| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229 | 
							- /*
 
-   planner.c - buffers movement commands and manages the acceleration profile plan
 
-  Part of Grbl
 
-  
 
-  Copyright (c) 2009-2011 Simen Svale Skogsrud
 
-  
 
-  Grbl is free software: you can redistribute it and/or modify
 
-  it under the terms of the GNU General Public License as published by
 
-  the Free Software Foundation, either version 3 of the License, or
 
-  (at your option) any later version.
 
-  
 
-  Grbl is distributed in the hope that it will be useful,
 
-  but WITHOUT ANY WARRANTY; without even the implied warranty of
 
-  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 
-  GNU General Public License for more details.
 
-  
 
-  You should have received a copy of the GNU General Public License
 
-  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
 
-  */
 
- /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
 
- /*  
 
-  Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
 
-  
 
-  s == speed, a == acceleration, t == time, d == distance
 
-  
 
-  Basic definitions:
 
-  
 
-  Speed[s_, a_, t_] := s + (a*t) 
 
-  Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
 
-  
 
-  Distance to reach a specific speed with a constant acceleration:
 
-  
 
-  Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
 
-  d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
 
-  
 
-  Speed after a given distance of travel with constant acceleration:
 
-  
 
-  Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
 
-  m -> Sqrt[2 a d + s^2]    
 
-  
 
-  DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
 
-  
 
-  When to start braking (di) to reach a specified destionation speed (s2) after accelerating
 
-  from initial speed s1 without ever stopping at a plateau:
 
-  
 
-  Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
 
-  di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
 
-  
 
-  IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
 
-  */
 
- #include "Marlin.h"
 
- #include "planner.h"
 
- #include "stepper.h"
 
- #include "temperature.h"
 
- #include "ultralcd.h"
 
- #include "language.h"
 
- #ifdef MESH_BED_LEVELING
 
- #include "mesh_bed_leveling.h"
 
- #include "mesh_bed_calibration.h"
 
- #endif
 
- //===========================================================================
 
- //=============================public variables ============================
 
- //===========================================================================
 
- unsigned long minsegmenttime;
 
- float max_feedrate[NUM_AXIS]; // set the max speeds
 
- float axis_steps_per_unit[NUM_AXIS];
 
- unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
 
- float minimumfeedrate;
 
- float acceleration;         // Normal acceleration mm/s^2  THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
 
- float retract_acceleration; //  mm/s^2   filament pull-pack and push-forward  while standing still in the other axis M204 TXXXX
 
- // Jerk is a maximum immediate velocity change.
 
- float max_jerk[NUM_AXIS];
 
- float mintravelfeedrate;
 
- unsigned long axis_steps_per_sqr_second[NUM_AXIS];
 
- #ifdef ENABLE_AUTO_BED_LEVELING
 
- // this holds the required transform to compensate for bed level
 
- matrix_3x3 plan_bed_level_matrix = {
 
- 	1.0, 0.0, 0.0,
 
- 	0.0, 1.0, 0.0,
 
- 	0.0, 0.0, 1.0,
 
- };
 
- #endif // #ifdef ENABLE_AUTO_BED_LEVELING
 
- // The current position of the tool in absolute steps
 
- long position[NUM_AXIS];   //rescaled from extern when axis_steps_per_unit are changed by gcode
 
- static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
 
- static float previous_nominal_speed; // Nominal speed of previous path line segment
 
- static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
 
- #ifdef AUTOTEMP
 
- float autotemp_max=250;
 
- float autotemp_min=210;
 
- float autotemp_factor=0.1;
 
- bool autotemp_enabled=false;
 
- #endif
 
- unsigned char g_uc_extruder_last_move[3] = {0,0,0};
 
- //===========================================================================
 
- //=================semi-private variables, used in inline  functions    =====
 
- //===========================================================================
 
- block_t block_buffer[BLOCK_BUFFER_SIZE];            // A ring buffer for motion instfructions
 
- volatile unsigned char block_buffer_head;           // Index of the next block to be pushed
 
- volatile unsigned char block_buffer_tail;           // Index of the block to process now
 
- #ifdef PLANNER_DIAGNOSTICS
 
- // Diagnostic function: Minimum number of planned moves since the last 
 
- static uint8_t g_cntr_planner_queue_min = 0;
 
- #endif /* PLANNER_DIAGNOSTICS */
 
- //===========================================================================
 
- //=============================private variables ============================
 
- //===========================================================================
 
- #ifdef PREVENT_DANGEROUS_EXTRUDE
 
- float extrude_min_temp=EXTRUDE_MINTEMP;
 
- #endif
 
- #ifdef FILAMENT_SENSOR
 
-  static char meas_sample; //temporary variable to hold filament measurement sample
 
- #endif
 
- // Returns the index of the next block in the ring buffer
 
- // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
 
- static inline int8_t next_block_index(int8_t block_index) {
 
-   if (++ block_index == BLOCK_BUFFER_SIZE)
 
-     block_index = 0; 
 
-   return block_index;
 
- }
 
- // Returns the index of the previous block in the ring buffer
 
- static inline int8_t prev_block_index(int8_t block_index) {
 
-   if (block_index == 0)
 
-     block_index = BLOCK_BUFFER_SIZE; 
 
-   -- block_index;
 
-   return block_index;
 
- }
 
- //===========================================================================
 
- //=============================functions         ============================
 
- //===========================================================================
 
- // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the 
 
- // given acceleration:
 
- FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
 
- {
 
-   if (acceleration!=0) {
 
-     return((target_rate*target_rate-initial_rate*initial_rate)/
 
-       (2.0*acceleration));
 
-   }
 
-   else {
 
-     return 0.0;  // acceleration was 0, set acceleration distance to 0
 
-   }
 
- }
 
- // This function gives you the point at which you must start braking (at the rate of -acceleration) if 
 
- // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
 
- // a total travel of distance. This can be used to compute the intersection point between acceleration and
 
- // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
 
- FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) 
 
- {
 
-   if (acceleration!=0) {
 
-     return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
 
-       (4.0*acceleration) );
 
-   }
 
-   else {
 
-     return 0.0;  // acceleration was 0, set intersection distance to 0
 
-   }
 
- }
 
- #define MINIMAL_STEP_RATE 120
 
- // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
 
- void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) 
 
- {
 
-   // These two lines are the only floating point calculations performed in this routine.
 
-   uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
 
-   uint32_t final_rate   = ceil(exit_speed  * block->speed_factor); // (step/min)
 
-   // Limit minimal step rate (Otherwise the timer will overflow.)
 
-   if (initial_rate < MINIMAL_STEP_RATE)
 
-       initial_rate = MINIMAL_STEP_RATE;
 
-   if (initial_rate > block->nominal_rate)
 
-       initial_rate = block->nominal_rate;
 
-   if (final_rate < MINIMAL_STEP_RATE)
 
-       final_rate = MINIMAL_STEP_RATE;
 
-   if (final_rate > block->nominal_rate)
 
-       final_rate = block->nominal_rate;
 
-   uint32_t acceleration      = block->acceleration_st;
 
-   if (acceleration == 0)
 
-       // Don't allow zero acceleration.
 
-       acceleration = 1;
 
-   // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
 
-   // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
 
-   uint32_t initial_rate_sqr  = initial_rate*initial_rate;
 
-   //FIXME assert that this result fits a 64bit unsigned int.
 
-   uint32_t nominal_rate_sqr  = block->nominal_rate*block->nominal_rate;
 
-   uint32_t final_rate_sqr    = final_rate*final_rate;
 
-   uint32_t acceleration_x2   = acceleration << 1;
 
-   // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
 
-   uint32_t accelerate_steps  = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
 
-   // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
 
-   uint32_t decelerate_steps  = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
 
-   uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
 
-   // Size of Plateau of Nominal Rate.
 
-   uint32_t plateau_steps     = 0;
 
-   // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
 
-   // have to use intersection_distance() to calculate when to abort acceleration and start braking
 
-   // in order to reach the final_rate exactly at the end of this block.
 
-   if (accel_decel_steps < block->step_event_count) {
 
-     plateau_steps = block->step_event_count - accel_decel_steps;
 
-   } else {
 
-     uint32_t acceleration_x4  = acceleration << 2;
 
-     // Avoid negative numbers
 
-     if (final_rate_sqr >= initial_rate_sqr) {
 
-         // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
 
-         // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) 
 
-         // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
 
- #if 0
 
-         accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
 
- #else
 
-         accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
 
-         if (block->step_event_count & 1)
 
-             accelerate_steps += acceleration_x2;
 
-         accelerate_steps /= acceleration_x4;
 
-         accelerate_steps += (block->step_event_count >> 1);
 
- #endif
 
-         if (accelerate_steps > block->step_event_count)
 
-             accelerate_steps = block->step_event_count;
 
-     } else {
 
- #if 0
 
-         decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
 
- #else
 
-         decelerate_steps = initial_rate_sqr - final_rate_sqr;
 
-         if (block->step_event_count & 1)
 
-             decelerate_steps += acceleration_x2;
 
-         decelerate_steps /= acceleration_x4;
 
-         decelerate_steps += (block->step_event_count >> 1);
 
- #endif
 
-         if (decelerate_steps > block->step_event_count)
 
-             decelerate_steps = block->step_event_count;
 
-         accelerate_steps = block->step_event_count - decelerate_steps;
 
-     }
 
-   }
 
-   CRITICAL_SECTION_START;  // Fill variables used by the stepper in a critical section
 
-   if (! block->busy) { // Don't update variables if block is busy.
 
-     block->accelerate_until = accelerate_steps;
 
-     block->decelerate_after = accelerate_steps+plateau_steps;
 
-     block->initial_rate = initial_rate;
 
-     block->final_rate = final_rate;
 
-   }
 
-   CRITICAL_SECTION_END;
 
- }
 
- // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the 
 
- // decceleration within the allotted distance.
 
- FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance) 
 
- {
 
-     // assert(decceleration < 0);
 
-     return  sqrt(target_velocity*target_velocity-2*decceleration*distance);
 
- }
 
- // Recalculates the motion plan according to the following algorithm:
 
- //
 
- //   1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) 
 
- //      so that:
 
- //     a. The junction jerk is within the set limit
 
- //     b. No speed reduction within one block requires faster deceleration than the one, true constant 
 
- //        acceleration.
 
- //   2. Go over every block in chronological order and dial down junction speed reduction values if 
 
- //     a. The speed increase within one block would require faster accelleration than the one, true 
 
- //        constant acceleration.
 
- //
 
- // When these stages are complete all blocks have an entry_factor that will allow all speed changes to 
 
- // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than 
 
- // the set limit. Finally it will:
 
- //
 
- //   3. Recalculate trapezoids for all blocks.
 
- //
 
- //FIXME This routine is called 15x every time a new line is added to the planner,
 
- // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
 
- // if the CPU is found lacking computational power.
 
- //
 
- // Following sources may be used to optimize the 8-bit AVR code:
 
- // http://www.mikrocontroller.net/articles/AVR_Arithmetik
 
- // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
 
- // 
 
- // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
 
- // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
 
- // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
 
- // 
 
- // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
 
- // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
 
- // https://github.com/rekka/avrmultiplication
 
- // 
 
- // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
 
- // https://courses.cit.cornell.edu/ee476/Math/
 
- // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
 
- //
 
- void planner_recalculate(const float &safe_final_speed) 
 
- {
 
-     // Reverse pass
 
-     // Make a local copy of block_buffer_tail, because the interrupt can alter it
 
-     // by consuming the blocks, therefore shortening the queue.
 
-     unsigned char tail = block_buffer_tail;
 
-     uint8_t block_index;
 
-     block_t *prev, *current, *next;
 
- //    SERIAL_ECHOLNPGM("planner_recalculate - 1");
 
-     // At least three blocks are in the queue?
 
-     unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
 
-     if (n_blocks >= 3) {
 
-         // Initialize the last tripple of blocks.
 
-         block_index = prev_block_index(block_buffer_head);
 
-         next        = block_buffer + block_index;
 
-         current     = block_buffer + (block_index = prev_block_index(block_index));
 
-         // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
 
-         // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
 
-         // 1) it may already be running at the stepper interrupt,
 
-         // 2) there is no way to limit it when going in the forward direction.
 
-         while (block_index != tail) {
 
-             if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
 
-                 // Don't modify the entry velocity of the starting block.
 
-                 // Also don't modify the trapezoids before this block, they are finalized already, prepared
 
-                 // for the stepper interrupt routine to use them.
 
-                 tail = block_index;
 
-                 // Update the number of blocks to process.
 
-                 n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
 
-                 // SERIAL_ECHOLNPGM("START");
 
-                 break;
 
-             }
 
-             // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
 
-             // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
 
-             // check for maximum allowable speed reductions to ensure maximum possible planned speed.
 
-             if (current->entry_speed != current->max_entry_speed) {
 
-                 // assert(current->entry_speed < current->max_entry_speed);
 
-                 // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
 
-                 // segment and the maximum acceleration allowed for this segment.
 
-                 // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
 
-                 // Only compute for max allowable speed if block is decelerating and nominal length is false.
 
-                 // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
 
-                 // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
 
-                 // together with an assembly 32bit->16bit sqrt function.
 
-                 current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
 
-                     current->max_entry_speed :
 
-                     // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
 
-                     min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
 
-                 current->flag |= BLOCK_FLAG_RECALCULATE;
 
-             }
 
-             next = current;
 
-             current = block_buffer + (block_index = prev_block_index(block_index));
 
-         }
 
-     }
 
- //    SERIAL_ECHOLNPGM("planner_recalculate - 2");
 
-     // Forward pass and recalculate the trapezoids.
 
-     if (n_blocks >= 2) {
 
-         // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
 
-         block_index = tail;
 
-         prev    = block_buffer + block_index;
 
-         current = block_buffer + (block_index = next_block_index(block_index));
 
-         do {
 
-             // If the previous block is an acceleration block, but it is not long enough to complete the
 
-             // full speed change within the block, we need to adjust the entry speed accordingly. Entry
 
-             // speeds have already been reset, maximized, and reverse planned by reverse planner.
 
-             // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
 
-             if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
 
-                 float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
 
-                 // Check for junction speed change
 
-                 if (current->entry_speed != entry_speed) {
 
-                     current->entry_speed = entry_speed;
 
-                     current->flag |= BLOCK_FLAG_RECALCULATE;
 
-                 }
 
-             }
 
-             // Recalculate if current block entry or exit junction speed has changed.
 
-             if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
 
-                 // NOTE: Entry and exit factors always > 0 by all previous logic operations.
 
-                 calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
 
-                 // Reset current only to ensure next trapezoid is computed.
 
-                 prev->flag &= ~BLOCK_FLAG_RECALCULATE;
 
-             }
 
-             prev = current;
 
-             current = block_buffer + (block_index = next_block_index(block_index));
 
-         } while (block_index != block_buffer_head);
 
-     }
 
- //    SERIAL_ECHOLNPGM("planner_recalculate - 3");
 
-     // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
 
-     current = block_buffer + prev_block_index(block_buffer_head);
 
-     calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
 
-     current->flag &= ~BLOCK_FLAG_RECALCULATE;
 
- //    SERIAL_ECHOLNPGM("planner_recalculate - 4");
 
- }
 
- void plan_init() {
 
-   block_buffer_head = 0;
 
-   block_buffer_tail = 0;
 
-   memset(position, 0, sizeof(position)); // clear position
 
-   previous_speed[0] = 0.0;
 
-   previous_speed[1] = 0.0;
 
-   previous_speed[2] = 0.0;
 
-   previous_speed[3] = 0.0;
 
-   previous_nominal_speed = 0.0;
 
- }
 
- #ifdef AUTOTEMP
 
- void getHighESpeed()
 
- {
 
-   static float oldt=0;
 
-   if(!autotemp_enabled){
 
-     return;
 
-   }
 
-   if(degTargetHotend0()+2<autotemp_min) {  //probably temperature set to zero.
 
-     return; //do nothing
 
-   }
 
-   float high=0.0;
 
-   uint8_t block_index = block_buffer_tail;
 
-   while(block_index != block_buffer_head) {
 
-     if((block_buffer[block_index].steps_x != 0) ||
 
-       (block_buffer[block_index].steps_y != 0) ||
 
-       (block_buffer[block_index].steps_z != 0)) {
 
-       float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
 
-       //se; mm/sec;
 
-       if(se>high)
 
-       {
 
-         high=se;
 
-       }
 
-     }
 
-     block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
 
-   }
 
-   float g=autotemp_min+high*autotemp_factor;
 
-   float t=g;
 
-   if(t<autotemp_min)
 
-     t=autotemp_min;
 
-   if(t>autotemp_max)
 
-     t=autotemp_max;
 
-   if(oldt>t)
 
-   {
 
-     t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
 
-   }
 
-   oldt=t;
 
-   setTargetHotend0(t);
 
- }
 
- #endif
 
- void check_axes_activity()
 
- {
 
-   unsigned char x_active = 0;
 
-   unsigned char y_active = 0;  
 
-   unsigned char z_active = 0;
 
-   unsigned char e_active = 0;
 
-   unsigned char tail_fan_speed = fanSpeed;
 
-   block_t *block;
 
-   if(block_buffer_tail != block_buffer_head)
 
-   {
 
-     uint8_t block_index = block_buffer_tail;
 
-     tail_fan_speed = block_buffer[block_index].fan_speed;
 
-     while(block_index != block_buffer_head)
 
-     {
 
-       block = &block_buffer[block_index];
 
-       if(block->steps_x != 0) x_active++;
 
-       if(block->steps_y != 0) y_active++;
 
-       if(block->steps_z != 0) z_active++;
 
-       if(block->steps_e != 0) e_active++;
 
-       block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
 
-     }
 
-   }
 
-   if((DISABLE_X) && (x_active == 0)) disable_x();
 
-   if((DISABLE_Y) && (y_active == 0)) disable_y();
 
-   if((DISABLE_Z) && (z_active == 0)) disable_z();
 
-   if((DISABLE_E) && (e_active == 0))
 
-   {
 
-     disable_e0();
 
-     disable_e1();
 
-     disable_e2(); 
 
-   }
 
- #if defined(FAN_PIN) && FAN_PIN > -1
 
-   #ifdef FAN_KICKSTART_TIME
 
-     static unsigned long fan_kick_end;
 
-     if (tail_fan_speed) {
 
-       if (fan_kick_end == 0) {
 
-         // Just starting up fan - run at full power.
 
-         fan_kick_end = millis() + FAN_KICKSTART_TIME;
 
-         tail_fan_speed = 255;
 
-       } else if (fan_kick_end > millis())
 
-         // Fan still spinning up.
 
-         tail_fan_speed = 255;
 
-     } else {
 
-       fan_kick_end = 0;
 
-     }
 
-   #endif//FAN_KICKSTART_TIME
 
-   #ifdef FAN_SOFT_PWM
 
-   fanSpeedSoftPwm = tail_fan_speed;
 
-   #else
 
-   analogWrite(FAN_PIN,tail_fan_speed);
 
-   #endif//!FAN_SOFT_PWM
 
- #endif//FAN_PIN > -1
 
- #ifdef AUTOTEMP
 
-   getHighESpeed();
 
- #endif
 
- }
 
- bool waiting_inside_plan_buffer_line_print_aborted = false;
 
- /*
 
- void planner_abort_soft()
 
- {
 
-     // Empty the queue.
 
-     while (blocks_queued()) plan_discard_current_block();
 
-     // Relay to planner wait routine, that the current line shall be canceled.
 
-     waiting_inside_plan_buffer_line_print_aborted = true;
 
-     //current_position[i]
 
- }
 
- */
 
- #ifdef PLANNER_DIAGNOSTICS
 
- static inline void planner_update_queue_min_counter()
 
- {
 
-   uint8_t new_counter = moves_planned();
 
-   if (new_counter < g_cntr_planner_queue_min)
 
-     g_cntr_planner_queue_min = new_counter;
 
- }
 
- #endif /* PLANNER_DIAGNOSTICS */
 
- void planner_abort_hard()
 
- {
 
-     // Abort the stepper routine and flush the planner queue.
 
-     quickStop();
 
-     // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
 
-     // First update the planner's current position in the physical motor steps.
 
-     position[X_AXIS] = st_get_position(X_AXIS);
 
-     position[Y_AXIS] = st_get_position(Y_AXIS);
 
-     position[Z_AXIS] = st_get_position(Z_AXIS);
 
-     position[E_AXIS] = st_get_position(E_AXIS);
 
-     // Second update the current position of the front end.
 
-     current_position[X_AXIS] = st_get_position_mm(X_AXIS);
 
-     current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
 
-     current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
 
-     current_position[E_AXIS] = st_get_position_mm(E_AXIS);
 
-     // Apply the mesh bed leveling correction to the Z axis.
 
- #ifdef MESH_BED_LEVELING
 
-     if (mbl.active)
 
-         current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
 
- #endif
 
-     // Apply inverse world correction matrix.
 
-     machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
 
-     memcpy(destination, current_position, sizeof(destination));
 
-     // Resets planner junction speeds. Assumes start from rest.
 
-     previous_nominal_speed = 0.0;
 
-     previous_speed[0] = 0.0;
 
-     previous_speed[1] = 0.0;
 
-     previous_speed[2] = 0.0;
 
-     previous_speed[3] = 0.0;
 
-     // Relay to planner wait routine, that the current line shall be canceled.
 
-     waiting_inside_plan_buffer_line_print_aborted = true;
 
- }
 
- float junction_deviation = 0.1;
 
- // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in 
 
- // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
 
- // calculation the caller must also provide the physical length of the line in millimeters.
 
- void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
 
- {
 
-     // Calculate the buffer head after we push this byte
 
-   int next_buffer_head = next_block_index(block_buffer_head);
 
-   // If the buffer is full: good! That means we are well ahead of the robot. 
 
-   // Rest here until there is room in the buffer.
 
-   if (block_buffer_tail == next_buffer_head) {
 
-       waiting_inside_plan_buffer_line_print_aborted = false;
 
-       do {
 
-           manage_heater(); 
 
-           // Vojtech: Don't disable motors inside the planner!
 
-           manage_inactivity(false); 
 
-           lcd_update();
 
-       } while (block_buffer_tail == next_buffer_head);
 
-       if (waiting_inside_plan_buffer_line_print_aborted) {
 
-           // Inside the lcd_update() routine the print has been aborted.
 
-           // Cancel the print, do not plan the current line this routine is waiting on.
 
- #ifdef PLANNER_DIAGNOSTICS
 
-           planner_update_queue_min_counter();
 
- #endif /* PLANNER_DIAGNOSTICS */
 
-           return;
 
-       }
 
-   }
 
- #ifdef PLANNER_DIAGNOSTICS
 
-   planner_update_queue_min_counter();
 
- #endif /* PLANNER_DIAGNOSTICS */
 
- #ifdef ENABLE_AUTO_BED_LEVELING
 
-   apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
 
- #endif // ENABLE_AUTO_BED_LEVELING
 
-     // Apply the machine correction matrix.
 
-     {
 
-       #if 0
 
-         SERIAL_ECHOPGM("Planner, current position - servos: ");
 
-         MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
 
-         SERIAL_ECHOLNPGM("");
 
-         SERIAL_ECHOPGM("Planner, target position, initial: ");
 
-         MYSERIAL.print(x, 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(y, 5);
 
-         SERIAL_ECHOLNPGM("");
 
-         SERIAL_ECHOPGM("Planner, world2machine: ");
 
-         MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
 
-         SERIAL_ECHOLNPGM("");
 
-         SERIAL_ECHOPGM("Planner, offset: ");
 
-         MYSERIAL.print(world2machine_shift[0], 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(world2machine_shift[1], 5);
 
-         SERIAL_ECHOLNPGM("");
 
-       #endif
 
-         world2machine(x, y);
 
-       #if 0
 
-         SERIAL_ECHOPGM("Planner, target position, corrected: ");
 
-         MYSERIAL.print(x, 5);
 
-         SERIAL_ECHOPGM(", ");
 
-         MYSERIAL.print(y, 5);
 
-         SERIAL_ECHOLNPGM("");
 
-       #endif
 
-     }
 
-   // The target position of the tool in absolute steps
 
-   // Calculate target position in absolute steps
 
-   //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
 
-   long target[4];
 
-   target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
 
-   target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
 
- #ifdef MESH_BED_LEVELING
 
-     if (mbl.active){
 
-         target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
 
-     }else{
 
-         target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
 
-     }
 
- #else
 
-     target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
 
- #endif // ENABLE_MESH_BED_LEVELING
 
-   target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
 
-   #ifdef PREVENT_DANGEROUS_EXTRUDE
 
-   if(target[E_AXIS]!=position[E_AXIS])
 
-   {
 
-     if(degHotend(active_extruder)<extrude_min_temp)
 
-     {
 
-       position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
 
-       SERIAL_ECHO_START;
 
-       SERIAL_ECHOLNRPGM(MSG_ERR_COLD_EXTRUDE_STOP);
 
-     }
 
-     
 
-     #ifdef PREVENT_LENGTHY_EXTRUDE
 
-     if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
 
-     {
 
-       position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
 
-       SERIAL_ECHO_START;
 
-       SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP);
 
-     }
 
-     #endif
 
-   }
 
-   #endif
 
-   // Prepare to set up new block
 
-   block_t *block = &block_buffer[block_buffer_head];
 
-   // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
 
-   block->busy = false;
 
-   // Number of steps for each axis
 
- #ifndef COREXY
 
- // default non-h-bot planning
 
- block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
 
- block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
 
- #else
 
- // corexy planning
 
- // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
 
- block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
 
- block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
 
- #endif
 
-   block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
 
-   block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
 
-   if (volumetric_multiplier[active_extruder] != 1.f)
 
-     block->steps_e *= volumetric_multiplier[active_extruder];
 
-   if (extrudemultiply != 100) {
 
-     block->steps_e *= extrudemultiply;
 
-     block->steps_e /= 100;
 
-   }
 
-   block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
 
-   // Bail if this is a zero-length block
 
-   if (block->step_event_count <= dropsegments)
 
-   { 
 
- #ifdef PLANNER_DIAGNOSTICS
 
-     planner_update_queue_min_counter();
 
- #endif /* PLANNER_DIAGNOSTICS */
 
-     return; 
 
-   }
 
-   block->fan_speed = fanSpeed;
 
-   // Compute direction bits for this block 
 
-   block->direction_bits = 0;
 
- #ifndef COREXY
 
-   if (target[X_AXIS] < position[X_AXIS])
 
-   {
 
-     block->direction_bits |= (1<<X_AXIS); 
 
-   }
 
-   if (target[Y_AXIS] < position[Y_AXIS])
 
-   {
 
-     block->direction_bits |= (1<<Y_AXIS); 
 
-   }
 
- #else
 
-   if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
 
-   {
 
-     block->direction_bits |= (1<<X_AXIS); 
 
-   }
 
-   if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
 
-   {
 
-     block->direction_bits |= (1<<Y_AXIS); 
 
-   }
 
- #endif
 
-   if (target[Z_AXIS] < position[Z_AXIS])
 
-   {
 
-     block->direction_bits |= (1<<Z_AXIS); 
 
-   }
 
-   if (target[E_AXIS] < position[E_AXIS])
 
-   {
 
-     block->direction_bits |= (1<<E_AXIS); 
 
-   }
 
-   block->active_extruder = extruder;
 
-   //enable active axes
 
-   #ifdef COREXY
 
-   if((block->steps_x != 0) || (block->steps_y != 0))
 
-   {
 
-     enable_x();
 
-     enable_y();
 
-   }
 
-   #else
 
-   if(block->steps_x != 0) enable_x();
 
-   if(block->steps_y != 0) enable_y();
 
-   #endif
 
- #ifndef Z_LATE_ENABLE
 
-   if(block->steps_z != 0) enable_z();
 
- #endif
 
-   // Enable extruder(s)
 
-   if(block->steps_e != 0)
 
-   {
 
-     if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
 
-     {
 
-       if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
 
-       if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
 
-       if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
 
-       
 
-       switch(extruder)
 
-       {
 
-         case 0: 
 
-           enable_e0(); 
 
-           g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
 
-           
 
-           if(g_uc_extruder_last_move[1] == 0) disable_e1(); 
 
-           if(g_uc_extruder_last_move[2] == 0) disable_e2(); 
 
-         break;
 
-         case 1:
 
-           enable_e1(); 
 
-           g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
 
-           
 
-           if(g_uc_extruder_last_move[0] == 0) disable_e0(); 
 
-           if(g_uc_extruder_last_move[2] == 0) disable_e2(); 
 
-         break;
 
-         case 2:
 
-           enable_e2(); 
 
-           g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
 
-           
 
-           if(g_uc_extruder_last_move[0] == 0) disable_e0(); 
 
-           if(g_uc_extruder_last_move[1] == 0) disable_e1(); 
 
-         break;        
 
-       }
 
-     }
 
-     else //enable all
 
-     {
 
-       enable_e0();
 
-       enable_e1();
 
-       enable_e2(); 
 
-     }
 
-   }
 
-   if (block->steps_e == 0)
 
-   {
 
-     if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
 
-   }
 
-   else
 
-   {
 
-     if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
 
-   } 
 
- /* This part of the code calculates the total length of the movement. 
 
- For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
 
- But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
 
- and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
 
- So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. 
 
- Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
 
- */ 
 
-   #ifndef COREXY
 
-     float delta_mm[4];
 
-     delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
 
-     delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
 
-   #else
 
-     float delta_mm[6];
 
-     delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
 
-     delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
 
-     delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
 
-     delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
 
-   #endif
 
-   delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
 
-   delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
 
-   if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
 
-   {
 
-     block->millimeters = fabs(delta_mm[E_AXIS]);
 
-   } 
 
-   else
 
-   {
 
-     #ifndef COREXY
 
-       block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
 
- 	#else
 
- 	  block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
 
-     #endif	
 
-   }
 
-   float inverse_millimeters = 1.0/block->millimeters;  // Inverse millimeters to remove multiple divides 
 
-     // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
 
-   float inverse_second = feed_rate * inverse_millimeters;
 
-   int moves_queued = moves_planned();
 
-   // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
 
- #ifdef SLOWDOWN
 
-   //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
 
-   // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
 
-   if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
 
-       // segment time in micro seconds
 
-       unsigned long segment_time = lround(1000000.0/inverse_second);
 
-       if (segment_time < minsegmenttime)
 
-           // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
 
-           inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
 
-   }
 
- #endif // SLOWDOWN
 
-   block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
 
-   block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
 
- #ifdef FILAMENT_SENSOR
 
-   //FMM update ring buffer used for delay with filament measurements
 
-   
 
-   
 
-     if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1))  //only for extruder with filament sensor and if ring buffer is initialized
 
-   	  {
 
-     delay_dist = delay_dist + delta_mm[E_AXIS];  //increment counter with next move in e axis
 
-   
 
-     while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1)))  //check if counter is over max buffer size in mm
 
-       	  delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1);  //loop around the buffer
 
-     while (delay_dist<0)
 
-     	  delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
 
-       
 
-     delay_index1=delay_dist/10.0;  //calculate index
 
-     
 
-     //ensure the number is within range of the array after converting from floating point
 
-     if(delay_index1<0)
 
-     	delay_index1=0;
 
-     else if (delay_index1>MAX_MEASUREMENT_DELAY)
 
-     	delay_index1=MAX_MEASUREMENT_DELAY;
 
-     	
 
-     if(delay_index1 != delay_index2)  //moved index
 
-   	  {
 
-     	meas_sample=widthFil_to_size_ratio()-100;  //subtract off 100 to reduce magnitude - to store in a signed char
 
-   	  }
 
-     while( delay_index1 != delay_index2)
 
-   	  {
 
-   	  delay_index2 = delay_index2 + 1;
 
-   	if(delay_index2>MAX_MEASUREMENT_DELAY)
 
-   			  delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1);  //loop around buffer when incrementing
 
-   	  if(delay_index2<0)
 
-   		delay_index2=0;
 
-   	  else if (delay_index2>MAX_MEASUREMENT_DELAY)
 
-   		delay_index2=MAX_MEASUREMENT_DELAY;  
 
-   	  
 
-   	  measurement_delay[delay_index2]=meas_sample;
 
-   	  }
 
-     	
 
-     
 
-   	  }
 
- #endif
 
-   // Calculate and limit speed in mm/sec for each axis
 
-   float current_speed[4];
 
-   float speed_factor = 1.0; //factor <=1 do decrease speed
 
-   for(int i=0; i < 4; i++)
 
-   {
 
-     current_speed[i] = delta_mm[i] * inverse_second;
 
-     if(fabs(current_speed[i]) > max_feedrate[i])
 
-       speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
 
-   }
 
-   // Correct the speed  
 
-   if( speed_factor < 1.0)
 
-   {
 
-     for(unsigned char i=0; i < 4; i++)
 
-     {
 
-       current_speed[i] *= speed_factor;
 
-     }
 
-     block->nominal_speed *= speed_factor;
 
-     block->nominal_rate *= speed_factor;
 
-   }
 
-   // Compute and limit the acceleration rate for the trapezoid generator.  
 
-   // block->step_event_count ... event count of the fastest axis
 
-   // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
 
-   float steps_per_mm = block->step_event_count/block->millimeters;
 
-   if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
 
-   {
 
-     block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
 
-   }
 
-   else
 
-   {
 
-     block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
 
-     // Limit acceleration per axis
 
-     //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
 
-     if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
 
-       block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
 
-     if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
 
-       block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
 
-     if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
 
-       block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
 
-     if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
 
-       block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
 
-   }
 
-   // Acceleration of the segment, in mm/sec^2
 
-   block->acceleration = block->acceleration_st / steps_per_mm;
 
- #if 1
 
-   // Oversample diagonal movements by a power of 2 up to 8x
 
-   // to achieve more accurate diagonal movements.
 
-   uint8_t bresenham_oversample = 1;
 
-   for (uint8_t i = 0; i < 3; ++ i) {
 
-     if (block->nominal_rate >= 5000) // 5kHz
 
-       break;
 
-     block->nominal_rate << 1;
 
-     bresenham_oversample << 1;
 
-     block->step_event_count << 1;
 
-   }
 
-   if (bresenham_oversample > 1)
 
-     // Lower the acceleration steps/sec^2 to account for the oversampling.
 
-     block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
 
- #endif
 
-   block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
 
-   // Start with a safe speed.
 
-   // Safe speed is the speed, from which the machine may halt to stop immediately.
 
-   float safe_speed = block->nominal_speed;
 
-   bool  limited = false;
 
-   for (uint8_t axis = 0; axis < 4; ++ axis) {
 
-       float jerk = fabs(current_speed[axis]);
 
-       if (jerk > max_jerk[axis]) {
 
-           // The actual jerk is lower, if it has been limited by the XY jerk.
 
-           if (limited) {
 
-               // Spare one division by a following gymnastics:
 
-               // Instead of jerk *= safe_speed / block->nominal_speed,
 
-               // multiply max_jerk[axis] by the divisor.
 
-               jerk *= safe_speed;
 
-               float mjerk = max_jerk[axis] * block->nominal_speed;
 
-               if (jerk > mjerk) {
 
-                   safe_speed *= mjerk / jerk;
 
-                   limited = true;
 
-               }
 
-           } else {
 
-               safe_speed = max_jerk[axis];
 
-               limited = true;
 
-           }
 
-       }
 
-   }
 
-   // Reset the block flag.
 
-   block->flag = 0;
 
-   // Initial limit on the segment entry velocity.
 
-   float vmax_junction;
 
-   //FIXME Vojtech: Why only if at least two lines are planned in the queue?
 
-   // Is it because we don't want to tinker with the first buffer line, which
 
-   // is likely to be executed by the stepper interrupt routine soon?
 
-   if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
 
-       // Estimate a maximum velocity allowed at a joint of two successive segments.
 
-       // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
 
-       // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
 
-       // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
 
-       bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
 
-       float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
 
-       // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
 
-       vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
 
-       // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
 
-       float v_factor = 1.f;
 
-       limited = false;
 
-       // Now limit the jerk in all axes.
 
-       for (uint8_t axis = 0; axis < 4; ++ axis) {
 
-           // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
 
-           float v_exit  = previous_speed[axis];
 
-           float v_entry = current_speed [axis];
 
-           if (prev_speed_larger)
 
-               v_exit *= smaller_speed_factor;
 
-           if (limited) {
 
-               v_exit  *= v_factor;
 
-               v_entry *= v_factor;
 
-           }
 
-           // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
 
-           float jerk = 
 
-               (v_exit > v_entry) ?
 
-                   ((v_entry > 0.f || v_exit < 0.f) ?
 
-                       // coasting
 
-                       (v_exit - v_entry) : 
 
-                       // axis reversal
 
-                       max(v_exit, - v_entry)) :
 
-                   // v_exit <= v_entry
 
-                   ((v_entry < 0.f || v_exit > 0.f) ?
 
-                       // coasting
 
-                       (v_entry - v_exit) :
 
-                       // axis reversal
 
-                       max(- v_exit, v_entry));
 
-           if (jerk > max_jerk[axis]) {
 
-               v_factor *= max_jerk[axis] / jerk;
 
-               limited = true;
 
-           }
 
-       }
 
-       if (limited)
 
-           vmax_junction *= v_factor;
 
-       // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
 
-       // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
 
-       float vmax_junction_threshold = vmax_junction * 0.99f;
 
-       if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
 
-           // Not coasting. The machine will stop and start the movements anyway,
 
-           // better to start the segment from start.
 
-           block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
 
-           vmax_junction = safe_speed;
 
-       }
 
-   } else {
 
-       block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
 
-       vmax_junction = safe_speed;
 
-   }
 
-   // Max entry speed of this block equals the max exit speed of the previous block.
 
-   block->max_entry_speed = vmax_junction;
 
-   // Initialize block entry speed. Compute based on deceleration to safe_speed.
 
-   double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
 
-   block->entry_speed = min(vmax_junction, v_allowable);
 
-   // Initialize planner efficiency flags
 
-   // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
 
-   // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
 
-   // the current block and next block junction speeds are guaranteed to always be at their maximum
 
-   // junction speeds in deceleration and acceleration, respectively. This is due to how the current
 
-   // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
 
-   // the reverse and forward planners, the corresponding block junction speed will always be at the
 
-   // the maximum junction speed and may always be ignored for any speed reduction checks.
 
-   // Always calculate trapezoid for new block
 
-   block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
 
-   // Update previous path unit_vector and nominal speed
 
-   memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
 
-   previous_nominal_speed = block->nominal_speed;
 
-   previous_safe_speed = safe_speed;
 
-   // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
 
-   block->speed_factor = block->nominal_rate / block->nominal_speed;
 
-   calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
 
-   // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
 
-   block_buffer_head = next_buffer_head;
 
-   // Update position
 
-   memcpy(position, target, sizeof(target)); // position[] = target[]
 
-   // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
 
-   // the machine limits (maximum acceleration and maximum jerk).
 
-   // This runs asynchronously with the stepper interrupt controller, which may
 
-   // interfere with the process.
 
-   planner_recalculate(safe_speed);
 
- //  SERIAL_ECHOPGM("Q");
 
- //  SERIAL_ECHO(int(moves_planned()));
 
- //  SERIAL_ECHOLNPGM("");
 
- #ifdef PLANNER_DIAGNOSTICS
 
-   planner_update_queue_min_counter();
 
- #endif /* PLANNER_DIAGNOSTIC */
 
-   st_wake_up();
 
- }
 
- #ifdef ENABLE_AUTO_BED_LEVELING
 
- vector_3 plan_get_position() {
 
- 	vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
 
- 	//position.debug("in plan_get position");
 
- 	//plan_bed_level_matrix.debug("in plan_get bed_level");
 
- 	matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
 
- 	//inverse.debug("in plan_get inverse");
 
- 	position.apply_rotation(inverse);
 
- 	//position.debug("after rotation");
 
- 	return position;
 
- }
 
- #endif // ENABLE_AUTO_BED_LEVELING
 
- void plan_set_position(float x, float y, float z, const float &e)
 
- {
 
- #ifdef ENABLE_AUTO_BED_LEVELING
 
-     apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
 
- #endif // ENABLE_AUTO_BED_LEVELING
 
-     // Apply the machine correction matrix.
 
-     {
 
-         float tmpx = x;
 
-         float tmpy = y;
 
-         x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
 
-         y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
 
-     }
 
-   position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
 
-   position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
 
- #ifdef MESH_BED_LEVELING
 
-     if (mbl.active){
 
-       position[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
 
-     }else{
 
-         position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
 
-     }
 
- #else
 
-   position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
 
- #endif // ENABLE_MESH_BED_LEVELING
 
-   position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);  
 
-   st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
 
-   previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
 
-   previous_speed[0] = 0.0;
 
-   previous_speed[1] = 0.0;
 
-   previous_speed[2] = 0.0;
 
-   previous_speed[3] = 0.0;
 
- }
 
- // Only useful in the bed leveling routine, when the mesh bed leveling is off.
 
- void plan_set_z_position(const float &z)
 
- {
 
-     position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
 
-     st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
 
- }
 
- void plan_set_e_position(const float &e)
 
- {
 
-   position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);  
 
-   st_set_e_position(position[E_AXIS]);
 
- }
 
- #ifdef PREVENT_DANGEROUS_EXTRUDE
 
- void set_extrude_min_temp(float temp)
 
- {
 
-   extrude_min_temp=temp;
 
- }
 
- #endif
 
- // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
 
- void reset_acceleration_rates()
 
- {
 
- 	for(int8_t i=0; i < NUM_AXIS; i++)
 
-         {
 
-         axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
 
-         }
 
- }
 
- #ifdef PLANNER_DIAGNOSTICS
 
- uint8_t planner_queue_min()
 
- {
 
-   return g_cntr_planner_queue_min;
 
- }
 
- void planner_queue_min_reset()
 
- {
 
-   g_cntr_planner_queue_min = moves_planned();
 
- }
 
- #endif /* PLANNER_DIAGNOSTICS */
 
 
  |