempBckp = degTargetHotend(active_extruder);
  612. setTargetHotend(0, active_extruder);
  613. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  614. lcd_update_enable(true);
  615. if (yesno)
  616. {
  617. char cmd1[10];
  618. strcpy(cmd1, "M109 S");
  619. strcat(cmd1, ftostr3(HotendTempBckp));
  620. enquecommand(cmd1);
  621. enquecommand_P(PSTR("CRASH_RECOVER"));
  622. }
  623. else
  624. {
  625. enquecommand_P(PSTR("CRASH_CANCEL"));
  626. }
  627. }
  628. }
  629. void crashdet_recover()
  630. {
  631. crashdet_restore_print_and_continue();
  632. tmc2130_sg_stop_on_crash = true;
  633. }
  634. void crashdet_cancel()
  635. {
  636. tmc2130_sg_stop_on_crash = true;
  637. if (saved_printing_type == PRINTING_TYPE_SD) {
  638. lcd_print_stop();
  639. }else if(saved_printing_type == PRINTING_TYPE_USB){
  640. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  641. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  642. }
  643. }
  644. #endif //TMC2130
  645. void failstats_reset_print()
  646. {
  647. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  648. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  649. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  650. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  651. }
  652. #ifdef MESH_BED_LEVELING
  653. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  654. #endif
  655. // Factory reset function
  656. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  657. // Level input parameter sets depth of reset
  658. // Quiet parameter masks all waitings for user interact.
  659. int er_progress = 0;
  660. void factory_reset(char level, bool quiet)
  661. {
  662. lcd_clear();
  663. switch (level) {
  664. // Level 0: Language reset
  665. case 0:
  666. WRITE(BEEPER, HIGH);
  667. _delay_ms(100);
  668. WRITE(BEEPER, LOW);
  669. lang_reset();
  670. break;
  671. //Level 1: Reset statistics
  672. case 1:
  673. WRITE(BEEPER, HIGH);
  674. _delay_ms(100);
  675. WRITE(BEEPER, LOW);
  676. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  677. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  678. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  679. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  680. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  681. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  682. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  683. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  684. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  685. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  686. lcd_menu_statistics();
  687. break;
  688. // Level 2: Prepare for shipping
  689. case 2:
  690. //lcd_puts_P(PSTR("Factory RESET"));
  691. //lcd_puts_at_P(1,2,PSTR("Shipping prep"));
  692. // Force language selection at the next boot up.
  693. lang_reset();
  694. // Force the "Follow calibration flow" message at the next boot up.
  695. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  696. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  697. farm_no = 0;
  698. farm_mode = false;
  699. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  700. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  701. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  702. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  703. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  704. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  705. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  706. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  707. #ifdef FILAMENT_SENSOR
  708. fsensor_enable();
  709. fsensor_autoload_set(true);
  710. #endif //FILAMENT_SENSOR
  711. WRITE(BEEPER, HIGH);
  712. _delay_ms(100);
  713. WRITE(BEEPER, LOW);
  714. //_delay_ms(2000);
  715. break;
  716. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  717. case 3:
  718. lcd_puts_P(PSTR("Factory RESET"));
  719. lcd_puts_at_P(1, 2, PSTR("ERASING all data"));
  720. WRITE(BEEPER, HIGH);
  721. _delay_ms(100);
  722. WRITE(BEEPER, LOW);
  723. er_progress = 0;
  724. lcd_puts_at_P(3, 3, PSTR(" "));
  725. lcd_set_cursor(3, 3);
  726. lcd_print(er_progress);
  727. // Erase EEPROM
  728. for (int i = 0; i < 4096; i++) {
  729. eeprom_write_byte((uint8_t*)i, 0xFF);
  730. if (i % 41 == 0) {
  731. er_progress++;
  732. lcd_puts_at_P(3, 3, PSTR(" "));
  733. lcd_set_cursor(3, 3);
  734. lcd_print(er_progress);
  735. lcd_puts_P(PSTR("%"));
  736. }
  737. }
  738. break;
  739. case 4:
  740. bowden_menu();
  741. break;
  742. default:
  743. break;
  744. }
  745. }
  746. FILE _uartout = {0};
  747. int uart_putchar(char c, FILE *stream)
  748. {
  749. MYSERIAL.write(c);
  750. return 0;
  751. }
  752. void lcd_splash()
  753. {
  754. // lcd_puts_at_P(0, 1, PSTR(" Original Prusa "));
  755. // lcd_puts_at_P(0, 2, PSTR(" 3D Printers "));
  756. // lcd_puts_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  757. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  758. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  759. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  760. }
  761. void factory_reset()
  762. {
  763. KEEPALIVE_STATE(PAUSED_FOR_USER);
  764. if (!READ(BTN_ENC))
  765. {
  766. _delay_ms(1000);
  767. if (!READ(BTN_ENC))
  768. {
  769. lcd_clear();
  770. lcd_puts_P(PSTR("Factory RESET"));
  771. SET_OUTPUT(BEEPER);
  772. WRITE(BEEPER, HIGH);
  773. while (!READ(BTN_ENC));
  774. WRITE(BEEPER, LOW);
  775. _delay_ms(2000);
  776. char level = reset_menu();
  777. factory_reset(level, false);
  778. switch (level) {
  779. case 0: _delay_ms(0); break;
  780. case 1: _delay_ms(0); break;
  781. case 2: _delay_ms(0); break;
  782. case 3: _delay_ms(0); break;
  783. }
  784. // _delay_ms(100);
  785. /*
  786. #ifdef MESH_BED_LEVELING
  787. _delay_ms(2000);
  788. if (!READ(BTN_ENC))
  789. {
  790. WRITE(BEEPER, HIGH);
  791. _delay_ms(100);
  792. WRITE(BEEPER, LOW);
  793. _delay_ms(200);
  794. WRITE(BEEPER, HIGH);
  795. _delay_ms(100);
  796. WRITE(BEEPER, LOW);
  797. int _z = 0;
  798. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  799. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  800. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  801. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  802. }
  803. else
  804. {
  805. WRITE(BEEPER, HIGH);
  806. _delay_ms(100);
  807. WRITE(BEEPER, LOW);
  808. }
  809. #endif // mesh */
  810. }
  811. }
  812. else
  813. {
  814. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  815. }
  816. KEEPALIVE_STATE(IN_HANDLER);
  817. }
  818. void show_fw_version_warnings() {
  819. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  820. switch (FW_DEV_VERSION) {
  821. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  822. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  823. case(FW_VERSION_DEVEL):
  824. case(FW_VERSION_DEBUG):
  825. lcd_update_enable(false);
  826. lcd_clear();
  827. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  828. lcd_puts_at_P(0, 0, PSTR("Development build !!"));
  829. #else
  830. lcd_puts_at_P(0, 0, PSTR("Debbugging build !!!"));
  831. #endif
  832. lcd_puts_at_P(0, 1, PSTR("May destroy printer!"));
  833. lcd_puts_at_P(0, 2, PSTR("ver ")); lcd_puts_P(PSTR(FW_VERSION_FULL));
  834. lcd_puts_at_P(0, 3, PSTR(FW_REPOSITORY));
  835. lcd_wait_for_click();
  836. break;
  837. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  838. }
  839. lcd_update_enable(true);
  840. }
  841. uint8_t check_printer_version()
  842. {
  843. uint8_t version_changed = 0;
  844. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  845. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  846. if (printer_type != PRINTER_TYPE) {
  847. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  848. else version_changed |= 0b10;
  849. }
  850. if (motherboard != MOTHERBOARD) {
  851. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  852. else version_changed |= 0b01;
  853. }
  854. return version_changed;
  855. }
  856. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  857. {
  858. for (unsigned int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  859. }
  860. #ifdef BOOTAPP
  861. #include "bootapp.h" //bootloader support
  862. #endif //BOOTAPP
  863. #if (LANG_MODE != 0) //secondary language support
  864. #ifdef W25X20CL
  865. // language update from external flash
  866. #define LANGBOOT_BLOCKSIZE 0x1000u
  867. #define LANGBOOT_RAMBUFFER 0x0800
  868. void update_sec_lang_from_external_flash()
  869. {
  870. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  871. {
  872. uint8_t lang = boot_reserved >> 4;
  873. uint8_t state = boot_reserved & 0xf;
  874. lang_table_header_t header;
  875. uint32_t src_addr;
  876. if (lang_get_header(lang, &header, &src_addr))
  877. {
  878. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  879. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  880. delay(100);
  881. boot_reserved = (state + 1) | (lang << 4);
  882. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  883. {
  884. cli();
  885. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  886. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  887. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  888. if (state == 0)
  889. {
  890. //TODO - check header integrity
  891. }
  892. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  893. }
  894. else
  895. {
  896. //TODO - check sec lang data integrity
  897. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  898. }
  899. }
  900. }
  901. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  902. }
  903. #ifdef DEBUG_W25X20CL
  904. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  905. {
  906. lang_table_header_t header;
  907. uint8_t count = 0;
  908. uint32_t addr = 0x00000;
  909. while (1)
  910. {
  911. printf_P(_n("LANGTABLE%d:"), count);
  912. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  913. if (header.magic != LANG_MAGIC)
  914. {
  915. printf_P(_n("NG!\n"));
  916. break;
  917. }
  918. printf_P(_n("OK\n"));
  919. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  920. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  921. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  922. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  923. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  924. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  925. addr += header.size;
  926. codes[count] = header.code;
  927. count ++;
  928. }
  929. return count;
  930. }
  931. void list_sec_lang_from_external_flash()
  932. {
  933. uint16_t codes[8];
  934. uint8_t count = lang_xflash_enum_codes(codes);
  935. printf_P(_n("XFlash lang count = %hhd\n"), count);
  936. }
  937. #endif //DEBUG_W25X20CL
  938. #endif //W25X20CL
  939. #endif //(LANG_MODE != 0)
  940. // "Setup" function is called by the Arduino framework on startup.
  941. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  942. // are initialized by the main() routine provided by the Arduino framework.
  943. void setup()
  944. {
  945. ultralcd_init();
  946. spi_init();
  947. lcd_splash();
  948. Sound_Init(); // also guarantee "SET_OUTPUT(BEEPER)"
  949. #ifdef W25X20CL
  950. if (!w25x20cl_init())
  951. kill(_i("External SPI flash W25X20CL not responding."));
  952. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  953. optiboot_w25x20cl_enter();
  954. #endif
  955. #if (LANG_MODE != 0) //secondary language support
  956. #ifdef W25X20CL
  957. if (w25x20cl_init())
  958. update_sec_lang_from_external_flash();
  959. #endif //W25X20CL
  960. #endif //(LANG_MODE != 0)
  961. setup_killpin();
  962. setup_powerhold();
  963. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  964. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  965. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  966. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  967. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  968. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  969. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  970. if (farm_mode)
  971. {
  972. no_response = true; //we need confirmation by recieving PRUSA thx
  973. important_status = 8;
  974. prusa_statistics(8);
  975. selectedSerialPort = 1;
  976. #ifdef TMC2130
  977. //increased extruder current (PFW363)
  978. tmc2130_current_h[E_AXIS] = 36;
  979. tmc2130_current_r[E_AXIS] = 36;
  980. #endif //TMC2130
  981. #ifdef FILAMENT_SENSOR
  982. //disabled filament autoload (PFW360)
  983. fsensor_autoload_set(false);
  984. #endif //FILAMENT_SENSOR
  985. }
  986. MYSERIAL.begin(BAUDRATE);
  987. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  988. stdout = uartout;
  989. SERIAL_PROTOCOLLNPGM("start");
  990. SERIAL_ECHO_START;
  991. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  992. uart2_init();
  993. #ifdef DEBUG_SEC_LANG
  994. lang_table_header_t header;
  995. uint32_t src_addr = 0x00000;
  996. if (lang_get_header(1, &header, &src_addr))
  997. {
  998. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  999. #define LT_PRINT_TEST 2
  1000. // flash usage
  1001. // total p.test
  1002. //0 252718 t+c text code
  1003. //1 253142 424 170 254
  1004. //2 253040 322 164 158
  1005. //3 253248 530 135 395
  1006. #if (LT_PRINT_TEST==1) //not optimized printf
  1007. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1008. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1009. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1010. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1011. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1012. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1013. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1014. #elif (LT_PRINT_TEST==2) //optimized printf
  1015. printf_P(
  1016. _n(
  1017. " _src_addr = 0x%08lx\n"
  1018. " _lt_magic = 0x%08lx %S\n"
  1019. " _lt_size = 0x%04x (%d)\n"
  1020. " _lt_count = 0x%04x (%d)\n"
  1021. " _lt_chsum = 0x%04x\n"
  1022. " _lt_code = 0x%04x (%c%c)\n"
  1023. " _lt_resv1 = 0x%08lx\n"
  1024. ),
  1025. src_addr,
  1026. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1027. header.size, header.size,
  1028. header.count, header.count,
  1029. header.checksum,
  1030. header.code, header.code >> 8, header.code & 0xff,
  1031. header.signature
  1032. );
  1033. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1034. MYSERIAL.print(" _src_addr = 0x");
  1035. MYSERIAL.println(src_addr, 16);
  1036. MYSERIAL.print(" _lt_magic = 0x");
  1037. MYSERIAL.print(header.magic, 16);
  1038. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1039. MYSERIAL.print(" _lt_size = 0x");
  1040. MYSERIAL.print(header.size, 16);
  1041. MYSERIAL.print(" (");
  1042. MYSERIAL.print(header.size, 10);
  1043. MYSERIAL.println(")");
  1044. MYSERIAL.print(" _lt_count = 0x");
  1045. MYSERIAL.print(header.count, 16);
  1046. MYSERIAL.print(" (");
  1047. MYSERIAL.print(header.count, 10);
  1048. MYSERIAL.println(")");
  1049. MYSERIAL.print(" _lt_chsum = 0x");
  1050. MYSERIAL.println(header.checksum, 16);
  1051. MYSERIAL.print(" _lt_code = 0x");
  1052. MYSERIAL.print(header.code, 16);
  1053. MYSERIAL.print(" (");
  1054. MYSERIAL.print((char)(header.code >> 8), 0);
  1055. MYSERIAL.print((char)(header.code & 0xff), 0);
  1056. MYSERIAL.println(")");
  1057. MYSERIAL.print(" _lt_resv1 = 0x");
  1058. MYSERIAL.println(header.signature, 16);
  1059. #endif //(LT_PRINT_TEST==)
  1060. #undef LT_PRINT_TEST
  1061. #if 0
  1062. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1063. for (uint16_t i = 0; i < 1024; i++)
  1064. {
  1065. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1066. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1067. if ((i % 16) == 15) putchar('\n');
  1068. }
  1069. #endif
  1070. uint16_t sum = 0;
  1071. for (uint16_t i = 0; i < header.size; i++)
  1072. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1073. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1074. sum -= header.checksum; //subtract checksum
  1075. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1076. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1077. if (sum == header.checksum)
  1078. printf_P(_n("Checksum OK\n"), sum);
  1079. else
  1080. printf_P(_n("Checksum NG\n"), sum);
  1081. }
  1082. else
  1083. printf_P(_n("lang_get_header failed!\n"));
  1084. #if 0
  1085. for (uint16_t i = 0; i < 1024*10; i++)
  1086. {
  1087. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1088. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1089. if ((i % 16) == 15) putchar('\n');
  1090. }
  1091. #endif
  1092. #if 0
  1093. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1094. for (int i = 0; i < 4096; ++i) {
  1095. int b = eeprom_read_byte((unsigned char*)i);
  1096. if (b != 255) {
  1097. SERIAL_ECHO(i);
  1098. SERIAL_ECHO(":");
  1099. SERIAL_ECHO(b);
  1100. SERIAL_ECHOLN("");
  1101. }
  1102. }
  1103. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1104. #endif
  1105. #endif //DEBUG_SEC_LANG
  1106. // Check startup - does nothing if bootloader sets MCUSR to 0
  1107. byte mcu = MCUSR;
  1108. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1109. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1110. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1111. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1112. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1113. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1114. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1115. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1116. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1117. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1118. MCUSR = 0;
  1119. //SERIAL_ECHORPGM(MSG_MARLIN);
  1120. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1121. #ifdef STRING_VERSION_CONFIG_H
  1122. #ifdef STRING_CONFIG_H_AUTHOR
  1123. SERIAL_ECHO_START;
  1124. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1125. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1126. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1127. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1128. SERIAL_ECHOPGM("Compiled: ");
  1129. SERIAL_ECHOLNPGM(__DATE__);
  1130. #endif
  1131. #endif
  1132. SERIAL_ECHO_START;
  1133. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1134. SERIAL_ECHO(freeMemory());
  1135. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1136. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1137. //lcd_update_enable(false); // why do we need this?? - andre
  1138. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1139. bool previous_settings_retrieved = false;
  1140. uint8_t hw_changed = check_printer_version();
  1141. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1142. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1143. }
  1144. else { //printer version was changed so use default settings
  1145. Config_ResetDefault();
  1146. }
  1147. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1148. tp_init(); // Initialize temperature loop
  1149. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1150. plan_init(); // Initialize planner;
  1151. factory_reset();
  1152. #ifdef TMC2130
  1153. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1154. if (silentMode == 0xff) silentMode = 0;
  1155. tmc2130_mode = TMC2130_MODE_NORMAL;
  1156. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1157. if (crashdet && !farm_mode)
  1158. {
  1159. crashdet_enable();
  1160. puts_P(_N("CrashDetect ENABLED!"));
  1161. }
  1162. else
  1163. {
  1164. crashdet_disable();
  1165. puts_P(_N("CrashDetect DISABLED"));
  1166. }
  1167. #ifdef TMC2130_LINEARITY_CORRECTION
  1168. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1169. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1170. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1171. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1172. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1173. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1174. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1175. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1176. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1177. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1178. #endif //TMC2130_LINEARITY_CORRECTION
  1179. #ifdef TMC2130_VARIABLE_RESOLUTION
  1180. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1181. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1182. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1183. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1184. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1185. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1186. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1187. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1188. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1189. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1190. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1191. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1192. #else //TMC2130_VARIABLE_RESOLUTION
  1193. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1194. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1195. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1196. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1197. #endif //TMC2130_VARIABLE_RESOLUTION
  1198. #endif //TMC2130
  1199. st_init(); // Initialize stepper, this enables interrupts!
  1200. #ifdef TMC2130
  1201. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1202. update_mode_profile();
  1203. tmc2130_init();
  1204. #endif //TMC2130
  1205. setup_photpin();
  1206. servo_init();
  1207. // Reset the machine correction matrix.
  1208. // It does not make sense to load the correction matrix until the machine is homed.
  1209. world2machine_reset();
  1210. #ifdef FILAMENT_SENSOR
  1211. fsensor_init();
  1212. #endif //FILAMENT_SENSOR
  1213. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1214. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1215. #endif
  1216. setup_homepin();
  1217. #ifdef TMC2130
  1218. if (1) {
  1219. // try to run to zero phase before powering the Z motor.
  1220. // Move in negative direction
  1221. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1222. // Round the current micro-micro steps to micro steps.
  1223. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1224. // Until the phase counter is reset to zero.
  1225. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1226. delay(2);
  1227. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1228. delay(2);
  1229. }
  1230. }
  1231. #endif //TMC2130
  1232. #if defined(Z_AXIS_ALWAYS_ON)
  1233. enable_z();
  1234. #endif
  1235. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1236. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1237. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == static_cast<int>(0xFFFF))) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1238. if (farm_no == static_cast<int>(0xFFFF)) farm_no = 0;
  1239. if (farm_mode)
  1240. {
  1241. prusa_statistics(8);
  1242. }
  1243. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1244. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1245. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1246. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1247. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1248. // where all the EEPROM entries are set to 0x0ff.
  1249. // Once a firmware boots up, it forces at least a language selection, which changes
  1250. // EEPROM_LANG to number lower than 0x0ff.
  1251. // 1) Set a high power mode.
  1252. #ifdef TMC2130
  1253. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1254. tmc2130_mode = TMC2130_MODE_NORMAL;
  1255. #endif //TMC2130
  1256. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1257. }
  1258. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1259. // but this times out if a blocking dialog is shown in setup().
  1260. card.initsd();
  1261. #ifdef DEBUG_SD_SPEED_TEST
  1262. if (card.cardOK)
  1263. {
  1264. uint8_t* buff = (uint8_t*)block_buffer;
  1265. uint32_t block = 0;
  1266. uint32_t sumr = 0;
  1267. uint32_t sumw = 0;
  1268. for (int i = 0; i < 1024; i++)
  1269. {
  1270. uint32_t u = micros();
  1271. bool res = card.card.readBlock(i, buff);
  1272. u = micros() - u;
  1273. if (res)
  1274. {
  1275. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1276. sumr += u;
  1277. u = micros();
  1278. res = card.card.writeBlock(i, buff);
  1279. u = micros() - u;
  1280. if (res)
  1281. {
  1282. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1283. sumw += u;
  1284. }
  1285. else
  1286. {
  1287. printf_P(PSTR("writeBlock %4d error\n"), i);
  1288. break;
  1289. }
  1290. }
  1291. else
  1292. {
  1293. printf_P(PSTR("readBlock %4d error\n"), i);
  1294. break;
  1295. }
  1296. }
  1297. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1298. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1299. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1300. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1301. }
  1302. else
  1303. printf_P(PSTR("Card NG!\n"));
  1304. #endif //DEBUG_SD_SPEED_TEST
  1305. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1306. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1307. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1308. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1309. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1310. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1311. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1312. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1313. #ifdef SNMM
  1314. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1315. int _z = BOWDEN_LENGTH;
  1316. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1317. }
  1318. #endif
  1319. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1320. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1321. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1322. #if (LANG_MODE != 0) //secondary language support
  1323. #ifdef DEBUG_W25X20CL
  1324. W25X20CL_SPI_ENTER();
  1325. uint8_t uid[8]; // 64bit unique id
  1326. w25x20cl_rd_uid(uid);
  1327. puts_P(_n("W25X20CL UID="));
  1328. for (uint8_t i = 0; i < 8; i ++)
  1329. printf_P(PSTR("%02hhx"), uid[i]);
  1330. putchar('\n');
  1331. list_sec_lang_from_external_flash();
  1332. #endif //DEBUG_W25X20CL
  1333. // lang_reset();
  1334. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1335. lcd_language();
  1336. #ifdef DEBUG_SEC_LANG
  1337. uint16_t sec_lang_code = lang_get_code(1);
  1338. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1339. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1340. // lang_print_sec_lang(uartout);
  1341. #endif //DEBUG_SEC_LANG
  1342. #endif //(LANG_MODE != 0)
  1343. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1344. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1345. temp_cal_active = false;
  1346. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1347. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1348. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1349. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1350. int16_t z_shift = 0;
  1351. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1352. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1353. temp_cal_active = false;
  1354. }
  1355. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1356. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1357. }
  1358. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1359. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1360. }
  1361. check_babystep(); //checking if Z babystep is in allowed range
  1362. #ifdef UVLO_SUPPORT
  1363. setup_uvlo_interrupt();
  1364. #endif //UVLO_SUPPORT
  1365. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1366. setup_fan_interrupt();
  1367. #endif //DEBUG_DISABLE_FANCHECK
  1368. #ifdef FILAMENT_SENSOR
  1369. fsensor_setup_interrupt();
  1370. #endif //FILAMENT_SENSOR
  1371. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1372. #ifndef DEBUG_DISABLE_STARTMSGS
  1373. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1374. show_fw_version_warnings();
  1375. switch (hw_changed) {
  1376. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1377. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1378. case(0b01):
  1379. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1380. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1381. break;
  1382. case(0b10):
  1383. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1384. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1385. break;
  1386. case(0b11):
  1387. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1388. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1389. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1390. break;
  1391. default: break; //no change, show no message
  1392. }
  1393. if (!previous_settings_retrieved) {
  1394. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1395. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1396. }
  1397. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1398. lcd_wizard(0);
  1399. }
  1400. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1401. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1402. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1403. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1404. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1405. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1406. // Show the message.
  1407. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1408. }
  1409. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1410. // Show the message.
  1411. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1412. lcd_update_enable(true);
  1413. }
  1414. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1415. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1416. lcd_update_enable(true);
  1417. }
  1418. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1419. // Show the message.
  1420. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1421. }
  1422. }
  1423. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1424. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1425. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1426. update_current_firmware_version_to_eeprom();
  1427. lcd_selftest();
  1428. }
  1429. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1430. KEEPALIVE_STATE(IN_PROCESS);
  1431. #endif //DEBUG_DISABLE_STARTMSGS
  1432. lcd_update_enable(true);
  1433. lcd_clear();
  1434. lcd_update(2);
  1435. // Store the currently running firmware into an eeprom,
  1436. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1437. update_current_firmware_version_to_eeprom();
  1438. #ifdef TMC2130
  1439. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1440. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1441. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1442. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1443. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1444. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1445. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1446. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1447. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1448. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1449. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1450. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1451. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1452. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1453. #endif //TMC2130
  1454. #ifdef UVLO_SUPPORT
  1455. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) != 0) { //previous print was terminated by UVLO
  1456. /*
  1457. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1458. else {
  1459. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1460. lcd_update_enable(true);
  1461. lcd_update(2);
  1462. lcd_setstatuspgm(_T(WELCOME_MSG));
  1463. }
  1464. */
  1465. manage_heater(); // Update temperatures
  1466. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1467. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1468. #endif
  1469. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1470. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1471. puts_P(_N("Automatic recovery!"));
  1472. #endif
  1473. recover_print(1);
  1474. }
  1475. else{
  1476. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1477. puts_P(_N("Normal recovery!"));
  1478. #endif
  1479. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1480. else {
  1481. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1482. lcd_update_enable(true);
  1483. lcd_update(2);
  1484. lcd_setstatuspgm(_T(WELCOME_MSG));
  1485. }
  1486. }
  1487. }
  1488. #endif //UVLO_SUPPORT
  1489. KEEPALIVE_STATE(NOT_BUSY);
  1490. #ifdef WATCHDOG
  1491. wdt_enable(WDTO_4S);
  1492. #endif //WATCHDOG
  1493. }
  1494. void trace();
  1495. #define CHUNK_SIZE 64 // bytes
  1496. #define SAFETY_MARGIN 1
  1497. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1498. int chunkHead = 0;
  1499. void serial_read_stream() {
  1500. setAllTargetHotends(0);
  1501. setTargetBed(0);
  1502. lcd_clear();
  1503. lcd_puts_P(PSTR(" Upload in progress"));
  1504. // first wait for how many bytes we will receive
  1505. uint32_t bytesToReceive;
  1506. // receive the four bytes
  1507. char bytesToReceiveBuffer[4];
  1508. for (int i=0; i<4; i++) {
  1509. int data;
  1510. while ((data = MYSERIAL.read()) == -1) {};
  1511. bytesToReceiveBuffer[i] = data;
  1512. }
  1513. // make it a uint32
  1514. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1515. // we're ready, notify the sender
  1516. MYSERIAL.write('+');
  1517. // lock in the routine
  1518. uint32_t receivedBytes = 0;
  1519. while (prusa_sd_card_upload) {
  1520. int i;
  1521. for (i=0; i<CHUNK_SIZE; i++) {
  1522. int data;
  1523. // check if we're not done
  1524. if (receivedBytes == bytesToReceive) {
  1525. break;
  1526. }
  1527. // read the next byte
  1528. while ((data = MYSERIAL.read()) == -1) {};
  1529. receivedBytes++;
  1530. // save it to the chunk
  1531. chunk[i] = data;
  1532. }
  1533. // write the chunk to SD
  1534. card.write_command_no_newline(&chunk[0]);
  1535. // notify the sender we're ready for more data
  1536. MYSERIAL.write('+');
  1537. // for safety
  1538. manage_heater();
  1539. // check if we're done
  1540. if(receivedBytes == bytesToReceive) {
  1541. trace(); // beep
  1542. card.closefile();
  1543. prusa_sd_card_upload = false;
  1544. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1545. }
  1546. }
  1547. }
  1548. #ifdef HOST_KEEPALIVE_FEATURE
  1549. /**
  1550. * Output a "busy" message at regular intervals
  1551. * while the machine is not accepting commands.
  1552. */
  1553. void host_keepalive() {
  1554. if (farm_mode) return;
  1555. long ms = millis();
  1556. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1557. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1558. switch (busy_state) {
  1559. case IN_HANDLER:
  1560. case IN_PROCESS:
  1561. SERIAL_ECHO_START;
  1562. SERIAL_ECHOLNPGM("busy: processing");
  1563. break;
  1564. case PAUSED_FOR_USER:
  1565. SERIAL_ECHO_START;
  1566. SERIAL_ECHOLNPGM("busy: paused for user");
  1567. break;
  1568. case PAUSED_FOR_INPUT:
  1569. SERIAL_ECHO_START;
  1570. SERIAL_ECHOLNPGM("busy: paused for input");
  1571. break;
  1572. default:
  1573. break;
  1574. }
  1575. }
  1576. prev_busy_signal_ms = ms;
  1577. }
  1578. #endif
  1579. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1580. // Before loop(), the setup() function is called by the main() routine.
  1581. void loop()
  1582. {
  1583. KEEPALIVE_STATE(NOT_BUSY);
  1584. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1585. {
  1586. is_usb_printing = true;
  1587. usb_printing_counter--;
  1588. _usb_timer = millis();
  1589. }
  1590. if (usb_printing_counter == 0)
  1591. {
  1592. is_usb_printing = false;
  1593. }
  1594. if (prusa_sd_card_upload)
  1595. {
  1596. //we read byte-by byte
  1597. serial_read_stream();
  1598. } else
  1599. {
  1600. get_command();
  1601. #ifdef SDSUPPORT
  1602. card.checkautostart(false);
  1603. #endif
  1604. if(buflen)
  1605. {
  1606. cmdbuffer_front_already_processed = false;
  1607. #ifdef SDSUPPORT
  1608. if(card.saving)
  1609. {
  1610. // Saving a G-code file onto an SD-card is in progress.
  1611. // Saving starts with M28, saving until M29 is seen.
  1612. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1613. card.write_command(CMDBUFFER_CURRENT_STRING);
  1614. if(card.logging)
  1615. process_commands();
  1616. else
  1617. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1618. } else {
  1619. card.closefile();
  1620. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1621. }
  1622. } else {
  1623. process_commands();
  1624. }
  1625. #else
  1626. process_commands();
  1627. #endif //SDSUPPORT
  1628. if (! cmdbuffer_front_already_processed && buflen)
  1629. {
  1630. // ptr points to the start of the block currently being processed.
  1631. // The first character in the block is the block type.
  1632. char *ptr = cmdbuffer + bufindr;
  1633. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1634. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1635. union {
  1636. struct {
  1637. char lo;
  1638. char hi;
  1639. } lohi;
  1640. uint16_t value;
  1641. } sdlen;
  1642. sdlen.value = 0;
  1643. {
  1644. // This block locks the interrupts globally for 3.25 us,
  1645. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1646. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1647. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1648. cli();
  1649. // Reset the command to something, which will be ignored by the power panic routine,
  1650. // so this buffer length will not be counted twice.
  1651. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1652. // Extract the current buffer length.
  1653. sdlen.lohi.lo = *ptr ++;
  1654. sdlen.lohi.hi = *ptr;
  1655. // and pass it to the planner queue.
  1656. planner_add_sd_length(sdlen.value);
  1657. sei();
  1658. }
  1659. }
  1660. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1661. cli();
  1662. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1663. // and one for each command to previous block in the planner queue.
  1664. planner_add_sd_length(1);
  1665. sei();
  1666. }
  1667. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1668. // this block's SD card length will not be counted twice as its command type has been replaced
  1669. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1670. cmdqueue_pop_front();
  1671. }
  1672. host_keepalive();
  1673. }
  1674. }
  1675. //check heater every n milliseconds
  1676. manage_heater();
  1677. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1678. checkHitEndstops();
  1679. lcd_update(0);
  1680. #ifdef FILAMENT_SENSOR
  1681. fsensor_update();
  1682. #endif //FILAMENT_SENSOR
  1683. #ifdef TMC2130
  1684. tmc2130_check_overtemp();
  1685. if (tmc2130_sg_crash)
  1686. {
  1687. uint8_t crash = tmc2130_sg_crash;
  1688. tmc2130_sg_crash = 0;
  1689. // crashdet_stop_and_save_print();
  1690. switch (crash)
  1691. {
  1692. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1693. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1694. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1695. }
  1696. }
  1697. #endif //TMC2130
  1698. }
  1699. #define DEFINE_PGM_READ_ANY(type, reader) \
  1700. static inline type pgm_read_any(const type *p) \
  1701. { return pgm_read_##reader##_near(p); }
  1702. DEFINE_PGM_READ_ANY(float, float);
  1703. DEFINE_PGM_READ_ANY(signed char, byte);
  1704. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1705. static const PROGMEM type array##_P[3] = \
  1706. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1707. static inline type array(int axis) \
  1708. { return pgm_read_any(&array##_P[axis]); } \
  1709. type array##_ext(int axis) \
  1710. { return pgm_read_any(&array##_P[axis]); }
  1711. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1712. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1713. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1714. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1715. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1716. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1717. static void axis_is_at_home(int axis) {
  1718. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1719. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1720. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1721. }
  1722. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1723. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1724. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1725. saved_feedrate = feedrate;
  1726. saved_feedmultiply = feedmultiply;
  1727. feedmultiply = 100;
  1728. previous_millis_cmd = millis();
  1729. enable_endstops(enable_endstops_now);
  1730. }
  1731. static void clean_up_after_endstop_move() {
  1732. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1733. enable_endstops(false);
  1734. #endif
  1735. feedrate = saved_feedrate;
  1736. feedmultiply = saved_feedmultiply;
  1737. previous_millis_cmd = millis();
  1738. }
  1739. #ifdef ENABLE_AUTO_BED_LEVELING
  1740. #ifdef AUTO_BED_LEVELING_GRID
  1741. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1742. {
  1743. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1744. planeNormal.debug("planeNormal");
  1745. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1746. //bedLevel.debug("bedLevel");
  1747. //plan_bed_level_matrix.debug("bed level before");
  1748. //vector_3 uncorrected_position = plan_get_position_mm();
  1749. //uncorrected_position.debug("position before");
  1750. vector_3 corrected_position = plan_get_position();
  1751. // corrected_position.debug("position after");
  1752. current_position[X_AXIS] = corrected_position.x;
  1753. current_position[Y_AXIS] = corrected_position.y;
  1754. current_position[Z_AXIS] = corrected_position.z;
  1755. // put the bed at 0 so we don't go below it.
  1756. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1757. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1758. }
  1759. #else // not AUTO_BED_LEVELING_GRID
  1760. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1761. plan_bed_level_matrix.set_to_identity();
  1762. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1763. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1764. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1765. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1766. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1767. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1768. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1769. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1770. vector_3 corrected_position = plan_get_position();
  1771. current_position[X_AXIS] = corrected_position.x;
  1772. current_position[Y_AXIS] = corrected_position.y;
  1773. current_position[Z_AXIS] = corrected_position.z;
  1774. // put the bed at 0 so we don't go below it.
  1775. current_position[Z_AXIS] = zprobe_zoffset;
  1776. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1777. }
  1778. #endif // AUTO_BED_LEVELING_GRID
  1779. static void run_z_probe() {
  1780. plan_bed_level_matrix.set_to_identity();
  1781. feedrate = homing_feedrate[Z_AXIS];
  1782. // move down until you find the bed
  1783. float zPosition = -10;
  1784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1785. st_synchronize();
  1786. // we have to let the planner know where we are right now as it is not where we said to go.
  1787. zPosition = st_get_position_mm(Z_AXIS);
  1788. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1789. // move up the retract distance
  1790. zPosition += home_retract_mm(Z_AXIS);
  1791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1792. st_synchronize();
  1793. // move back down slowly to find bed
  1794. feedrate = homing_feedrate[Z_AXIS]/4;
  1795. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1797. st_synchronize();
  1798. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1799. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1800. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1801. }
  1802. static void do_blocking_move_to(float x, float y, float z) {
  1803. float oldFeedRate = feedrate;
  1804. feedrate = homing_feedrate[Z_AXIS];
  1805. current_position[Z_AXIS] = z;
  1806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1807. st_synchronize();
  1808. feedrate = XY_TRAVEL_SPEED;
  1809. current_position[X_AXIS] = x;
  1810. current_position[Y_AXIS] = y;
  1811. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1812. st_synchronize();
  1813. feedrate = oldFeedRate;
  1814. }
  1815. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1816. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1817. }
  1818. /// Probe bed height at position (x,y), returns the measured z value
  1819. static float probe_pt(float x, float y, float z_before) {
  1820. // move to right place
  1821. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1822. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1823. run_z_probe();
  1824. float measured_z = current_position[Z_AXIS];
  1825. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1826. SERIAL_PROTOCOLPGM(" x: ");
  1827. SERIAL_PROTOCOL(x);
  1828. SERIAL_PROTOCOLPGM(" y: ");
  1829. SERIAL_PROTOCOL(y);
  1830. SERIAL_PROTOCOLPGM(" z: ");
  1831. SERIAL_PROTOCOL(measured_z);
  1832. SERIAL_PROTOCOLPGM("\n");
  1833. return measured_z;
  1834. }
  1835. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1836. #ifdef LIN_ADVANCE
  1837. /**
  1838. * M900: Set and/or Get advance K factor and WH/D ratio
  1839. *
  1840. * K<factor> Set advance K factor
  1841. * R<ratio> Set ratio directly (overrides WH/D)
  1842. * W<width> H<height> D<diam> Set ratio from WH/D
  1843. */
  1844. inline void gcode_M900() {
  1845. st_synchronize();
  1846. const float newK = code_seen('K') ? code_value_float() : -1;
  1847. if (newK >= 0) extruder_advance_k = newK;
  1848. float newR = code_seen('R') ? code_value_float() : -1;
  1849. if (newR < 0) {
  1850. const float newD = code_seen('D') ? code_value_float() : -1,
  1851. newW = code_seen('W') ? code_value_float() : -1,
  1852. newH = code_seen('H') ? code_value_float() : -1;
  1853. if (newD >= 0 && newW >= 0 && newH >= 0)
  1854. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1855. }
  1856. if (newR >= 0) advance_ed_ratio = newR;
  1857. SERIAL_ECHO_START;
  1858. SERIAL_ECHOPGM("Advance K=");
  1859. SERIAL_ECHOLN(extruder_advance_k);
  1860. SERIAL_ECHOPGM(" E/D=");
  1861. const float ratio = advance_ed_ratio;
  1862. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1863. }
  1864. #endif // LIN_ADVANCE
  1865. bool check_commands() {
  1866. bool end_command_found = false;
  1867. while (buflen)
  1868. {
  1869. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1870. if (!cmdbuffer_front_already_processed)
  1871. cmdqueue_pop_front();
  1872. cmdbuffer_front_already_processed = false;
  1873. }
  1874. return end_command_found;
  1875. }
  1876. #ifdef TMC2130
  1877. bool calibrate_z_auto()
  1878. {
  1879. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1880. lcd_clear();
  1881. lcd_puts_at_P(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1882. bool endstops_enabled = enable_endstops(true);
  1883. int axis_up_dir = -home_dir(Z_AXIS);
  1884. tmc2130_home_enter(Z_AXIS_MASK);
  1885. current_position[Z_AXIS] = 0;
  1886. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1887. set_destination_to_current();
  1888. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1889. feedrate = homing_feedrate[Z_AXIS];
  1890. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1891. st_synchronize();
  1892. // current_position[axis] = 0;
  1893. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1894. tmc2130_home_exit();
  1895. enable_endstops(false);
  1896. current_position[Z_AXIS] = 0;
  1897. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1898. set_destination_to_current();
  1899. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1900. feedrate = homing_feedrate[Z_AXIS] / 2;
  1901. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1902. st_synchronize();
  1903. enable_endstops(endstops_enabled);
  1904. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1905. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1906. return true;
  1907. }
  1908. #endif //TMC2130
  1909. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1910. {
  1911. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1912. #define HOMEAXIS_DO(LETTER) \
  1913. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1914. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1915. {
  1916. int axis_home_dir = home_dir(axis);
  1917. feedrate = homing_feedrate[axis];
  1918. #ifdef TMC2130
  1919. tmc2130_home_enter(X_AXIS_MASK << axis);
  1920. #endif //TMC2130
  1921. // Move right a bit, so that the print head does not touch the left end position,
  1922. // and the following left movement has a chance to achieve the required velocity
  1923. // for the stall guard to work.
  1924. current_position[axis] = 0;
  1925. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1926. set_destination_to_current();
  1927. // destination[axis] = 11.f;
  1928. destination[axis] = 3.f;
  1929. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1930. st_synchronize();
  1931. // Move left away from the possible collision with the collision detection disabled.
  1932. endstops_hit_on_purpose();
  1933. enable_endstops(false);
  1934. current_position[axis] = 0;
  1935. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1936. destination[axis] = - 1.;
  1937. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1938. st_synchronize();
  1939. // Now continue to move up to the left end stop with the collision detection enabled.
  1940. enable_endstops(true);
  1941. destination[axis] = - 1.1 * max_length(axis);
  1942. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1943. st_synchronize();
  1944. for (uint8_t i = 0; i < cnt; i++)
  1945. {
  1946. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1947. endstops_hit_on_purpose();
  1948. enable_endstops(false);
  1949. current_position[axis] = 0;
  1950. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1951. destination[axis] = 10.f;
  1952. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1953. st_synchronize();
  1954. endstops_hit_on_purpose();
  1955. // Now move left up to the collision, this time with a repeatable velocity.
  1956. enable_endstops(true);
  1957. destination[axis] = - 11.f;
  1958. #ifdef TMC2130
  1959. feedrate = homing_feedrate[axis];
  1960. #else //TMC2130
  1961. feedrate = homing_feedrate[axis] / 2;
  1962. #endif //TMC2130
  1963. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1964. st_synchronize();
  1965. #ifdef TMC2130
  1966. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  1967. if (pstep) pstep[i] = mscnt >> 4;
  1968. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  1969. #endif //TMC2130
  1970. }
  1971. endstops_hit_on_purpose();
  1972. enable_endstops(false);
  1973. #ifdef TMC2130
  1974. uint8_t orig = tmc2130_home_origin[axis];
  1975. uint8_t back = tmc2130_home_bsteps[axis];
  1976. if (tmc2130_home_enabled && (orig <= 63))
  1977. {
  1978. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  1979. if (back > 0)
  1980. tmc2130_do_steps(axis, back, 1, 1000);
  1981. }
  1982. else
  1983. tmc2130_do_steps(axis, 8, 2, 1000);
  1984. tmc2130_home_exit();
  1985. #endif //TMC2130
  1986. axis_is_at_home(axis);
  1987. axis_known_position[axis] = true;
  1988. // Move from minimum
  1989. #ifdef TMC2130
  1990. float dist = 0.01f * tmc2130_home_fsteps[axis];
  1991. #else //TMC2130
  1992. float dist = 0.01f * 64;
  1993. #endif //TMC2130
  1994. current_position[axis] -= dist;
  1995. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1996. current_position[axis] += dist;
  1997. destination[axis] = current_position[axis];
  1998. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  1999. st_synchronize();
  2000. feedrate = 0.0;
  2001. }
  2002. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2003. {
  2004. #ifdef TMC2130
  2005. FORCE_HIGH_POWER_START;
  2006. #endif
  2007. int axis_home_dir = home_dir(axis);
  2008. current_position[axis] = 0;
  2009. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2010. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2011. feedrate = homing_feedrate[axis];
  2012. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2013. st_synchronize();
  2014. #ifdef TMC2130
  2015. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2016. FORCE_HIGH_POWER_END;
  2017. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2018. return;
  2019. }
  2020. #endif //TMC2130
  2021. current_position[axis] = 0;
  2022. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2023. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2024. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2025. st_synchronize();
  2026. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2027. feedrate = homing_feedrate[axis]/2 ;
  2028. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2029. st_synchronize();
  2030. #ifdef TMC2130
  2031. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2032. FORCE_HIGH_POWER_END;
  2033. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2034. return;
  2035. }
  2036. #endif //TMC2130
  2037. axis_is_at_home(axis);
  2038. destination[axis] = current_position[axis];
  2039. feedrate = 0.0;
  2040. endstops_hit_on_purpose();
  2041. axis_known_position[axis] = true;
  2042. #ifdef TMC2130
  2043. FORCE_HIGH_POWER_END;
  2044. #endif
  2045. }
  2046. enable_endstops(endstops_enabled);
  2047. }
  2048. /**/
  2049. void home_xy()
  2050. {
  2051. set_destination_to_current();
  2052. homeaxis(X_AXIS);
  2053. homeaxis(Y_AXIS);
  2054. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2055. endstops_hit_on_purpose();
  2056. }
  2057. void refresh_cmd_timeout(void)
  2058. {
  2059. previous_millis_cmd = millis();
  2060. }
  2061. #ifdef FWRETRACT
  2062. void retract(bool retracting, bool swapretract = false) {
  2063. if(retracting && !retracted[active_extruder]) {
  2064. destination[X_AXIS]=current_position[X_AXIS];
  2065. destination[Y_AXIS]=current_position[Y_AXIS];
  2066. destination[Z_AXIS]=current_position[Z_AXIS];
  2067. destination[E_AXIS]=current_position[E_AXIS];
  2068. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2069. plan_set_e_position(current_position[E_AXIS]);
  2070. float oldFeedrate = feedrate;
  2071. feedrate=retract_feedrate*60;
  2072. retracted[active_extruder]=true;
  2073. prepare_move();
  2074. current_position[Z_AXIS]-=retract_zlift;
  2075. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2076. prepare_move();
  2077. feedrate = oldFeedrate;
  2078. } else if(!retracting && retracted[active_extruder]) {
  2079. destination[X_AXIS]=current_position[X_AXIS];
  2080. destination[Y_AXIS]=current_position[Y_AXIS];
  2081. destination[Z_AXIS]=current_position[Z_AXIS];
  2082. destination[E_AXIS]=current_position[E_AXIS];
  2083. current_position[Z_AXIS]+=retract_zlift;
  2084. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2085. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2086. plan_set_e_position(current_position[E_AXIS]);
  2087. float oldFeedrate = feedrate;
  2088. feedrate=retract_recover_feedrate*60;
  2089. retracted[active_extruder]=false;
  2090. prepare_move();
  2091. feedrate = oldFeedrate;
  2092. }
  2093. } //retract
  2094. #endif //FWRETRACT
  2095. void trace() {
  2096. tone(BEEPER, 440);
  2097. delay(25);
  2098. noTone(BEEPER);
  2099. delay(20);
  2100. }
  2101. /*
  2102. void ramming() {
  2103. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2104. if (current_temperature[0] < 230) {
  2105. //PLA
  2106. max_feedrate[E_AXIS] = 50;
  2107. //current_position[E_AXIS] -= 8;
  2108. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2109. //current_position[E_AXIS] += 8;
  2110. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2111. current_position[E_AXIS] += 5.4;
  2112. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2113. current_position[E_AXIS] += 3.2;
  2114. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2115. current_position[E_AXIS] += 3;
  2116. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2117. st_synchronize();
  2118. max_feedrate[E_AXIS] = 80;
  2119. current_position[E_AXIS] -= 82;
  2120. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2121. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2122. current_position[E_AXIS] -= 20;
  2123. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2124. current_position[E_AXIS] += 5;
  2125. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2126. current_position[E_AXIS] += 5;
  2127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2128. current_position[E_AXIS] -= 10;
  2129. st_synchronize();
  2130. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2131. current_position[E_AXIS] += 10;
  2132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2133. current_position[E_AXIS] -= 10;
  2134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2135. current_position[E_AXIS] += 10;
  2136. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2137. current_position[E_AXIS] -= 10;
  2138. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2139. st_synchronize();
  2140. }
  2141. else {
  2142. //ABS
  2143. max_feedrate[E_AXIS] = 50;
  2144. //current_position[E_AXIS] -= 8;
  2145. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2146. //current_position[E_AXIS] += 8;
  2147. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2148. current_position[E_AXIS] += 3.1;
  2149. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2150. current_position[E_AXIS] += 3.1;
  2151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2152. current_position[E_AXIS] += 4;
  2153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2154. st_synchronize();
  2155. //current_position[X_AXIS] += 23; //delay
  2156. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2157. //current_position[X_AXIS] -= 23; //delay
  2158. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2159. delay(4700);
  2160. max_feedrate[E_AXIS] = 80;
  2161. current_position[E_AXIS] -= 92;
  2162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2163. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2164. current_position[E_AXIS] -= 5;
  2165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2166. current_position[E_AXIS] += 5;
  2167. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2168. current_position[E_AXIS] -= 5;
  2169. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2170. st_synchronize();
  2171. current_position[E_AXIS] += 5;
  2172. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2173. current_position[E_AXIS] -= 5;
  2174. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2175. current_position[E_AXIS] += 5;
  2176. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2177. current_position[E_AXIS] -= 5;
  2178. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2179. st_synchronize();
  2180. }
  2181. }
  2182. */
  2183. #ifdef TMC2130
  2184. void force_high_power_mode(bool start_high_power_section) {
  2185. uint8_t silent;
  2186. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2187. if (silent == 1) {
  2188. //we are in silent mode, set to normal mode to enable crash detection
  2189. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2190. st_synchronize();
  2191. cli();
  2192. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2193. update_mode_profile();
  2194. tmc2130_init();
  2195. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2196. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2197. st_reset_timer();
  2198. sei();
  2199. }
  2200. }
  2201. #endif //TMC2130
  2202. void gcode_G28(bool home_x_axis, bool home_y_axis, bool home_z_axis) {
  2203. gcode_G28(home_x_axis, 0, home_y_axis, 0, home_z_axis, 0, false, true);
  2204. }
  2205. void gcode_G28(bool home_x_axis, long home_x_value, bool home_y_axis, long home_y_value, bool home_z_axis, long home_z_value, bool calib, bool without_mbl) {
  2206. st_synchronize();
  2207. #if 0
  2208. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2209. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2210. #endif
  2211. // Flag for the display update routine and to disable the print cancelation during homing.
  2212. homing_flag = true;
  2213. // Which axes should be homed?
  2214. bool home_x = home_x_axis;
  2215. bool home_y = home_y_axis;
  2216. bool home_z = home_z_axis;
  2217. // Either all X,Y,Z codes are present, or none of them.
  2218. bool home_all_axes = home_x == home_y && home_x == home_z;
  2219. if (home_all_axes)
  2220. // No X/Y/Z code provided means to home all axes.
  2221. home_x = home_y = home_z = true;
  2222. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2223. if (home_all_axes) {
  2224. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2225. feedrate = homing_feedrate[Z_AXIS];
  2226. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2227. st_synchronize();
  2228. }
  2229. #ifdef ENABLE_AUTO_BED_LEVELING
  2230. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2231. #endif //ENABLE_AUTO_BED_LEVELING
  2232. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2233. // the planner will not perform any adjustments in the XY plane.
  2234. // Wait for the motors to stop and update the current position with the absolute values.
  2235. world2machine_revert_to_uncorrected();
  2236. // For mesh bed leveling deactivate the matrix temporarily.
  2237. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2238. // in a single axis only.
  2239. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2240. #ifdef MESH_BED_LEVELING
  2241. uint8_t mbl_was_active = mbl.active;
  2242. mbl.active = 0;
  2243. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2244. #endif
  2245. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2246. // consumed during the first movements following this statement.
  2247. if (home_z)
  2248. babystep_undo();
  2249. saved_feedrate = feedrate;
  2250. saved_feedmultiply = feedmultiply;
  2251. feedmultiply = 100;
  2252. previous_millis_cmd = millis();
  2253. enable_endstops(true);
  2254. memcpy(destination, current_position, sizeof(destination));
  2255. feedrate = 0.0;
  2256. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2257. if(home_z)
  2258. homeaxis(Z_AXIS);
  2259. #endif
  2260. #ifdef QUICK_HOME
  2261. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2262. if(home_x && home_y) //first diagonal move
  2263. {
  2264. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2265. int x_axis_home_dir = home_dir(X_AXIS);
  2266. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2267. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2268. feedrate = homing_feedrate[X_AXIS];
  2269. if(homing_feedrate[Y_AXIS]<feedrate)
  2270. feedrate = homing_feedrate[Y_AXIS];
  2271. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2272. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2273. } else {
  2274. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2275. }
  2276. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2277. st_synchronize();
  2278. axis_is_at_home(X_AXIS);
  2279. axis_is_at_home(Y_AXIS);
  2280. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2281. destination[X_AXIS] = current_position[X_AXIS];
  2282. destination[Y_AXIS] = current_position[Y_AXIS];
  2283. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2284. feedrate = 0.0;
  2285. st_synchronize();
  2286. endstops_hit_on_purpose();
  2287. current_position[X_AXIS] = destination[X_AXIS];
  2288. current_position[Y_AXIS] = destination[Y_AXIS];
  2289. current_position[Z_AXIS] = destination[Z_AXIS];
  2290. }
  2291. #endif /* QUICK_HOME */
  2292. #ifdef TMC2130
  2293. if(home_x)
  2294. {
  2295. if (!calib)
  2296. homeaxis(X_AXIS);
  2297. else
  2298. tmc2130_home_calibrate(X_AXIS);
  2299. }
  2300. if(home_y)
  2301. {
  2302. if (!calib)
  2303. homeaxis(Y_AXIS);
  2304. else
  2305. tmc2130_home_calibrate(Y_AXIS);
  2306. }
  2307. #endif //TMC2130
  2308. if(home_x_axis && home_x_value != 0)
  2309. current_position[X_AXIS]=home_x_value+add_homing[X_AXIS];
  2310. if(home_y_axis && home_y_value != 0)
  2311. current_position[Y_AXIS]=home_y_value+add_homing[Y_AXIS];
  2312. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2313. #ifndef Z_SAFE_HOMING
  2314. if(home_z) {
  2315. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2316. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2317. feedrate = max_feedrate[Z_AXIS];
  2318. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2319. st_synchronize();
  2320. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2321. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2322. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2323. {
  2324. homeaxis(X_AXIS);
  2325. homeaxis(Y_AXIS);
  2326. }
  2327. // 1st mesh bed leveling measurement point, corrected.
  2328. world2machine_initialize();
  2329. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2330. world2machine_reset();
  2331. if (destination[Y_AXIS] < Y_MIN_POS)
  2332. destination[Y_AXIS] = Y_MIN_POS;
  2333. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2334. feedrate = homing_feedrate[Z_AXIS]/10;
  2335. current_position[Z_AXIS] = 0;
  2336. enable_endstops(false);
  2337. #ifdef DEBUG_BUILD
  2338. SERIAL_ECHOLNPGM("plan_set_position()");
  2339. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2340. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2341. #endif
  2342. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2343. #ifdef DEBUG_BUILD
  2344. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2345. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2346. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2347. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2348. #endif
  2349. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2350. st_synchronize();
  2351. current_position[X_AXIS] = destination[X_AXIS];
  2352. current_position[Y_AXIS] = destination[Y_AXIS];
  2353. enable_endstops(true);
  2354. endstops_hit_on_purpose();
  2355. homeaxis(Z_AXIS);
  2356. #else // MESH_BED_LEVELING
  2357. homeaxis(Z_AXIS);
  2358. #endif // MESH_BED_LEVELING
  2359. }
  2360. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2361. if(home_all_axes) {
  2362. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2363. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2364. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2365. feedrate = XY_TRAVEL_SPEED/60;
  2366. current_position[Z_AXIS] = 0;
  2367. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2368. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2369. st_synchronize();
  2370. current_position[X_AXIS] = destination[X_AXIS];
  2371. current_position[Y_AXIS] = destination[Y_AXIS];
  2372. homeaxis(Z_AXIS);
  2373. }
  2374. // Let's see if X and Y are homed and probe is inside bed area.
  2375. if(home_z) {
  2376. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2377. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2378. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2379. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2380. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2381. current_position[Z_AXIS] = 0;
  2382. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2383. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2384. feedrate = max_feedrate[Z_AXIS];
  2385. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2386. st_synchronize();
  2387. homeaxis(Z_AXIS);
  2388. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2389. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2390. SERIAL_ECHO_START;
  2391. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2392. } else {
  2393. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2394. SERIAL_ECHO_START;
  2395. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2396. }
  2397. }
  2398. #endif // Z_SAFE_HOMING
  2399. #endif // Z_HOME_DIR < 0
  2400. if(home_z_axis && home_z_value != 0)
  2401. current_position[Z_AXIS]=home_z_value+add_homing[Z_AXIS];
  2402. #ifdef ENABLE_AUTO_BED_LEVELING
  2403. if(home_z)
  2404. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2405. #endif
  2406. // Set the planner and stepper routine positions.
  2407. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2408. // contains the machine coordinates.
  2409. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2410. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2411. enable_endstops(false);
  2412. #endif
  2413. feedrate = saved_feedrate;
  2414. feedmultiply = saved_feedmultiply;
  2415. previous_millis_cmd = millis();
  2416. endstops_hit_on_purpose();
  2417. #ifndef MESH_BED_LEVELING
  2418. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2419. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2420. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2421. lcd_adjust_z();
  2422. #endif
  2423. // Load the machine correction matrix
  2424. world2machine_initialize();
  2425. // and correct the current_position XY axes to match the transformed coordinate system.
  2426. world2machine_update_current();
  2427. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2428. if (home_x_axis || home_y_axis || without_mbl || home_z_axis)
  2429. {
  2430. if (! home_z && mbl_was_active) {
  2431. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2432. mbl.active = true;
  2433. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2434. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2435. }
  2436. }
  2437. else
  2438. {
  2439. st_synchronize();
  2440. homing_flag = false;
  2441. }
  2442. #endif
  2443. if (farm_mode) { prusa_statistics(20); };
  2444. homing_flag = false;
  2445. #if 0
  2446. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2447. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2448. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2449. #endif
  2450. }
  2451. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2452. {
  2453. bool final_result = false;
  2454. #ifdef TMC2130
  2455. FORCE_HIGH_POWER_START;
  2456. #endif // TMC2130
  2457. // Only Z calibration?
  2458. if (!onlyZ)
  2459. {
  2460. setTargetBed(0);
  2461. setAllTargetHotends(0);
  2462. adjust_bed_reset(); //reset bed level correction
  2463. }
  2464. // Disable the default update procedure of the display. We will do a modal dialog.
  2465. lcd_update_enable(false);
  2466. // Let the planner use the uncorrected coordinates.
  2467. mbl.reset();
  2468. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2469. // the planner will not perform any adjustments in the XY plane.
  2470. // Wait for the motors to stop and update the current position with the absolute values.
  2471. world2machine_revert_to_uncorrected();
  2472. // Reset the baby step value applied without moving the axes.
  2473. babystep_reset();
  2474. // Mark all axes as in a need for homing.
  2475. memset(axis_known_position, 0, sizeof(axis_known_position));
  2476. // Home in the XY plane.
  2477. //set_destination_to_current();
  2478. setup_for_endstop_move();
  2479. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2480. home_xy();
  2481. enable_endstops(false);
  2482. current_position[X_AXIS] += 5;
  2483. current_position[Y_AXIS] += 5;
  2484. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2485. st_synchronize();
  2486. // Let the user move the Z axes up to the end stoppers.
  2487. #ifdef TMC2130
  2488. if (calibrate_z_auto())
  2489. {
  2490. #else //TMC2130
  2491. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2492. {
  2493. #endif //TMC2130
  2494. refresh_cmd_timeout();
  2495. #ifndef STEEL_SHEET
  2496. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2497. {
  2498. lcd_wait_for_cool_down();
  2499. }
  2500. #endif //STEEL_SHEET
  2501. if(!onlyZ)
  2502. {
  2503. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2504. #ifdef STEEL_SHEET
  2505. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2506. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2507. #endif //STEEL_SHEET
  2508. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2509. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2510. KEEPALIVE_STATE(IN_HANDLER);
  2511. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2512. lcd_set_cursor(0, 2);
  2513. lcd_print(1);
  2514. lcd_puts_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2515. }
  2516. // Move the print head close to the bed.
  2517. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2518. bool endstops_enabled = enable_endstops(true);
  2519. #ifdef TMC2130
  2520. tmc2130_home_enter(Z_AXIS_MASK);
  2521. #endif //TMC2130
  2522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2523. st_synchronize();
  2524. #ifdef TMC2130
  2525. tmc2130_home_exit();
  2526. #endif //TMC2130
  2527. enable_endstops(endstops_enabled);
  2528. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2529. {
  2530. int8_t verbosity_level = 0;
  2531. if (code_seen('V'))
  2532. {
  2533. // Just 'V' without a number counts as V1.
  2534. char c = strchr_pointer[1];
  2535. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2536. }
  2537. if (onlyZ)
  2538. {
  2539. clean_up_after_endstop_move();
  2540. // Z only calibration.
  2541. // Load the machine correction matrix
  2542. world2machine_initialize();
  2543. // and correct the current_position to match the transformed coordinate system.
  2544. world2machine_update_current();
  2545. //FIXME
  2546. bool result = sample_mesh_and_store_reference();
  2547. if (result)
  2548. {
  2549. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2550. // Shipped, the nozzle height has been set already. The user can start printing now.
  2551. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2552. final_result = true;
  2553. // babystep_apply();
  2554. }
  2555. }
  2556. else
  2557. {
  2558. // Reset the baby step value and the baby step applied flag.
  2559. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2560. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2561. // Complete XYZ calibration.
  2562. uint8_t point_too_far_mask = 0;
  2563. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2564. clean_up_after_endstop_move();
  2565. // Print head up.
  2566. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2567. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2568. st_synchronize();
  2569. //#ifndef NEW_XYZCAL
  2570. if (result >= 0)
  2571. {
  2572. #ifdef HEATBED_V2
  2573. sample_z();
  2574. #else //HEATBED_V2
  2575. point_too_far_mask = 0;
  2576. // Second half: The fine adjustment.
  2577. // Let the planner use the uncorrected coordinates.
  2578. mbl.reset();
  2579. world2machine_reset();
  2580. // Home in the XY plane.
  2581. setup_for_endstop_move();
  2582. home_xy();
  2583. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2584. clean_up_after_endstop_move();
  2585. // Print head up.
  2586. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2587. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2588. st_synchronize();
  2589. // if (result >= 0) babystep_apply();
  2590. #endif //HEATBED_V2
  2591. }
  2592. //#endif //NEW_XYZCAL
  2593. lcd_update_enable(true);
  2594. lcd_update(2);
  2595. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2596. if (result >= 0)
  2597. {
  2598. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2599. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2600. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2601. final_result = true;
  2602. }
  2603. }
  2604. #ifdef TMC2130
  2605. tmc2130_home_exit();
  2606. #endif
  2607. }
  2608. else
  2609. {
  2610. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2611. final_result = false;
  2612. }
  2613. }
  2614. else
  2615. {
  2616. // Timeouted.
  2617. }
  2618. lcd_update_enable(true);
  2619. #ifdef TMC2130
  2620. FORCE_HIGH_POWER_END;
  2621. #endif // TMC2130
  2622. return final_result;
  2623. }
  2624. void gcode_M114()
  2625. {
  2626. SERIAL_PROTOCOLPGM("X:");
  2627. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2628. SERIAL_PROTOCOLPGM(" Y:");
  2629. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2630. SERIAL_PROTOCOLPGM(" Z:");
  2631. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2632. SERIAL_PROTOCOLPGM(" E:");
  2633. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2634. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2635. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2636. SERIAL_PROTOCOLPGM(" Y:");
  2637. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2638. SERIAL_PROTOCOLPGM(" Z:");
  2639. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2640. SERIAL_PROTOCOLPGM(" E:");
  2641. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2642. SERIAL_PROTOCOLLN("");
  2643. }
  2644. void gcode_M701()
  2645. {
  2646. printf_P(PSTR("gcode_M701 begin\n"));
  2647. #if defined (SNMM) || defined (SNMM_V2)
  2648. extr_adj(snmm_extruder);//loads current extruder
  2649. #else //defined (SNMM) || defined (SNMM_V2)
  2650. enable_z();
  2651. custom_message = true;
  2652. custom_message_type = 2;
  2653. #ifdef FILAMENT_SENSOR
  2654. fsensor_oq_meassure_start(40);
  2655. #endif //FILAMENT_SENSOR
  2656. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2657. current_position[E_AXIS] += 40;
  2658. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2659. st_synchronize();
  2660. if (current_position[Z_AXIS] < 20) current_position[Z_AXIS] += 30;
  2661. current_position[E_AXIS] += 30;
  2662. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2663. st_synchronize();
  2664. current_position[E_AXIS] += 25;
  2665. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2666. st_synchronize();
  2667. tone(BEEPER, 500);
  2668. delay_keep_alive(50);
  2669. noTone(BEEPER);
  2670. if (!farm_mode && loading_flag) {
  2671. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2672. while (!clean) {
  2673. lcd_update_enable(true);
  2674. lcd_update(2);
  2675. current_position[E_AXIS] += 25;
  2676. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2677. st_synchronize();
  2678. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2679. }
  2680. }
  2681. lcd_update_enable(true);
  2682. lcd_update(2);
  2683. lcd_setstatuspgm(_T(WELCOME_MSG));
  2684. disable_z();
  2685. loading_flag = false;
  2686. custom_message = false;
  2687. custom_message_type = 0;
  2688. #ifdef FILAMENT_SENSOR
  2689. fsensor_oq_meassure_stop();
  2690. if (!fsensor_oq_result())
  2691. {
  2692. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  2693. lcd_update_enable(true);
  2694. lcd_update(2);
  2695. if (disable)
  2696. fsensor_disable();
  2697. }
  2698. #endif //FILAMENT_SENSOR
  2699. #endif //defined (SNMM) || defined (SNMM_V2)
  2700. }
  2701. /**
  2702. * @brief Get serial number from 32U2 processor
  2703. *
  2704. * Typical format of S/N is:CZPX0917X003XC13518
  2705. *
  2706. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2707. *
  2708. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2709. * reply is transmitted to serial port 1 character by character.
  2710. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2711. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2712. * in any case.
  2713. */
  2714. static void gcode_PRUSA_SN()
  2715. {
  2716. if (farm_mode) {
  2717. selectedSerialPort = 0;
  2718. putchar(';');
  2719. putchar('S');
  2720. int numbersRead = 0;
  2721. ShortTimer timeout;
  2722. timeout.start();
  2723. while (numbersRead < 19) {
  2724. while (MSerial.available() > 0) {
  2725. uint8_t serial_char = MSerial.read();
  2726. selectedSerialPort = 1;
  2727. putchar(serial_char);
  2728. numbersRead++;
  2729. selectedSerialPort = 0;
  2730. }
  2731. if (timeout.expired(100u)) break;
  2732. }
  2733. selectedSerialPort = 1;
  2734. putchar('\n');
  2735. #if 0
  2736. for (int b = 0; b < 3; b++) {
  2737. tone(BEEPER, 110);
  2738. delay(50);
  2739. noTone(BEEPER);
  2740. delay(50);
  2741. }
  2742. #endif
  2743. } else {
  2744. puts_P(_N("Not in farm mode."));
  2745. }
  2746. }
  2747. #ifdef BACKLASH_X
  2748. extern uint8_t st_backlash_x;
  2749. #endif //BACKLASH_X
  2750. #ifdef BACKLASH_Y
  2751. extern uint8_t st_backlash_y;
  2752. #endif //BACKLASH_Y
  2753. uint16_t gcode_in_progress = 0;
  2754. uint16_t mcode_in_progress = 0;
  2755. void process_commands()
  2756. {
  2757. if (!buflen) return; //empty command
  2758. #ifdef FILAMENT_RUNOUT_SUPPORT
  2759. SET_INPUT(FR_SENS);
  2760. #endif
  2761. #ifdef CMDBUFFER_DEBUG
  2762. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2763. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2764. SERIAL_ECHOLNPGM("");
  2765. SERIAL_ECHOPGM("In cmdqueue: ");
  2766. SERIAL_ECHO(buflen);
  2767. SERIAL_ECHOLNPGM("");
  2768. #endif /* CMDBUFFER_DEBUG */
  2769. unsigned long codenum; //throw away variable
  2770. char *starpos = NULL;
  2771. #ifdef ENABLE_AUTO_BED_LEVELING
  2772. float x_tmp, y_tmp, z_tmp, real_z;
  2773. #endif
  2774. // PRUSA GCODES
  2775. KEEPALIVE_STATE(IN_HANDLER);
  2776. #ifdef SNMM
  2777. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2778. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2779. int8_t SilentMode;
  2780. #endif
  2781. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2782. starpos = (strchr(strchr_pointer + 5, '*'));
  2783. if (starpos != NULL)
  2784. *(starpos) = '\0';
  2785. lcd_setstatus(strchr_pointer + 5);
  2786. }
  2787. #ifdef TMC2130
  2788. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2789. {
  2790. if(code_seen("CRASH_DETECTED"))
  2791. {
  2792. uint8_t mask = 0;
  2793. if (code_seen("X")) mask |= X_AXIS_MASK;
  2794. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2795. crashdet_detected(mask);
  2796. }
  2797. else if(code_seen("CRASH_RECOVER"))
  2798. crashdet_recover();
  2799. else if(code_seen("CRASH_CANCEL"))
  2800. crashdet_cancel();
  2801. }
  2802. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2803. {
  2804. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_"), 9) == 0)
  2805. {
  2806. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2807. axis = (axis == 'E')?3:(axis - 'X');
  2808. if (axis < 4)
  2809. {
  2810. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2811. tmc2130_set_wave(axis, 247, fac);
  2812. }
  2813. }
  2814. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_"), 9) == 0)
  2815. {
  2816. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2817. axis = (axis == 'E')?3:(axis - 'X');
  2818. if (axis < 4)
  2819. {
  2820. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2821. uint16_t res = tmc2130_get_res(axis);
  2822. tmc2130_goto_step(axis, step & (4*res - 1), 2, 1000, res);
  2823. }
  2824. }
  2825. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_CHOP_"), 9) == 0)
  2826. {
  2827. uint8_t axis = *(CMDBUFFER_CURRENT_STRING + 13);
  2828. axis = (axis == 'E')?3:(axis - 'X');
  2829. if (axis < 4)
  2830. {
  2831. uint8_t chop0 = tmc2130_chopper_config[axis].toff;
  2832. uint8_t chop1 = tmc2130_chopper_config[axis].hstr;
  2833. uint8_t chop2 = tmc2130_chopper_config[axis].hend;
  2834. uint8_t chop3 = tmc2130_chopper_config[axis].tbl;
  2835. char* str_end = 0;
  2836. if (CMDBUFFER_CURRENT_STRING[14])
  2837. {
  2838. chop0 = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, &str_end, 10) & 15;
  2839. if (str_end && *str_end)
  2840. {
  2841. chop1 = (uint8_t)strtol(str_end, &str_end, 10) & 7;
  2842. if (str_end && *str_end)
  2843. {
  2844. chop2 = (uint8_t)strtol(str_end, &str_end, 10) & 15;
  2845. if (str_end && *str_end)
  2846. chop3 = (uint8_t)strtol(str_end, &str_end, 10) & 3;
  2847. }
  2848. }
  2849. }
  2850. tmc2130_chopper_config[axis].toff = chop0;
  2851. tmc2130_chopper_config[axis].hstr = chop1 & 7;
  2852. tmc2130_chopper_config[axis].hend = chop2 & 15;
  2853. tmc2130_chopper_config[axis].tbl = chop3 & 3;
  2854. tmc2130_setup_chopper(axis, tmc2130_mres[axis], tmc2130_current_h[axis], tmc2130_current_r[axis]);
  2855. //printf_P(_N("TMC_SET_CHOP_%c %hhd %hhd %hhd %hhd\n"), "xyze"[axis], chop0, chop1, chop2, chop3);
  2856. }
  2857. }
  2858. }
  2859. #ifdef BACKLASH_X
  2860. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_X"), 10) == 0)
  2861. {
  2862. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2863. st_backlash_x = bl;
  2864. printf_P(_N("st_backlash_x = %hhd\n"), st_backlash_x);
  2865. }
  2866. #endif //BACKLASH_X
  2867. #ifdef BACKLASH_Y
  2868. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("BACKLASH_Y"), 10) == 0)
  2869. {
  2870. uint8_t bl = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 10, NULL, 10);
  2871. st_backlash_y = bl;
  2872. printf_P(_N("st_backlash_y = %hhd\n"), st_backlash_y);
  2873. }
  2874. #endif //BACKLASH_Y
  2875. #endif //TMC2130
  2876. else if(code_seen("PRUSA")){
  2877. if (code_seen("Ping")) { //PRUSA Ping
  2878. if (farm_mode) {
  2879. PingTime = millis();
  2880. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2881. }
  2882. }
  2883. else if (code_seen("PRN")) {
  2884. printf_P(_N("%d"), status_number);
  2885. }else if (code_seen("FAN")) {
  2886. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2887. }else if (code_seen("fn")) {
  2888. if (farm_mode) {
  2889. printf_P(_N("%d"), farm_no);
  2890. }
  2891. else {
  2892. puts_P(_N("Not in farm mode."));
  2893. }
  2894. }
  2895. else if (code_seen("thx")) {
  2896. no_response = false;
  2897. }
  2898. else if (code_seen("uvlo")) {
  2899. eeprom_update_byte((uint8_t*)EEPROM_UVLO,0);
  2900. enquecommand_P(PSTR("M24"));
  2901. }
  2902. else if (code_seen("MMURES")) {
  2903. fprintf_P(uart2io, PSTR("X0"));
  2904. }
  2905. else if (code_seen("RESET")) {
  2906. // careful!
  2907. if (farm_mode) {
  2908. #ifdef WATCHDOG
  2909. boot_app_magic = BOOT_APP_MAGIC;
  2910. boot_app_flags = BOOT_APP_FLG_RUN;
  2911. wdt_enable(WDTO_15MS);
  2912. cli();
  2913. while(1);
  2914. #else //WATCHDOG
  2915. asm volatile("jmp 0x3E000");
  2916. #endif //WATCHDOG
  2917. }
  2918. else {
  2919. MYSERIAL.println("Not in farm mode.");
  2920. }
  2921. }else if (code_seen("fv")) {
  2922. // get file version
  2923. #ifdef SDSUPPORT
  2924. card.openFile(strchr_pointer + 3,true);
  2925. while (true) {
  2926. uint16_t readByte = card.get();
  2927. MYSERIAL.write(readByte);
  2928. if (readByte=='\n') {
  2929. break;
  2930. }
  2931. }
  2932. card.closefile();
  2933. #endif // SDSUPPORT
  2934. } else if (code_seen("M28")) {
  2935. trace();
  2936. prusa_sd_card_upload = true;
  2937. card.openFile(strchr_pointer+4,false);
  2938. } else if (code_seen("SN")) {
  2939. gcode_PRUSA_SN();
  2940. } else if(code_seen("Fir")){
  2941. SERIAL_PROTOCOLLN(FW_VERSION);
  2942. } else if(code_seen("Rev")){
  2943. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2944. } else if(code_seen("Lang")) {
  2945. lang_reset();
  2946. } else if(code_seen("Lz")) {
  2947. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2948. } else if(code_seen("Beat")) {
  2949. // Kick farm link timer
  2950. kicktime = millis();
  2951. } else if(code_seen("FR")) {
  2952. // Factory full reset
  2953. factory_reset(0,true);
  2954. }
  2955. //else if (code_seen('Cal')) {
  2956. // lcd_calibration();
  2957. // }
  2958. }
  2959. else if (code_seen('^')) {
  2960. // nothing, this is a version line
  2961. } else if(code_seen('G'))
  2962. {
  2963. gcode_in_progress = (int)code_value();
  2964. // printf_P(_N("BEGIN G-CODE=%u\n"), gcode_in_progress);
  2965. switch (gcode_in_progress)
  2966. {
  2967. case 0: // G0 -> G1
  2968. case 1: // G1
  2969. if(Stopped == false) {
  2970. #ifdef FILAMENT_RUNOUT_SUPPORT
  2971. if(READ(FR_SENS)){
  2972. feedmultiplyBckp=feedmultiply;
  2973. float target[4];
  2974. float lastpos[4];
  2975. target[X_AXIS]=current_position[X_AXIS];
  2976. target[Y_AXIS]=current_position[Y_AXIS];
  2977. target[Z_AXIS]=current_position[Z_AXIS];
  2978. target[E_AXIS]=current_position[E_AXIS];
  2979. lastpos[X_AXIS]=current_position[X_AXIS];
  2980. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2981. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2982. lastpos[E_AXIS]=current_position[E_AXIS];
  2983. //retract by E
  2984. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2985. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2986. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2987. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2988. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2989. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2990. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2991. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2992. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2993. //finish moves
  2994. st_synchronize();
  2995. //disable extruder steppers so filament can be removed
  2996. disable_e0();
  2997. disable_e1();
  2998. disable_e2();
  2999. delay(100);
  3000. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  3001. uint8_t cnt=0;
  3002. int counterBeep = 0;
  3003. lcd_wait_interact();
  3004. while(!lcd_clicked()){
  3005. cnt++;
  3006. manage_heater();
  3007. manage_inactivity(true);
  3008. //lcd_update(0);
  3009. if(cnt==0)
  3010. {
  3011. #if BEEPER > 0
  3012. if (counterBeep== 500){
  3013. counterBeep = 0;
  3014. }
  3015. SET_OUTPUT(BEEPER);
  3016. if (counterBeep== 0){
  3017. WRITE(BEEPER,HIGH);
  3018. }
  3019. if (counterBeep== 20){
  3020. WRITE(BEEPER,LOW);
  3021. }
  3022. counterBeep++;
  3023. #else
  3024. #endif
  3025. }
  3026. }
  3027. WRITE(BEEPER,LOW);
  3028. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3029. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3030. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3031. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3032. lcd_change_fil_state = 0;
  3033. lcd_loading_filament();
  3034. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3035. lcd_change_fil_state = 0;
  3036. lcd_alright();
  3037. switch(lcd_change_fil_state){
  3038. case 2:
  3039. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3040. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  3041. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3042. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3043. lcd_loading_filament();
  3044. break;
  3045. case 3:
  3046. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3047. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3048. lcd_loading_color();
  3049. break;
  3050. default:
  3051. lcd_change_success();
  3052. break;
  3053. }
  3054. }
  3055. target[E_AXIS]+= 5;
  3056. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3057. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3058. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3059. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3060. //plan_set_e_position(current_position[E_AXIS]);
  3061. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3062. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3063. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3064. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3065. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3066. plan_set_e_position(lastpos[E_AXIS]);
  3067. feedmultiply=feedmultiplyBckp;
  3068. char cmd[9];
  3069. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3070. enquecommand(cmd);
  3071. }
  3072. #endif
  3073. get_coordinates(); // For X Y Z E F
  3074. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3075. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3076. }
  3077. #ifdef FWRETRACT
  3078. if(autoretract_enabled)
  3079. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3080. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3081. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3082. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3083. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3084. retract(!retracted[active_extruder]);
  3085. return;
  3086. }
  3087. }
  3088. #endif //FWRETRACT
  3089. prepare_move();
  3090. //ClearToSend();
  3091. }
  3092. break;
  3093. case 2: // G2 - CW ARC
  3094. if(Stopped == false) {
  3095. get_arc_coordinates();
  3096. prepare_arc_move(true);
  3097. }
  3098. break;
  3099. case 3: // G3 - CCW ARC
  3100. if(Stopped == false) {
  3101. get_arc_coordinates();
  3102. prepare_arc_move(false);
  3103. }
  3104. break;
  3105. case 4: // G4 dwell
  3106. codenum = 0;
  3107. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3108. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3109. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3110. st_synchronize();
  3111. codenum += millis(); // keep track of when we started waiting
  3112. previous_millis_cmd = millis();
  3113. while(millis() < codenum) {
  3114. manage_heater();
  3115. manage_inactivity();
  3116. lcd_update(0);
  3117. }
  3118. break;
  3119. #ifdef FWRETRACT
  3120. case 10: // G10 retract
  3121. #if EXTRUDERS > 1
  3122. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3123. retract(true,retracted_swap[active_extruder]);
  3124. #else
  3125. retract(true);
  3126. #endif
  3127. break;
  3128. case 11: // G11 retract_recover
  3129. #if EXTRUDERS > 1
  3130. retract(false,retracted_swap[active_extruder]);
  3131. #else
  3132. retract(false);
  3133. #endif
  3134. break;
  3135. #endif //FWRETRACT
  3136. case 28: //G28 Home all Axis one at a time
  3137. {
  3138. long home_x_value = 0;
  3139. long home_y_value = 0;
  3140. long home_z_value = 0;
  3141. // Which axes should be homed?
  3142. bool home_x = code_seen(axis_codes[X_AXIS]);
  3143. home_x_value = code_value_long();
  3144. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3145. home_y_value = code_value_long();
  3146. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3147. home_z_value = code_value_long();
  3148. bool without_mbl = code_seen('W');
  3149. // calibrate?
  3150. bool calib = code_seen('C');
  3151. gcode_G28(home_x, home_x_value, home_y, home_y_value, home_z, home_z_value, calib, without_mbl);
  3152. if ((home_x || home_y || without_mbl || home_z) == false) {
  3153. // Push the commands to the front of the message queue in the reverse order!
  3154. // There shall be always enough space reserved for these commands.
  3155. goto case_G80;
  3156. }
  3157. break;
  3158. }
  3159. #ifdef ENABLE_AUTO_BED_LEVELING
  3160. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3161. {
  3162. #if Z_MIN_PIN == -1
  3163. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3164. #endif
  3165. // Prevent user from running a G29 without first homing in X and Y
  3166. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3167. {
  3168. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3169. SERIAL_ECHO_START;
  3170. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3171. break; // abort G29, since we don't know where we are
  3172. }
  3173. st_synchronize();
  3174. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3175. //vector_3 corrected_position = plan_get_position_mm();
  3176. //corrected_position.debug("position before G29");
  3177. plan_bed_level_matrix.set_to_identity();
  3178. vector_3 uncorrected_position = plan_get_position();
  3179. //uncorrected_position.debug("position durring G29");
  3180. current_position[X_AXIS] = uncorrected_position.x;
  3181. current_position[Y_AXIS] = uncorrected_position.y;
  3182. current_position[Z_AXIS] = uncorrected_position.z;
  3183. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3184. setup_for_endstop_move();
  3185. feedrate = homing_feedrate[Z_AXIS];
  3186. #ifdef AUTO_BED_LEVELING_GRID
  3187. // probe at the points of a lattice grid
  3188. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3189. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3190. // solve the plane equation ax + by + d = z
  3191. // A is the matrix with rows [x y 1] for all the probed points
  3192. // B is the vector of the Z positions
  3193. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3194. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3195. // "A" matrix of the linear system of equations
  3196. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3197. // "B" vector of Z points
  3198. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3199. int probePointCounter = 0;
  3200. bool zig = true;
  3201. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3202. {
  3203. int xProbe, xInc;
  3204. if (zig)
  3205. {
  3206. xProbe = LEFT_PROBE_BED_POSITION;
  3207. //xEnd = RIGHT_PROBE_BED_POSITION;
  3208. xInc = xGridSpacing;
  3209. zig = false;
  3210. } else // zag
  3211. {
  3212. xProbe = RIGHT_PROBE_BED_POSITION;
  3213. //xEnd = LEFT_PROBE_BED_POSITION;
  3214. xInc = -xGridSpacing;
  3215. zig = true;
  3216. }
  3217. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3218. {
  3219. float z_before;
  3220. if (probePointCounter == 0)
  3221. {
  3222. // raise before probing
  3223. z_before = Z_RAISE_BEFORE_PROBING;
  3224. } else
  3225. {
  3226. // raise extruder
  3227. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3228. }
  3229. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3230. eqnBVector[probePointCounter] = measured_z;
  3231. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3232. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3233. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3234. probePointCounter++;
  3235. xProbe += xInc;
  3236. }
  3237. }
  3238. clean_up_after_endstop_move();
  3239. // solve lsq problem
  3240. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3241. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3242. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3243. SERIAL_PROTOCOLPGM(" b: ");
  3244. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3245. SERIAL_PROTOCOLPGM(" d: ");
  3246. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3247. set_bed_level_equation_lsq(plane_equation_coefficients);
  3248. free(plane_equation_coefficients);
  3249. #else // AUTO_BED_LEVELING_GRID not defined
  3250. // Probe at 3 arbitrary points
  3251. // probe 1
  3252. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3253. // probe 2
  3254. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3255. // probe 3
  3256. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3257. clean_up_after_endstop_move();
  3258. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3259. #endif // AUTO_BED_LEVELING_GRID
  3260. st_synchronize();
  3261. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3262. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3263. // When the bed is uneven, this height must be corrected.
  3264. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3265. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3266. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3267. z_tmp = current_position[Z_AXIS];
  3268. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3269. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3270. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3271. }
  3272. break;
  3273. #ifndef Z_PROBE_SLED
  3274. case 30: // G30 Single Z Probe
  3275. {
  3276. st_synchronize();
  3277. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3278. setup_for_endstop_move();
  3279. feedrate = homing_feedrate[Z_AXIS];
  3280. run_z_probe();
  3281. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3282. SERIAL_PROTOCOLPGM(" X: ");
  3283. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3284. SERIAL_PROTOCOLPGM(" Y: ");
  3285. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3286. SERIAL_PROTOCOLPGM(" Z: ");
  3287. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3288. SERIAL_PROTOCOLPGM("\n");
  3289. clean_up_after_endstop_move();
  3290. }
  3291. break;
  3292. #else
  3293. case 31: // dock the sled
  3294. dock_sled(true);
  3295. break;
  3296. case 32: // undock the sled
  3297. dock_sled(false);
  3298. break;
  3299. #endif // Z_PROBE_SLED
  3300. #endif // ENABLE_AUTO_BED_LEVELING
  3301. #ifdef MESH_BED_LEVELING
  3302. case 30: // G30 Single Z Probe
  3303. {
  3304. st_synchronize();
  3305. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3306. setup_for_endstop_move();
  3307. feedrate = homing_feedrate[Z_AXIS];
  3308. find_bed_induction_sensor_point_z(-10.f, 3);
  3309. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3310. clean_up_after_endstop_move();
  3311. }
  3312. break;
  3313. case 75:
  3314. {
  3315. for (int i = 40; i <= 110; i++)
  3316. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3317. }
  3318. break;
  3319. case 76: //PINDA probe temperature calibration
  3320. {
  3321. #ifdef PINDA_THERMISTOR
  3322. if (true)
  3323. {
  3324. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3325. //we need to know accurate position of first calibration point
  3326. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3327. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3328. break;
  3329. }
  3330. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3331. {
  3332. // We don't know where we are! HOME!
  3333. // Push the commands to the front of the message queue in the reverse order!
  3334. // There shall be always enough space reserved for these commands.
  3335. repeatcommand_front(); // repeat G76 with all its parameters
  3336. enquecommand_front_P((PSTR("G28 W0")));
  3337. break;
  3338. }
  3339. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3340. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3341. if (result)
  3342. {
  3343. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3344. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3345. current_position[Z_AXIS] = 50;
  3346. current_position[Y_AXIS] = 180;
  3347. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3348. st_synchronize();
  3349. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3350. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3351. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3352. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3353. st_synchronize();
  3354. gcode_G28(false, false, true);
  3355. }
  3356. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3357. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3358. current_position[Z_AXIS] = 100;
  3359. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3360. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3361. lcd_temp_cal_show_result(false);
  3362. break;
  3363. }
  3364. }
  3365. lcd_update_enable(true);
  3366. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3367. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3368. float zero_z;
  3369. int z_shift = 0; //unit: steps
  3370. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3371. if (start_temp < 35) start_temp = 35;
  3372. if (start_temp < current_temperature_pinda) start_temp += 5;
  3373. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3374. // setTargetHotend(200, 0);
  3375. setTargetBed(70 + (start_temp - 30));
  3376. custom_message = true;
  3377. custom_message_type = 4;
  3378. custom_message_state = 1;
  3379. custom_message = _T(MSG_TEMP_CALIBRATION);
  3380. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3381. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3382. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3383. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3384. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3385. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3386. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3387. st_synchronize();
  3388. while (current_temperature_pinda < start_temp)
  3389. {
  3390. delay_keep_alive(1000);
  3391. serialecho_temperatures();
  3392. }
  3393. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3394. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3395. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3396. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3397. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3398. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3399. st_synchronize();
  3400. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3401. if (find_z_result == false) {
  3402. lcd_temp_cal_show_result(find_z_result);
  3403. break;
  3404. }
  3405. zero_z = current_position[Z_AXIS];
  3406. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3407. int i = -1; for (; i < 5; i++)
  3408. {
  3409. float temp = (40 + i * 5);
  3410. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3411. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3412. if (start_temp <= temp) break;
  3413. }
  3414. for (i++; i < 5; i++)
  3415. {
  3416. float temp = (40 + i * 5);
  3417. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3418. custom_message_state = i + 2;
  3419. setTargetBed(50 + 10 * (temp - 30) / 5);
  3420. // setTargetHotend(255, 0);
  3421. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3422. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3423. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3424. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3425. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3426. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3427. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3428. st_synchronize();
  3429. while (current_temperature_pinda < temp)
  3430. {
  3431. delay_keep_alive(1000);
  3432. serialecho_temperatures();
  3433. }
  3434. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3436. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3437. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3438. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3439. st_synchronize();
  3440. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3441. if (find_z_result == false) {
  3442. lcd_temp_cal_show_result(find_z_result);
  3443. break;
  3444. }
  3445. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3446. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3447. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3448. }
  3449. lcd_temp_cal_show_result(true);
  3450. break;
  3451. }
  3452. #endif //PINDA_THERMISTOR
  3453. setTargetBed(PINDA_MIN_T);
  3454. float zero_z;
  3455. int z_shift = 0; //unit: steps
  3456. int t_c; // temperature
  3457. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3458. // We don't know where we are! HOME!
  3459. // Push the commands to the front of the message queue in the reverse order!
  3460. // There shall be always enough space reserved for these commands.
  3461. repeatcommand_front(); // repeat G76 with all its parameters
  3462. enquecommand_front_P((PSTR("G28 W0")));
  3463. break;
  3464. }
  3465. puts_P(_N("PINDA probe calibration start"));
  3466. custom_message = true;
  3467. custom_message_type = 4;
  3468. custom_message_state = 1;
  3469. custom_message = _T(MSG_TEMP_CALIBRATION);
  3470. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3471. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3472. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3473. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3474. st_synchronize();
  3475. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3476. delay_keep_alive(1000);
  3477. serialecho_temperatures();
  3478. }
  3479. //enquecommand_P(PSTR("M190 S50"));
  3480. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3481. delay_keep_alive(1000);
  3482. serialecho_temperatures();
  3483. }
  3484. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3485. current_position[Z_AXIS] = 5;
  3486. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3487. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3488. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3489. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3490. st_synchronize();
  3491. find_bed_induction_sensor_point_z(-1.f);
  3492. zero_z = current_position[Z_AXIS];
  3493. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3494. for (int i = 0; i<5; i++) {
  3495. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3496. custom_message_state = i + 2;
  3497. t_c = 60 + i * 10;
  3498. setTargetBed(t_c);
  3499. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3500. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3501. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3502. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3503. st_synchronize();
  3504. while (degBed() < t_c) {
  3505. delay_keep_alive(1000);
  3506. serialecho_temperatures();
  3507. }
  3508. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3509. delay_keep_alive(1000);
  3510. serialecho_temperatures();
  3511. }
  3512. current_position[Z_AXIS] = 5;
  3513. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3514. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3515. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3516. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3517. st_synchronize();
  3518. find_bed_induction_sensor_point_z(-1.f);
  3519. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3520. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3521. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3522. }
  3523. custom_message_type = 0;
  3524. custom_message = false;
  3525. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3526. puts_P(_N("Temperature calibration done."));
  3527. disable_x();
  3528. disable_y();
  3529. disable_z();
  3530. disable_e0();
  3531. disable_e1();
  3532. disable_e2();
  3533. setTargetBed(0); //set bed target temperature back to 0
  3534. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3535. temp_cal_active = true;
  3536. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3537. lcd_update_enable(true);
  3538. lcd_update(2);
  3539. }
  3540. break;
  3541. #ifdef DIS
  3542. case 77:
  3543. {
  3544. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3545. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3546. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3547. float dimension_x = 40;
  3548. float dimension_y = 40;
  3549. int points_x = 40;
  3550. int points_y = 40;
  3551. float offset_x = 74;
  3552. float offset_y = 33;
  3553. if (code_seen('X')) dimension_x = code_value();
  3554. if (code_seen('Y')) dimension_y = code_value();
  3555. if (code_seen('XP')) points_x = code_value();
  3556. if (code_seen('YP')) points_y = code_value();
  3557. if (code_seen('XO')) offset_x = code_value();
  3558. if (code_seen('YO')) offset_y = code_value();
  3559. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3560. } break;
  3561. #endif
  3562. case 79: {
  3563. for (int i = 255; i > 0; i = i - 5) {
  3564. fanSpeed = i;
  3565. //delay_keep_alive(2000);
  3566. for (int j = 0; j < 100; j++) {
  3567. delay_keep_alive(100);
  3568. }
  3569. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3570. }
  3571. }break;
  3572. /**
  3573. * G80: Mesh-based Z probe, probes a grid and produces a
  3574. * mesh to compensate for variable bed height
  3575. *
  3576. * The S0 report the points as below
  3577. *
  3578. * +----> X-axis
  3579. * |
  3580. * |
  3581. * v Y-axis
  3582. *
  3583. */
  3584. case 80:
  3585. #ifdef MK1BP
  3586. break;
  3587. #endif //MK1BP
  3588. case_G80:
  3589. {
  3590. mesh_bed_leveling_flag = true;
  3591. static bool run = false;
  3592. #ifdef SUPPORT_VERBOSITY
  3593. int8_t verbosity_level = 0;
  3594. if (code_seen('V')) {
  3595. // Just 'V' without a number counts as V1.
  3596. char c = strchr_pointer[1];
  3597. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3598. }
  3599. #endif //SUPPORT_VERBOSITY
  3600. // Firstly check if we know where we are
  3601. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3602. // We don't know where we are! HOME!
  3603. // Push the commands to the front of the message queue in the reverse order!
  3604. // There shall be always enough space reserved for these commands.
  3605. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3606. repeatcommand_front(); // repeat G80 with all its parameters
  3607. enquecommand_front_P((PSTR("G28 W0")));
  3608. }
  3609. else {
  3610. mesh_bed_leveling_flag = false;
  3611. }
  3612. break;
  3613. }
  3614. bool temp_comp_start = true;
  3615. #ifdef PINDA_THERMISTOR
  3616. temp_comp_start = false;
  3617. #endif //PINDA_THERMISTOR
  3618. if (temp_comp_start)
  3619. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3620. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3621. temp_compensation_start();
  3622. run = true;
  3623. repeatcommand_front(); // repeat G80 with all its parameters
  3624. enquecommand_front_P((PSTR("G28 W0")));
  3625. }
  3626. else {
  3627. mesh_bed_leveling_flag = false;
  3628. }
  3629. break;
  3630. }
  3631. run = false;
  3632. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3633. mesh_bed_leveling_flag = false;
  3634. break;
  3635. }
  3636. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3637. bool custom_message_old = custom_message;
  3638. unsigned int custom_message_type_old = custom_message_type;
  3639. unsigned int custom_message_state_old = custom_message_state;
  3640. custom_message = true;
  3641. custom_message_type = 1;
  3642. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3643. lcd_update(1);
  3644. mbl.reset(); //reset mesh bed leveling
  3645. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3646. // consumed during the first movements following this statement.
  3647. babystep_undo();
  3648. // Cycle through all points and probe them
  3649. // First move up. During this first movement, the babystepping will be reverted.
  3650. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3651. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3652. // The move to the first calibration point.
  3653. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3654. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3655. #ifdef SUPPORT_VERBOSITY
  3656. if (verbosity_level >= 1)
  3657. {
  3658. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3659. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3660. }
  3661. #endif //SUPPORT_VERBOSITY
  3662. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3663. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3664. // Wait until the move is finished.
  3665. st_synchronize();
  3666. int mesh_point = 0; //index number of calibration point
  3667. int ix = 0;
  3668. int iy = 0;
  3669. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3670. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3671. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3672. #ifdef SUPPORT_VERBOSITY
  3673. if (verbosity_level >= 1) {
  3674. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3675. }
  3676. #endif // SUPPORT_VERBOSITY
  3677. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3678. const char *kill_message = NULL;
  3679. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3680. // Get coords of a measuring point.
  3681. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3682. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3683. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3684. float z0 = 0.f;
  3685. if (has_z && mesh_point > 0) {
  3686. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3687. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3688. //#if 0
  3689. #ifdef SUPPORT_VERBOSITY
  3690. if (verbosity_level >= 1) {
  3691. SERIAL_ECHOLNPGM("");
  3692. SERIAL_ECHOPGM("Bed leveling, point: ");
  3693. MYSERIAL.print(mesh_point);
  3694. SERIAL_ECHOPGM(", calibration z: ");
  3695. MYSERIAL.print(z0, 5);
  3696. SERIAL_ECHOLNPGM("");
  3697. }
  3698. #endif // SUPPORT_VERBOSITY
  3699. //#endif
  3700. }
  3701. // Move Z up to MESH_HOME_Z_SEARCH.
  3702. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3704. st_synchronize();
  3705. // Move to XY position of the sensor point.
  3706. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3707. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3708. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3709. #ifdef SUPPORT_VERBOSITY
  3710. if (verbosity_level >= 1) {
  3711. SERIAL_PROTOCOL(mesh_point);
  3712. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3713. }
  3714. #endif // SUPPORT_VERBOSITY
  3715. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3716. st_synchronize();
  3717. // Go down until endstop is hit
  3718. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3719. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3720. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3721. break;
  3722. }
  3723. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3724. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3725. break;
  3726. }
  3727. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3728. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3729. break;
  3730. }
  3731. #ifdef SUPPORT_VERBOSITY
  3732. if (verbosity_level >= 10) {
  3733. SERIAL_ECHOPGM("X: ");
  3734. MYSERIAL.print(current_position[X_AXIS], 5);
  3735. SERIAL_ECHOLNPGM("");
  3736. SERIAL_ECHOPGM("Y: ");
  3737. MYSERIAL.print(current_position[Y_AXIS], 5);
  3738. SERIAL_PROTOCOLPGM("\n");
  3739. }
  3740. #endif // SUPPORT_VERBOSITY
  3741. float offset_z = 0;
  3742. #ifdef PINDA_THERMISTOR
  3743. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3744. #endif //PINDA_THERMISTOR
  3745. // #ifdef SUPPORT_VERBOSITY
  3746. /* if (verbosity_level >= 1)
  3747. {
  3748. SERIAL_ECHOPGM("mesh bed leveling: ");
  3749. MYSERIAL.print(current_position[Z_AXIS], 5);
  3750. SERIAL_ECHOPGM(" offset: ");
  3751. MYSERIAL.print(offset_z, 5);
  3752. SERIAL_ECHOLNPGM("");
  3753. }*/
  3754. // #endif // SUPPORT_VERBOSITY
  3755. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3756. custom_message_state--;
  3757. mesh_point++;
  3758. lcd_update(1);
  3759. }
  3760. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3761. #ifdef SUPPORT_VERBOSITY
  3762. if (verbosity_level >= 20) {
  3763. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3764. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3765. MYSERIAL.print(current_position[Z_AXIS], 5);
  3766. }
  3767. #endif // SUPPORT_VERBOSITY
  3768. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3769. st_synchronize();
  3770. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3771. kill(kill_message);
  3772. SERIAL_ECHOLNPGM("killed");
  3773. }
  3774. clean_up_after_endstop_move();
  3775. // SERIAL_ECHOLNPGM("clean up finished ");
  3776. bool apply_temp_comp = true;
  3777. #ifdef PINDA_THERMISTOR
  3778. apply_temp_comp = false;
  3779. #endif
  3780. if (apply_temp_comp)
  3781. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3782. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3783. // SERIAL_ECHOLNPGM("babystep applied");
  3784. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3785. #ifdef SUPPORT_VERBOSITY
  3786. if (verbosity_level >= 1) {
  3787. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3788. }
  3789. #endif // SUPPORT_VERBOSITY
  3790. for (uint8_t i = 0; i < 4; ++i) {
  3791. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3792. long correction = 0;
  3793. if (code_seen(codes[i]))
  3794. correction = code_value_long();
  3795. else if (eeprom_bed_correction_valid) {
  3796. unsigned char *addr = (i < 2) ?
  3797. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3798. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3799. correction = eeprom_read_int8(addr);
  3800. }
  3801. if (correction == 0)
  3802. continue;
  3803. float offset = float(correction) * 0.001f;
  3804. if (fabs(offset) > 0.101f) {
  3805. SERIAL_ERROR_START;
  3806. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3807. SERIAL_ECHO(offset);
  3808. SERIAL_ECHOLNPGM(" microns");
  3809. }
  3810. else {
  3811. switch (i) {
  3812. case 0:
  3813. for (uint8_t row = 0; row < 3; ++row) {
  3814. mbl.z_values[row][1] += 0.5f * offset;
  3815. mbl.z_values[row][0] += offset;
  3816. }
  3817. break;
  3818. case 1:
  3819. for (uint8_t row = 0; row < 3; ++row) {
  3820. mbl.z_values[row][1] += 0.5f * offset;
  3821. mbl.z_values[row][2] += offset;
  3822. }
  3823. break;
  3824. case 2:
  3825. for (uint8_t col = 0; col < 3; ++col) {
  3826. mbl.z_values[1][col] += 0.5f * offset;
  3827. mbl.z_values[0][col] += offset;
  3828. }
  3829. break;
  3830. case 3:
  3831. for (uint8_t col = 0; col < 3; ++col) {
  3832. mbl.z_values[1][col] += 0.5f * offset;
  3833. mbl.z_values[2][col] += offset;
  3834. }
  3835. break;
  3836. }
  3837. }
  3838. }
  3839. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3840. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3841. // SERIAL_ECHOLNPGM("Upsample finished");
  3842. mbl.active = 1; //activate mesh bed leveling
  3843. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3844. go_home_with_z_lift();
  3845. // SERIAL_ECHOLNPGM("Go home finished");
  3846. //unretract (after PINDA preheat retraction)
  3847. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3848. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3849. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3850. }
  3851. KEEPALIVE_STATE(NOT_BUSY);
  3852. // Restore custom message state
  3853. lcd_setstatuspgm(_T(WELCOME_MSG));
  3854. custom_message = custom_message_old;
  3855. custom_message_type = custom_message_type_old;
  3856. custom_message_state = custom_message_state_old;
  3857. mesh_bed_leveling_flag = false;
  3858. mesh_bed_run_from_menu = false;
  3859. lcd_update(2);
  3860. }
  3861. break;
  3862. /**
  3863. * G81: Print mesh bed leveling status and bed profile if activated
  3864. */
  3865. case 81:
  3866. if (mbl.active) {
  3867. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3868. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3869. SERIAL_PROTOCOLPGM(",");
  3870. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3871. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3872. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3873. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3874. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3875. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3876. SERIAL_PROTOCOLPGM(" ");
  3877. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3878. }
  3879. SERIAL_PROTOCOLPGM("\n");
  3880. }
  3881. }
  3882. else
  3883. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3884. break;
  3885. #if 0
  3886. /**
  3887. * G82: Single Z probe at current location
  3888. *
  3889. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3890. *
  3891. */
  3892. case 82:
  3893. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3894. setup_for_endstop_move();
  3895. find_bed_induction_sensor_point_z();
  3896. clean_up_after_endstop_move();
  3897. SERIAL_PROTOCOLPGM("Bed found at: ");
  3898. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3899. SERIAL_PROTOCOLPGM("\n");
  3900. break;
  3901. /**
  3902. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3903. */
  3904. case 83:
  3905. {
  3906. int babystepz = code_seen('S') ? code_value() : 0;
  3907. int BabyPosition = code_seen('P') ? code_value() : 0;
  3908. if (babystepz != 0) {
  3909. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3910. // Is the axis indexed starting with zero or one?
  3911. if (BabyPosition > 4) {
  3912. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3913. }else{
  3914. // Save it to the eeprom
  3915. babystepLoadZ = babystepz;
  3916. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3917. // adjust the Z
  3918. babystepsTodoZadd(babystepLoadZ);
  3919. }
  3920. }
  3921. }
  3922. break;
  3923. /**
  3924. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3925. */
  3926. case 84:
  3927. babystepsTodoZsubtract(babystepLoadZ);
  3928. // babystepLoadZ = 0;
  3929. break;
  3930. /**
  3931. * G85: Prusa3D specific: Pick best babystep
  3932. */
  3933. case 85:
  3934. lcd_pick_babystep();
  3935. break;
  3936. #endif
  3937. /**
  3938. * G86: Prusa3D specific: Disable babystep correction after home.
  3939. * This G-code will be performed at the start of a calibration script.
  3940. */
  3941. case 86:
  3942. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3943. break;
  3944. /**
  3945. * G87: Prusa3D specific: Enable babystep correction after home
  3946. * This G-code will be performed at the end of a calibration script.
  3947. */
  3948. case 87:
  3949. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3950. break;
  3951. /**
  3952. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3953. */
  3954. case 88:
  3955. break;
  3956. #endif // ENABLE_MESH_BED_LEVELING
  3957. case 90: // G90
  3958. relative_mode = false;
  3959. break;
  3960. case 91: // G91
  3961. relative_mode = true;
  3962. break;
  3963. case 92: // G92
  3964. if(!code_seen(axis_codes[E_AXIS]))
  3965. st_synchronize();
  3966. for(int8_t i=0; i < NUM_AXIS; i++) {
  3967. if(code_seen(axis_codes[i])) {
  3968. if(i == E_AXIS) {
  3969. current_position[i] = code_value();
  3970. plan_set_e_position(current_position[E_AXIS]);
  3971. }
  3972. else {
  3973. current_position[i] = code_value()+add_homing[i];
  3974. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3975. }
  3976. }
  3977. }
  3978. break;
  3979. case 98: // G98 (activate farm mode)
  3980. farm_mode = 1;
  3981. PingTime = millis();
  3982. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3983. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  3984. SilentModeMenu = SILENT_MODE_OFF;
  3985. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3986. break;
  3987. case 99: // G99 (deactivate farm mode)
  3988. farm_mode = 0;
  3989. lcd_printer_connected();
  3990. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3991. lcd_update(2);
  3992. break;
  3993. default:
  3994. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3995. }
  3996. // printf_P(_N("END G-CODE=%u\n"), gcode_in_progress);
  3997. gcode_in_progress = 0;
  3998. } // end if(code_seen('G'))
  3999. else if(code_seen('M'))
  4000. {
  4001. int index;
  4002. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  4003. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  4004. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  4005. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  4006. } else
  4007. {
  4008. mcode_in_progress = (int)code_value();
  4009. // printf_P(_N("BEGIN M-CODE=%u\n"), mcode_in_progress);
  4010. switch(mcode_in_progress)
  4011. {
  4012. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4013. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4014. {
  4015. char *src = strchr_pointer + 2;
  4016. codenum = 0;
  4017. bool hasP = false, hasS = false;
  4018. if (code_seen('P')) {
  4019. codenum = code_value(); // milliseconds to wait
  4020. hasP = codenum > 0;
  4021. }
  4022. if (code_seen('S')) {
  4023. codenum = code_value() * 1000; // seconds to wait
  4024. hasS = codenum > 0;
  4025. }
  4026. starpos = strchr(src, '*');
  4027. if (starpos != NULL) *(starpos) = '\0';
  4028. while (*src == ' ') ++src;
  4029. if (!hasP && !hasS && *src != '\0') {
  4030. lcd_setstatus(src);
  4031. } else {
  4032. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  4033. }
  4034. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  4035. st_synchronize();
  4036. previous_millis_cmd = millis();
  4037. if (codenum > 0){
  4038. codenum += millis(); // keep track of when we started waiting
  4039. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4040. while(millis() < codenum && !lcd_clicked()){
  4041. manage_heater();
  4042. manage_inactivity(true);
  4043. lcd_update(0);
  4044. }
  4045. KEEPALIVE_STATE(IN_HANDLER);
  4046. lcd_ignore_click(false);
  4047. }else{
  4048. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4049. while(!lcd_clicked()){
  4050. manage_heater();
  4051. manage_inactivity(true);
  4052. lcd_update(0);
  4053. }
  4054. KEEPALIVE_STATE(IN_HANDLER);
  4055. }
  4056. if (IS_SD_PRINTING)
  4057. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  4058. else
  4059. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4060. }
  4061. break;
  4062. case 17:
  4063. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  4064. enable_x();
  4065. enable_y();
  4066. enable_z();
  4067. enable_e0();
  4068. enable_e1();
  4069. enable_e2();
  4070. break;
  4071. #ifdef SDSUPPORT
  4072. case 20: // M20 - list SD card
  4073. SERIAL_PROTOCOLLNRPGM(_N("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4074. card.ls();
  4075. SERIAL_PROTOCOLLNRPGM(_N("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4076. break;
  4077. case 21: // M21 - init SD card
  4078. card.initsd();
  4079. break;
  4080. case 22: //M22 - release SD card
  4081. card.release();
  4082. break;
  4083. case 23: //M23 - Select file
  4084. starpos = (strchr(strchr_pointer + 4,'*'));
  4085. if(starpos!=NULL)
  4086. *(starpos)='\0';
  4087. card.openFile(strchr_pointer + 4,true);
  4088. break;
  4089. case 24: //M24 - Start SD print
  4090. if (!card.paused)
  4091. failstats_reset_print();
  4092. card.startFileprint();
  4093. starttime=millis();
  4094. break;
  4095. case 25: //M25 - Pause SD print
  4096. card.pauseSDPrint();
  4097. break;
  4098. case 26: //M26 - Set SD index
  4099. if(card.cardOK && code_seen('S')) {
  4100. card.setIndex(code_value_long());
  4101. }
  4102. break;
  4103. case 27: //M27 - Get SD status
  4104. card.getStatus();
  4105. break;
  4106. case 28: //M28 - Start SD write
  4107. starpos = (strchr(strchr_pointer + 4,'*'));
  4108. if(starpos != NULL){
  4109. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4110. strchr_pointer = strchr(npos,' ') + 1;
  4111. *(starpos) = '\0';
  4112. }
  4113. card.openFile(strchr_pointer+4,false);
  4114. break;
  4115. case 29: //M29 - Stop SD write
  4116. //processed in write to file routine above
  4117. //card,saving = false;
  4118. break;
  4119. case 30: //M30 <filename> Delete File
  4120. if (card.cardOK){
  4121. card.closefile();
  4122. starpos = (strchr(strchr_pointer + 4,'*'));
  4123. if(starpos != NULL){
  4124. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4125. strchr_pointer = strchr(npos,' ') + 1;
  4126. *(starpos) = '\0';
  4127. }
  4128. card.removeFile(strchr_pointer + 4);
  4129. }
  4130. break;
  4131. case 32: //M32 - Select file and start SD print
  4132. {
  4133. if(card.sdprinting) {
  4134. st_synchronize();
  4135. }
  4136. starpos = (strchr(strchr_pointer + 4,'*'));
  4137. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4138. if(namestartpos==NULL)
  4139. {
  4140. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4141. }
  4142. else
  4143. namestartpos++; //to skip the '!'
  4144. if(starpos!=NULL)
  4145. *(starpos)='\0';
  4146. bool call_procedure=(code_seen('P'));
  4147. if(strchr_pointer>namestartpos)
  4148. call_procedure=false; //false alert, 'P' found within filename
  4149. if( card.cardOK )
  4150. {
  4151. card.openFile(namestartpos,true,!call_procedure);
  4152. if(code_seen('S'))
  4153. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4154. card.setIndex(code_value_long());
  4155. card.startFileprint();
  4156. if(!call_procedure)
  4157. starttime=millis(); //procedure calls count as normal print time.
  4158. }
  4159. } break;
  4160. case 928: //M928 - Start SD write
  4161. starpos = (strchr(strchr_pointer + 5,'*'));
  4162. if(starpos != NULL){
  4163. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4164. strchr_pointer = strchr(npos,' ') + 1;
  4165. *(starpos) = '\0';
  4166. }
  4167. card.openLogFile(strchr_pointer+5);
  4168. break;
  4169. #endif //SDSUPPORT
  4170. case 31: //M31 take time since the start of the SD print or an M109 command
  4171. {
  4172. stoptime=millis();
  4173. char time[30];
  4174. unsigned long t=(stoptime-starttime)/1000;
  4175. int sec,min;
  4176. min=t/60;
  4177. sec=t%60;
  4178. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4179. SERIAL_ECHO_START;
  4180. SERIAL_ECHOLN(time);
  4181. lcd_setstatus(time);
  4182. autotempShutdown();
  4183. }
  4184. break;
  4185. case 42: //M42 -Change pin status via gcode
  4186. if (code_seen('S'))
  4187. {
  4188. int pin_status = code_value();
  4189. int pin_number = LED_PIN;
  4190. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4191. pin_number = code_value();
  4192. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4193. {
  4194. if (sensitive_pins[i] == pin_number)
  4195. {
  4196. pin_number = -1;
  4197. break;
  4198. }
  4199. }
  4200. #if defined(FAN_PIN) && FAN_PIN > -1
  4201. if (pin_number == FAN_PIN)
  4202. fanSpeed = pin_status;
  4203. #endif
  4204. if (pin_number > -1)
  4205. {
  4206. pinMode(pin_number, OUTPUT);
  4207. digitalWrite(pin_number, pin_status);
  4208. analogWrite(pin_number, pin_status);
  4209. }
  4210. }
  4211. break;
  4212. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4213. // Reset the baby step value and the baby step applied flag.
  4214. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4215. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4216. // Reset the skew and offset in both RAM and EEPROM.
  4217. reset_bed_offset_and_skew();
  4218. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4219. // the planner will not perform any adjustments in the XY plane.
  4220. // Wait for the motors to stop and update the current position with the absolute values.
  4221. world2machine_revert_to_uncorrected();
  4222. break;
  4223. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4224. {
  4225. int8_t verbosity_level = 0;
  4226. bool only_Z = code_seen('Z');
  4227. #ifdef SUPPORT_VERBOSITY
  4228. if (code_seen('V'))
  4229. {
  4230. // Just 'V' without a number counts as V1.
  4231. char c = strchr_pointer[1];
  4232. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4233. }
  4234. #endif //SUPPORT_VERBOSITY
  4235. gcode_M45(only_Z, verbosity_level);
  4236. }
  4237. break;
  4238. /*
  4239. case 46:
  4240. {
  4241. // M46: Prusa3D: Show the assigned IP address.
  4242. uint8_t ip[4];
  4243. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4244. if (hasIP) {
  4245. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4246. SERIAL_ECHO(int(ip[0]));
  4247. SERIAL_ECHOPGM(".");
  4248. SERIAL_ECHO(int(ip[1]));
  4249. SERIAL_ECHOPGM(".");
  4250. SERIAL_ECHO(int(ip[2]));
  4251. SERIAL_ECHOPGM(".");
  4252. SERIAL_ECHO(int(ip[3]));
  4253. SERIAL_ECHOLNPGM("");
  4254. } else {
  4255. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4256. }
  4257. break;
  4258. }
  4259. */
  4260. case 47:
  4261. // M47: Prusa3D: Show end stops dialog on the display.
  4262. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4263. lcd_diag_show_end_stops();
  4264. KEEPALIVE_STATE(IN_HANDLER);
  4265. break;
  4266. #if 0
  4267. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4268. {
  4269. // Disable the default update procedure of the display. We will do a modal dialog.
  4270. lcd_update_enable(false);
  4271. // Let the planner use the uncorrected coordinates.
  4272. mbl.reset();
  4273. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4274. // the planner will not perform any adjustments in the XY plane.
  4275. // Wait for the motors to stop and update the current position with the absolute values.
  4276. world2machine_revert_to_uncorrected();
  4277. // Move the print head close to the bed.
  4278. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4279. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4280. st_synchronize();
  4281. // Home in the XY plane.
  4282. set_destination_to_current();
  4283. setup_for_endstop_move();
  4284. home_xy();
  4285. int8_t verbosity_level = 0;
  4286. if (code_seen('V')) {
  4287. // Just 'V' without a number counts as V1.
  4288. char c = strchr_pointer[1];
  4289. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4290. }
  4291. bool success = scan_bed_induction_points(verbosity_level);
  4292. clean_up_after_endstop_move();
  4293. // Print head up.
  4294. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4295. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4296. st_synchronize();
  4297. lcd_update_enable(true);
  4298. break;
  4299. }
  4300. #endif
  4301. // M48 Z-Probe repeatability measurement function.
  4302. //
  4303. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4304. //
  4305. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4306. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4307. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4308. // regenerated.
  4309. //
  4310. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4311. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4312. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4313. //
  4314. #ifdef ENABLE_AUTO_BED_LEVELING
  4315. #ifdef Z_PROBE_REPEATABILITY_TEST
  4316. case 48: // M48 Z-Probe repeatability
  4317. {
  4318. #if Z_MIN_PIN == -1
  4319. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4320. #endif
  4321. double sum=0.0;
  4322. double mean=0.0;
  4323. double sigma=0.0;
  4324. double sample_set[50];
  4325. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4326. double X_current, Y_current, Z_current;
  4327. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4328. if (code_seen('V') || code_seen('v')) {
  4329. verbose_level = code_value();
  4330. if (verbose_level<0 || verbose_level>4 ) {
  4331. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4332. goto Sigma_Exit;
  4333. }
  4334. }
  4335. if (verbose_level > 0) {
  4336. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4337. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4338. }
  4339. if (code_seen('n')) {
  4340. n_samples = code_value();
  4341. if (n_samples<4 || n_samples>50 ) {
  4342. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4343. goto Sigma_Exit;
  4344. }
  4345. }
  4346. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4347. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4348. Z_current = st_get_position_mm(Z_AXIS);
  4349. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4350. ext_position = st_get_position_mm(E_AXIS);
  4351. if (code_seen('X') || code_seen('x') ) {
  4352. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4353. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4354. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4355. goto Sigma_Exit;
  4356. }
  4357. }
  4358. if (code_seen('Y') || code_seen('y') ) {
  4359. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4360. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4361. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4362. goto Sigma_Exit;
  4363. }
  4364. }
  4365. if (code_seen('L') || code_seen('l') ) {
  4366. n_legs = code_value();
  4367. if ( n_legs==1 )
  4368. n_legs = 2;
  4369. if ( n_legs<0 || n_legs>15 ) {
  4370. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4371. goto Sigma_Exit;
  4372. }
  4373. }
  4374. //
  4375. // Do all the preliminary setup work. First raise the probe.
  4376. //
  4377. st_synchronize();
  4378. plan_bed_level_matrix.set_to_identity();
  4379. plan_buffer_line( X_current, Y_current, Z_start_location,
  4380. ext_position,
  4381. homing_feedrate[Z_AXIS]/60,
  4382. active_extruder);
  4383. st_synchronize();
  4384. //
  4385. // Now get everything to the specified probe point So we can safely do a probe to
  4386. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4387. // use that as a starting point for each probe.
  4388. //
  4389. if (verbose_level > 2)
  4390. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4391. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4392. ext_position,
  4393. homing_feedrate[X_AXIS]/60,
  4394. active_extruder);
  4395. st_synchronize();
  4396. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4397. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4398. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4399. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4400. //
  4401. // OK, do the inital probe to get us close to the bed.
  4402. // Then retrace the right amount and use that in subsequent probes
  4403. //
  4404. setup_for_endstop_move();
  4405. run_z_probe();
  4406. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4407. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4408. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4409. ext_position,
  4410. homing_feedrate[X_AXIS]/60,
  4411. active_extruder);
  4412. st_synchronize();
  4413. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4414. for( n=0; n<n_samples; n++) {
  4415. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4416. if ( n_legs) {
  4417. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4418. int rotational_direction, l;
  4419. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4420. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4421. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4422. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4423. //SERIAL_ECHOPAIR(" theta: ",theta);
  4424. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4425. //SERIAL_PROTOCOLLNPGM("");
  4426. for( l=0; l<n_legs-1; l++) {
  4427. if (rotational_direction==1)
  4428. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4429. else
  4430. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4431. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4432. if ( radius<0.0 )
  4433. radius = -radius;
  4434. X_current = X_probe_location + cos(theta) * radius;
  4435. Y_current = Y_probe_location + sin(theta) * radius;
  4436. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4437. X_current = X_MIN_POS;
  4438. if ( X_current>X_MAX_POS)
  4439. X_current = X_MAX_POS;
  4440. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4441. Y_current = Y_MIN_POS;
  4442. if ( Y_current>Y_MAX_POS)
  4443. Y_current = Y_MAX_POS;
  4444. if (verbose_level>3 ) {
  4445. SERIAL_ECHOPAIR("x: ", X_current);
  4446. SERIAL_ECHOPAIR("y: ", Y_current);
  4447. SERIAL_PROTOCOLLNPGM("");
  4448. }
  4449. do_blocking_move_to( X_current, Y_current, Z_current );
  4450. }
  4451. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4452. }
  4453. setup_for_endstop_move();
  4454. run_z_probe();
  4455. sample_set[n] = current_position[Z_AXIS];
  4456. //
  4457. // Get the current mean for the data points we have so far
  4458. //
  4459. sum=0.0;
  4460. for( j=0; j<=n; j++) {
  4461. sum = sum + sample_set[j];
  4462. }
  4463. mean = sum / (double (n+1));
  4464. //
  4465. // Now, use that mean to calculate the standard deviation for the
  4466. // data points we have so far
  4467. //
  4468. sum=0.0;
  4469. for( j=0; j<=n; j++) {
  4470. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4471. }
  4472. sigma = sqrt( sum / (double (n+1)) );
  4473. if (verbose_level > 1) {
  4474. SERIAL_PROTOCOL(n+1);
  4475. SERIAL_PROTOCOL(" of ");
  4476. SERIAL_PROTOCOL(n_samples);
  4477. SERIAL_PROTOCOLPGM(" z: ");
  4478. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4479. }
  4480. if (verbose_level > 2) {
  4481. SERIAL_PROTOCOL(" mean: ");
  4482. SERIAL_PROTOCOL_F(mean,6);
  4483. SERIAL_PROTOCOL(" sigma: ");
  4484. SERIAL_PROTOCOL_F(sigma,6);
  4485. }
  4486. if (verbose_level > 0)
  4487. SERIAL_PROTOCOLPGM("\n");
  4488. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4489. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4490. st_synchronize();
  4491. }
  4492. delay(1000);
  4493. clean_up_after_endstop_move();
  4494. // enable_endstops(true);
  4495. if (verbose_level > 0) {
  4496. SERIAL_PROTOCOLPGM("Mean: ");
  4497. SERIAL_PROTOCOL_F(mean, 6);
  4498. SERIAL_PROTOCOLPGM("\n");
  4499. }
  4500. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4501. SERIAL_PROTOCOL_F(sigma, 6);
  4502. SERIAL_PROTOCOLPGM("\n\n");
  4503. Sigma_Exit:
  4504. break;
  4505. }
  4506. #endif // Z_PROBE_REPEATABILITY_TEST
  4507. #endif // ENABLE_AUTO_BED_LEVELING
  4508. case 73: //M73 show percent done and time remaining
  4509. if(code_seen('P')) print_percent_done_normal = code_value();
  4510. if(code_seen('R')) print_time_remaining_normal = code_value();
  4511. if(code_seen('Q')) print_percent_done_silent = code_value();
  4512. if(code_seen('S')) print_time_remaining_silent = code_value();
  4513. {
  4514. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4515. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4516. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4517. }
  4518. break;
  4519. case 104: // M104
  4520. if(setTargetedHotend(104)){
  4521. break;
  4522. }
  4523. if (code_seen('S'))
  4524. {
  4525. setTargetHotendSafe(code_value(), tmp_extruder);
  4526. }
  4527. setWatch();
  4528. break;
  4529. case 112: // M112 -Emergency Stop
  4530. kill(_n(""), 3);
  4531. break;
  4532. case 140: // M140 set bed temp
  4533. if (code_seen('S')) setTargetBed(code_value());
  4534. break;
  4535. case 105 : // M105
  4536. if(setTargetedHotend(105)){
  4537. break;
  4538. }
  4539. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4540. SERIAL_PROTOCOLPGM("ok T:");
  4541. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4542. SERIAL_PROTOCOLPGM(" /");
  4543. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4544. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4545. SERIAL_PROTOCOLPGM(" B:");
  4546. SERIAL_PROTOCOL_F(degBed(),1);
  4547. SERIAL_PROTOCOLPGM(" /");
  4548. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4549. #endif //TEMP_BED_PIN
  4550. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4551. SERIAL_PROTOCOLPGM(" T");
  4552. SERIAL_PROTOCOL(cur_extruder);
  4553. SERIAL_PROTOCOLPGM(":");
  4554. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4555. SERIAL_PROTOCOLPGM(" /");
  4556. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4557. }
  4558. #else
  4559. SERIAL_ERROR_START;
  4560. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4561. #endif
  4562. SERIAL_PROTOCOLPGM(" @:");
  4563. #ifdef EXTRUDER_WATTS
  4564. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4565. SERIAL_PROTOCOLPGM("W");
  4566. #else
  4567. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4568. #endif
  4569. SERIAL_PROTOCOLPGM(" B@:");
  4570. #ifdef BED_WATTS
  4571. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4572. SERIAL_PROTOCOLPGM("W");
  4573. #else
  4574. SERIAL_PROTOCOL(getHeaterPower(-1));
  4575. #endif
  4576. #ifdef PINDA_THERMISTOR
  4577. SERIAL_PROTOCOLPGM(" P:");
  4578. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4579. #endif //PINDA_THERMISTOR
  4580. #ifdef AMBIENT_THERMISTOR
  4581. SERIAL_PROTOCOLPGM(" A:");
  4582. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4583. #endif //AMBIENT_THERMISTOR
  4584. #ifdef SHOW_TEMP_ADC_VALUES
  4585. {float raw = 0.0;
  4586. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4587. SERIAL_PROTOCOLPGM(" ADC B:");
  4588. SERIAL_PROTOCOL_F(degBed(),1);
  4589. SERIAL_PROTOCOLPGM("C->");
  4590. raw = rawBedTemp();
  4591. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4592. SERIAL_PROTOCOLPGM(" Rb->");
  4593. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4594. SERIAL_PROTOCOLPGM(" Rxb->");
  4595. SERIAL_PROTOCOL_F(raw, 5);
  4596. #endif
  4597. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4598. SERIAL_PROTOCOLPGM(" T");
  4599. SERIAL_PROTOCOL(cur_extruder);
  4600. SERIAL_PROTOCOLPGM(":");
  4601. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4602. SERIAL_PROTOCOLPGM("C->");
  4603. raw = rawHotendTemp(cur_extruder);
  4604. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4605. SERIAL_PROTOCOLPGM(" Rt");
  4606. SERIAL_PROTOCOL(cur_extruder);
  4607. SERIAL_PROTOCOLPGM("->");
  4608. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4609. SERIAL_PROTOCOLPGM(" Rx");
  4610. SERIAL_PROTOCOL(cur_extruder);
  4611. SERIAL_PROTOCOLPGM("->");
  4612. SERIAL_PROTOCOL_F(raw, 5);
  4613. }}
  4614. #endif
  4615. SERIAL_PROTOCOLLN("");
  4616. KEEPALIVE_STATE(NOT_BUSY);
  4617. return;
  4618. break;
  4619. case 109:
  4620. {// M109 - Wait for extruder heater to reach target.
  4621. if(setTargetedHotend(109)){
  4622. break;
  4623. }
  4624. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4625. heating_status = 1;
  4626. if (farm_mode) { prusa_statistics(1); };
  4627. #ifdef AUTOTEMP
  4628. autotemp_enabled=false;
  4629. #endif
  4630. if (code_seen('S')) {
  4631. setTargetHotendSafe(code_value(), tmp_extruder);
  4632. CooldownNoWait = true;
  4633. } else if (code_seen('R')) {
  4634. setTargetHotendSafe(code_value(), tmp_extruder);
  4635. CooldownNoWait = false;
  4636. }
  4637. #ifdef AUTOTEMP
  4638. if (code_seen('S')) autotemp_min=code_value();
  4639. if (code_seen('B')) autotemp_max=code_value();
  4640. if (code_seen('F'))
  4641. {
  4642. autotemp_factor=code_value();
  4643. autotemp_enabled=true;
  4644. }
  4645. #endif
  4646. setWatch();
  4647. codenum = millis();
  4648. /* See if we are heating up or cooling down */
  4649. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4650. KEEPALIVE_STATE(NOT_BUSY);
  4651. cancel_heatup = false;
  4652. wait_for_heater(codenum); //loops until target temperature is reached
  4653. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4654. KEEPALIVE_STATE(IN_HANDLER);
  4655. heating_status = 2;
  4656. if (farm_mode) { prusa_statistics(2); };
  4657. //starttime=millis();
  4658. previous_millis_cmd = millis();
  4659. }
  4660. break;
  4661. case 190: // M190 - Wait for bed heater to reach target.
  4662. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4663. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4664. heating_status = 3;
  4665. if (farm_mode) { prusa_statistics(1); };
  4666. if (code_seen('S'))
  4667. {
  4668. setTargetBed(code_value());
  4669. CooldownNoWait = true;
  4670. }
  4671. else if (code_seen('R'))
  4672. {
  4673. setTargetBed(code_value());
  4674. CooldownNoWait = false;
  4675. }
  4676. codenum = millis();
  4677. cancel_heatup = false;
  4678. target_direction = isHeatingBed(); // true if heating, false if cooling
  4679. KEEPALIVE_STATE(NOT_BUSY);
  4680. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4681. {
  4682. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4683. {
  4684. if (!farm_mode) {
  4685. float tt = degHotend(active_extruder);
  4686. SERIAL_PROTOCOLPGM("T:");
  4687. SERIAL_PROTOCOL(tt);
  4688. SERIAL_PROTOCOLPGM(" E:");
  4689. SERIAL_PROTOCOL((int)active_extruder);
  4690. SERIAL_PROTOCOLPGM(" B:");
  4691. SERIAL_PROTOCOL_F(degBed(), 1);
  4692. SERIAL_PROTOCOLLN("");
  4693. }
  4694. codenum = millis();
  4695. }
  4696. manage_heater();
  4697. manage_inactivity();
  4698. lcd_update(0);
  4699. }
  4700. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4701. KEEPALIVE_STATE(IN_HANDLER);
  4702. heating_status = 4;
  4703. previous_millis_cmd = millis();
  4704. #endif
  4705. break;
  4706. #if defined(FAN_PIN) && FAN_PIN > -1
  4707. case 106: //M106 Fan On
  4708. if (code_seen('S')){
  4709. fanSpeed=constrain(code_value(),0,255);
  4710. }
  4711. else {
  4712. fanSpeed=255;
  4713. }
  4714. break;
  4715. case 107: //M107 Fan Off
  4716. fanSpeed = 0;
  4717. break;
  4718. #endif //FAN_PIN
  4719. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4720. case 80: // M80 - Turn on Power Supply
  4721. SET_OUTPUT(PS_ON_PIN); //GND
  4722. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4723. // If you have a switch on suicide pin, this is useful
  4724. // if you want to start another print with suicide feature after
  4725. // a print without suicide...
  4726. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4727. SET_OUTPUT(SUICIDE_PIN);
  4728. WRITE(SUICIDE_PIN, HIGH);
  4729. #endif
  4730. powersupply = true;
  4731. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4732. lcd_update(0);
  4733. break;
  4734. #endif
  4735. case 81: // M81 - Turn off Power Supply
  4736. disable_heater();
  4737. st_synchronize();
  4738. disable_e0();
  4739. disable_e1();
  4740. disable_e2();
  4741. finishAndDisableSteppers();
  4742. fanSpeed = 0;
  4743. delay(1000); // Wait a little before to switch off
  4744. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4745. st_synchronize();
  4746. suicide();
  4747. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4748. SET_OUTPUT(PS_ON_PIN);
  4749. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4750. #endif
  4751. powersupply = false;
  4752. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4753. lcd_update(0);
  4754. break;
  4755. case 82:
  4756. axis_relative_modes[3] = false;
  4757. break;
  4758. case 83:
  4759. axis_relative_modes[3] = true;
  4760. break;
  4761. case 18: //compatibility
  4762. case 84: // M84
  4763. if(code_seen('S')){
  4764. stepper_inactive_time = code_value() * 1000;
  4765. }
  4766. else
  4767. {
  4768. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4769. if(all_axis)
  4770. {
  4771. st_synchronize();
  4772. disable_e0();
  4773. disable_e1();
  4774. disable_e2();
  4775. finishAndDisableSteppers();
  4776. }
  4777. else
  4778. {
  4779. st_synchronize();
  4780. if (code_seen('X')) disable_x();
  4781. if (code_seen('Y')) disable_y();
  4782. if (code_seen('Z')) disable_z();
  4783. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4784. if (code_seen('E')) {
  4785. disable_e0();
  4786. disable_e1();
  4787. disable_e2();
  4788. }
  4789. #endif
  4790. }
  4791. }
  4792. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4793. print_time_remaining_init();
  4794. snmm_filaments_used = 0;
  4795. break;
  4796. case 85: // M85
  4797. if(code_seen('S')) {
  4798. max_inactive_time = code_value() * 1000;
  4799. }
  4800. break;
  4801. #ifdef SAFETYTIMER
  4802. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4803. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4804. if (code_seen('S')) {
  4805. safetytimer_inactive_time = code_value() * 1000;
  4806. safetyTimer.start();
  4807. }
  4808. break;
  4809. #endif
  4810. case 92: // M92
  4811. for(int8_t i=0; i < NUM_AXIS; i++)
  4812. {
  4813. if(code_seen(axis_codes[i]))
  4814. {
  4815. if(i == 3) { // E
  4816. float value = code_value();
  4817. if(value < 20.0) {
  4818. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4819. max_jerk[E_AXIS] *= factor;
  4820. max_feedrate[i] *= factor;
  4821. axis_steps_per_sqr_second[i] *= factor;
  4822. }
  4823. axis_steps_per_unit[i] = value;
  4824. }
  4825. else {
  4826. axis_steps_per_unit[i] = code_value();
  4827. }
  4828. }
  4829. }
  4830. break;
  4831. case 110: // M110 - reset line pos
  4832. if (code_seen('N'))
  4833. gcode_LastN = code_value_long();
  4834. break;
  4835. #ifdef HOST_KEEPALIVE_FEATURE
  4836. case 113: // M113 - Get or set Host Keepalive interval
  4837. if (code_seen('S')) {
  4838. host_keepalive_interval = (uint8_t)code_value_short();
  4839. // NOMORE(host_keepalive_interval, 60);
  4840. }
  4841. else {
  4842. SERIAL_ECHO_START;
  4843. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4844. SERIAL_PROTOCOLLN("");
  4845. }
  4846. break;
  4847. #endif
  4848. case 115: // M115
  4849. if (code_seen('V')) {
  4850. // Report the Prusa version number.
  4851. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4852. } else if (code_seen('U')) {
  4853. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4854. // pause the print and ask the user to upgrade the firmware.
  4855. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4856. } else {
  4857. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4858. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4859. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4860. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4861. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4862. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4863. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4864. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4865. SERIAL_ECHOPGM(" UUID:");
  4866. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4867. }
  4868. break;
  4869. /* case 117: // M117 display message
  4870. starpos = (strchr(strchr_pointer + 5,'*'));
  4871. if(starpos!=NULL)
  4872. *(starpos)='\0';
  4873. lcd_setstatus(strchr_pointer + 5);
  4874. break;*/
  4875. case 114: // M114
  4876. gcode_M114();
  4877. break;
  4878. case 120: // M120
  4879. enable_endstops(false) ;
  4880. break;
  4881. case 121: // M121
  4882. enable_endstops(true) ;
  4883. break;
  4884. case 119: // M119
  4885. SERIAL_PROTOCOLRPGM(_N("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4886. SERIAL_PROTOCOLLN("");
  4887. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4888. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4889. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4890. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4891. }else{
  4892. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4893. }
  4894. SERIAL_PROTOCOLLN("");
  4895. #endif
  4896. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4897. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4898. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4899. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4900. }else{
  4901. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4902. }
  4903. SERIAL_PROTOCOLLN("");
  4904. #endif
  4905. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4906. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4907. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4908. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4909. }else{
  4910. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4911. }
  4912. SERIAL_PROTOCOLLN("");
  4913. #endif
  4914. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4915. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4916. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4917. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4918. }else{
  4919. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4920. }
  4921. SERIAL_PROTOCOLLN("");
  4922. #endif
  4923. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4924. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4925. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4926. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4927. }else{
  4928. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4929. }
  4930. SERIAL_PROTOCOLLN("");
  4931. #endif
  4932. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4933. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4934. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4935. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4936. }else{
  4937. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4938. }
  4939. SERIAL_PROTOCOLLN("");
  4940. #endif
  4941. break;
  4942. //TODO: update for all axis, use for loop
  4943. #ifdef BLINKM
  4944. case 150: // M150
  4945. {
  4946. byte red;
  4947. byte grn;
  4948. byte blu;
  4949. if(code_seen('R')) red = code_value();
  4950. if(code_seen('U')) grn = code_value();
  4951. if(code_seen('B')) blu = code_value();
  4952. SendColors(red,grn,blu);
  4953. }
  4954. break;
  4955. #endif //BLINKM
  4956. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4957. {
  4958. tmp_extruder = active_extruder;
  4959. if(code_seen('T')) {
  4960. tmp_extruder = code_value();
  4961. if(tmp_extruder >= EXTRUDERS) {
  4962. SERIAL_ECHO_START;
  4963. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4964. break;
  4965. }
  4966. }
  4967. if(code_seen('D')) {
  4968. float diameter = (float)code_value();
  4969. if (diameter == 0.0) {
  4970. // setting any extruder filament size disables volumetric on the assumption that
  4971. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4972. // for all extruders
  4973. volumetric_enabled = false;
  4974. } else {
  4975. filament_size[tmp_extruder] = (float)code_value();
  4976. // make sure all extruders have some sane value for the filament size
  4977. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4978. #if EXTRUDERS > 1
  4979. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4980. #if EXTRUDERS > 2
  4981. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4982. #endif
  4983. #endif
  4984. volumetric_enabled = true;
  4985. }
  4986. } else {
  4987. //reserved for setting filament diameter via UFID or filament measuring device
  4988. break;
  4989. }
  4990. calculate_extruder_multipliers();
  4991. }
  4992. break;
  4993. case 201: // M201
  4994. for (int8_t i = 0; i < NUM_AXIS; i++)
  4995. {
  4996. if (code_seen(axis_codes[i]))
  4997. {
  4998. unsigned long val = code_value();
  4999. #ifdef TMC2130
  5000. unsigned long val_silent = val;
  5001. if ((i == X_AXIS) || (i == Y_AXIS))
  5002. {
  5003. if (val > NORMAL_MAX_ACCEL_XY)
  5004. val = NORMAL_MAX_ACCEL_XY;
  5005. if (val_silent > SILENT_MAX_ACCEL_XY)
  5006. val_silent = SILENT_MAX_ACCEL_XY;
  5007. }
  5008. max_acceleration_units_per_sq_second_normal[i] = val;
  5009. max_acceleration_units_per_sq_second_silent[i] = val_silent;
  5010. #else //TMC2130
  5011. max_acceleration_units_per_sq_second[i] = val;
  5012. #endif //TMC2130
  5013. }
  5014. }
  5015. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5016. reset_acceleration_rates();
  5017. break;
  5018. #if 0 // Not used for Sprinter/grbl gen6
  5019. case 202: // M202
  5020. for(int8_t i=0; i < NUM_AXIS; i++) {
  5021. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  5022. }
  5023. break;
  5024. #endif
  5025. case 203: // M203 max feedrate mm/sec
  5026. for (int8_t i = 0; i < NUM_AXIS; i++)
  5027. {
  5028. if (code_seen(axis_codes[i]))
  5029. {
  5030. float val = code_value();
  5031. #ifdef TMC2130
  5032. float val_silent = val;
  5033. if ((i == X_AXIS) || (i == Y_AXIS))
  5034. {
  5035. if (val > NORMAL_MAX_FEEDRATE_XY)
  5036. val = NORMAL_MAX_FEEDRATE_XY;
  5037. if (val_silent > SILENT_MAX_FEEDRATE_XY)
  5038. val_silent = SILENT_MAX_FEEDRATE_XY;
  5039. }
  5040. max_feedrate_normal[i] = val;
  5041. max_feedrate_silent[i] = val_silent;
  5042. #else //TMC2130
  5043. max_feedrate[i] = val;
  5044. #endif //TMC2130
  5045. }
  5046. }
  5047. break;
  5048. case 204: // M204 acclereration S normal moves T filmanent only moves
  5049. {
  5050. if(code_seen('S')) acceleration = code_value() ;
  5051. if(code_seen('T')) retract_acceleration = code_value() ;
  5052. }
  5053. break;
  5054. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5055. {
  5056. if(code_seen('S')) minimumfeedrate = code_value();
  5057. if(code_seen('T')) mintravelfeedrate = code_value();
  5058. if(code_seen('B')) minsegmenttime = code_value() ;
  5059. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  5060. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  5061. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  5062. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  5063. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  5064. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  5065. }
  5066. break;
  5067. case 206: // M206 additional homing offset
  5068. for(int8_t i=0; i < 3; i++)
  5069. {
  5070. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  5071. }
  5072. break;
  5073. #ifdef FWRETRACT
  5074. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5075. {
  5076. if(code_seen('S'))
  5077. {
  5078. retract_length = code_value() ;
  5079. }
  5080. if(code_seen('F'))
  5081. {
  5082. retract_feedrate = code_value()/60 ;
  5083. }
  5084. if(code_seen('Z'))
  5085. {
  5086. retract_zlift = code_value() ;
  5087. }
  5088. }break;
  5089. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5090. {
  5091. if(code_seen('S'))
  5092. {
  5093. retract_recover_length = code_value() ;
  5094. }
  5095. if(code_seen('F'))
  5096. {
  5097. retract_recover_feedrate = code_value()/60 ;
  5098. }
  5099. }break;
  5100. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5101. {
  5102. if(code_seen('S'))
  5103. {
  5104. int t= code_value() ;
  5105. switch(t)
  5106. {
  5107. case 0:
  5108. {
  5109. autoretract_enabled=false;
  5110. retracted[0]=false;
  5111. #if EXTRUDERS > 1
  5112. retracted[1]=false;
  5113. #endif
  5114. #if EXTRUDERS > 2
  5115. retracted[2]=false;
  5116. #endif
  5117. }break;
  5118. case 1:
  5119. {
  5120. autoretract_enabled=true;
  5121. retracted[0]=false;
  5122. #if EXTRUDERS > 1
  5123. retracted[1]=false;
  5124. #endif
  5125. #if EXTRUDERS > 2
  5126. retracted[2]=false;
  5127. #endif
  5128. }break;
  5129. default:
  5130. SERIAL_ECHO_START;
  5131. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5132. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5133. SERIAL_ECHOLNPGM("\"(1)");
  5134. }
  5135. }
  5136. }break;
  5137. #endif // FWRETRACT
  5138. #if EXTRUDERS > 1
  5139. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5140. {
  5141. if(setTargetedHotend(218)){
  5142. break;
  5143. }
  5144. if(code_seen('X'))
  5145. {
  5146. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5147. }
  5148. if(code_seen('Y'))
  5149. {
  5150. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5151. }
  5152. SERIAL_ECHO_START;
  5153. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5154. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5155. {
  5156. SERIAL_ECHO(" ");
  5157. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5158. SERIAL_ECHO(",");
  5159. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5160. }
  5161. SERIAL_ECHOLN("");
  5162. }break;
  5163. #endif
  5164. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5165. {
  5166. if(code_seen('S'))
  5167. {
  5168. feedmultiply = code_value() ;
  5169. }
  5170. }
  5171. break;
  5172. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5173. {
  5174. if(code_seen('S'))
  5175. {
  5176. int tmp_code = code_value();
  5177. if (code_seen('T'))
  5178. {
  5179. if(setTargetedHotend(221)){
  5180. break;
  5181. }
  5182. extruder_multiply[tmp_extruder] = tmp_code;
  5183. }
  5184. else
  5185. {
  5186. extrudemultiply = tmp_code ;
  5187. }
  5188. }
  5189. calculate_extruder_multipliers();
  5190. }
  5191. break;
  5192. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5193. {
  5194. if(code_seen('P')){
  5195. int pin_number = code_value(); // pin number
  5196. int pin_state = -1; // required pin state - default is inverted
  5197. if(code_seen('S')) pin_state = code_value(); // required pin state
  5198. if(pin_state >= -1 && pin_state <= 1){
  5199. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5200. {
  5201. if (sensitive_pins[i] == pin_number)
  5202. {
  5203. pin_number = -1;
  5204. break;
  5205. }
  5206. }
  5207. if (pin_number > -1)
  5208. {
  5209. int target = LOW;
  5210. st_synchronize();
  5211. pinMode(pin_number, INPUT);
  5212. switch(pin_state){
  5213. case 1:
  5214. target = HIGH;
  5215. break;
  5216. case 0:
  5217. target = LOW;
  5218. break;
  5219. case -1:
  5220. target = !digitalRead(pin_number);
  5221. break;
  5222. }
  5223. while(digitalRead(pin_number) != target){
  5224. manage_heater();
  5225. manage_inactivity();
  5226. lcd_update(0);
  5227. }
  5228. }
  5229. }
  5230. }
  5231. }
  5232. break;
  5233. #if NUM_SERVOS > 0
  5234. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5235. {
  5236. int servo_index = -1;
  5237. int servo_position = 0;
  5238. if (code_seen('P'))
  5239. servo_index = code_value();
  5240. if (code_seen('S')) {
  5241. servo_position = code_value();
  5242. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5243. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5244. servos[servo_index].attach(0);
  5245. #endif
  5246. servos[servo_index].write(servo_position);
  5247. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5248. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5249. servos[servo_index].detach();
  5250. #endif
  5251. }
  5252. else {
  5253. SERIAL_ECHO_START;
  5254. SERIAL_ECHO("Servo ");
  5255. SERIAL_ECHO(servo_index);
  5256. SERIAL_ECHOLN(" out of range");
  5257. }
  5258. }
  5259. else if (servo_index >= 0) {
  5260. SERIAL_PROTOCOL(_T(MSG_OK));
  5261. SERIAL_PROTOCOL(" Servo ");
  5262. SERIAL_PROTOCOL(servo_index);
  5263. SERIAL_PROTOCOL(": ");
  5264. SERIAL_PROTOCOL(servos[servo_index].read());
  5265. SERIAL_PROTOCOLLN("");
  5266. }
  5267. }
  5268. break;
  5269. #endif // NUM_SERVOS > 0
  5270. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5271. case 300: // M300
  5272. {
  5273. int beepS = code_seen('S') ? code_value() : 110;
  5274. int beepP = code_seen('P') ? code_value() : 1000;
  5275. if (beepS > 0)
  5276. {
  5277. #if BEEPER > 0
  5278. tone(BEEPER, beepS);
  5279. delay(beepP);
  5280. noTone(BEEPER);
  5281. #endif
  5282. }
  5283. else
  5284. {
  5285. delay(beepP);
  5286. }
  5287. }
  5288. break;
  5289. #endif // M300
  5290. #ifdef PIDTEMP
  5291. case 301: // M301
  5292. {
  5293. if(code_seen('P')) Kp = code_value();
  5294. if(code_seen('I')) Ki = scalePID_i(code_value());
  5295. if(code_seen('D')) Kd = scalePID_d(code_value());
  5296. #ifdef PID_ADD_EXTRUSION_RATE
  5297. if(code_seen('C')) Kc = code_value();
  5298. #endif
  5299. updatePID();
  5300. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5301. SERIAL_PROTOCOL(" p:");
  5302. SERIAL_PROTOCOL(Kp);
  5303. SERIAL_PROTOCOL(" i:");
  5304. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5305. SERIAL_PROTOCOL(" d:");
  5306. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5307. #ifdef PID_ADD_EXTRUSION_RATE
  5308. SERIAL_PROTOCOL(" c:");
  5309. //Kc does not have scaling applied above, or in resetting defaults
  5310. SERIAL_PROTOCOL(Kc);
  5311. #endif
  5312. SERIAL_PROTOCOLLN("");
  5313. }
  5314. break;
  5315. #endif //PIDTEMP
  5316. #ifdef PIDTEMPBED
  5317. case 304: // M304
  5318. {
  5319. if(code_seen('P')) bedKp = code_value();
  5320. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5321. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5322. updatePID();
  5323. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5324. SERIAL_PROTOCOL(" p:");
  5325. SERIAL_PROTOCOL(bedKp);
  5326. SERIAL_PROTOCOL(" i:");
  5327. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5328. SERIAL_PROTOCOL(" d:");
  5329. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5330. SERIAL_PROTOCOLLN("");
  5331. }
  5332. break;
  5333. #endif //PIDTEMP
  5334. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5335. {
  5336. #ifdef CHDK
  5337. SET_OUTPUT(CHDK);
  5338. WRITE(CHDK, HIGH);
  5339. chdkHigh = millis();
  5340. chdkActive = true;
  5341. #else
  5342. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5343. const uint8_t NUM_PULSES=16;
  5344. const float PULSE_LENGTH=0.01524;
  5345. for(int i=0; i < NUM_PULSES; i++) {
  5346. WRITE(PHOTOGRAPH_PIN, HIGH);
  5347. _delay_ms(PULSE_LENGTH);
  5348. WRITE(PHOTOGRAPH_PIN, LOW);
  5349. _delay_ms(PULSE_LENGTH);
  5350. }
  5351. delay(7.33);
  5352. for(int i=0; i < NUM_PULSES; i++) {
  5353. WRITE(PHOTOGRAPH_PIN, HIGH);
  5354. _delay_ms(PULSE_LENGTH);
  5355. WRITE(PHOTOGRAPH_PIN, LOW);
  5356. _delay_ms(PULSE_LENGTH);
  5357. }
  5358. #endif
  5359. #endif //chdk end if
  5360. }
  5361. break;
  5362. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5363. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5364. {
  5365. float temp = .0;
  5366. if (code_seen('S')) temp=code_value();
  5367. set_extrude_min_temp(temp);
  5368. }
  5369. break;
  5370. #endif
  5371. case 303: // M303 PID autotune
  5372. {
  5373. float temp = 150.0;
  5374. int e=0;
  5375. int c=5;
  5376. if (code_seen('E')) e=code_value();
  5377. if (e<0)
  5378. temp=70;
  5379. if (code_seen('S')) temp=code_value();
  5380. if (code_seen('C')) c=code_value();
  5381. PID_autotune(temp, e, c);
  5382. }
  5383. break;
  5384. case 400: // M400 finish all moves
  5385. {
  5386. st_synchronize();
  5387. }
  5388. break;
  5389. case 500: // M500 Store settings in EEPROM
  5390. {
  5391. Config_StoreSettings(EEPROM_OFFSET);
  5392. }
  5393. break;
  5394. case 501: // M501 Read settings from EEPROM
  5395. {
  5396. Config_RetrieveSettings(EEPROM_OFFSET);
  5397. }
  5398. break;
  5399. case 502: // M502 Revert to default settings
  5400. {
  5401. Config_ResetDefault();
  5402. }
  5403. break;
  5404. case 503: // M503 print settings currently in memory
  5405. {
  5406. Config_PrintSettings();
  5407. }
  5408. break;
  5409. case 509: //M509 Force language selection
  5410. {
  5411. lang_reset();
  5412. SERIAL_ECHO_START;
  5413. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5414. }
  5415. break;
  5416. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5417. case 540:
  5418. {
  5419. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5420. }
  5421. break;
  5422. #endif
  5423. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5424. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5425. {
  5426. float value;
  5427. if (code_seen('Z'))
  5428. {
  5429. value = code_value();
  5430. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5431. {
  5432. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5433. SERIAL_ECHO_START;
  5434. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5435. SERIAL_PROTOCOLLN("");
  5436. }
  5437. else
  5438. {
  5439. SERIAL_ECHO_START;
  5440. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5441. SERIAL_ECHORPGM(MSG_Z_MIN);
  5442. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5443. SERIAL_ECHORPGM(MSG_Z_MAX);
  5444. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5445. SERIAL_PROTOCOLLN("");
  5446. }
  5447. }
  5448. else
  5449. {
  5450. SERIAL_ECHO_START;
  5451. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5452. SERIAL_ECHO(-zprobe_zoffset);
  5453. SERIAL_PROTOCOLLN("");
  5454. }
  5455. break;
  5456. }
  5457. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5458. #ifdef FILAMENTCHANGEENABLE
  5459. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5460. {
  5461. st_synchronize();
  5462. float lastpos[4];
  5463. if (farm_mode)
  5464. {
  5465. prusa_statistics(22);
  5466. }
  5467. feedmultiplyBckp=feedmultiply;
  5468. float HotendTempBckp = degTargetHotend(active_extruder);
  5469. int fanSpeedBckp = fanSpeed;
  5470. lastpos[X_AXIS]=current_position[X_AXIS];
  5471. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5472. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5473. lastpos[E_AXIS]=current_position[E_AXIS];
  5474. //Restract extruder
  5475. if(code_seen('E'))
  5476. {
  5477. current_position[E_AXIS]+= code_value();
  5478. }
  5479. else
  5480. {
  5481. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5482. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5483. #endif
  5484. }
  5485. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5486. //Lift Z
  5487. if(code_seen('Z'))
  5488. {
  5489. current_position[Z_AXIS]+= code_value();
  5490. }
  5491. else
  5492. {
  5493. #ifdef FILAMENTCHANGE_ZADD
  5494. current_position[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5495. if(current_position[Z_AXIS] < 10){
  5496. current_position[Z_AXIS]+= 10 ;
  5497. }
  5498. #endif
  5499. }
  5500. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5501. //Move XY to side
  5502. if(code_seen('X'))
  5503. {
  5504. current_position[X_AXIS]+= code_value();
  5505. }
  5506. else
  5507. {
  5508. #ifdef FILAMENTCHANGE_XPOS
  5509. current_position[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5510. #endif
  5511. }
  5512. if(code_seen('Y'))
  5513. {
  5514. current_position[Y_AXIS]= code_value();
  5515. }
  5516. else
  5517. {
  5518. #ifdef FILAMENTCHANGE_YPOS
  5519. current_position[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5520. #endif
  5521. }
  5522. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5523. st_synchronize();
  5524. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5525. int counterBeep = 0;
  5526. fanSpeed = 0;
  5527. unsigned long waiting_start_time = millis();
  5528. uint8_t wait_for_user_state = 0;
  5529. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5530. bool bFirst=true;
  5531. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5532. manage_heater();
  5533. manage_inactivity(true);
  5534. #if BEEPER > 0
  5535. if (counterBeep == 500) {
  5536. counterBeep = 0;
  5537. }
  5538. SET_OUTPUT(BEEPER);
  5539. if (counterBeep == 0) {
  5540. if((eSoundMode==e_SOUND_MODE_LOUD)||((eSoundMode==e_SOUND_MODE_ONCE)&&bFirst)) {
  5541. bFirst=false;
  5542. WRITE(BEEPER, HIGH);
  5543. }
  5544. }
  5545. if (counterBeep == 20) {
  5546. WRITE(BEEPER, LOW);
  5547. }
  5548. counterBeep++;
  5549. #endif
  5550. switch (wait_for_user_state) {
  5551. case 0:
  5552. delay_keep_alive(4);
  5553. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5554. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5555. wait_for_user_state = 1;
  5556. setAllTargetHotends(0);
  5557. st_synchronize();
  5558. disable_e0();
  5559. disable_e1();
  5560. disable_e2();
  5561. }
  5562. break;
  5563. case 1:
  5564. delay_keep_alive(4);
  5565. if (lcd_clicked()) {
  5566. setTargetHotend(HotendTempBckp, active_extruder);
  5567. lcd_wait_for_heater();
  5568. wait_for_user_state = 2;
  5569. }
  5570. break;
  5571. case 2:
  5572. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5573. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5574. waiting_start_time = millis();
  5575. wait_for_user_state = 0;
  5576. }
  5577. else {
  5578. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5579. lcd_set_cursor(1, 4);
  5580. lcd_print(ftostr3(degHotend(active_extruder)));
  5581. }
  5582. break;
  5583. }
  5584. }
  5585. WRITE(BEEPER, LOW);
  5586. lcd_change_fil_state = 0;
  5587. // Unload filament
  5588. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5589. KEEPALIVE_STATE(IN_HANDLER);
  5590. custom_message = true;
  5591. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5592. if (code_seen('L'))
  5593. {
  5594. current_position[E_AXIS] += code_value();
  5595. }
  5596. else
  5597. {
  5598. #ifdef SNMM
  5599. #else
  5600. #ifdef FILAMENTCHANGE_FINALRETRACT
  5601. current_position[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5602. #endif
  5603. #endif // SNMM
  5604. }
  5605. #ifdef SNMM
  5606. current_position[E_AXIS] += 12;
  5607. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500, active_extruder);
  5608. current_position[E_AXIS] += 6;
  5609. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  5610. current_position[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5611. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5000, active_extruder);
  5612. st_synchronize();
  5613. current_position[E_AXIS] += (FIL_COOLING);
  5614. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5615. current_position[E_AXIS] += (FIL_COOLING*-1);
  5616. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  5617. current_position[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5618. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  5619. st_synchronize();
  5620. #else
  5621. // plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5622. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3500 / 60, active_extruder);
  5623. current_position[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5624. st_synchronize();
  5625. #ifdef TMC2130
  5626. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5627. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5628. #else
  5629. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5630. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5631. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5632. #endif //TMC2130
  5633. current_position[E_AXIS] -= 45;
  5634. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  5635. st_synchronize();
  5636. current_position[E_AXIS] -= 15;
  5637. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5638. st_synchronize();
  5639. current_position[E_AXIS] -= 20;
  5640. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  5641. st_synchronize();
  5642. #ifdef TMC2130
  5643. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5644. #else
  5645. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5646. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5647. else st_current_set(2, tmp_motor_loud[2]);
  5648. #endif //TMC2130
  5649. #endif // SNMM
  5650. //finish moves
  5651. st_synchronize();
  5652. //disable extruder steppers so filament can be removed
  5653. disable_e0();
  5654. disable_e1();
  5655. disable_e2();
  5656. delay(100);
  5657. #ifdef SNMM_V2
  5658. fprintf_P(uart2io, PSTR("U0\n"));
  5659. // get response
  5660. bool response = mmu_get_reponse(false);
  5661. if (!response) mmu_not_responding();
  5662. #else
  5663. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5664. WRITE(BEEPER, HIGH);
  5665. counterBeep = 0;
  5666. while(!lcd_clicked() && (counterBeep < 50)) {
  5667. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5668. delay_keep_alive(100);
  5669. counterBeep++;
  5670. }
  5671. WRITE(BEEPER, LOW);
  5672. #endif
  5673. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5674. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5675. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5676. //lcd_return_to_status();
  5677. lcd_update_enable(true);
  5678. #ifdef SNMM_V2
  5679. mmu_M600_load_filament();
  5680. #else
  5681. M600_load_filament();
  5682. #endif
  5683. //Wait for user to check the state
  5684. lcd_change_fil_state = 0;
  5685. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5686. lcd_change_fil_state = 0;
  5687. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5688. lcd_alright();
  5689. KEEPALIVE_STATE(IN_HANDLER);
  5690. switch(lcd_change_fil_state){
  5691. // Filament failed to load so load it again
  5692. case 2:
  5693. #ifdef SNMM_V2
  5694. mmu_M600_load_filament(); //change to "wrong filament loaded" option?
  5695. #else
  5696. M600_load_filament_movements();
  5697. #endif
  5698. break;
  5699. // Filament loaded properly but color is not clear
  5700. case 3:
  5701. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5702. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2, active_extruder);
  5703. lcd_loading_color();
  5704. break;
  5705. // Everything good
  5706. default:
  5707. lcd_change_success();
  5708. lcd_update_enable(true);
  5709. break;
  5710. }
  5711. }
  5712. //Not let's go back to print
  5713. fanSpeed = fanSpeedBckp;
  5714. //Feed a little of filament to stabilize pressure
  5715. current_position[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5716. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5717. //Retract
  5718. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5719. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5720. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 70, active_extruder); //should do nothing
  5721. //Move XY back
  5722. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5723. //Move Z back
  5724. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5725. current_position[E_AXIS]= current_position[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5726. //Unretract
  5727. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5728. //Set E position to original
  5729. plan_set_e_position(lastpos[E_AXIS]);
  5730. memcpy(current_position, lastpos, sizeof(lastpos));
  5731. memcpy(destination, current_position, sizeof(current_position));
  5732. //Recover feed rate
  5733. feedmultiply=feedmultiplyBckp;
  5734. char cmd[9];
  5735. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5736. enquecommand(cmd);
  5737. lcd_setstatuspgm(_T(WELCOME_MSG));
  5738. custom_message = false;
  5739. custom_message_type = 0;
  5740. }
  5741. break;
  5742. #endif //FILAMENTCHANGEENABLE
  5743. case 601: {
  5744. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5745. }
  5746. break;
  5747. case 602: {
  5748. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5749. }
  5750. break;
  5751. #ifdef PINDA_THERMISTOR
  5752. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5753. {
  5754. int set_target_pinda = 0;
  5755. if (code_seen('S')) {
  5756. set_target_pinda = code_value();
  5757. }
  5758. else {
  5759. break;
  5760. }
  5761. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5762. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5763. SERIAL_PROTOCOL(set_target_pinda);
  5764. SERIAL_PROTOCOLLN("");
  5765. codenum = millis();
  5766. cancel_heatup = false;
  5767. bool is_pinda_cooling = false;
  5768. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5769. is_pinda_cooling = true;
  5770. }
  5771. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5772. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5773. {
  5774. SERIAL_PROTOCOLPGM("P:");
  5775. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5776. SERIAL_PROTOCOLPGM("/");
  5777. SERIAL_PROTOCOL(set_target_pinda);
  5778. SERIAL_PROTOCOLLN("");
  5779. codenum = millis();
  5780. }
  5781. manage_heater();
  5782. manage_inactivity();
  5783. lcd_update(0);
  5784. }
  5785. LCD_MESSAGERPGM(_T(MSG_OK));
  5786. break;
  5787. }
  5788. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5789. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5790. uint8_t cal_status = calibration_status_pinda();
  5791. int16_t usteps = 0;
  5792. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5793. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5794. for (uint8_t i = 0; i < 6; i++)
  5795. {
  5796. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5797. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5798. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5799. SERIAL_PROTOCOLPGM(", ");
  5800. SERIAL_PROTOCOL(35 + (i * 5));
  5801. SERIAL_PROTOCOLPGM(", ");
  5802. SERIAL_PROTOCOL(usteps);
  5803. SERIAL_PROTOCOLPGM(", ");
  5804. SERIAL_PROTOCOL(mm * 1000);
  5805. SERIAL_PROTOCOLLN("");
  5806. }
  5807. }
  5808. else if (code_seen('!')) { // ! - Set factory default values
  5809. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5810. int16_t z_shift = 8; //40C - 20um - 8usteps
  5811. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5812. z_shift = 24; //45C - 60um - 24usteps
  5813. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5814. z_shift = 48; //50C - 120um - 48usteps
  5815. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5816. z_shift = 80; //55C - 200um - 80usteps
  5817. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5818. z_shift = 120; //60C - 300um - 120usteps
  5819. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5820. SERIAL_PROTOCOLLN("factory restored");
  5821. }
  5822. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5823. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5824. int16_t z_shift = 0;
  5825. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5826. SERIAL_PROTOCOLLN("zerorized");
  5827. }
  5828. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5829. int16_t usteps = code_value();
  5830. if (code_seen('I')) {
  5831. byte index = code_value();
  5832. if ((index >= 0) && (index < 5)) {
  5833. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5834. SERIAL_PROTOCOLLN("OK");
  5835. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5836. for (uint8_t i = 0; i < 6; i++)
  5837. {
  5838. usteps = 0;
  5839. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5840. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5841. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5842. SERIAL_PROTOCOLPGM(", ");
  5843. SERIAL_PROTOCOL(35 + (i * 5));
  5844. SERIAL_PROTOCOLPGM(", ");
  5845. SERIAL_PROTOCOL(usteps);
  5846. SERIAL_PROTOCOLPGM(", ");
  5847. SERIAL_PROTOCOL(mm * 1000);
  5848. SERIAL_PROTOCOLLN("");
  5849. }
  5850. }
  5851. }
  5852. }
  5853. else {
  5854. SERIAL_PROTOCOLPGM("no valid command");
  5855. }
  5856. break;
  5857. #endif //PINDA_THERMISTOR
  5858. #ifdef LIN_ADVANCE
  5859. case 900: // M900: Set LIN_ADVANCE options.
  5860. gcode_M900();
  5861. break;
  5862. #endif
  5863. case 907: // M907 Set digital trimpot motor current using axis codes.
  5864. {
  5865. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5866. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5867. if(code_seen('B')) st_current_set(4,code_value());
  5868. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5869. #endif
  5870. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5871. if(code_seen('X')) st_current_set(0, code_value());
  5872. #endif
  5873. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5874. if(code_seen('Z')) st_current_set(1, code_value());
  5875. #endif
  5876. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5877. if(code_seen('E')) st_current_set(2, code_value());
  5878. #endif
  5879. }
  5880. break;
  5881. case 908: // M908 Control digital trimpot directly.
  5882. {
  5883. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5884. uint8_t channel,current;
  5885. if(code_seen('P')) channel=code_value();
  5886. if(code_seen('S')) current=code_value();
  5887. digitalPotWrite(channel, current);
  5888. #endif
  5889. }
  5890. break;
  5891. #ifdef TMC2130
  5892. case 910: // M910 TMC2130 init
  5893. {
  5894. tmc2130_init();
  5895. }
  5896. break;
  5897. case 911: // M911 Set TMC2130 holding currents
  5898. {
  5899. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5900. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5901. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5902. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5903. }
  5904. break;
  5905. case 912: // M912 Set TMC2130 running currents
  5906. {
  5907. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5908. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5909. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5910. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5911. }
  5912. break;
  5913. case 913: // M913 Print TMC2130 currents
  5914. {
  5915. tmc2130_print_currents();
  5916. }
  5917. break;
  5918. case 914: // M914 Set normal mode
  5919. {
  5920. tmc2130_mode = TMC2130_MODE_NORMAL;
  5921. update_mode_profile();
  5922. tmc2130_init();
  5923. }
  5924. break;
  5925. case 915: // M915 Set silent mode
  5926. {
  5927. tmc2130_mode = TMC2130_MODE_SILENT;
  5928. update_mode_profile();
  5929. tmc2130_init();
  5930. }
  5931. break;
  5932. case 916: // M916 Set sg_thrs
  5933. {
  5934. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5935. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5936. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5937. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5938. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5939. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5940. }
  5941. break;
  5942. case 917: // M917 Set TMC2130 pwm_ampl
  5943. {
  5944. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5945. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5946. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5947. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5948. }
  5949. break;
  5950. case 918: // M918 Set TMC2130 pwm_grad
  5951. {
  5952. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5953. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5954. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5955. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5956. }
  5957. break;
  5958. #endif //TMC2130
  5959. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5960. {
  5961. #ifdef TMC2130
  5962. if(code_seen('E'))
  5963. {
  5964. uint16_t res_new = code_value();
  5965. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5966. {
  5967. st_synchronize();
  5968. uint8_t axis = E_AXIS;
  5969. uint16_t res = tmc2130_get_res(axis);
  5970. tmc2130_set_res(axis, res_new);
  5971. if (res_new > res)
  5972. {
  5973. uint16_t fac = (res_new / res);
  5974. axis_steps_per_unit[axis] *= fac;
  5975. position[E_AXIS] *= fac;
  5976. }
  5977. else
  5978. {
  5979. uint16_t fac = (res / res_new);
  5980. axis_steps_per_unit[axis] /= fac;
  5981. position[E_AXIS] /= fac;
  5982. }
  5983. }
  5984. }
  5985. #else //TMC2130
  5986. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5987. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  5988. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  5989. if(code_seen('B')) microstep_mode(4,code_value());
  5990. microstep_readings();
  5991. #endif
  5992. #endif //TMC2130
  5993. }
  5994. break;
  5995. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5996. {
  5997. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  5998. if(code_seen('S')) switch((int)code_value())
  5999. {
  6000. case 1:
  6001. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6002. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6003. break;
  6004. case 2:
  6005. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6006. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6007. break;
  6008. }
  6009. microstep_readings();
  6010. #endif
  6011. }
  6012. break;
  6013. case 701: //M701: load filament
  6014. {
  6015. #ifdef SNMM_V2
  6016. if (code_seen('E'))
  6017. {
  6018. snmm_extruder = code_value();
  6019. }
  6020. #endif
  6021. gcode_M701();
  6022. }
  6023. break;
  6024. case 702:
  6025. {
  6026. #if defined (SNMM) || defined (SNMM_V2)
  6027. if (code_seen('U')) {
  6028. extr_unload_used(); //unload all filaments which were used in current print
  6029. }
  6030. else if (code_seen('C')) {
  6031. extr_unload(); //unload just current filament
  6032. }
  6033. else {
  6034. extr_unload_all(); //unload all filaments
  6035. }
  6036. #else
  6037. custom_message = true;
  6038. custom_message_type = 2;
  6039. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6040. // extr_unload2();
  6041. current_position[E_AXIS] -= 45;
  6042. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6043. st_synchronize();
  6044. current_position[E_AXIS] -= 15;
  6045. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6046. st_synchronize();
  6047. current_position[E_AXIS] -= 20;
  6048. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6049. st_synchronize();
  6050. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6051. //disable extruder steppers so filament can be removed
  6052. disable_e0();
  6053. disable_e1();
  6054. disable_e2();
  6055. delay(100);
  6056. Sound_MakeSound(e_SOUND_CLASS_Prompt,e_SOUND_TYPE_StandardPrompt);
  6057. uint8_t counterBeep = 0;
  6058. while (!lcd_clicked() && (counterBeep < 50)) {
  6059. delay_keep_alive(100);
  6060. counterBeep++;
  6061. }
  6062. st_synchronize();
  6063. while (lcd_clicked()) delay_keep_alive(100);
  6064. lcd_update_enable(true);
  6065. lcd_setstatuspgm(_T(WELCOME_MSG));
  6066. custom_message = false;
  6067. custom_message_type = 0;
  6068. #endif
  6069. }
  6070. break;
  6071. case 999: // M999: Restart after being stopped
  6072. Stopped = false;
  6073. lcd_reset_alert_level();
  6074. gcode_LastN = Stopped_gcode_LastN;
  6075. FlushSerialRequestResend();
  6076. break;
  6077. default:
  6078. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6079. }
  6080. // printf_P(_N("END M-CODE=%u\n"), mcode_in_progress);
  6081. mcode_in_progress = 0;
  6082. }
  6083. } // end if(code_seen('M')) (end of M codes)
  6084. else if(code_seen('T'))
  6085. {
  6086. int index;
  6087. st_synchronize();
  6088. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6089. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6090. SERIAL_ECHOLNPGM("Invalid T code.");
  6091. }
  6092. else {
  6093. if (*(strchr_pointer + index) == '?') {
  6094. tmp_extruder = choose_extruder_menu();
  6095. }
  6096. else {
  6097. tmp_extruder = code_value();
  6098. }
  6099. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6100. #if defined (SNMM_V2)
  6101. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6102. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  6103. bool response = mmu_get_reponse(false);
  6104. if (!response) mmu_not_responding();
  6105. snmm_extruder = tmp_extruder; //filament change is finished
  6106. if (*(strchr_pointer + index) == '?') { // for single material usage with mmu
  6107. mmu_load_to_nozzle();
  6108. }
  6109. #elif defined(SNMM)
  6110. #ifdef LIN_ADVANCE
  6111. if (snmm_extruder != tmp_extruder)
  6112. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6113. #endif
  6114. snmm_extruder = tmp_extruder;
  6115. delay(100);
  6116. disable_e0();
  6117. disable_e1();
  6118. disable_e2();
  6119. pinMode(E_MUX0_PIN, OUTPUT);
  6120. pinMode(E_MUX1_PIN, OUTPUT);
  6121. delay(100);
  6122. SERIAL_ECHO_START;
  6123. SERIAL_ECHO("T:");
  6124. SERIAL_ECHOLN((int)tmp_extruder);
  6125. switch (tmp_extruder) {
  6126. case 1:
  6127. WRITE(E_MUX0_PIN, HIGH);
  6128. WRITE(E_MUX1_PIN, LOW);
  6129. break;
  6130. case 2:
  6131. WRITE(E_MUX0_PIN, LOW);
  6132. WRITE(E_MUX1_PIN, HIGH);
  6133. break;
  6134. case 3:
  6135. WRITE(E_MUX0_PIN, HIGH);
  6136. WRITE(E_MUX1_PIN, HIGH);
  6137. break;
  6138. default:
  6139. WRITE(E_MUX0_PIN, LOW);
  6140. WRITE(E_MUX1_PIN, LOW);
  6141. break;
  6142. }
  6143. delay(100);
  6144. #else //SNMM and SNMM_V2 undefined:
  6145. if (tmp_extruder >= EXTRUDERS) {
  6146. SERIAL_ECHO_START;
  6147. SERIAL_ECHOPGM("T");
  6148. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6149. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6150. }
  6151. else {
  6152. #if EXTRUDERS > 1
  6153. boolean make_move = false;
  6154. #endif
  6155. if (code_seen('F')) {
  6156. #if EXTRUDERS > 1
  6157. make_move = true;
  6158. #endif
  6159. next_feedrate = code_value();
  6160. if (next_feedrate > 0.0) {
  6161. feedrate = next_feedrate;
  6162. }
  6163. }
  6164. #if EXTRUDERS > 1
  6165. if (tmp_extruder != active_extruder) {
  6166. // Save current position to return to after applying extruder offset
  6167. memcpy(destination, current_position, sizeof(destination));
  6168. // Offset extruder (only by XY)
  6169. int i;
  6170. for (i = 0; i < 2; i++) {
  6171. current_position[i] = current_position[i] -
  6172. extruder_offset[i][active_extruder] +
  6173. extruder_offset[i][tmp_extruder];
  6174. }
  6175. // Set the new active extruder and position
  6176. active_extruder = tmp_extruder;
  6177. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6178. // Move to the old position if 'F' was in the parameters
  6179. if (make_move && Stopped == false) {
  6180. prepare_move();
  6181. }
  6182. }
  6183. #endif
  6184. SERIAL_ECHO_START;
  6185. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6186. SERIAL_PROTOCOLLN((int)active_extruder);
  6187. }
  6188. #endif
  6189. }
  6190. } // end if(code_seen('T')) (end of T codes)
  6191. #ifdef DEBUG_DCODES
  6192. else if (code_seen('D')) // D codes (debug)
  6193. {
  6194. switch((int)code_value())
  6195. {
  6196. case -1: // D-1 - Endless loop
  6197. dcode__1(); break;
  6198. case 0: // D0 - Reset
  6199. dcode_0(); break;
  6200. case 1: // D1 - Clear EEPROM
  6201. dcode_1(); break;
  6202. case 2: // D2 - Read/Write RAM
  6203. dcode_2(); break;
  6204. case 3: // D3 - Read/Write EEPROM
  6205. dcode_3(); break;
  6206. case 4: // D4 - Read/Write PIN
  6207. dcode_4(); break;
  6208. case 5: // D5 - Read/Write FLASH
  6209. // dcode_5(); break;
  6210. break;
  6211. case 6: // D6 - Read/Write external FLASH
  6212. dcode_6(); break;
  6213. case 7: // D7 - Read/Write Bootloader
  6214. dcode_7(); break;
  6215. case 8: // D8 - Read/Write PINDA
  6216. dcode_8(); break;
  6217. case 9: // D9 - Read/Write ADC
  6218. dcode_9(); break;
  6219. case 10: // D10 - XYZ calibration = OK
  6220. dcode_10(); break;
  6221. #ifdef TMC2130
  6222. case 2130: // D9125 - TMC2130
  6223. dcode_2130(); break;
  6224. #endif //TMC2130
  6225. #ifdef FILAMENT_SENSOR
  6226. case 9125: // D9125 - FILAMENT_SENSOR
  6227. dcode_9125(); break;
  6228. #endif //FILAMENT_SENSOR
  6229. }
  6230. }
  6231. #endif //DEBUG_DCODES
  6232. else
  6233. {
  6234. SERIAL_ECHO_START;
  6235. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6236. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6237. SERIAL_ECHOLNPGM("\"(2)");
  6238. }
  6239. KEEPALIVE_STATE(NOT_BUSY);
  6240. ClearToSend();
  6241. }
  6242. void FlushSerialRequestResend()
  6243. {
  6244. //char cmdbuffer[bufindr][100]="Resend:";
  6245. MYSERIAL.flush();
  6246. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6247. }
  6248. // Confirm the execution of a command, if sent from a serial line.
  6249. // Execution of a command from a SD card will not be confirmed.
  6250. void ClearToSend()
  6251. {
  6252. previous_millis_cmd = millis();
  6253. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6254. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6255. }
  6256. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6257. void update_currents() {
  6258. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6259. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6260. float tmp_motor[3];
  6261. //SERIAL_ECHOLNPGM("Currents updated: ");
  6262. if (destination[Z_AXIS] < Z_SILENT) {
  6263. //SERIAL_ECHOLNPGM("LOW");
  6264. for (uint8_t i = 0; i < 3; i++) {
  6265. st_current_set(i, current_low[i]);
  6266. /*MYSERIAL.print(int(i));
  6267. SERIAL_ECHOPGM(": ");
  6268. MYSERIAL.println(current_low[i]);*/
  6269. }
  6270. }
  6271. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6272. //SERIAL_ECHOLNPGM("HIGH");
  6273. for (uint8_t i = 0; i < 3; i++) {
  6274. st_current_set(i, current_high[i]);
  6275. /*MYSERIAL.print(int(i));
  6276. SERIAL_ECHOPGM(": ");
  6277. MYSERIAL.println(current_high[i]);*/
  6278. }
  6279. }
  6280. else {
  6281. for (uint8_t i = 0; i < 3; i++) {
  6282. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6283. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6284. st_current_set(i, tmp_motor[i]);
  6285. /*MYSERIAL.print(int(i));
  6286. SERIAL_ECHOPGM(": ");
  6287. MYSERIAL.println(tmp_motor[i]);*/
  6288. }
  6289. }
  6290. }
  6291. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6292. void get_coordinates()
  6293. {
  6294. bool seen[4]={false,false,false,false};
  6295. for(int8_t i=0; i < NUM_AXIS; i++) {
  6296. if(code_seen(axis_codes[i]))
  6297. {
  6298. bool relative = axis_relative_modes[i] || relative_mode;
  6299. destination[i] = (float)code_value();
  6300. if (i == E_AXIS) {
  6301. float emult = extruder_multiplier[active_extruder];
  6302. if (emult != 1.) {
  6303. if (! relative) {
  6304. destination[i] -= current_position[i];
  6305. relative = true;
  6306. }
  6307. destination[i] *= emult;
  6308. }
  6309. }
  6310. if (relative)
  6311. destination[i] += current_position[i];
  6312. seen[i]=true;
  6313. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6314. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6315. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6316. }
  6317. else destination[i] = current_position[i]; //Are these else lines really needed?
  6318. }
  6319. if(code_seen('F')) {
  6320. next_feedrate = code_value();
  6321. #ifdef MAX_SILENT_FEEDRATE
  6322. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6323. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6324. #endif //MAX_SILENT_FEEDRATE
  6325. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6326. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6327. {
  6328. // float e_max_speed =
  6329. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6330. }
  6331. }
  6332. }
  6333. void get_arc_coordinates()
  6334. {
  6335. #ifdef SF_ARC_FIX
  6336. bool relative_mode_backup = relative_mode;
  6337. relative_mode = true;
  6338. #endif
  6339. get_coordinates();
  6340. #ifdef SF_ARC_FIX
  6341. relative_mode=relative_mode_backup;
  6342. #endif
  6343. if(code_seen('I')) {
  6344. offset[0] = code_value();
  6345. }
  6346. else {
  6347. offset[0] = 0.0;
  6348. }
  6349. if(code_seen('J')) {
  6350. offset[1] = code_value();
  6351. }
  6352. else {
  6353. offset[1] = 0.0;
  6354. }
  6355. }
  6356. void clamp_to_software_endstops(float target[3])
  6357. {
  6358. #ifdef DEBUG_DISABLE_SWLIMITS
  6359. return;
  6360. #endif //DEBUG_DISABLE_SWLIMITS
  6361. world2machine_clamp(target[0], target[1]);
  6362. // Clamp the Z coordinate.
  6363. if (min_software_endstops) {
  6364. float negative_z_offset = 0;
  6365. #ifdef ENABLE_AUTO_BED_LEVELING
  6366. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6367. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6368. #endif
  6369. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6370. }
  6371. if (max_software_endstops) {
  6372. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6373. }
  6374. }
  6375. #ifdef MESH_BED_LEVELING
  6376. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6377. float dx = x - current_position[X_AXIS];
  6378. float dy = y - current_position[Y_AXIS];
  6379. float dz = z - current_position[Z_AXIS];
  6380. int n_segments = 0;
  6381. if (mbl.active) {
  6382. float len = abs(dx) + abs(dy);
  6383. if (len > 0)
  6384. // Split to 3cm segments or shorter.
  6385. n_segments = int(ceil(len / 30.f));
  6386. }
  6387. if (n_segments > 1) {
  6388. float de = e - current_position[E_AXIS];
  6389. for (int i = 1; i < n_segments; ++ i) {
  6390. float t = float(i) / float(n_segments);
  6391. if (saved_printing || (mbl.active == false)) return;
  6392. plan_buffer_line(
  6393. current_position[X_AXIS] + t * dx,
  6394. current_position[Y_AXIS] + t * dy,
  6395. current_position[Z_AXIS] + t * dz,
  6396. current_position[E_AXIS] + t * de,
  6397. feed_rate, extruder);
  6398. }
  6399. }
  6400. // The rest of the path.
  6401. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6402. current_position[X_AXIS] = x;
  6403. current_position[Y_AXIS] = y;
  6404. current_position[Z_AXIS] = z;
  6405. current_position[E_AXIS] = e;
  6406. }
  6407. #endif // MESH_BED_LEVELING
  6408. void prepare_move()
  6409. {
  6410. clamp_to_software_endstops(destination);
  6411. previous_millis_cmd = millis();
  6412. // Do not use feedmultiply for E or Z only moves
  6413. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6414. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6415. }
  6416. else {
  6417. #ifdef MESH_BED_LEVELING
  6418. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6419. #else
  6420. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6421. #endif
  6422. }
  6423. for(int8_t i=0; i < NUM_AXIS; i++) {
  6424. current_position[i] = destination[i];
  6425. }
  6426. }
  6427. void prepare_arc_move(char isclockwise) {
  6428. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6429. // Trace the arc
  6430. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6431. // As far as the parser is concerned, the position is now == target. In reality the
  6432. // motion control system might still be processing the action and the real tool position
  6433. // in any intermediate location.
  6434. for(int8_t i=0; i < NUM_AXIS; i++) {
  6435. current_position[i] = destination[i];
  6436. }
  6437. previous_millis_cmd = millis();
  6438. }
  6439. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6440. #if defined(FAN_PIN)
  6441. #if CONTROLLERFAN_PIN == FAN_PIN
  6442. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6443. #endif
  6444. #endif
  6445. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6446. unsigned long lastMotorCheck = 0;
  6447. void controllerFan()
  6448. {
  6449. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6450. {
  6451. lastMotorCheck = millis();
  6452. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6453. #if EXTRUDERS > 2
  6454. || !READ(E2_ENABLE_PIN)
  6455. #endif
  6456. #if EXTRUDER > 1
  6457. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6458. || !READ(X2_ENABLE_PIN)
  6459. #endif
  6460. || !READ(E1_ENABLE_PIN)
  6461. #endif
  6462. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6463. {
  6464. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6465. }
  6466. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6467. {
  6468. digitalWrite(CONTROLLERFAN_PIN, 0);
  6469. analogWrite(CONTROLLERFAN_PIN, 0);
  6470. }
  6471. else
  6472. {
  6473. // allows digital or PWM fan output to be used (see M42 handling)
  6474. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6475. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6476. }
  6477. }
  6478. }
  6479. #endif
  6480. #ifdef TEMP_STAT_LEDS
  6481. static bool blue_led = false;
  6482. static bool red_led = false;
  6483. static uint32_t stat_update = 0;
  6484. void handle_status_leds(void) {
  6485. float max_temp = 0.0;
  6486. if(millis() > stat_update) {
  6487. stat_update += 500; // Update every 0.5s
  6488. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6489. max_temp = max(max_temp, degHotend(cur_extruder));
  6490. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6491. }
  6492. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6493. max_temp = max(max_temp, degTargetBed());
  6494. max_temp = max(max_temp, degBed());
  6495. #endif
  6496. if((max_temp > 55.0) && (red_led == false)) {
  6497. digitalWrite(STAT_LED_RED, 1);
  6498. digitalWrite(STAT_LED_BLUE, 0);
  6499. red_led = true;
  6500. blue_led = false;
  6501. }
  6502. if((max_temp < 54.0) && (blue_led == false)) {
  6503. digitalWrite(STAT_LED_RED, 0);
  6504. digitalWrite(STAT_LED_BLUE, 1);
  6505. red_led = false;
  6506. blue_led = true;
  6507. }
  6508. }
  6509. }
  6510. #endif
  6511. #ifdef SAFETYTIMER
  6512. /**
  6513. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6514. *
  6515. * Full screen blocking notification message is shown after heater turning off.
  6516. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6517. * damage print.
  6518. *
  6519. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6520. */
  6521. static void handleSafetyTimer()
  6522. {
  6523. #if (EXTRUDERS > 1)
  6524. #error Implemented only for one extruder.
  6525. #endif //(EXTRUDERS > 1)
  6526. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6527. {
  6528. safetyTimer.stop();
  6529. }
  6530. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6531. {
  6532. safetyTimer.start();
  6533. }
  6534. else if (safetyTimer.expired(safetytimer_inactive_time))
  6535. {
  6536. setTargetBed(0);
  6537. setAllTargetHotends(0);
  6538. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6539. }
  6540. }
  6541. #endif //SAFETYTIMER
  6542. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6543. {
  6544. #ifdef FILAMENT_SENSOR
  6545. if (mcode_in_progress != 600) //M600 not in progress
  6546. {
  6547. if (!moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6548. {
  6549. if (fsensor_check_autoload())
  6550. {
  6551. fsensor_autoload_check_stop();
  6552. if (degHotend0() > EXTRUDE_MINTEMP)
  6553. {
  6554. tone(BEEPER, 1000);
  6555. delay_keep_alive(50);
  6556. noTone(BEEPER);
  6557. loading_flag = true;
  6558. enquecommand_front_P((PSTR("M701")));
  6559. }
  6560. else
  6561. {
  6562. lcd_update_enable(false);
  6563. lcd_clear();
  6564. lcd_set_cursor(0, 0);
  6565. lcd_puts_P(_T(MSG_ERROR));
  6566. lcd_set_cursor(0, 2);
  6567. lcd_puts_P(_T(MSG_PREHEAT_NOZZLE));
  6568. delay(2000);
  6569. lcd_clear();
  6570. lcd_update_enable(true);
  6571. }
  6572. }
  6573. }
  6574. else
  6575. fsensor_autoload_check_stop();
  6576. }
  6577. #endif //FILAMENT_SENSOR
  6578. #ifdef SAFETYTIMER
  6579. handleSafetyTimer();
  6580. #endif //SAFETYTIMER
  6581. #if defined(KILL_PIN) && KILL_PIN > -1
  6582. static int killCount = 0; // make the inactivity button a bit less responsive
  6583. const int KILL_DELAY = 10000;
  6584. #endif
  6585. if(buflen < (BUFSIZE-1)){
  6586. get_command();
  6587. }
  6588. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6589. if(max_inactive_time)
  6590. kill(_n(""), 4);
  6591. if(stepper_inactive_time) {
  6592. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6593. {
  6594. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6595. disable_x();
  6596. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6597. disable_y();
  6598. disable_z();
  6599. disable_e0();
  6600. disable_e1();
  6601. disable_e2();
  6602. }
  6603. }
  6604. }
  6605. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6606. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6607. {
  6608. chdkActive = false;
  6609. WRITE(CHDK, LOW);
  6610. }
  6611. #endif
  6612. #if defined(KILL_PIN) && KILL_PIN > -1
  6613. // Check if the kill button was pressed and wait just in case it was an accidental
  6614. // key kill key press
  6615. // -------------------------------------------------------------------------------
  6616. if( 0 == READ(KILL_PIN) )
  6617. {
  6618. killCount++;
  6619. }
  6620. else if (killCount > 0)
  6621. {
  6622. killCount--;
  6623. }
  6624. // Exceeded threshold and we can confirm that it was not accidental
  6625. // KILL the machine
  6626. // ----------------------------------------------------------------
  6627. if ( killCount >= KILL_DELAY)
  6628. {
  6629. kill("", 5);
  6630. }
  6631. #endif
  6632. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6633. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6634. #endif
  6635. #ifdef EXTRUDER_RUNOUT_PREVENT
  6636. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6637. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6638. {
  6639. bool oldstatus=READ(E0_ENABLE_PIN);
  6640. enable_e0();
  6641. float oldepos=current_position[E_AXIS];
  6642. float oldedes=destination[E_AXIS];
  6643. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6644. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6645. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6646. current_position[E_AXIS]=oldepos;
  6647. destination[E_AXIS]=oldedes;
  6648. plan_set_e_position(oldepos);
  6649. previous_millis_cmd=millis();
  6650. st_synchronize();
  6651. WRITE(E0_ENABLE_PIN,oldstatus);
  6652. }
  6653. #endif
  6654. #ifdef TEMP_STAT_LEDS
  6655. handle_status_leds();
  6656. #endif
  6657. check_axes_activity();
  6658. }
  6659. void kill(const char *full_screen_message, unsigned char id)
  6660. {
  6661. printf_P(_N("KILL: %d\n"), id);
  6662. //return;
  6663. cli(); // Stop interrupts
  6664. disable_heater();
  6665. disable_x();
  6666. // SERIAL_ECHOLNPGM("kill - disable Y");
  6667. disable_y();
  6668. disable_z();
  6669. disable_e0();
  6670. disable_e1();
  6671. disable_e2();
  6672. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6673. pinMode(PS_ON_PIN,INPUT);
  6674. #endif
  6675. SERIAL_ERROR_START;
  6676. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6677. if (full_screen_message != NULL) {
  6678. SERIAL_ERRORLNRPGM(full_screen_message);
  6679. lcd_display_message_fullscreen_P(full_screen_message);
  6680. } else {
  6681. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6682. }
  6683. // FMC small patch to update the LCD before ending
  6684. sei(); // enable interrupts
  6685. for ( int i=5; i--; lcd_update(0))
  6686. {
  6687. delay(200);
  6688. }
  6689. cli(); // disable interrupts
  6690. suicide();
  6691. while(1)
  6692. {
  6693. #ifdef WATCHDOG
  6694. wdt_reset();
  6695. #endif //WATCHDOG
  6696. /* Intentionally left empty */
  6697. } // Wait for reset
  6698. }
  6699. void Stop()
  6700. {
  6701. disable_heater();
  6702. if(Stopped == false) {
  6703. Stopped = true;
  6704. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6705. SERIAL_ERROR_START;
  6706. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6707. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6708. }
  6709. }
  6710. bool IsStopped() { return Stopped; };
  6711. #ifdef FAST_PWM_FAN
  6712. void setPwmFrequency(uint8_t pin, int val)
  6713. {
  6714. val &= 0x07;
  6715. switch(digitalPinToTimer(pin))
  6716. {
  6717. #if defined(TCCR0A)
  6718. case TIMER0A:
  6719. case TIMER0B:
  6720. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6721. // TCCR0B |= val;
  6722. break;
  6723. #endif
  6724. #if defined(TCCR1A)
  6725. case TIMER1A:
  6726. case TIMER1B:
  6727. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6728. // TCCR1B |= val;
  6729. break;
  6730. #endif
  6731. #if defined(TCCR2)
  6732. case TIMER2:
  6733. case TIMER2:
  6734. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6735. TCCR2 |= val;
  6736. break;
  6737. #endif
  6738. #if defined(TCCR2A)
  6739. case TIMER2A:
  6740. case TIMER2B:
  6741. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6742. TCCR2B |= val;
  6743. break;
  6744. #endif
  6745. #if defined(TCCR3A)
  6746. case TIMER3A:
  6747. case TIMER3B:
  6748. case TIMER3C:
  6749. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6750. TCCR3B |= val;
  6751. break;
  6752. #endif
  6753. #if defined(TCCR4A)
  6754. case TIMER4A:
  6755. case TIMER4B:
  6756. case TIMER4C:
  6757. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6758. TCCR4B |= val;
  6759. break;
  6760. #endif
  6761. #if defined(TCCR5A)
  6762. case TIMER5A:
  6763. case TIMER5B:
  6764. case TIMER5C:
  6765. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6766. TCCR5B |= val;
  6767. break;
  6768. #endif
  6769. }
  6770. }
  6771. #endif //FAST_PWM_FAN
  6772. bool setTargetedHotend(int code){
  6773. tmp_extruder = active_extruder;
  6774. if(code_seen('T')) {
  6775. tmp_extruder = code_value();
  6776. if(tmp_extruder >= EXTRUDERS) {
  6777. SERIAL_ECHO_START;
  6778. switch(code){
  6779. case 104:
  6780. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6781. break;
  6782. case 105:
  6783. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6784. break;
  6785. case 109:
  6786. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6787. break;
  6788. case 218:
  6789. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6790. break;
  6791. case 221:
  6792. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6793. break;
  6794. }
  6795. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6796. return true;
  6797. }
  6798. }
  6799. return false;
  6800. }
  6801. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6802. {
  6803. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6804. {
  6805. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6806. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6807. }
  6808. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6809. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6810. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6811. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6812. total_filament_used = 0;
  6813. }
  6814. float calculate_extruder_multiplier(float diameter) {
  6815. float out = 1.f;
  6816. if (volumetric_enabled && diameter > 0.f) {
  6817. float area = M_PI * diameter * diameter * 0.25;
  6818. out = 1.f / area;
  6819. }
  6820. if (extrudemultiply != 100)
  6821. out *= float(extrudemultiply) * 0.01f;
  6822. return out;
  6823. }
  6824. void calculate_extruder_multipliers() {
  6825. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6826. #if EXTRUDERS > 1
  6827. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6828. #if EXTRUDERS > 2
  6829. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6830. #endif
  6831. #endif
  6832. }
  6833. void delay_keep_alive(unsigned int ms)
  6834. {
  6835. for (;;) {
  6836. manage_heater();
  6837. // Manage inactivity, but don't disable steppers on timeout.
  6838. manage_inactivity(true);
  6839. lcd_update(0);
  6840. if (ms == 0)
  6841. break;
  6842. else if (ms >= 50) {
  6843. delay(50);
  6844. ms -= 50;
  6845. } else {
  6846. delay(ms);
  6847. ms = 0;
  6848. }
  6849. }
  6850. }
  6851. void wait_for_heater(long codenum) {
  6852. #ifdef TEMP_RESIDENCY_TIME
  6853. long residencyStart;
  6854. residencyStart = -1;
  6855. /* continue to loop until we have reached the target temp
  6856. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6857. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6858. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6859. #else
  6860. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6861. #endif //TEMP_RESIDENCY_TIME
  6862. if ((millis() - codenum) > 1000UL)
  6863. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6864. if (!farm_mode) {
  6865. SERIAL_PROTOCOLPGM("T:");
  6866. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6867. SERIAL_PROTOCOLPGM(" E:");
  6868. SERIAL_PROTOCOL((int)tmp_extruder);
  6869. #ifdef TEMP_RESIDENCY_TIME
  6870. SERIAL_PROTOCOLPGM(" W:");
  6871. if (residencyStart > -1)
  6872. {
  6873. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6874. SERIAL_PROTOCOLLN(codenum);
  6875. }
  6876. else
  6877. {
  6878. SERIAL_PROTOCOLLN("?");
  6879. }
  6880. }
  6881. #else
  6882. SERIAL_PROTOCOLLN("");
  6883. #endif
  6884. codenum = millis();
  6885. }
  6886. manage_heater();
  6887. manage_inactivity();
  6888. lcd_update(0);
  6889. #ifdef TEMP_RESIDENCY_TIME
  6890. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6891. or when current temp falls outside the hysteresis after target temp was reached */
  6892. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6893. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6894. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6895. {
  6896. residencyStart = millis();
  6897. }
  6898. #endif //TEMP_RESIDENCY_TIME
  6899. }
  6900. }
  6901. void check_babystep() {
  6902. int babystep_z;
  6903. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6904. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6905. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6906. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6907. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6908. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6909. lcd_update_enable(true);
  6910. }
  6911. }
  6912. #ifdef DIS
  6913. void d_setup()
  6914. {
  6915. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6916. pinMode(D_DATA, INPUT_PULLUP);
  6917. pinMode(D_REQUIRE, OUTPUT);
  6918. digitalWrite(D_REQUIRE, HIGH);
  6919. }
  6920. float d_ReadData()
  6921. {
  6922. int digit[13];
  6923. String mergeOutput;
  6924. float output;
  6925. digitalWrite(D_REQUIRE, HIGH);
  6926. for (int i = 0; i<13; i++)
  6927. {
  6928. for (int j = 0; j < 4; j++)
  6929. {
  6930. while (digitalRead(D_DATACLOCK) == LOW) {}
  6931. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6932. bitWrite(digit[i], j, digitalRead(D_DATA));
  6933. }
  6934. }
  6935. digitalWrite(D_REQUIRE, LOW);
  6936. mergeOutput = "";
  6937. output = 0;
  6938. for (int r = 5; r <= 10; r++) //Merge digits
  6939. {
  6940. mergeOutput += digit[r];
  6941. }
  6942. output = mergeOutput.toFloat();
  6943. if (digit[4] == 8) //Handle sign
  6944. {
  6945. output *= -1;
  6946. }
  6947. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6948. {
  6949. output /= 10;
  6950. }
  6951. return output;
  6952. }
  6953. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  6954. int t1 = 0;
  6955. int t_delay = 0;
  6956. int digit[13];
  6957. int m;
  6958. char str[3];
  6959. //String mergeOutput;
  6960. char mergeOutput[15];
  6961. float output;
  6962. int mesh_point = 0; //index number of calibration point
  6963. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  6964. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6965. float mesh_home_z_search = 4;
  6966. float row[x_points_num];
  6967. int ix = 0;
  6968. int iy = 0;
  6969. char* filename_wldsd = "wldsd.txt";
  6970. char data_wldsd[70];
  6971. char numb_wldsd[10];
  6972. d_setup();
  6973. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  6974. // We don't know where we are! HOME!
  6975. // Push the commands to the front of the message queue in the reverse order!
  6976. // There shall be always enough space reserved for these commands.
  6977. repeatcommand_front(); // repeat G80 with all its parameters
  6978. enquecommand_front_P((PSTR("G28 W0")));
  6979. enquecommand_front_P((PSTR("G1 Z5")));
  6980. return;
  6981. }
  6982. bool custom_message_old = custom_message;
  6983. unsigned int custom_message_type_old = custom_message_type;
  6984. unsigned int custom_message_state_old = custom_message_state;
  6985. custom_message = true;
  6986. custom_message_type = 1;
  6987. custom_message_state = (x_points_num * y_points_num) + 10;
  6988. lcd_update(1);
  6989. mbl.reset();
  6990. babystep_undo();
  6991. card.openFile(filename_wldsd, false);
  6992. current_position[Z_AXIS] = mesh_home_z_search;
  6993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  6994. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  6995. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  6996. setup_for_endstop_move(false);
  6997. SERIAL_PROTOCOLPGM("Num X,Y: ");
  6998. SERIAL_PROTOCOL(x_points_num);
  6999. SERIAL_PROTOCOLPGM(",");
  7000. SERIAL_PROTOCOL(y_points_num);
  7001. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7002. SERIAL_PROTOCOL(mesh_home_z_search);
  7003. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7004. SERIAL_PROTOCOL(x_dimension);
  7005. SERIAL_PROTOCOLPGM(",");
  7006. SERIAL_PROTOCOL(y_dimension);
  7007. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7008. while (mesh_point != x_points_num * y_points_num) {
  7009. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7010. iy = mesh_point / x_points_num;
  7011. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7012. float z0 = 0.f;
  7013. current_position[Z_AXIS] = mesh_home_z_search;
  7014. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7015. st_synchronize();
  7016. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7017. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7018. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7019. st_synchronize();
  7020. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7021. break;
  7022. card.closefile();
  7023. }
  7024. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7025. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7026. //strcat(data_wldsd, numb_wldsd);
  7027. //MYSERIAL.println(data_wldsd);
  7028. //delay(1000);
  7029. //delay(3000);
  7030. //t1 = millis();
  7031. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7032. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7033. memset(digit, 0, sizeof(digit));
  7034. //cli();
  7035. digitalWrite(D_REQUIRE, LOW);
  7036. for (int i = 0; i<13; i++)
  7037. {
  7038. //t1 = millis();
  7039. for (int j = 0; j < 4; j++)
  7040. {
  7041. while (digitalRead(D_DATACLOCK) == LOW) {}
  7042. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7043. bitWrite(digit[i], j, digitalRead(D_DATA));
  7044. }
  7045. //t_delay = (millis() - t1);
  7046. //SERIAL_PROTOCOLPGM(" ");
  7047. //SERIAL_PROTOCOL_F(t_delay, 5);
  7048. //SERIAL_PROTOCOLPGM(" ");
  7049. }
  7050. //sei();
  7051. digitalWrite(D_REQUIRE, HIGH);
  7052. mergeOutput[0] = '\0';
  7053. output = 0;
  7054. for (int r = 5; r <= 10; r++) //Merge digits
  7055. {
  7056. sprintf(str, "%d", digit[r]);
  7057. strcat(mergeOutput, str);
  7058. }
  7059. output = atof(mergeOutput);
  7060. if (digit[4] == 8) //Handle sign
  7061. {
  7062. output *= -1;
  7063. }
  7064. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7065. {
  7066. output *= 0.1;
  7067. }
  7068. //output = d_ReadData();
  7069. //row[ix] = current_position[Z_AXIS];
  7070. memset(data_wldsd, 0, sizeof(data_wldsd));
  7071. for (int i = 0; i <3; i++) {
  7072. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7073. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7074. strcat(data_wldsd, numb_wldsd);
  7075. strcat(data_wldsd, ";");
  7076. }
  7077. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7078. dtostrf(output, 8, 5, numb_wldsd);
  7079. strcat(data_wldsd, numb_wldsd);
  7080. //strcat(data_wldsd, ";");
  7081. card.write_command(data_wldsd);
  7082. //row[ix] = d_ReadData();
  7083. row[ix] = output; // current_position[Z_AXIS];
  7084. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7085. for (int i = 0; i < x_points_num; i++) {
  7086. SERIAL_PROTOCOLPGM(" ");
  7087. SERIAL_PROTOCOL_F(row[i], 5);
  7088. }
  7089. SERIAL_PROTOCOLPGM("\n");
  7090. }
  7091. custom_message_state--;
  7092. mesh_point++;
  7093. lcd_update(1);
  7094. }
  7095. card.closefile();
  7096. }
  7097. #endif
  7098. void temp_compensation_start() {
  7099. custom_message = true;
  7100. custom_message_type = 5;
  7101. custom_message_state = PINDA_HEAT_T + 1;
  7102. lcd_update(2);
  7103. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7104. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7105. }
  7106. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7107. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7108. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7109. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7110. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7111. st_synchronize();
  7112. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7113. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7114. delay_keep_alive(1000);
  7115. custom_message_state = PINDA_HEAT_T - i;
  7116. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7117. else lcd_update(1);
  7118. }
  7119. custom_message_type = 0;
  7120. custom_message_state = 0;
  7121. custom_message = false;
  7122. }
  7123. void temp_compensation_apply() {
  7124. int i_add;
  7125. int z_shift = 0;
  7126. float z_shift_mm;
  7127. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7128. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7129. i_add = (target_temperature_bed - 60) / 10;
  7130. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7131. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7132. }else {
  7133. //interpolation
  7134. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7135. }
  7136. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7137. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7138. st_synchronize();
  7139. plan_set_z_position(current_position[Z_AXIS]);
  7140. }
  7141. else {
  7142. //we have no temp compensation data
  7143. }
  7144. }
  7145. float temp_comp_interpolation(float inp_temperature) {
  7146. //cubic spline interpolation
  7147. int n, i, j;
  7148. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7149. int shift[10];
  7150. int temp_C[10];
  7151. n = 6; //number of measured points
  7152. shift[0] = 0;
  7153. for (i = 0; i < n; i++) {
  7154. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7155. temp_C[i] = 50 + i * 10; //temperature in C
  7156. #ifdef PINDA_THERMISTOR
  7157. temp_C[i] = 35 + i * 5; //temperature in C
  7158. #else
  7159. temp_C[i] = 50 + i * 10; //temperature in C
  7160. #endif
  7161. x[i] = (float)temp_C[i];
  7162. f[i] = (float)shift[i];
  7163. }
  7164. if (inp_temperature < x[0]) return 0;
  7165. for (i = n - 1; i>0; i--) {
  7166. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7167. h[i - 1] = x[i] - x[i - 1];
  7168. }
  7169. //*********** formation of h, s , f matrix **************
  7170. for (i = 1; i<n - 1; i++) {
  7171. m[i][i] = 2 * (h[i - 1] + h[i]);
  7172. if (i != 1) {
  7173. m[i][i - 1] = h[i - 1];
  7174. m[i - 1][i] = h[i - 1];
  7175. }
  7176. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7177. }
  7178. //*********** forward elimination **************
  7179. for (i = 1; i<n - 2; i++) {
  7180. temp = (m[i + 1][i] / m[i][i]);
  7181. for (j = 1; j <= n - 1; j++)
  7182. m[i + 1][j] -= temp*m[i][j];
  7183. }
  7184. //*********** backward substitution *********
  7185. for (i = n - 2; i>0; i--) {
  7186. sum = 0;
  7187. for (j = i; j <= n - 2; j++)
  7188. sum += m[i][j] * s[j];
  7189. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7190. }
  7191. for (i = 0; i<n - 1; i++)
  7192. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7193. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7194. b = s[i] / 2;
  7195. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7196. d = f[i];
  7197. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7198. }
  7199. return sum;
  7200. }
  7201. #ifdef PINDA_THERMISTOR
  7202. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7203. {
  7204. if (!temp_cal_active) return 0;
  7205. if (!calibration_status_pinda()) return 0;
  7206. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7207. }
  7208. #endif //PINDA_THERMISTOR
  7209. void long_pause() //long pause print
  7210. {
  7211. st_synchronize();
  7212. //save currently set parameters to global variables
  7213. saved_feedmultiply = feedmultiply;
  7214. HotendTempBckp = degTargetHotend(active_extruder);
  7215. fanSpeedBckp = fanSpeed;
  7216. start_pause_print = millis();
  7217. //save position
  7218. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7219. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7220. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7221. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7222. //retract
  7223. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7224. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7225. //lift z
  7226. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7227. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7228. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7229. //set nozzle target temperature to 0
  7230. setAllTargetHotends(0);
  7231. //Move XY to side
  7232. current_position[X_AXIS] = X_PAUSE_POS;
  7233. current_position[Y_AXIS] = Y_PAUSE_POS;
  7234. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7235. // Turn off the print fan
  7236. fanSpeed = 0;
  7237. st_synchronize();
  7238. }
  7239. void serialecho_temperatures() {
  7240. float tt = degHotend(active_extruder);
  7241. SERIAL_PROTOCOLPGM("T:");
  7242. SERIAL_PROTOCOL(tt);
  7243. SERIAL_PROTOCOLPGM(" E:");
  7244. SERIAL_PROTOCOL((int)active_extruder);
  7245. SERIAL_PROTOCOLPGM(" B:");
  7246. SERIAL_PROTOCOL_F(degBed(), 1);
  7247. SERIAL_PROTOCOLLN("");
  7248. }
  7249. extern uint32_t sdpos_atomic;
  7250. #ifdef UVLO_SUPPORT
  7251. void uvlo_()
  7252. {
  7253. unsigned long time_start = millis();
  7254. bool sd_print = card.sdprinting;
  7255. // Conserve power as soon as possible.
  7256. disable_x();
  7257. disable_y();
  7258. #ifdef TMC2130
  7259. tmc2130_set_current_h(Z_AXIS, 20);
  7260. tmc2130_set_current_r(Z_AXIS, 20);
  7261. tmc2130_set_current_h(E_AXIS, 20);
  7262. tmc2130_set_current_r(E_AXIS, 20);
  7263. #endif //TMC2130
  7264. // Indicate that the interrupt has been triggered.
  7265. // SERIAL_ECHOLNPGM("UVLO");
  7266. // Read out the current Z motor microstep counter. This will be later used
  7267. // for reaching the zero full step before powering off.
  7268. uint16_t z_microsteps = 0;
  7269. #ifdef TMC2130
  7270. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7271. #endif //TMC2130
  7272. // Calculate the file position, from which to resume this print.
  7273. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7274. {
  7275. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7276. sd_position -= sdlen_planner;
  7277. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7278. sd_position -= sdlen_cmdqueue;
  7279. if (sd_position < 0) sd_position = 0;
  7280. }
  7281. // Backup the feedrate in mm/min.
  7282. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7283. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7284. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7285. // are in action.
  7286. planner_abort_hard();
  7287. // Store the current extruder position.
  7288. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7289. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7290. // Clean the input command queue.
  7291. cmdqueue_reset();
  7292. card.sdprinting = false;
  7293. // card.closefile();
  7294. // Enable stepper driver interrupt to move Z axis.
  7295. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7296. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7297. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7298. sei();
  7299. plan_buffer_line(
  7300. current_position[X_AXIS],
  7301. current_position[Y_AXIS],
  7302. current_position[Z_AXIS],
  7303. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7304. 95, active_extruder);
  7305. st_synchronize();
  7306. disable_e0();
  7307. plan_buffer_line(
  7308. current_position[X_AXIS],
  7309. current_position[Y_AXIS],
  7310. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7311. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7312. 40, active_extruder);
  7313. st_synchronize();
  7314. disable_e0();
  7315. plan_buffer_line(
  7316. current_position[X_AXIS],
  7317. current_position[Y_AXIS],
  7318. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7319. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7320. 40, active_extruder);
  7321. st_synchronize();
  7322. disable_e0();
  7323. disable_z();
  7324. // Move Z up to the next 0th full step.
  7325. // Write the file position.
  7326. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7327. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7328. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7329. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7330. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7331. // Scale the z value to 1u resolution.
  7332. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7333. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7334. }
  7335. // Read out the current Z motor microstep counter. This will be later used
  7336. // for reaching the zero full step before powering off.
  7337. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7338. // Store the current position.
  7339. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7340. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7341. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7342. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7343. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7344. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7345. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7346. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7347. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7348. #if EXTRUDERS > 1
  7349. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7350. #if EXTRUDERS > 2
  7351. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7352. #endif
  7353. #endif
  7354. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7355. // Finaly store the "power outage" flag.
  7356. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7357. st_synchronize();
  7358. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7359. disable_z();
  7360. // Increment power failure counter
  7361. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7362. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7363. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7364. #if 0
  7365. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7366. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7367. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7368. st_synchronize();
  7369. #endif
  7370. wdt_enable(WDTO_500MS);
  7371. WRITE(BEEPER,HIGH);
  7372. while(1)
  7373. ;
  7374. }
  7375. void uvlo_tiny()
  7376. {
  7377. uint16_t z_microsteps=0;
  7378. // Conserve power as soon as possible.
  7379. disable_x();
  7380. disable_y();
  7381. disable_e0();
  7382. #ifdef TMC2130
  7383. tmc2130_set_current_h(Z_AXIS, 20);
  7384. tmc2130_set_current_r(Z_AXIS, 20);
  7385. #endif //TMC2130
  7386. // Read out the current Z motor microstep counter
  7387. #ifdef TMC2130
  7388. z_microsteps=tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7389. #endif //TMC2130
  7390. planner_abort_hard();
  7391. sei();
  7392. plan_buffer_line(
  7393. current_position[X_AXIS],
  7394. current_position[Y_AXIS],
  7395. // current_position[Z_AXIS]+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7396. current_position[Z_AXIS]+UVLO_Z_AXIS_SHIFT+float((1024-z_microsteps+7)>>4)/axis_steps_per_unit[Z_AXIS],
  7397. current_position[E_AXIS],
  7398. 40, active_extruder);
  7399. st_synchronize();
  7400. disable_z();
  7401. // Finaly store the "power outage" flag.
  7402. //if(sd_print)
  7403. eeprom_update_byte((uint8_t*)EEPROM_UVLO,2);
  7404. eeprom_update_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS),z_microsteps);
  7405. eeprom_update_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7406. // Increment power failure counter
  7407. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7408. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7409. wdt_enable(WDTO_500MS);
  7410. WRITE(BEEPER,HIGH);
  7411. while(1)
  7412. ;
  7413. }
  7414. #endif //UVLO_SUPPORT
  7415. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7416. void setup_fan_interrupt() {
  7417. //INT7
  7418. DDRE &= ~(1 << 7); //input pin
  7419. PORTE &= ~(1 << 7); //no internal pull-up
  7420. //start with sensing rising edge
  7421. EICRB &= ~(1 << 6);
  7422. EICRB |= (1 << 7);
  7423. //enable INT7 interrupt
  7424. EIMSK |= (1 << 7);
  7425. }
  7426. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7427. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7428. ISR(INT7_vect) {
  7429. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7430. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7431. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7432. t_fan_rising_edge = millis_nc();
  7433. }
  7434. else { //interrupt was triggered by falling edge
  7435. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7436. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7437. }
  7438. }
  7439. EICRB ^= (1 << 6); //change edge
  7440. }
  7441. #endif
  7442. #ifdef UVLO_SUPPORT
  7443. void setup_uvlo_interrupt() {
  7444. DDRE &= ~(1 << 4); //input pin
  7445. PORTE &= ~(1 << 4); //no internal pull-up
  7446. //sensing falling edge
  7447. EICRB |= (1 << 0);
  7448. EICRB &= ~(1 << 1);
  7449. //enable INT4 interrupt
  7450. EIMSK |= (1 << 4);
  7451. }
  7452. ISR(INT4_vect) {
  7453. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7454. SERIAL_ECHOLNPGM("INT4");
  7455. if(IS_SD_PRINTING && (!(eeprom_read_byte((uint8_t*)EEPROM_UVLO))) ) uvlo_();
  7456. if(eeprom_read_byte((uint8_t*)EEPROM_UVLO)) uvlo_tiny();
  7457. }
  7458. void recover_print(uint8_t automatic) {
  7459. char cmd[30];
  7460. lcd_update_enable(true);
  7461. lcd_update(2);
  7462. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7463. bool bTiny=(eeprom_read_byte((uint8_t*)EEPROM_UVLO)==2);
  7464. recover_machine_state_after_power_panic(bTiny); //recover position, temperatures and extrude_multipliers
  7465. // Lift the print head, so one may remove the excess priming material.
  7466. if(!bTiny&&(current_position[Z_AXIS]<25))
  7467. enquecommand_P(PSTR("G1 Z25 F800"));
  7468. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7469. enquecommand_P(PSTR("G28 X Y"));
  7470. // Set the target bed and nozzle temperatures and wait.
  7471. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7472. enquecommand(cmd);
  7473. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7474. enquecommand(cmd);
  7475. enquecommand_P(PSTR("M83")); //E axis relative mode
  7476. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7477. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7478. if(automatic == 0){
  7479. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7480. }
  7481. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7482. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7483. // Restart the print.
  7484. restore_print_from_eeprom();
  7485. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7486. }
  7487. void recover_machine_state_after_power_panic(bool bTiny)
  7488. {
  7489. char cmd[30];
  7490. // 1) Recover the logical cordinates at the time of the power panic.
  7491. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7492. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7493. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7494. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7495. // The current position after power panic is moved to the next closest 0th full step.
  7496. if(bTiny)
  7497. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_TINY_CURRENT_POSITION_Z)) +
  7498. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_TINY_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7499. else
  7500. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7501. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7502. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7503. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7504. sprintf_P(cmd, PSTR("G92 E"));
  7505. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7506. enquecommand(cmd);
  7507. }
  7508. memcpy(destination, current_position, sizeof(destination));
  7509. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7510. print_world_coordinates();
  7511. // 2) Initialize the logical to physical coordinate system transformation.
  7512. world2machine_initialize();
  7513. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7514. mbl.active = false;
  7515. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7516. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7517. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7518. // Scale the z value to 10u resolution.
  7519. int16_t v;
  7520. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7521. if (v != 0)
  7522. mbl.active = true;
  7523. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7524. }
  7525. if (mbl.active)
  7526. mbl.upsample_3x3();
  7527. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7528. // print_mesh_bed_leveling_table();
  7529. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7530. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7531. babystep_load();
  7532. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7533. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7534. // 6) Power up the motors, mark their positions as known.
  7535. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7536. axis_known_position[X_AXIS] = true; enable_x();
  7537. axis_known_position[Y_AXIS] = true; enable_y();
  7538. axis_known_position[Z_AXIS] = true; enable_z();
  7539. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7540. print_physical_coordinates();
  7541. // 7) Recover the target temperatures.
  7542. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7543. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7544. // 8) Recover extruder multipilers
  7545. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7546. #if EXTRUDERS > 1
  7547. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7548. #if EXTRUDERS > 2
  7549. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7550. #endif
  7551. #endif
  7552. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7553. }
  7554. void restore_print_from_eeprom() {
  7555. int feedrate_rec;
  7556. uint8_t fan_speed_rec;
  7557. char cmd[30];
  7558. char filename[13];
  7559. uint8_t depth = 0;
  7560. char dir_name[9];
  7561. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7562. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7563. SERIAL_ECHOPGM("Feedrate:");
  7564. MYSERIAL.println(feedrate_rec);
  7565. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7566. MYSERIAL.println(int(depth));
  7567. for (int i = 0; i < depth; i++) {
  7568. for (int j = 0; j < 8; j++) {
  7569. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7570. }
  7571. dir_name[8] = '\0';
  7572. MYSERIAL.println(dir_name);
  7573. strcpy(dir_names[i], dir_name);
  7574. card.chdir(dir_name);
  7575. }
  7576. for (int i = 0; i < 8; i++) {
  7577. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7578. }
  7579. filename[8] = '\0';
  7580. MYSERIAL.print(filename);
  7581. strcat_P(filename, PSTR(".gco"));
  7582. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7583. enquecommand(cmd);
  7584. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7585. SERIAL_ECHOPGM("Position read from eeprom:");
  7586. MYSERIAL.println(position);
  7587. // E axis relative mode.
  7588. enquecommand_P(PSTR("M83"));
  7589. // Move to the XY print position in logical coordinates, where the print has been killed.
  7590. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7591. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7592. strcat_P(cmd, PSTR(" F2000"));
  7593. enquecommand(cmd);
  7594. // Move the Z axis down to the print, in logical coordinates.
  7595. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7596. enquecommand(cmd);
  7597. // Unretract.
  7598. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7599. // Set the feedrate saved at the power panic.
  7600. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7601. enquecommand(cmd);
  7602. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7603. {
  7604. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7605. }
  7606. // Set the fan speed saved at the power panic.
  7607. strcpy_P(cmd, PSTR("M106 S"));
  7608. strcat(cmd, itostr3(int(fan_speed_rec)));
  7609. enquecommand(cmd);
  7610. // Set a position in the file.
  7611. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7612. enquecommand(cmd);
  7613. enquecommand_P(PSTR("G4 S0"));
  7614. enquecommand_P(PSTR("PRUSA uvlo"));
  7615. }
  7616. #endif //UVLO_SUPPORT
  7617. ////////////////////////////////////////////////////////////////////////////////
  7618. // save/restore printing
  7619. void stop_and_save_print_to_ram(float z_move, float e_move)
  7620. {
  7621. if (saved_printing) return;
  7622. #if 0
  7623. unsigned char nplanner_blocks;
  7624. #endif
  7625. unsigned char nlines;
  7626. uint16_t sdlen_planner;
  7627. uint16_t sdlen_cmdqueue;
  7628. cli();
  7629. if (card.sdprinting) {
  7630. #if 0
  7631. nplanner_blocks = number_of_blocks();
  7632. #endif
  7633. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7634. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7635. saved_sdpos -= sdlen_planner;
  7636. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7637. saved_sdpos -= sdlen_cmdqueue;
  7638. saved_printing_type = PRINTING_TYPE_SD;
  7639. }
  7640. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7641. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7642. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7643. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7644. saved_sdpos -= nlines;
  7645. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7646. saved_printing_type = PRINTING_TYPE_USB;
  7647. }
  7648. else {
  7649. //not sd printing nor usb printing
  7650. }
  7651. #if 0
  7652. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7653. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7654. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7655. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7656. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7657. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7658. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7659. {
  7660. card.setIndex(saved_sdpos);
  7661. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7662. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7663. MYSERIAL.print(char(card.get()));
  7664. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7665. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7666. MYSERIAL.print(char(card.get()));
  7667. SERIAL_ECHOLNPGM("End of command buffer");
  7668. }
  7669. {
  7670. // Print the content of the planner buffer, line by line:
  7671. card.setIndex(saved_sdpos);
  7672. int8_t iline = 0;
  7673. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7674. SERIAL_ECHOPGM("Planner line (from file): ");
  7675. MYSERIAL.print(int(iline), DEC);
  7676. SERIAL_ECHOPGM(", length: ");
  7677. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7678. SERIAL_ECHOPGM(", steps: (");
  7679. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7680. SERIAL_ECHOPGM(",");
  7681. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7682. SERIAL_ECHOPGM(",");
  7683. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7684. SERIAL_ECHOPGM(",");
  7685. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7686. SERIAL_ECHOPGM("), events: ");
  7687. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7688. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7689. MYSERIAL.print(char(card.get()));
  7690. }
  7691. }
  7692. {
  7693. // Print the content of the command buffer, line by line:
  7694. int8_t iline = 0;
  7695. union {
  7696. struct {
  7697. char lo;
  7698. char hi;
  7699. } lohi;
  7700. uint16_t value;
  7701. } sdlen_single;
  7702. int _bufindr = bufindr;
  7703. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7704. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7705. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7706. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7707. }
  7708. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7709. MYSERIAL.print(int(iline), DEC);
  7710. SERIAL_ECHOPGM(", type: ");
  7711. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7712. SERIAL_ECHOPGM(", len: ");
  7713. MYSERIAL.println(sdlen_single.value, DEC);
  7714. // Print the content of the buffer line.
  7715. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7716. SERIAL_ECHOPGM("Buffer line (from file): ");
  7717. MYSERIAL.println(int(iline), DEC);
  7718. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7719. MYSERIAL.print(char(card.get()));
  7720. if (-- _buflen == 0)
  7721. break;
  7722. // First skip the current command ID and iterate up to the end of the string.
  7723. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7724. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7725. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7726. // If the end of the buffer was empty,
  7727. if (_bufindr == sizeof(cmdbuffer)) {
  7728. // skip to the start and find the nonzero command.
  7729. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7730. }
  7731. }
  7732. }
  7733. #endif
  7734. #if 0
  7735. saved_feedrate2 = feedrate; //save feedrate
  7736. #else
  7737. // Try to deduce the feedrate from the first block of the planner.
  7738. // Speed is in mm/min.
  7739. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7740. #endif
  7741. planner_abort_hard(); //abort printing
  7742. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7743. saved_active_extruder = active_extruder; //save active_extruder
  7744. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7745. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7746. cmdqueue_reset(); //empty cmdqueue
  7747. card.sdprinting = false;
  7748. // card.closefile();
  7749. saved_printing = true;
  7750. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7751. st_reset_timer();
  7752. sei();
  7753. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7754. #if 1
  7755. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7756. char buf[48];
  7757. // First unretract (relative extrusion)
  7758. if(!saved_extruder_relative_mode){
  7759. strcpy_P(buf, PSTR("M83"));
  7760. enquecommand(buf, false);
  7761. }
  7762. //retract 45mm/s
  7763. strcpy_P(buf, PSTR("G1 E"));
  7764. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7765. strcat_P(buf, PSTR(" F"));
  7766. dtostrf(2700, 8, 3, buf + strlen(buf));
  7767. enquecommand(buf, false);
  7768. // Then lift Z axis
  7769. strcpy_P(buf, PSTR("G1 Z"));
  7770. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7771. strcat_P(buf, PSTR(" F"));
  7772. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7773. // At this point the command queue is empty.
  7774. enquecommand(buf, false);
  7775. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7776. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7777. repeatcommand_front();
  7778. #else
  7779. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7780. st_synchronize(); //wait moving
  7781. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7782. memcpy(destination, current_position, sizeof(destination));
  7783. #endif
  7784. }
  7785. }
  7786. void restore_print_from_ram_and_continue(float e_move)
  7787. {
  7788. if (!saved_printing) return;
  7789. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7790. // current_position[axis] = st_get_position_mm(axis);
  7791. active_extruder = saved_active_extruder; //restore active_extruder
  7792. feedrate = saved_feedrate2; //restore feedrate
  7793. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7794. float e = saved_pos[E_AXIS] - e_move;
  7795. plan_set_e_position(e);
  7796. //first move print head in XY to the saved position:
  7797. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7798. st_synchronize();
  7799. //then move Z
  7800. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7801. st_synchronize();
  7802. //and finaly unretract (35mm/s)
  7803. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7804. st_synchronize();
  7805. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7806. memcpy(destination, current_position, sizeof(destination));
  7807. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7808. card.setIndex(saved_sdpos);
  7809. sdpos_atomic = saved_sdpos;
  7810. card.sdprinting = true;
  7811. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7812. }
  7813. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7814. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7815. serial_count = 0;
  7816. FlushSerialRequestResend();
  7817. }
  7818. else {
  7819. //not sd printing nor usb printing
  7820. }
  7821. lcd_setstatuspgm(_T(WELCOME_MSG));
  7822. saved_printing = false;
  7823. }
  7824. void print_world_coordinates()
  7825. {
  7826. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7827. }
  7828. void print_physical_coordinates()
  7829. {
  7830. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  7831. }
  7832. void print_mesh_bed_leveling_table()
  7833. {
  7834. SERIAL_ECHOPGM("mesh bed leveling: ");
  7835. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7836. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7837. MYSERIAL.print(mbl.z_values[y][x], 3);
  7838. SERIAL_ECHOPGM(" ");
  7839. }
  7840. SERIAL_ECHOLNPGM("");
  7841. }
  7842. uint16_t print_time_remaining() {
  7843. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7844. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7845. else print_t = print_time_remaining_silent;
  7846. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7847. return print_t;
  7848. }
  7849. uint8_t print_percent_done() {
  7850. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7851. uint8_t percent_done = 0;
  7852. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7853. percent_done = print_percent_done_normal;
  7854. }
  7855. else if (print_percent_done_silent <= 100) {
  7856. percent_done = print_percent_done_silent;
  7857. }
  7858. else {
  7859. percent_done = card.percentDone();
  7860. }
  7861. return percent_done;
  7862. }
  7863. static void print_time_remaining_init() {
  7864. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7865. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7866. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7867. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7868. }
  7869. bool mmu_get_reponse(bool timeout) {
  7870. bool response = true;
  7871. LongTimer mmu_get_reponse_timeout;
  7872. uart2_rx_clr();
  7873. mmu_get_reponse_timeout.start();
  7874. while (!uart2_rx_ok())
  7875. {
  7876. delay_keep_alive(100);
  7877. if (timeout && mmu_get_reponse_timeout.expired(180 * 1000ul)) { //3 minutes timeout
  7878. response = false;
  7879. break;
  7880. }
  7881. }
  7882. return response;
  7883. }
  7884. void mmu_not_responding() {
  7885. printf_P(PSTR("MMU not responding"));
  7886. }
  7887. void mmu_load_to_nozzle() {
  7888. /*bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7889. if (!saved_e_relative_mode) {
  7890. enquecommand_front_P(PSTR("M82")); // set extruder to relative mode
  7891. }
  7892. enquecommand_front_P((PSTR("G1 E7.2000 F562")));
  7893. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7894. enquecommand_front_P((PSTR("G1 E36.0000 F1393")));
  7895. enquecommand_front_P((PSTR("G1 E14.4000 F871")));
  7896. if (!saved_e_relative_mode) {
  7897. enquecommand_front_P(PSTR("M83")); // set extruder to relative mode
  7898. }*/
  7899. st_synchronize();
  7900. bool saved_e_relative_mode = axis_relative_modes[E_AXIS];
  7901. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = true;
  7902. current_position[E_AXIS] += 7.2f;
  7903. float feedrate = 562;
  7904. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7905. st_synchronize();
  7906. current_position[E_AXIS] += 14.4f;
  7907. feedrate = 871;
  7908. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7909. st_synchronize();
  7910. current_position[E_AXIS] += 36.0f;
  7911. feedrate = 1393;
  7912. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7913. st_synchronize();
  7914. current_position[E_AXIS] += 14.4f;
  7915. feedrate = 871;
  7916. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  7917. st_synchronize();
  7918. if (!saved_e_relative_mode) axis_relative_modes[E_AXIS] = false;
  7919. }
  7920. void mmu_switch_extruder(uint8_t extruder) {
  7921. }
  7922. void mmu_M600_load_filament() {
  7923. #ifdef SNMM_V2
  7924. bool response = false;
  7925. tmp_extruder = choose_extruder_menu();
  7926. lcd_update_enable(false);
  7927. lcd_clear();
  7928. lcd_set_cursor(0, 1); lcd_puts_P(_T(MSG_LOADING_FILAMENT));
  7929. lcd_print(" ");
  7930. lcd_print(snmm_extruder + 1);
  7931. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  7932. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  7933. fprintf_P(uart2io, PSTR("T%d\n"), tmp_extruder);
  7934. response = mmu_get_reponse(false);
  7935. if (!response) mmu_not_responding();
  7936. snmm_extruder = tmp_extruder; //filament change is finished
  7937. mmu_load_to_nozzle();
  7938. #endif
  7939. }
  7940. void M600_load_filament_movements() {
  7941. #ifdef SNMM
  7942. display_loading();
  7943. do {
  7944. current_position[E_AXIS] += 0.002;
  7945. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7946. delay_keep_alive(2);
  7947. } while (!lcd_clicked());
  7948. st_synchronize();
  7949. current_position[E_AXIS] += bowden_length[snmm_extruder];
  7950. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000, active_extruder);
  7951. current_position[E_AXIS] += FIL_LOAD_LENGTH - 60;
  7952. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1400, active_extruder);
  7953. current_position[E_AXIS] += 40;
  7954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7955. current_position[E_AXIS] += 10;
  7956. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7957. #else
  7958. current_position[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  7959. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  7960. #endif
  7961. current_position[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  7962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  7963. lcd_loading_filament();
  7964. }
  7965. void M600_load_filament()
  7966. {
  7967. lcd_wait_interact();
  7968. //load_filament_time = millis();
  7969. KEEPALIVE_STATE(PAUSED_FOR_USER);
  7970. #ifdef FILAMENT_SENSOR
  7971. fsensor_autoload_check_start();
  7972. #endif //FILAMENT_SENSOR
  7973. while(!lcd_clicked())
  7974. {
  7975. manage_heater();
  7976. manage_inactivity(true);
  7977. #ifdef FILAMENT_SENSOR
  7978. if (fsensor_check_autoload())
  7979. {
  7980. tone(BEEPER, 1000);
  7981. delay_keep_alive(50);
  7982. noTone(BEEPER);
  7983. break;
  7984. }
  7985. #endif //FILAMENT_SENSOR
  7986. }
  7987. #ifdef FILAMENT_SENSOR
  7988. fsensor_autoload_check_stop();
  7989. #endif //FILAMENT_SENSOR
  7990. KEEPALIVE_STATE(IN_HANDLER);
  7991. #ifdef FILAMENT_SENSOR
  7992. fsensor_oq_meassure_start(70);
  7993. #endif //FILAMENT_SENSOR
  7994. M600_load_filament_movements();
  7995. tone(BEEPER, 500);
  7996. delay_keep_alive(50);
  7997. noTone(BEEPER);
  7998. #ifdef FILAMENT_SENSOR
  7999. fsensor_oq_meassure_stop();
  8000. if (!fsensor_oq_result())
  8001. {
  8002. bool disable = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Fil. sensor response is poor, disable it?"), false, true);
  8003. lcd_update_enable(true);
  8004. lcd_update(2);
  8005. if (disable)
  8006. fsensor_disable();
  8007. }
  8008. #endif //FILAMENT_SENSOR
  8009. }
  8010. #define FIL_LOAD_LENGTH 60