Marlin_main.cpp 180 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #ifdef MESH_BED_LEVELING
  31. #include "mesh_bed_leveling.h"
  32. #include "mesh_bed_calibration.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "Configuration_prusa.h"
  36. #include "planner.h"
  37. #include "stepper.h"
  38. #include "temperature.h"
  39. #include "motion_control.h"
  40. #include "cardreader.h"
  41. #include "watchdog.h"
  42. #include "ConfigurationStore.h"
  43. #include "language.h"
  44. #include "pins_arduino.h"
  45. #include "math.h"
  46. #include "util.h"
  47. #ifdef BLINKM
  48. #include "BlinkM.h"
  49. #include "Wire.h"
  50. #endif
  51. #ifdef ULTRALCD
  52. #include "ultralcd.h"
  53. #endif
  54. #if NUM_SERVOS > 0
  55. #include "Servo.h"
  56. #endif
  57. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  58. #include <SPI.h>
  59. #endif
  60. #define VERSION_STRING "1.0.2"
  61. #include "ultralcd.h"
  62. // Macros for bit masks
  63. #define BIT(b) (1<<(b))
  64. #define TEST(n,b) (((n)&BIT(b))!=0)
  65. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  66. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  67. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  68. //Implemented Codes
  69. //-------------------
  70. // PRUSA CODES
  71. // P F - Returns FW versions
  72. // P R - Returns revision of printer
  73. // G0 -> G1
  74. // G1 - Coordinated Movement X Y Z E
  75. // G2 - CW ARC
  76. // G3 - CCW ARC
  77. // G4 - Dwell S<seconds> or P<milliseconds>
  78. // G10 - retract filament according to settings of M207
  79. // G11 - retract recover filament according to settings of M208
  80. // G28 - Home all Axis
  81. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  82. // G30 - Single Z Probe, probes bed at current XY location.
  83. // G31 - Dock sled (Z_PROBE_SLED only)
  84. // G32 - Undock sled (Z_PROBE_SLED only)
  85. // G80 - Automatic mesh bed leveling
  86. // G81 - Print bed profile
  87. // G90 - Use Absolute Coordinates
  88. // G91 - Use Relative Coordinates
  89. // G92 - Set current position to coordinates given
  90. // M Codes
  91. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  92. // M1 - Same as M0
  93. // M17 - Enable/Power all stepper motors
  94. // M18 - Disable all stepper motors; same as M84
  95. // M20 - List SD card
  96. // M21 - Init SD card
  97. // M22 - Release SD card
  98. // M23 - Select SD file (M23 filename.g)
  99. // M24 - Start/resume SD print
  100. // M25 - Pause SD print
  101. // M26 - Set SD position in bytes (M26 S12345)
  102. // M27 - Report SD print status
  103. // M28 - Start SD write (M28 filename.g)
  104. // M29 - Stop SD write
  105. // M30 - Delete file from SD (M30 filename.g)
  106. // M31 - Output time since last M109 or SD card start to serial
  107. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  108. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  109. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  110. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  111. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  112. // M80 - Turn on Power Supply
  113. // M81 - Turn off Power Supply
  114. // M82 - Set E codes absolute (default)
  115. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  116. // M84 - Disable steppers until next move,
  117. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  118. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  119. // M92 - Set axis_steps_per_unit - same syntax as G92
  120. // M104 - Set extruder target temp
  121. // M105 - Read current temp
  122. // M106 - Fan on
  123. // M107 - Fan off
  124. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  126. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  127. // M112 - Emergency stop
  128. // M114 - Output current position to serial port
  129. // M115 - Capabilities string
  130. // M117 - display message
  131. // M119 - Output Endstop status to serial port
  132. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  133. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  134. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  135. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. // M140 - Set bed target temp
  137. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  138. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  139. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  140. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  141. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  142. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  143. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  144. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  145. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  146. // M206 - set additional homing offset
  147. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  148. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  149. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  150. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  151. // M220 S<factor in percent>- set speed factor override percentage
  152. // M221 S<factor in percent>- set extrude factor override percentage
  153. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  154. // M240 - Trigger a camera to take a photograph
  155. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  156. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  157. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  158. // M301 - Set PID parameters P I and D
  159. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  160. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  161. // M304 - Set bed PID parameters P I and D
  162. // M400 - Finish all moves
  163. // M401 - Lower z-probe if present
  164. // M402 - Raise z-probe if present
  165. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  166. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  167. // M406 - Turn off Filament Sensor extrusion control
  168. // M407 - Displays measured filament diameter
  169. // M500 - stores parameters in EEPROM
  170. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  171. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  172. // M503 - print the current settings (from memory not from EEPROM)
  173. // M509 - force language selection on next restart
  174. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  175. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  176. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  177. // M907 - Set digital trimpot motor current using axis codes.
  178. // M908 - Control digital trimpot directly.
  179. // M350 - Set microstepping mode.
  180. // M351 - Toggle MS1 MS2 pins directly.
  181. // M928 - Start SD logging (M928 filename.g) - ended by M29
  182. // M999 - Restart after being stopped by error
  183. //Stepper Movement Variables
  184. //===========================================================================
  185. //=============================imported variables============================
  186. //===========================================================================
  187. //===========================================================================
  188. //=============================public variables=============================
  189. //===========================================================================
  190. #ifdef SDSUPPORT
  191. CardReader card;
  192. #endif
  193. union Data
  194. {
  195. byte b[2];
  196. int value;
  197. };
  198. int babystepLoad[3];
  199. float homing_feedrate[] = HOMING_FEEDRATE;
  200. // Currently only the extruder axis may be switched to a relative mode.
  201. // Other axes are always absolute or relative based on the common relative_mode flag.
  202. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  203. int feedmultiply=100; //100->1 200->2
  204. int saved_feedmultiply;
  205. int extrudemultiply=100; //100->1 200->2
  206. int extruder_multiply[EXTRUDERS] = {100
  207. #if EXTRUDERS > 1
  208. , 100
  209. #if EXTRUDERS > 2
  210. , 100
  211. #endif
  212. #endif
  213. };
  214. bool is_usb_printing = false;
  215. bool _doMeshL = false;
  216. unsigned int usb_printing_counter;
  217. int lcd_change_fil_state = 0;
  218. int feedmultiplyBckp = 100;
  219. unsigned char lang_selected = 0;
  220. unsigned long total_filament_used;
  221. unsigned int heating_status;
  222. unsigned int heating_status_counter;
  223. bool custom_message;
  224. unsigned int custom_message_type;
  225. unsigned int custom_message_state;
  226. bool volumetric_enabled = false;
  227. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  228. #if EXTRUDERS > 1
  229. , DEFAULT_NOMINAL_FILAMENT_DIA
  230. #if EXTRUDERS > 2
  231. , DEFAULT_NOMINAL_FILAMENT_DIA
  232. #endif
  233. #endif
  234. };
  235. float volumetric_multiplier[EXTRUDERS] = {1.0
  236. #if EXTRUDERS > 1
  237. , 1.0
  238. #if EXTRUDERS > 2
  239. , 1.0
  240. #endif
  241. #endif
  242. };
  243. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  244. float add_homing[3]={0,0,0};
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. bool axis_known_position[3] = {false, false, false};
  248. float zprobe_zoffset;
  249. // Extruder offset
  250. #if EXTRUDERS > 1
  251. #ifndef DUAL_X_CARRIAGE
  252. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  253. #else
  254. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  255. #endif
  256. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  257. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  258. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  259. #endif
  260. };
  261. #endif
  262. uint8_t active_extruder = 0;
  263. int fanSpeed=0;
  264. #ifdef FWRETRACT
  265. bool autoretract_enabled=false;
  266. bool retracted[EXTRUDERS]={false
  267. #if EXTRUDERS > 1
  268. , false
  269. #if EXTRUDERS > 2
  270. , false
  271. #endif
  272. #endif
  273. };
  274. bool retracted_swap[EXTRUDERS]={false
  275. #if EXTRUDERS > 1
  276. , false
  277. #if EXTRUDERS > 2
  278. , false
  279. #endif
  280. #endif
  281. };
  282. float retract_length = RETRACT_LENGTH;
  283. float retract_length_swap = RETRACT_LENGTH_SWAP;
  284. float retract_feedrate = RETRACT_FEEDRATE;
  285. float retract_zlift = RETRACT_ZLIFT;
  286. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  287. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  288. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  289. #endif
  290. #ifdef ULTIPANEL
  291. #ifdef PS_DEFAULT_OFF
  292. bool powersupply = false;
  293. #else
  294. bool powersupply = true;
  295. #endif
  296. #endif
  297. bool cancel_heatup = false ;
  298. #ifdef FILAMENT_SENSOR
  299. //Variables for Filament Sensor input
  300. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  301. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  302. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  303. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  304. int delay_index1=0; //index into ring buffer
  305. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  306. float delay_dist=0; //delay distance counter
  307. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  308. #endif
  309. const char errormagic[] PROGMEM = "Error:";
  310. const char echomagic[] PROGMEM = "echo:";
  311. //===========================================================================
  312. //=============================Private Variables=============================
  313. //===========================================================================
  314. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  315. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  316. static float delta[3] = {0.0, 0.0, 0.0};
  317. // For tracing an arc
  318. static float offset[3] = {0.0, 0.0, 0.0};
  319. static bool home_all_axis = true;
  320. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  321. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  322. // Determines Absolute or Relative Coordinates.
  323. // Also there is bool axis_relative_modes[] per axis flag.
  324. static bool relative_mode = false;
  325. // String circular buffer. Commands may be pushed to the buffer from both sides:
  326. // Chained commands will be pushed to the front, interactive (from LCD menu)
  327. // and printing commands (from serial line or from SD card) are pushed to the tail.
  328. // First character of each entry indicates the type of the entry:
  329. #define CMDBUFFER_CURRENT_TYPE_UNKNOWN 0
  330. // Command in cmdbuffer was sent over USB.
  331. #define CMDBUFFER_CURRENT_TYPE_USB 1
  332. // Command in cmdbuffer was read from SDCARD.
  333. #define CMDBUFFER_CURRENT_TYPE_SDCARD 2
  334. // Command in cmdbuffer was generated by the UI.
  335. #define CMDBUFFER_CURRENT_TYPE_UI 3
  336. // Command in cmdbuffer was generated by another G-code.
  337. #define CMDBUFFER_CURRENT_TYPE_CHAINED 4
  338. // How much space to reserve for the chained commands
  339. // of type CMDBUFFER_CURRENT_TYPE_CHAINED,
  340. // which are pushed to the front of the queue?
  341. // Maximum 5 commands of max length 20 + null terminator.
  342. #define CMDBUFFER_RESERVE_FRONT (5*21)
  343. // Reserve BUFSIZE lines of length MAX_CMD_SIZE plus CMDBUFFER_RESERVE_FRONT.
  344. static char cmdbuffer[BUFSIZE * (MAX_CMD_SIZE + 1) + CMDBUFFER_RESERVE_FRONT];
  345. // Head of the circular buffer, where to read.
  346. static int bufindr = 0;
  347. // Tail of the buffer, where to write.
  348. static int bufindw = 0;
  349. // Number of lines in cmdbuffer.
  350. static int buflen = 0;
  351. // Flag for processing the current command inside the main Arduino loop().
  352. // If a new command was pushed to the front of a command buffer while
  353. // processing another command, this replaces the command on the top.
  354. // Therefore don't remove the command from the queue in the loop() function.
  355. static bool cmdbuffer_front_already_processed = false;
  356. // Type of a command, which is to be executed right now.
  357. #define CMDBUFFER_CURRENT_TYPE (cmdbuffer[bufindr])
  358. // String of a command, which is to be executed right now.
  359. #define CMDBUFFER_CURRENT_STRING (cmdbuffer+bufindr+1)
  360. // Enable debugging of the command buffer.
  361. // Debugging information will be sent to serial line.
  362. // #define CMDBUFFER_DEBUG
  363. static int serial_count = 0;
  364. static boolean comment_mode = false;
  365. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  366. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  367. //static float tt = 0;
  368. //static float bt = 0;
  369. //Inactivity shutdown variables
  370. static unsigned long previous_millis_cmd = 0;
  371. unsigned long max_inactive_time = 0;
  372. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  373. unsigned long starttime=0;
  374. unsigned long stoptime=0;
  375. unsigned long _usb_timer = 0;
  376. static uint8_t tmp_extruder;
  377. bool Stopped=false;
  378. #if NUM_SERVOS > 0
  379. Servo servos[NUM_SERVOS];
  380. #endif
  381. bool CooldownNoWait = true;
  382. bool target_direction;
  383. //Insert variables if CHDK is defined
  384. #ifdef CHDK
  385. unsigned long chdkHigh = 0;
  386. boolean chdkActive = false;
  387. #endif
  388. //===========================================================================
  389. //=============================Routines======================================
  390. //===========================================================================
  391. void get_arc_coordinates();
  392. bool setTargetedHotend(int code);
  393. void serial_echopair_P(const char *s_P, float v)
  394. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  395. void serial_echopair_P(const char *s_P, double v)
  396. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  397. void serial_echopair_P(const char *s_P, unsigned long v)
  398. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  399. #ifdef SDSUPPORT
  400. #include "SdFatUtil.h"
  401. int freeMemory() { return SdFatUtil::FreeRam(); }
  402. #else
  403. extern "C" {
  404. extern unsigned int __bss_end;
  405. extern unsigned int __heap_start;
  406. extern void *__brkval;
  407. int freeMemory() {
  408. int free_memory;
  409. if ((int)__brkval == 0)
  410. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  411. else
  412. free_memory = ((int)&free_memory) - ((int)__brkval);
  413. return free_memory;
  414. }
  415. }
  416. #endif //!SDSUPPORT
  417. // Pop the currently processed command from the queue.
  418. // It is expected, that there is at least one command in the queue.
  419. void cmdqueue_pop_front()
  420. {
  421. if (buflen > 0) {
  422. #ifdef CMDBUFFER_DEBUG
  423. SERIAL_ECHOPGM("Dequeing ");
  424. SERIAL_ECHO(cmdbuffer+bufindr+1);
  425. SERIAL_ECHOLNPGM("");
  426. SERIAL_ECHOPGM("Old indices: buflen ");
  427. SERIAL_ECHO(buflen);
  428. SERIAL_ECHOPGM(", bufindr ");
  429. SERIAL_ECHO(bufindr);
  430. SERIAL_ECHOPGM(", bufindw ");
  431. SERIAL_ECHO(bufindw);
  432. SERIAL_ECHOPGM(", serial_count ");
  433. SERIAL_ECHO(serial_count);
  434. SERIAL_ECHOPGM(", bufsize ");
  435. SERIAL_ECHO(sizeof(cmdbuffer));
  436. SERIAL_ECHOLNPGM("");
  437. #endif /* CMDBUFFER_DEBUG */
  438. if (-- buflen == 0) {
  439. // Empty buffer.
  440. if (serial_count == 0)
  441. // No serial communication is pending. Reset both pointers to zero.
  442. bufindw = 0;
  443. bufindr = bufindw;
  444. } else {
  445. // There is at least one ready line in the buffer.
  446. // First skip the current command ID and iterate up to the end of the string.
  447. for (++ bufindr; cmdbuffer[bufindr] != 0; ++ bufindr) ;
  448. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  449. for (++ bufindr; bufindr < sizeof(cmdbuffer) && cmdbuffer[bufindr] == 0; ++ bufindr) ;
  450. // If the end of the buffer was empty,
  451. if (bufindr == sizeof(cmdbuffer)) {
  452. // skip to the start and find the nonzero command.
  453. for (bufindr = 0; cmdbuffer[bufindr] == 0; ++ bufindr) ;
  454. }
  455. #ifdef CMDBUFFER_DEBUG
  456. SERIAL_ECHOPGM("New indices: buflen ");
  457. SERIAL_ECHO(buflen);
  458. SERIAL_ECHOPGM(", bufindr ");
  459. SERIAL_ECHO(bufindr);
  460. SERIAL_ECHOPGM(", bufindw ");
  461. SERIAL_ECHO(bufindw);
  462. SERIAL_ECHOPGM(", serial_count ");
  463. SERIAL_ECHO(serial_count);
  464. SERIAL_ECHOPGM(" new command on the top: ");
  465. SERIAL_ECHO(cmdbuffer+bufindr+1);
  466. SERIAL_ECHOLNPGM("");
  467. #endif /* CMDBUFFER_DEBUG */
  468. }
  469. }
  470. }
  471. // How long a string could be pushed to the front of the command queue?
  472. // If yes, adjust bufindr to the new position, where the new command could be enqued.
  473. // len_asked does not contain the zero terminator size.
  474. bool cmdqueue_could_enqueue_front(int len_asked)
  475. {
  476. // MAX_CMD_SIZE has to accommodate the zero terminator.
  477. if (len_asked >= MAX_CMD_SIZE)
  478. return false;
  479. // Remove the currently processed command from the queue.
  480. if (! cmdbuffer_front_already_processed) {
  481. cmdqueue_pop_front();
  482. cmdbuffer_front_already_processed = true;
  483. }
  484. if (bufindr == bufindw && buflen > 0)
  485. // Full buffer.
  486. return false;
  487. // Adjust the end of the write buffer based on whether a partial line is in the receive buffer.
  488. int endw = (serial_count > 0) ? (bufindw + MAX_CMD_SIZE + 1) : bufindw;
  489. if (bufindw < bufindr) {
  490. int bufindr_new = bufindr - len_asked - 2;
  491. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  492. if (endw <= bufindr_new) {
  493. bufindr = bufindr_new;
  494. return true;
  495. }
  496. } else {
  497. // Otherwise the free space is split between the start and end.
  498. if (len_asked + 2 <= bufindr) {
  499. // Could fit at the start.
  500. bufindr -= len_asked + 2;
  501. return true;
  502. }
  503. int bufindr_new = sizeof(cmdbuffer) - len_asked - 2;
  504. if (endw <= bufindr_new) {
  505. memset(cmdbuffer, 0, bufindr);
  506. bufindr = bufindr_new;
  507. return true;
  508. }
  509. }
  510. return false;
  511. }
  512. // Could one enqueue a command of lenthg len_asked into the buffer,
  513. // while leaving CMDBUFFER_RESERVE_FRONT at the start?
  514. // If yes, adjust bufindw to the new position, where the new command could be enqued.
  515. // len_asked does not contain the zero terminator size.
  516. bool cmdqueue_could_enqueue_back(int len_asked)
  517. {
  518. // MAX_CMD_SIZE has to accommodate the zero terminator.
  519. if (len_asked >= MAX_CMD_SIZE)
  520. return false;
  521. if (bufindr == bufindw && buflen > 0)
  522. // Full buffer.
  523. return false;
  524. if (serial_count > 0) {
  525. // If there is some data stored starting at bufindw, len_asked is certainly smaller than
  526. // the allocated data buffer. Try to reserve a new buffer and to move the already received
  527. // serial data.
  528. // How much memory to reserve for the commands pushed to the front?
  529. // End of the queue, when pushing to the end.
  530. int endw = bufindw + len_asked + 2;
  531. if (bufindw < bufindr)
  532. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  533. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  534. // Otherwise the free space is split between the start and end.
  535. if (// Could one fit to the end, including the reserve?
  536. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  537. // Could one fit to the end, and the reserve to the start?
  538. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  539. return true;
  540. // Could one fit both to the start?
  541. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  542. // Mark the rest of the buffer as used.
  543. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  544. // and point to the start.
  545. bufindw = 0;
  546. return true;
  547. }
  548. } else {
  549. // How much memory to reserve for the commands pushed to the front?
  550. // End of the queue, when pushing to the end.
  551. int endw = bufindw + len_asked + 2;
  552. if (bufindw < bufindr)
  553. // Simple case. There is a contiguous space between the write buffer and the read buffer.
  554. return endw + CMDBUFFER_RESERVE_FRONT <= bufindr;
  555. // Otherwise the free space is split between the start and end.
  556. if (// Could one fit to the end, including the reserve?
  557. endw + CMDBUFFER_RESERVE_FRONT <= sizeof(cmdbuffer) ||
  558. // Could one fit to the end, and the reserve to the start?
  559. (endw <= sizeof(cmdbuffer) && CMDBUFFER_RESERVE_FRONT <= bufindr))
  560. return true;
  561. // Could one fit both to the start?
  562. if (len_asked + 2 + CMDBUFFER_RESERVE_FRONT <= bufindr) {
  563. // Mark the rest of the buffer as used.
  564. memset(cmdbuffer+bufindw, 0, sizeof(cmdbuffer)-bufindw);
  565. // and point to the start.
  566. bufindw = 0;
  567. return true;
  568. }
  569. }
  570. return false;
  571. }
  572. #ifdef CMDBUFFER_DEBUG
  573. static void cmdqueue_dump_to_serial_single_line(int nr, const char *p)
  574. {
  575. SERIAL_ECHOPGM("Entry nr: ");
  576. SERIAL_ECHO(nr);
  577. SERIAL_ECHOPGM(", type: ");
  578. SERIAL_ECHO(int(*p));
  579. SERIAL_ECHOPGM(", cmd: ");
  580. SERIAL_ECHO(p+1);
  581. SERIAL_ECHOLNPGM("");
  582. }
  583. static void cmdqueue_dump_to_serial()
  584. {
  585. if (buflen == 0) {
  586. SERIAL_ECHOLNPGM("The command buffer is empty.");
  587. } else {
  588. SERIAL_ECHOPGM("Content of the buffer: entries ");
  589. SERIAL_ECHO(buflen);
  590. SERIAL_ECHOPGM(", indr ");
  591. SERIAL_ECHO(bufindr);
  592. SERIAL_ECHOPGM(", indw ");
  593. SERIAL_ECHO(bufindw);
  594. SERIAL_ECHOLNPGM("");
  595. int nr = 0;
  596. if (bufindr < bufindw) {
  597. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + bufindw; ++ nr) {
  598. cmdqueue_dump_to_serial_single_line(nr, p);
  599. // Skip the command.
  600. for (++p; *p != 0; ++ p);
  601. // Skip the gaps.
  602. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  603. }
  604. } else {
  605. for (const char *p = cmdbuffer + bufindr; p < cmdbuffer + sizeof(cmdbuffer); ++ nr) {
  606. cmdqueue_dump_to_serial_single_line(nr, p);
  607. // Skip the command.
  608. for (++p; *p != 0; ++ p);
  609. // Skip the gaps.
  610. for (++p; p < cmdbuffer + sizeof(cmdbuffer) && *p == 0; ++ p);
  611. }
  612. for (const char *p = cmdbuffer; p < cmdbuffer + bufindw; ++ nr) {
  613. cmdqueue_dump_to_serial_single_line(nr, p);
  614. // Skip the command.
  615. for (++p; *p != 0; ++ p);
  616. // Skip the gaps.
  617. for (++p; p < cmdbuffer + bufindw && *p == 0; ++ p);
  618. }
  619. }
  620. SERIAL_ECHOLNPGM("End of the buffer.");
  621. }
  622. }
  623. #endif /* CMDBUFFER_DEBUG */
  624. //adds an command to the main command buffer
  625. //thats really done in a non-safe way.
  626. //needs overworking someday
  627. // Currently the maximum length of a command piped through this function is around 20 characters
  628. void enquecommand(const char *cmd, bool from_progmem)
  629. {
  630. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  631. // Does cmd fit the queue while leaving sufficient space at the front for the chained commands?
  632. // If it fits, it may move bufindw, so it points to a contiguous buffer, which fits cmd.
  633. if (cmdqueue_could_enqueue_back(len)) {
  634. // This is dangerous if a mixing of serial and this happens
  635. // This may easily be tested: If serial_count > 0, we have a problem.
  636. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_UI;
  637. if (from_progmem)
  638. strcpy_P(cmdbuffer + bufindw + 1, cmd);
  639. else
  640. strcpy(cmdbuffer + bufindw + 1, cmd);
  641. SERIAL_ECHO_START;
  642. SERIAL_ECHORPGM(MSG_Enqueing);
  643. SERIAL_ECHO(cmdbuffer + bufindw + 1);
  644. SERIAL_ECHOLNPGM("\"");
  645. bufindw += len + 2;
  646. if (bufindw == sizeof(cmdbuffer))
  647. bufindw = 0;
  648. ++ buflen;
  649. #ifdef CMDBUFFER_DEBUG
  650. cmdqueue_dump_to_serial();
  651. #endif /* CMDBUFFER_DEBUG */
  652. } else {
  653. SERIAL_ECHO_START;
  654. SERIAL_ECHORPGM(MSG_Enqueing);
  655. if (from_progmem)
  656. SERIAL_PROTOCOLRPGM(cmd);
  657. else
  658. SERIAL_ECHO(cmd);
  659. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  660. #ifdef CMDBUFFER_DEBUG
  661. cmdqueue_dump_to_serial();
  662. #endif /* CMDBUFFER_DEBUG */
  663. }
  664. }
  665. void enquecommand_front(const char *cmd, bool from_progmem)
  666. {
  667. int len = from_progmem ? strlen_P(cmd) : strlen(cmd);
  668. // Does cmd fit the queue? This call shall move bufindr, so the command may be copied.
  669. if (cmdqueue_could_enqueue_front(len)) {
  670. cmdbuffer[bufindr] = CMDBUFFER_CURRENT_TYPE_UI;
  671. if (from_progmem)
  672. strcpy_P(cmdbuffer + bufindr + 1, cmd);
  673. else
  674. strcpy(cmdbuffer + bufindr + 1, cmd);
  675. ++ buflen;
  676. SERIAL_ECHO_START;
  677. SERIAL_ECHOPGM("Enqueing to the front: \"");
  678. SERIAL_ECHO(cmdbuffer + bufindr + 1);
  679. SERIAL_ECHOLNPGM("\"");
  680. #ifdef CMDBUFFER_DEBUG
  681. cmdqueue_dump_to_serial();
  682. #endif /* CMDBUFFER_DEBUG */
  683. } else {
  684. SERIAL_ECHO_START;
  685. SERIAL_ECHOPGM("Enqueing to the front: \"");
  686. if (from_progmem)
  687. SERIAL_PROTOCOLRPGM(cmd);
  688. else
  689. SERIAL_ECHO(cmd);
  690. SERIAL_ECHOLNPGM("\" failed: Buffer full!");
  691. #ifdef CMDBUFFER_DEBUG
  692. cmdqueue_dump_to_serial();
  693. #endif /* CMDBUFFER_DEBUG */
  694. }
  695. }
  696. // Mark the command at the top of the command queue as new.
  697. // Therefore it will not be removed from the queue.
  698. void repeatcommand_front()
  699. {
  700. cmdbuffer_front_already_processed = true;
  701. }
  702. void setup_killpin()
  703. {
  704. #if defined(KILL_PIN) && KILL_PIN > -1
  705. SET_INPUT(KILL_PIN);
  706. WRITE(KILL_PIN,HIGH);
  707. #endif
  708. }
  709. // Set home pin
  710. void setup_homepin(void)
  711. {
  712. #if defined(HOME_PIN) && HOME_PIN > -1
  713. SET_INPUT(HOME_PIN);
  714. WRITE(HOME_PIN,HIGH);
  715. #endif
  716. }
  717. void setup_photpin()
  718. {
  719. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  720. SET_OUTPUT(PHOTOGRAPH_PIN);
  721. WRITE(PHOTOGRAPH_PIN, LOW);
  722. #endif
  723. }
  724. void setup_powerhold()
  725. {
  726. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  727. SET_OUTPUT(SUICIDE_PIN);
  728. WRITE(SUICIDE_PIN, HIGH);
  729. #endif
  730. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  731. SET_OUTPUT(PS_ON_PIN);
  732. #if defined(PS_DEFAULT_OFF)
  733. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  734. #else
  735. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  736. #endif
  737. #endif
  738. }
  739. void suicide()
  740. {
  741. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  742. SET_OUTPUT(SUICIDE_PIN);
  743. WRITE(SUICIDE_PIN, LOW);
  744. #endif
  745. }
  746. void servo_init()
  747. {
  748. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  749. servos[0].attach(SERVO0_PIN);
  750. #endif
  751. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  752. servos[1].attach(SERVO1_PIN);
  753. #endif
  754. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  755. servos[2].attach(SERVO2_PIN);
  756. #endif
  757. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  758. servos[3].attach(SERVO3_PIN);
  759. #endif
  760. #if (NUM_SERVOS >= 5)
  761. #error "TODO: enter initalisation code for more servos"
  762. #endif
  763. }
  764. static void lcd_language_menu();
  765. #ifdef MESH_BED_LEVELING
  766. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  767. #endif
  768. // "Setup" function is called by the Arduino framework on startup.
  769. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  770. // are initialized by the main() routine provided by the Arduino framework.
  771. void setup()
  772. {
  773. setup_killpin();
  774. setup_powerhold();
  775. MYSERIAL.begin(BAUDRATE);
  776. SERIAL_PROTOCOLLNPGM("start");
  777. SERIAL_ECHO_START;
  778. #if 0
  779. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  780. for (int i = 0; i < 4096; ++ i) {
  781. int b = eeprom_read_byte((unsigned char*)i);
  782. if (b != 255) {
  783. SERIAL_ECHO(i);
  784. SERIAL_ECHO(":");
  785. SERIAL_ECHO(b);
  786. SERIAL_ECHOLN("");
  787. }
  788. }
  789. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  790. #endif
  791. // Check startup - does nothing if bootloader sets MCUSR to 0
  792. byte mcu = MCUSR;
  793. if(mcu & 1) SERIAL_ECHOLNRPGM(MSG_POWERUP);
  794. if(mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  795. if(mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  796. if(mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  797. if(mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);
  798. MCUSR=0;
  799. //SERIAL_ECHORPGM(MSG_MARLIN);
  800. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  801. #ifdef STRING_VERSION_CONFIG_H
  802. #ifdef STRING_CONFIG_H_AUTHOR
  803. SERIAL_ECHO_START;
  804. SERIAL_ECHORPGM(MSG_CONFIGURATION_VER);
  805. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  806. SERIAL_ECHORPGM(MSG_AUTHOR);
  807. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  808. SERIAL_ECHOPGM("Compiled: ");
  809. SERIAL_ECHOLNPGM(__DATE__);
  810. #endif
  811. #endif
  812. SERIAL_ECHO_START;
  813. SERIAL_ECHORPGM(MSG_FREE_MEMORY);
  814. SERIAL_ECHO(freeMemory());
  815. SERIAL_ECHORPGM(MSG_PLANNER_BUFFER_BYTES);
  816. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  817. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  818. Config_RetrieveSettings();
  819. tp_init(); // Initialize temperature loop
  820. plan_init(); // Initialize planner;
  821. watchdog_init();
  822. st_init(); // Initialize stepper, this enables interrupts!
  823. setup_photpin();
  824. servo_init();
  825. // Reset the machine correction matrix.
  826. // It does not make sense to load the correction matrix until the machine is homed.
  827. world2machine_reset();
  828. lcd_init();
  829. if(!READ(BTN_ENC) ){
  830. _delay_ms(1000);
  831. if(!READ(BTN_ENC) ){
  832. SET_OUTPUT(BEEPER);
  833. WRITE(BEEPER,HIGH);
  834. lcd_force_language_selection();
  835. while(!READ(BTN_ENC));
  836. WRITE(BEEPER,LOW);
  837. }
  838. }else{
  839. _delay_ms(1000); // wait 1sec to display the splash screen
  840. }
  841. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  842. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  843. #endif
  844. #ifdef DIGIPOT_I2C
  845. digipot_i2c_init();
  846. #endif
  847. setup_homepin();
  848. #if defined(Z_AXIS_ALWAYS_ON)
  849. enable_z();
  850. #endif
  851. if (eeprom_read_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET) == 0x0ff) {
  852. lang_selected = eeprom_read_byte((unsigned char*)EEPROM_LANG);
  853. if (lang_selected >= LANG_NUM)
  854. lang_selected = 1;
  855. lcd_show_fullscreen_message_and_wait_P(MSG_BABYSTEP_Z_NOT_SET);
  856. lcd_update_enable(true);
  857. lcd_implementation_clear();
  858. }
  859. }
  860. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  861. // Before loop(), the setup() function is called by the main() routine.
  862. void loop()
  863. {
  864. if (usb_printing_counter > 0 && millis()-_usb_timer > 1000)
  865. {
  866. is_usb_printing = true;
  867. usb_printing_counter--;
  868. _usb_timer = millis();
  869. }
  870. if (usb_printing_counter == 0)
  871. {
  872. is_usb_printing = false;
  873. }
  874. get_command();
  875. #ifdef SDSUPPORT
  876. card.checkautostart(false);
  877. #endif
  878. if(buflen)
  879. {
  880. #ifdef SDSUPPORT
  881. if(card.saving)
  882. {
  883. // Saving a G-code file onto an SD-card is in progress.
  884. // Saving starts with M28, saving until M29 is seen.
  885. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  886. card.write_command(CMDBUFFER_CURRENT_STRING);
  887. if(card.logging)
  888. process_commands();
  889. else
  890. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  891. } else {
  892. card.closefile();
  893. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  894. }
  895. } else {
  896. process_commands();
  897. }
  898. #else
  899. process_commands();
  900. #endif //SDSUPPORT
  901. if (! cmdbuffer_front_already_processed)
  902. cmdqueue_pop_front();
  903. cmdbuffer_front_already_processed = false;
  904. }
  905. //check heater every n milliseconds
  906. manage_heater();
  907. manage_inactivity();
  908. checkHitEndstops();
  909. lcd_update();
  910. }
  911. void get_command()
  912. {
  913. // Test and reserve space for the new command string.
  914. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  915. return;
  916. while (MYSERIAL.available() > 0) {
  917. char serial_char = MYSERIAL.read();
  918. if (serial_char < 0)
  919. // Ignore extended ASCII characters. These characters have no meaning in the G-code apart from the file names
  920. // and Marlin does not support such file names anyway.
  921. // Serial characters with a highest bit set to 1 are generated when the USB cable is unplugged, leading
  922. // to a hang-up of the print process from an SD card.
  923. continue;
  924. if(serial_char == '\n' ||
  925. serial_char == '\r' ||
  926. (serial_char == ':' && comment_mode == false) ||
  927. serial_count >= (MAX_CMD_SIZE - 1) )
  928. {
  929. if(!serial_count) { //if empty line
  930. comment_mode = false; //for new command
  931. return;
  932. }
  933. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  934. if(!comment_mode){
  935. comment_mode = false; //for new command
  936. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'N')) != NULL)
  937. {
  938. // Line number met. When sending a G-code over a serial line, each line may be stamped with its index,
  939. // and Marlin tests, whether the successive lines are stamped with an increasing line number ID.
  940. gcode_N = (strtol(strchr_pointer+1, NULL, 10));
  941. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer+bufindw+1, PSTR("M110")) == NULL) ) {
  942. // M110 - set current line number.
  943. // Line numbers not sent in succession.
  944. SERIAL_ERROR_START;
  945. SERIAL_ERRORRPGM(MSG_ERR_LINE_NO);
  946. SERIAL_ERRORLN(gcode_LastN);
  947. //Serial.println(gcode_N);
  948. FlushSerialRequestResend();
  949. serial_count = 0;
  950. return;
  951. }
  952. if((strchr_pointer = strchr(cmdbuffer+bufindw+1, '*')) != NULL)
  953. {
  954. byte checksum = 0;
  955. char *p = cmdbuffer+bufindw+1;
  956. while (p != strchr_pointer)
  957. checksum = checksum^(*p++);
  958. if (int(strtol(strchr_pointer+1, NULL, 10)) != int(checksum)) {
  959. SERIAL_ERROR_START;
  960. SERIAL_ERRORRPGM(MSG_ERR_CHECKSUM_MISMATCH);
  961. SERIAL_ERRORLN(gcode_LastN);
  962. FlushSerialRequestResend();
  963. serial_count = 0;
  964. return;
  965. }
  966. // If no errors, remove the checksum and continue parsing.
  967. *strchr_pointer = 0;
  968. }
  969. else
  970. {
  971. SERIAL_ERROR_START;
  972. SERIAL_ERRORRPGM(MSG_ERR_NO_CHECKSUM);
  973. SERIAL_ERRORLN(gcode_LastN);
  974. FlushSerialRequestResend();
  975. serial_count = 0;
  976. return;
  977. }
  978. gcode_LastN = gcode_N;
  979. //if no errors, continue parsing
  980. } // end of 'N' command
  981. else // if we don't receive 'N' but still see '*'
  982. {
  983. if((strchr(cmdbuffer+bufindw+1, '*') != NULL))
  984. {
  985. SERIAL_ERROR_START;
  986. SERIAL_ERRORRPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  987. SERIAL_ERRORLN(gcode_LastN);
  988. serial_count = 0;
  989. return;
  990. }
  991. } // end of '*' command
  992. if ((strchr_pointer = strchr(cmdbuffer+bufindw+1, 'G')) != NULL) {
  993. if (! IS_SD_PRINTING) {
  994. usb_printing_counter = 10;
  995. is_usb_printing = true;
  996. }
  997. if (Stopped == true) {
  998. int gcode = strtol(strchr_pointer+1, NULL, 10);
  999. if (gcode >= 0 && gcode <= 3) {
  1000. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  1001. LCD_MESSAGERPGM(MSG_STOPPED);
  1002. }
  1003. }
  1004. } // end of 'G' command
  1005. //If command was e-stop process now
  1006. if(strcmp(cmdbuffer+bufindw+1, "M112") == 0)
  1007. kill();
  1008. // Store the current line into buffer, move to the next line.
  1009. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_USB;
  1010. #ifdef CMDBUFFER_DEBUG
  1011. SERIAL_ECHO_START;
  1012. SERIAL_ECHOPGM("Storing a command line to buffer: ");
  1013. SERIAL_ECHO(cmdbuffer+bufindw+1);
  1014. SERIAL_ECHOLNPGM("");
  1015. #endif /* CMDBUFFER_DEBUG */
  1016. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1017. if (bufindw == sizeof(cmdbuffer))
  1018. bufindw = 0;
  1019. ++ buflen;
  1020. #ifdef CMDBUFFER_DEBUG
  1021. SERIAL_ECHOPGM("Number of commands in the buffer: ");
  1022. SERIAL_ECHO(buflen);
  1023. SERIAL_ECHOLNPGM("");
  1024. #endif /* CMDBUFFER_DEBUG */
  1025. } // end of 'not comment mode'
  1026. serial_count = 0; //clear buffer
  1027. // Don't call cmdqueue_could_enqueue_back if there are no characters waiting
  1028. // in the queue, as this function will reserve the memory.
  1029. if (MYSERIAL.available() == 0 || ! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1030. return;
  1031. } // end of "end of line" processing
  1032. else {
  1033. // Not an "end of line" symbol. Store the new character into a buffer.
  1034. if(serial_char == ';') comment_mode = true;
  1035. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1036. }
  1037. } // end of serial line processing loop
  1038. #ifdef SDSUPPORT
  1039. if(!card.sdprinting || serial_count!=0){
  1040. // If there is a half filled buffer from serial line, wait until return before
  1041. // continuing with the serial line.
  1042. return;
  1043. }
  1044. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  1045. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  1046. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  1047. static bool stop_buffering=false;
  1048. if(buflen==0) stop_buffering=false;
  1049. // Reads whole lines from the SD card. Never leaves a half-filled line in the cmdbuffer.
  1050. while( !card.eof() && !stop_buffering) {
  1051. int16_t n=card.get();
  1052. char serial_char = (char)n;
  1053. if(serial_char == '\n' ||
  1054. serial_char == '\r' ||
  1055. (serial_char == '#' && comment_mode == false) ||
  1056. (serial_char == ':' && comment_mode == false) ||
  1057. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  1058. {
  1059. if(card.eof()){
  1060. SERIAL_PROTOCOLLNRPGM(MSG_FILE_PRINTED);
  1061. stoptime=millis();
  1062. char time[30];
  1063. unsigned long t=(stoptime-starttime)/1000;
  1064. int hours, minutes;
  1065. minutes=(t/60)%60;
  1066. hours=t/60/60;
  1067. save_statistics(total_filament_used, t);
  1068. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  1069. SERIAL_ECHO_START;
  1070. SERIAL_ECHOLN(time);
  1071. lcd_setstatus(time);
  1072. card.printingHasFinished();
  1073. card.checkautostart(true);
  1074. }
  1075. if(serial_char=='#')
  1076. stop_buffering=true;
  1077. if(!serial_count)
  1078. {
  1079. comment_mode = false; //for new command
  1080. return; //if empty line
  1081. }
  1082. cmdbuffer[bufindw+serial_count+1] = 0; //terminate string
  1083. cmdbuffer[bufindw] = CMDBUFFER_CURRENT_TYPE_SDCARD;
  1084. ++ buflen;
  1085. bufindw += strlen(cmdbuffer+bufindw+1) + 2;
  1086. if (bufindw == sizeof(cmdbuffer))
  1087. bufindw = 0;
  1088. comment_mode = false; //for new command
  1089. serial_count = 0; //clear buffer
  1090. // The following line will reserve buffer space if available.
  1091. if (! cmdqueue_could_enqueue_back(MAX_CMD_SIZE-1))
  1092. return;
  1093. }
  1094. else
  1095. {
  1096. if(serial_char == ';') comment_mode = true;
  1097. if(!comment_mode) cmdbuffer[bufindw+1+serial_count++] = serial_char;
  1098. }
  1099. }
  1100. #endif //SDSUPPORT
  1101. }
  1102. // Return True if a character was found
  1103. static inline bool code_seen(char code) { return (strchr_pointer = strchr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1104. static inline bool code_seen(const char *code) { return (strchr_pointer = strstr(CMDBUFFER_CURRENT_STRING, code)) != NULL; }
  1105. static inline float code_value() { return strtod(strchr_pointer+1, NULL); }
  1106. static inline long code_value_long() { return strtol(strchr_pointer+1, NULL, 10); }
  1107. static inline int16_t code_value_short() { return int16_t(strtol(strchr_pointer+1, NULL, 10)); };
  1108. static inline uint8_t code_value_uint8() { return uint8_t(strtol(strchr_pointer+1, NULL, 10)); };
  1109. #define DEFINE_PGM_READ_ANY(type, reader) \
  1110. static inline type pgm_read_any(const type *p) \
  1111. { return pgm_read_##reader##_near(p); }
  1112. DEFINE_PGM_READ_ANY(float, float);
  1113. DEFINE_PGM_READ_ANY(signed char, byte);
  1114. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1115. static const PROGMEM type array##_P[3] = \
  1116. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1117. static inline type array(int axis) \
  1118. { return pgm_read_any(&array##_P[axis]); } \
  1119. type array##_ext(int axis) \
  1120. { return pgm_read_any(&array##_P[axis]); }
  1121. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1122. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1123. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1124. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1125. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1126. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1127. #ifdef DUAL_X_CARRIAGE
  1128. #if EXTRUDERS == 1 || defined(COREXY) \
  1129. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  1130. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  1131. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  1132. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  1133. #endif
  1134. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  1135. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  1136. #endif
  1137. #define DXC_FULL_CONTROL_MODE 0
  1138. #define DXC_AUTO_PARK_MODE 1
  1139. #define DXC_DUPLICATION_MODE 2
  1140. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1141. static float x_home_pos(int extruder) {
  1142. if (extruder == 0)
  1143. return base_home_pos(X_AXIS) + add_homing[X_AXIS];
  1144. else
  1145. // In dual carriage mode the extruder offset provides an override of the
  1146. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1147. // This allow soft recalibration of the second extruder offset position without firmware reflash
  1148. // (through the M218 command).
  1149. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1150. }
  1151. static int x_home_dir(int extruder) {
  1152. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1153. }
  1154. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1155. static bool active_extruder_parked = false; // used in mode 1 & 2
  1156. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1157. static unsigned long delayed_move_time = 0; // used in mode 1
  1158. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1159. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1160. bool extruder_duplication_enabled = false; // used in mode 2
  1161. #endif //DUAL_X_CARRIAGE
  1162. static void axis_is_at_home(int axis) {
  1163. #ifdef DUAL_X_CARRIAGE
  1164. if (axis == X_AXIS) {
  1165. if (active_extruder != 0) {
  1166. current_position[X_AXIS] = x_home_pos(active_extruder);
  1167. min_pos[X_AXIS] = X2_MIN_POS;
  1168. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1169. return;
  1170. }
  1171. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  1172. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homing[X_AXIS];
  1173. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homing[X_AXIS];
  1174. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homing[X_AXIS],
  1175. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  1176. return;
  1177. }
  1178. }
  1179. #endif
  1180. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1181. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1182. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1183. }
  1184. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1185. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1186. static void setup_for_endstop_move() {
  1187. saved_feedrate = feedrate;
  1188. saved_feedmultiply = feedmultiply;
  1189. feedmultiply = 100;
  1190. previous_millis_cmd = millis();
  1191. enable_endstops(true);
  1192. }
  1193. static void clean_up_after_endstop_move() {
  1194. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1195. enable_endstops(false);
  1196. #endif
  1197. feedrate = saved_feedrate;
  1198. feedmultiply = saved_feedmultiply;
  1199. previous_millis_cmd = millis();
  1200. }
  1201. #ifdef ENABLE_AUTO_BED_LEVELING
  1202. #ifdef AUTO_BED_LEVELING_GRID
  1203. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1204. {
  1205. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1206. planeNormal.debug("planeNormal");
  1207. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1208. //bedLevel.debug("bedLevel");
  1209. //plan_bed_level_matrix.debug("bed level before");
  1210. //vector_3 uncorrected_position = plan_get_position_mm();
  1211. //uncorrected_position.debug("position before");
  1212. vector_3 corrected_position = plan_get_position();
  1213. // corrected_position.debug("position after");
  1214. current_position[X_AXIS] = corrected_position.x;
  1215. current_position[Y_AXIS] = corrected_position.y;
  1216. current_position[Z_AXIS] = corrected_position.z;
  1217. // put the bed at 0 so we don't go below it.
  1218. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1219. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1220. }
  1221. #else // not AUTO_BED_LEVELING_GRID
  1222. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1223. plan_bed_level_matrix.set_to_identity();
  1224. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1225. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1226. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1227. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1228. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1229. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1230. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1231. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1232. vector_3 corrected_position = plan_get_position();
  1233. current_position[X_AXIS] = corrected_position.x;
  1234. current_position[Y_AXIS] = corrected_position.y;
  1235. current_position[Z_AXIS] = corrected_position.z;
  1236. // put the bed at 0 so we don't go below it.
  1237. current_position[Z_AXIS] = zprobe_zoffset;
  1238. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1239. }
  1240. #endif // AUTO_BED_LEVELING_GRID
  1241. static void run_z_probe() {
  1242. plan_bed_level_matrix.set_to_identity();
  1243. feedrate = homing_feedrate[Z_AXIS];
  1244. // move down until you find the bed
  1245. float zPosition = -10;
  1246. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1247. st_synchronize();
  1248. // we have to let the planner know where we are right now as it is not where we said to go.
  1249. zPosition = st_get_position_mm(Z_AXIS);
  1250. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1251. // move up the retract distance
  1252. zPosition += home_retract_mm(Z_AXIS);
  1253. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1254. st_synchronize();
  1255. // move back down slowly to find bed
  1256. feedrate = homing_feedrate[Z_AXIS]/4;
  1257. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1258. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1259. st_synchronize();
  1260. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1261. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1262. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1263. }
  1264. static void do_blocking_move_to(float x, float y, float z) {
  1265. float oldFeedRate = feedrate;
  1266. feedrate = homing_feedrate[Z_AXIS];
  1267. current_position[Z_AXIS] = z;
  1268. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1269. st_synchronize();
  1270. feedrate = XY_TRAVEL_SPEED;
  1271. current_position[X_AXIS] = x;
  1272. current_position[Y_AXIS] = y;
  1273. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1274. st_synchronize();
  1275. feedrate = oldFeedRate;
  1276. }
  1277. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1278. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1279. }
  1280. /// Probe bed height at position (x,y), returns the measured z value
  1281. static float probe_pt(float x, float y, float z_before) {
  1282. // move to right place
  1283. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1284. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1285. run_z_probe();
  1286. float measured_z = current_position[Z_AXIS];
  1287. SERIAL_PROTOCOLRPGM(MSG_BED);
  1288. SERIAL_PROTOCOLPGM(" x: ");
  1289. SERIAL_PROTOCOL(x);
  1290. SERIAL_PROTOCOLPGM(" y: ");
  1291. SERIAL_PROTOCOL(y);
  1292. SERIAL_PROTOCOLPGM(" z: ");
  1293. SERIAL_PROTOCOL(measured_z);
  1294. SERIAL_PROTOCOLPGM("\n");
  1295. return measured_z;
  1296. }
  1297. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1298. void homeaxis(int axis) {
  1299. #define HOMEAXIS_DO(LETTER) \
  1300. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1301. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1302. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1303. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1304. 0) {
  1305. int axis_home_dir = home_dir(axis);
  1306. #ifdef DUAL_X_CARRIAGE
  1307. if (axis == X_AXIS)
  1308. axis_home_dir = x_home_dir(active_extruder);
  1309. #endif
  1310. current_position[axis] = 0;
  1311. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1312. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1313. feedrate = homing_feedrate[axis];
  1314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1315. st_synchronize();
  1316. current_position[axis] = 0;
  1317. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1318. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1319. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1320. st_synchronize();
  1321. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1322. feedrate = homing_feedrate[axis]/2 ;
  1323. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1324. st_synchronize();
  1325. axis_is_at_home(axis);
  1326. destination[axis] = current_position[axis];
  1327. feedrate = 0.0;
  1328. endstops_hit_on_purpose();
  1329. axis_known_position[axis] = true;
  1330. }
  1331. }
  1332. void home_xy()
  1333. {
  1334. set_destination_to_current();
  1335. homeaxis(X_AXIS);
  1336. homeaxis(Y_AXIS);
  1337. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1338. endstops_hit_on_purpose();
  1339. }
  1340. void refresh_cmd_timeout(void)
  1341. {
  1342. previous_millis_cmd = millis();
  1343. }
  1344. #ifdef FWRETRACT
  1345. void retract(bool retracting, bool swapretract = false) {
  1346. if(retracting && !retracted[active_extruder]) {
  1347. destination[X_AXIS]=current_position[X_AXIS];
  1348. destination[Y_AXIS]=current_position[Y_AXIS];
  1349. destination[Z_AXIS]=current_position[Z_AXIS];
  1350. destination[E_AXIS]=current_position[E_AXIS];
  1351. if (swapretract) {
  1352. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1353. } else {
  1354. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1355. }
  1356. plan_set_e_position(current_position[E_AXIS]);
  1357. float oldFeedrate = feedrate;
  1358. feedrate=retract_feedrate*60;
  1359. retracted[active_extruder]=true;
  1360. prepare_move();
  1361. current_position[Z_AXIS]-=retract_zlift;
  1362. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1363. prepare_move();
  1364. feedrate = oldFeedrate;
  1365. } else if(!retracting && retracted[active_extruder]) {
  1366. destination[X_AXIS]=current_position[X_AXIS];
  1367. destination[Y_AXIS]=current_position[Y_AXIS];
  1368. destination[Z_AXIS]=current_position[Z_AXIS];
  1369. destination[E_AXIS]=current_position[E_AXIS];
  1370. current_position[Z_AXIS]+=retract_zlift;
  1371. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1372. //prepare_move();
  1373. if (swapretract) {
  1374. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1375. } else {
  1376. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1377. }
  1378. plan_set_e_position(current_position[E_AXIS]);
  1379. float oldFeedrate = feedrate;
  1380. feedrate=retract_recover_feedrate*60;
  1381. retracted[active_extruder]=false;
  1382. prepare_move();
  1383. feedrate = oldFeedrate;
  1384. }
  1385. } //retract
  1386. #endif //FWRETRACT
  1387. void process_commands()
  1388. {
  1389. #ifdef FILAMENT_RUNOUT_SUPPORT
  1390. SET_INPUT(FR_SENS);
  1391. #endif
  1392. #ifdef CMDBUFFER_DEBUG
  1393. SERIAL_ECHOPGM("Processing a GCODE command: ");
  1394. SERIAL_ECHO(cmdbuffer+bufindr+1);
  1395. SERIAL_ECHOLNPGM("");
  1396. SERIAL_ECHOPGM("In cmdqueue: ");
  1397. SERIAL_ECHO(buflen);
  1398. SERIAL_ECHOLNPGM("");
  1399. #endif /* CMDBUFFER_DEBUG */
  1400. unsigned long codenum; //throw away variable
  1401. char *starpos = NULL;
  1402. #ifdef ENABLE_AUTO_BED_LEVELING
  1403. float x_tmp, y_tmp, z_tmp, real_z;
  1404. #endif
  1405. // PRUSA GCODES
  1406. if(code_seen("PRUSA")){
  1407. if(code_seen("Fir")){
  1408. SERIAL_PROTOCOLLN(FW_version);
  1409. } else if(code_seen("Rev")){
  1410. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  1411. } else if(code_seen("Lang")) {
  1412. lcd_force_language_selection();
  1413. } else if(code_seen("Lz")) {
  1414. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  1415. }
  1416. //else if (code_seen('Cal')) {
  1417. // lcd_calibration();
  1418. // }
  1419. }
  1420. else
  1421. if(code_seen('G'))
  1422. {
  1423. switch((int)code_value())
  1424. {
  1425. case 0: // G0 -> G1
  1426. case 1: // G1
  1427. if(Stopped == false) {
  1428. #ifdef FILAMENT_RUNOUT_SUPPORT
  1429. if(READ(FR_SENS)){
  1430. feedmultiplyBckp=feedmultiply;
  1431. float target[4];
  1432. float lastpos[4];
  1433. target[X_AXIS]=current_position[X_AXIS];
  1434. target[Y_AXIS]=current_position[Y_AXIS];
  1435. target[Z_AXIS]=current_position[Z_AXIS];
  1436. target[E_AXIS]=current_position[E_AXIS];
  1437. lastpos[X_AXIS]=current_position[X_AXIS];
  1438. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1439. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1440. lastpos[E_AXIS]=current_position[E_AXIS];
  1441. //retract by E
  1442. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1443. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1444. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1445. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  1446. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1447. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1448. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  1449. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1450. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1451. //finish moves
  1452. st_synchronize();
  1453. //disable extruder steppers so filament can be removed
  1454. disable_e0();
  1455. disable_e1();
  1456. disable_e2();
  1457. delay(100);
  1458. //LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1459. uint8_t cnt=0;
  1460. int counterBeep = 0;
  1461. lcd_wait_interact();
  1462. while(!lcd_clicked()){
  1463. cnt++;
  1464. manage_heater();
  1465. manage_inactivity(true);
  1466. //lcd_update();
  1467. if(cnt==0)
  1468. {
  1469. #if BEEPER > 0
  1470. if (counterBeep== 500){
  1471. counterBeep = 0;
  1472. }
  1473. SET_OUTPUT(BEEPER);
  1474. if (counterBeep== 0){
  1475. WRITE(BEEPER,HIGH);
  1476. }
  1477. if (counterBeep== 20){
  1478. WRITE(BEEPER,LOW);
  1479. }
  1480. counterBeep++;
  1481. #else
  1482. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  1483. lcd_buzz(1000/6,100);
  1484. #else
  1485. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  1486. #endif
  1487. #endif
  1488. }
  1489. }
  1490. WRITE(BEEPER,LOW);
  1491. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1492. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1493. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1494. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1495. lcd_change_fil_state = 0;
  1496. lcd_loading_filament();
  1497. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  1498. lcd_change_fil_state = 0;
  1499. lcd_alright();
  1500. switch(lcd_change_fil_state){
  1501. case 2:
  1502. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  1503. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  1504. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1505. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1506. lcd_loading_filament();
  1507. break;
  1508. case 3:
  1509. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  1510. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1511. lcd_loading_color();
  1512. break;
  1513. default:
  1514. lcd_change_success();
  1515. break;
  1516. }
  1517. }
  1518. target[E_AXIS]+= 5;
  1519. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  1520. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  1521. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  1522. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1523. //plan_set_e_position(current_position[E_AXIS]);
  1524. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  1525. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  1526. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  1527. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  1528. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  1529. plan_set_e_position(lastpos[E_AXIS]);
  1530. feedmultiply=feedmultiplyBckp;
  1531. char cmd[9];
  1532. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  1533. enquecommand(cmd);
  1534. }
  1535. #endif
  1536. get_coordinates(); // For X Y Z E F
  1537. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS])*100);
  1538. #ifdef FWRETRACT
  1539. if(autoretract_enabled)
  1540. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1541. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1542. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1543. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1544. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1545. retract(!retracted);
  1546. return;
  1547. }
  1548. }
  1549. #endif //FWRETRACT
  1550. prepare_move();
  1551. //ClearToSend();
  1552. }
  1553. break;
  1554. case 2: // G2 - CW ARC
  1555. if(Stopped == false) {
  1556. get_arc_coordinates();
  1557. prepare_arc_move(true);
  1558. }
  1559. break;
  1560. case 3: // G3 - CCW ARC
  1561. if(Stopped == false) {
  1562. get_arc_coordinates();
  1563. prepare_arc_move(false);
  1564. }
  1565. break;
  1566. case 4: // G4 dwell
  1567. LCD_MESSAGERPGM(MSG_DWELL);
  1568. codenum = 0;
  1569. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1570. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1571. st_synchronize();
  1572. codenum += millis(); // keep track of when we started waiting
  1573. previous_millis_cmd = millis();
  1574. while(millis() < codenum) {
  1575. manage_heater();
  1576. manage_inactivity();
  1577. lcd_update();
  1578. }
  1579. break;
  1580. #ifdef FWRETRACT
  1581. case 10: // G10 retract
  1582. #if EXTRUDERS > 1
  1583. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1584. retract(true,retracted_swap[active_extruder]);
  1585. #else
  1586. retract(true);
  1587. #endif
  1588. break;
  1589. case 11: // G11 retract_recover
  1590. #if EXTRUDERS > 1
  1591. retract(false,retracted_swap[active_extruder]);
  1592. #else
  1593. retract(false);
  1594. #endif
  1595. break;
  1596. #endif //FWRETRACT
  1597. case 28: //G28 Home all Axis one at a time
  1598. #ifdef ENABLE_AUTO_BED_LEVELING
  1599. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1600. #endif //ENABLE_AUTO_BED_LEVELING
  1601. _doMeshL = false;
  1602. // For mesh bed leveling deactivate the matrix temporarily
  1603. #ifdef MESH_BED_LEVELING
  1604. mbl.active = 0;
  1605. #endif
  1606. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  1607. // the planner will not perform any adjustments in the XY plane.
  1608. // Wait for the motors to stop and update the current position with the absolute values.
  1609. world2machine_revert_to_uncorrected();
  1610. saved_feedrate = feedrate;
  1611. saved_feedmultiply = feedmultiply;
  1612. feedmultiply = 100;
  1613. previous_millis_cmd = millis();
  1614. enable_endstops(true);
  1615. for(int8_t i=0; i < NUM_AXIS; i++)
  1616. destination[i] = current_position[i];
  1617. feedrate = 0.0;
  1618. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1619. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1620. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1621. homeaxis(Z_AXIS);
  1622. }
  1623. #endif
  1624. #ifdef QUICK_HOME
  1625. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  1626. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1627. {
  1628. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1629. #ifndef DUAL_X_CARRIAGE
  1630. int x_axis_home_dir = home_dir(X_AXIS);
  1631. #else
  1632. int x_axis_home_dir = x_home_dir(active_extruder);
  1633. extruder_duplication_enabled = false;
  1634. #endif
  1635. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1636. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1637. feedrate = homing_feedrate[X_AXIS];
  1638. if(homing_feedrate[Y_AXIS]<feedrate)
  1639. feedrate = homing_feedrate[Y_AXIS];
  1640. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1641. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1642. } else {
  1643. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1644. }
  1645. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1646. st_synchronize();
  1647. axis_is_at_home(X_AXIS);
  1648. axis_is_at_home(Y_AXIS);
  1649. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1650. destination[X_AXIS] = current_position[X_AXIS];
  1651. destination[Y_AXIS] = current_position[Y_AXIS];
  1652. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1653. feedrate = 0.0;
  1654. st_synchronize();
  1655. endstops_hit_on_purpose();
  1656. current_position[X_AXIS] = destination[X_AXIS];
  1657. current_position[Y_AXIS] = destination[Y_AXIS];
  1658. current_position[Z_AXIS] = destination[Z_AXIS];
  1659. }
  1660. #endif /* QUICK_HOME */
  1661. if (home_all_axis)
  1662. {
  1663. _doMeshL = true;
  1664. }
  1665. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1666. {
  1667. #ifdef DUAL_X_CARRIAGE
  1668. int tmp_extruder = active_extruder;
  1669. extruder_duplication_enabled = false;
  1670. active_extruder = !active_extruder;
  1671. homeaxis(X_AXIS);
  1672. inactive_extruder_x_pos = current_position[X_AXIS];
  1673. active_extruder = tmp_extruder;
  1674. homeaxis(X_AXIS);
  1675. // reset state used by the different modes
  1676. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1677. delayed_move_time = 0;
  1678. active_extruder_parked = true;
  1679. #else
  1680. homeaxis(X_AXIS);
  1681. #endif
  1682. }
  1683. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1684. homeaxis(Y_AXIS);
  1685. }
  1686. if(code_seen(axis_codes[X_AXIS]))
  1687. {
  1688. if(code_value_long() != 0) {
  1689. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  1690. }
  1691. }
  1692. if(code_seen(axis_codes[Y_AXIS])) {
  1693. if(code_value_long() != 0) {
  1694. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  1695. }
  1696. }
  1697. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1698. #ifndef Z_SAFE_HOMING
  1699. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1700. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1701. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1702. feedrate = max_feedrate[Z_AXIS];
  1703. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1704. st_synchronize();
  1705. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1706. #ifdef MESH_BED_LEVELING // If Mesh bed leveling, moxve X&Y to safe position for home
  1707. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  1708. {
  1709. homeaxis(X_AXIS);
  1710. homeaxis(Y_AXIS);
  1711. }
  1712. // 1st mesh bed leveling measurement point, corrected.
  1713. world2machine_initialize();
  1714. world2machine(pgm_read_float(bed_ref_points), pgm_read_float(bed_ref_points+1), destination[X_AXIS], destination[Y_AXIS]);
  1715. world2machine_reset();
  1716. if (destination[Y_AXIS] < Y_MIN_POS)
  1717. destination[Y_AXIS] = Y_MIN_POS;
  1718. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  1719. feedrate = homing_feedrate[Z_AXIS]/10;
  1720. current_position[Z_AXIS] = 0;
  1721. enable_endstops(false);
  1722. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1723. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1724. st_synchronize();
  1725. current_position[X_AXIS] = destination[X_AXIS];
  1726. current_position[Y_AXIS] = destination[Y_AXIS];
  1727. enable_endstops(true);
  1728. endstops_hit_on_purpose();
  1729. homeaxis(Z_AXIS);
  1730. _doMeshL = true;
  1731. #else // MESH_BED_LEVELING
  1732. homeaxis(Z_AXIS);
  1733. #endif // MESH_BED_LEVELING
  1734. }
  1735. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  1736. if(home_all_axis) {
  1737. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1738. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1739. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1740. feedrate = XY_TRAVEL_SPEED/60;
  1741. current_position[Z_AXIS] = 0;
  1742. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1743. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1744. st_synchronize();
  1745. current_position[X_AXIS] = destination[X_AXIS];
  1746. current_position[Y_AXIS] = destination[Y_AXIS];
  1747. homeaxis(Z_AXIS);
  1748. }
  1749. // Let's see if X and Y are homed and probe is inside bed area.
  1750. if(code_seen(axis_codes[Z_AXIS])) {
  1751. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1752. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1753. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1754. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1755. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1756. current_position[Z_AXIS] = 0;
  1757. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1758. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1759. feedrate = max_feedrate[Z_AXIS];
  1760. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1761. st_synchronize();
  1762. homeaxis(Z_AXIS);
  1763. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1764. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1765. SERIAL_ECHO_START;
  1766. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1767. } else {
  1768. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  1769. SERIAL_ECHO_START;
  1770. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  1771. }
  1772. }
  1773. #endif // Z_SAFE_HOMING
  1774. #endif // Z_HOME_DIR < 0
  1775. if(code_seen(axis_codes[Z_AXIS])) {
  1776. if(code_value_long() != 0) {
  1777. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  1778. }
  1779. }
  1780. #ifdef ENABLE_AUTO_BED_LEVELING
  1781. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1782. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1783. }
  1784. #endif
  1785. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1786. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1787. enable_endstops(false);
  1788. #endif
  1789. feedrate = saved_feedrate;
  1790. feedmultiply = saved_feedmultiply;
  1791. previous_millis_cmd = millis();
  1792. endstops_hit_on_purpose();
  1793. #ifndef MESH_BED_LEVELING
  1794. if(card.sdprinting) {
  1795. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoad[2]);
  1796. if(babystepLoad[2] != 0){
  1797. lcd_adjust_z();
  1798. }
  1799. }
  1800. #endif
  1801. // Load the machine correction matrix
  1802. world2machine_initialize();
  1803. // and correct the current_position to match the transformed coordinate system.
  1804. world2machine_update_current();
  1805. #ifdef MESH_BED_LEVELING
  1806. if (code_seen('W'))
  1807. {
  1808. _doMeshL = false;
  1809. SERIAL_ECHOLN("G80 disabled");
  1810. }
  1811. if ( _doMeshL)
  1812. {
  1813. st_synchronize();
  1814. // Push the commands to the front of the message queue in the reverse order!
  1815. // There shall be always enough space reserved for these commands.
  1816. enquecommand_front_P((PSTR("G80")));
  1817. }
  1818. #endif
  1819. break;
  1820. #ifdef ENABLE_AUTO_BED_LEVELING
  1821. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1822. {
  1823. #if Z_MIN_PIN == -1
  1824. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  1825. #endif
  1826. // Prevent user from running a G29 without first homing in X and Y
  1827. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1828. {
  1829. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  1830. SERIAL_ECHO_START;
  1831. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  1832. break; // abort G29, since we don't know where we are
  1833. }
  1834. st_synchronize();
  1835. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1836. //vector_3 corrected_position = plan_get_position_mm();
  1837. //corrected_position.debug("position before G29");
  1838. plan_bed_level_matrix.set_to_identity();
  1839. vector_3 uncorrected_position = plan_get_position();
  1840. //uncorrected_position.debug("position durring G29");
  1841. current_position[X_AXIS] = uncorrected_position.x;
  1842. current_position[Y_AXIS] = uncorrected_position.y;
  1843. current_position[Z_AXIS] = uncorrected_position.z;
  1844. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1845. setup_for_endstop_move();
  1846. feedrate = homing_feedrate[Z_AXIS];
  1847. #ifdef AUTO_BED_LEVELING_GRID
  1848. // probe at the points of a lattice grid
  1849. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1850. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1851. // solve the plane equation ax + by + d = z
  1852. // A is the matrix with rows [x y 1] for all the probed points
  1853. // B is the vector of the Z positions
  1854. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1855. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1856. // "A" matrix of the linear system of equations
  1857. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1858. // "B" vector of Z points
  1859. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1860. int probePointCounter = 0;
  1861. bool zig = true;
  1862. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1863. {
  1864. int xProbe, xInc;
  1865. if (zig)
  1866. {
  1867. xProbe = LEFT_PROBE_BED_POSITION;
  1868. //xEnd = RIGHT_PROBE_BED_POSITION;
  1869. xInc = xGridSpacing;
  1870. zig = false;
  1871. } else // zag
  1872. {
  1873. xProbe = RIGHT_PROBE_BED_POSITION;
  1874. //xEnd = LEFT_PROBE_BED_POSITION;
  1875. xInc = -xGridSpacing;
  1876. zig = true;
  1877. }
  1878. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1879. {
  1880. float z_before;
  1881. if (probePointCounter == 0)
  1882. {
  1883. // raise before probing
  1884. z_before = Z_RAISE_BEFORE_PROBING;
  1885. } else
  1886. {
  1887. // raise extruder
  1888. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1889. }
  1890. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1891. eqnBVector[probePointCounter] = measured_z;
  1892. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1893. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1894. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1895. probePointCounter++;
  1896. xProbe += xInc;
  1897. }
  1898. }
  1899. clean_up_after_endstop_move();
  1900. // solve lsq problem
  1901. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1902. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1903. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1904. SERIAL_PROTOCOLPGM(" b: ");
  1905. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1906. SERIAL_PROTOCOLPGM(" d: ");
  1907. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1908. set_bed_level_equation_lsq(plane_equation_coefficients);
  1909. free(plane_equation_coefficients);
  1910. #else // AUTO_BED_LEVELING_GRID not defined
  1911. // Probe at 3 arbitrary points
  1912. // probe 1
  1913. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1914. // probe 2
  1915. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1916. // probe 3
  1917. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1918. clean_up_after_endstop_move();
  1919. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1920. #endif // AUTO_BED_LEVELING_GRID
  1921. st_synchronize();
  1922. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1923. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1924. // When the bed is uneven, this height must be corrected.
  1925. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1926. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1927. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1928. z_tmp = current_position[Z_AXIS];
  1929. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1930. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1931. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1932. }
  1933. break;
  1934. #ifndef Z_PROBE_SLED
  1935. case 30: // G30 Single Z Probe
  1936. {
  1937. st_synchronize();
  1938. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1939. setup_for_endstop_move();
  1940. feedrate = homing_feedrate[Z_AXIS];
  1941. run_z_probe();
  1942. SERIAL_PROTOCOLPGM(MSG_BED);
  1943. SERIAL_PROTOCOLPGM(" X: ");
  1944. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1945. SERIAL_PROTOCOLPGM(" Y: ");
  1946. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1947. SERIAL_PROTOCOLPGM(" Z: ");
  1948. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1949. SERIAL_PROTOCOLPGM("\n");
  1950. clean_up_after_endstop_move();
  1951. }
  1952. break;
  1953. #else
  1954. case 31: // dock the sled
  1955. dock_sled(true);
  1956. break;
  1957. case 32: // undock the sled
  1958. dock_sled(false);
  1959. break;
  1960. #endif // Z_PROBE_SLED
  1961. #endif // ENABLE_AUTO_BED_LEVELING
  1962. #ifdef MESH_BED_LEVELING
  1963. /**
  1964. * G80: Mesh-based Z probe, probes a grid and produces a
  1965. * mesh to compensate for variable bed height
  1966. *
  1967. * The S0 report the points as below
  1968. *
  1969. * +----> X-axis
  1970. * |
  1971. * |
  1972. * v Y-axis
  1973. *
  1974. */
  1975. case 80:
  1976. {
  1977. if (!IS_SD_PRINTING)
  1978. {
  1979. custom_message = true;
  1980. custom_message_type = 1;
  1981. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  1982. }
  1983. // Firstly check if we know where we are
  1984. if ( !( axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS] ) ){
  1985. // We don't know where we are! HOME!
  1986. // Push the commands to the front of the message queue in the reverse order!
  1987. // There shall be always enough space reserved for these commands.
  1988. repeatcommand_front(); // repeat G80 with all its parameters
  1989. enquecommand_front_P((PSTR("G28 W0")));
  1990. break;
  1991. }
  1992. mbl.reset();
  1993. // Cycle through all points and probe them
  1994. // First move up.
  1995. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  1996. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  1997. // The move to the first calibration point.
  1998. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  1999. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+1);
  2000. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2001. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  2002. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/30, active_extruder);
  2003. // Wait until the move is finished.
  2004. st_synchronize();
  2005. int mesh_point = 0;
  2006. int ix = 0;
  2007. int iy = 0;
  2008. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS]/20;
  2009. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS]/60;
  2010. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS]/40;
  2011. bool has_z = is_bed_z_jitter_data_valid();
  2012. setup_for_endstop_move();
  2013. const char *kill_message = NULL;
  2014. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2015. // Get coords of a measuring point.
  2016. ix = mesh_point % MESH_MEAS_NUM_X_POINTS;
  2017. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  2018. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  2019. float z0 = 0.f;
  2020. if (has_z && mesh_point > 0) {
  2021. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  2022. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  2023. #if 0
  2024. SERIAL_ECHOPGM("Bed leveling, point: ");
  2025. MYSERIAL.print(mesh_point);
  2026. SERIAL_ECHOPGM(", calibration z: ");
  2027. MYSERIAL.print(z0, 5);
  2028. SERIAL_ECHOLNPGM("");
  2029. #endif
  2030. }
  2031. // Move Z to proper distance
  2032. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2033. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2034. st_synchronize();
  2035. current_position[X_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point);
  2036. current_position[Y_AXIS] = pgm_read_float(bed_ref_points+2*mesh_point+1);
  2037. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2038. // mbl.get_meas_xy(ix, iy, current_position[X_AXIS], current_position[Y_AXIS], false);
  2039. enable_endstops(false);
  2040. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2041. st_synchronize();
  2042. // Go down until endstop is hit
  2043. const float Z_CALIBRATION_THRESHOLD = 0.5f;
  2044. if (! find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) {
  2045. kill_message = MSG_BED_LEVELING_FAILED_POINT_LOW;
  2046. break;
  2047. }
  2048. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) {
  2049. kill_message = MSG_BED_LEVELING_FAILED_POINT_HIGH;
  2050. break;
  2051. }
  2052. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2053. if (!IS_SD_PRINTING)
  2054. {
  2055. custom_message_state--;
  2056. }
  2057. mesh_point++;
  2058. }
  2059. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2060. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  2061. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  2062. st_synchronize();
  2063. kill(kill_message);
  2064. }
  2065. clean_up_after_endstop_move();
  2066. mbl.upsample_3x3();
  2067. mbl.active = 1;
  2068. current_position[X_AXIS] = X_MIN_POS+0.2;
  2069. current_position[Y_AXIS] = Y_MIN_POS+0.2;
  2070. current_position[Z_AXIS] = Z_MIN_POS;
  2071. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  2072. plan_buffer_line(current_position[X_AXIS], current_position[X_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  2073. st_synchronize();
  2074. if(card.sdprinting || is_usb_printing )
  2075. {
  2076. if(eeprom_read_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET) == 0x01)
  2077. {
  2078. EEPROM_read_B(EEPROM_BABYSTEP_Z,&babystepLoad[2]);
  2079. babystepsTodo[Z_AXIS] = babystepLoad[2];
  2080. }
  2081. }
  2082. }
  2083. break;
  2084. /**
  2085. * G81: Print mesh bed leveling status and bed profile if activated
  2086. */
  2087. case 81:
  2088. if (mbl.active) {
  2089. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2090. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2091. SERIAL_PROTOCOLPGM(",");
  2092. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2093. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2094. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  2095. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2096. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  2097. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2098. SERIAL_PROTOCOLPGM(" ");
  2099. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2100. }
  2101. SERIAL_PROTOCOLPGM("\n");
  2102. }
  2103. }
  2104. else
  2105. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2106. break;
  2107. /**
  2108. * G82: Single Z probe at current location
  2109. *
  2110. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  2111. *
  2112. */
  2113. case 82:
  2114. SERIAL_PROTOCOLLNPGM("Finding bed ");
  2115. setup_for_endstop_move();
  2116. find_bed_induction_sensor_point_z();
  2117. clean_up_after_endstop_move();
  2118. SERIAL_PROTOCOLPGM("Bed found at: ");
  2119. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  2120. SERIAL_PROTOCOLPGM("\n");
  2121. break;
  2122. /**
  2123. * G83: Babystep in Z and store to EEPROM
  2124. */
  2125. case 83:
  2126. {
  2127. int babystepz = code_seen('S') ? code_value() : 0;
  2128. int BabyPosition = code_seen('P') ? code_value() : 0;
  2129. if (babystepz != 0) {
  2130. if (BabyPosition > 4) {
  2131. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  2132. }else{
  2133. // Save it to the eeprom
  2134. babystepLoad[2] = babystepz;
  2135. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoad[2]);
  2136. // adjist the Z
  2137. babystepsTodo[Z_AXIS] = babystepLoad[2];
  2138. }
  2139. }
  2140. }
  2141. break;
  2142. /**
  2143. * G84: UNDO Babystep Z (move Z axis back)
  2144. */
  2145. case 84:
  2146. babystepsTodo[Z_AXIS] = -babystepLoad[2];
  2147. break;
  2148. /**
  2149. * G85: Pick best babystep
  2150. */
  2151. case 85:
  2152. lcd_pick_babystep();
  2153. break;
  2154. /**
  2155. * G86: Disable babystep correction after home
  2156. */
  2157. case 86:
  2158. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0xFF);
  2159. break;
  2160. /**
  2161. * G87: Enable babystep correction after home
  2162. */
  2163. case 87:
  2164. eeprom_write_byte((unsigned char*)EEPROM_BABYSTEP_Z_SET, 0x01);
  2165. break;
  2166. case 88:
  2167. break;
  2168. #endif // ENABLE_MESH_BED_LEVELING
  2169. case 90: // G90
  2170. relative_mode = false;
  2171. break;
  2172. case 91: // G91
  2173. relative_mode = true;
  2174. break;
  2175. case 92: // G92
  2176. if(!code_seen(axis_codes[E_AXIS]))
  2177. st_synchronize();
  2178. for(int8_t i=0; i < NUM_AXIS; i++) {
  2179. if(code_seen(axis_codes[i])) {
  2180. if(i == E_AXIS) {
  2181. current_position[i] = code_value();
  2182. plan_set_e_position(current_position[E_AXIS]);
  2183. }
  2184. else {
  2185. current_position[i] = code_value()+add_homing[i];
  2186. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2187. }
  2188. }
  2189. }
  2190. break;
  2191. }
  2192. } // end if(code_seen('G'))
  2193. else if(code_seen('M'))
  2194. {
  2195. switch( (int)code_value() )
  2196. {
  2197. #ifdef ULTIPANEL
  2198. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  2199. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  2200. {
  2201. char *src = strchr_pointer + 2;
  2202. codenum = 0;
  2203. bool hasP = false, hasS = false;
  2204. if (code_seen('P')) {
  2205. codenum = code_value(); // milliseconds to wait
  2206. hasP = codenum > 0;
  2207. }
  2208. if (code_seen('S')) {
  2209. codenum = code_value() * 1000; // seconds to wait
  2210. hasS = codenum > 0;
  2211. }
  2212. starpos = strchr(src, '*');
  2213. if (starpos != NULL) *(starpos) = '\0';
  2214. while (*src == ' ') ++src;
  2215. if (!hasP && !hasS && *src != '\0') {
  2216. lcd_setstatus(src);
  2217. } else {
  2218. LCD_MESSAGERPGM(MSG_USERWAIT);
  2219. }
  2220. lcd_ignore_click();
  2221. st_synchronize();
  2222. previous_millis_cmd = millis();
  2223. if (codenum > 0){
  2224. codenum += millis(); // keep track of when we started waiting
  2225. while(millis() < codenum && !lcd_clicked()){
  2226. manage_heater();
  2227. manage_inactivity();
  2228. lcd_update();
  2229. }
  2230. lcd_ignore_click(false);
  2231. }else{
  2232. if (!lcd_detected())
  2233. break;
  2234. while(!lcd_clicked()){
  2235. manage_heater();
  2236. manage_inactivity();
  2237. lcd_update();
  2238. }
  2239. }
  2240. if (IS_SD_PRINTING)
  2241. LCD_MESSAGERPGM(MSG_RESUMING);
  2242. else
  2243. LCD_MESSAGERPGM(WELCOME_MSG);
  2244. }
  2245. break;
  2246. #endif
  2247. case 17:
  2248. LCD_MESSAGERPGM(MSG_NO_MOVE);
  2249. enable_x();
  2250. enable_y();
  2251. enable_z();
  2252. enable_e0();
  2253. enable_e1();
  2254. enable_e2();
  2255. break;
  2256. #ifdef SDSUPPORT
  2257. case 20: // M20 - list SD card
  2258. SERIAL_PROTOCOLLNRPGM(MSG_BEGIN_FILE_LIST);
  2259. card.ls();
  2260. SERIAL_PROTOCOLLNRPGM(MSG_END_FILE_LIST);
  2261. break;
  2262. case 21: // M21 - init SD card
  2263. card.initsd();
  2264. break;
  2265. case 22: //M22 - release SD card
  2266. card.release();
  2267. break;
  2268. case 23: //M23 - Select file
  2269. starpos = (strchr(strchr_pointer + 4,'*'));
  2270. if(starpos!=NULL)
  2271. *(starpos)='\0';
  2272. card.openFile(strchr_pointer + 4,true);
  2273. break;
  2274. case 24: //M24 - Start SD print
  2275. card.startFileprint();
  2276. starttime=millis();
  2277. break;
  2278. case 25: //M25 - Pause SD print
  2279. card.pauseSDPrint();
  2280. break;
  2281. case 26: //M26 - Set SD index
  2282. if(card.cardOK && code_seen('S')) {
  2283. card.setIndex(code_value_long());
  2284. }
  2285. break;
  2286. case 27: //M27 - Get SD status
  2287. card.getStatus();
  2288. break;
  2289. case 28: //M28 - Start SD write
  2290. starpos = (strchr(strchr_pointer + 4,'*'));
  2291. if(starpos != NULL){
  2292. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2293. strchr_pointer = strchr(npos,' ') + 1;
  2294. *(starpos) = '\0';
  2295. }
  2296. card.openFile(strchr_pointer+4,false);
  2297. break;
  2298. case 29: //M29 - Stop SD write
  2299. //processed in write to file routine above
  2300. //card,saving = false;
  2301. break;
  2302. case 30: //M30 <filename> Delete File
  2303. if (card.cardOK){
  2304. card.closefile();
  2305. starpos = (strchr(strchr_pointer + 4,'*'));
  2306. if(starpos != NULL){
  2307. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2308. strchr_pointer = strchr(npos,' ') + 1;
  2309. *(starpos) = '\0';
  2310. }
  2311. card.removeFile(strchr_pointer + 4);
  2312. }
  2313. break;
  2314. case 32: //M32 - Select file and start SD print
  2315. {
  2316. if(card.sdprinting) {
  2317. st_synchronize();
  2318. }
  2319. starpos = (strchr(strchr_pointer + 4,'*'));
  2320. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  2321. if(namestartpos==NULL)
  2322. {
  2323. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  2324. }
  2325. else
  2326. namestartpos++; //to skip the '!'
  2327. if(starpos!=NULL)
  2328. *(starpos)='\0';
  2329. bool call_procedure=(code_seen('P'));
  2330. if(strchr_pointer>namestartpos)
  2331. call_procedure=false; //false alert, 'P' found within filename
  2332. if( card.cardOK )
  2333. {
  2334. card.openFile(namestartpos,true,!call_procedure);
  2335. if(code_seen('S'))
  2336. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  2337. card.setIndex(code_value_long());
  2338. card.startFileprint();
  2339. if(!call_procedure)
  2340. starttime=millis(); //procedure calls count as normal print time.
  2341. }
  2342. } break;
  2343. case 928: //M928 - Start SD write
  2344. starpos = (strchr(strchr_pointer + 5,'*'));
  2345. if(starpos != NULL){
  2346. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  2347. strchr_pointer = strchr(npos,' ') + 1;
  2348. *(starpos) = '\0';
  2349. }
  2350. card.openLogFile(strchr_pointer+5);
  2351. break;
  2352. #endif //SDSUPPORT
  2353. case 31: //M31 take time since the start of the SD print or an M109 command
  2354. {
  2355. stoptime=millis();
  2356. char time[30];
  2357. unsigned long t=(stoptime-starttime)/1000;
  2358. int sec,min;
  2359. min=t/60;
  2360. sec=t%60;
  2361. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2362. SERIAL_ECHO_START;
  2363. SERIAL_ECHOLN(time);
  2364. lcd_setstatus(time);
  2365. autotempShutdown();
  2366. }
  2367. break;
  2368. case 42: //M42 -Change pin status via gcode
  2369. if (code_seen('S'))
  2370. {
  2371. int pin_status = code_value();
  2372. int pin_number = LED_PIN;
  2373. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2374. pin_number = code_value();
  2375. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2376. {
  2377. if (sensitive_pins[i] == pin_number)
  2378. {
  2379. pin_number = -1;
  2380. break;
  2381. }
  2382. }
  2383. #if defined(FAN_PIN) && FAN_PIN > -1
  2384. if (pin_number == FAN_PIN)
  2385. fanSpeed = pin_status;
  2386. #endif
  2387. if (pin_number > -1)
  2388. {
  2389. pinMode(pin_number, OUTPUT);
  2390. digitalWrite(pin_number, pin_status);
  2391. analogWrite(pin_number, pin_status);
  2392. }
  2393. }
  2394. break;
  2395. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  2396. // Reset the skew and offset in both RAM and EEPROM.
  2397. reset_bed_offset_and_skew();
  2398. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2399. // the planner will not perform any adjustments in the XY plane.
  2400. // Wait for the motors to stop and update the current position with the absolute values.
  2401. world2machine_revert_to_uncorrected();
  2402. break;
  2403. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  2404. {
  2405. // Disable the default update procedure of the display. We will do a modal dialog.
  2406. lcd_update_enable(false);
  2407. // Let the planner use the uncorrected coordinates.
  2408. mbl.reset();
  2409. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2410. // the planner will not perform any adjustments in the XY plane.
  2411. // Wait for the motors to stop and update the current position with the absolute values.
  2412. world2machine_revert_to_uncorrected();
  2413. // Let the user move the Z axes up to the end stoppers.
  2414. if (lcd_calibrate_z_end_stop_manual()) {
  2415. refresh_cmd_timeout();
  2416. // Move the print head close to the bed.
  2417. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2418. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2419. st_synchronize();
  2420. // Home in the XY plane.
  2421. set_destination_to_current();
  2422. setup_for_endstop_move();
  2423. home_xy();
  2424. int8_t verbosity_level = 0;
  2425. if (code_seen('V')) {
  2426. // Just 'V' without a number counts as V1.
  2427. char c = strchr_pointer[1];
  2428. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2429. }
  2430. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level);
  2431. uint8_t point_too_far_mask = 0;
  2432. clean_up_after_endstop_move();
  2433. // Print head up.
  2434. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2435. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2436. st_synchronize();
  2437. if (result >= 0) {
  2438. // Second half: The fine adjustment.
  2439. // Let the planner use the uncorrected coordinates.
  2440. mbl.reset();
  2441. world2machine_reset();
  2442. // Home in the XY plane.
  2443. setup_for_endstop_move();
  2444. home_xy();
  2445. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2446. clean_up_after_endstop_move();
  2447. // Print head up.
  2448. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2449. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2450. st_synchronize();
  2451. }
  2452. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2453. } else {
  2454. // Timeouted.
  2455. }
  2456. lcd_update_enable(true);
  2457. lcd_implementation_clear();
  2458. // lcd_return_to_status();
  2459. lcd_update();
  2460. break;
  2461. }
  2462. case 47:
  2463. // M47: Prusa3D: Show end stops dialog on the display.
  2464. lcd_diag_show_end_stops();
  2465. break;
  2466. #if 0
  2467. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  2468. {
  2469. // Disable the default update procedure of the display. We will do a modal dialog.
  2470. lcd_update_enable(false);
  2471. // Let the planner use the uncorrected coordinates.
  2472. mbl.reset();
  2473. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2474. // the planner will not perform any adjustments in the XY plane.
  2475. // Wait for the motors to stop and update the current position with the absolute values.
  2476. world2machine_revert_to_uncorrected();
  2477. // Move the print head close to the bed.
  2478. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2479. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2480. st_synchronize();
  2481. // Home in the XY plane.
  2482. set_destination_to_current();
  2483. setup_for_endstop_move();
  2484. home_xy();
  2485. int8_t verbosity_level = 0;
  2486. if (code_seen('V')) {
  2487. // Just 'V' without a number counts as V1.
  2488. char c = strchr_pointer[1];
  2489. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2490. }
  2491. bool success = scan_bed_induction_points(verbosity_level);
  2492. clean_up_after_endstop_move();
  2493. // Print head up.
  2494. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2495. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  2496. st_synchronize();
  2497. lcd_update_enable(true);
  2498. lcd_implementation_clear();
  2499. // lcd_return_to_status();
  2500. lcd_update();
  2501. break;
  2502. }
  2503. #endif
  2504. // M48 Z-Probe repeatability measurement function.
  2505. //
  2506. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  2507. //
  2508. // This function assumes the bed has been homed. Specificaly, that a G28 command
  2509. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2510. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2511. // regenerated.
  2512. //
  2513. // The number of samples will default to 10 if not specified. You can use upper or lower case
  2514. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2515. // N for its communication protocol and will get horribly confused if you send it a capital N.
  2516. //
  2517. #ifdef ENABLE_AUTO_BED_LEVELING
  2518. #ifdef Z_PROBE_REPEATABILITY_TEST
  2519. case 48: // M48 Z-Probe repeatability
  2520. {
  2521. #if Z_MIN_PIN == -1
  2522. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2523. #endif
  2524. double sum=0.0;
  2525. double mean=0.0;
  2526. double sigma=0.0;
  2527. double sample_set[50];
  2528. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  2529. double X_current, Y_current, Z_current;
  2530. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2531. if (code_seen('V') || code_seen('v')) {
  2532. verbose_level = code_value();
  2533. if (verbose_level<0 || verbose_level>4 ) {
  2534. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  2535. goto Sigma_Exit;
  2536. }
  2537. }
  2538. if (verbose_level > 0) {
  2539. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  2540. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  2541. }
  2542. if (code_seen('n')) {
  2543. n_samples = code_value();
  2544. if (n_samples<4 || n_samples>50 ) {
  2545. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  2546. goto Sigma_Exit;
  2547. }
  2548. }
  2549. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2550. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2551. Z_current = st_get_position_mm(Z_AXIS);
  2552. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2553. ext_position = st_get_position_mm(E_AXIS);
  2554. if (code_seen('X') || code_seen('x') ) {
  2555. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2556. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  2557. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  2558. goto Sigma_Exit;
  2559. }
  2560. }
  2561. if (code_seen('Y') || code_seen('y') ) {
  2562. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2563. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  2564. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  2565. goto Sigma_Exit;
  2566. }
  2567. }
  2568. if (code_seen('L') || code_seen('l') ) {
  2569. n_legs = code_value();
  2570. if ( n_legs==1 )
  2571. n_legs = 2;
  2572. if ( n_legs<0 || n_legs>15 ) {
  2573. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  2574. goto Sigma_Exit;
  2575. }
  2576. }
  2577. //
  2578. // Do all the preliminary setup work. First raise the probe.
  2579. //
  2580. st_synchronize();
  2581. plan_bed_level_matrix.set_to_identity();
  2582. plan_buffer_line( X_current, Y_current, Z_start_location,
  2583. ext_position,
  2584. homing_feedrate[Z_AXIS]/60,
  2585. active_extruder);
  2586. st_synchronize();
  2587. //
  2588. // Now get everything to the specified probe point So we can safely do a probe to
  2589. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2590. // use that as a starting point for each probe.
  2591. //
  2592. if (verbose_level > 2)
  2593. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  2594. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2595. ext_position,
  2596. homing_feedrate[X_AXIS]/60,
  2597. active_extruder);
  2598. st_synchronize();
  2599. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2600. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2601. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2602. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2603. //
  2604. // OK, do the inital probe to get us close to the bed.
  2605. // Then retrace the right amount and use that in subsequent probes
  2606. //
  2607. setup_for_endstop_move();
  2608. run_z_probe();
  2609. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2610. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2611. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2612. ext_position,
  2613. homing_feedrate[X_AXIS]/60,
  2614. active_extruder);
  2615. st_synchronize();
  2616. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2617. for( n=0; n<n_samples; n++) {
  2618. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2619. if ( n_legs) {
  2620. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  2621. int rotational_direction, l;
  2622. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2623. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  2624. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  2625. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2626. //SERIAL_ECHOPAIR(" theta: ",theta);
  2627. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2628. //SERIAL_PROTOCOLLNPGM("");
  2629. for( l=0; l<n_legs-1; l++) {
  2630. if (rotational_direction==1)
  2631. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2632. else
  2633. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  2634. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  2635. if ( radius<0.0 )
  2636. radius = -radius;
  2637. X_current = X_probe_location + cos(theta) * radius;
  2638. Y_current = Y_probe_location + sin(theta) * radius;
  2639. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  2640. X_current = X_MIN_POS;
  2641. if ( X_current>X_MAX_POS)
  2642. X_current = X_MAX_POS;
  2643. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  2644. Y_current = Y_MIN_POS;
  2645. if ( Y_current>Y_MAX_POS)
  2646. Y_current = Y_MAX_POS;
  2647. if (verbose_level>3 ) {
  2648. SERIAL_ECHOPAIR("x: ", X_current);
  2649. SERIAL_ECHOPAIR("y: ", Y_current);
  2650. SERIAL_PROTOCOLLNPGM("");
  2651. }
  2652. do_blocking_move_to( X_current, Y_current, Z_current );
  2653. }
  2654. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2655. }
  2656. setup_for_endstop_move();
  2657. run_z_probe();
  2658. sample_set[n] = current_position[Z_AXIS];
  2659. //
  2660. // Get the current mean for the data points we have so far
  2661. //
  2662. sum=0.0;
  2663. for( j=0; j<=n; j++) {
  2664. sum = sum + sample_set[j];
  2665. }
  2666. mean = sum / (double (n+1));
  2667. //
  2668. // Now, use that mean to calculate the standard deviation for the
  2669. // data points we have so far
  2670. //
  2671. sum=0.0;
  2672. for( j=0; j<=n; j++) {
  2673. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  2674. }
  2675. sigma = sqrt( sum / (double (n+1)) );
  2676. if (verbose_level > 1) {
  2677. SERIAL_PROTOCOL(n+1);
  2678. SERIAL_PROTOCOL(" of ");
  2679. SERIAL_PROTOCOL(n_samples);
  2680. SERIAL_PROTOCOLPGM(" z: ");
  2681. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2682. }
  2683. if (verbose_level > 2) {
  2684. SERIAL_PROTOCOL(" mean: ");
  2685. SERIAL_PROTOCOL_F(mean,6);
  2686. SERIAL_PROTOCOL(" sigma: ");
  2687. SERIAL_PROTOCOL_F(sigma,6);
  2688. }
  2689. if (verbose_level > 0)
  2690. SERIAL_PROTOCOLPGM("\n");
  2691. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2692. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2693. st_synchronize();
  2694. }
  2695. delay(1000);
  2696. clean_up_after_endstop_move();
  2697. // enable_endstops(true);
  2698. if (verbose_level > 0) {
  2699. SERIAL_PROTOCOLPGM("Mean: ");
  2700. SERIAL_PROTOCOL_F(mean, 6);
  2701. SERIAL_PROTOCOLPGM("\n");
  2702. }
  2703. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2704. SERIAL_PROTOCOL_F(sigma, 6);
  2705. SERIAL_PROTOCOLPGM("\n\n");
  2706. Sigma_Exit:
  2707. break;
  2708. }
  2709. #endif // Z_PROBE_REPEATABILITY_TEST
  2710. #endif // ENABLE_AUTO_BED_LEVELING
  2711. case 104: // M104
  2712. if(setTargetedHotend(104)){
  2713. break;
  2714. }
  2715. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2716. #ifdef DUAL_X_CARRIAGE
  2717. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2718. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2719. #endif
  2720. setWatch();
  2721. break;
  2722. case 112: // M112 -Emergency Stop
  2723. kill();
  2724. break;
  2725. case 140: // M140 set bed temp
  2726. if (code_seen('S')) setTargetBed(code_value());
  2727. break;
  2728. case 105 : // M105
  2729. if(setTargetedHotend(105)){
  2730. break;
  2731. }
  2732. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2733. SERIAL_PROTOCOLPGM("ok T:");
  2734. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2735. SERIAL_PROTOCOLPGM(" /");
  2736. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2737. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2738. SERIAL_PROTOCOLPGM(" B:");
  2739. SERIAL_PROTOCOL_F(degBed(),1);
  2740. SERIAL_PROTOCOLPGM(" /");
  2741. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2742. #endif //TEMP_BED_PIN
  2743. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2744. SERIAL_PROTOCOLPGM(" T");
  2745. SERIAL_PROTOCOL(cur_extruder);
  2746. SERIAL_PROTOCOLPGM(":");
  2747. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2748. SERIAL_PROTOCOLPGM(" /");
  2749. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2750. }
  2751. #else
  2752. SERIAL_ERROR_START;
  2753. SERIAL_ERRORLNRPGM(MSG_ERR_NO_THERMISTORS);
  2754. #endif
  2755. SERIAL_PROTOCOLPGM(" @:");
  2756. #ifdef EXTRUDER_WATTS
  2757. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2758. SERIAL_PROTOCOLPGM("W");
  2759. #else
  2760. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2761. #endif
  2762. SERIAL_PROTOCOLPGM(" B@:");
  2763. #ifdef BED_WATTS
  2764. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2765. SERIAL_PROTOCOLPGM("W");
  2766. #else
  2767. SERIAL_PROTOCOL(getHeaterPower(-1));
  2768. #endif
  2769. #ifdef SHOW_TEMP_ADC_VALUES
  2770. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2771. SERIAL_PROTOCOLPGM(" ADC B:");
  2772. SERIAL_PROTOCOL_F(degBed(),1);
  2773. SERIAL_PROTOCOLPGM("C->");
  2774. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2775. #endif
  2776. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2777. SERIAL_PROTOCOLPGM(" T");
  2778. SERIAL_PROTOCOL(cur_extruder);
  2779. SERIAL_PROTOCOLPGM(":");
  2780. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2781. SERIAL_PROTOCOLPGM("C->");
  2782. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2783. }
  2784. #endif
  2785. SERIAL_PROTOCOLLN("");
  2786. return;
  2787. break;
  2788. case 109:
  2789. {// M109 - Wait for extruder heater to reach target.
  2790. if(setTargetedHotend(109)){
  2791. break;
  2792. }
  2793. LCD_MESSAGERPGM(MSG_HEATING);
  2794. heating_status = 1;
  2795. #ifdef AUTOTEMP
  2796. autotemp_enabled=false;
  2797. #endif
  2798. if (code_seen('S')) {
  2799. setTargetHotend(code_value(), tmp_extruder);
  2800. #ifdef DUAL_X_CARRIAGE
  2801. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2802. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2803. #endif
  2804. CooldownNoWait = true;
  2805. } else if (code_seen('R')) {
  2806. setTargetHotend(code_value(), tmp_extruder);
  2807. #ifdef DUAL_X_CARRIAGE
  2808. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2809. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2810. #endif
  2811. CooldownNoWait = false;
  2812. }
  2813. #ifdef AUTOTEMP
  2814. if (code_seen('S')) autotemp_min=code_value();
  2815. if (code_seen('B')) autotemp_max=code_value();
  2816. if (code_seen('F'))
  2817. {
  2818. autotemp_factor=code_value();
  2819. autotemp_enabled=true;
  2820. }
  2821. #endif
  2822. setWatch();
  2823. codenum = millis();
  2824. /* See if we are heating up or cooling down */
  2825. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2826. cancel_heatup = false;
  2827. #ifdef TEMP_RESIDENCY_TIME
  2828. long residencyStart;
  2829. residencyStart = -1;
  2830. /* continue to loop until we have reached the target temp
  2831. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2832. while((!cancel_heatup)&&((residencyStart == -1) ||
  2833. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  2834. #else
  2835. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  2836. #endif //TEMP_RESIDENCY_TIME
  2837. if( (millis() - codenum) > 1000UL )
  2838. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  2839. SERIAL_PROTOCOLPGM("T:");
  2840. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2841. SERIAL_PROTOCOLPGM(" E:");
  2842. SERIAL_PROTOCOL((int)tmp_extruder);
  2843. #ifdef TEMP_RESIDENCY_TIME
  2844. SERIAL_PROTOCOLPGM(" W:");
  2845. if(residencyStart > -1)
  2846. {
  2847. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2848. SERIAL_PROTOCOLLN( codenum );
  2849. }
  2850. else
  2851. {
  2852. SERIAL_PROTOCOLLN( "?" );
  2853. }
  2854. #else
  2855. SERIAL_PROTOCOLLN("");
  2856. #endif
  2857. codenum = millis();
  2858. }
  2859. manage_heater();
  2860. manage_inactivity();
  2861. lcd_update();
  2862. #ifdef TEMP_RESIDENCY_TIME
  2863. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2864. or when current temp falls outside the hysteresis after target temp was reached */
  2865. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2866. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2867. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2868. {
  2869. residencyStart = millis();
  2870. }
  2871. #endif //TEMP_RESIDENCY_TIME
  2872. }
  2873. LCD_MESSAGERPGM(MSG_HEATING_COMPLETE);
  2874. heating_status = 2;
  2875. starttime=millis();
  2876. previous_millis_cmd = millis();
  2877. }
  2878. break;
  2879. case 190: // M190 - Wait for bed heater to reach target.
  2880. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2881. LCD_MESSAGERPGM(MSG_BED_HEATING);
  2882. heating_status = 3;
  2883. if (code_seen('S'))
  2884. {
  2885. setTargetBed(code_value());
  2886. CooldownNoWait = true;
  2887. }
  2888. else if (code_seen('R'))
  2889. {
  2890. setTargetBed(code_value());
  2891. CooldownNoWait = false;
  2892. }
  2893. codenum = millis();
  2894. cancel_heatup = false;
  2895. target_direction = isHeatingBed(); // true if heating, false if cooling
  2896. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  2897. {
  2898. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  2899. {
  2900. float tt=degHotend(active_extruder);
  2901. SERIAL_PROTOCOLPGM("T:");
  2902. SERIAL_PROTOCOL(tt);
  2903. SERIAL_PROTOCOLPGM(" E:");
  2904. SERIAL_PROTOCOL((int)active_extruder);
  2905. SERIAL_PROTOCOLPGM(" B:");
  2906. SERIAL_PROTOCOL_F(degBed(),1);
  2907. SERIAL_PROTOCOLLN("");
  2908. codenum = millis();
  2909. }
  2910. manage_heater();
  2911. manage_inactivity();
  2912. lcd_update();
  2913. }
  2914. LCD_MESSAGERPGM(MSG_BED_DONE);
  2915. heating_status = 4;
  2916. previous_millis_cmd = millis();
  2917. #endif
  2918. break;
  2919. #if defined(FAN_PIN) && FAN_PIN > -1
  2920. case 106: //M106 Fan On
  2921. if (code_seen('S')){
  2922. fanSpeed=constrain(code_value(),0,255);
  2923. }
  2924. else {
  2925. fanSpeed=255;
  2926. }
  2927. break;
  2928. case 107: //M107 Fan Off
  2929. fanSpeed = 0;
  2930. break;
  2931. #endif //FAN_PIN
  2932. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2933. case 80: // M80 - Turn on Power Supply
  2934. SET_OUTPUT(PS_ON_PIN); //GND
  2935. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  2936. // If you have a switch on suicide pin, this is useful
  2937. // if you want to start another print with suicide feature after
  2938. // a print without suicide...
  2939. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  2940. SET_OUTPUT(SUICIDE_PIN);
  2941. WRITE(SUICIDE_PIN, HIGH);
  2942. #endif
  2943. #ifdef ULTIPANEL
  2944. powersupply = true;
  2945. LCD_MESSAGERPGM(WELCOME_MSG);
  2946. lcd_update();
  2947. #endif
  2948. break;
  2949. #endif
  2950. case 81: // M81 - Turn off Power Supply
  2951. disable_heater();
  2952. st_synchronize();
  2953. disable_e0();
  2954. disable_e1();
  2955. disable_e2();
  2956. finishAndDisableSteppers();
  2957. fanSpeed = 0;
  2958. delay(1000); // Wait a little before to switch off
  2959. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2960. st_synchronize();
  2961. suicide();
  2962. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2963. SET_OUTPUT(PS_ON_PIN);
  2964. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2965. #endif
  2966. #ifdef ULTIPANEL
  2967. powersupply = false;
  2968. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR("."))); //!!
  2969. /*
  2970. MACHNAME = "Prusa i3"
  2971. MSGOFF = "Vypnuto"
  2972. "Prusai3"" ""vypnuto""."
  2973. "Prusa i3"" "MSG_ALL[lang_selected][50]"."
  2974. */
  2975. lcd_update();
  2976. #endif
  2977. break;
  2978. case 82:
  2979. axis_relative_modes[3] = false;
  2980. break;
  2981. case 83:
  2982. axis_relative_modes[3] = true;
  2983. break;
  2984. case 18: //compatibility
  2985. case 84: // M84
  2986. if(code_seen('S')){
  2987. stepper_inactive_time = code_value() * 1000;
  2988. }
  2989. else
  2990. {
  2991. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2992. if(all_axis)
  2993. {
  2994. st_synchronize();
  2995. disable_e0();
  2996. disable_e1();
  2997. disable_e2();
  2998. finishAndDisableSteppers();
  2999. }
  3000. else
  3001. {
  3002. st_synchronize();
  3003. if(code_seen('X')) disable_x();
  3004. if(code_seen('Y')) disable_y();
  3005. if(code_seen('Z')) disable_z();
  3006. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3007. if(code_seen('E')) {
  3008. disable_e0();
  3009. disable_e1();
  3010. disable_e2();
  3011. }
  3012. #endif
  3013. }
  3014. }
  3015. break;
  3016. case 85: // M85
  3017. if(code_seen('S')) {
  3018. max_inactive_time = code_value() * 1000;
  3019. }
  3020. break;
  3021. case 92: // M92
  3022. for(int8_t i=0; i < NUM_AXIS; i++)
  3023. {
  3024. if(code_seen(axis_codes[i]))
  3025. {
  3026. if(i == 3) { // E
  3027. float value = code_value();
  3028. if(value < 20.0) {
  3029. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3030. max_e_jerk *= factor;
  3031. max_feedrate[i] *= factor;
  3032. axis_steps_per_sqr_second[i] *= factor;
  3033. }
  3034. axis_steps_per_unit[i] = value;
  3035. }
  3036. else {
  3037. axis_steps_per_unit[i] = code_value();
  3038. }
  3039. }
  3040. }
  3041. break;
  3042. case 115: // M115
  3043. if (code_seen('V')) {
  3044. // Report the Prusa version number.
  3045. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  3046. } else if (code_seen('U')) {
  3047. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  3048. // pause the print and ask the user to upgrade the firmware.
  3049. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  3050. } else {
  3051. SERIAL_PROTOCOLRPGM(MSG_M115_REPORT);
  3052. }
  3053. break;
  3054. case 117: // M117 display message
  3055. starpos = (strchr(strchr_pointer + 5,'*'));
  3056. if(starpos!=NULL)
  3057. *(starpos)='\0';
  3058. lcd_setstatus(strchr_pointer + 5);
  3059. break;
  3060. case 114: // M114
  3061. SERIAL_PROTOCOLPGM("X:");
  3062. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3063. SERIAL_PROTOCOLPGM(" Y:");
  3064. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3065. SERIAL_PROTOCOLPGM(" Z:");
  3066. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3067. SERIAL_PROTOCOLPGM(" E:");
  3068. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3069. SERIAL_PROTOCOLRPGM(MSG_COUNT_X);
  3070. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  3071. SERIAL_PROTOCOLPGM(" Y:");
  3072. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  3073. SERIAL_PROTOCOLPGM(" Z:");
  3074. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  3075. SERIAL_PROTOCOLLN("");
  3076. break;
  3077. case 120: // M120
  3078. enable_endstops(false) ;
  3079. break;
  3080. case 121: // M121
  3081. enable_endstops(true) ;
  3082. break;
  3083. case 119: // M119
  3084. SERIAL_PROTOCOLRPGM(MSG_M119_REPORT);
  3085. SERIAL_PROTOCOLLN("");
  3086. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  3087. SERIAL_PROTOCOLRPGM(MSG_X_MIN);
  3088. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  3089. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3090. }else{
  3091. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3092. }
  3093. SERIAL_PROTOCOLLN("");
  3094. #endif
  3095. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  3096. SERIAL_PROTOCOLRPGM(MSG_X_MAX);
  3097. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  3098. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3099. }else{
  3100. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3101. }
  3102. SERIAL_PROTOCOLLN("");
  3103. #endif
  3104. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  3105. SERIAL_PROTOCOLRPGM(MSG_Y_MIN);
  3106. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  3107. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3108. }else{
  3109. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3110. }
  3111. SERIAL_PROTOCOLLN("");
  3112. #endif
  3113. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  3114. SERIAL_PROTOCOLRPGM(MSG_Y_MAX);
  3115. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  3116. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3117. }else{
  3118. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3119. }
  3120. SERIAL_PROTOCOLLN("");
  3121. #endif
  3122. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  3123. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  3124. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  3125. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3126. }else{
  3127. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3128. }
  3129. SERIAL_PROTOCOLLN("");
  3130. #endif
  3131. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  3132. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  3133. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  3134. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_HIT);
  3135. }else{
  3136. SERIAL_PROTOCOLRPGM(MSG_ENDSTOP_OPEN);
  3137. }
  3138. SERIAL_PROTOCOLLN("");
  3139. #endif
  3140. break;
  3141. //TODO: update for all axis, use for loop
  3142. #ifdef BLINKM
  3143. case 150: // M150
  3144. {
  3145. byte red;
  3146. byte grn;
  3147. byte blu;
  3148. if(code_seen('R')) red = code_value();
  3149. if(code_seen('U')) grn = code_value();
  3150. if(code_seen('B')) blu = code_value();
  3151. SendColors(red,grn,blu);
  3152. }
  3153. break;
  3154. #endif //BLINKM
  3155. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3156. {
  3157. tmp_extruder = active_extruder;
  3158. if(code_seen('T')) {
  3159. tmp_extruder = code_value();
  3160. if(tmp_extruder >= EXTRUDERS) {
  3161. SERIAL_ECHO_START;
  3162. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3163. break;
  3164. }
  3165. }
  3166. float area = .0;
  3167. if(code_seen('D')) {
  3168. float diameter = (float)code_value();
  3169. if (diameter == 0.0) {
  3170. // setting any extruder filament size disables volumetric on the assumption that
  3171. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3172. // for all extruders
  3173. volumetric_enabled = false;
  3174. } else {
  3175. filament_size[tmp_extruder] = (float)code_value();
  3176. // make sure all extruders have some sane value for the filament size
  3177. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  3178. #if EXTRUDERS > 1
  3179. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  3180. #if EXTRUDERS > 2
  3181. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  3182. #endif
  3183. #endif
  3184. volumetric_enabled = true;
  3185. }
  3186. } else {
  3187. //reserved for setting filament diameter via UFID or filament measuring device
  3188. break;
  3189. }
  3190. calculate_volumetric_multipliers();
  3191. }
  3192. break;
  3193. case 201: // M201
  3194. for(int8_t i=0; i < NUM_AXIS; i++)
  3195. {
  3196. if(code_seen(axis_codes[i]))
  3197. {
  3198. max_acceleration_units_per_sq_second[i] = code_value();
  3199. }
  3200. }
  3201. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3202. reset_acceleration_rates();
  3203. break;
  3204. #if 0 // Not used for Sprinter/grbl gen6
  3205. case 202: // M202
  3206. for(int8_t i=0; i < NUM_AXIS; i++) {
  3207. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3208. }
  3209. break;
  3210. #endif
  3211. case 203: // M203 max feedrate mm/sec
  3212. for(int8_t i=0; i < NUM_AXIS; i++) {
  3213. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  3214. }
  3215. break;
  3216. case 204: // M204 acclereration S normal moves T filmanent only moves
  3217. {
  3218. if(code_seen('S')) acceleration = code_value() ;
  3219. if(code_seen('T')) retract_acceleration = code_value() ;
  3220. }
  3221. break;
  3222. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  3223. {
  3224. if(code_seen('S')) minimumfeedrate = code_value();
  3225. if(code_seen('T')) mintravelfeedrate = code_value();
  3226. if(code_seen('B')) minsegmenttime = code_value() ;
  3227. if(code_seen('X')) max_xy_jerk = code_value() ;
  3228. if(code_seen('Z')) max_z_jerk = code_value() ;
  3229. if(code_seen('E')) max_e_jerk = code_value() ;
  3230. }
  3231. break;
  3232. case 206: // M206 additional homing offset
  3233. for(int8_t i=0; i < 3; i++)
  3234. {
  3235. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  3236. }
  3237. break;
  3238. #ifdef FWRETRACT
  3239. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3240. {
  3241. if(code_seen('S'))
  3242. {
  3243. retract_length = code_value() ;
  3244. }
  3245. if(code_seen('F'))
  3246. {
  3247. retract_feedrate = code_value()/60 ;
  3248. }
  3249. if(code_seen('Z'))
  3250. {
  3251. retract_zlift = code_value() ;
  3252. }
  3253. }break;
  3254. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3255. {
  3256. if(code_seen('S'))
  3257. {
  3258. retract_recover_length = code_value() ;
  3259. }
  3260. if(code_seen('F'))
  3261. {
  3262. retract_recover_feedrate = code_value()/60 ;
  3263. }
  3264. }break;
  3265. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3266. {
  3267. if(code_seen('S'))
  3268. {
  3269. int t= code_value() ;
  3270. switch(t)
  3271. {
  3272. case 0:
  3273. {
  3274. autoretract_enabled=false;
  3275. retracted[0]=false;
  3276. #if EXTRUDERS > 1
  3277. retracted[1]=false;
  3278. #endif
  3279. #if EXTRUDERS > 2
  3280. retracted[2]=false;
  3281. #endif
  3282. }break;
  3283. case 1:
  3284. {
  3285. autoretract_enabled=true;
  3286. retracted[0]=false;
  3287. #if EXTRUDERS > 1
  3288. retracted[1]=false;
  3289. #endif
  3290. #if EXTRUDERS > 2
  3291. retracted[2]=false;
  3292. #endif
  3293. }break;
  3294. default:
  3295. SERIAL_ECHO_START;
  3296. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  3297. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  3298. SERIAL_ECHOLNPGM("\"");
  3299. }
  3300. }
  3301. }break;
  3302. #endif // FWRETRACT
  3303. #if EXTRUDERS > 1
  3304. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3305. {
  3306. if(setTargetedHotend(218)){
  3307. break;
  3308. }
  3309. if(code_seen('X'))
  3310. {
  3311. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3312. }
  3313. if(code_seen('Y'))
  3314. {
  3315. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3316. }
  3317. #ifdef DUAL_X_CARRIAGE
  3318. if(code_seen('Z'))
  3319. {
  3320. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3321. }
  3322. #endif
  3323. SERIAL_ECHO_START;
  3324. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3325. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  3326. {
  3327. SERIAL_ECHO(" ");
  3328. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3329. SERIAL_ECHO(",");
  3330. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3331. #ifdef DUAL_X_CARRIAGE
  3332. SERIAL_ECHO(",");
  3333. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3334. #endif
  3335. }
  3336. SERIAL_ECHOLN("");
  3337. }break;
  3338. #endif
  3339. case 220: // M220 S<factor in percent>- set speed factor override percentage
  3340. {
  3341. if(code_seen('S'))
  3342. {
  3343. feedmultiply = code_value() ;
  3344. }
  3345. }
  3346. break;
  3347. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  3348. {
  3349. if(code_seen('S'))
  3350. {
  3351. int tmp_code = code_value();
  3352. if (code_seen('T'))
  3353. {
  3354. if(setTargetedHotend(221)){
  3355. break;
  3356. }
  3357. extruder_multiply[tmp_extruder] = tmp_code;
  3358. }
  3359. else
  3360. {
  3361. extrudemultiply = tmp_code ;
  3362. }
  3363. }
  3364. }
  3365. break;
  3366. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  3367. {
  3368. if(code_seen('P')){
  3369. int pin_number = code_value(); // pin number
  3370. int pin_state = -1; // required pin state - default is inverted
  3371. if(code_seen('S')) pin_state = code_value(); // required pin state
  3372. if(pin_state >= -1 && pin_state <= 1){
  3373. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  3374. {
  3375. if (sensitive_pins[i] == pin_number)
  3376. {
  3377. pin_number = -1;
  3378. break;
  3379. }
  3380. }
  3381. if (pin_number > -1)
  3382. {
  3383. int target = LOW;
  3384. st_synchronize();
  3385. pinMode(pin_number, INPUT);
  3386. switch(pin_state){
  3387. case 1:
  3388. target = HIGH;
  3389. break;
  3390. case 0:
  3391. target = LOW;
  3392. break;
  3393. case -1:
  3394. target = !digitalRead(pin_number);
  3395. break;
  3396. }
  3397. while(digitalRead(pin_number) != target){
  3398. manage_heater();
  3399. manage_inactivity();
  3400. lcd_update();
  3401. }
  3402. }
  3403. }
  3404. }
  3405. }
  3406. break;
  3407. #if NUM_SERVOS > 0
  3408. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  3409. {
  3410. int servo_index = -1;
  3411. int servo_position = 0;
  3412. if (code_seen('P'))
  3413. servo_index = code_value();
  3414. if (code_seen('S')) {
  3415. servo_position = code_value();
  3416. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3417. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3418. servos[servo_index].attach(0);
  3419. #endif
  3420. servos[servo_index].write(servo_position);
  3421. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  3422. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3423. servos[servo_index].detach();
  3424. #endif
  3425. }
  3426. else {
  3427. SERIAL_ECHO_START;
  3428. SERIAL_ECHO("Servo ");
  3429. SERIAL_ECHO(servo_index);
  3430. SERIAL_ECHOLN(" out of range");
  3431. }
  3432. }
  3433. else if (servo_index >= 0) {
  3434. SERIAL_PROTOCOL(MSG_OK);
  3435. SERIAL_PROTOCOL(" Servo ");
  3436. SERIAL_PROTOCOL(servo_index);
  3437. SERIAL_PROTOCOL(": ");
  3438. SERIAL_PROTOCOL(servos[servo_index].read());
  3439. SERIAL_PROTOCOLLN("");
  3440. }
  3441. }
  3442. break;
  3443. #endif // NUM_SERVOS > 0
  3444. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  3445. case 300: // M300
  3446. {
  3447. int beepS = code_seen('S') ? code_value() : 110;
  3448. int beepP = code_seen('P') ? code_value() : 1000;
  3449. if (beepS > 0)
  3450. {
  3451. #if BEEPER > 0
  3452. tone(BEEPER, beepS);
  3453. delay(beepP);
  3454. noTone(BEEPER);
  3455. #elif defined(ULTRALCD)
  3456. lcd_buzz(beepS, beepP);
  3457. #elif defined(LCD_USE_I2C_BUZZER)
  3458. lcd_buzz(beepP, beepS);
  3459. #endif
  3460. }
  3461. else
  3462. {
  3463. delay(beepP);
  3464. }
  3465. }
  3466. break;
  3467. #endif // M300
  3468. #ifdef PIDTEMP
  3469. case 301: // M301
  3470. {
  3471. if(code_seen('P')) Kp = code_value();
  3472. if(code_seen('I')) Ki = scalePID_i(code_value());
  3473. if(code_seen('D')) Kd = scalePID_d(code_value());
  3474. #ifdef PID_ADD_EXTRUSION_RATE
  3475. if(code_seen('C')) Kc = code_value();
  3476. #endif
  3477. updatePID();
  3478. SERIAL_PROTOCOL(MSG_OK);
  3479. SERIAL_PROTOCOL(" p:");
  3480. SERIAL_PROTOCOL(Kp);
  3481. SERIAL_PROTOCOL(" i:");
  3482. SERIAL_PROTOCOL(unscalePID_i(Ki));
  3483. SERIAL_PROTOCOL(" d:");
  3484. SERIAL_PROTOCOL(unscalePID_d(Kd));
  3485. #ifdef PID_ADD_EXTRUSION_RATE
  3486. SERIAL_PROTOCOL(" c:");
  3487. //Kc does not have scaling applied above, or in resetting defaults
  3488. SERIAL_PROTOCOL(Kc);
  3489. #endif
  3490. SERIAL_PROTOCOLLN("");
  3491. }
  3492. break;
  3493. #endif //PIDTEMP
  3494. #ifdef PIDTEMPBED
  3495. case 304: // M304
  3496. {
  3497. if(code_seen('P')) bedKp = code_value();
  3498. if(code_seen('I')) bedKi = scalePID_i(code_value());
  3499. if(code_seen('D')) bedKd = scalePID_d(code_value());
  3500. updatePID();
  3501. SERIAL_PROTOCOL(MSG_OK);
  3502. SERIAL_PROTOCOL(" p:");
  3503. SERIAL_PROTOCOL(bedKp);
  3504. SERIAL_PROTOCOL(" i:");
  3505. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3506. SERIAL_PROTOCOL(" d:");
  3507. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3508. SERIAL_PROTOCOLLN("");
  3509. }
  3510. break;
  3511. #endif //PIDTEMP
  3512. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  3513. {
  3514. #ifdef CHDK
  3515. SET_OUTPUT(CHDK);
  3516. WRITE(CHDK, HIGH);
  3517. chdkHigh = millis();
  3518. chdkActive = true;
  3519. #else
  3520. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3521. const uint8_t NUM_PULSES=16;
  3522. const float PULSE_LENGTH=0.01524;
  3523. for(int i=0; i < NUM_PULSES; i++) {
  3524. WRITE(PHOTOGRAPH_PIN, HIGH);
  3525. _delay_ms(PULSE_LENGTH);
  3526. WRITE(PHOTOGRAPH_PIN, LOW);
  3527. _delay_ms(PULSE_LENGTH);
  3528. }
  3529. delay(7.33);
  3530. for(int i=0; i < NUM_PULSES; i++) {
  3531. WRITE(PHOTOGRAPH_PIN, HIGH);
  3532. _delay_ms(PULSE_LENGTH);
  3533. WRITE(PHOTOGRAPH_PIN, LOW);
  3534. _delay_ms(PULSE_LENGTH);
  3535. }
  3536. #endif
  3537. #endif //chdk end if
  3538. }
  3539. break;
  3540. #ifdef DOGLCD
  3541. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  3542. {
  3543. if (code_seen('C')) {
  3544. lcd_setcontrast( ((int)code_value())&63 );
  3545. }
  3546. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3547. SERIAL_PROTOCOL(lcd_contrast);
  3548. SERIAL_PROTOCOLLN("");
  3549. }
  3550. break;
  3551. #endif
  3552. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3553. case 302: // allow cold extrudes, or set the minimum extrude temperature
  3554. {
  3555. float temp = .0;
  3556. if (code_seen('S')) temp=code_value();
  3557. set_extrude_min_temp(temp);
  3558. }
  3559. break;
  3560. #endif
  3561. case 303: // M303 PID autotune
  3562. {
  3563. float temp = 150.0;
  3564. int e=0;
  3565. int c=5;
  3566. if (code_seen('E')) e=code_value();
  3567. if (e<0)
  3568. temp=70;
  3569. if (code_seen('S')) temp=code_value();
  3570. if (code_seen('C')) c=code_value();
  3571. PID_autotune(temp, e, c);
  3572. }
  3573. break;
  3574. case 400: // M400 finish all moves
  3575. {
  3576. st_synchronize();
  3577. }
  3578. break;
  3579. #ifdef FILAMENT_SENSOR
  3580. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  3581. {
  3582. #if (FILWIDTH_PIN > -1)
  3583. if(code_seen('N')) filament_width_nominal=code_value();
  3584. else{
  3585. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3586. SERIAL_PROTOCOLLN(filament_width_nominal);
  3587. }
  3588. #endif
  3589. }
  3590. break;
  3591. case 405: //M405 Turn on filament sensor for control
  3592. {
  3593. if(code_seen('D')) meas_delay_cm=code_value();
  3594. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  3595. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3596. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  3597. {
  3598. int temp_ratio = widthFil_to_size_ratio();
  3599. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  3600. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  3601. }
  3602. delay_index1=0;
  3603. delay_index2=0;
  3604. }
  3605. filament_sensor = true ;
  3606. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3607. //SERIAL_PROTOCOL(filament_width_meas);
  3608. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3609. //SERIAL_PROTOCOL(extrudemultiply);
  3610. }
  3611. break;
  3612. case 406: //M406 Turn off filament sensor for control
  3613. {
  3614. filament_sensor = false ;
  3615. }
  3616. break;
  3617. case 407: //M407 Display measured filament diameter
  3618. {
  3619. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3620. SERIAL_PROTOCOLLN(filament_width_meas);
  3621. }
  3622. break;
  3623. #endif
  3624. case 500: // M500 Store settings in EEPROM
  3625. {
  3626. Config_StoreSettings();
  3627. }
  3628. break;
  3629. case 501: // M501 Read settings from EEPROM
  3630. {
  3631. Config_RetrieveSettings();
  3632. }
  3633. break;
  3634. case 502: // M502 Revert to default settings
  3635. {
  3636. Config_ResetDefault();
  3637. }
  3638. break;
  3639. case 503: // M503 print settings currently in memory
  3640. {
  3641. Config_PrintSettings();
  3642. }
  3643. break;
  3644. case 509: //M509 Force language selection
  3645. {
  3646. lcd_force_language_selection();
  3647. SERIAL_ECHO_START;
  3648. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  3649. }
  3650. break;
  3651. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3652. case 540:
  3653. {
  3654. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  3655. }
  3656. break;
  3657. #endif
  3658. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3659. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  3660. {
  3661. float value;
  3662. if (code_seen('Z'))
  3663. {
  3664. value = code_value();
  3665. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  3666. {
  3667. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3668. SERIAL_ECHO_START;
  3669. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", MSG_OK,PSTR("")));
  3670. SERIAL_PROTOCOLLN("");
  3671. }
  3672. else
  3673. {
  3674. SERIAL_ECHO_START;
  3675. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  3676. SERIAL_ECHORPGM(MSG_Z_MIN);
  3677. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3678. SERIAL_ECHORPGM(MSG_Z_MAX);
  3679. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3680. SERIAL_PROTOCOLLN("");
  3681. }
  3682. }
  3683. else
  3684. {
  3685. SERIAL_ECHO_START;
  3686. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  3687. SERIAL_ECHO(-zprobe_zoffset);
  3688. SERIAL_PROTOCOLLN("");
  3689. }
  3690. break;
  3691. }
  3692. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3693. #ifdef FILAMENTCHANGEENABLE
  3694. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3695. {
  3696. st_synchronize();
  3697. feedmultiplyBckp=feedmultiply;
  3698. int8_t TooLowZ = 0;
  3699. float target[4];
  3700. float lastpos[4];
  3701. target[X_AXIS]=current_position[X_AXIS];
  3702. target[Y_AXIS]=current_position[Y_AXIS];
  3703. target[Z_AXIS]=current_position[Z_AXIS];
  3704. target[E_AXIS]=current_position[E_AXIS];
  3705. lastpos[X_AXIS]=current_position[X_AXIS];
  3706. lastpos[Y_AXIS]=current_position[Y_AXIS];
  3707. lastpos[Z_AXIS]=current_position[Z_AXIS];
  3708. lastpos[E_AXIS]=current_position[E_AXIS];
  3709. //Restract extruder
  3710. if(code_seen('E'))
  3711. {
  3712. target[E_AXIS]+= code_value();
  3713. }
  3714. else
  3715. {
  3716. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3717. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  3718. #endif
  3719. }
  3720. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3721. //Lift Z
  3722. if(code_seen('Z'))
  3723. {
  3724. target[Z_AXIS]+= code_value();
  3725. }
  3726. else
  3727. {
  3728. #ifdef FILAMENTCHANGE_ZADD
  3729. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  3730. if(target[Z_AXIS] < 10){
  3731. target[Z_AXIS]+= 10 ;
  3732. TooLowZ = 1;
  3733. }else{
  3734. TooLowZ = 0;
  3735. }
  3736. #endif
  3737. }
  3738. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3739. //Move XY to side
  3740. if(code_seen('X'))
  3741. {
  3742. target[X_AXIS]+= code_value();
  3743. }
  3744. else
  3745. {
  3746. #ifdef FILAMENTCHANGE_XPOS
  3747. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  3748. #endif
  3749. }
  3750. if(code_seen('Y'))
  3751. {
  3752. target[Y_AXIS]= code_value();
  3753. }
  3754. else
  3755. {
  3756. #ifdef FILAMENTCHANGE_YPOS
  3757. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  3758. #endif
  3759. }
  3760. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3761. // Unload filament
  3762. if(code_seen('L'))
  3763. {
  3764. target[E_AXIS]+= code_value();
  3765. }
  3766. else
  3767. {
  3768. #ifdef FILAMENTCHANGE_FINALRETRACT
  3769. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  3770. #endif
  3771. }
  3772. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3773. //finish moves
  3774. st_synchronize();
  3775. //disable extruder steppers so filament can be removed
  3776. disable_e0();
  3777. disable_e1();
  3778. disable_e2();
  3779. delay(100);
  3780. //Wait for user to insert filament
  3781. uint8_t cnt=0;
  3782. int counterBeep = 0;
  3783. lcd_wait_interact();
  3784. while(!lcd_clicked()){
  3785. cnt++;
  3786. manage_heater();
  3787. manage_inactivity(true);
  3788. if(cnt==0)
  3789. {
  3790. #if BEEPER > 0
  3791. if (counterBeep== 500){
  3792. counterBeep = 0;
  3793. }
  3794. SET_OUTPUT(BEEPER);
  3795. if (counterBeep== 0){
  3796. WRITE(BEEPER,HIGH);
  3797. }
  3798. if (counterBeep== 20){
  3799. WRITE(BEEPER,LOW);
  3800. }
  3801. counterBeep++;
  3802. #else
  3803. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3804. lcd_buzz(1000/6,100);
  3805. #else
  3806. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  3807. #endif
  3808. #endif
  3809. }
  3810. }
  3811. //Filament inserted
  3812. WRITE(BEEPER,LOW);
  3813. //Feed the filament to the end of nozzle quickly
  3814. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3815. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3816. //Extrude some filament
  3817. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3818. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3819. //Wait for user to check the state
  3820. lcd_change_fil_state = 0;
  3821. lcd_loading_filament();
  3822. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  3823. lcd_change_fil_state = 0;
  3824. lcd_alright();
  3825. switch(lcd_change_fil_state){
  3826. // Filament failed to load so load it again
  3827. case 2:
  3828. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  3829. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  3830. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3831. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3832. lcd_loading_filament();
  3833. break;
  3834. // Filament loaded properly but color is not clear
  3835. case 3:
  3836. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  3837. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  3838. lcd_loading_color();
  3839. break;
  3840. // Everything good
  3841. default:
  3842. lcd_change_success();
  3843. break;
  3844. }
  3845. }
  3846. //Not let's go back to print
  3847. //Feed a little of filament to stabilize pressure
  3848. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  3849. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  3850. //Retract
  3851. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3852. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3853. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3854. //Move XY back
  3855. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  3856. //Move Z back
  3857. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  3858. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3859. //Unretract
  3860. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  3861. //Set E position to original
  3862. plan_set_e_position(lastpos[E_AXIS]);
  3863. //Recover feed rate
  3864. feedmultiply=feedmultiplyBckp;
  3865. char cmd[9];
  3866. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3867. enquecommand(cmd);
  3868. }
  3869. break;
  3870. #endif //FILAMENTCHANGEENABLE
  3871. #ifdef DUAL_X_CARRIAGE
  3872. case 605: // Set dual x-carriage movement mode:
  3873. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3874. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3875. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3876. // millimeters x-offset and an optional differential hotend temperature of
  3877. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3878. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3879. //
  3880. // Note: the X axis should be homed after changing dual x-carriage mode.
  3881. {
  3882. st_synchronize();
  3883. if (code_seen('S'))
  3884. dual_x_carriage_mode = code_value();
  3885. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  3886. {
  3887. if (code_seen('X'))
  3888. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  3889. if (code_seen('R'))
  3890. duplicate_extruder_temp_offset = code_value();
  3891. SERIAL_ECHO_START;
  3892. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  3893. SERIAL_ECHO(" ");
  3894. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3895. SERIAL_ECHO(",");
  3896. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3897. SERIAL_ECHO(" ");
  3898. SERIAL_ECHO(duplicate_extruder_x_offset);
  3899. SERIAL_ECHO(",");
  3900. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3901. }
  3902. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  3903. {
  3904. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3905. }
  3906. active_extruder_parked = false;
  3907. extruder_duplication_enabled = false;
  3908. delayed_move_time = 0;
  3909. }
  3910. break;
  3911. #endif //DUAL_X_CARRIAGE
  3912. case 907: // M907 Set digital trimpot motor current using axis codes.
  3913. {
  3914. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3915. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  3916. if(code_seen('B')) digipot_current(4,code_value());
  3917. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  3918. #endif
  3919. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3920. if(code_seen('X')) digipot_current(0, code_value());
  3921. #endif
  3922. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3923. if(code_seen('Z')) digipot_current(1, code_value());
  3924. #endif
  3925. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3926. if(code_seen('E')) digipot_current(2, code_value());
  3927. #endif
  3928. #ifdef DIGIPOT_I2C
  3929. // this one uses actual amps in floating point
  3930. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3931. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3932. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3933. #endif
  3934. }
  3935. break;
  3936. case 908: // M908 Control digital trimpot directly.
  3937. {
  3938. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  3939. uint8_t channel,current;
  3940. if(code_seen('P')) channel=code_value();
  3941. if(code_seen('S')) current=code_value();
  3942. digitalPotWrite(channel, current);
  3943. #endif
  3944. }
  3945. break;
  3946. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3947. {
  3948. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3949. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3950. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3951. if(code_seen('B')) microstep_mode(4,code_value());
  3952. microstep_readings();
  3953. #endif
  3954. }
  3955. break;
  3956. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  3957. {
  3958. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3959. if(code_seen('S')) switch((int)code_value())
  3960. {
  3961. case 1:
  3962. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  3963. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  3964. break;
  3965. case 2:
  3966. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  3967. if(code_seen('B')) microstep_ms(4,-1,code_value());
  3968. break;
  3969. }
  3970. microstep_readings();
  3971. #endif
  3972. }
  3973. break;
  3974. case 999: // M999: Restart after being stopped
  3975. Stopped = false;
  3976. lcd_reset_alert_level();
  3977. gcode_LastN = Stopped_gcode_LastN;
  3978. FlushSerialRequestResend();
  3979. break;
  3980. }
  3981. } // end if(code_seen('M')) (end of M codes)
  3982. else if(code_seen('T'))
  3983. {
  3984. tmp_extruder = code_value();
  3985. if(tmp_extruder >= EXTRUDERS) {
  3986. SERIAL_ECHO_START;
  3987. SERIAL_ECHO("T");
  3988. SERIAL_ECHO(tmp_extruder);
  3989. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3990. }
  3991. else {
  3992. boolean make_move = false;
  3993. if(code_seen('F')) {
  3994. make_move = true;
  3995. next_feedrate = code_value();
  3996. if(next_feedrate > 0.0) {
  3997. feedrate = next_feedrate;
  3998. }
  3999. }
  4000. #if EXTRUDERS > 1
  4001. if(tmp_extruder != active_extruder) {
  4002. // Save current position to return to after applying extruder offset
  4003. memcpy(destination, current_position, sizeof(destination));
  4004. #ifdef DUAL_X_CARRIAGE
  4005. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  4006. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  4007. {
  4008. // Park old head: 1) raise 2) move to park position 3) lower
  4009. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4010. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4011. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4012. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4013. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4014. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4015. st_synchronize();
  4016. }
  4017. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4018. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4019. extruder_offset[Y_AXIS][active_extruder] +
  4020. extruder_offset[Y_AXIS][tmp_extruder];
  4021. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4022. extruder_offset[Z_AXIS][active_extruder] +
  4023. extruder_offset[Z_AXIS][tmp_extruder];
  4024. active_extruder = tmp_extruder;
  4025. // This function resets the max/min values - the current position may be overwritten below.
  4026. axis_is_at_home(X_AXIS);
  4027. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  4028. {
  4029. current_position[X_AXIS] = inactive_extruder_x_pos;
  4030. inactive_extruder_x_pos = destination[X_AXIS];
  4031. }
  4032. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  4033. {
  4034. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4035. if (active_extruder == 0 || active_extruder_parked)
  4036. current_position[X_AXIS] = inactive_extruder_x_pos;
  4037. else
  4038. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4039. inactive_extruder_x_pos = destination[X_AXIS];
  4040. extruder_duplication_enabled = false;
  4041. }
  4042. else
  4043. {
  4044. // record raised toolhead position for use by unpark
  4045. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4046. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4047. active_extruder_parked = true;
  4048. delayed_move_time = 0;
  4049. }
  4050. #else
  4051. // Offset extruder (only by XY)
  4052. int i;
  4053. for(i = 0; i < 2; i++) {
  4054. current_position[i] = current_position[i] -
  4055. extruder_offset[i][active_extruder] +
  4056. extruder_offset[i][tmp_extruder];
  4057. }
  4058. // Set the new active extruder and position
  4059. active_extruder = tmp_extruder;
  4060. #endif //else DUAL_X_CARRIAGE
  4061. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4062. // Move to the old position if 'F' was in the parameters
  4063. if(make_move && Stopped == false) {
  4064. prepare_move();
  4065. }
  4066. }
  4067. #endif
  4068. SERIAL_ECHO_START;
  4069. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4070. SERIAL_PROTOCOLLN((int)active_extruder);
  4071. }
  4072. } // end if(code_seen('T')) (end of T codes)
  4073. else
  4074. {
  4075. SERIAL_ECHO_START;
  4076. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  4077. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  4078. SERIAL_ECHOLNPGM("\"");
  4079. }
  4080. ClearToSend();
  4081. }
  4082. void FlushSerialRequestResend()
  4083. {
  4084. //char cmdbuffer[bufindr][100]="Resend:";
  4085. MYSERIAL.flush();
  4086. SERIAL_PROTOCOLRPGM(MSG_RESEND);
  4087. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4088. ClearToSend();
  4089. }
  4090. // Confirm the execution of a command, if sent from a serial line.
  4091. // Execution of a command from a SD card will not be confirmed.
  4092. void ClearToSend()
  4093. {
  4094. previous_millis_cmd = millis();
  4095. if (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB)
  4096. SERIAL_PROTOCOLLNRPGM(MSG_OK);
  4097. }
  4098. void get_coordinates()
  4099. {
  4100. bool seen[4]={false,false,false,false};
  4101. for(int8_t i=0; i < NUM_AXIS; i++) {
  4102. if(code_seen(axis_codes[i]))
  4103. {
  4104. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  4105. seen[i]=true;
  4106. }
  4107. else destination[i] = current_position[i]; //Are these else lines really needed?
  4108. }
  4109. if(code_seen('F')) {
  4110. next_feedrate = code_value();
  4111. if(next_feedrate > 0.0) feedrate = next_feedrate;
  4112. }
  4113. }
  4114. void get_arc_coordinates()
  4115. {
  4116. #ifdef SF_ARC_FIX
  4117. bool relative_mode_backup = relative_mode;
  4118. relative_mode = true;
  4119. #endif
  4120. get_coordinates();
  4121. #ifdef SF_ARC_FIX
  4122. relative_mode=relative_mode_backup;
  4123. #endif
  4124. if(code_seen('I')) {
  4125. offset[0] = code_value();
  4126. }
  4127. else {
  4128. offset[0] = 0.0;
  4129. }
  4130. if(code_seen('J')) {
  4131. offset[1] = code_value();
  4132. }
  4133. else {
  4134. offset[1] = 0.0;
  4135. }
  4136. }
  4137. void clamp_to_software_endstops(float target[3])
  4138. {
  4139. world2machine_clamp(target[0], target[1]);
  4140. // Clamp the Z coordinate.
  4141. if (min_software_endstops) {
  4142. float negative_z_offset = 0;
  4143. #ifdef ENABLE_AUTO_BED_LEVELING
  4144. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4145. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  4146. #endif
  4147. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4148. }
  4149. if (max_software_endstops) {
  4150. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4151. }
  4152. }
  4153. #ifdef MESH_BED_LEVELING
  4154. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  4155. float dx = x - current_position[X_AXIS];
  4156. float dy = y - current_position[Y_AXIS];
  4157. float dz = z - current_position[Z_AXIS];
  4158. int n_segments = 0;
  4159. if (mbl.active) {
  4160. float len = abs(dx) + abs(dy) + abs(dz);
  4161. if (len > 0)
  4162. n_segments = int(floor(len / 30.f));
  4163. }
  4164. if (n_segments > 1) {
  4165. float de = e - current_position[E_AXIS];
  4166. for (int i = 1; i < n_segments; ++ i) {
  4167. float t = float(i) / float(n_segments);
  4168. plan_buffer_line(
  4169. current_position[X_AXIS] + t * dx,
  4170. current_position[Y_AXIS] + t * dy,
  4171. current_position[Z_AXIS] + t * dz,
  4172. current_position[E_AXIS] + t * de,
  4173. feed_rate, extruder);
  4174. }
  4175. }
  4176. // The rest of the path.
  4177. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4178. set_current_to_destination();
  4179. }
  4180. #endif // MESH_BED_LEVELING
  4181. void prepare_move()
  4182. {
  4183. clamp_to_software_endstops(destination);
  4184. previous_millis_cmd = millis();
  4185. #ifdef DUAL_X_CARRIAGE
  4186. if (active_extruder_parked)
  4187. {
  4188. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4189. {
  4190. // move duplicate extruder into correct duplication position.
  4191. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4192. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4193. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4194. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4195. st_synchronize();
  4196. extruder_duplication_enabled = true;
  4197. active_extruder_parked = false;
  4198. }
  4199. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4200. {
  4201. if (current_position[E_AXIS] == destination[E_AXIS])
  4202. {
  4203. // this is a travel move - skit it but keep track of current position (so that it can later
  4204. // be used as start of first non-travel move)
  4205. if (delayed_move_time != 0xFFFFFFFFUL)
  4206. {
  4207. memcpy(current_position, destination, sizeof(current_position));
  4208. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4209. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4210. delayed_move_time = millis();
  4211. return;
  4212. }
  4213. }
  4214. delayed_move_time = 0;
  4215. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4216. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4217. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4218. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4219. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4220. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4221. active_extruder_parked = false;
  4222. }
  4223. }
  4224. #endif //DUAL_X_CARRIAGE
  4225. // Do not use feedmultiply for E or Z only moves
  4226. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4227. #ifdef MESH_BED_LEVELING
  4228. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4229. #else
  4230. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4231. #endif
  4232. }
  4233. else {
  4234. #ifdef MESH_BED_LEVELING
  4235. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4236. #else
  4237. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4238. #endif
  4239. }
  4240. for(int8_t i=0; i < NUM_AXIS; i++) {
  4241. current_position[i] = destination[i];
  4242. }
  4243. }
  4244. void prepare_arc_move(char isclockwise) {
  4245. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4246. // Trace the arc
  4247. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4248. // As far as the parser is concerned, the position is now == target. In reality the
  4249. // motion control system might still be processing the action and the real tool position
  4250. // in any intermediate location.
  4251. for(int8_t i=0; i < NUM_AXIS; i++) {
  4252. current_position[i] = destination[i];
  4253. }
  4254. previous_millis_cmd = millis();
  4255. }
  4256. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4257. #if defined(FAN_PIN)
  4258. #if CONTROLLERFAN_PIN == FAN_PIN
  4259. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4260. #endif
  4261. #endif
  4262. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  4263. unsigned long lastMotorCheck = 0;
  4264. void controllerFan()
  4265. {
  4266. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  4267. {
  4268. lastMotorCheck = millis();
  4269. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  4270. #if EXTRUDERS > 2
  4271. || !READ(E2_ENABLE_PIN)
  4272. #endif
  4273. #if EXTRUDER > 1
  4274. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4275. || !READ(X2_ENABLE_PIN)
  4276. #endif
  4277. || !READ(E1_ENABLE_PIN)
  4278. #endif
  4279. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  4280. {
  4281. lastMotor = millis(); //... set time to NOW so the fan will turn on
  4282. }
  4283. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  4284. {
  4285. digitalWrite(CONTROLLERFAN_PIN, 0);
  4286. analogWrite(CONTROLLERFAN_PIN, 0);
  4287. }
  4288. else
  4289. {
  4290. // allows digital or PWM fan output to be used (see M42 handling)
  4291. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4292. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  4293. }
  4294. }
  4295. }
  4296. #endif
  4297. #ifdef TEMP_STAT_LEDS
  4298. static bool blue_led = false;
  4299. static bool red_led = false;
  4300. static uint32_t stat_update = 0;
  4301. void handle_status_leds(void) {
  4302. float max_temp = 0.0;
  4303. if(millis() > stat_update) {
  4304. stat_update += 500; // Update every 0.5s
  4305. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4306. max_temp = max(max_temp, degHotend(cur_extruder));
  4307. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4308. }
  4309. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4310. max_temp = max(max_temp, degTargetBed());
  4311. max_temp = max(max_temp, degBed());
  4312. #endif
  4313. if((max_temp > 55.0) && (red_led == false)) {
  4314. digitalWrite(STAT_LED_RED, 1);
  4315. digitalWrite(STAT_LED_BLUE, 0);
  4316. red_led = true;
  4317. blue_led = false;
  4318. }
  4319. if((max_temp < 54.0) && (blue_led == false)) {
  4320. digitalWrite(STAT_LED_RED, 0);
  4321. digitalWrite(STAT_LED_BLUE, 1);
  4322. red_led = false;
  4323. blue_led = true;
  4324. }
  4325. }
  4326. }
  4327. #endif
  4328. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4329. {
  4330. #if defined(KILL_PIN) && KILL_PIN > -1
  4331. static int killCount = 0; // make the inactivity button a bit less responsive
  4332. const int KILL_DELAY = 10000;
  4333. #endif
  4334. if(buflen < (BUFSIZE-1))
  4335. get_command();
  4336. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4337. if(max_inactive_time)
  4338. kill();
  4339. if(stepper_inactive_time) {
  4340. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4341. {
  4342. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4343. disable_x();
  4344. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  4345. disable_y();
  4346. disable_z();
  4347. disable_e0();
  4348. disable_e1();
  4349. disable_e2();
  4350. }
  4351. }
  4352. }
  4353. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4354. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4355. {
  4356. chdkActive = false;
  4357. WRITE(CHDK, LOW);
  4358. }
  4359. #endif
  4360. #if defined(KILL_PIN) && KILL_PIN > -1
  4361. // Check if the kill button was pressed and wait just in case it was an accidental
  4362. // key kill key press
  4363. // -------------------------------------------------------------------------------
  4364. if( 0 == READ(KILL_PIN) )
  4365. {
  4366. killCount++;
  4367. }
  4368. else if (killCount > 0)
  4369. {
  4370. killCount--;
  4371. }
  4372. // Exceeded threshold and we can confirm that it was not accidental
  4373. // KILL the machine
  4374. // ----------------------------------------------------------------
  4375. if ( killCount >= KILL_DELAY)
  4376. {
  4377. kill();
  4378. }
  4379. #endif
  4380. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4381. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4382. #endif
  4383. #ifdef EXTRUDER_RUNOUT_PREVENT
  4384. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4385. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4386. {
  4387. bool oldstatus=READ(E0_ENABLE_PIN);
  4388. enable_e0();
  4389. float oldepos=current_position[E_AXIS];
  4390. float oldedes=destination[E_AXIS];
  4391. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4392. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4393. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4394. current_position[E_AXIS]=oldepos;
  4395. destination[E_AXIS]=oldedes;
  4396. plan_set_e_position(oldepos);
  4397. previous_millis_cmd=millis();
  4398. st_synchronize();
  4399. WRITE(E0_ENABLE_PIN,oldstatus);
  4400. }
  4401. #endif
  4402. #if defined(DUAL_X_CARRIAGE)
  4403. // handle delayed move timeout
  4404. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4405. {
  4406. // travel moves have been received so enact them
  4407. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4408. memcpy(destination,current_position,sizeof(destination));
  4409. prepare_move();
  4410. }
  4411. #endif
  4412. #ifdef TEMP_STAT_LEDS
  4413. handle_status_leds();
  4414. #endif
  4415. check_axes_activity();
  4416. }
  4417. void kill(const char *full_screen_message)
  4418. {
  4419. cli(); // Stop interrupts
  4420. disable_heater();
  4421. disable_x();
  4422. // SERIAL_ECHOLNPGM("kill - disable Y");
  4423. disable_y();
  4424. disable_z();
  4425. disable_e0();
  4426. disable_e1();
  4427. disable_e2();
  4428. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4429. pinMode(PS_ON_PIN,INPUT);
  4430. #endif
  4431. SERIAL_ERROR_START;
  4432. SERIAL_ERRORLNRPGM(MSG_ERR_KILLED);
  4433. if (full_screen_message != NULL) {
  4434. SERIAL_ERRORLNRPGM(full_screen_message);
  4435. lcd_display_message_fullscreen_P(full_screen_message);
  4436. } else {
  4437. LCD_ALERTMESSAGERPGM(MSG_KILLED);
  4438. }
  4439. // FMC small patch to update the LCD before ending
  4440. sei(); // enable interrupts
  4441. for ( int i=5; i--; lcd_update())
  4442. {
  4443. delay(200);
  4444. }
  4445. cli(); // disable interrupts
  4446. suicide();
  4447. while(1) { /* Intentionally left empty */ } // Wait for reset
  4448. }
  4449. void Stop()
  4450. {
  4451. disable_heater();
  4452. if(Stopped == false) {
  4453. Stopped = true;
  4454. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4455. SERIAL_ERROR_START;
  4456. SERIAL_ERRORLNRPGM(MSG_ERR_STOPPED);
  4457. LCD_MESSAGERPGM(MSG_STOPPED);
  4458. }
  4459. }
  4460. bool IsStopped() { return Stopped; };
  4461. #ifdef FAST_PWM_FAN
  4462. void setPwmFrequency(uint8_t pin, int val)
  4463. {
  4464. val &= 0x07;
  4465. switch(digitalPinToTimer(pin))
  4466. {
  4467. #if defined(TCCR0A)
  4468. case TIMER0A:
  4469. case TIMER0B:
  4470. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4471. // TCCR0B |= val;
  4472. break;
  4473. #endif
  4474. #if defined(TCCR1A)
  4475. case TIMER1A:
  4476. case TIMER1B:
  4477. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4478. // TCCR1B |= val;
  4479. break;
  4480. #endif
  4481. #if defined(TCCR2)
  4482. case TIMER2:
  4483. case TIMER2:
  4484. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  4485. TCCR2 |= val;
  4486. break;
  4487. #endif
  4488. #if defined(TCCR2A)
  4489. case TIMER2A:
  4490. case TIMER2B:
  4491. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  4492. TCCR2B |= val;
  4493. break;
  4494. #endif
  4495. #if defined(TCCR3A)
  4496. case TIMER3A:
  4497. case TIMER3B:
  4498. case TIMER3C:
  4499. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  4500. TCCR3B |= val;
  4501. break;
  4502. #endif
  4503. #if defined(TCCR4A)
  4504. case TIMER4A:
  4505. case TIMER4B:
  4506. case TIMER4C:
  4507. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  4508. TCCR4B |= val;
  4509. break;
  4510. #endif
  4511. #if defined(TCCR5A)
  4512. case TIMER5A:
  4513. case TIMER5B:
  4514. case TIMER5C:
  4515. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  4516. TCCR5B |= val;
  4517. break;
  4518. #endif
  4519. }
  4520. }
  4521. #endif //FAST_PWM_FAN
  4522. bool setTargetedHotend(int code){
  4523. tmp_extruder = active_extruder;
  4524. if(code_seen('T')) {
  4525. tmp_extruder = code_value();
  4526. if(tmp_extruder >= EXTRUDERS) {
  4527. SERIAL_ECHO_START;
  4528. switch(code){
  4529. case 104:
  4530. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  4531. break;
  4532. case 105:
  4533. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  4534. break;
  4535. case 109:
  4536. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  4537. break;
  4538. case 218:
  4539. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  4540. break;
  4541. case 221:
  4542. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  4543. break;
  4544. }
  4545. SERIAL_ECHOLN(tmp_extruder);
  4546. return true;
  4547. }
  4548. }
  4549. return false;
  4550. }
  4551. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time)
  4552. {
  4553. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  4554. {
  4555. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  4556. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  4557. }
  4558. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED);
  4559. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME);
  4560. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60));
  4561. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  4562. total_filament_used = 0;
  4563. }
  4564. float calculate_volumetric_multiplier(float diameter) {
  4565. float area = .0;
  4566. float radius = .0;
  4567. radius = diameter * .5;
  4568. if (! volumetric_enabled || radius == 0) {
  4569. area = 1;
  4570. }
  4571. else {
  4572. area = M_PI * pow(radius, 2);
  4573. }
  4574. return 1.0 / area;
  4575. }
  4576. void calculate_volumetric_multipliers() {
  4577. volumetric_multiplier[0] = calculate_volumetric_multiplier(filament_size[0]);
  4578. #if EXTRUDERS > 1
  4579. volumetric_multiplier[1] = calculate_volumetric_multiplier(filament_size[1]);
  4580. #if EXTRUDERS > 2
  4581. volumetric_multiplier[2] = calculate_volumetric_multiplier(filament_size[2]);
  4582. #endif
  4583. #endif
  4584. }
  4585. void delay_keep_alive(int ms)
  4586. {
  4587. for (;;) {
  4588. manage_heater();
  4589. // Manage inactivity, but don't disable steppers on timeout.
  4590. manage_inactivity(true);
  4591. lcd_update();
  4592. if (ms == 0)
  4593. break;
  4594. else if (ms >= 50) {
  4595. delay(50);
  4596. ms -= 50;
  4597. } else {
  4598. delay(ms);
  4599. ms = 0;
  4600. }
  4601. }
  4602. }