planner.cpp 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #ifdef MESH_BED_LEVELING
  43. #include "mesh_bed_leveling.h"
  44. #include "mesh_bed_calibration.h"
  45. #endif
  46. //===========================================================================
  47. //=============================public variables ============================
  48. //===========================================================================
  49. unsigned long minsegmenttime;
  50. float max_feedrate[NUM_AXIS]; // set the max speeds
  51. float axis_steps_per_unit[NUM_AXIS];
  52. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  53. float minimumfeedrate;
  54. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  55. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  56. // Jerk is a maximum immediate velocity change.
  57. float max_jerk[NUM_AXIS];
  58. float mintravelfeedrate;
  59. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  60. #ifdef ENABLE_AUTO_BED_LEVELING
  61. // this holds the required transform to compensate for bed level
  62. matrix_3x3 plan_bed_level_matrix = {
  63. 1.0, 0.0, 0.0,
  64. 0.0, 1.0, 0.0,
  65. 0.0, 0.0, 1.0,
  66. };
  67. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  68. // The current position of the tool in absolute steps
  69. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  70. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  71. static float previous_nominal_speed; // Nominal speed of previous path line segment
  72. static float previous_safe_speed; // Exit speed limited by a jerk to full halt of a previous last segment.
  73. #ifdef AUTOTEMP
  74. float autotemp_max=250;
  75. float autotemp_min=210;
  76. float autotemp_factor=0.1;
  77. bool autotemp_enabled=false;
  78. #endif
  79. unsigned char g_uc_extruder_last_move[3] = {0,0,0};
  80. //===========================================================================
  81. //=================semi-private variables, used in inline functions =====
  82. //===========================================================================
  83. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  84. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  85. volatile unsigned char block_buffer_tail; // Index of the block to process now
  86. #ifdef PLANNER_DIAGNOSTICS
  87. // Diagnostic function: Minimum number of planned moves since the last
  88. static uint8_t g_cntr_planner_queue_min = 0;
  89. #endif /* PLANNER_DIAGNOSTICS */
  90. //===========================================================================
  91. //=============================private variables ============================
  92. //===========================================================================
  93. #ifdef PREVENT_DANGEROUS_EXTRUDE
  94. float extrude_min_temp=EXTRUDE_MINTEMP;
  95. #endif
  96. #ifdef FILAMENT_SENSOR
  97. static char meas_sample; //temporary variable to hold filament measurement sample
  98. #endif
  99. #ifdef LIN_ADVANCE
  100. float extruder_advance_k = LIN_ADVANCE_K,
  101. advance_ed_ratio = LIN_ADVANCE_E_D_RATIO,
  102. position_float[NUM_AXIS] = { 0 };
  103. #endif
  104. // Returns the index of the next block in the ring buffer
  105. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  106. static inline int8_t next_block_index(int8_t block_index) {
  107. if (++ block_index == BLOCK_BUFFER_SIZE)
  108. block_index = 0;
  109. return block_index;
  110. }
  111. // Returns the index of the previous block in the ring buffer
  112. static inline int8_t prev_block_index(int8_t block_index) {
  113. if (block_index == 0)
  114. block_index = BLOCK_BUFFER_SIZE;
  115. -- block_index;
  116. return block_index;
  117. }
  118. //===========================================================================
  119. //=============================functions ============================
  120. //===========================================================================
  121. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  122. // given acceleration:
  123. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  124. {
  125. if (acceleration!=0) {
  126. return((target_rate*target_rate-initial_rate*initial_rate)/
  127. (2.0*acceleration));
  128. }
  129. else {
  130. return 0.0; // acceleration was 0, set acceleration distance to 0
  131. }
  132. }
  133. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  134. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  135. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  136. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  137. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  138. {
  139. if (acceleration!=0) {
  140. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  141. (4.0*acceleration) );
  142. }
  143. else {
  144. return 0.0; // acceleration was 0, set intersection distance to 0
  145. }
  146. }
  147. #define MINIMAL_STEP_RATE 120
  148. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  149. void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed)
  150. {
  151. // These two lines are the only floating point calculations performed in this routine.
  152. uint32_t initial_rate = ceil(entry_speed * block->speed_factor); // (step/min)
  153. uint32_t final_rate = ceil(exit_speed * block->speed_factor); // (step/min)
  154. // Limit minimal step rate (Otherwise the timer will overflow.)
  155. if (initial_rate < MINIMAL_STEP_RATE)
  156. initial_rate = MINIMAL_STEP_RATE;
  157. if (initial_rate > block->nominal_rate)
  158. initial_rate = block->nominal_rate;
  159. if (final_rate < MINIMAL_STEP_RATE)
  160. final_rate = MINIMAL_STEP_RATE;
  161. if (final_rate > block->nominal_rate)
  162. final_rate = block->nominal_rate;
  163. uint32_t acceleration = block->acceleration_st;
  164. if (acceleration == 0)
  165. // Don't allow zero acceleration.
  166. acceleration = 1;
  167. // estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  168. // (target_rate*target_rate-initial_rate*initial_rate)/(2.0*acceleration));
  169. uint32_t initial_rate_sqr = initial_rate*initial_rate;
  170. //FIXME assert that this result fits a 64bit unsigned int.
  171. uint32_t nominal_rate_sqr = block->nominal_rate*block->nominal_rate;
  172. uint32_t final_rate_sqr = final_rate*final_rate;
  173. uint32_t acceleration_x2 = acceleration << 1;
  174. // ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  175. uint32_t accelerate_steps = (nominal_rate_sqr - initial_rate_sqr + acceleration_x2 - 1) / acceleration_x2;
  176. // floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  177. uint32_t decelerate_steps = (nominal_rate_sqr - final_rate_sqr) / acceleration_x2;
  178. uint32_t accel_decel_steps = accelerate_steps + decelerate_steps;
  179. // Size of Plateau of Nominal Rate.
  180. uint32_t plateau_steps = 0;
  181. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  182. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  183. // in order to reach the final_rate exactly at the end of this block.
  184. if (accel_decel_steps < block->step_event_count) {
  185. plateau_steps = block->step_event_count - accel_decel_steps;
  186. } else {
  187. uint32_t acceleration_x4 = acceleration << 2;
  188. // Avoid negative numbers
  189. if (final_rate_sqr >= initial_rate_sqr) {
  190. // accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  191. // intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  192. // (2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/(4.0*acceleration);
  193. #if 0
  194. accelerate_steps = (block->step_event_count >> 1) + (final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1 + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  195. #else
  196. accelerate_steps = final_rate_sqr - initial_rate_sqr + acceleration_x4 - 1;
  197. if (block->step_event_count & 1)
  198. accelerate_steps += acceleration_x2;
  199. accelerate_steps /= acceleration_x4;
  200. accelerate_steps += (block->step_event_count >> 1);
  201. #endif
  202. if (accelerate_steps > block->step_event_count)
  203. accelerate_steps = block->step_event_count;
  204. } else {
  205. #if 0
  206. decelerate_steps = (block->step_event_count >> 1) + (initial_rate_sqr - final_rate_sqr + (block->step_event_count & 1) * acceleration_x2) / acceleration_x4;
  207. #else
  208. decelerate_steps = initial_rate_sqr - final_rate_sqr;
  209. if (block->step_event_count & 1)
  210. decelerate_steps += acceleration_x2;
  211. decelerate_steps /= acceleration_x4;
  212. decelerate_steps += (block->step_event_count >> 1);
  213. #endif
  214. if (decelerate_steps > block->step_event_count)
  215. decelerate_steps = block->step_event_count;
  216. accelerate_steps = block->step_event_count - decelerate_steps;
  217. }
  218. }
  219. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  220. if (! block->busy) { // Don't update variables if block is busy.
  221. block->accelerate_until = accelerate_steps;
  222. block->decelerate_after = accelerate_steps+plateau_steps;
  223. block->initial_rate = initial_rate;
  224. block->final_rate = final_rate;
  225. }
  226. CRITICAL_SECTION_END;
  227. }
  228. // Calculates the maximum allowable entry speed, when you must be able to reach target_velocity using the
  229. // decceleration within the allotted distance.
  230. FORCE_INLINE float max_allowable_entry_speed(float decceleration, float target_velocity, float distance)
  231. {
  232. // assert(decceleration < 0);
  233. return sqrt(target_velocity*target_velocity-2*decceleration*distance);
  234. }
  235. // Recalculates the motion plan according to the following algorithm:
  236. //
  237. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  238. // so that:
  239. // a. The junction jerk is within the set limit
  240. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  241. // acceleration.
  242. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  243. // a. The speed increase within one block would require faster accelleration than the one, true
  244. // constant acceleration.
  245. //
  246. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  247. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  248. // the set limit. Finally it will:
  249. //
  250. // 3. Recalculate trapezoids for all blocks.
  251. //
  252. //FIXME This routine is called 15x every time a new line is added to the planner,
  253. // therefore it is a bottle neck and it shall be rewritten into a Fixed Point arithmetics,
  254. // if the CPU is found lacking computational power.
  255. //
  256. // Following sources may be used to optimize the 8-bit AVR code:
  257. // http://www.mikrocontroller.net/articles/AVR_Arithmetik
  258. // http://darcy.rsgc.on.ca/ACES/ICE4M/FixedPoint/avrfix.pdf
  259. //
  260. // https://github.com/gcc-mirror/gcc/blob/master/libgcc/config/avr/lib1funcs-fixed.S
  261. // https://gcc.gnu.org/onlinedocs/gcc/Fixed-Point.html
  262. // https://gcc.gnu.org/onlinedocs/gccint/Fixed-point-fractional-library-routines.html
  263. //
  264. // https://ucexperiment.wordpress.com/2015/04/04/arduino-s15-16-fixed-point-math-routines/
  265. // https://mekonik.wordpress.com/2009/03/18/arduino-avr-gcc-multiplication/
  266. // https://github.com/rekka/avrmultiplication
  267. //
  268. // https://people.ece.cornell.edu/land/courses/ece4760/Math/Floating_point/
  269. // https://courses.cit.cornell.edu/ee476/Math/
  270. // https://courses.cit.cornell.edu/ee476/Math/GCC644/fixedPt/multASM.S
  271. //
  272. void planner_recalculate(const float &safe_final_speed)
  273. {
  274. // Reverse pass
  275. // Make a local copy of block_buffer_tail, because the interrupt can alter it
  276. // by consuming the blocks, therefore shortening the queue.
  277. unsigned char tail = block_buffer_tail;
  278. uint8_t block_index;
  279. block_t *prev, *current, *next;
  280. // SERIAL_ECHOLNPGM("planner_recalculate - 1");
  281. // At least three blocks are in the queue?
  282. unsigned char n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  283. if (n_blocks >= 3) {
  284. // Initialize the last tripple of blocks.
  285. block_index = prev_block_index(block_buffer_head);
  286. next = block_buffer + block_index;
  287. current = block_buffer + (block_index = prev_block_index(block_index));
  288. // No need to recalculate the last block, it has already been set by the plan_buffer_line() function.
  289. // Vojtech thinks, that one shall not touch the entry speed of the very first block as well, because
  290. // 1) it may already be running at the stepper interrupt,
  291. // 2) there is no way to limit it when going in the forward direction.
  292. while (block_index != tail) {
  293. if (current->flag & BLOCK_FLAG_START_FROM_FULL_HALT) {
  294. // Don't modify the entry velocity of the starting block.
  295. // Also don't modify the trapezoids before this block, they are finalized already, prepared
  296. // for the stepper interrupt routine to use them.
  297. tail = block_index;
  298. // Update the number of blocks to process.
  299. n_blocks = (block_buffer_head + BLOCK_BUFFER_SIZE - tail) & (BLOCK_BUFFER_SIZE - 1);
  300. // SERIAL_ECHOLNPGM("START");
  301. break;
  302. }
  303. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  304. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  305. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  306. if (current->entry_speed != current->max_entry_speed) {
  307. // assert(current->entry_speed < current->max_entry_speed);
  308. // Entry speed could be increased up to the max_entry_speed, limited by the length of the current
  309. // segment and the maximum acceleration allowed for this segment.
  310. // If nominal length true, max junction speed is guaranteed to be reached even if decelerating to a jerk-from-zero velocity.
  311. // Only compute for max allowable speed if block is decelerating and nominal length is false.
  312. // entry_speed is uint16_t, 24 bits would be sufficient for block->acceleration and block->millimiteres, if scaled to um.
  313. // therefore an optimized assembly 24bit x 24bit -> 32bit multiply would be more than sufficient
  314. // together with an assembly 32bit->16bit sqrt function.
  315. current->entry_speed = ((current->flag & BLOCK_FLAG_NOMINAL_LENGTH) || current->max_entry_speed <= next->entry_speed) ?
  316. current->max_entry_speed :
  317. // min(current->max_entry_speed, sqrt(next->entry_speed*next->entry_speed+2*current->acceleration*current->millimeters));
  318. min(current->max_entry_speed, max_allowable_entry_speed(-current->acceleration,next->entry_speed,current->millimeters));
  319. current->flag |= BLOCK_FLAG_RECALCULATE;
  320. }
  321. next = current;
  322. current = block_buffer + (block_index = prev_block_index(block_index));
  323. }
  324. }
  325. // SERIAL_ECHOLNPGM("planner_recalculate - 2");
  326. // Forward pass and recalculate the trapezoids.
  327. if (n_blocks >= 2) {
  328. // Better to limit the velocities using the already processed block, if it is available, so rather use the saved tail.
  329. block_index = tail;
  330. prev = block_buffer + block_index;
  331. current = block_buffer + (block_index = next_block_index(block_index));
  332. do {
  333. // If the previous block is an acceleration block, but it is not long enough to complete the
  334. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  335. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  336. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  337. if (! (prev->flag & BLOCK_FLAG_NOMINAL_LENGTH) && prev->entry_speed < current->entry_speed) {
  338. float entry_speed = min(current->entry_speed, max_allowable_entry_speed(-prev->acceleration,prev->entry_speed,prev->millimeters));
  339. // Check for junction speed change
  340. if (current->entry_speed != entry_speed) {
  341. current->entry_speed = entry_speed;
  342. current->flag |= BLOCK_FLAG_RECALCULATE;
  343. }
  344. }
  345. // Recalculate if current block entry or exit junction speed has changed.
  346. if ((prev->flag | current->flag) & BLOCK_FLAG_RECALCULATE) {
  347. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  348. calculate_trapezoid_for_block(prev, prev->entry_speed, current->entry_speed);
  349. // Reset current only to ensure next trapezoid is computed.
  350. prev->flag &= ~BLOCK_FLAG_RECALCULATE;
  351. }
  352. prev = current;
  353. current = block_buffer + (block_index = next_block_index(block_index));
  354. } while (block_index != block_buffer_head);
  355. }
  356. // SERIAL_ECHOLNPGM("planner_recalculate - 3");
  357. // Last/newest block in buffer. Exit speed is set with safe_final_speed. Always recalculated.
  358. current = block_buffer + prev_block_index(block_buffer_head);
  359. calculate_trapezoid_for_block(current, current->entry_speed, safe_final_speed);
  360. current->flag &= ~BLOCK_FLAG_RECALCULATE;
  361. // SERIAL_ECHOLNPGM("planner_recalculate - 4");
  362. }
  363. void plan_init() {
  364. block_buffer_head = 0;
  365. block_buffer_tail = 0;
  366. memset(position, 0, sizeof(position)); // clear position
  367. #ifdef LIN_ADVANCE
  368. memset(position_float, 0, sizeof(position)); // clear position
  369. #endif
  370. previous_speed[0] = 0.0;
  371. previous_speed[1] = 0.0;
  372. previous_speed[2] = 0.0;
  373. previous_speed[3] = 0.0;
  374. previous_nominal_speed = 0.0;
  375. }
  376. #ifdef AUTOTEMP
  377. void getHighESpeed()
  378. {
  379. static float oldt=0;
  380. if(!autotemp_enabled){
  381. return;
  382. }
  383. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  384. return; //do nothing
  385. }
  386. float high=0.0;
  387. uint8_t block_index = block_buffer_tail;
  388. while(block_index != block_buffer_head) {
  389. if((block_buffer[block_index].steps_x != 0) ||
  390. (block_buffer[block_index].steps_y != 0) ||
  391. (block_buffer[block_index].steps_z != 0)) {
  392. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  393. //se; mm/sec;
  394. if(se>high)
  395. {
  396. high=se;
  397. }
  398. }
  399. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  400. }
  401. float g=autotemp_min+high*autotemp_factor;
  402. float t=g;
  403. if(t<autotemp_min)
  404. t=autotemp_min;
  405. if(t>autotemp_max)
  406. t=autotemp_max;
  407. if(oldt>t)
  408. {
  409. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  410. }
  411. oldt=t;
  412. setTargetHotend0(t);
  413. }
  414. #endif
  415. void check_axes_activity()
  416. {
  417. unsigned char x_active = 0;
  418. unsigned char y_active = 0;
  419. unsigned char z_active = 0;
  420. unsigned char e_active = 0;
  421. unsigned char tail_fan_speed = fanSpeed;
  422. block_t *block;
  423. if(block_buffer_tail != block_buffer_head)
  424. {
  425. uint8_t block_index = block_buffer_tail;
  426. tail_fan_speed = block_buffer[block_index].fan_speed;
  427. while(block_index != block_buffer_head)
  428. {
  429. block = &block_buffer[block_index];
  430. if(block->steps_x != 0) x_active++;
  431. if(block->steps_y != 0) y_active++;
  432. if(block->steps_z != 0) z_active++;
  433. if(block->steps_e != 0) e_active++;
  434. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  435. }
  436. }
  437. if((DISABLE_X) && (x_active == 0)) disable_x();
  438. if((DISABLE_Y) && (y_active == 0)) disable_y();
  439. if((DISABLE_Z) && (z_active == 0)) disable_z();
  440. if((DISABLE_E) && (e_active == 0))
  441. {
  442. disable_e0();
  443. disable_e1();
  444. disable_e2();
  445. }
  446. #if defined(FAN_PIN) && FAN_PIN > -1
  447. #ifdef FAN_KICKSTART_TIME
  448. static unsigned long fan_kick_end;
  449. if (tail_fan_speed) {
  450. if (fan_kick_end == 0) {
  451. // Just starting up fan - run at full power.
  452. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  453. tail_fan_speed = 255;
  454. } else if (fan_kick_end > millis())
  455. // Fan still spinning up.
  456. tail_fan_speed = 255;
  457. } else {
  458. fan_kick_end = 0;
  459. }
  460. #endif//FAN_KICKSTART_TIME
  461. #ifdef FAN_SOFT_PWM
  462. fanSpeedSoftPwm = tail_fan_speed;
  463. #else
  464. analogWrite(FAN_PIN,tail_fan_speed);
  465. #endif//!FAN_SOFT_PWM
  466. #endif//FAN_PIN > -1
  467. #ifdef AUTOTEMP
  468. getHighESpeed();
  469. #endif
  470. }
  471. bool waiting_inside_plan_buffer_line_print_aborted = false;
  472. /*
  473. void planner_abort_soft()
  474. {
  475. // Empty the queue.
  476. while (blocks_queued()) plan_discard_current_block();
  477. // Relay to planner wait routine, that the current line shall be canceled.
  478. waiting_inside_plan_buffer_line_print_aborted = true;
  479. //current_position[i]
  480. }
  481. */
  482. #ifdef PLANNER_DIAGNOSTICS
  483. static inline void planner_update_queue_min_counter()
  484. {
  485. uint8_t new_counter = moves_planned();
  486. if (new_counter < g_cntr_planner_queue_min)
  487. g_cntr_planner_queue_min = new_counter;
  488. }
  489. #endif /* PLANNER_DIAGNOSTICS */
  490. void planner_abort_hard()
  491. {
  492. // Abort the stepper routine and flush the planner queue.
  493. quickStop();
  494. // Now the front-end (the Marlin_main.cpp with its current_position) is out of sync.
  495. // First update the planner's current position in the physical motor steps.
  496. position[X_AXIS] = st_get_position(X_AXIS);
  497. position[Y_AXIS] = st_get_position(Y_AXIS);
  498. position[Z_AXIS] = st_get_position(Z_AXIS);
  499. position[E_AXIS] = st_get_position(E_AXIS);
  500. // Second update the current position of the front end.
  501. current_position[X_AXIS] = st_get_position_mm(X_AXIS);
  502. current_position[Y_AXIS] = st_get_position_mm(Y_AXIS);
  503. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  504. current_position[E_AXIS] = st_get_position_mm(E_AXIS);
  505. // Apply the mesh bed leveling correction to the Z axis.
  506. #ifdef MESH_BED_LEVELING
  507. if (mbl.active)
  508. current_position[Z_AXIS] -= mbl.get_z(current_position[X_AXIS], current_position[Y_AXIS]);
  509. #endif
  510. // Apply inverse world correction matrix.
  511. machine2world(current_position[X_AXIS], current_position[Y_AXIS]);
  512. memcpy(destination, current_position, sizeof(destination));
  513. // Resets planner junction speeds. Assumes start from rest.
  514. previous_nominal_speed = 0.0;
  515. previous_speed[0] = 0.0;
  516. previous_speed[1] = 0.0;
  517. previous_speed[2] = 0.0;
  518. previous_speed[3] = 0.0;
  519. // Relay to planner wait routine, that the current line shall be canceled.
  520. waiting_inside_plan_buffer_line_print_aborted = true;
  521. }
  522. float junction_deviation = 0.1;
  523. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  524. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  525. // calculation the caller must also provide the physical length of the line in millimeters.
  526. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  527. {
  528. // Calculate the buffer head after we push this byte
  529. int next_buffer_head = next_block_index(block_buffer_head);
  530. // If the buffer is full: good! That means we are well ahead of the robot.
  531. // Rest here until there is room in the buffer.
  532. if (block_buffer_tail == next_buffer_head) {
  533. waiting_inside_plan_buffer_line_print_aborted = false;
  534. do {
  535. manage_heater();
  536. // Vojtech: Don't disable motors inside the planner!
  537. manage_inactivity(false);
  538. lcd_update();
  539. } while (block_buffer_tail == next_buffer_head);
  540. if (waiting_inside_plan_buffer_line_print_aborted) {
  541. // Inside the lcd_update() routine the print has been aborted.
  542. // Cancel the print, do not plan the current line this routine is waiting on.
  543. #ifdef PLANNER_DIAGNOSTICS
  544. planner_update_queue_min_counter();
  545. #endif /* PLANNER_DIAGNOSTICS */
  546. return;
  547. }
  548. }
  549. #ifdef PLANNER_DIAGNOSTICS
  550. planner_update_queue_min_counter();
  551. #endif /* PLANNER_DIAGNOSTICS */
  552. #ifdef ENABLE_AUTO_BED_LEVELING
  553. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  554. #endif // ENABLE_AUTO_BED_LEVELING
  555. // Apply the machine correction matrix.
  556. {
  557. #if 0
  558. SERIAL_ECHOPGM("Planner, current position - servos: ");
  559. MYSERIAL.print(st_get_position_mm(X_AXIS), 5);
  560. SERIAL_ECHOPGM(", ");
  561. MYSERIAL.print(st_get_position_mm(Y_AXIS), 5);
  562. SERIAL_ECHOPGM(", ");
  563. MYSERIAL.print(st_get_position_mm(Z_AXIS), 5);
  564. SERIAL_ECHOLNPGM("");
  565. SERIAL_ECHOPGM("Planner, target position, initial: ");
  566. MYSERIAL.print(x, 5);
  567. SERIAL_ECHOPGM(", ");
  568. MYSERIAL.print(y, 5);
  569. SERIAL_ECHOLNPGM("");
  570. SERIAL_ECHOPGM("Planner, world2machine: ");
  571. MYSERIAL.print(world2machine_rotation_and_skew[0][0], 5);
  572. SERIAL_ECHOPGM(", ");
  573. MYSERIAL.print(world2machine_rotation_and_skew[0][1], 5);
  574. SERIAL_ECHOPGM(", ");
  575. MYSERIAL.print(world2machine_rotation_and_skew[1][0], 5);
  576. SERIAL_ECHOPGM(", ");
  577. MYSERIAL.print(world2machine_rotation_and_skew[1][1], 5);
  578. SERIAL_ECHOLNPGM("");
  579. SERIAL_ECHOPGM("Planner, offset: ");
  580. MYSERIAL.print(world2machine_shift[0], 5);
  581. SERIAL_ECHOPGM(", ");
  582. MYSERIAL.print(world2machine_shift[1], 5);
  583. SERIAL_ECHOLNPGM("");
  584. #endif
  585. world2machine(x, y);
  586. #if 0
  587. SERIAL_ECHOPGM("Planner, target position, corrected: ");
  588. MYSERIAL.print(x, 5);
  589. SERIAL_ECHOPGM(", ");
  590. MYSERIAL.print(y, 5);
  591. SERIAL_ECHOLNPGM("");
  592. #endif
  593. }
  594. // The target position of the tool in absolute steps
  595. // Calculate target position in absolute steps
  596. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  597. long target[4];
  598. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  599. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  600. #ifdef MESH_BED_LEVELING
  601. if (mbl.active){
  602. target[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  603. }else{
  604. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  605. }
  606. #else
  607. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  608. #endif // ENABLE_MESH_BED_LEVELING
  609. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  610. #ifdef LIN_ADVANCE
  611. const float mm_D_float = sqrt(sq(x - position_float[X_AXIS]) + sq(y - position_float[Y_AXIS]));
  612. float de_float = e - position_float[E_AXIS];
  613. #endif
  614. #ifdef PREVENT_DANGEROUS_EXTRUDE
  615. if(target[E_AXIS]!=position[E_AXIS])
  616. {
  617. if(degHotend(active_extruder)<extrude_min_temp)
  618. {
  619. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  620. #ifdef LIN_ADVANCE
  621. position_float[E_AXIS] = e;
  622. de_float = 0;
  623. #endif
  624. SERIAL_ECHO_START;
  625. SERIAL_ECHOLNRPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  626. }
  627. #ifdef PREVENT_LENGTHY_EXTRUDE
  628. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  629. {
  630. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  631. #ifdef LIN_ADVANCE
  632. position_float[E_AXIS] = e;
  633. de_float = 0;
  634. #endif
  635. SERIAL_ECHO_START;
  636. SERIAL_ECHOLNRPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  637. }
  638. #endif
  639. }
  640. #endif
  641. // Prepare to set up new block
  642. block_t *block = &block_buffer[block_buffer_head];
  643. // Set sdlen for calculating sd position
  644. block->sdlen = 0;
  645. // Mark block as not busy (Not executed by the stepper interrupt, could be still tinkered with.)
  646. block->busy = false;
  647. // Number of steps for each axis
  648. #ifndef COREXY
  649. // default non-h-bot planning
  650. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  651. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  652. #else
  653. // corexy planning
  654. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  655. block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  656. block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  657. #endif
  658. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  659. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  660. if (volumetric_multiplier[active_extruder] != 1.f)
  661. block->steps_e *= volumetric_multiplier[active_extruder];
  662. if (extrudemultiply != 100) {
  663. block->steps_e *= extrudemultiply;
  664. block->steps_e /= 100;
  665. }
  666. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  667. // Bail if this is a zero-length block
  668. if (block->step_event_count <= dropsegments)
  669. {
  670. #ifdef PLANNER_DIAGNOSTICS
  671. planner_update_queue_min_counter();
  672. #endif /* PLANNER_DIAGNOSTICS */
  673. return;
  674. }
  675. block->fan_speed = fanSpeed;
  676. // Compute direction bits for this block
  677. block->direction_bits = 0;
  678. #ifndef COREXY
  679. if (target[X_AXIS] < position[X_AXIS])
  680. {
  681. block->direction_bits |= (1<<X_AXIS);
  682. }
  683. if (target[Y_AXIS] < position[Y_AXIS])
  684. {
  685. block->direction_bits |= (1<<Y_AXIS);
  686. }
  687. #else
  688. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  689. {
  690. block->direction_bits |= (1<<X_AXIS);
  691. }
  692. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  693. {
  694. block->direction_bits |= (1<<Y_AXIS);
  695. }
  696. #endif
  697. if (target[Z_AXIS] < position[Z_AXIS])
  698. {
  699. block->direction_bits |= (1<<Z_AXIS);
  700. }
  701. if (target[E_AXIS] < position[E_AXIS])
  702. {
  703. block->direction_bits |= (1<<E_AXIS);
  704. }
  705. block->active_extruder = extruder;
  706. //enable active axes
  707. #ifdef COREXY
  708. if((block->steps_x != 0) || (block->steps_y != 0))
  709. {
  710. enable_x();
  711. enable_y();
  712. }
  713. #else
  714. if(block->steps_x != 0) enable_x();
  715. if(block->steps_y != 0) enable_y();
  716. #endif
  717. #ifndef Z_LATE_ENABLE
  718. if(block->steps_z != 0) enable_z();
  719. #endif
  720. // Enable extruder(s)
  721. if(block->steps_e != 0)
  722. {
  723. if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
  724. {
  725. if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
  726. if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
  727. if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
  728. switch(extruder)
  729. {
  730. case 0:
  731. enable_e0();
  732. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
  733. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  734. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  735. break;
  736. case 1:
  737. enable_e1();
  738. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  739. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  740. if(g_uc_extruder_last_move[2] == 0) disable_e2();
  741. break;
  742. case 2:
  743. enable_e2();
  744. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  745. if(g_uc_extruder_last_move[0] == 0) disable_e0();
  746. if(g_uc_extruder_last_move[1] == 0) disable_e1();
  747. break;
  748. }
  749. }
  750. else //enable all
  751. {
  752. enable_e0();
  753. enable_e1();
  754. enable_e2();
  755. }
  756. }
  757. if (block->steps_e == 0)
  758. {
  759. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  760. }
  761. else
  762. {
  763. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  764. }
  765. /* This part of the code calculates the total length of the movement.
  766. For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  767. But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  768. and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  769. So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  770. Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  771. */
  772. #ifndef COREXY
  773. float delta_mm[4];
  774. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  775. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  776. #else
  777. float delta_mm[6];
  778. delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  779. delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  780. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  781. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  782. #endif
  783. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  784. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
  785. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  786. {
  787. block->millimeters = fabs(delta_mm[E_AXIS]);
  788. }
  789. else
  790. {
  791. #ifndef COREXY
  792. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  793. #else
  794. block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
  795. #endif
  796. }
  797. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  798. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  799. float inverse_second = feed_rate * inverse_millimeters;
  800. int moves_queued = moves_planned();
  801. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  802. #ifdef SLOWDOWN
  803. //FIXME Vojtech: Why moves_queued > 1? Why not >=1?
  804. // Can we somehow differentiate the filling of the buffer at the start of a g-code from a buffer draining situation?
  805. if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE >> 1)) {
  806. // segment time in micro seconds
  807. unsigned long segment_time = lround(1000000.0/inverse_second);
  808. if (segment_time < minsegmenttime)
  809. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  810. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  811. }
  812. #endif // SLOWDOWN
  813. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  814. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  815. #ifdef FILAMENT_SENSOR
  816. //FMM update ring buffer used for delay with filament measurements
  817. if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
  818. {
  819. delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
  820. while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
  821. delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  822. while (delay_dist<0)
  823. delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
  824. delay_index1=delay_dist/10.0; //calculate index
  825. //ensure the number is within range of the array after converting from floating point
  826. if(delay_index1<0)
  827. delay_index1=0;
  828. else if (delay_index1>MAX_MEASUREMENT_DELAY)
  829. delay_index1=MAX_MEASUREMENT_DELAY;
  830. if(delay_index1 != delay_index2) //moved index
  831. {
  832. meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
  833. }
  834. while( delay_index1 != delay_index2)
  835. {
  836. delay_index2 = delay_index2 + 1;
  837. if(delay_index2>MAX_MEASUREMENT_DELAY)
  838. delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
  839. if(delay_index2<0)
  840. delay_index2=0;
  841. else if (delay_index2>MAX_MEASUREMENT_DELAY)
  842. delay_index2=MAX_MEASUREMENT_DELAY;
  843. measurement_delay[delay_index2]=meas_sample;
  844. }
  845. }
  846. #endif
  847. // Calculate and limit speed in mm/sec for each axis
  848. float current_speed[4];
  849. float speed_factor = 1.0; //factor <=1 do decrease speed
  850. for(int i=0; i < 4; i++)
  851. {
  852. current_speed[i] = delta_mm[i] * inverse_second;
  853. if(fabs(current_speed[i]) > max_feedrate[i])
  854. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  855. }
  856. // Correct the speed
  857. if( speed_factor < 1.0)
  858. {
  859. for(unsigned char i=0; i < 4; i++)
  860. {
  861. current_speed[i] *= speed_factor;
  862. }
  863. block->nominal_speed *= speed_factor;
  864. block->nominal_rate *= speed_factor;
  865. }
  866. // Compute and limit the acceleration rate for the trapezoid generator.
  867. // block->step_event_count ... event count of the fastest axis
  868. // block->millimeters ... Euclidian length of the XYZ movement or the E length, if no XYZ movement.
  869. float steps_per_mm = block->step_event_count/block->millimeters;
  870. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  871. {
  872. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  873. }
  874. else
  875. {
  876. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  877. // Limit acceleration per axis
  878. //FIXME Vojtech: One shall rather limit a projection of the acceleration vector instead of using the limit.
  879. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  880. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  881. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  882. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  883. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  884. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  885. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  886. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  887. }
  888. // Acceleration of the segment, in mm/sec^2
  889. block->acceleration = block->acceleration_st / steps_per_mm;
  890. #if 0
  891. // Oversample diagonal movements by a power of 2 up to 8x
  892. // to achieve more accurate diagonal movements.
  893. uint8_t bresenham_oversample = 1;
  894. for (uint8_t i = 0; i < 3; ++ i) {
  895. if (block->nominal_rate >= 5000) // 5kHz
  896. break;
  897. block->nominal_rate << 1;
  898. bresenham_oversample << 1;
  899. block->step_event_count << 1;
  900. }
  901. if (bresenham_oversample > 1)
  902. // Lower the acceleration steps/sec^2 to account for the oversampling.
  903. block->acceleration_st = (block->acceleration_st + (bresenham_oversample >> 1)) / bresenham_oversample;
  904. #endif
  905. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  906. // Start with a safe speed.
  907. // Safe speed is the speed, from which the machine may halt to stop immediately.
  908. float safe_speed = block->nominal_speed;
  909. bool limited = false;
  910. for (uint8_t axis = 0; axis < 4; ++ axis) {
  911. float jerk = fabs(current_speed[axis]);
  912. if (jerk > max_jerk[axis]) {
  913. // The actual jerk is lower, if it has been limited by the XY jerk.
  914. if (limited) {
  915. // Spare one division by a following gymnastics:
  916. // Instead of jerk *= safe_speed / block->nominal_speed,
  917. // multiply max_jerk[axis] by the divisor.
  918. jerk *= safe_speed;
  919. float mjerk = max_jerk[axis] * block->nominal_speed;
  920. if (jerk > mjerk) {
  921. safe_speed *= mjerk / jerk;
  922. limited = true;
  923. }
  924. } else {
  925. safe_speed = max_jerk[axis];
  926. limited = true;
  927. }
  928. }
  929. }
  930. // Reset the block flag.
  931. block->flag = 0;
  932. // Initial limit on the segment entry velocity.
  933. float vmax_junction;
  934. //FIXME Vojtech: Why only if at least two lines are planned in the queue?
  935. // Is it because we don't want to tinker with the first buffer line, which
  936. // is likely to be executed by the stepper interrupt routine soon?
  937. if (moves_queued > 1 && previous_nominal_speed > 0.0001f) {
  938. // Estimate a maximum velocity allowed at a joint of two successive segments.
  939. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities,
  940. // then the machine is not coasting anymore and the safe entry / exit velocities shall be used.
  941. // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum.
  942. bool prev_speed_larger = previous_nominal_speed > block->nominal_speed;
  943. float smaller_speed_factor = prev_speed_larger ? (block->nominal_speed / previous_nominal_speed) : (previous_nominal_speed / block->nominal_speed);
  944. // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting.
  945. vmax_junction = prev_speed_larger ? block->nominal_speed : previous_nominal_speed;
  946. // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities.
  947. float v_factor = 1.f;
  948. limited = false;
  949. // Now limit the jerk in all axes.
  950. for (uint8_t axis = 0; axis < 4; ++ axis) {
  951. // Limit an axis. We have to differentiate coasting from the reversal of an axis movement, or a full stop.
  952. float v_exit = previous_speed[axis];
  953. float v_entry = current_speed [axis];
  954. if (prev_speed_larger)
  955. v_exit *= smaller_speed_factor;
  956. if (limited) {
  957. v_exit *= v_factor;
  958. v_entry *= v_factor;
  959. }
  960. // Calculate the jerk depending on whether the axis is coasting in the same direction or reversing a direction.
  961. float jerk =
  962. (v_exit > v_entry) ?
  963. ((v_entry > 0.f || v_exit < 0.f) ?
  964. // coasting
  965. (v_exit - v_entry) :
  966. // axis reversal
  967. max(v_exit, - v_entry)) :
  968. // v_exit <= v_entry
  969. ((v_entry < 0.f || v_exit > 0.f) ?
  970. // coasting
  971. (v_entry - v_exit) :
  972. // axis reversal
  973. max(- v_exit, v_entry));
  974. if (jerk > max_jerk[axis]) {
  975. v_factor *= max_jerk[axis] / jerk;
  976. limited = true;
  977. }
  978. }
  979. if (limited)
  980. vmax_junction *= v_factor;
  981. // Now the transition velocity is known, which maximizes the shared exit / entry velocity while
  982. // respecting the jerk factors, it may be possible, that applying separate safe exit / entry velocities will achieve faster prints.
  983. float vmax_junction_threshold = vmax_junction * 0.99f;
  984. if (previous_safe_speed > vmax_junction_threshold && safe_speed > vmax_junction_threshold) {
  985. // Not coasting. The machine will stop and start the movements anyway,
  986. // better to start the segment from start.
  987. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  988. vmax_junction = safe_speed;
  989. }
  990. } else {
  991. block->flag |= BLOCK_FLAG_START_FROM_FULL_HALT;
  992. vmax_junction = safe_speed;
  993. }
  994. // Max entry speed of this block equals the max exit speed of the previous block.
  995. block->max_entry_speed = vmax_junction;
  996. // Initialize block entry speed. Compute based on deceleration to safe_speed.
  997. double v_allowable = max_allowable_entry_speed(-block->acceleration,safe_speed,block->millimeters);
  998. block->entry_speed = min(vmax_junction, v_allowable);
  999. // Initialize planner efficiency flags
  1000. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  1001. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  1002. // the current block and next block junction speeds are guaranteed to always be at their maximum
  1003. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  1004. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  1005. // the reverse and forward planners, the corresponding block junction speed will always be at the
  1006. // the maximum junction speed and may always be ignored for any speed reduction checks.
  1007. // Always calculate trapezoid for new block
  1008. block->flag |= (block->nominal_speed <= v_allowable) ? (BLOCK_FLAG_NOMINAL_LENGTH | BLOCK_FLAG_RECALCULATE) : BLOCK_FLAG_RECALCULATE;
  1009. // Update previous path unit_vector and nominal speed
  1010. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  1011. previous_nominal_speed = block->nominal_speed;
  1012. previous_safe_speed = safe_speed;
  1013. #ifdef LIN_ADVANCE
  1014. //
  1015. // Use LIN_ADVANCE for blocks if all these are true:
  1016. //
  1017. // esteps : We have E steps todo (a printing move)
  1018. //
  1019. // block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime).
  1020. //
  1021. // extruder_advance_k : There is an advance factor set.
  1022. //
  1023. // block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small.
  1024. // In that case, the retract and move will be executed together.
  1025. // This leads to too many advance steps due to a huge e_acceleration.
  1026. // The math is good, but we must avoid retract moves with advance!
  1027. // de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
  1028. //
  1029. block->use_advance_lead = block->steps_e
  1030. && (block->steps_x || block->steps_y)
  1031. && extruder_advance_k
  1032. && (uint32_t)block->steps_e != block->step_event_count
  1033. && de_float > 0.0;
  1034. if (block->use_advance_lead)
  1035. block->abs_adv_steps_multiplier8 = lround(
  1036. extruder_advance_k
  1037. * ((advance_ed_ratio < 0.000001) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
  1038. * (block->nominal_speed / (float)block->nominal_rate)
  1039. * axis_steps_per_unit[E_AXIS] * 256.0
  1040. );
  1041. #endif
  1042. // Precalculate the division, so when all the trapezoids in the planner queue get recalculated, the division is not repeated.
  1043. block->speed_factor = block->nominal_rate / block->nominal_speed;
  1044. calculate_trapezoid_for_block(block, block->entry_speed, safe_speed);
  1045. // Move the buffer head. From now the block may be picked up by the stepper interrupt controller.
  1046. block_buffer_head = next_buffer_head;
  1047. // Update position
  1048. memcpy(position, target, sizeof(target)); // position[] = target[]
  1049. #ifdef LIN_ADVANCE
  1050. position_float[X_AXIS] = x;
  1051. position_float[Y_AXIS] = y;
  1052. position_float[Z_AXIS] = z;
  1053. position_float[E_AXIS] = e;
  1054. #endif
  1055. // Recalculate the trapezoids to maximize speed at the segment transitions while respecting
  1056. // the machine limits (maximum acceleration and maximum jerk).
  1057. // This runs asynchronously with the stepper interrupt controller, which may
  1058. // interfere with the process.
  1059. planner_recalculate(safe_speed);
  1060. // SERIAL_ECHOPGM("Q");
  1061. // SERIAL_ECHO(int(moves_planned()));
  1062. // SERIAL_ECHOLNPGM("");
  1063. #ifdef PLANNER_DIAGNOSTICS
  1064. planner_update_queue_min_counter();
  1065. #endif /* PLANNER_DIAGNOSTIC */
  1066. st_wake_up();
  1067. }
  1068. #ifdef ENABLE_AUTO_BED_LEVELING
  1069. vector_3 plan_get_position() {
  1070. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  1071. //position.debug("in plan_get position");
  1072. //plan_bed_level_matrix.debug("in plan_get bed_level");
  1073. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  1074. //inverse.debug("in plan_get inverse");
  1075. position.apply_rotation(inverse);
  1076. //position.debug("after rotation");
  1077. return position;
  1078. }
  1079. #endif // ENABLE_AUTO_BED_LEVELING
  1080. void plan_set_position(float x, float y, float z, const float &e)
  1081. {
  1082. #ifdef ENABLE_AUTO_BED_LEVELING
  1083. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  1084. #endif // ENABLE_AUTO_BED_LEVELING
  1085. // Apply the machine correction matrix.
  1086. {
  1087. float tmpx = x;
  1088. float tmpy = y;
  1089. x = world2machine_rotation_and_skew[0][0] * tmpx + world2machine_rotation_and_skew[0][1] * tmpy + world2machine_shift[0];
  1090. y = world2machine_rotation_and_skew[1][0] * tmpx + world2machine_rotation_and_skew[1][1] * tmpy + world2machine_shift[1];
  1091. }
  1092. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  1093. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  1094. #ifdef MESH_BED_LEVELING
  1095. if (mbl.active){
  1096. position[Z_AXIS] = lround((z+mbl.get_z(x, y))*axis_steps_per_unit[Z_AXIS]);
  1097. }else{
  1098. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1099. }
  1100. #else
  1101. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1102. #endif // ENABLE_MESH_BED_LEVELING
  1103. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1104. #ifdef LIN_ADVANCE
  1105. position_float[X_AXIS] = x;
  1106. position_float[Y_AXIS] = y;
  1107. position_float[Z_AXIS] = z;
  1108. position_float[E_AXIS] = e;
  1109. #endif
  1110. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1111. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  1112. previous_speed[0] = 0.0;
  1113. previous_speed[1] = 0.0;
  1114. previous_speed[2] = 0.0;
  1115. previous_speed[3] = 0.0;
  1116. }
  1117. // Only useful in the bed leveling routine, when the mesh bed leveling is off.
  1118. void plan_set_z_position(const float &z)
  1119. {
  1120. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  1121. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  1122. }
  1123. void plan_set_e_position(const float &e)
  1124. {
  1125. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  1126. st_set_e_position(position[E_AXIS]);
  1127. }
  1128. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1129. void set_extrude_min_temp(float temp)
  1130. {
  1131. extrude_min_temp=temp;
  1132. }
  1133. #endif
  1134. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  1135. void reset_acceleration_rates()
  1136. {
  1137. for(int8_t i=0; i < NUM_AXIS; i++)
  1138. {
  1139. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  1140. }
  1141. }
  1142. unsigned char number_of_blocks() {
  1143. return (block_buffer_head + BLOCK_BUFFER_SIZE - block_buffer_tail) & (BLOCK_BUFFER_SIZE - 1);
  1144. }
  1145. #ifdef PLANNER_DIAGNOSTICS
  1146. uint8_t planner_queue_min()
  1147. {
  1148. return g_cntr_planner_queue_min;
  1149. }
  1150. void planner_queue_min_reset()
  1151. {
  1152. g_cntr_planner_queue_min = moves_planned();
  1153. }
  1154. #endif /* PLANNER_DIAGNOSTICS */
  1155. void planner_add_sd_length(uint16_t sdlen)
  1156. {
  1157. if (block_buffer_head != block_buffer_tail) {
  1158. // The planner buffer is not empty. Get the index of the last buffer line entered,
  1159. // which is (block_buffer_head - 1) modulo BLOCK_BUFFER_SIZE.
  1160. unsigned char last = (block_buffer_head + BLOCK_BUFFER_SIZE - 1) & (BLOCK_BUFFER_SIZE - 1);
  1161. block_buffer[last].sdlen += sdlen;
  1162. } else {
  1163. // There is no line stored in the planner buffer, which means the last command does not need to be revertible,
  1164. // at a power panic, so the length of this command may be forgotten.
  1165. }
  1166. }
  1167. uint16_t planner_calc_sd_length()
  1168. {
  1169. unsigned char _block_buffer_head = block_buffer_head;
  1170. unsigned char _block_buffer_tail = block_buffer_tail;
  1171. uint16_t sdlen = 0;
  1172. while (_block_buffer_head != _block_buffer_tail)
  1173. {
  1174. sdlen += block_buffer[_block_buffer_tail].sdlen;
  1175. _block_buffer_tail = (_block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
  1176. }
  1177. return sdlen;
  1178. }