Marlin_main.cpp 303 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054
  1. /* -*- c++ -*- */
  2. /**
  3. * @file
  4. */
  5. /**
  6. * @mainpage Reprap 3D printer firmware based on Sprinter and grbl.
  7. *
  8. * @section intro_sec Introduction
  9. *
  10. * This firmware is a mashup between Sprinter and grbl.
  11. * https://github.com/kliment/Sprinter
  12. * https://github.com/simen/grbl/tree
  13. *
  14. * It has preliminary support for Matthew Roberts advance algorithm
  15. * http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  16. *
  17. * Prusa Research s.r.o. https://www.prusa3d.cz
  18. *
  19. * @section copyright_sec Copyright
  20. *
  21. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  22. *
  23. * This program is free software: you can redistribute it and/or modify
  24. * it under the terms of the GNU General Public License as published by
  25. * the Free Software Foundation, either version 3 of the License, or
  26. * (at your option) any later version.
  27. *
  28. * This program is distributed in the hope that it will be useful,
  29. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  30. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  31. * GNU General Public License for more details.
  32. *
  33. * You should have received a copy of the GNU General Public License
  34. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  35. *
  36. * @section notes_sec Notes
  37. *
  38. * * Do not create static objects in global functions.
  39. * Otherwise constructor guard against concurrent calls is generated costing
  40. * about 8B RAM and 14B flash.
  41. *
  42. *
  43. */
  44. #include "Marlin.h"
  45. #ifdef ENABLE_AUTO_BED_LEVELING
  46. #include "vector_3.h"
  47. #ifdef AUTO_BED_LEVELING_GRID
  48. #include "qr_solve.h"
  49. #endif
  50. #endif // ENABLE_AUTO_BED_LEVELING
  51. #ifdef MESH_BED_LEVELING
  52. #include "mesh_bed_leveling.h"
  53. #include "mesh_bed_calibration.h"
  54. #endif
  55. #include "printers.h"
  56. #include "ultralcd.h"
  57. #include "Configuration_prusa.h"
  58. #include "planner.h"
  59. #include "stepper.h"
  60. #include "temperature.h"
  61. #include "motion_control.h"
  62. #include "cardreader.h"
  63. #include "ConfigurationStore.h"
  64. #include "language.h"
  65. #include "pins_arduino.h"
  66. #include "math.h"
  67. #include "util.h"
  68. #include "Timer.h"
  69. #include "uart2.h"
  70. #include <avr/wdt.h>
  71. #include <avr/pgmspace.h>
  72. #include "Dcodes.h"
  73. #ifdef SWSPI
  74. #include "swspi.h"
  75. #endif //SWSPI
  76. #include "spi.h"
  77. #ifdef SWI2C
  78. #include "swi2c.h"
  79. #endif //SWI2C
  80. #ifdef PAT9125
  81. #include "pat9125.h"
  82. #include "fsensor.h"
  83. #endif //PAT9125
  84. #ifdef TMC2130
  85. #include "tmc2130.h"
  86. #endif //TMC2130
  87. #ifdef W25X20CL
  88. #include "w25x20cl.h"
  89. #include "optiboot_w25x20cl.h"
  90. #endif //W25X20CL
  91. #ifdef BLINKM
  92. #include "BlinkM.h"
  93. #include "Wire.h"
  94. #endif
  95. #ifdef ULTRALCD
  96. #include "ultralcd.h"
  97. #endif
  98. #if NUM_SERVOS > 0
  99. #include "Servo.h"
  100. #endif
  101. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  102. #include <SPI.h>
  103. #endif
  104. #define VERSION_STRING "1.0.2"
  105. #include "ultralcd.h"
  106. #include "cmdqueue.h"
  107. // Macros for bit masks
  108. #define BIT(b) (1<<(b))
  109. #define TEST(n,b) (((n)&BIT(b))!=0)
  110. #define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
  111. //Macro for print fan speed
  112. #define FAN_PULSE_WIDTH_LIMIT ((fanSpeed > 100) ? 3 : 4) //time in ms
  113. #define PRINTING_TYPE_SD 0
  114. #define PRINTING_TYPE_USB 1
  115. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  116. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  117. //Implemented Codes
  118. //-------------------
  119. // PRUSA CODES
  120. // P F - Returns FW versions
  121. // P R - Returns revision of printer
  122. // G0 -> G1
  123. // G1 - Coordinated Movement X Y Z E
  124. // G2 - CW ARC
  125. // G3 - CCW ARC
  126. // G4 - Dwell S<seconds> or P<milliseconds>
  127. // G10 - retract filament according to settings of M207
  128. // G11 - retract recover filament according to settings of M208
  129. // G28 - Home all Axis
  130. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  131. // G30 - Single Z Probe, probes bed at current XY location.
  132. // G31 - Dock sled (Z_PROBE_SLED only)
  133. // G32 - Undock sled (Z_PROBE_SLED only)
  134. // G80 - Automatic mesh bed leveling
  135. // G81 - Print bed profile
  136. // G90 - Use Absolute Coordinates
  137. // G91 - Use Relative Coordinates
  138. // G92 - Set current position to coordinates given
  139. // M Codes
  140. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  141. // M1 - Same as M0
  142. // M17 - Enable/Power all stepper motors
  143. // M18 - Disable all stepper motors; same as M84
  144. // M20 - List SD card
  145. // M21 - Init SD card
  146. // M22 - Release SD card
  147. // M23 - Select SD file (M23 filename.g)
  148. // M24 - Start/resume SD print
  149. // M25 - Pause SD print
  150. // M26 - Set SD position in bytes (M26 S12345)
  151. // M27 - Report SD print status
  152. // M28 - Start SD write (M28 filename.g)
  153. // M29 - Stop SD write
  154. // M30 - Delete file from SD (M30 filename.g)
  155. // M31 - Output time since last M109 or SD card start to serial
  156. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  157. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  158. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  159. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  160. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  161. // M73 - Show percent done and print time remaining
  162. // M80 - Turn on Power Supply
  163. // M81 - Turn off Power Supply
  164. // M82 - Set E codes absolute (default)
  165. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  166. // M84 - Disable steppers until next move,
  167. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  168. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  169. // M86 - Set safety timer expiration time with parameter S<seconds>; M86 S0 will disable safety timer
  170. // M92 - Set axis_steps_per_unit - same syntax as G92
  171. // M104 - Set extruder target temp
  172. // M105 - Read current temp
  173. // M106 - Fan on
  174. // M107 - Fan off
  175. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  176. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  177. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  178. // M112 - Emergency stop
  179. // M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  180. // M114 - Output current position to serial port
  181. // M115 - Capabilities string
  182. // M117 - display message
  183. // M119 - Output Endstop status to serial port
  184. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  185. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  186. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  187. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  188. // M140 - Set bed target temp
  189. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  190. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  191. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  192. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  193. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  194. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  195. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  196. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  197. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  198. // M206 - set additional homing offset
  199. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  200. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  201. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  202. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  203. // M220 S<factor in percent>- set speed factor override percentage
  204. // M221 S<factor in percent>- set extrude factor override percentage
  205. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  206. // M240 - Trigger a camera to take a photograph
  207. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  208. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  209. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  210. // M301 - Set PID parameters P I and D
  211. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  212. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  213. // M304 - Set bed PID parameters P I and D
  214. // M400 - Finish all moves
  215. // M401 - Lower z-probe if present
  216. // M402 - Raise z-probe if present
  217. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  218. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  219. // M406 - Turn off Filament Sensor extrusion control
  220. // M407 - Displays measured filament diameter
  221. // M500 - stores parameters in EEPROM
  222. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  223. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  224. // M503 - print the current settings (from memory not from EEPROM)
  225. // M509 - force language selection on next restart
  226. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  227. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  228. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. // M860 - Wait for PINDA thermistor to reach target temperature.
  230. // M861 - Set / Read PINDA temperature compensation offsets
  231. // M900 - Set LIN_ADVANCE options, if enabled. See Configuration_adv.h for details.
  232. // M907 - Set digital trimpot motor current using axis codes.
  233. // M908 - Control digital trimpot directly.
  234. // M350 - Set microstepping mode.
  235. // M351 - Toggle MS1 MS2 pins directly.
  236. // M928 - Start SD logging (M928 filename.g) - ended by M29
  237. // M999 - Restart after being stopped by error
  238. //Stepper Movement Variables
  239. //===========================================================================
  240. //=============================imported variables============================
  241. //===========================================================================
  242. //===========================================================================
  243. //=============================public variables=============================
  244. //===========================================================================
  245. #ifdef SDSUPPORT
  246. CardReader card;
  247. #endif
  248. unsigned long PingTime = millis();
  249. unsigned long NcTime;
  250. union Data
  251. {
  252. byte b[2];
  253. int value;
  254. };
  255. float homing_feedrate[] = HOMING_FEEDRATE;
  256. // Currently only the extruder axis may be switched to a relative mode.
  257. // Other axes are always absolute or relative based on the common relative_mode flag.
  258. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  259. int feedmultiply=100; //100->1 200->2
  260. int saved_feedmultiply;
  261. int extrudemultiply=100; //100->1 200->2
  262. int extruder_multiply[EXTRUDERS] = {100
  263. #if EXTRUDERS > 1
  264. , 100
  265. #if EXTRUDERS > 2
  266. , 100
  267. #endif
  268. #endif
  269. };
  270. int bowden_length[4] = {385, 385, 385, 385};
  271. bool is_usb_printing = false;
  272. bool homing_flag = false;
  273. bool temp_cal_active = false;
  274. unsigned long kicktime = millis()+100000;
  275. unsigned int usb_printing_counter;
  276. int lcd_change_fil_state = 0;
  277. int feedmultiplyBckp = 100;
  278. float HotendTempBckp = 0;
  279. int fanSpeedBckp = 0;
  280. float pause_lastpos[4];
  281. unsigned long pause_time = 0;
  282. unsigned long start_pause_print = millis();
  283. unsigned long t_fan_rising_edge = millis();
  284. static LongTimer safetyTimer;
  285. static LongTimer crashDetTimer;
  286. //unsigned long load_filament_time;
  287. bool mesh_bed_leveling_flag = false;
  288. bool mesh_bed_run_from_menu = false;
  289. int8_t FarmMode = 0;
  290. bool prusa_sd_card_upload = false;
  291. unsigned int status_number = 0;
  292. unsigned long total_filament_used;
  293. unsigned int heating_status;
  294. unsigned int heating_status_counter;
  295. bool custom_message;
  296. bool loading_flag = false;
  297. unsigned int custom_message_type;
  298. unsigned int custom_message_state;
  299. char snmm_filaments_used = 0;
  300. bool fan_state[2];
  301. int fan_edge_counter[2];
  302. int fan_speed[2];
  303. char dir_names[3][9];
  304. bool sortAlpha = false;
  305. bool volumetric_enabled = false;
  306. float filament_size[EXTRUDERS] = { DEFAULT_NOMINAL_FILAMENT_DIA
  307. #if EXTRUDERS > 1
  308. , DEFAULT_NOMINAL_FILAMENT_DIA
  309. #if EXTRUDERS > 2
  310. , DEFAULT_NOMINAL_FILAMENT_DIA
  311. #endif
  312. #endif
  313. };
  314. float extruder_multiplier[EXTRUDERS] = {1.0
  315. #if EXTRUDERS > 1
  316. , 1.0
  317. #if EXTRUDERS > 2
  318. , 1.0
  319. #endif
  320. #endif
  321. };
  322. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  323. //shortcuts for more readable code
  324. #define _x current_position[X_AXIS]
  325. #define _y current_position[Y_AXIS]
  326. #define _z current_position[Z_AXIS]
  327. #define _e current_position[E_AXIS]
  328. float add_homing[3]={0,0,0};
  329. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  330. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  331. bool axis_known_position[3] = {false, false, false};
  332. float zprobe_zoffset;
  333. // Extruder offset
  334. #if EXTRUDERS > 1
  335. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  336. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  337. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  338. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  339. #endif
  340. };
  341. #endif
  342. uint8_t active_extruder = 0;
  343. int fanSpeed=0;
  344. #ifdef FWRETRACT
  345. bool autoretract_enabled=false;
  346. bool retracted[EXTRUDERS]={false
  347. #if EXTRUDERS > 1
  348. , false
  349. #if EXTRUDERS > 2
  350. , false
  351. #endif
  352. #endif
  353. };
  354. bool retracted_swap[EXTRUDERS]={false
  355. #if EXTRUDERS > 1
  356. , false
  357. #if EXTRUDERS > 2
  358. , false
  359. #endif
  360. #endif
  361. };
  362. float retract_length = RETRACT_LENGTH;
  363. float retract_length_swap = RETRACT_LENGTH_SWAP;
  364. float retract_feedrate = RETRACT_FEEDRATE;
  365. float retract_zlift = RETRACT_ZLIFT;
  366. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  367. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  368. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  369. #endif
  370. #ifdef ULTIPANEL
  371. #ifdef PS_DEFAULT_OFF
  372. bool powersupply = false;
  373. #else
  374. bool powersupply = true;
  375. #endif
  376. #endif
  377. bool cancel_heatup = false ;
  378. #ifdef HOST_KEEPALIVE_FEATURE
  379. int busy_state = NOT_BUSY;
  380. static long prev_busy_signal_ms = -1;
  381. uint8_t host_keepalive_interval = HOST_KEEPALIVE_INTERVAL;
  382. #else
  383. #define host_keepalive();
  384. #define KEEPALIVE_STATE(n);
  385. #endif
  386. const char errormagic[] PROGMEM = "Error:";
  387. const char echomagic[] PROGMEM = "echo:";
  388. bool no_response = false;
  389. uint8_t important_status;
  390. uint8_t saved_filament_type;
  391. // save/restore printing
  392. bool saved_printing = false;
  393. // storing estimated time to end of print counted by slicer
  394. uint8_t print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  395. uint16_t print_time_remaining_normal = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  396. uint8_t print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  397. uint16_t print_time_remaining_silent = PRINT_TIME_REMAINING_INIT; //estimated remaining print time in minutes
  398. //===========================================================================
  399. //=============================Private Variables=============================
  400. //===========================================================================
  401. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  402. float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  403. static float delta[3] = {0.0, 0.0, 0.0};
  404. // For tracing an arc
  405. static float offset[3] = {0.0, 0.0, 0.0};
  406. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  407. // Determines Absolute or Relative Coordinates.
  408. // Also there is bool axis_relative_modes[] per axis flag.
  409. static bool relative_mode = false;
  410. #ifndef _DISABLE_M42_M226
  411. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  412. #endif //_DISABLE_M42_M226
  413. //static float tt = 0;
  414. //static float bt = 0;
  415. //Inactivity shutdown variables
  416. static unsigned long previous_millis_cmd = 0;
  417. unsigned long max_inactive_time = 0;
  418. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  419. static unsigned long safetytimer_inactive_time = DEFAULT_SAFETYTIMER_TIME_MINS*60*1000ul;
  420. unsigned long starttime=0;
  421. unsigned long stoptime=0;
  422. unsigned long _usb_timer = 0;
  423. static uint8_t tmp_extruder;
  424. bool extruder_under_pressure = true;
  425. bool Stopped=false;
  426. #if NUM_SERVOS > 0
  427. Servo servos[NUM_SERVOS];
  428. #endif
  429. bool CooldownNoWait = true;
  430. bool target_direction;
  431. //Insert variables if CHDK is defined
  432. #ifdef CHDK
  433. unsigned long chdkHigh = 0;
  434. boolean chdkActive = false;
  435. #endif
  436. // save/restore printing
  437. static uint32_t saved_sdpos = 0;
  438. static uint8_t saved_printing_type = PRINTING_TYPE_SD;
  439. static float saved_pos[4] = { 0, 0, 0, 0 };
  440. // Feedrate hopefully derived from an active block of the planner at the time the print has been canceled, in mm/min.
  441. static float saved_feedrate2 = 0;
  442. static uint8_t saved_active_extruder = 0;
  443. static bool saved_extruder_under_pressure = false;
  444. static bool saved_extruder_relative_mode = false;
  445. //===========================================================================
  446. //=============================Routines======================================
  447. //===========================================================================
  448. void get_arc_coordinates();
  449. bool setTargetedHotend(int code);
  450. void serial_echopair_P(const char *s_P, float v)
  451. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  452. void serial_echopair_P(const char *s_P, double v)
  453. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  454. void serial_echopair_P(const char *s_P, unsigned long v)
  455. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  456. #ifdef SDSUPPORT
  457. #include "SdFatUtil.h"
  458. int freeMemory() { return SdFatUtil::FreeRam(); }
  459. #else
  460. extern "C" {
  461. extern unsigned int __bss_end;
  462. extern unsigned int __heap_start;
  463. extern void *__brkval;
  464. int freeMemory() {
  465. int free_memory;
  466. if ((int)__brkval == 0)
  467. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  468. else
  469. free_memory = ((int)&free_memory) - ((int)__brkval);
  470. return free_memory;
  471. }
  472. }
  473. #endif //!SDSUPPORT
  474. void setup_killpin()
  475. {
  476. #if defined(KILL_PIN) && KILL_PIN > -1
  477. SET_INPUT(KILL_PIN);
  478. WRITE(KILL_PIN,HIGH);
  479. #endif
  480. }
  481. // Set home pin
  482. void setup_homepin(void)
  483. {
  484. #if defined(HOME_PIN) && HOME_PIN > -1
  485. SET_INPUT(HOME_PIN);
  486. WRITE(HOME_PIN,HIGH);
  487. #endif
  488. }
  489. void setup_photpin()
  490. {
  491. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  492. SET_OUTPUT(PHOTOGRAPH_PIN);
  493. WRITE(PHOTOGRAPH_PIN, LOW);
  494. #endif
  495. }
  496. void setup_powerhold()
  497. {
  498. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  499. SET_OUTPUT(SUICIDE_PIN);
  500. WRITE(SUICIDE_PIN, HIGH);
  501. #endif
  502. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  503. SET_OUTPUT(PS_ON_PIN);
  504. #if defined(PS_DEFAULT_OFF)
  505. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  506. #else
  507. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  508. #endif
  509. #endif
  510. }
  511. void suicide()
  512. {
  513. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  514. SET_OUTPUT(SUICIDE_PIN);
  515. WRITE(SUICIDE_PIN, LOW);
  516. #endif
  517. }
  518. void servo_init()
  519. {
  520. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  521. servos[0].attach(SERVO0_PIN);
  522. #endif
  523. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  524. servos[1].attach(SERVO1_PIN);
  525. #endif
  526. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  527. servos[2].attach(SERVO2_PIN);
  528. #endif
  529. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  530. servos[3].attach(SERVO3_PIN);
  531. #endif
  532. #if (NUM_SERVOS >= 5)
  533. #error "TODO: enter initalisation code for more servos"
  534. #endif
  535. }
  536. void stop_and_save_print_to_ram(float z_move, float e_move);
  537. void restore_print_from_ram_and_continue(float e_move);
  538. bool fans_check_enabled = true;
  539. bool filament_autoload_enabled = true;
  540. #ifdef TMC2130
  541. extern int8_t CrashDetectMenu;
  542. void crashdet_enable()
  543. {
  544. tmc2130_sg_stop_on_crash = true;
  545. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0xFF);
  546. CrashDetectMenu = 1;
  547. }
  548. void crashdet_disable()
  549. {
  550. tmc2130_sg_stop_on_crash = false;
  551. tmc2130_sg_crash = 0;
  552. eeprom_update_byte((uint8_t*)EEPROM_CRASH_DET, 0x00);
  553. CrashDetectMenu = 0;
  554. }
  555. void crashdet_stop_and_save_print()
  556. {
  557. stop_and_save_print_to_ram(10, -DEFAULT_RETRACTION); //XY - no change, Z 10mm up, E -1mm retract
  558. }
  559. void crashdet_restore_print_and_continue()
  560. {
  561. restore_print_from_ram_and_continue(DEFAULT_RETRACTION); //XYZ = orig, E +1mm unretract
  562. // babystep_apply();
  563. }
  564. void crashdet_stop_and_save_print2()
  565. {
  566. cli();
  567. planner_abort_hard(); //abort printing
  568. cmdqueue_reset(); //empty cmdqueue
  569. card.sdprinting = false;
  570. card.closefile();
  571. // Reset and re-enable the stepper timer just before the global interrupts are enabled.
  572. st_reset_timer();
  573. sei();
  574. }
  575. void crashdet_detected(uint8_t mask)
  576. {
  577. // printf("CRASH_DETECTED");
  578. /* while (!is_buffer_empty())
  579. {
  580. process_commands();
  581. cmdqueue_pop_front();
  582. }*/
  583. st_synchronize();
  584. static uint8_t crashDet_counter = 0;
  585. bool automatic_recovery_after_crash = true;
  586. if (crashDet_counter++ == 0) {
  587. crashDetTimer.start();
  588. }
  589. else if (crashDetTimer.expired(CRASHDET_TIMER * 1000ul)){
  590. crashDetTimer.stop();
  591. crashDet_counter = 0;
  592. }
  593. else if(crashDet_counter == CRASHDET_COUNTER_MAX){
  594. automatic_recovery_after_crash = false;
  595. crashDetTimer.stop();
  596. crashDet_counter = 0;
  597. }
  598. else {
  599. crashDetTimer.start();
  600. }
  601. lcd_update_enable(true);
  602. lcd_implementation_clear();
  603. lcd_update(2);
  604. if (mask & X_AXIS_MASK)
  605. {
  606. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_X, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) + 1);
  607. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) + 1);
  608. }
  609. if (mask & Y_AXIS_MASK)
  610. {
  611. eeprom_update_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) + 1);
  612. eeprom_update_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) + 1);
  613. }
  614. lcd_update_enable(true);
  615. lcd_update(2);
  616. lcd_setstatuspgm(_T(MSG_CRASH_DETECTED));
  617. gcode_G28(true, true, false, false); //home X and Y
  618. st_synchronize();
  619. if (automatic_recovery_after_crash) {
  620. enquecommand_P(PSTR("CRASH_RECOVER"));
  621. }else{
  622. HotendTempBckp = degTargetHotend(active_extruder);
  623. setTargetHotend(0, active_extruder);
  624. bool yesno = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Crash detected. Resume print?"), false);
  625. lcd_update_enable(true);
  626. if (yesno)
  627. {
  628. char cmd1[10];
  629. strcpy(cmd1, "M109 S");
  630. strcat(cmd1, ftostr3(HotendTempBckp));
  631. enquecommand(cmd1);
  632. enquecommand_P(PSTR("CRASH_RECOVER"));
  633. }
  634. else
  635. {
  636. enquecommand_P(PSTR("CRASH_CANCEL"));
  637. }
  638. }
  639. }
  640. void crashdet_recover()
  641. {
  642. crashdet_restore_print_and_continue();
  643. tmc2130_sg_stop_on_crash = true;
  644. }
  645. void crashdet_cancel()
  646. {
  647. tmc2130_sg_stop_on_crash = true;
  648. if (saved_printing_type == PRINTING_TYPE_SD) {
  649. lcd_print_stop();
  650. }else if(saved_printing_type == PRINTING_TYPE_USB){
  651. SERIAL_ECHOLNPGM("// action:cancel"); //for Octoprint: works the same as clicking "Abort" button in Octoprint GUI
  652. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  653. }
  654. }
  655. #endif //TMC2130
  656. void failstats_reset_print()
  657. {
  658. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  659. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  660. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  661. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  662. }
  663. #ifdef MESH_BED_LEVELING
  664. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  665. #endif
  666. // Factory reset function
  667. // This function is used to erase parts or whole EEPROM memory which is used for storing calibration and and so on.
  668. // Level input parameter sets depth of reset
  669. // Quiet parameter masks all waitings for user interact.
  670. int er_progress = 0;
  671. void factory_reset(char level, bool quiet)
  672. {
  673. lcd_implementation_clear();
  674. int cursor_pos = 0;
  675. switch (level) {
  676. // Level 0: Language reset
  677. case 0:
  678. WRITE(BEEPER, HIGH);
  679. _delay_ms(100);
  680. WRITE(BEEPER, LOW);
  681. lang_reset();
  682. break;
  683. //Level 1: Reset statistics
  684. case 1:
  685. WRITE(BEEPER, HIGH);
  686. _delay_ms(100);
  687. WRITE(BEEPER, LOW);
  688. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  689. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  690. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_X, 0);
  691. eeprom_update_byte((uint8_t *)EEPROM_CRASH_COUNT_Y, 0);
  692. eeprom_update_byte((uint8_t *)EEPROM_FERROR_COUNT, 0);
  693. eeprom_update_byte((uint8_t *)EEPROM_POWER_COUNT, 0);
  694. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_X_TOT, 0);
  695. eeprom_update_word((uint16_t *)EEPROM_CRASH_COUNT_Y_TOT, 0);
  696. eeprom_update_word((uint16_t *)EEPROM_FERROR_COUNT_TOT, 0);
  697. eeprom_update_word((uint16_t *)EEPROM_POWER_COUNT_TOT, 0);
  698. lcd_menu_statistics();
  699. break;
  700. // Level 2: Prepare for shipping
  701. case 2:
  702. //lcd_printPGM(PSTR("Factory RESET"));
  703. //lcd_print_at_PGM(1,2,PSTR("Shipping prep"));
  704. // Force language selection at the next boot up.
  705. lang_reset();
  706. // Force the "Follow calibration flow" message at the next boot up.
  707. calibration_status_store(CALIBRATION_STATUS_Z_CALIBRATION);
  708. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  709. farm_no = 0;
  710. farm_mode = false;
  711. eeprom_update_byte((uint8_t*)EEPROM_FARM_MODE, farm_mode);
  712. EEPROM_save_B(EEPROM_FARM_NUMBER, &farm_no);
  713. WRITE(BEEPER, HIGH);
  714. _delay_ms(100);
  715. WRITE(BEEPER, LOW);
  716. //_delay_ms(2000);
  717. break;
  718. // Level 3: erase everything, whole EEPROM will be set to 0xFF
  719. case 3:
  720. lcd_printPGM(PSTR("Factory RESET"));
  721. lcd_print_at_PGM(1, 2, PSTR("ERASING all data"));
  722. WRITE(BEEPER, HIGH);
  723. _delay_ms(100);
  724. WRITE(BEEPER, LOW);
  725. er_progress = 0;
  726. lcd_print_at_PGM(3, 3, PSTR(" "));
  727. lcd_implementation_print_at(3, 3, er_progress);
  728. // Erase EEPROM
  729. for (int i = 0; i < 4096; i++) {
  730. eeprom_write_byte((uint8_t*)i, 0xFF);
  731. if (i % 41 == 0) {
  732. er_progress++;
  733. lcd_print_at_PGM(3, 3, PSTR(" "));
  734. lcd_implementation_print_at(3, 3, er_progress);
  735. lcd_printPGM(PSTR("%"));
  736. }
  737. }
  738. break;
  739. case 4:
  740. bowden_menu();
  741. break;
  742. default:
  743. break;
  744. }
  745. }
  746. #include "LiquidCrystal_Prusa.h"
  747. extern LiquidCrystal_Prusa lcd;
  748. FILE _lcdout = {0};
  749. int lcd_putchar(char c, FILE *stream)
  750. {
  751. lcd.write(c);
  752. return 0;
  753. }
  754. FILE _uartout = {0};
  755. int uart_putchar(char c, FILE *stream)
  756. {
  757. MYSERIAL.write(c);
  758. return 0;
  759. }
  760. void lcd_splash()
  761. {
  762. // lcd_print_at_PGM(0, 1, PSTR(" Original Prusa "));
  763. // lcd_print_at_PGM(0, 2, PSTR(" 3D Printers "));
  764. // lcd.print_P(PSTR("\x1b[1;3HOriginal Prusa\x1b[2;4H3D Printers"));
  765. // fputs_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"), lcdout);
  766. lcd_puts_P(PSTR(ESC_2J ESC_H(1,1) "Original Prusa i3" ESC_H(3,2) "Prusa Research"));
  767. // lcd_printf_P(_N(ESC_2J "x:%.3f\ny:%.3f\nz:%.3f\ne:%.3f"), _x, _y, _z, _e);
  768. }
  769. void factory_reset()
  770. {
  771. KEEPALIVE_STATE(PAUSED_FOR_USER);
  772. if (!READ(BTN_ENC))
  773. {
  774. _delay_ms(1000);
  775. if (!READ(BTN_ENC))
  776. {
  777. lcd_implementation_clear();
  778. lcd_printPGM(PSTR("Factory RESET"));
  779. SET_OUTPUT(BEEPER);
  780. WRITE(BEEPER, HIGH);
  781. while (!READ(BTN_ENC));
  782. WRITE(BEEPER, LOW);
  783. _delay_ms(2000);
  784. char level = reset_menu();
  785. factory_reset(level, false);
  786. switch (level) {
  787. case 0: _delay_ms(0); break;
  788. case 1: _delay_ms(0); break;
  789. case 2: _delay_ms(0); break;
  790. case 3: _delay_ms(0); break;
  791. }
  792. // _delay_ms(100);
  793. /*
  794. #ifdef MESH_BED_LEVELING
  795. _delay_ms(2000);
  796. if (!READ(BTN_ENC))
  797. {
  798. WRITE(BEEPER, HIGH);
  799. _delay_ms(100);
  800. WRITE(BEEPER, LOW);
  801. _delay_ms(200);
  802. WRITE(BEEPER, HIGH);
  803. _delay_ms(100);
  804. WRITE(BEEPER, LOW);
  805. int _z = 0;
  806. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  807. EEPROM_save_B(EEPROM_BABYSTEP_X, &_z);
  808. EEPROM_save_B(EEPROM_BABYSTEP_Y, &_z);
  809. EEPROM_save_B(EEPROM_BABYSTEP_Z, &_z);
  810. }
  811. else
  812. {
  813. WRITE(BEEPER, HIGH);
  814. _delay_ms(100);
  815. WRITE(BEEPER, LOW);
  816. }
  817. #endif // mesh */
  818. }
  819. }
  820. else
  821. {
  822. //_delay_ms(1000); // wait 1sec to display the splash screen // what's this and why do we need it?? - andre
  823. }
  824. KEEPALIVE_STATE(IN_HANDLER);
  825. }
  826. void show_fw_version_warnings() {
  827. if (FW_DEV_VERSION == FW_VERSION_GOLD || FW_DEV_VERSION == FW_VERSION_RC) return;
  828. switch (FW_DEV_VERSION) {
  829. case(FW_VERSION_ALPHA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware alpha version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_ALPHA c=20 r=8
  830. case(FW_VERSION_BETA): lcd_show_fullscreen_message_and_wait_P(_i("You are using firmware beta version. This is development version. Using this version is not recommended and may cause printer damage.")); break;////MSG_FW_VERSION_BETA c=20 r=8
  831. case(FW_VERSION_DEVEL):
  832. case(FW_VERSION_DEBUG):
  833. lcd_update_enable(false);
  834. lcd_implementation_clear();
  835. #if FW_DEV_VERSION == FW_VERSION_DEVEL
  836. lcd_print_at_PGM(0, 0, PSTR("Development build !!"));
  837. #else
  838. lcd_print_at_PGM(0, 0, PSTR("Debbugging build !!!"));
  839. #endif
  840. lcd_print_at_PGM(0, 1, PSTR("May destroy printer!"));
  841. lcd_print_at_PGM(0, 2, PSTR("ver ")); lcd_printPGM(PSTR(FW_VERSION_FULL));
  842. lcd_print_at_PGM(0, 3, PSTR(FW_REPOSITORY));
  843. lcd_wait_for_click();
  844. break;
  845. // default: lcd_show_fullscreen_message_and_wait_P(_i("WARNING: This is an unofficial, unsupported build. Use at your own risk!")); break;////MSG_FW_VERSION_UNKNOWN c=20 r=8
  846. }
  847. lcd_update_enable(true);
  848. }
  849. uint8_t check_printer_version()
  850. {
  851. uint8_t version_changed = 0;
  852. uint16_t printer_type = eeprom_read_word((uint16_t*)EEPROM_PRINTER_TYPE);
  853. uint16_t motherboard = eeprom_read_word((uint16_t*)EEPROM_BOARD_TYPE);
  854. if (printer_type != PRINTER_TYPE) {
  855. if (printer_type == 0xffff) eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  856. else version_changed |= 0b10;
  857. }
  858. if (motherboard != MOTHERBOARD) {
  859. if(motherboard == 0xffff) eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  860. else version_changed |= 0b01;
  861. }
  862. return version_changed;
  863. }
  864. void erase_eeprom_section(uint16_t offset, uint16_t bytes)
  865. {
  866. for (int i = offset; i < (offset+bytes); i++) eeprom_write_byte((uint8_t*)i, 0xFF);
  867. }
  868. #if (LANG_MODE != 0) //secondary language support
  869. #ifdef W25X20CL
  870. #include "bootapp.h" //bootloader support
  871. // language update from external flash
  872. #define LANGBOOT_BLOCKSIZE 0x1000
  873. #define LANGBOOT_RAMBUFFER 0x0800
  874. void update_sec_lang_from_external_flash()
  875. {
  876. if ((boot_app_magic == BOOT_APP_MAGIC) && (boot_app_flags & BOOT_APP_FLG_USER0))
  877. {
  878. uint8_t lang = boot_reserved >> 4;
  879. uint8_t state = boot_reserved & 0xf;
  880. lang_table_header_t header;
  881. uint32_t src_addr;
  882. if (lang_get_header(lang, &header, &src_addr))
  883. {
  884. fputs_P(PSTR(ESC_H(1,3) "Language update."), lcdout);
  885. for (uint8_t i = 0; i < state; i++) fputc('.', lcdout);
  886. delay(100);
  887. boot_reserved = (state + 1) | (lang << 4);
  888. if ((state * LANGBOOT_BLOCKSIZE) < header.size)
  889. {
  890. cli();
  891. uint16_t size = header.size - state * LANGBOOT_BLOCKSIZE;
  892. if (size > LANGBOOT_BLOCKSIZE) size = LANGBOOT_BLOCKSIZE;
  893. w25x20cl_rd_data(src_addr + state * LANGBOOT_BLOCKSIZE, (uint8_t*)LANGBOOT_RAMBUFFER, size);
  894. if (state == 0)
  895. {
  896. //TODO - check header integrity
  897. }
  898. bootapp_ram2flash(LANGBOOT_RAMBUFFER, _SEC_LANG_TABLE + state * LANGBOOT_BLOCKSIZE, size);
  899. }
  900. else
  901. {
  902. //TODO - check sec lang data integrity
  903. eeprom_update_byte((unsigned char *)EEPROM_LANG, LANG_ID_SEC);
  904. }
  905. }
  906. }
  907. boot_app_flags &= ~BOOT_APP_FLG_USER0;
  908. }
  909. #ifdef DEBUG_W25X20CL
  910. uint8_t lang_xflash_enum_codes(uint16_t* codes)
  911. {
  912. lang_table_header_t header;
  913. uint8_t count = 0;
  914. uint32_t addr = 0x00000;
  915. while (1)
  916. {
  917. printf_P(_n("LANGTABLE%d:"), count);
  918. w25x20cl_rd_data(addr, (uint8_t*)&header, sizeof(lang_table_header_t));
  919. if (header.magic != LANG_MAGIC)
  920. {
  921. printf_P(_n("NG!\n"));
  922. break;
  923. }
  924. printf_P(_n("OK\n"));
  925. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  926. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  927. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  928. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  929. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  930. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  931. addr += header.size;
  932. codes[count] = header.code;
  933. count ++;
  934. }
  935. return count;
  936. }
  937. void list_sec_lang_from_external_flash()
  938. {
  939. uint16_t codes[8];
  940. uint8_t count = lang_xflash_enum_codes(codes);
  941. printf_P(_n("XFlash lang count = %hhd\n"), count);
  942. }
  943. #endif //DEBUG_W25X20CL
  944. #endif //W25X20CL
  945. #endif //(LANG_MODE != 0)
  946. // "Setup" function is called by the Arduino framework on startup.
  947. // Before startup, the Timers-functions (PWM)/Analog RW and HardwareSerial provided by the Arduino-code
  948. // are initialized by the main() routine provided by the Arduino framework.
  949. void setup()
  950. {
  951. #ifdef W25X20CL
  952. // Enter an STK500 compatible Optiboot boot loader waiting for flashing the languages to an external flash memory.
  953. optiboot_w25x20cl_enter();
  954. #endif
  955. lcd_init();
  956. fdev_setup_stream(lcdout, lcd_putchar, NULL, _FDEV_SETUP_WRITE); //setup lcdout stream
  957. spi_init();
  958. lcd_splash();
  959. #if (LANG_MODE != 0) //secondary language support
  960. #ifdef W25X20CL
  961. if (w25x20cl_init())
  962. update_sec_lang_from_external_flash();
  963. else
  964. kill(_i("External SPI flash W25X20CL not responding."));
  965. #endif //W25X20CL
  966. #endif //(LANG_MODE != 0)
  967. setup_killpin();
  968. setup_powerhold();
  969. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  970. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  971. if ((farm_mode == 0xFF && farm_no == 0) || ((uint16_t)farm_no == 0xFFFF))
  972. farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  973. if ((uint16_t)farm_no == 0xFFFF) farm_no = 0;
  974. selectedSerialPort = eeprom_read_byte((uint8_t*)EEPROM_SECOND_SERIAL_ACTIVE);
  975. if (selectedSerialPort == 0xFF) selectedSerialPort = 0;
  976. if (farm_mode)
  977. {
  978. no_response = true; //we need confirmation by recieving PRUSA thx
  979. important_status = 8;
  980. prusa_statistics(8);
  981. selectedSerialPort = 1;
  982. #ifdef TMC2130
  983. //increased extruder current (PFW363)
  984. tmc2130_current_h[E_AXIS] = 36;
  985. tmc2130_current_r[E_AXIS] = 36;
  986. #endif //TMC2130
  987. //disabled filament autoload (PFW360)
  988. filament_autoload_enabled = false;
  989. eeprom_update_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED, 0);
  990. }
  991. MYSERIAL.begin(BAUDRATE);
  992. fdev_setup_stream(uartout, uart_putchar, NULL, _FDEV_SETUP_WRITE); //setup uart out stream
  993. stdout = uartout;
  994. SERIAL_PROTOCOLLNPGM("start");
  995. SERIAL_ECHO_START;
  996. printf_P(PSTR(" " FW_VERSION_FULL "\n"));
  997. #ifdef DEBUG_SEC_LANG
  998. lang_table_header_t header;
  999. uint32_t src_addr = 0x00000;
  1000. if (lang_get_header(1, &header, &src_addr))
  1001. {
  1002. //this is comparsion of some printing-methods regarding to flash space usage and code size/readability
  1003. #define LT_PRINT_TEST 2
  1004. // flash usage
  1005. // total p.test
  1006. //0 252718 t+c text code
  1007. //1 253142 424 170 254
  1008. //2 253040 322 164 158
  1009. //3 253248 530 135 395
  1010. #if (LT_PRINT_TEST==1) //not optimized printf
  1011. printf_P(_n(" _src_addr = 0x%08lx\n"), src_addr);
  1012. printf_P(_n(" _lt_magic = 0x%08lx %S\n"), header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"));
  1013. printf_P(_n(" _lt_size = 0x%04x (%d)\n"), header.size, header.size);
  1014. printf_P(_n(" _lt_count = 0x%04x (%d)\n"), header.count, header.count);
  1015. printf_P(_n(" _lt_chsum = 0x%04x\n"), header.checksum);
  1016. printf_P(_n(" _lt_code = 0x%04x (%c%c)\n"), header.code, header.code >> 8, header.code & 0xff);
  1017. printf_P(_n(" _lt_sign = 0x%08lx\n"), header.signature);
  1018. #elif (LT_PRINT_TEST==2) //optimized printf
  1019. printf_P(
  1020. _n(
  1021. " _src_addr = 0x%08lx\n"
  1022. " _lt_magic = 0x%08lx %S\n"
  1023. " _lt_size = 0x%04x (%d)\n"
  1024. " _lt_count = 0x%04x (%d)\n"
  1025. " _lt_chsum = 0x%04x\n"
  1026. " _lt_code = 0x%04x (%c%c)\n"
  1027. " _lt_resv1 = 0x%08lx\n"
  1028. ),
  1029. src_addr,
  1030. header.magic, (header.magic==LANG_MAGIC)?_n("OK"):_n("NA"),
  1031. header.size, header.size,
  1032. header.count, header.count,
  1033. header.checksum,
  1034. header.code, header.code >> 8, header.code & 0xff,
  1035. header.signature
  1036. );
  1037. #elif (LT_PRINT_TEST==3) //arduino print/println (leading zeros not solved)
  1038. MYSERIAL.print(" _src_addr = 0x");
  1039. MYSERIAL.println(src_addr, 16);
  1040. MYSERIAL.print(" _lt_magic = 0x");
  1041. MYSERIAL.print(header.magic, 16);
  1042. MYSERIAL.println((header.magic==LANG_MAGIC)?" OK":" NA");
  1043. MYSERIAL.print(" _lt_size = 0x");
  1044. MYSERIAL.print(header.size, 16);
  1045. MYSERIAL.print(" (");
  1046. MYSERIAL.print(header.size, 10);
  1047. MYSERIAL.println(")");
  1048. MYSERIAL.print(" _lt_count = 0x");
  1049. MYSERIAL.print(header.count, 16);
  1050. MYSERIAL.print(" (");
  1051. MYSERIAL.print(header.count, 10);
  1052. MYSERIAL.println(")");
  1053. MYSERIAL.print(" _lt_chsum = 0x");
  1054. MYSERIAL.println(header.checksum, 16);
  1055. MYSERIAL.print(" _lt_code = 0x");
  1056. MYSERIAL.print(header.code, 16);
  1057. MYSERIAL.print(" (");
  1058. MYSERIAL.print((char)(header.code >> 8), 0);
  1059. MYSERIAL.print((char)(header.code & 0xff), 0);
  1060. MYSERIAL.println(")");
  1061. MYSERIAL.print(" _lt_resv1 = 0x");
  1062. MYSERIAL.println(header.signature, 16);
  1063. #endif //(LT_PRINT_TEST==)
  1064. #undef LT_PRINT_TEST
  1065. #if 0
  1066. w25x20cl_rd_data(0x25ba, (uint8_t*)&block_buffer, 1024);
  1067. for (uint16_t i = 0; i < 1024; i++)
  1068. {
  1069. if ((i % 16) == 0) printf_P(_n("%04x:"), 0x25ba+i);
  1070. printf_P(_n(" %02x"), ((uint8_t*)&block_buffer)[i]);
  1071. if ((i % 16) == 15) putchar('\n');
  1072. }
  1073. #endif
  1074. uint16_t sum = 0;
  1075. for (uint16_t i = 0; i < header.size; i++)
  1076. sum += (uint16_t)pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE + i)) << ((i & 1)?0:8);
  1077. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1078. sum -= header.checksum; //subtract checksum
  1079. printf_P(_n("_SEC_LANG_TABLE checksum = %04x\n"), sum);
  1080. sum = (sum >> 8) | ((sum & 0xff) << 8); //swap bytes
  1081. if (sum == header.checksum)
  1082. printf_P(_n("Checksum OK\n"), sum);
  1083. else
  1084. printf_P(_n("Checksum NG\n"), sum);
  1085. }
  1086. else
  1087. printf_P(_n("lang_get_header failed!\n"));
  1088. #if 0
  1089. for (uint16_t i = 0; i < 1024*10; i++)
  1090. {
  1091. if ((i % 16) == 0) printf_P(_n("%04x:"), _SEC_LANG_TABLE+i);
  1092. printf_P(_n(" %02x"), pgm_read_byte((uint8_t*)(_SEC_LANG_TABLE+i)));
  1093. if ((i % 16) == 15) putchar('\n');
  1094. }
  1095. #endif
  1096. #if 0
  1097. SERIAL_ECHOLN("Reading eeprom from 0 to 100: start");
  1098. for (int i = 0; i < 4096; ++i) {
  1099. int b = eeprom_read_byte((unsigned char*)i);
  1100. if (b != 255) {
  1101. SERIAL_ECHO(i);
  1102. SERIAL_ECHO(":");
  1103. SERIAL_ECHO(b);
  1104. SERIAL_ECHOLN("");
  1105. }
  1106. }
  1107. SERIAL_ECHOLN("Reading eeprom from 0 to 100: done");
  1108. #endif
  1109. #endif //DEBUG_SEC_LANG
  1110. // Check startup - does nothing if bootloader sets MCUSR to 0
  1111. byte mcu = MCUSR;
  1112. /* if (mcu & 1) SERIAL_ECHOLNRPGM(_T(MSG_POWERUP));
  1113. if (mcu & 2) SERIAL_ECHOLNRPGM(MSG_EXTERNAL_RESET);
  1114. if (mcu & 4) SERIAL_ECHOLNRPGM(MSG_BROWNOUT_RESET);
  1115. if (mcu & 8) SERIAL_ECHOLNRPGM(MSG_WATCHDOG_RESET);
  1116. if (mcu & 32) SERIAL_ECHOLNRPGM(MSG_SOFTWARE_RESET);*/
  1117. if (mcu & 1) puts_P(_T(MSG_POWERUP));
  1118. if (mcu & 2) puts_P(MSG_EXTERNAL_RESET);
  1119. if (mcu & 4) puts_P(MSG_BROWNOUT_RESET);
  1120. if (mcu & 8) puts_P(MSG_WATCHDOG_RESET);
  1121. if (mcu & 32) puts_P(MSG_SOFTWARE_RESET);
  1122. MCUSR = 0;
  1123. //SERIAL_ECHORPGM(MSG_MARLIN);
  1124. //SERIAL_ECHOLNRPGM(VERSION_STRING);
  1125. #ifdef STRING_VERSION_CONFIG_H
  1126. #ifdef STRING_CONFIG_H_AUTHOR
  1127. SERIAL_ECHO_START;
  1128. SERIAL_ECHORPGM(_i(" Last Updated: "));////MSG_CONFIGURATION_VER c=0 r=0
  1129. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  1130. SERIAL_ECHORPGM(_n(" | Author: "));////MSG_AUTHOR c=0 r=0
  1131. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  1132. SERIAL_ECHOPGM("Compiled: ");
  1133. SERIAL_ECHOLNPGM(__DATE__);
  1134. #endif
  1135. #endif
  1136. SERIAL_ECHO_START;
  1137. SERIAL_ECHORPGM(_i(" Free Memory: "));////MSG_FREE_MEMORY c=0 r=0
  1138. SERIAL_ECHO(freeMemory());
  1139. SERIAL_ECHORPGM(_i(" PlannerBufferBytes: "));////MSG_PLANNER_BUFFER_BYTES c=0 r=0
  1140. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  1141. //lcd_update_enable(false); // why do we need this?? - andre
  1142. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  1143. bool previous_settings_retrieved = false;
  1144. uint8_t hw_changed = check_printer_version();
  1145. if (!(hw_changed & 0b10)) { //if printer version wasn't changed, check for eeprom version and retrieve settings from eeprom in case that version wasn't changed
  1146. previous_settings_retrieved = Config_RetrieveSettings(EEPROM_OFFSET);
  1147. }
  1148. else { //printer version was changed so use default settings
  1149. Config_ResetDefault();
  1150. }
  1151. SdFatUtil::set_stack_guard(); //writes magic number at the end of static variables to protect against overwriting static memory by stack
  1152. tp_init(); // Initialize temperature loop
  1153. lcd_splash(); // we need to do this again, because tp_init() kills lcd
  1154. plan_init(); // Initialize planner;
  1155. factory_reset();
  1156. #ifdef TMC2130
  1157. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  1158. if (silentMode == 0xff) silentMode = 0;
  1159. // tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1160. tmc2130_mode = TMC2130_MODE_NORMAL;
  1161. uint8_t crashdet = eeprom_read_byte((uint8_t*)EEPROM_CRASH_DET);
  1162. if (crashdet && !farm_mode)
  1163. {
  1164. crashdet_enable();
  1165. puts_P(_N("CrashDetect ENABLED!"));
  1166. }
  1167. else
  1168. {
  1169. crashdet_disable();
  1170. puts_P(_N("CrashDetect DISABLED"));
  1171. }
  1172. #ifdef TMC2130_LINEARITY_CORRECTION
  1173. #ifdef TMC2130_LINEARITY_CORRECTION_XYZ
  1174. tmc2130_wave_fac[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_X_FAC);
  1175. tmc2130_wave_fac[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Y_FAC);
  1176. tmc2130_wave_fac[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_Z_FAC);
  1177. #endif //TMC2130_LINEARITY_CORRECTION_XYZ
  1178. tmc2130_wave_fac[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_WAVE_E_FAC);
  1179. if (tmc2130_wave_fac[X_AXIS] == 0xff) tmc2130_wave_fac[X_AXIS] = 0;
  1180. if (tmc2130_wave_fac[Y_AXIS] == 0xff) tmc2130_wave_fac[Y_AXIS] = 0;
  1181. if (tmc2130_wave_fac[Z_AXIS] == 0xff) tmc2130_wave_fac[Z_AXIS] = 0;
  1182. if (tmc2130_wave_fac[E_AXIS] == 0xff) tmc2130_wave_fac[E_AXIS] = 0;
  1183. #endif //TMC2130_LINEARITY_CORRECTION
  1184. #ifdef TMC2130_VARIABLE_RESOLUTION
  1185. tmc2130_mres[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_X_MRES);
  1186. tmc2130_mres[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Y_MRES);
  1187. tmc2130_mres[Z_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_Z_MRES);
  1188. tmc2130_mres[E_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_E_MRES);
  1189. if (tmc2130_mres[X_AXIS] == 0xff) tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1190. if (tmc2130_mres[Y_AXIS] == 0xff) tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1191. if (tmc2130_mres[Z_AXIS] == 0xff) tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1192. if (tmc2130_mres[E_AXIS] == 0xff) tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1193. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_X_MRES, tmc2130_mres[X_AXIS]);
  1194. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Y_MRES, tmc2130_mres[Y_AXIS]);
  1195. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_Z_MRES, tmc2130_mres[Z_AXIS]);
  1196. eeprom_update_byte((uint8_t*)EEPROM_TMC2130_E_MRES, tmc2130_mres[E_AXIS]);
  1197. #else //TMC2130_VARIABLE_RESOLUTION
  1198. tmc2130_mres[X_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1199. tmc2130_mres[Y_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_XY);
  1200. tmc2130_mres[Z_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_Z);
  1201. tmc2130_mres[E_AXIS] = tmc2130_usteps2mres(TMC2130_USTEPS_E);
  1202. #endif //TMC2130_VARIABLE_RESOLUTION
  1203. #endif //TMC2130
  1204. st_init(); // Initialize stepper, this enables interrupts!
  1205. #ifdef TMC2130
  1206. tmc2130_mode = silentMode?TMC2130_MODE_SILENT:TMC2130_MODE_NORMAL;
  1207. tmc2130_init();
  1208. #endif //TMC2130
  1209. setup_photpin();
  1210. servo_init();
  1211. // Reset the machine correction matrix.
  1212. // It does not make sense to load the correction matrix until the machine is homed.
  1213. world2machine_reset();
  1214. #ifdef PAT9125
  1215. fsensor_init();
  1216. #endif //PAT9125
  1217. #if defined(CONTROLLERFAN_PIN) && (CONTROLLERFAN_PIN > -1)
  1218. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  1219. #endif
  1220. setup_homepin();
  1221. #ifdef TMC2130
  1222. if (1) {
  1223. // try to run to zero phase before powering the Z motor.
  1224. // Move in negative direction
  1225. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  1226. // Round the current micro-micro steps to micro steps.
  1227. for (uint16_t phase = (tmc2130_rd_MSCNT(Z_AXIS) + 8) >> 4; phase > 0; -- phase) {
  1228. // Until the phase counter is reset to zero.
  1229. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1230. delay(2);
  1231. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1232. delay(2);
  1233. }
  1234. }
  1235. #endif //TMC2130
  1236. #if defined(Z_AXIS_ALWAYS_ON)
  1237. enable_z();
  1238. #endif
  1239. farm_mode = eeprom_read_byte((uint8_t*)EEPROM_FARM_MODE);
  1240. EEPROM_read_B(EEPROM_FARM_NUMBER, &farm_no);
  1241. if ((farm_mode == 0xFF && farm_no == 0) || (farm_no == 0xFFFF)) farm_mode = false; //if farm_mode has not been stored to eeprom yet and farm number is set to zero or EEPROM is fresh, deactivate farm mode
  1242. if (farm_no == 0xFFFF) farm_no = 0;
  1243. if (farm_mode)
  1244. {
  1245. prusa_statistics(8);
  1246. }
  1247. // Enable Toshiba FlashAir SD card / WiFi enahanced card.
  1248. card.ToshibaFlashAir_enable(eeprom_read_byte((unsigned char*)EEPROM_TOSHIBA_FLASH_AIR_COMPATIBLITY) == 1);
  1249. if (eeprom_read_dword((uint32_t*)(EEPROM_TOP - 4)) == 0x0ffffffff &&
  1250. eeprom_read_dword((uint32_t*)(EEPROM_TOP - 8)) == 0x0ffffffff) {
  1251. // Maiden startup. The firmware has been loaded and first started on a virgin RAMBo board,
  1252. // where all the EEPROM entries are set to 0x0ff.
  1253. // Once a firmware boots up, it forces at least a language selection, which changes
  1254. // EEPROM_LANG to number lower than 0x0ff.
  1255. // 1) Set a high power mode.
  1256. #ifdef TMC2130
  1257. eeprom_write_byte((uint8_t*)EEPROM_SILENT, 0);
  1258. tmc2130_mode = TMC2130_MODE_NORMAL;
  1259. #endif //TMC2130
  1260. eeprom_write_byte((uint8_t*)EEPROM_WIZARD_ACTIVE, 1); //run wizard
  1261. }
  1262. // Force SD card update. Otherwise the SD card update is done from loop() on card.checkautostart(false),
  1263. // but this times out if a blocking dialog is shown in setup().
  1264. card.initsd();
  1265. #ifdef DEBUG_SD_SPEED_TEST
  1266. if (card.cardOK)
  1267. {
  1268. uint8_t* buff = (uint8_t*)block_buffer;
  1269. uint32_t block = 0;
  1270. uint32_t sumr = 0;
  1271. uint32_t sumw = 0;
  1272. for (int i = 0; i < 1024; i++)
  1273. {
  1274. uint32_t u = micros();
  1275. bool res = card.card.readBlock(i, buff);
  1276. u = micros() - u;
  1277. if (res)
  1278. {
  1279. printf_P(PSTR("readBlock %4d 512 bytes %lu us\n"), i, u);
  1280. sumr += u;
  1281. u = micros();
  1282. res = card.card.writeBlock(i, buff);
  1283. u = micros() - u;
  1284. if (res)
  1285. {
  1286. printf_P(PSTR("writeBlock %4d 512 bytes %lu us\n"), i, u);
  1287. sumw += u;
  1288. }
  1289. else
  1290. {
  1291. printf_P(PSTR("writeBlock %4d error\n"), i);
  1292. break;
  1293. }
  1294. }
  1295. else
  1296. {
  1297. printf_P(PSTR("readBlock %4d error\n"), i);
  1298. break;
  1299. }
  1300. }
  1301. uint32_t avg_rspeed = (1024 * 1000000) / (sumr / 512);
  1302. uint32_t avg_wspeed = (1024 * 1000000) / (sumw / 512);
  1303. printf_P(PSTR("avg read speed %lu bytes/s\n"), avg_rspeed);
  1304. printf_P(PSTR("avg write speed %lu bytes/s\n"), avg_wspeed);
  1305. }
  1306. else
  1307. printf_P(PSTR("Card NG!\n"));
  1308. #endif //DEBUG_SD_SPEED_TEST
  1309. if (eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_POWER_COUNT, 0);
  1310. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_X) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_X, 0);
  1311. if (eeprom_read_byte((uint8_t*)EEPROM_CRASH_COUNT_Y) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_CRASH_COUNT_Y, 0);
  1312. if (eeprom_read_byte((uint8_t*)EEPROM_FERROR_COUNT) == 0xff) eeprom_write_byte((uint8_t*)EEPROM_FERROR_COUNT, 0);
  1313. if (eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_POWER_COUNT_TOT, 0);
  1314. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_X_TOT, 0);
  1315. if (eeprom_read_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_CRASH_COUNT_Y_TOT, 0);
  1316. if (eeprom_read_word((uint16_t*)EEPROM_FERROR_COUNT_TOT) == 0xffff) eeprom_write_word((uint16_t*)EEPROM_FERROR_COUNT_TOT, 0);
  1317. #ifdef SNMM
  1318. if (eeprom_read_dword((uint32_t*)EEPROM_BOWDEN_LENGTH) == 0x0ffffffff) { //bowden length used for SNMM
  1319. int _z = BOWDEN_LENGTH;
  1320. for(int i = 0; i<4; i++) EEPROM_save_B(EEPROM_BOWDEN_LENGTH + i * 2, &_z);
  1321. }
  1322. #endif
  1323. // In the future, somewhere here would one compare the current firmware version against the firmware version stored in the EEPROM.
  1324. // If they differ, an update procedure may need to be performed. At the end of this block, the current firmware version
  1325. // is being written into the EEPROM, so the update procedure will be triggered only once.
  1326. #if (LANG_MODE != 0) //secondary language support
  1327. #ifdef DEBUG_W25X20CL
  1328. W25X20CL_SPI_ENTER();
  1329. uint8_t uid[8]; // 64bit unique id
  1330. w25x20cl_rd_uid(uid);
  1331. puts_P(_n("W25X20CL UID="));
  1332. for (uint8_t i = 0; i < 8; i ++)
  1333. printf_P(PSTR("%02hhx"), uid[i]);
  1334. putchar('\n');
  1335. list_sec_lang_from_external_flash();
  1336. #endif //DEBUG_W25X20CL
  1337. // lang_reset();
  1338. if (!lang_select(eeprom_read_byte((uint8_t*)EEPROM_LANG)))
  1339. lcd_language();
  1340. #ifdef DEBUG_SEC_LANG
  1341. uint16_t sec_lang_code = lang_get_code(1);
  1342. uint16_t ui = _SEC_LANG_TABLE; //table pointer
  1343. printf_P(_n("lang_selected=%d\nlang_table=0x%04x\nSEC_LANG_CODE=0x%04x (%c%c)\n"), lang_selected, ui, sec_lang_code, sec_lang_code >> 8, sec_lang_code & 0xff);
  1344. // lang_print_sec_lang(uartout);
  1345. #endif //DEBUG_SEC_LANG
  1346. #endif //(LANG_MODE != 0)
  1347. if (eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE) == 255) {
  1348. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1349. temp_cal_active = false;
  1350. } else temp_cal_active = eeprom_read_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE);
  1351. if (eeprom_read_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA) == 255) {
  1352. //eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0);
  1353. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  1354. int16_t z_shift = 0;
  1355. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  1356. eeprom_write_byte((uint8_t*)EEPROM_TEMP_CAL_ACTIVE, 0);
  1357. temp_cal_active = false;
  1358. }
  1359. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 255) {
  1360. eeprom_write_byte((uint8_t*)EEPROM_UVLO, 0);
  1361. }
  1362. if (eeprom_read_byte((uint8_t*)EEPROM_SD_SORT) == 255) {
  1363. eeprom_write_byte((uint8_t*)EEPROM_SD_SORT, 0);
  1364. }
  1365. check_babystep(); //checking if Z babystep is in allowed range
  1366. #ifdef UVLO_SUPPORT
  1367. setup_uvlo_interrupt();
  1368. #endif //UVLO_SUPPORT
  1369. #if !defined(DEBUG_DISABLE_FANCHECK) && defined(FANCHECK) && defined(TACH_1) && TACH_1 >-1
  1370. setup_fan_interrupt();
  1371. #endif //DEBUG_DISABLE_FANCHECK
  1372. #ifdef PAT9125
  1373. #ifndef DEBUG_DISABLE_FSENSORCHECK
  1374. fsensor_setup_interrupt();
  1375. #endif //DEBUG_DISABLE_FSENSORCHECK
  1376. #endif //PAT9125
  1377. for (int i = 0; i<4; i++) EEPROM_read_B(EEPROM_BOWDEN_LENGTH + i * 2, &bowden_length[i]);
  1378. #ifndef DEBUG_DISABLE_STARTMSGS
  1379. KEEPALIVE_STATE(PAUSED_FOR_USER);
  1380. show_fw_version_warnings();
  1381. switch (hw_changed) {
  1382. //if motherboard or printer type was changed inform user as it can indicate flashing wrong firmware version
  1383. //if user confirms with knob, new hw version (printer and/or motherboard) is written to eeprom and message will be not shown next time
  1384. case(0b01):
  1385. lcd_show_fullscreen_message_and_wait_P(_i("Warning: motherboard type changed.")); ////MSG_CHANGED_MOTHERBOARD c=20 r=4
  1386. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1387. break;
  1388. case(0b10):
  1389. lcd_show_fullscreen_message_and_wait_P(_i("Warning: printer type changed.")); ////MSG_CHANGED_PRINTER c=20 r=4
  1390. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1391. break;
  1392. case(0b11):
  1393. lcd_show_fullscreen_message_and_wait_P(_i("Warning: both printer type and motherboard type changed.")); ////MSG_CHANGED_BOTH c=20 r=4
  1394. eeprom_write_word((uint16_t*)EEPROM_PRINTER_TYPE, PRINTER_TYPE);
  1395. eeprom_write_word((uint16_t*)EEPROM_BOARD_TYPE, MOTHERBOARD);
  1396. break;
  1397. default: break; //no change, show no message
  1398. }
  1399. if (!previous_settings_retrieved) {
  1400. lcd_show_fullscreen_message_and_wait_P(_i("Old settings found. Default PID, Esteps etc. will be set.")); //if EEPROM version or printer type was changed, inform user that default setting were loaded////MSG_DEFAULT_SETTINGS_LOADED c=20 r=4
  1401. erase_eeprom_section(EEPROM_OFFSET, 156); //erase M500 part of eeprom
  1402. }
  1403. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 1) {
  1404. lcd_wizard(0);
  1405. }
  1406. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) == 0) { //dont show calibration status messages if wizard is currently active
  1407. if (calibration_status() == CALIBRATION_STATUS_ASSEMBLED ||
  1408. calibration_status() == CALIBRATION_STATUS_UNKNOWN ||
  1409. calibration_status() == CALIBRATION_STATUS_XYZ_CALIBRATION) {
  1410. // Reset the babystepping values, so the printer will not move the Z axis up when the babystepping is enabled.
  1411. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  1412. // Show the message.
  1413. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1414. }
  1415. else if (calibration_status() == CALIBRATION_STATUS_LIVE_ADJUST) {
  1416. // Show the message.
  1417. lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  1418. lcd_update_enable(true);
  1419. }
  1420. else if (calibration_status() == CALIBRATION_STATUS_CALIBRATED && temp_cal_active == true && calibration_status_pinda() == false) {
  1421. //lcd_show_fullscreen_message_and_wait_P(_i("Temperature calibration has not been run yet"));////MSG_PINDA_NOT_CALIBRATED c=20 r=4
  1422. lcd_update_enable(true);
  1423. }
  1424. else if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION) {
  1425. // Show the message.
  1426. lcd_show_fullscreen_message_and_wait_P(_T(MSG_FOLLOW_CALIBRATION_FLOW));
  1427. }
  1428. }
  1429. #if !defined (DEBUG_DISABLE_FORCE_SELFTEST) && defined (TMC2130)
  1430. if (force_selftest_if_fw_version() && calibration_status() < CALIBRATION_STATUS_ASSEMBLED) {
  1431. lcd_show_fullscreen_message_and_wait_P(_i("Selftest will be run to calibrate accurate sensorless rehoming."));////MSG_FORCE_SELFTEST c=20 r=8
  1432. update_current_firmware_version_to_eeprom();
  1433. lcd_selftest();
  1434. }
  1435. #endif //TMC2130 && !DEBUG_DISABLE_FORCE_SELFTEST
  1436. KEEPALIVE_STATE(IN_PROCESS);
  1437. #endif //DEBUG_DISABLE_STARTMSGS
  1438. lcd_update_enable(true);
  1439. lcd_implementation_clear();
  1440. lcd_update(2);
  1441. // Store the currently running firmware into an eeprom,
  1442. // so the next time the firmware gets updated, it will know from which version it has been updated.
  1443. update_current_firmware_version_to_eeprom();
  1444. #ifdef TMC2130
  1445. tmc2130_home_origin[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_ORIGIN);
  1446. tmc2130_home_bsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_BSTEPS);
  1447. tmc2130_home_fsteps[X_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_X_FSTEPS);
  1448. if (tmc2130_home_origin[X_AXIS] == 0xff) tmc2130_home_origin[X_AXIS] = 0;
  1449. if (tmc2130_home_bsteps[X_AXIS] == 0xff) tmc2130_home_bsteps[X_AXIS] = 48;
  1450. if (tmc2130_home_fsteps[X_AXIS] == 0xff) tmc2130_home_fsteps[X_AXIS] = 48;
  1451. tmc2130_home_origin[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_ORIGIN);
  1452. tmc2130_home_bsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_BSTEPS);
  1453. tmc2130_home_fsteps[Y_AXIS] = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_Y_FSTEPS);
  1454. if (tmc2130_home_origin[Y_AXIS] == 0xff) tmc2130_home_origin[Y_AXIS] = 0;
  1455. if (tmc2130_home_bsteps[Y_AXIS] == 0xff) tmc2130_home_bsteps[Y_AXIS] = 48;
  1456. if (tmc2130_home_fsteps[Y_AXIS] == 0xff) tmc2130_home_fsteps[Y_AXIS] = 48;
  1457. tmc2130_home_enabled = eeprom_read_byte((uint8_t*)EEPROM_TMC2130_HOME_ENABLED);
  1458. if (tmc2130_home_enabled == 0xff) tmc2130_home_enabled = 0;
  1459. #endif //TMC2130
  1460. #ifdef UVLO_SUPPORT
  1461. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO) == 1) { //previous print was terminated by UVLO
  1462. /*
  1463. if (lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false)) recover_print();
  1464. else {
  1465. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1466. lcd_update_enable(true);
  1467. lcd_update(2);
  1468. lcd_setstatuspgm(_T(WELCOME_MSG));
  1469. }
  1470. */
  1471. manage_heater(); // Update temperatures
  1472. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1473. printf_P(_N("Power panic detected!\nCurrent bed temp:%d\nSaved bed temp:%d\n"), (int)degBed(), eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED))
  1474. #endif
  1475. if ( degBed() > ( (float)eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED) - AUTOMATIC_UVLO_BED_TEMP_OFFSET) ){
  1476. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1477. puts_P(_N("Automatic recovery!"));
  1478. #endif
  1479. recover_print(1);
  1480. }
  1481. else{
  1482. #ifdef DEBUG_UVLO_AUTOMATIC_RECOVER
  1483. puts_P(_N("Normal recovery!"));
  1484. #endif
  1485. if ( lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_RECOVER_PRINT), false) ) recover_print(0);
  1486. else {
  1487. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  1488. lcd_update_enable(true);
  1489. lcd_update(2);
  1490. lcd_setstatuspgm(_T(WELCOME_MSG));
  1491. }
  1492. }
  1493. }
  1494. #endif //UVLO_SUPPORT
  1495. KEEPALIVE_STATE(NOT_BUSY);
  1496. #ifdef WATCHDOG
  1497. wdt_enable(WDTO_4S);
  1498. #endif //WATCHDOG
  1499. }
  1500. #ifdef PAT9125
  1501. void fsensor_init() {
  1502. int pat9125 = pat9125_init();
  1503. printf_P(_N("PAT9125_init:%d\n"), pat9125);
  1504. uint8_t fsensor = eeprom_read_byte((uint8_t*)EEPROM_FSENSOR);
  1505. filament_autoload_enabled=eeprom_read_byte((uint8_t*)EEPROM_FSENS_AUTOLOAD_ENABLED);
  1506. if (!pat9125)
  1507. {
  1508. fsensor = 0; //disable sensor
  1509. fsensor_not_responding = true;
  1510. }
  1511. else {
  1512. fsensor_not_responding = false;
  1513. }
  1514. puts_P(PSTR("FSensor "));
  1515. if (fsensor)
  1516. {
  1517. puts_P(PSTR("ENABLED\n"));
  1518. fsensor_enable();
  1519. }
  1520. else
  1521. {
  1522. puts_P(PSTR("DISABLED\n"));
  1523. fsensor_disable();
  1524. }
  1525. #ifdef DEBUG_DISABLE_FSENSORCHECK
  1526. filament_autoload_enabled = false;
  1527. fsensor_disable();
  1528. #endif //DEBUG_DISABLE_FSENSORCHECK
  1529. }
  1530. #endif //PAT9125
  1531. void trace();
  1532. #define CHUNK_SIZE 64 // bytes
  1533. #define SAFETY_MARGIN 1
  1534. char chunk[CHUNK_SIZE+SAFETY_MARGIN];
  1535. int chunkHead = 0;
  1536. int serial_read_stream() {
  1537. setTargetHotend(0, 0);
  1538. setTargetBed(0);
  1539. lcd_implementation_clear();
  1540. lcd_printPGM(PSTR(" Upload in progress"));
  1541. // first wait for how many bytes we will receive
  1542. uint32_t bytesToReceive;
  1543. // receive the four bytes
  1544. char bytesToReceiveBuffer[4];
  1545. for (int i=0; i<4; i++) {
  1546. int data;
  1547. while ((data = MYSERIAL.read()) == -1) {};
  1548. bytesToReceiveBuffer[i] = data;
  1549. }
  1550. // make it a uint32
  1551. memcpy(&bytesToReceive, &bytesToReceiveBuffer, 4);
  1552. // we're ready, notify the sender
  1553. MYSERIAL.write('+');
  1554. // lock in the routine
  1555. uint32_t receivedBytes = 0;
  1556. while (prusa_sd_card_upload) {
  1557. int i;
  1558. for (i=0; i<CHUNK_SIZE; i++) {
  1559. int data;
  1560. // check if we're not done
  1561. if (receivedBytes == bytesToReceive) {
  1562. break;
  1563. }
  1564. // read the next byte
  1565. while ((data = MYSERIAL.read()) == -1) {};
  1566. receivedBytes++;
  1567. // save it to the chunk
  1568. chunk[i] = data;
  1569. }
  1570. // write the chunk to SD
  1571. card.write_command_no_newline(&chunk[0]);
  1572. // notify the sender we're ready for more data
  1573. MYSERIAL.write('+');
  1574. // for safety
  1575. manage_heater();
  1576. // check if we're done
  1577. if(receivedBytes == bytesToReceive) {
  1578. trace(); // beep
  1579. card.closefile();
  1580. prusa_sd_card_upload = false;
  1581. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1582. return 0;
  1583. }
  1584. }
  1585. }
  1586. #ifdef HOST_KEEPALIVE_FEATURE
  1587. /**
  1588. * Output a "busy" message at regular intervals
  1589. * while the machine is not accepting commands.
  1590. */
  1591. void host_keepalive() {
  1592. if (farm_mode) return;
  1593. long ms = millis();
  1594. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1595. if ((ms - prev_busy_signal_ms) < (long)(1000L * host_keepalive_interval)) return;
  1596. switch (busy_state) {
  1597. case IN_HANDLER:
  1598. case IN_PROCESS:
  1599. SERIAL_ECHO_START;
  1600. SERIAL_ECHOLNPGM("busy: processing");
  1601. break;
  1602. case PAUSED_FOR_USER:
  1603. SERIAL_ECHO_START;
  1604. SERIAL_ECHOLNPGM("busy: paused for user");
  1605. break;
  1606. case PAUSED_FOR_INPUT:
  1607. SERIAL_ECHO_START;
  1608. SERIAL_ECHOLNPGM("busy: paused for input");
  1609. break;
  1610. default:
  1611. break;
  1612. }
  1613. }
  1614. prev_busy_signal_ms = ms;
  1615. }
  1616. #endif
  1617. // The loop() function is called in an endless loop by the Arduino framework from the default main() routine.
  1618. // Before loop(), the setup() function is called by the main() routine.
  1619. void loop()
  1620. {
  1621. KEEPALIVE_STATE(NOT_BUSY);
  1622. bool stack_integrity = true;
  1623. if ((usb_printing_counter > 0) && ((millis()-_usb_timer) > 1000))
  1624. {
  1625. is_usb_printing = true;
  1626. usb_printing_counter--;
  1627. _usb_timer = millis();
  1628. }
  1629. if (usb_printing_counter == 0)
  1630. {
  1631. is_usb_printing = false;
  1632. }
  1633. if (prusa_sd_card_upload)
  1634. {
  1635. //we read byte-by byte
  1636. serial_read_stream();
  1637. } else
  1638. {
  1639. get_command();
  1640. #ifdef SDSUPPORT
  1641. card.checkautostart(false);
  1642. #endif
  1643. if(buflen)
  1644. {
  1645. cmdbuffer_front_already_processed = false;
  1646. #ifdef SDSUPPORT
  1647. if(card.saving)
  1648. {
  1649. // Saving a G-code file onto an SD-card is in progress.
  1650. // Saving starts with M28, saving until M29 is seen.
  1651. if(strstr_P(CMDBUFFER_CURRENT_STRING, PSTR("M29")) == NULL) {
  1652. card.write_command(CMDBUFFER_CURRENT_STRING);
  1653. if(card.logging)
  1654. process_commands();
  1655. else
  1656. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  1657. } else {
  1658. card.closefile();
  1659. SERIAL_PROTOCOLLNRPGM(MSG_FILE_SAVED);
  1660. }
  1661. } else {
  1662. process_commands();
  1663. }
  1664. #else
  1665. process_commands();
  1666. #endif //SDSUPPORT
  1667. if (! cmdbuffer_front_already_processed && buflen)
  1668. {
  1669. // ptr points to the start of the block currently being processed.
  1670. // The first character in the block is the block type.
  1671. char *ptr = cmdbuffer + bufindr;
  1672. if (*ptr == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  1673. // To support power panic, move the lenght of the command on the SD card to a planner buffer.
  1674. union {
  1675. struct {
  1676. char lo;
  1677. char hi;
  1678. } lohi;
  1679. uint16_t value;
  1680. } sdlen;
  1681. sdlen.value = 0;
  1682. {
  1683. // This block locks the interrupts globally for 3.25 us,
  1684. // which corresponds to a maximum repeat frequency of 307.69 kHz.
  1685. // This blocking is safe in the context of a 10kHz stepper driver interrupt
  1686. // or a 115200 Bd serial line receive interrupt, which will not trigger faster than 12kHz.
  1687. cli();
  1688. // Reset the command to something, which will be ignored by the power panic routine,
  1689. // so this buffer length will not be counted twice.
  1690. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1691. // Extract the current buffer length.
  1692. sdlen.lohi.lo = *ptr ++;
  1693. sdlen.lohi.hi = *ptr;
  1694. // and pass it to the planner queue.
  1695. planner_add_sd_length(sdlen.value);
  1696. sei();
  1697. }
  1698. }
  1699. else if((*ptr == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR) && !IS_SD_PRINTING){
  1700. cli();
  1701. *ptr ++ = CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED;
  1702. // and one for each command to previous block in the planner queue.
  1703. planner_add_sd_length(1);
  1704. sei();
  1705. }
  1706. // Now it is safe to release the already processed command block. If interrupted by the power panic now,
  1707. // this block's SD card length will not be counted twice as its command type has been replaced
  1708. // by CMDBUFFER_CURRENT_TYPE_TO_BE_REMOVED.
  1709. cmdqueue_pop_front();
  1710. }
  1711. host_keepalive();
  1712. }
  1713. }
  1714. //check heater every n milliseconds
  1715. manage_heater();
  1716. isPrintPaused ? manage_inactivity(true) : manage_inactivity(false);
  1717. checkHitEndstops();
  1718. lcd_update();
  1719. #ifdef PAT9125
  1720. fsensor_update();
  1721. #endif //PAT9125
  1722. #ifdef TMC2130
  1723. tmc2130_check_overtemp();
  1724. if (tmc2130_sg_crash)
  1725. {
  1726. uint8_t crash = tmc2130_sg_crash;
  1727. tmc2130_sg_crash = 0;
  1728. // crashdet_stop_and_save_print();
  1729. switch (crash)
  1730. {
  1731. case 1: enquecommand_P((PSTR("CRASH_DETECTEDX"))); break;
  1732. case 2: enquecommand_P((PSTR("CRASH_DETECTEDY"))); break;
  1733. case 3: enquecommand_P((PSTR("CRASH_DETECTEDXY"))); break;
  1734. }
  1735. }
  1736. #endif //TMC2130
  1737. }
  1738. #define DEFINE_PGM_READ_ANY(type, reader) \
  1739. static inline type pgm_read_any(const type *p) \
  1740. { return pgm_read_##reader##_near(p); }
  1741. DEFINE_PGM_READ_ANY(float, float);
  1742. DEFINE_PGM_READ_ANY(signed char, byte);
  1743. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1744. static const PROGMEM type array##_P[3] = \
  1745. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1746. static inline type array(int axis) \
  1747. { return pgm_read_any(&array##_P[axis]); } \
  1748. type array##_ext(int axis) \
  1749. { return pgm_read_any(&array##_P[axis]); }
  1750. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1751. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1752. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1753. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1754. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  1755. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1756. static void axis_is_at_home(int axis) {
  1757. current_position[axis] = base_home_pos(axis) + add_homing[axis];
  1758. min_pos[axis] = base_min_pos(axis) + add_homing[axis];
  1759. max_pos[axis] = base_max_pos(axis) + add_homing[axis];
  1760. }
  1761. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1762. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1763. static void setup_for_endstop_move(bool enable_endstops_now = true) {
  1764. saved_feedrate = feedrate;
  1765. saved_feedmultiply = feedmultiply;
  1766. feedmultiply = 100;
  1767. previous_millis_cmd = millis();
  1768. enable_endstops(enable_endstops_now);
  1769. }
  1770. static void clean_up_after_endstop_move() {
  1771. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1772. enable_endstops(false);
  1773. #endif
  1774. feedrate = saved_feedrate;
  1775. feedmultiply = saved_feedmultiply;
  1776. previous_millis_cmd = millis();
  1777. }
  1778. #ifdef ENABLE_AUTO_BED_LEVELING
  1779. #ifdef AUTO_BED_LEVELING_GRID
  1780. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  1781. {
  1782. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1783. planeNormal.debug("planeNormal");
  1784. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1785. //bedLevel.debug("bedLevel");
  1786. //plan_bed_level_matrix.debug("bed level before");
  1787. //vector_3 uncorrected_position = plan_get_position_mm();
  1788. //uncorrected_position.debug("position before");
  1789. vector_3 corrected_position = plan_get_position();
  1790. // corrected_position.debug("position after");
  1791. current_position[X_AXIS] = corrected_position.x;
  1792. current_position[Y_AXIS] = corrected_position.y;
  1793. current_position[Z_AXIS] = corrected_position.z;
  1794. // put the bed at 0 so we don't go below it.
  1795. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  1796. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1797. }
  1798. #else // not AUTO_BED_LEVELING_GRID
  1799. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1800. plan_bed_level_matrix.set_to_identity();
  1801. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1802. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1803. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1804. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  1805. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  1806. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  1807. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  1808. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1809. vector_3 corrected_position = plan_get_position();
  1810. current_position[X_AXIS] = corrected_position.x;
  1811. current_position[Y_AXIS] = corrected_position.y;
  1812. current_position[Z_AXIS] = corrected_position.z;
  1813. // put the bed at 0 so we don't go below it.
  1814. current_position[Z_AXIS] = zprobe_zoffset;
  1815. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1816. }
  1817. #endif // AUTO_BED_LEVELING_GRID
  1818. static void run_z_probe() {
  1819. plan_bed_level_matrix.set_to_identity();
  1820. feedrate = homing_feedrate[Z_AXIS];
  1821. // move down until you find the bed
  1822. float zPosition = -10;
  1823. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1824. st_synchronize();
  1825. // we have to let the planner know where we are right now as it is not where we said to go.
  1826. zPosition = st_get_position_mm(Z_AXIS);
  1827. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1828. // move up the retract distance
  1829. zPosition += home_retract_mm(Z_AXIS);
  1830. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1831. st_synchronize();
  1832. // move back down slowly to find bed
  1833. feedrate = homing_feedrate[Z_AXIS]/4;
  1834. zPosition -= home_retract_mm(Z_AXIS) * 2;
  1835. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  1836. st_synchronize();
  1837. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1838. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  1839. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1840. }
  1841. static void do_blocking_move_to(float x, float y, float z) {
  1842. float oldFeedRate = feedrate;
  1843. feedrate = homing_feedrate[Z_AXIS];
  1844. current_position[Z_AXIS] = z;
  1845. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1846. st_synchronize();
  1847. feedrate = XY_TRAVEL_SPEED;
  1848. current_position[X_AXIS] = x;
  1849. current_position[Y_AXIS] = y;
  1850. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  1851. st_synchronize();
  1852. feedrate = oldFeedRate;
  1853. }
  1854. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  1855. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  1856. }
  1857. /// Probe bed height at position (x,y), returns the measured z value
  1858. static float probe_pt(float x, float y, float z_before) {
  1859. // move to right place
  1860. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1861. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1862. run_z_probe();
  1863. float measured_z = current_position[Z_AXIS];
  1864. SERIAL_PROTOCOLRPGM(_T(MSG_BED));
  1865. SERIAL_PROTOCOLPGM(" x: ");
  1866. SERIAL_PROTOCOL(x);
  1867. SERIAL_PROTOCOLPGM(" y: ");
  1868. SERIAL_PROTOCOL(y);
  1869. SERIAL_PROTOCOLPGM(" z: ");
  1870. SERIAL_PROTOCOL(measured_z);
  1871. SERIAL_PROTOCOLPGM("\n");
  1872. return measured_z;
  1873. }
  1874. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  1875. #ifdef LIN_ADVANCE
  1876. /**
  1877. * M900: Set and/or Get advance K factor and WH/D ratio
  1878. *
  1879. * K<factor> Set advance K factor
  1880. * R<ratio> Set ratio directly (overrides WH/D)
  1881. * W<width> H<height> D<diam> Set ratio from WH/D
  1882. */
  1883. inline void gcode_M900() {
  1884. st_synchronize();
  1885. const float newK = code_seen('K') ? code_value_float() : -1;
  1886. if (newK >= 0) extruder_advance_k = newK;
  1887. float newR = code_seen('R') ? code_value_float() : -1;
  1888. if (newR < 0) {
  1889. const float newD = code_seen('D') ? code_value_float() : -1,
  1890. newW = code_seen('W') ? code_value_float() : -1,
  1891. newH = code_seen('H') ? code_value_float() : -1;
  1892. if (newD >= 0 && newW >= 0 && newH >= 0)
  1893. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  1894. }
  1895. if (newR >= 0) advance_ed_ratio = newR;
  1896. SERIAL_ECHO_START;
  1897. SERIAL_ECHOPGM("Advance K=");
  1898. SERIAL_ECHOLN(extruder_advance_k);
  1899. SERIAL_ECHOPGM(" E/D=");
  1900. const float ratio = advance_ed_ratio;
  1901. if (ratio) SERIAL_ECHOLN(ratio); else SERIAL_ECHOLNPGM("Auto");
  1902. }
  1903. #endif // LIN_ADVANCE
  1904. bool check_commands() {
  1905. bool end_command_found = false;
  1906. while (buflen)
  1907. {
  1908. if ((code_seen("M84")) || (code_seen("M 84"))) end_command_found = true;
  1909. if (!cmdbuffer_front_already_processed)
  1910. cmdqueue_pop_front();
  1911. cmdbuffer_front_already_processed = false;
  1912. }
  1913. return end_command_found;
  1914. }
  1915. #ifdef TMC2130
  1916. bool calibrate_z_auto()
  1917. {
  1918. //lcd_display_message_fullscreen_P(_T(MSG_CALIBRATE_Z_AUTO));
  1919. lcd_implementation_clear();
  1920. lcd_print_at_PGM(0,1, _T(MSG_CALIBRATE_Z_AUTO));
  1921. bool endstops_enabled = enable_endstops(true);
  1922. int axis_up_dir = -home_dir(Z_AXIS);
  1923. tmc2130_home_enter(Z_AXIS_MASK);
  1924. current_position[Z_AXIS] = 0;
  1925. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1926. set_destination_to_current();
  1927. destination[Z_AXIS] += (1.1 * max_length(Z_AXIS) * axis_up_dir);
  1928. feedrate = homing_feedrate[Z_AXIS];
  1929. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1930. st_synchronize();
  1931. // current_position[axis] = 0;
  1932. // plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1933. tmc2130_home_exit();
  1934. enable_endstops(false);
  1935. current_position[Z_AXIS] = 0;
  1936. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1937. set_destination_to_current();
  1938. destination[Z_AXIS] += 10 * axis_up_dir; //10mm up
  1939. feedrate = homing_feedrate[Z_AXIS] / 2;
  1940. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1941. st_synchronize();
  1942. enable_endstops(endstops_enabled);
  1943. current_position[Z_AXIS] = Z_MAX_POS+2.0;
  1944. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1945. return true;
  1946. }
  1947. #endif //TMC2130
  1948. void homeaxis(int axis, uint8_t cnt, uint8_t* pstep)
  1949. {
  1950. bool endstops_enabled = enable_endstops(true); //RP: endstops should be allways enabled durring homing
  1951. #define HOMEAXIS_DO(LETTER) \
  1952. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1953. if ((axis==X_AXIS)?HOMEAXIS_DO(X):(axis==Y_AXIS)?HOMEAXIS_DO(Y):0)
  1954. {
  1955. int axis_home_dir = home_dir(axis);
  1956. feedrate = homing_feedrate[axis];
  1957. #ifdef TMC2130
  1958. tmc2130_home_enter(X_AXIS_MASK << axis);
  1959. #endif //TMC2130
  1960. // Move right a bit, so that the print head does not touch the left end position,
  1961. // and the following left movement has a chance to achieve the required velocity
  1962. // for the stall guard to work.
  1963. current_position[axis] = 0;
  1964. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1965. set_destination_to_current();
  1966. // destination[axis] = 11.f;
  1967. destination[axis] = 3.f;
  1968. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1969. st_synchronize();
  1970. // Move left away from the possible collision with the collision detection disabled.
  1971. endstops_hit_on_purpose();
  1972. enable_endstops(false);
  1973. current_position[axis] = 0;
  1974. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1975. destination[axis] = - 1.;
  1976. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1977. st_synchronize();
  1978. // Now continue to move up to the left end stop with the collision detection enabled.
  1979. enable_endstops(true);
  1980. destination[axis] = - 1.1 * max_length(axis);
  1981. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1982. st_synchronize();
  1983. for (uint8_t i = 0; i < cnt; i++)
  1984. {
  1985. // Move right from the collision to a known distance from the left end stop with the collision detection disabled.
  1986. endstops_hit_on_purpose();
  1987. enable_endstops(false);
  1988. current_position[axis] = 0;
  1989. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1990. destination[axis] = 10.f;
  1991. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1992. st_synchronize();
  1993. endstops_hit_on_purpose();
  1994. // Now move left up to the collision, this time with a repeatable velocity.
  1995. enable_endstops(true);
  1996. destination[axis] = - 11.f;
  1997. #ifdef TMC2130
  1998. feedrate = homing_feedrate[axis];
  1999. #else //TMC2130
  2000. feedrate = homing_feedrate[axis] / 2;
  2001. #endif //TMC2130
  2002. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2003. st_synchronize();
  2004. #ifdef TMC2130
  2005. uint16_t mscnt = tmc2130_rd_MSCNT(axis);
  2006. if (pstep) pstep[i] = mscnt >> 4;
  2007. printf_P(PSTR("%3d step=%2d mscnt=%4d\n"), i, mscnt >> 4, mscnt);
  2008. #endif //TMC2130
  2009. }
  2010. endstops_hit_on_purpose();
  2011. enable_endstops(false);
  2012. #ifdef TMC2130
  2013. uint8_t orig = tmc2130_home_origin[axis];
  2014. uint8_t back = tmc2130_home_bsteps[axis];
  2015. if (tmc2130_home_enabled && (orig <= 63))
  2016. {
  2017. tmc2130_goto_step(axis, orig, 2, 1000, tmc2130_get_res(axis));
  2018. if (back > 0)
  2019. tmc2130_do_steps(axis, back, 1, 1000);
  2020. }
  2021. else
  2022. tmc2130_do_steps(axis, 8, 2, 1000);
  2023. tmc2130_home_exit();
  2024. #endif //TMC2130
  2025. axis_is_at_home(axis);
  2026. axis_known_position[axis] = true;
  2027. // Move from minimum
  2028. #ifdef TMC2130
  2029. float dist = 0.01f * tmc2130_home_fsteps[axis];
  2030. #else //TMC2130
  2031. float dist = 0.01f * 64;
  2032. #endif //TMC2130
  2033. current_position[axis] -= dist;
  2034. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2035. current_position[axis] += dist;
  2036. destination[axis] = current_position[axis];
  2037. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], 0.5f*feedrate/60, active_extruder);
  2038. st_synchronize();
  2039. feedrate = 0.0;
  2040. }
  2041. else if ((axis==Z_AXIS)?HOMEAXIS_DO(Z):0)
  2042. {
  2043. #ifdef TMC2130
  2044. FORCE_HIGH_POWER_START;
  2045. #endif
  2046. int axis_home_dir = home_dir(axis);
  2047. current_position[axis] = 0;
  2048. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2049. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2050. feedrate = homing_feedrate[axis];
  2051. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2052. st_synchronize();
  2053. #ifdef TMC2130
  2054. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2055. FORCE_HIGH_POWER_END;
  2056. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2057. return;
  2058. }
  2059. #endif //TMC2130
  2060. current_position[axis] = 0;
  2061. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2062. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  2063. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2064. st_synchronize();
  2065. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  2066. feedrate = homing_feedrate[axis]/2 ;
  2067. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2068. st_synchronize();
  2069. #ifdef TMC2130
  2070. if (READ(Z_TMC2130_DIAG) != 0) { //Z crash
  2071. FORCE_HIGH_POWER_END;
  2072. kill(_T(MSG_BED_LEVELING_FAILED_POINT_LOW));
  2073. return;
  2074. }
  2075. #endif //TMC2130
  2076. axis_is_at_home(axis);
  2077. destination[axis] = current_position[axis];
  2078. feedrate = 0.0;
  2079. endstops_hit_on_purpose();
  2080. axis_known_position[axis] = true;
  2081. #ifdef TMC2130
  2082. FORCE_HIGH_POWER_END;
  2083. #endif
  2084. }
  2085. enable_endstops(endstops_enabled);
  2086. }
  2087. /**/
  2088. void home_xy()
  2089. {
  2090. set_destination_to_current();
  2091. homeaxis(X_AXIS);
  2092. homeaxis(Y_AXIS);
  2093. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2094. endstops_hit_on_purpose();
  2095. }
  2096. void refresh_cmd_timeout(void)
  2097. {
  2098. previous_millis_cmd = millis();
  2099. }
  2100. #ifdef FWRETRACT
  2101. void retract(bool retracting, bool swapretract = false) {
  2102. if(retracting && !retracted[active_extruder]) {
  2103. destination[X_AXIS]=current_position[X_AXIS];
  2104. destination[Y_AXIS]=current_position[Y_AXIS];
  2105. destination[Z_AXIS]=current_position[Z_AXIS];
  2106. destination[E_AXIS]=current_position[E_AXIS];
  2107. current_position[E_AXIS]+=(swapretract?retract_length_swap:retract_length)*float(extrudemultiply)*0.01f;
  2108. plan_set_e_position(current_position[E_AXIS]);
  2109. float oldFeedrate = feedrate;
  2110. feedrate=retract_feedrate*60;
  2111. retracted[active_extruder]=true;
  2112. prepare_move();
  2113. current_position[Z_AXIS]-=retract_zlift;
  2114. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2115. prepare_move();
  2116. feedrate = oldFeedrate;
  2117. } else if(!retracting && retracted[active_extruder]) {
  2118. destination[X_AXIS]=current_position[X_AXIS];
  2119. destination[Y_AXIS]=current_position[Y_AXIS];
  2120. destination[Z_AXIS]=current_position[Z_AXIS];
  2121. destination[E_AXIS]=current_position[E_AXIS];
  2122. current_position[Z_AXIS]+=retract_zlift;
  2123. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2124. current_position[E_AXIS]-=(swapretract?(retract_length_swap+retract_recover_length_swap):(retract_length+retract_recover_length))*float(extrudemultiply)*0.01f;
  2125. plan_set_e_position(current_position[E_AXIS]);
  2126. float oldFeedrate = feedrate;
  2127. feedrate=retract_recover_feedrate*60;
  2128. retracted[active_extruder]=false;
  2129. prepare_move();
  2130. feedrate = oldFeedrate;
  2131. }
  2132. } //retract
  2133. #endif //FWRETRACT
  2134. void trace() {
  2135. tone(BEEPER, 440);
  2136. delay(25);
  2137. noTone(BEEPER);
  2138. delay(20);
  2139. }
  2140. /*
  2141. void ramming() {
  2142. // float tmp[4] = DEFAULT_MAX_FEEDRATE;
  2143. if (current_temperature[0] < 230) {
  2144. //PLA
  2145. max_feedrate[E_AXIS] = 50;
  2146. //current_position[E_AXIS] -= 8;
  2147. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2148. //current_position[E_AXIS] += 8;
  2149. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2150. current_position[E_AXIS] += 5.4;
  2151. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2800 / 60, active_extruder);
  2152. current_position[E_AXIS] += 3.2;
  2153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2154. current_position[E_AXIS] += 3;
  2155. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3400 / 60, active_extruder);
  2156. st_synchronize();
  2157. max_feedrate[E_AXIS] = 80;
  2158. current_position[E_AXIS] -= 82;
  2159. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9500 / 60, active_extruder);
  2160. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2161. current_position[E_AXIS] -= 20;
  2162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1200 / 60, active_extruder);
  2163. current_position[E_AXIS] += 5;
  2164. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2165. current_position[E_AXIS] += 5;
  2166. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2167. current_position[E_AXIS] -= 10;
  2168. st_synchronize();
  2169. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2170. current_position[E_AXIS] += 10;
  2171. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2172. current_position[E_AXIS] -= 10;
  2173. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2174. current_position[E_AXIS] += 10;
  2175. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2176. current_position[E_AXIS] -= 10;
  2177. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2178. st_synchronize();
  2179. }
  2180. else {
  2181. //ABS
  2182. max_feedrate[E_AXIS] = 50;
  2183. //current_position[E_AXIS] -= 8;
  2184. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2185. //current_position[E_AXIS] += 8;
  2186. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2100 / 60, active_extruder);
  2187. current_position[E_AXIS] += 3.1;
  2188. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2000 / 60, active_extruder);
  2189. current_position[E_AXIS] += 3.1;
  2190. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 2500 / 60, active_extruder);
  2191. current_position[E_AXIS] += 4;
  2192. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  2193. st_synchronize();
  2194. //current_position[X_AXIS] += 23; //delay
  2195. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2196. //current_position[X_AXIS] -= 23; //delay
  2197. //plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600/60, active_extruder); //delay
  2198. delay(4700);
  2199. max_feedrate[E_AXIS] = 80;
  2200. current_position[E_AXIS] -= 92;
  2201. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 9900 / 60, active_extruder);
  2202. max_feedrate[E_AXIS] = 50;//tmp[E_AXIS];
  2203. current_position[E_AXIS] -= 5;
  2204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 800 / 60, active_extruder);
  2205. current_position[E_AXIS] += 5;
  2206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder);
  2207. current_position[E_AXIS] -= 5;
  2208. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2209. st_synchronize();
  2210. current_position[E_AXIS] += 5;
  2211. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2212. current_position[E_AXIS] -= 5;
  2213. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2214. current_position[E_AXIS] += 5;
  2215. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2216. current_position[E_AXIS] -= 5;
  2217. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 600 / 60, active_extruder);
  2218. st_synchronize();
  2219. }
  2220. }
  2221. */
  2222. #ifdef TMC2130
  2223. void force_high_power_mode(bool start_high_power_section) {
  2224. uint8_t silent;
  2225. silent = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  2226. if (silent == 1) {
  2227. //we are in silent mode, set to normal mode to enable crash detection
  2228. // Wait for the planner queue to drain and for the stepper timer routine to reach an idle state.
  2229. st_synchronize();
  2230. cli();
  2231. tmc2130_mode = (start_high_power_section == true) ? TMC2130_MODE_NORMAL : TMC2130_MODE_SILENT;
  2232. tmc2130_init();
  2233. // We may have missed a stepper timer interrupt due to the time spent in the tmc2130_init() routine.
  2234. // Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  2235. st_reset_timer();
  2236. sei();
  2237. }
  2238. }
  2239. #endif //TMC2130
  2240. void gcode_G28(bool home_x, bool home_y, bool home_z, bool calib) {
  2241. st_synchronize();
  2242. #if 0
  2243. SERIAL_ECHOPGM("G28, initial "); print_world_coordinates();
  2244. SERIAL_ECHOPGM("G28, initial "); print_physical_coordinates();
  2245. #endif
  2246. // Flag for the display update routine and to disable the print cancelation during homing.
  2247. homing_flag = true;
  2248. // Either all X,Y,Z codes are present, or none of them.
  2249. bool home_all_axes = home_x == home_y && home_x == home_z;
  2250. if (home_all_axes)
  2251. // No X/Y/Z code provided means to home all axes.
  2252. home_x = home_y = home_z = true;
  2253. //if we are homing all axes, first move z higher to protect heatbed/steel sheet
  2254. if (home_all_axes) {
  2255. current_position[Z_AXIS] += MESH_HOME_Z_SEARCH;
  2256. feedrate = homing_feedrate[Z_AXIS];
  2257. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  2258. st_synchronize();
  2259. }
  2260. #ifdef ENABLE_AUTO_BED_LEVELING
  2261. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  2262. #endif //ENABLE_AUTO_BED_LEVELING
  2263. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2264. // the planner will not perform any adjustments in the XY plane.
  2265. // Wait for the motors to stop and update the current position with the absolute values.
  2266. world2machine_revert_to_uncorrected();
  2267. // For mesh bed leveling deactivate the matrix temporarily.
  2268. // It is necessary to disable the bed leveling for the X and Y homing moves, so that the move is performed
  2269. // in a single axis only.
  2270. // In case of re-homing the X or Y axes only, the mesh bed leveling is restored after G28.
  2271. #ifdef MESH_BED_LEVELING
  2272. uint8_t mbl_was_active = mbl.active;
  2273. mbl.active = 0;
  2274. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  2275. #endif
  2276. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  2277. // consumed during the first movements following this statement.
  2278. if (home_z)
  2279. babystep_undo();
  2280. saved_feedrate = feedrate;
  2281. saved_feedmultiply = feedmultiply;
  2282. feedmultiply = 100;
  2283. previous_millis_cmd = millis();
  2284. enable_endstops(true);
  2285. memcpy(destination, current_position, sizeof(destination));
  2286. feedrate = 0.0;
  2287. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2288. if(home_z)
  2289. homeaxis(Z_AXIS);
  2290. #endif
  2291. #ifdef QUICK_HOME
  2292. // In the quick mode, if both x and y are to be homed, a diagonal move will be performed initially.
  2293. if(home_x && home_y) //first diagonal move
  2294. {
  2295. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  2296. int x_axis_home_dir = home_dir(X_AXIS);
  2297. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2298. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  2299. feedrate = homing_feedrate[X_AXIS];
  2300. if(homing_feedrate[Y_AXIS]<feedrate)
  2301. feedrate = homing_feedrate[Y_AXIS];
  2302. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  2303. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  2304. } else {
  2305. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  2306. }
  2307. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2308. st_synchronize();
  2309. axis_is_at_home(X_AXIS);
  2310. axis_is_at_home(Y_AXIS);
  2311. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2312. destination[X_AXIS] = current_position[X_AXIS];
  2313. destination[Y_AXIS] = current_position[Y_AXIS];
  2314. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2315. feedrate = 0.0;
  2316. st_synchronize();
  2317. endstops_hit_on_purpose();
  2318. current_position[X_AXIS] = destination[X_AXIS];
  2319. current_position[Y_AXIS] = destination[Y_AXIS];
  2320. current_position[Z_AXIS] = destination[Z_AXIS];
  2321. }
  2322. #endif /* QUICK_HOME */
  2323. #ifdef TMC2130
  2324. if(home_x)
  2325. {
  2326. if (!calib)
  2327. homeaxis(X_AXIS);
  2328. else
  2329. tmc2130_home_calibrate(X_AXIS);
  2330. }
  2331. if(home_y)
  2332. {
  2333. if (!calib)
  2334. homeaxis(Y_AXIS);
  2335. else
  2336. tmc2130_home_calibrate(Y_AXIS);
  2337. }
  2338. #endif //TMC2130
  2339. if(code_seen(axis_codes[X_AXIS]) && code_value_long() != 0)
  2340. current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
  2341. if(code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0)
  2342. current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
  2343. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  2344. #ifndef Z_SAFE_HOMING
  2345. if(home_z) {
  2346. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2347. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2348. feedrate = max_feedrate[Z_AXIS];
  2349. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2350. st_synchronize();
  2351. #endif // defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  2352. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP)) // If Mesh bed leveling, move X&Y to safe position for home
  2353. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] ))
  2354. {
  2355. homeaxis(X_AXIS);
  2356. homeaxis(Y_AXIS);
  2357. }
  2358. // 1st mesh bed leveling measurement point, corrected.
  2359. world2machine_initialize();
  2360. world2machine(pgm_read_float(bed_ref_points_4), pgm_read_float(bed_ref_points_4+1), destination[X_AXIS], destination[Y_AXIS]);
  2361. world2machine_reset();
  2362. if (destination[Y_AXIS] < Y_MIN_POS)
  2363. destination[Y_AXIS] = Y_MIN_POS;
  2364. destination[Z_AXIS] = MESH_HOME_Z_SEARCH; // Set destination away from bed
  2365. feedrate = homing_feedrate[Z_AXIS]/10;
  2366. current_position[Z_AXIS] = 0;
  2367. enable_endstops(false);
  2368. #ifdef DEBUG_BUILD
  2369. SERIAL_ECHOLNPGM("plan_set_position()");
  2370. MYSERIAL.println(current_position[X_AXIS]);MYSERIAL.println(current_position[Y_AXIS]);
  2371. MYSERIAL.println(current_position[Z_AXIS]);MYSERIAL.println(current_position[E_AXIS]);
  2372. #endif
  2373. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2374. #ifdef DEBUG_BUILD
  2375. SERIAL_ECHOLNPGM("plan_buffer_line()");
  2376. MYSERIAL.println(destination[X_AXIS]);MYSERIAL.println(destination[Y_AXIS]);
  2377. MYSERIAL.println(destination[Z_AXIS]);MYSERIAL.println(destination[E_AXIS]);
  2378. MYSERIAL.println(feedrate);MYSERIAL.println(active_extruder);
  2379. #endif
  2380. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2381. st_synchronize();
  2382. current_position[X_AXIS] = destination[X_AXIS];
  2383. current_position[Y_AXIS] = destination[Y_AXIS];
  2384. enable_endstops(true);
  2385. endstops_hit_on_purpose();
  2386. homeaxis(Z_AXIS);
  2387. #else // MESH_BED_LEVELING
  2388. homeaxis(Z_AXIS);
  2389. #endif // MESH_BED_LEVELING
  2390. }
  2391. #else // defined(Z_SAFE_HOMING): Z Safe mode activated.
  2392. if(home_all_axes) {
  2393. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  2394. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  2395. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2396. feedrate = XY_TRAVEL_SPEED/60;
  2397. current_position[Z_AXIS] = 0;
  2398. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2399. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2400. st_synchronize();
  2401. current_position[X_AXIS] = destination[X_AXIS];
  2402. current_position[Y_AXIS] = destination[Y_AXIS];
  2403. homeaxis(Z_AXIS);
  2404. }
  2405. // Let's see if X and Y are homed and probe is inside bed area.
  2406. if(home_z) {
  2407. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  2408. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  2409. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  2410. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  2411. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  2412. current_position[Z_AXIS] = 0;
  2413. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2414. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  2415. feedrate = max_feedrate[Z_AXIS];
  2416. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  2417. st_synchronize();
  2418. homeaxis(Z_AXIS);
  2419. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  2420. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  2421. SERIAL_ECHO_START;
  2422. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  2423. } else {
  2424. LCD_MESSAGERPGM(MSG_ZPROBE_OUT);
  2425. SERIAL_ECHO_START;
  2426. SERIAL_ECHOLNRPGM(MSG_ZPROBE_OUT);
  2427. }
  2428. }
  2429. #endif // Z_SAFE_HOMING
  2430. #endif // Z_HOME_DIR < 0
  2431. if(code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
  2432. current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
  2433. #ifdef ENABLE_AUTO_BED_LEVELING
  2434. if(home_z)
  2435. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  2436. #endif
  2437. // Set the planner and stepper routine positions.
  2438. // At this point the mesh bed leveling and world2machine corrections are disabled and current_position
  2439. // contains the machine coordinates.
  2440. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2441. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  2442. enable_endstops(false);
  2443. #endif
  2444. feedrate = saved_feedrate;
  2445. feedmultiply = saved_feedmultiply;
  2446. previous_millis_cmd = millis();
  2447. endstops_hit_on_purpose();
  2448. #ifndef MESH_BED_LEVELING
  2449. // If MESH_BED_LEVELING is not active, then it is the original Prusa i3.
  2450. // Offer the user to load the baby step value, which has been adjusted at the previous print session.
  2451. if(card.sdprinting && eeprom_read_word((uint16_t *)EEPROM_BABYSTEP_Z))
  2452. lcd_adjust_z();
  2453. #endif
  2454. // Load the machine correction matrix
  2455. world2machine_initialize();
  2456. // and correct the current_position XY axes to match the transformed coordinate system.
  2457. world2machine_update_current();
  2458. #if (defined(MESH_BED_LEVELING) && !defined(MK1BP))
  2459. if (code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen('W') || code_seen(axis_codes[Z_AXIS]))
  2460. {
  2461. if (! home_z && mbl_was_active) {
  2462. // Re-enable the mesh bed leveling if only the X and Y axes were re-homed.
  2463. mbl.active = true;
  2464. // and re-adjust the current logical Z axis with the bed leveling offset applicable at the current XY position.
  2465. current_position[Z_AXIS] -= mbl.get_z(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS));
  2466. }
  2467. }
  2468. else
  2469. {
  2470. st_synchronize();
  2471. homing_flag = false;
  2472. // Push the commands to the front of the message queue in the reverse order!
  2473. // There shall be always enough space reserved for these commands.
  2474. enquecommand_front_P((PSTR("G80")));
  2475. //goto case_G80;
  2476. }
  2477. #endif
  2478. if (farm_mode) { prusa_statistics(20); };
  2479. homing_flag = false;
  2480. #if 0
  2481. SERIAL_ECHOPGM("G28, final "); print_world_coordinates();
  2482. SERIAL_ECHOPGM("G28, final "); print_physical_coordinates();
  2483. SERIAL_ECHOPGM("G28, final "); print_mesh_bed_leveling_table();
  2484. #endif
  2485. }
  2486. bool gcode_M45(bool onlyZ, int8_t verbosity_level)
  2487. {
  2488. bool final_result = false;
  2489. #ifdef TMC2130
  2490. FORCE_HIGH_POWER_START;
  2491. #endif // TMC2130
  2492. // Only Z calibration?
  2493. if (!onlyZ)
  2494. {
  2495. setTargetBed(0);
  2496. setTargetHotend(0, 0);
  2497. setTargetHotend(0, 1);
  2498. setTargetHotend(0, 2);
  2499. adjust_bed_reset(); //reset bed level correction
  2500. }
  2501. // Disable the default update procedure of the display. We will do a modal dialog.
  2502. lcd_update_enable(false);
  2503. // Let the planner use the uncorrected coordinates.
  2504. mbl.reset();
  2505. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  2506. // the planner will not perform any adjustments in the XY plane.
  2507. // Wait for the motors to stop and update the current position with the absolute values.
  2508. world2machine_revert_to_uncorrected();
  2509. // Reset the baby step value applied without moving the axes.
  2510. babystep_reset();
  2511. // Mark all axes as in a need for homing.
  2512. memset(axis_known_position, 0, sizeof(axis_known_position));
  2513. // Home in the XY plane.
  2514. //set_destination_to_current();
  2515. setup_for_endstop_move();
  2516. lcd_display_message_fullscreen_P(_T(MSG_AUTO_HOME));
  2517. home_xy();
  2518. enable_endstops(false);
  2519. current_position[X_AXIS] += 5;
  2520. current_position[Y_AXIS] += 5;
  2521. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2522. st_synchronize();
  2523. // Let the user move the Z axes up to the end stoppers.
  2524. #ifdef TMC2130
  2525. if (calibrate_z_auto())
  2526. {
  2527. #else //TMC2130
  2528. if (lcd_calibrate_z_end_stop_manual(onlyZ))
  2529. {
  2530. #endif //TMC2130
  2531. refresh_cmd_timeout();
  2532. #ifndef STEEL_SHEET
  2533. if (((degHotend(0) > MAX_HOTEND_TEMP_CALIBRATION) || (degBed() > MAX_BED_TEMP_CALIBRATION)) && (!onlyZ))
  2534. {
  2535. lcd_wait_for_cool_down();
  2536. }
  2537. #endif //STEEL_SHEET
  2538. if(!onlyZ)
  2539. {
  2540. KEEPALIVE_STATE(PAUSED_FOR_USER);
  2541. #ifdef STEEL_SHEET
  2542. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  2543. if(result) lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  2544. #endif //STEEL_SHEET
  2545. lcd_show_fullscreen_message_and_wait_P(_T(MSG_CONFIRM_NOZZLE_CLEAN));
  2546. lcd_show_fullscreen_message_and_wait_P(_T(MSG_PAPER));
  2547. KEEPALIVE_STATE(IN_HANDLER);
  2548. lcd_display_message_fullscreen_P(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE1));
  2549. lcd_implementation_print_at(0, 2, 1);
  2550. lcd_printPGM(_T(MSG_FIND_BED_OFFSET_AND_SKEW_LINE2));
  2551. }
  2552. // Move the print head close to the bed.
  2553. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2554. bool endstops_enabled = enable_endstops(true);
  2555. #ifdef TMC2130
  2556. tmc2130_home_enter(Z_AXIS_MASK);
  2557. #endif //TMC2130
  2558. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2559. st_synchronize();
  2560. #ifdef TMC2130
  2561. tmc2130_home_exit();
  2562. #endif //TMC2130
  2563. enable_endstops(endstops_enabled);
  2564. if (st_get_position_mm(Z_AXIS) == MESH_HOME_Z_SEARCH)
  2565. {
  2566. int8_t verbosity_level = 0;
  2567. if (code_seen('V'))
  2568. {
  2569. // Just 'V' without a number counts as V1.
  2570. char c = strchr_pointer[1];
  2571. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  2572. }
  2573. if (onlyZ)
  2574. {
  2575. clean_up_after_endstop_move();
  2576. // Z only calibration.
  2577. // Load the machine correction matrix
  2578. world2machine_initialize();
  2579. // and correct the current_position to match the transformed coordinate system.
  2580. world2machine_update_current();
  2581. //FIXME
  2582. bool result = sample_mesh_and_store_reference();
  2583. if (result)
  2584. {
  2585. if (calibration_status() == CALIBRATION_STATUS_Z_CALIBRATION)
  2586. // Shipped, the nozzle height has been set already. The user can start printing now.
  2587. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  2588. final_result = true;
  2589. // babystep_apply();
  2590. }
  2591. }
  2592. else
  2593. {
  2594. // Reset the baby step value and the baby step applied flag.
  2595. calibration_status_store(CALIBRATION_STATUS_XYZ_CALIBRATION);
  2596. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  2597. // Complete XYZ calibration.
  2598. uint8_t point_too_far_mask = 0;
  2599. BedSkewOffsetDetectionResultType result = find_bed_offset_and_skew(verbosity_level, point_too_far_mask);
  2600. clean_up_after_endstop_move();
  2601. // Print head up.
  2602. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2603. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2604. st_synchronize();
  2605. //#ifndef NEW_XYZCAL
  2606. if (result >= 0)
  2607. {
  2608. #ifdef HEATBED_V2
  2609. sample_z();
  2610. #else //HEATBED_V2
  2611. point_too_far_mask = 0;
  2612. // Second half: The fine adjustment.
  2613. // Let the planner use the uncorrected coordinates.
  2614. mbl.reset();
  2615. world2machine_reset();
  2616. // Home in the XY plane.
  2617. setup_for_endstop_move();
  2618. home_xy();
  2619. result = improve_bed_offset_and_skew(1, verbosity_level, point_too_far_mask);
  2620. clean_up_after_endstop_move();
  2621. // Print head up.
  2622. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  2623. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  2624. st_synchronize();
  2625. // if (result >= 0) babystep_apply();
  2626. #endif //HEATBED_V2
  2627. }
  2628. //#endif //NEW_XYZCAL
  2629. lcd_update_enable(true);
  2630. lcd_update(2);
  2631. lcd_bed_calibration_show_result(result, point_too_far_mask);
  2632. if (result >= 0)
  2633. {
  2634. // Calibration valid, the machine should be able to print. Advise the user to run the V2Calibration.gcode.
  2635. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  2636. if (eeprom_read_byte((uint8_t*)EEPROM_WIZARD_ACTIVE) != 1) lcd_show_fullscreen_message_and_wait_P(_T(MSG_BABYSTEP_Z_NOT_SET));
  2637. final_result = true;
  2638. }
  2639. }
  2640. #ifdef TMC2130
  2641. tmc2130_home_exit();
  2642. #endif
  2643. }
  2644. else
  2645. {
  2646. lcd_show_fullscreen_message_and_wait_P(PSTR("Calibration failed! Check the axes and run again."));
  2647. final_result = false;
  2648. }
  2649. }
  2650. else
  2651. {
  2652. // Timeouted.
  2653. }
  2654. lcd_update_enable(true);
  2655. #ifdef TMC2130
  2656. FORCE_HIGH_POWER_END;
  2657. #endif // TMC2130
  2658. return final_result;
  2659. }
  2660. void gcode_M114()
  2661. {
  2662. SERIAL_PROTOCOLPGM("X:");
  2663. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2664. SERIAL_PROTOCOLPGM(" Y:");
  2665. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2666. SERIAL_PROTOCOLPGM(" Z:");
  2667. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2668. SERIAL_PROTOCOLPGM(" E:");
  2669. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2670. SERIAL_PROTOCOLRPGM(_n(" Count X: "));////MSG_COUNT_X c=0 r=0
  2671. SERIAL_PROTOCOL(float(st_get_position(X_AXIS)) / axis_steps_per_unit[X_AXIS]);
  2672. SERIAL_PROTOCOLPGM(" Y:");
  2673. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS)) / axis_steps_per_unit[Y_AXIS]);
  2674. SERIAL_PROTOCOLPGM(" Z:");
  2675. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]);
  2676. SERIAL_PROTOCOLPGM(" E:");
  2677. SERIAL_PROTOCOL(float(st_get_position(E_AXIS)) / axis_steps_per_unit[E_AXIS]);
  2678. SERIAL_PROTOCOLLN("");
  2679. }
  2680. void gcode_M701()
  2681. {
  2682. #ifdef SNMM
  2683. extr_adj(snmm_extruder);//loads current extruder
  2684. #else
  2685. enable_z();
  2686. custom_message = true;
  2687. custom_message_type = 2;
  2688. lcd_setstatuspgm(_T(MSG_LOADING_FILAMENT));
  2689. current_position[E_AXIS] += 70;
  2690. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400 / 60, active_extruder); //fast sequence
  2691. current_position[E_AXIS] += 25;
  2692. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2693. st_synchronize();
  2694. tone(BEEPER, 500);
  2695. delay_keep_alive(50);
  2696. noTone(BEEPER);
  2697. if (!farm_mode && loading_flag) {
  2698. bool clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2699. while (!clean) {
  2700. lcd_update_enable(true);
  2701. lcd_update(2);
  2702. current_position[E_AXIS] += 25;
  2703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 100 / 60, active_extruder); //slow sequence
  2704. st_synchronize();
  2705. clean = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_FILAMENT_CLEAN), false, true);
  2706. }
  2707. }
  2708. lcd_update_enable(true);
  2709. lcd_update(2);
  2710. lcd_setstatuspgm(_T(WELCOME_MSG));
  2711. disable_z();
  2712. loading_flag = false;
  2713. custom_message = false;
  2714. custom_message_type = 0;
  2715. #endif
  2716. }
  2717. /**
  2718. * @brief Get serial number from 32U2 processor
  2719. *
  2720. * Typical format of S/N is:CZPX0917X003XC13518
  2721. *
  2722. * Command operates only in farm mode, if not in farm mode, "Not in farm mode." is written to MYSERIAL.
  2723. *
  2724. * Send command ;S to serial port 0 to retrieve serial number stored in 32U2 processor,
  2725. * reply is transmitted to serial port 1 character by character.
  2726. * Operation takes typically 23 ms. If the retransmit is not finished until 100 ms,
  2727. * it is interrupted, so less, or no characters are retransmitted, only newline character is send
  2728. * in any case.
  2729. */
  2730. static void gcode_PRUSA_SN()
  2731. {
  2732. if (farm_mode) {
  2733. selectedSerialPort = 0;
  2734. putchar(';');
  2735. putchar('S');
  2736. int numbersRead = 0;
  2737. ShortTimer timeout;
  2738. timeout.start();
  2739. while (numbersRead < 19) {
  2740. while (MSerial.available() > 0) {
  2741. uint8_t serial_char = MSerial.read();
  2742. selectedSerialPort = 1;
  2743. putchar(serial_char);
  2744. numbersRead++;
  2745. selectedSerialPort = 0;
  2746. }
  2747. if (timeout.expired(100u)) break;
  2748. }
  2749. selectedSerialPort = 1;
  2750. putchar('\n');
  2751. #if 0
  2752. for (int b = 0; b < 3; b++) {
  2753. tone(BEEPER, 110);
  2754. delay(50);
  2755. noTone(BEEPER);
  2756. delay(50);
  2757. }
  2758. #endif
  2759. } else {
  2760. puts_P(_N("Not in farm mode."));
  2761. }
  2762. }
  2763. void process_commands()
  2764. {
  2765. if (!buflen) return; //empty command
  2766. #ifdef FILAMENT_RUNOUT_SUPPORT
  2767. SET_INPUT(FR_SENS);
  2768. #endif
  2769. #ifdef CMDBUFFER_DEBUG
  2770. SERIAL_ECHOPGM("Processing a GCODE command: ");
  2771. SERIAL_ECHO(cmdbuffer+bufindr+CMDHDRSIZE);
  2772. SERIAL_ECHOLNPGM("");
  2773. SERIAL_ECHOPGM("In cmdqueue: ");
  2774. SERIAL_ECHO(buflen);
  2775. SERIAL_ECHOLNPGM("");
  2776. #endif /* CMDBUFFER_DEBUG */
  2777. unsigned long codenum; //throw away variable
  2778. char *starpos = NULL;
  2779. #ifdef ENABLE_AUTO_BED_LEVELING
  2780. float x_tmp, y_tmp, z_tmp, real_z;
  2781. #endif
  2782. // PRUSA GCODES
  2783. KEEPALIVE_STATE(IN_HANDLER);
  2784. #ifdef SNMM
  2785. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  2786. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  2787. int8_t SilentMode;
  2788. #endif
  2789. if (code_seen("M117")) { //moved to highest priority place to be able to to print strings which includes "G", "PRUSA" and "^"
  2790. starpos = (strchr(strchr_pointer + 5, '*'));
  2791. if (starpos != NULL)
  2792. *(starpos) = '\0';
  2793. lcd_setstatus(strchr_pointer + 5);
  2794. }
  2795. #ifdef TMC2130
  2796. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("CRASH_"), 6) == 0)
  2797. {
  2798. if(code_seen("CRASH_DETECTED"))
  2799. {
  2800. uint8_t mask = 0;
  2801. if (code_seen("X")) mask |= X_AXIS_MASK;
  2802. if (code_seen("Y")) mask |= Y_AXIS_MASK;
  2803. crashdet_detected(mask);
  2804. }
  2805. else if(code_seen("CRASH_RECOVER"))
  2806. crashdet_recover();
  2807. else if(code_seen("CRASH_CANCEL"))
  2808. crashdet_cancel();
  2809. }
  2810. else if (strncmp_P(CMDBUFFER_CURRENT_STRING, PSTR("TMC_"), 4) == 0)
  2811. {
  2812. if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_WAVE_E"), 10) == 0)
  2813. {
  2814. uint8_t fac = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2815. tmc2130_set_wave(E_AXIS, 247, fac);
  2816. }
  2817. else if (strncmp_P(CMDBUFFER_CURRENT_STRING + 4, PSTR("SET_STEP_E"), 10) == 0)
  2818. {
  2819. uint8_t step = (uint8_t)strtol(CMDBUFFER_CURRENT_STRING + 14, NULL, 10);
  2820. uint16_t res = tmc2130_get_res(E_AXIS);
  2821. tmc2130_goto_step(E_AXIS, step & (4*res - 1), 2, 1000, res);
  2822. }
  2823. }
  2824. #endif //TMC2130
  2825. else if(code_seen("PRUSA")){
  2826. if (code_seen("Ping")) { //PRUSA Ping
  2827. if (farm_mode) {
  2828. PingTime = millis();
  2829. //MYSERIAL.print(farm_no); MYSERIAL.println(": OK");
  2830. }
  2831. }
  2832. else if (code_seen("PRN")) {
  2833. printf_P(_N("%d"), status_number);
  2834. }else if (code_seen("FAN")) {
  2835. printf_P(_N("E0:%d RPM\nPRN0:%d RPM\n"), 60*fan_speed[0], 60*fan_speed[1]);
  2836. }else if (code_seen("fn")) {
  2837. if (farm_mode) {
  2838. printf_P(_N("%d"), farm_no);
  2839. }
  2840. else {
  2841. puts_P(_N("Not in farm mode."));
  2842. }
  2843. }
  2844. else if (code_seen("thx")) {
  2845. no_response = false;
  2846. } else if (code_seen("RESET")) {
  2847. // careful!
  2848. if (farm_mode) {
  2849. #ifdef WATCHDOG
  2850. wdt_enable(WDTO_15MS);
  2851. cli();
  2852. while(1);
  2853. #else //WATCHDOG
  2854. asm volatile("jmp 0x3E000");
  2855. #endif //WATCHDOG
  2856. }
  2857. else {
  2858. MYSERIAL.println("Not in farm mode.");
  2859. }
  2860. }else if (code_seen("fv")) {
  2861. // get file version
  2862. #ifdef SDSUPPORT
  2863. card.openFile(strchr_pointer + 3,true);
  2864. while (true) {
  2865. uint16_t readByte = card.get();
  2866. MYSERIAL.write(readByte);
  2867. if (readByte=='\n') {
  2868. break;
  2869. }
  2870. }
  2871. card.closefile();
  2872. #endif // SDSUPPORT
  2873. } else if (code_seen("M28")) {
  2874. trace();
  2875. prusa_sd_card_upload = true;
  2876. card.openFile(strchr_pointer+4,false);
  2877. } else if (code_seen("SN")) {
  2878. gcode_PRUSA_SN();
  2879. } else if(code_seen("Fir")){
  2880. SERIAL_PROTOCOLLN(FW_VERSION);
  2881. } else if(code_seen("Rev")){
  2882. SERIAL_PROTOCOLLN(FILAMENT_SIZE "-" ELECTRONICS "-" NOZZLE_TYPE );
  2883. } else if(code_seen("Lang")) {
  2884. lang_reset();
  2885. } else if(code_seen("Lz")) {
  2886. EEPROM_save_B(EEPROM_BABYSTEP_Z,0);
  2887. } else if(code_seen("Beat")) {
  2888. // Kick farm link timer
  2889. kicktime = millis();
  2890. } else if(code_seen("FR")) {
  2891. // Factory full reset
  2892. factory_reset(0,true);
  2893. }
  2894. //else if (code_seen('Cal')) {
  2895. // lcd_calibration();
  2896. // }
  2897. }
  2898. else if (code_seen('^')) {
  2899. // nothing, this is a version line
  2900. } else if(code_seen('G'))
  2901. {
  2902. switch((int)code_value())
  2903. {
  2904. case 0: // G0 -> G1
  2905. case 1: // G1
  2906. if(Stopped == false) {
  2907. #ifdef FILAMENT_RUNOUT_SUPPORT
  2908. if(READ(FR_SENS)){
  2909. feedmultiplyBckp=feedmultiply;
  2910. float target[4];
  2911. float lastpos[4];
  2912. target[X_AXIS]=current_position[X_AXIS];
  2913. target[Y_AXIS]=current_position[Y_AXIS];
  2914. target[Z_AXIS]=current_position[Z_AXIS];
  2915. target[E_AXIS]=current_position[E_AXIS];
  2916. lastpos[X_AXIS]=current_position[X_AXIS];
  2917. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2918. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2919. lastpos[E_AXIS]=current_position[E_AXIS];
  2920. //retract by E
  2921. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2922. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  2923. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2924. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 300, active_extruder);
  2925. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2926. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2927. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder);
  2928. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2929. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2930. //finish moves
  2931. st_synchronize();
  2932. //disable extruder steppers so filament can be removed
  2933. disable_e0();
  2934. disable_e1();
  2935. disable_e2();
  2936. delay(100);
  2937. //LCD_ALERTMESSAGEPGM(_T(MSG_FILAMENTCHANGE));
  2938. uint8_t cnt=0;
  2939. int counterBeep = 0;
  2940. lcd_wait_interact();
  2941. while(!lcd_clicked()){
  2942. cnt++;
  2943. manage_heater();
  2944. manage_inactivity(true);
  2945. //lcd_update();
  2946. if(cnt==0)
  2947. {
  2948. #if BEEPER > 0
  2949. if (counterBeep== 500){
  2950. counterBeep = 0;
  2951. }
  2952. SET_OUTPUT(BEEPER);
  2953. if (counterBeep== 0){
  2954. WRITE(BEEPER,HIGH);
  2955. }
  2956. if (counterBeep== 20){
  2957. WRITE(BEEPER,LOW);
  2958. }
  2959. counterBeep++;
  2960. #else
  2961. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2962. lcd_buzz(1000/6,100);
  2963. #else
  2964. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2965. #endif
  2966. #endif
  2967. }
  2968. }
  2969. WRITE(BEEPER,LOW);
  2970. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2971. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2972. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2973. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2974. lcd_change_fil_state = 0;
  2975. lcd_loading_filament();
  2976. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  2977. lcd_change_fil_state = 0;
  2978. lcd_alright();
  2979. switch(lcd_change_fil_state){
  2980. case 2:
  2981. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  2982. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 20, active_extruder);
  2983. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2984. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2985. lcd_loading_filament();
  2986. break;
  2987. case 3:
  2988. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  2989. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2990. lcd_loading_color();
  2991. break;
  2992. default:
  2993. lcd_change_success();
  2994. break;
  2995. }
  2996. }
  2997. target[E_AXIS]+= 5;
  2998. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  2999. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  3000. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  3001. //current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3002. //plan_set_e_position(current_position[E_AXIS]);
  3003. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  3004. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //move xy back
  3005. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 200, active_extruder); //move z back
  3006. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  3007. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], 5, active_extruder); //final untretract
  3008. plan_set_e_position(lastpos[E_AXIS]);
  3009. feedmultiply=feedmultiplyBckp;
  3010. char cmd[9];
  3011. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  3012. enquecommand(cmd);
  3013. }
  3014. #endif
  3015. get_coordinates(); // For X Y Z E F
  3016. if (total_filament_used > ((current_position[E_AXIS] - destination[E_AXIS]) * 100)) { //protection against total_filament_used overflow
  3017. total_filament_used = total_filament_used + ((destination[E_AXIS] - current_position[E_AXIS]) * 100);
  3018. }
  3019. #ifdef FWRETRACT
  3020. if(autoretract_enabled)
  3021. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  3022. float echange=destination[E_AXIS]-current_position[E_AXIS];
  3023. if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover
  3024. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  3025. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  3026. retract(!retracted[active_extruder]);
  3027. return;
  3028. }
  3029. }
  3030. #endif //FWRETRACT
  3031. prepare_move();
  3032. //ClearToSend();
  3033. }
  3034. break;
  3035. case 2: // G2 - CW ARC
  3036. if(Stopped == false) {
  3037. get_arc_coordinates();
  3038. prepare_arc_move(true);
  3039. }
  3040. break;
  3041. case 3: // G3 - CCW ARC
  3042. if(Stopped == false) {
  3043. get_arc_coordinates();
  3044. prepare_arc_move(false);
  3045. }
  3046. break;
  3047. case 4: // G4 dwell
  3048. codenum = 0;
  3049. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  3050. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  3051. if(codenum != 0) LCD_MESSAGERPGM(_i("Sleep..."));////MSG_DWELL c=0 r=0
  3052. st_synchronize();
  3053. codenum += millis(); // keep track of when we started waiting
  3054. previous_millis_cmd = millis();
  3055. while(millis() < codenum) {
  3056. manage_heater();
  3057. manage_inactivity();
  3058. lcd_update();
  3059. }
  3060. break;
  3061. #ifdef FWRETRACT
  3062. case 10: // G10 retract
  3063. #if EXTRUDERS > 1
  3064. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  3065. retract(true,retracted_swap[active_extruder]);
  3066. #else
  3067. retract(true);
  3068. #endif
  3069. break;
  3070. case 11: // G11 retract_recover
  3071. #if EXTRUDERS > 1
  3072. retract(false,retracted_swap[active_extruder]);
  3073. #else
  3074. retract(false);
  3075. #endif
  3076. break;
  3077. #endif //FWRETRACT
  3078. case 28: //G28 Home all Axis one at a time
  3079. {
  3080. // Which axes should be homed?
  3081. bool home_x = code_seen(axis_codes[X_AXIS]);
  3082. bool home_y = code_seen(axis_codes[Y_AXIS]);
  3083. bool home_z = code_seen(axis_codes[Z_AXIS]);
  3084. // calibrate?
  3085. bool calib = code_seen('C');
  3086. gcode_G28(home_x, home_y, home_z, calib);
  3087. break;
  3088. }
  3089. #ifdef ENABLE_AUTO_BED_LEVELING
  3090. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  3091. {
  3092. #if Z_MIN_PIN == -1
  3093. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature! Z_MIN_PIN must point to a valid hardware pin."
  3094. #endif
  3095. // Prevent user from running a G29 without first homing in X and Y
  3096. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  3097. {
  3098. LCD_MESSAGERPGM(MSG_POSITION_UNKNOWN);
  3099. SERIAL_ECHO_START;
  3100. SERIAL_ECHOLNRPGM(MSG_POSITION_UNKNOWN);
  3101. break; // abort G29, since we don't know where we are
  3102. }
  3103. st_synchronize();
  3104. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  3105. //vector_3 corrected_position = plan_get_position_mm();
  3106. //corrected_position.debug("position before G29");
  3107. plan_bed_level_matrix.set_to_identity();
  3108. vector_3 uncorrected_position = plan_get_position();
  3109. //uncorrected_position.debug("position durring G29");
  3110. current_position[X_AXIS] = uncorrected_position.x;
  3111. current_position[Y_AXIS] = uncorrected_position.y;
  3112. current_position[Z_AXIS] = uncorrected_position.z;
  3113. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3114. setup_for_endstop_move();
  3115. feedrate = homing_feedrate[Z_AXIS];
  3116. #ifdef AUTO_BED_LEVELING_GRID
  3117. // probe at the points of a lattice grid
  3118. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3119. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  3120. // solve the plane equation ax + by + d = z
  3121. // A is the matrix with rows [x y 1] for all the probed points
  3122. // B is the vector of the Z positions
  3123. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3124. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3125. // "A" matrix of the linear system of equations
  3126. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  3127. // "B" vector of Z points
  3128. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  3129. int probePointCounter = 0;
  3130. bool zig = true;
  3131. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  3132. {
  3133. int xProbe, xInc;
  3134. if (zig)
  3135. {
  3136. xProbe = LEFT_PROBE_BED_POSITION;
  3137. //xEnd = RIGHT_PROBE_BED_POSITION;
  3138. xInc = xGridSpacing;
  3139. zig = false;
  3140. } else // zag
  3141. {
  3142. xProbe = RIGHT_PROBE_BED_POSITION;
  3143. //xEnd = LEFT_PROBE_BED_POSITION;
  3144. xInc = -xGridSpacing;
  3145. zig = true;
  3146. }
  3147. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  3148. {
  3149. float z_before;
  3150. if (probePointCounter == 0)
  3151. {
  3152. // raise before probing
  3153. z_before = Z_RAISE_BEFORE_PROBING;
  3154. } else
  3155. {
  3156. // raise extruder
  3157. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  3158. }
  3159. float measured_z = probe_pt(xProbe, yProbe, z_before);
  3160. eqnBVector[probePointCounter] = measured_z;
  3161. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  3162. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  3163. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  3164. probePointCounter++;
  3165. xProbe += xInc;
  3166. }
  3167. }
  3168. clean_up_after_endstop_move();
  3169. // solve lsq problem
  3170. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  3171. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3172. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  3173. SERIAL_PROTOCOLPGM(" b: ");
  3174. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  3175. SERIAL_PROTOCOLPGM(" d: ");
  3176. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  3177. set_bed_level_equation_lsq(plane_equation_coefficients);
  3178. free(plane_equation_coefficients);
  3179. #else // AUTO_BED_LEVELING_GRID not defined
  3180. // Probe at 3 arbitrary points
  3181. // probe 1
  3182. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  3183. // probe 2
  3184. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3185. // probe 3
  3186. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3187. clean_up_after_endstop_move();
  3188. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3189. #endif // AUTO_BED_LEVELING_GRID
  3190. st_synchronize();
  3191. // The following code correct the Z height difference from z-probe position and hotend tip position.
  3192. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  3193. // When the bed is uneven, this height must be corrected.
  3194. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  3195. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  3196. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3197. z_tmp = current_position[Z_AXIS];
  3198. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  3199. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  3200. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3201. }
  3202. break;
  3203. #ifndef Z_PROBE_SLED
  3204. case 30: // G30 Single Z Probe
  3205. {
  3206. st_synchronize();
  3207. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3208. setup_for_endstop_move();
  3209. feedrate = homing_feedrate[Z_AXIS];
  3210. run_z_probe();
  3211. SERIAL_PROTOCOLPGM(_T(MSG_BED));
  3212. SERIAL_PROTOCOLPGM(" X: ");
  3213. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3214. SERIAL_PROTOCOLPGM(" Y: ");
  3215. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3216. SERIAL_PROTOCOLPGM(" Z: ");
  3217. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3218. SERIAL_PROTOCOLPGM("\n");
  3219. clean_up_after_endstop_move();
  3220. }
  3221. break;
  3222. #else
  3223. case 31: // dock the sled
  3224. dock_sled(true);
  3225. break;
  3226. case 32: // undock the sled
  3227. dock_sled(false);
  3228. break;
  3229. #endif // Z_PROBE_SLED
  3230. #endif // ENABLE_AUTO_BED_LEVELING
  3231. #ifdef MESH_BED_LEVELING
  3232. case 30: // G30 Single Z Probe
  3233. {
  3234. st_synchronize();
  3235. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  3236. setup_for_endstop_move();
  3237. feedrate = homing_feedrate[Z_AXIS];
  3238. find_bed_induction_sensor_point_z(-10.f, 3);
  3239. printf_P(_N("%S X: %.5f Y: %.5f Z: %.5f\n"), _T(MSG_BED), _x, _y, _z);
  3240. clean_up_after_endstop_move();
  3241. }
  3242. break;
  3243. case 75:
  3244. {
  3245. for (int i = 40; i <= 110; i++)
  3246. printf_P(_N("%d %.2f"), i, temp_comp_interpolation(i));
  3247. }
  3248. break;
  3249. case 76: //PINDA probe temperature calibration
  3250. {
  3251. #ifdef PINDA_THERMISTOR
  3252. if (true)
  3253. {
  3254. if (calibration_status() >= CALIBRATION_STATUS_XYZ_CALIBRATION) {
  3255. //we need to know accurate position of first calibration point
  3256. //if xyz calibration was not performed yet, interrupt temperature calibration and inform user that xyz cal. is needed
  3257. lcd_show_fullscreen_message_and_wait_P(_i("Please run XYZ calibration first."));
  3258. break;
  3259. }
  3260. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS]))
  3261. {
  3262. // We don't know where we are! HOME!
  3263. // Push the commands to the front of the message queue in the reverse order!
  3264. // There shall be always enough space reserved for these commands.
  3265. repeatcommand_front(); // repeat G76 with all its parameters
  3266. enquecommand_front_P((PSTR("G28 W0")));
  3267. break;
  3268. }
  3269. lcd_show_fullscreen_message_and_wait_P(_i("Stable ambient temperature 21-26C is needed a rigid stand is required."));////MSG_TEMP_CAL_WARNING c=20 r=4
  3270. bool result = lcd_show_fullscreen_message_yes_no_and_wait_P(_T(MSG_STEEL_SHEET_CHECK), false, false);
  3271. if (result)
  3272. {
  3273. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3274. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3275. current_position[Z_AXIS] = 50;
  3276. current_position[Y_AXIS] = 180;
  3277. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3278. st_synchronize();
  3279. lcd_show_fullscreen_message_and_wait_P(_T(MSG_REMOVE_STEEL_SHEET));
  3280. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3281. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3282. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3283. st_synchronize();
  3284. gcode_G28(false, false, true, false);
  3285. }
  3286. if ((current_temperature_pinda > 35) && (farm_mode == false)) {
  3287. //waiting for PIDNA probe to cool down in case that we are not in farm mode
  3288. current_position[Z_AXIS] = 100;
  3289. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3290. if (lcd_wait_for_pinda(35) == false) { //waiting for PINDA probe to cool, if this takes more then time expected, temp. cal. fails
  3291. lcd_temp_cal_show_result(false);
  3292. break;
  3293. }
  3294. }
  3295. lcd_update_enable(true);
  3296. KEEPALIVE_STATE(NOT_BUSY); //no need to print busy messages as we print current temperatures periodicaly
  3297. SERIAL_ECHOLNPGM("PINDA probe calibration start");
  3298. float zero_z;
  3299. int z_shift = 0; //unit: steps
  3300. float start_temp = 5 * (int)(current_temperature_pinda / 5);
  3301. if (start_temp < 35) start_temp = 35;
  3302. if (start_temp < current_temperature_pinda) start_temp += 5;
  3303. printf_P(_N("start temperature: %.1f\n"), start_temp);
  3304. // setTargetHotend(200, 0);
  3305. setTargetBed(70 + (start_temp - 30));
  3306. custom_message = true;
  3307. custom_message_type = 4;
  3308. custom_message_state = 1;
  3309. custom_message = _T(MSG_TEMP_CALIBRATION);
  3310. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3311. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3312. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3313. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3314. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3315. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3316. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3317. st_synchronize();
  3318. while (current_temperature_pinda < start_temp)
  3319. {
  3320. delay_keep_alive(1000);
  3321. serialecho_temperatures();
  3322. }
  3323. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3324. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3325. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3326. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3327. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3328. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3329. st_synchronize();
  3330. bool find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3331. if (find_z_result == false) {
  3332. lcd_temp_cal_show_result(find_z_result);
  3333. break;
  3334. }
  3335. zero_z = current_position[Z_AXIS];
  3336. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3337. int i = -1; for (; i < 5; i++)
  3338. {
  3339. float temp = (40 + i * 5);
  3340. printf_P(_N("\nStep: %d/6 (skipped)\nPINDA temperature: %d Z shift (mm):0\n"), i + 2, (40 + i*5));
  3341. if (i >= 0) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3342. if (start_temp <= temp) break;
  3343. }
  3344. for (i++; i < 5; i++)
  3345. {
  3346. float temp = (40 + i * 5);
  3347. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3348. custom_message_state = i + 2;
  3349. setTargetBed(50 + 10 * (temp - 30) / 5);
  3350. // setTargetHotend(255, 0);
  3351. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3352. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3353. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3354. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3355. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3356. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3357. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3358. st_synchronize();
  3359. while (current_temperature_pinda < temp)
  3360. {
  3361. delay_keep_alive(1000);
  3362. serialecho_temperatures();
  3363. }
  3364. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3365. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3366. current_position[X_AXIS] = pgm_read_float(bed_ref_points_4);
  3367. current_position[Y_AXIS] = pgm_read_float(bed_ref_points_4 + 1);
  3368. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3369. st_synchronize();
  3370. find_z_result = find_bed_induction_sensor_point_z(-1.f);
  3371. if (find_z_result == false) {
  3372. lcd_temp_cal_show_result(find_z_result);
  3373. break;
  3374. }
  3375. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3376. printf_P(_N("\nPINDA temperature: %.1f Z shift (mm): %.3f"), current_temperature_pinda, current_position[Z_AXIS] - zero_z);
  3377. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  3378. }
  3379. lcd_temp_cal_show_result(true);
  3380. break;
  3381. }
  3382. #endif //PINDA_THERMISTOR
  3383. setTargetBed(PINDA_MIN_T);
  3384. float zero_z;
  3385. int z_shift = 0; //unit: steps
  3386. int t_c; // temperature
  3387. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3388. // We don't know where we are! HOME!
  3389. // Push the commands to the front of the message queue in the reverse order!
  3390. // There shall be always enough space reserved for these commands.
  3391. repeatcommand_front(); // repeat G76 with all its parameters
  3392. enquecommand_front_P((PSTR("G28 W0")));
  3393. break;
  3394. }
  3395. puts_P(_N("PINDA probe calibration start"));
  3396. custom_message = true;
  3397. custom_message_type = 4;
  3398. custom_message_state = 1;
  3399. custom_message = _T(MSG_TEMP_CALIBRATION);
  3400. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3401. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3402. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3403. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3404. st_synchronize();
  3405. while (abs(degBed() - PINDA_MIN_T) > 1) {
  3406. delay_keep_alive(1000);
  3407. serialecho_temperatures();
  3408. }
  3409. //enquecommand_P(PSTR("M190 S50"));
  3410. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3411. delay_keep_alive(1000);
  3412. serialecho_temperatures();
  3413. }
  3414. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 0); //invalidate temp. calibration in case that in will be aborted during the calibration process
  3415. current_position[Z_AXIS] = 5;
  3416. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3417. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3418. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3419. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3420. st_synchronize();
  3421. find_bed_induction_sensor_point_z(-1.f);
  3422. zero_z = current_position[Z_AXIS];
  3423. printf_P(_N("\nZERO: %.3f\n"), current_position[Z_AXIS]);
  3424. for (int i = 0; i<5; i++) {
  3425. printf_P(_N("\nStep: %d/6\n"), i + 2);
  3426. custom_message_state = i + 2;
  3427. t_c = 60 + i * 10;
  3428. setTargetBed(t_c);
  3429. current_position[X_AXIS] = PINDA_PREHEAT_X;
  3430. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  3431. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  3432. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3433. st_synchronize();
  3434. while (degBed() < t_c) {
  3435. delay_keep_alive(1000);
  3436. serialecho_temperatures();
  3437. }
  3438. for (int i = 0; i < PINDA_HEAT_T; i++) {
  3439. delay_keep_alive(1000);
  3440. serialecho_temperatures();
  3441. }
  3442. current_position[Z_AXIS] = 5;
  3443. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3444. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3445. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3446. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  3447. st_synchronize();
  3448. find_bed_induction_sensor_point_z(-1.f);
  3449. z_shift = (int)((current_position[Z_AXIS] - zero_z)*axis_steps_per_unit[Z_AXIS]);
  3450. printf_P(_N("\nTemperature: %d Z shift (mm): %.3f\n"), t_c, current_position[Z_AXIS] - zero_z);
  3451. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i*2, &z_shift);
  3452. }
  3453. custom_message_type = 0;
  3454. custom_message = false;
  3455. eeprom_update_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  3456. puts_P(_N("Temperature calibration done."));
  3457. disable_x();
  3458. disable_y();
  3459. disable_z();
  3460. disable_e0();
  3461. disable_e1();
  3462. disable_e2();
  3463. setTargetBed(0); //set bed target temperature back to 0
  3464. lcd_show_fullscreen_message_and_wait_P(_T(MSG_TEMP_CALIBRATION_DONE));
  3465. temp_cal_active = true;
  3466. eeprom_update_byte((unsigned char *)EEPROM_TEMP_CAL_ACTIVE, 1);
  3467. lcd_update_enable(true);
  3468. lcd_update(2);
  3469. }
  3470. break;
  3471. #ifdef DIS
  3472. case 77:
  3473. {
  3474. //G77 X200 Y150 XP100 YP15 XO10 Y015
  3475. //for 9 point mesh bed leveling G77 X203 Y196 XP3 YP3 XO0 YO0
  3476. //G77 X232 Y218 XP116 YP109 XO-11 YO0
  3477. float dimension_x = 40;
  3478. float dimension_y = 40;
  3479. int points_x = 40;
  3480. int points_y = 40;
  3481. float offset_x = 74;
  3482. float offset_y = 33;
  3483. if (code_seen('X')) dimension_x = code_value();
  3484. if (code_seen('Y')) dimension_y = code_value();
  3485. if (code_seen('XP')) points_x = code_value();
  3486. if (code_seen('YP')) points_y = code_value();
  3487. if (code_seen('XO')) offset_x = code_value();
  3488. if (code_seen('YO')) offset_y = code_value();
  3489. bed_analysis(dimension_x,dimension_y,points_x,points_y,offset_x,offset_y);
  3490. } break;
  3491. #endif
  3492. case 79: {
  3493. for (int i = 255; i > 0; i = i - 5) {
  3494. fanSpeed = i;
  3495. //delay_keep_alive(2000);
  3496. for (int j = 0; j < 100; j++) {
  3497. delay_keep_alive(100);
  3498. }
  3499. fan_speed[1];
  3500. printf_P(_N("%d: %d\n"), i, fan_speed[1]);
  3501. }
  3502. }break;
  3503. /**
  3504. * G80: Mesh-based Z probe, probes a grid and produces a
  3505. * mesh to compensate for variable bed height
  3506. *
  3507. * The S0 report the points as below
  3508. *
  3509. * +----> X-axis
  3510. * |
  3511. * |
  3512. * v Y-axis
  3513. *
  3514. */
  3515. case 80:
  3516. #ifdef MK1BP
  3517. break;
  3518. #endif //MK1BP
  3519. case_G80:
  3520. {
  3521. mesh_bed_leveling_flag = true;
  3522. int8_t verbosity_level = 0;
  3523. static bool run = false;
  3524. if (code_seen('V')) {
  3525. // Just 'V' without a number counts as V1.
  3526. char c = strchr_pointer[1];
  3527. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  3528. }
  3529. // Firstly check if we know where we are
  3530. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  3531. // We don't know where we are! HOME!
  3532. // Push the commands to the front of the message queue in the reverse order!
  3533. // There shall be always enough space reserved for these commands.
  3534. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3535. repeatcommand_front(); // repeat G80 with all its parameters
  3536. enquecommand_front_P((PSTR("G28 W0")));
  3537. }
  3538. else {
  3539. mesh_bed_leveling_flag = false;
  3540. }
  3541. break;
  3542. }
  3543. bool temp_comp_start = true;
  3544. #ifdef PINDA_THERMISTOR
  3545. temp_comp_start = false;
  3546. #endif //PINDA_THERMISTOR
  3547. if (temp_comp_start)
  3548. if (run == false && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3549. if (lcd_commands_type != LCD_COMMAND_STOP_PRINT) {
  3550. temp_compensation_start();
  3551. run = true;
  3552. repeatcommand_front(); // repeat G80 with all its parameters
  3553. enquecommand_front_P((PSTR("G28 W0")));
  3554. }
  3555. else {
  3556. mesh_bed_leveling_flag = false;
  3557. }
  3558. break;
  3559. }
  3560. run = false;
  3561. if (lcd_commands_type == LCD_COMMAND_STOP_PRINT) {
  3562. mesh_bed_leveling_flag = false;
  3563. break;
  3564. }
  3565. // Save custom message state, set a new custom message state to display: Calibrating point 9.
  3566. bool custom_message_old = custom_message;
  3567. unsigned int custom_message_type_old = custom_message_type;
  3568. unsigned int custom_message_state_old = custom_message_state;
  3569. custom_message = true;
  3570. custom_message_type = 1;
  3571. custom_message_state = (MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) + 10;
  3572. lcd_update(1);
  3573. mbl.reset(); //reset mesh bed leveling
  3574. // Reset baby stepping to zero, if the babystepping has already been loaded before. The babystepsTodo value will be
  3575. // consumed during the first movements following this statement.
  3576. babystep_undo();
  3577. // Cycle through all points and probe them
  3578. // First move up. During this first movement, the babystepping will be reverted.
  3579. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3580. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  3581. // The move to the first calibration point.
  3582. current_position[X_AXIS] = pgm_read_float(bed_ref_points);
  3583. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 1);
  3584. bool clamped = world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3585. #ifdef SUPPORT_VERBOSITY
  3586. if (verbosity_level >= 1) {
  3587. clamped ? SERIAL_PROTOCOLPGM("First calibration point clamped.\n") : SERIAL_PROTOCOLPGM("No clamping for first calibration point.\n");
  3588. }
  3589. #endif //SUPPORT_VERBOSITY
  3590. // mbl.get_meas_xy(0, 0, current_position[X_AXIS], current_position[Y_AXIS], false);
  3591. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 30, active_extruder);
  3592. // Wait until the move is finished.
  3593. st_synchronize();
  3594. int mesh_point = 0; //index number of calibration point
  3595. int ix = 0;
  3596. int iy = 0;
  3597. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  3598. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  3599. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  3600. bool has_z = is_bed_z_jitter_data_valid(); //checks if we have data from Z calibration (offsets of the Z heiths of the 8 calibration points from the first point)
  3601. #ifdef SUPPORT_VERBOSITY
  3602. if (verbosity_level >= 1) {
  3603. has_z ? SERIAL_PROTOCOLPGM("Z jitter data from Z cal. valid.\n") : SERIAL_PROTOCOLPGM("Z jitter data from Z cal. not valid.\n");
  3604. }
  3605. #endif // SUPPORT_VERBOSITY
  3606. setup_for_endstop_move(false); //save feedrate and feedmultiply, sets feedmultiply to 100
  3607. const char *kill_message = NULL;
  3608. while (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3609. // Get coords of a measuring point.
  3610. ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  3611. iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  3612. if (iy & 1) ix = (MESH_MEAS_NUM_X_POINTS - 1) - ix; // Zig zag
  3613. float z0 = 0.f;
  3614. if (has_z && mesh_point > 0) {
  3615. uint16_t z_offset_u = eeprom_read_word((uint16_t*)(EEPROM_BED_CALIBRATION_Z_JITTER + 2 * (ix + iy * 3 - 1)));
  3616. z0 = mbl.z_values[0][0] + *reinterpret_cast<int16_t*>(&z_offset_u) * 0.01;
  3617. //#if 0
  3618. #ifdef SUPPORT_VERBOSITY
  3619. if (verbosity_level >= 1) {
  3620. SERIAL_ECHOLNPGM("");
  3621. SERIAL_ECHOPGM("Bed leveling, point: ");
  3622. MYSERIAL.print(mesh_point);
  3623. SERIAL_ECHOPGM(", calibration z: ");
  3624. MYSERIAL.print(z0, 5);
  3625. SERIAL_ECHOLNPGM("");
  3626. }
  3627. #endif // SUPPORT_VERBOSITY
  3628. //#endif
  3629. }
  3630. // Move Z up to MESH_HOME_Z_SEARCH.
  3631. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3632. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3633. st_synchronize();
  3634. // Move to XY position of the sensor point.
  3635. current_position[X_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point);
  3636. current_position[Y_AXIS] = pgm_read_float(bed_ref_points + 2 * mesh_point + 1);
  3637. world2machine_clamp(current_position[X_AXIS], current_position[Y_AXIS]);
  3638. #ifdef SUPPORT_VERBOSITY
  3639. if (verbosity_level >= 1) {
  3640. SERIAL_PROTOCOL(mesh_point);
  3641. clamped ? SERIAL_PROTOCOLPGM(": xy clamped.\n") : SERIAL_PROTOCOLPGM(": no xy clamping\n");
  3642. }
  3643. #endif // SUPPORT_VERBOSITY
  3644. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  3645. st_synchronize();
  3646. // Go down until endstop is hit
  3647. const float Z_CALIBRATION_THRESHOLD = 1.f;
  3648. if (!find_bed_induction_sensor_point_z((has_z && mesh_point > 0) ? z0 - Z_CALIBRATION_THRESHOLD : -10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  3649. kill_message = _T(MSG_BED_LEVELING_FAILED_POINT_LOW);
  3650. break;
  3651. }
  3652. if (MESH_HOME_Z_SEARCH - current_position[Z_AXIS] < 0.1f) {
  3653. kill_message = _i("Bed leveling failed. Sensor disconnected or cable broken. Waiting for reset.");////MSG_BED_LEVELING_FAILED_PROBE_DISCONNECTED c=20 r=4
  3654. break;
  3655. }
  3656. if (has_z && fabs(z0 - current_position[Z_AXIS]) > Z_CALIBRATION_THRESHOLD) { //if we have data from z calibration, max. allowed difference is 1mm for each point
  3657. kill_message = _i("Bed leveling failed. Sensor triggered too high. Waiting for reset.");////MSG_BED_LEVELING_FAILED_POINT_HIGH c=20 r=4
  3658. break;
  3659. }
  3660. #ifdef SUPPORT_VERBOSITY
  3661. if (verbosity_level >= 10) {
  3662. SERIAL_ECHOPGM("X: ");
  3663. MYSERIAL.print(current_position[X_AXIS], 5);
  3664. SERIAL_ECHOLNPGM("");
  3665. SERIAL_ECHOPGM("Y: ");
  3666. MYSERIAL.print(current_position[Y_AXIS], 5);
  3667. SERIAL_PROTOCOLPGM("\n");
  3668. }
  3669. #endif // SUPPORT_VERBOSITY
  3670. float offset_z = 0;
  3671. #ifdef PINDA_THERMISTOR
  3672. offset_z = temp_compensation_pinda_thermistor_offset(current_temperature_pinda);
  3673. #endif //PINDA_THERMISTOR
  3674. // #ifdef SUPPORT_VERBOSITY
  3675. /* if (verbosity_level >= 1)
  3676. {
  3677. SERIAL_ECHOPGM("mesh bed leveling: ");
  3678. MYSERIAL.print(current_position[Z_AXIS], 5);
  3679. SERIAL_ECHOPGM(" offset: ");
  3680. MYSERIAL.print(offset_z, 5);
  3681. SERIAL_ECHOLNPGM("");
  3682. }*/
  3683. // #endif // SUPPORT_VERBOSITY
  3684. mbl.set_z(ix, iy, current_position[Z_AXIS] - offset_z); //store measured z values z_values[iy][ix] = z - offset_z;
  3685. custom_message_state--;
  3686. mesh_point++;
  3687. lcd_update(1);
  3688. }
  3689. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  3690. #ifdef SUPPORT_VERBOSITY
  3691. if (verbosity_level >= 20) {
  3692. SERIAL_ECHOLNPGM("Mesh bed leveling while loop finished.");
  3693. SERIAL_ECHOLNPGM("MESH_HOME_Z_SEARCH: ");
  3694. MYSERIAL.print(current_position[Z_AXIS], 5);
  3695. }
  3696. #endif // SUPPORT_VERBOSITY
  3697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  3698. st_synchronize();
  3699. if (mesh_point != MESH_MEAS_NUM_X_POINTS * MESH_MEAS_NUM_Y_POINTS) {
  3700. kill(kill_message);
  3701. SERIAL_ECHOLNPGM("killed");
  3702. }
  3703. clean_up_after_endstop_move();
  3704. // SERIAL_ECHOLNPGM("clean up finished ");
  3705. bool apply_temp_comp = true;
  3706. #ifdef PINDA_THERMISTOR
  3707. apply_temp_comp = false;
  3708. #endif
  3709. if (apply_temp_comp)
  3710. if(temp_cal_active == true && calibration_status_pinda() == true) temp_compensation_apply(); //apply PINDA temperature compensation
  3711. babystep_apply(); // Apply Z height correction aka baby stepping before mesh bed leveing gets activated.
  3712. // SERIAL_ECHOLNPGM("babystep applied");
  3713. bool eeprom_bed_correction_valid = eeprom_read_byte((unsigned char*)EEPROM_BED_CORRECTION_VALID) == 1;
  3714. #ifdef SUPPORT_VERBOSITY
  3715. if (verbosity_level >= 1) {
  3716. eeprom_bed_correction_valid ? SERIAL_PROTOCOLPGM("Bed correction data valid\n") : SERIAL_PROTOCOLPGM("Bed correction data not valid\n");
  3717. }
  3718. #endif // SUPPORT_VERBOSITY
  3719. for (uint8_t i = 0; i < 4; ++i) {
  3720. unsigned char codes[4] = { 'L', 'R', 'F', 'B' };
  3721. long correction = 0;
  3722. if (code_seen(codes[i]))
  3723. correction = code_value_long();
  3724. else if (eeprom_bed_correction_valid) {
  3725. unsigned char *addr = (i < 2) ?
  3726. ((i == 0) ? (unsigned char*)EEPROM_BED_CORRECTION_LEFT : (unsigned char*)EEPROM_BED_CORRECTION_RIGHT) :
  3727. ((i == 2) ? (unsigned char*)EEPROM_BED_CORRECTION_FRONT : (unsigned char*)EEPROM_BED_CORRECTION_REAR);
  3728. correction = eeprom_read_int8(addr);
  3729. }
  3730. if (correction == 0)
  3731. continue;
  3732. float offset = float(correction) * 0.001f;
  3733. if (fabs(offset) > 0.101f) {
  3734. SERIAL_ERROR_START;
  3735. SERIAL_ECHOPGM("Excessive bed leveling correction: ");
  3736. SERIAL_ECHO(offset);
  3737. SERIAL_ECHOLNPGM(" microns");
  3738. }
  3739. else {
  3740. switch (i) {
  3741. case 0:
  3742. for (uint8_t row = 0; row < 3; ++row) {
  3743. mbl.z_values[row][1] += 0.5f * offset;
  3744. mbl.z_values[row][0] += offset;
  3745. }
  3746. break;
  3747. case 1:
  3748. for (uint8_t row = 0; row < 3; ++row) {
  3749. mbl.z_values[row][1] += 0.5f * offset;
  3750. mbl.z_values[row][2] += offset;
  3751. }
  3752. break;
  3753. case 2:
  3754. for (uint8_t col = 0; col < 3; ++col) {
  3755. mbl.z_values[1][col] += 0.5f * offset;
  3756. mbl.z_values[0][col] += offset;
  3757. }
  3758. break;
  3759. case 3:
  3760. for (uint8_t col = 0; col < 3; ++col) {
  3761. mbl.z_values[1][col] += 0.5f * offset;
  3762. mbl.z_values[2][col] += offset;
  3763. }
  3764. break;
  3765. }
  3766. }
  3767. }
  3768. // SERIAL_ECHOLNPGM("Bed leveling correction finished");
  3769. mbl.upsample_3x3(); //bilinear interpolation from 3x3 to 7x7 points while using the same array z_values[iy][ix] for storing (just coppying measured data to new destination and interpolating between them)
  3770. // SERIAL_ECHOLNPGM("Upsample finished");
  3771. mbl.active = 1; //activate mesh bed leveling
  3772. // SERIAL_ECHOLNPGM("Mesh bed leveling activated");
  3773. go_home_with_z_lift();
  3774. // SERIAL_ECHOLNPGM("Go home finished");
  3775. //unretract (after PINDA preheat retraction)
  3776. if (degHotend(active_extruder) > EXTRUDE_MINTEMP && temp_cal_active == true && calibration_status_pinda() == true && target_temperature_bed >= 50) {
  3777. current_position[E_AXIS] += DEFAULT_RETRACTION;
  3778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  3779. }
  3780. KEEPALIVE_STATE(NOT_BUSY);
  3781. // Restore custom message state
  3782. lcd_setstatuspgm(_T(WELCOME_MSG));
  3783. custom_message = custom_message_old;
  3784. custom_message_type = custom_message_type_old;
  3785. custom_message_state = custom_message_state_old;
  3786. mesh_bed_leveling_flag = false;
  3787. mesh_bed_run_from_menu = false;
  3788. lcd_update(2);
  3789. }
  3790. break;
  3791. /**
  3792. * G81: Print mesh bed leveling status and bed profile if activated
  3793. */
  3794. case 81:
  3795. if (mbl.active) {
  3796. SERIAL_PROTOCOLPGM("Num X,Y: ");
  3797. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  3798. SERIAL_PROTOCOLPGM(",");
  3799. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  3800. SERIAL_PROTOCOLPGM("\nZ search height: ");
  3801. SERIAL_PROTOCOL(MESH_HOME_Z_SEARCH);
  3802. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3803. for (int y = MESH_NUM_Y_POINTS-1; y >= 0; y--) {
  3804. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  3805. SERIAL_PROTOCOLPGM(" ");
  3806. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  3807. }
  3808. SERIAL_PROTOCOLPGM("\n");
  3809. }
  3810. }
  3811. else
  3812. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3813. break;
  3814. #if 0
  3815. /**
  3816. * G82: Single Z probe at current location
  3817. *
  3818. * WARNING! USE WITH CAUTION! If you'll try to probe where is no leveling pad, nasty things can happen!
  3819. *
  3820. */
  3821. case 82:
  3822. SERIAL_PROTOCOLLNPGM("Finding bed ");
  3823. setup_for_endstop_move();
  3824. find_bed_induction_sensor_point_z();
  3825. clean_up_after_endstop_move();
  3826. SERIAL_PROTOCOLPGM("Bed found at: ");
  3827. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 5);
  3828. SERIAL_PROTOCOLPGM("\n");
  3829. break;
  3830. /**
  3831. * G83: Prusa3D specific: Babystep in Z and store to EEPROM
  3832. */
  3833. case 83:
  3834. {
  3835. int babystepz = code_seen('S') ? code_value() : 0;
  3836. int BabyPosition = code_seen('P') ? code_value() : 0;
  3837. if (babystepz != 0) {
  3838. //FIXME Vojtech: What shall be the index of the axis Z: 3 or 4?
  3839. // Is the axis indexed starting with zero or one?
  3840. if (BabyPosition > 4) {
  3841. SERIAL_PROTOCOLLNPGM("Index out of bounds");
  3842. }else{
  3843. // Save it to the eeprom
  3844. babystepLoadZ = babystepz;
  3845. EEPROM_save_B(EEPROM_BABYSTEP_Z0+(BabyPosition*2),&babystepLoadZ);
  3846. // adjust the Z
  3847. babystepsTodoZadd(babystepLoadZ);
  3848. }
  3849. }
  3850. }
  3851. break;
  3852. /**
  3853. * G84: Prusa3D specific: UNDO Babystep Z (move Z axis back)
  3854. */
  3855. case 84:
  3856. babystepsTodoZsubtract(babystepLoadZ);
  3857. // babystepLoadZ = 0;
  3858. break;
  3859. /**
  3860. * G85: Prusa3D specific: Pick best babystep
  3861. */
  3862. case 85:
  3863. lcd_pick_babystep();
  3864. break;
  3865. #endif
  3866. /**
  3867. * G86: Prusa3D specific: Disable babystep correction after home.
  3868. * This G-code will be performed at the start of a calibration script.
  3869. */
  3870. case 86:
  3871. calibration_status_store(CALIBRATION_STATUS_LIVE_ADJUST);
  3872. break;
  3873. /**
  3874. * G87: Prusa3D specific: Enable babystep correction after home
  3875. * This G-code will be performed at the end of a calibration script.
  3876. */
  3877. case 87:
  3878. calibration_status_store(CALIBRATION_STATUS_CALIBRATED);
  3879. break;
  3880. /**
  3881. * G88: Prusa3D specific: Don't know what it is for, it is in V2Calibration.gcode
  3882. */
  3883. case 88:
  3884. break;
  3885. #endif // ENABLE_MESH_BED_LEVELING
  3886. case 90: // G90
  3887. relative_mode = false;
  3888. break;
  3889. case 91: // G91
  3890. relative_mode = true;
  3891. break;
  3892. case 92: // G92
  3893. if(!code_seen(axis_codes[E_AXIS]))
  3894. st_synchronize();
  3895. for(int8_t i=0; i < NUM_AXIS; i++) {
  3896. if(code_seen(axis_codes[i])) {
  3897. if(i == E_AXIS) {
  3898. current_position[i] = code_value();
  3899. plan_set_e_position(current_position[E_AXIS]);
  3900. }
  3901. else {
  3902. current_position[i] = code_value()+add_homing[i];
  3903. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3904. }
  3905. }
  3906. }
  3907. break;
  3908. case 98: // G98 (activate farm mode)
  3909. farm_mode = 1;
  3910. PingTime = millis();
  3911. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3912. SilentModeMenu = SILENT_MODE_OFF;
  3913. eeprom_update_byte((unsigned char *)EEPROM_SILENT, SilentModeMenu);
  3914. break;
  3915. case 99: // G99 (deactivate farm mode)
  3916. farm_mode = 0;
  3917. lcd_printer_connected();
  3918. eeprom_update_byte((unsigned char *)EEPROM_FARM_MODE, farm_mode);
  3919. lcd_update(2);
  3920. break;
  3921. default:
  3922. printf_P(PSTR("Unknown G code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3923. }
  3924. } // end if(code_seen('G'))
  3925. else if(code_seen('M'))
  3926. {
  3927. int index;
  3928. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  3929. /*for (++strchr_pointer; *strchr_pointer == ' ' || *strchr_pointer == '\t'; ++strchr_pointer);*/
  3930. if (*(strchr_pointer+index) < '0' || *(strchr_pointer+index) > '9') {
  3931. printf_P(PSTR("Invalid M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  3932. } else
  3933. switch((int)code_value())
  3934. {
  3935. #ifdef ULTIPANEL
  3936. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  3937. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  3938. {
  3939. char *src = strchr_pointer + 2;
  3940. codenum = 0;
  3941. bool hasP = false, hasS = false;
  3942. if (code_seen('P')) {
  3943. codenum = code_value(); // milliseconds to wait
  3944. hasP = codenum > 0;
  3945. }
  3946. if (code_seen('S')) {
  3947. codenum = code_value() * 1000; // seconds to wait
  3948. hasS = codenum > 0;
  3949. }
  3950. starpos = strchr(src, '*');
  3951. if (starpos != NULL) *(starpos) = '\0';
  3952. while (*src == ' ') ++src;
  3953. if (!hasP && !hasS && *src != '\0') {
  3954. lcd_setstatus(src);
  3955. } else {
  3956. LCD_MESSAGERPGM(_i("Wait for user..."));////MSG_USERWAIT c=0 r=0
  3957. }
  3958. lcd_ignore_click(); //call lcd_ignore_click aslo for else ???
  3959. st_synchronize();
  3960. previous_millis_cmd = millis();
  3961. if (codenum > 0){
  3962. codenum += millis(); // keep track of when we started waiting
  3963. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3964. while(millis() < codenum && !lcd_clicked()){
  3965. manage_heater();
  3966. manage_inactivity(true);
  3967. lcd_update();
  3968. }
  3969. KEEPALIVE_STATE(IN_HANDLER);
  3970. lcd_ignore_click(false);
  3971. }else{
  3972. if (!lcd_detected())
  3973. break;
  3974. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3975. while(!lcd_clicked()){
  3976. manage_heater();
  3977. manage_inactivity(true);
  3978. lcd_update();
  3979. }
  3980. KEEPALIVE_STATE(IN_HANDLER);
  3981. }
  3982. if (IS_SD_PRINTING)
  3983. LCD_MESSAGERPGM(_T(MSG_RESUMING_PRINT));
  3984. else
  3985. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  3986. }
  3987. break;
  3988. #endif
  3989. case 17:
  3990. LCD_MESSAGERPGM(_i("No move."));////MSG_NO_MOVE c=0 r=0
  3991. enable_x();
  3992. enable_y();
  3993. enable_z();
  3994. enable_e0();
  3995. enable_e1();
  3996. enable_e2();
  3997. break;
  3998. #ifdef SDSUPPORT
  3999. case 20: // M20 - list SD card
  4000. SERIAL_PROTOCOLLNRPGM(_i("Begin file list"));////MSG_BEGIN_FILE_LIST c=0 r=0
  4001. card.ls();
  4002. SERIAL_PROTOCOLLNRPGM(_i("End file list"));////MSG_END_FILE_LIST c=0 r=0
  4003. break;
  4004. case 21: // M21 - init SD card
  4005. card.initsd();
  4006. break;
  4007. case 22: //M22 - release SD card
  4008. card.release();
  4009. break;
  4010. case 23: //M23 - Select file
  4011. starpos = (strchr(strchr_pointer + 4,'*'));
  4012. if(starpos!=NULL)
  4013. *(starpos)='\0';
  4014. card.openFile(strchr_pointer + 4,true);
  4015. break;
  4016. case 24: //M24 - Start SD print
  4017. if (!card.paused)
  4018. failstats_reset_print();
  4019. card.startFileprint();
  4020. starttime=millis();
  4021. break;
  4022. case 25: //M25 - Pause SD print
  4023. card.pauseSDPrint();
  4024. break;
  4025. case 26: //M26 - Set SD index
  4026. if(card.cardOK && code_seen('S')) {
  4027. card.setIndex(code_value_long());
  4028. }
  4029. break;
  4030. case 27: //M27 - Get SD status
  4031. card.getStatus();
  4032. break;
  4033. case 28: //M28 - Start SD write
  4034. starpos = (strchr(strchr_pointer + 4,'*'));
  4035. if(starpos != NULL){
  4036. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4037. strchr_pointer = strchr(npos,' ') + 1;
  4038. *(starpos) = '\0';
  4039. }
  4040. card.openFile(strchr_pointer+4,false);
  4041. break;
  4042. case 29: //M29 - Stop SD write
  4043. //processed in write to file routine above
  4044. //card,saving = false;
  4045. break;
  4046. case 30: //M30 <filename> Delete File
  4047. if (card.cardOK){
  4048. card.closefile();
  4049. starpos = (strchr(strchr_pointer + 4,'*'));
  4050. if(starpos != NULL){
  4051. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4052. strchr_pointer = strchr(npos,' ') + 1;
  4053. *(starpos) = '\0';
  4054. }
  4055. card.removeFile(strchr_pointer + 4);
  4056. }
  4057. break;
  4058. case 32: //M32 - Select file and start SD print
  4059. {
  4060. if(card.sdprinting) {
  4061. st_synchronize();
  4062. }
  4063. starpos = (strchr(strchr_pointer + 4,'*'));
  4064. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  4065. if(namestartpos==NULL)
  4066. {
  4067. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  4068. }
  4069. else
  4070. namestartpos++; //to skip the '!'
  4071. if(starpos!=NULL)
  4072. *(starpos)='\0';
  4073. bool call_procedure=(code_seen('P'));
  4074. if(strchr_pointer>namestartpos)
  4075. call_procedure=false; //false alert, 'P' found within filename
  4076. if( card.cardOK )
  4077. {
  4078. card.openFile(namestartpos,true,!call_procedure);
  4079. if(code_seen('S'))
  4080. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  4081. card.setIndex(code_value_long());
  4082. card.startFileprint();
  4083. if(!call_procedure)
  4084. starttime=millis(); //procedure calls count as normal print time.
  4085. }
  4086. } break;
  4087. case 928: //M928 - Start SD write
  4088. starpos = (strchr(strchr_pointer + 5,'*'));
  4089. if(starpos != NULL){
  4090. char* npos = strchr(CMDBUFFER_CURRENT_STRING, 'N');
  4091. strchr_pointer = strchr(npos,' ') + 1;
  4092. *(starpos) = '\0';
  4093. }
  4094. card.openLogFile(strchr_pointer+5);
  4095. break;
  4096. #endif //SDSUPPORT
  4097. case 31: //M31 take time since the start of the SD print or an M109 command
  4098. {
  4099. stoptime=millis();
  4100. char time[30];
  4101. unsigned long t=(stoptime-starttime)/1000;
  4102. int sec,min;
  4103. min=t/60;
  4104. sec=t%60;
  4105. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  4106. SERIAL_ECHO_START;
  4107. SERIAL_ECHOLN(time);
  4108. lcd_setstatus(time);
  4109. autotempShutdown();
  4110. }
  4111. break;
  4112. #ifndef _DISABLE_M42_M226
  4113. case 42: //M42 -Change pin status via gcode
  4114. if (code_seen('S'))
  4115. {
  4116. int pin_status = code_value();
  4117. int pin_number = LED_PIN;
  4118. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  4119. pin_number = code_value();
  4120. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  4121. {
  4122. if (sensitive_pins[i] == pin_number)
  4123. {
  4124. pin_number = -1;
  4125. break;
  4126. }
  4127. }
  4128. #if defined(FAN_PIN) && FAN_PIN > -1
  4129. if (pin_number == FAN_PIN)
  4130. fanSpeed = pin_status;
  4131. #endif
  4132. if (pin_number > -1)
  4133. {
  4134. pinMode(pin_number, OUTPUT);
  4135. digitalWrite(pin_number, pin_status);
  4136. analogWrite(pin_number, pin_status);
  4137. }
  4138. }
  4139. break;
  4140. #endif //_DISABLE_M42_M226
  4141. case 44: // M44: Prusa3D: Reset the bed skew and offset calibration.
  4142. // Reset the baby step value and the baby step applied flag.
  4143. calibration_status_store(CALIBRATION_STATUS_ASSEMBLED);
  4144. eeprom_update_word((uint16_t*)EEPROM_BABYSTEP_Z, 0);
  4145. // Reset the skew and offset in both RAM and EEPROM.
  4146. reset_bed_offset_and_skew();
  4147. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4148. // the planner will not perform any adjustments in the XY plane.
  4149. // Wait for the motors to stop and update the current position with the absolute values.
  4150. world2machine_revert_to_uncorrected();
  4151. break;
  4152. case 45: // M45: Prusa3D: bed skew and offset with manual Z up
  4153. {
  4154. int8_t verbosity_level = 0;
  4155. bool only_Z = code_seen('Z');
  4156. #ifdef SUPPORT_VERBOSITY
  4157. if (code_seen('V'))
  4158. {
  4159. // Just 'V' without a number counts as V1.
  4160. char c = strchr_pointer[1];
  4161. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4162. }
  4163. #endif //SUPPORT_VERBOSITY
  4164. gcode_M45(only_Z, verbosity_level);
  4165. }
  4166. break;
  4167. /*
  4168. case 46:
  4169. {
  4170. // M46: Prusa3D: Show the assigned IP address.
  4171. uint8_t ip[4];
  4172. bool hasIP = card.ToshibaFlashAir_GetIP(ip);
  4173. if (hasIP) {
  4174. SERIAL_ECHOPGM("Toshiba FlashAir current IP: ");
  4175. SERIAL_ECHO(int(ip[0]));
  4176. SERIAL_ECHOPGM(".");
  4177. SERIAL_ECHO(int(ip[1]));
  4178. SERIAL_ECHOPGM(".");
  4179. SERIAL_ECHO(int(ip[2]));
  4180. SERIAL_ECHOPGM(".");
  4181. SERIAL_ECHO(int(ip[3]));
  4182. SERIAL_ECHOLNPGM("");
  4183. } else {
  4184. SERIAL_ECHOLNPGM("Toshiba FlashAir GetIP failed");
  4185. }
  4186. break;
  4187. }
  4188. */
  4189. case 47:
  4190. // M47: Prusa3D: Show end stops dialog on the display.
  4191. KEEPALIVE_STATE(PAUSED_FOR_USER);
  4192. lcd_diag_show_end_stops();
  4193. KEEPALIVE_STATE(IN_HANDLER);
  4194. break;
  4195. #if 0
  4196. case 48: // M48: scan the bed induction sensor points, print the sensor trigger coordinates to the serial line for visualization on the PC.
  4197. {
  4198. // Disable the default update procedure of the display. We will do a modal dialog.
  4199. lcd_update_enable(false);
  4200. // Let the planner use the uncorrected coordinates.
  4201. mbl.reset();
  4202. // Reset world2machine_rotation_and_skew and world2machine_shift, therefore
  4203. // the planner will not perform any adjustments in the XY plane.
  4204. // Wait for the motors to stop and update the current position with the absolute values.
  4205. world2machine_revert_to_uncorrected();
  4206. // Move the print head close to the bed.
  4207. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4208. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4209. st_synchronize();
  4210. // Home in the XY plane.
  4211. set_destination_to_current();
  4212. setup_for_endstop_move();
  4213. home_xy();
  4214. int8_t verbosity_level = 0;
  4215. if (code_seen('V')) {
  4216. // Just 'V' without a number counts as V1.
  4217. char c = strchr_pointer[1];
  4218. verbosity_level = (c == ' ' || c == '\t' || c == 0) ? 1 : code_value_short();
  4219. }
  4220. bool success = scan_bed_induction_points(verbosity_level);
  4221. clean_up_after_endstop_move();
  4222. // Print head up.
  4223. current_position[Z_AXIS] = MESH_HOME_Z_SEARCH;
  4224. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS],current_position[Z_AXIS] , current_position[E_AXIS], homing_feedrate[Z_AXIS]/40, active_extruder);
  4225. st_synchronize();
  4226. lcd_update_enable(true);
  4227. break;
  4228. }
  4229. #endif
  4230. // M48 Z-Probe repeatability measurement function.
  4231. //
  4232. // Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <L legs_of_movement_prior_to_doing_probe>
  4233. //
  4234. // This function assumes the bed has been homed. Specificaly, that a G28 command
  4235. // as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  4236. // Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4237. // regenerated.
  4238. //
  4239. // The number of samples will default to 10 if not specified. You can use upper or lower case
  4240. // letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  4241. // N for its communication protocol and will get horribly confused if you send it a capital N.
  4242. //
  4243. #ifdef ENABLE_AUTO_BED_LEVELING
  4244. #ifdef Z_PROBE_REPEATABILITY_TEST
  4245. case 48: // M48 Z-Probe repeatability
  4246. {
  4247. #if Z_MIN_PIN == -1
  4248. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  4249. #endif
  4250. double sum=0.0;
  4251. double mean=0.0;
  4252. double sigma=0.0;
  4253. double sample_set[50];
  4254. int verbose_level=1, n=0, j, n_samples = 10, n_legs=0;
  4255. double X_current, Y_current, Z_current;
  4256. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  4257. if (code_seen('V') || code_seen('v')) {
  4258. verbose_level = code_value();
  4259. if (verbose_level<0 || verbose_level>4 ) {
  4260. SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
  4261. goto Sigma_Exit;
  4262. }
  4263. }
  4264. if (verbose_level > 0) {
  4265. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test. Version 2.00\n");
  4266. SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
  4267. }
  4268. if (code_seen('n')) {
  4269. n_samples = code_value();
  4270. if (n_samples<4 || n_samples>50 ) {
  4271. SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
  4272. goto Sigma_Exit;
  4273. }
  4274. }
  4275. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  4276. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  4277. Z_current = st_get_position_mm(Z_AXIS);
  4278. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4279. ext_position = st_get_position_mm(E_AXIS);
  4280. if (code_seen('X') || code_seen('x') ) {
  4281. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  4282. if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) {
  4283. SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
  4284. goto Sigma_Exit;
  4285. }
  4286. }
  4287. if (code_seen('Y') || code_seen('y') ) {
  4288. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  4289. if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) {
  4290. SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
  4291. goto Sigma_Exit;
  4292. }
  4293. }
  4294. if (code_seen('L') || code_seen('l') ) {
  4295. n_legs = code_value();
  4296. if ( n_legs==1 )
  4297. n_legs = 2;
  4298. if ( n_legs<0 || n_legs>15 ) {
  4299. SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
  4300. goto Sigma_Exit;
  4301. }
  4302. }
  4303. //
  4304. // Do all the preliminary setup work. First raise the probe.
  4305. //
  4306. st_synchronize();
  4307. plan_bed_level_matrix.set_to_identity();
  4308. plan_buffer_line( X_current, Y_current, Z_start_location,
  4309. ext_position,
  4310. homing_feedrate[Z_AXIS]/60,
  4311. active_extruder);
  4312. st_synchronize();
  4313. //
  4314. // Now get everything to the specified probe point So we can safely do a probe to
  4315. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  4316. // use that as a starting point for each probe.
  4317. //
  4318. if (verbose_level > 2)
  4319. SERIAL_PROTOCOL("Positioning probe for the test.\n");
  4320. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4321. ext_position,
  4322. homing_feedrate[X_AXIS]/60,
  4323. active_extruder);
  4324. st_synchronize();
  4325. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  4326. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  4327. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4328. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  4329. //
  4330. // OK, do the inital probe to get us close to the bed.
  4331. // Then retrace the right amount and use that in subsequent probes
  4332. //
  4333. setup_for_endstop_move();
  4334. run_z_probe();
  4335. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4336. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  4337. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4338. ext_position,
  4339. homing_feedrate[X_AXIS]/60,
  4340. active_extruder);
  4341. st_synchronize();
  4342. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  4343. for( n=0; n<n_samples; n++) {
  4344. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  4345. if ( n_legs) {
  4346. double radius=0.0, theta=0.0, x_sweep, y_sweep;
  4347. int rotational_direction, l;
  4348. rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  4349. radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go
  4350. theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
  4351. //SERIAL_ECHOPAIR("starting radius: ",radius);
  4352. //SERIAL_ECHOPAIR(" theta: ",theta);
  4353. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  4354. //SERIAL_PROTOCOLLNPGM("");
  4355. for( l=0; l<n_legs-1; l++) {
  4356. if (rotational_direction==1)
  4357. theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4358. else
  4359. theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
  4360. radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
  4361. if ( radius<0.0 )
  4362. radius = -radius;
  4363. X_current = X_probe_location + cos(theta) * radius;
  4364. Y_current = Y_probe_location + sin(theta) * radius;
  4365. if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
  4366. X_current = X_MIN_POS;
  4367. if ( X_current>X_MAX_POS)
  4368. X_current = X_MAX_POS;
  4369. if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
  4370. Y_current = Y_MIN_POS;
  4371. if ( Y_current>Y_MAX_POS)
  4372. Y_current = Y_MAX_POS;
  4373. if (verbose_level>3 ) {
  4374. SERIAL_ECHOPAIR("x: ", X_current);
  4375. SERIAL_ECHOPAIR("y: ", Y_current);
  4376. SERIAL_PROTOCOLLNPGM("");
  4377. }
  4378. do_blocking_move_to( X_current, Y_current, Z_current );
  4379. }
  4380. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  4381. }
  4382. setup_for_endstop_move();
  4383. run_z_probe();
  4384. sample_set[n] = current_position[Z_AXIS];
  4385. //
  4386. // Get the current mean for the data points we have so far
  4387. //
  4388. sum=0.0;
  4389. for( j=0; j<=n; j++) {
  4390. sum = sum + sample_set[j];
  4391. }
  4392. mean = sum / (double (n+1));
  4393. //
  4394. // Now, use that mean to calculate the standard deviation for the
  4395. // data points we have so far
  4396. //
  4397. sum=0.0;
  4398. for( j=0; j<=n; j++) {
  4399. sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
  4400. }
  4401. sigma = sqrt( sum / (double (n+1)) );
  4402. if (verbose_level > 1) {
  4403. SERIAL_PROTOCOL(n+1);
  4404. SERIAL_PROTOCOL(" of ");
  4405. SERIAL_PROTOCOL(n_samples);
  4406. SERIAL_PROTOCOLPGM(" z: ");
  4407. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  4408. }
  4409. if (verbose_level > 2) {
  4410. SERIAL_PROTOCOL(" mean: ");
  4411. SERIAL_PROTOCOL_F(mean,6);
  4412. SERIAL_PROTOCOL(" sigma: ");
  4413. SERIAL_PROTOCOL_F(sigma,6);
  4414. }
  4415. if (verbose_level > 0)
  4416. SERIAL_PROTOCOLPGM("\n");
  4417. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  4418. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  4419. st_synchronize();
  4420. }
  4421. delay(1000);
  4422. clean_up_after_endstop_move();
  4423. // enable_endstops(true);
  4424. if (verbose_level > 0) {
  4425. SERIAL_PROTOCOLPGM("Mean: ");
  4426. SERIAL_PROTOCOL_F(mean, 6);
  4427. SERIAL_PROTOCOLPGM("\n");
  4428. }
  4429. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4430. SERIAL_PROTOCOL_F(sigma, 6);
  4431. SERIAL_PROTOCOLPGM("\n\n");
  4432. Sigma_Exit:
  4433. break;
  4434. }
  4435. #endif // Z_PROBE_REPEATABILITY_TEST
  4436. #endif // ENABLE_AUTO_BED_LEVELING
  4437. case 73: //M73 show percent done and time remaining
  4438. if(code_seen('P')) print_percent_done_normal = code_value();
  4439. if(code_seen('R')) print_time_remaining_normal = code_value();
  4440. if(code_seen('Q')) print_percent_done_silent = code_value();
  4441. if(code_seen('S')) print_time_remaining_silent = code_value();
  4442. {
  4443. const char* _msg_mode_done_remain = _N("%S MODE: Percent done: %d; print time remaining in mins: %d\n");
  4444. printf_P(_msg_mode_done_remain, _N("NORMAL"), int(print_percent_done_normal), print_time_remaining_normal);
  4445. printf_P(_msg_mode_done_remain, _N("SILENT"), int(print_percent_done_silent), print_time_remaining_silent);
  4446. }
  4447. break;
  4448. case 104: // M104
  4449. if(setTargetedHotend(104)){
  4450. break;
  4451. }
  4452. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  4453. setWatch();
  4454. break;
  4455. case 112: // M112 -Emergency Stop
  4456. kill(_n(""), 3);
  4457. break;
  4458. case 140: // M140 set bed temp
  4459. if (code_seen('S')) setTargetBed(code_value());
  4460. break;
  4461. case 105 : // M105
  4462. if(setTargetedHotend(105)){
  4463. break;
  4464. }
  4465. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  4466. SERIAL_PROTOCOLPGM("ok T:");
  4467. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  4468. SERIAL_PROTOCOLPGM(" /");
  4469. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  4470. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4471. SERIAL_PROTOCOLPGM(" B:");
  4472. SERIAL_PROTOCOL_F(degBed(),1);
  4473. SERIAL_PROTOCOLPGM(" /");
  4474. SERIAL_PROTOCOL_F(degTargetBed(),1);
  4475. #endif //TEMP_BED_PIN
  4476. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4477. SERIAL_PROTOCOLPGM(" T");
  4478. SERIAL_PROTOCOL(cur_extruder);
  4479. SERIAL_PROTOCOLPGM(":");
  4480. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4481. SERIAL_PROTOCOLPGM(" /");
  4482. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  4483. }
  4484. #else
  4485. SERIAL_ERROR_START;
  4486. SERIAL_ERRORLNRPGM(_i("No thermistors - no temperature"));////MSG_ERR_NO_THERMISTORS c=0 r=0
  4487. #endif
  4488. SERIAL_PROTOCOLPGM(" @:");
  4489. #ifdef EXTRUDER_WATTS
  4490. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  4491. SERIAL_PROTOCOLPGM("W");
  4492. #else
  4493. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  4494. #endif
  4495. SERIAL_PROTOCOLPGM(" B@:");
  4496. #ifdef BED_WATTS
  4497. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  4498. SERIAL_PROTOCOLPGM("W");
  4499. #else
  4500. SERIAL_PROTOCOL(getHeaterPower(-1));
  4501. #endif
  4502. #ifdef PINDA_THERMISTOR
  4503. SERIAL_PROTOCOLPGM(" P:");
  4504. SERIAL_PROTOCOL_F(current_temperature_pinda,1);
  4505. #endif //PINDA_THERMISTOR
  4506. #ifdef AMBIENT_THERMISTOR
  4507. SERIAL_PROTOCOLPGM(" A:");
  4508. SERIAL_PROTOCOL_F(current_temperature_ambient,1);
  4509. #endif //AMBIENT_THERMISTOR
  4510. #ifdef SHOW_TEMP_ADC_VALUES
  4511. {float raw = 0.0;
  4512. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4513. SERIAL_PROTOCOLPGM(" ADC B:");
  4514. SERIAL_PROTOCOL_F(degBed(),1);
  4515. SERIAL_PROTOCOLPGM("C->");
  4516. raw = rawBedTemp();
  4517. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4518. SERIAL_PROTOCOLPGM(" Rb->");
  4519. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4520. SERIAL_PROTOCOLPGM(" Rxb->");
  4521. SERIAL_PROTOCOL_F(raw, 5);
  4522. #endif
  4523. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4524. SERIAL_PROTOCOLPGM(" T");
  4525. SERIAL_PROTOCOL(cur_extruder);
  4526. SERIAL_PROTOCOLPGM(":");
  4527. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  4528. SERIAL_PROTOCOLPGM("C->");
  4529. raw = rawHotendTemp(cur_extruder);
  4530. SERIAL_PROTOCOL_F(raw/OVERSAMPLENR,5);
  4531. SERIAL_PROTOCOLPGM(" Rt");
  4532. SERIAL_PROTOCOL(cur_extruder);
  4533. SERIAL_PROTOCOLPGM("->");
  4534. SERIAL_PROTOCOL_F(100 * (1 + (PtA * (raw/OVERSAMPLENR)) + (PtB * sq((raw/OVERSAMPLENR)))), 5);
  4535. SERIAL_PROTOCOLPGM(" Rx");
  4536. SERIAL_PROTOCOL(cur_extruder);
  4537. SERIAL_PROTOCOLPGM("->");
  4538. SERIAL_PROTOCOL_F(raw, 5);
  4539. }}
  4540. #endif
  4541. SERIAL_PROTOCOLLN("");
  4542. KEEPALIVE_STATE(NOT_BUSY);
  4543. return;
  4544. break;
  4545. case 109:
  4546. {// M109 - Wait for extruder heater to reach target.
  4547. if(setTargetedHotend(109)){
  4548. break;
  4549. }
  4550. LCD_MESSAGERPGM(_T(MSG_HEATING));
  4551. heating_status = 1;
  4552. if (farm_mode) { prusa_statistics(1); };
  4553. #ifdef AUTOTEMP
  4554. autotemp_enabled=false;
  4555. #endif
  4556. if (code_seen('S')) {
  4557. setTargetHotend(code_value(), tmp_extruder);
  4558. CooldownNoWait = true;
  4559. } else if (code_seen('R')) {
  4560. setTargetHotend(code_value(), tmp_extruder);
  4561. CooldownNoWait = false;
  4562. }
  4563. #ifdef AUTOTEMP
  4564. if (code_seen('S')) autotemp_min=code_value();
  4565. if (code_seen('B')) autotemp_max=code_value();
  4566. if (code_seen('F'))
  4567. {
  4568. autotemp_factor=code_value();
  4569. autotemp_enabled=true;
  4570. }
  4571. #endif
  4572. setWatch();
  4573. codenum = millis();
  4574. /* See if we are heating up or cooling down */
  4575. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  4576. KEEPALIVE_STATE(NOT_BUSY);
  4577. cancel_heatup = false;
  4578. wait_for_heater(codenum); //loops until target temperature is reached
  4579. LCD_MESSAGERPGM(_T(MSG_HEATING_COMPLETE));
  4580. KEEPALIVE_STATE(IN_HANDLER);
  4581. heating_status = 2;
  4582. if (farm_mode) { prusa_statistics(2); };
  4583. //starttime=millis();
  4584. previous_millis_cmd = millis();
  4585. }
  4586. break;
  4587. case 190: // M190 - Wait for bed heater to reach target.
  4588. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4589. LCD_MESSAGERPGM(_T(MSG_BED_HEATING));
  4590. heating_status = 3;
  4591. if (farm_mode) { prusa_statistics(1); };
  4592. if (code_seen('S'))
  4593. {
  4594. setTargetBed(code_value());
  4595. CooldownNoWait = true;
  4596. }
  4597. else if (code_seen('R'))
  4598. {
  4599. setTargetBed(code_value());
  4600. CooldownNoWait = false;
  4601. }
  4602. codenum = millis();
  4603. cancel_heatup = false;
  4604. target_direction = isHeatingBed(); // true if heating, false if cooling
  4605. KEEPALIVE_STATE(NOT_BUSY);
  4606. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  4607. {
  4608. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  4609. {
  4610. if (!farm_mode) {
  4611. float tt = degHotend(active_extruder);
  4612. SERIAL_PROTOCOLPGM("T:");
  4613. SERIAL_PROTOCOL(tt);
  4614. SERIAL_PROTOCOLPGM(" E:");
  4615. SERIAL_PROTOCOL((int)active_extruder);
  4616. SERIAL_PROTOCOLPGM(" B:");
  4617. SERIAL_PROTOCOL_F(degBed(), 1);
  4618. SERIAL_PROTOCOLLN("");
  4619. }
  4620. codenum = millis();
  4621. }
  4622. manage_heater();
  4623. manage_inactivity();
  4624. lcd_update();
  4625. }
  4626. LCD_MESSAGERPGM(_T(MSG_BED_DONE));
  4627. KEEPALIVE_STATE(IN_HANDLER);
  4628. heating_status = 4;
  4629. previous_millis_cmd = millis();
  4630. #endif
  4631. break;
  4632. #if defined(FAN_PIN) && FAN_PIN > -1
  4633. case 106: //M106 Fan On
  4634. if (code_seen('S')){
  4635. fanSpeed=constrain(code_value(),0,255);
  4636. }
  4637. else {
  4638. fanSpeed=255;
  4639. }
  4640. break;
  4641. case 107: //M107 Fan Off
  4642. fanSpeed = 0;
  4643. break;
  4644. #endif //FAN_PIN
  4645. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4646. case 80: // M80 - Turn on Power Supply
  4647. SET_OUTPUT(PS_ON_PIN); //GND
  4648. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  4649. // If you have a switch on suicide pin, this is useful
  4650. // if you want to start another print with suicide feature after
  4651. // a print without suicide...
  4652. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  4653. SET_OUTPUT(SUICIDE_PIN);
  4654. WRITE(SUICIDE_PIN, HIGH);
  4655. #endif
  4656. #ifdef ULTIPANEL
  4657. powersupply = true;
  4658. LCD_MESSAGERPGM(_T(WELCOME_MSG));
  4659. lcd_update();
  4660. #endif
  4661. break;
  4662. #endif
  4663. case 81: // M81 - Turn off Power Supply
  4664. disable_heater();
  4665. st_synchronize();
  4666. disable_e0();
  4667. disable_e1();
  4668. disable_e2();
  4669. finishAndDisableSteppers();
  4670. fanSpeed = 0;
  4671. delay(1000); // Wait a little before to switch off
  4672. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  4673. st_synchronize();
  4674. suicide();
  4675. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  4676. SET_OUTPUT(PS_ON_PIN);
  4677. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4678. #endif
  4679. #ifdef ULTIPANEL
  4680. powersupply = false;
  4681. LCD_MESSAGERPGM(CAT4(CUSTOM_MENDEL_NAME,PSTR(" "),MSG_OFF,PSTR(".")));
  4682. lcd_update();
  4683. #endif
  4684. break;
  4685. case 82:
  4686. axis_relative_modes[3] = false;
  4687. break;
  4688. case 83:
  4689. axis_relative_modes[3] = true;
  4690. break;
  4691. case 18: //compatibility
  4692. case 84: // M84
  4693. if(code_seen('S')){
  4694. stepper_inactive_time = code_value() * 1000;
  4695. }
  4696. else
  4697. {
  4698. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  4699. if(all_axis)
  4700. {
  4701. st_synchronize();
  4702. disable_e0();
  4703. disable_e1();
  4704. disable_e2();
  4705. finishAndDisableSteppers();
  4706. }
  4707. else
  4708. {
  4709. st_synchronize();
  4710. if (code_seen('X')) disable_x();
  4711. if (code_seen('Y')) disable_y();
  4712. if (code_seen('Z')) disable_z();
  4713. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4714. if (code_seen('E')) {
  4715. disable_e0();
  4716. disable_e1();
  4717. disable_e2();
  4718. }
  4719. #endif
  4720. }
  4721. }
  4722. //in the end of print set estimated time to end of print and extruders used during print to default values for next print
  4723. print_time_remaining_init();
  4724. snmm_filaments_used = 0;
  4725. break;
  4726. case 85: // M85
  4727. if(code_seen('S')) {
  4728. max_inactive_time = code_value() * 1000;
  4729. }
  4730. break;
  4731. #ifdef SAFETYTIMER
  4732. case 86: // M86 - set safety timer expiration time in seconds; M86 S0 will disable safety timer
  4733. //when safety timer expires heatbed and nozzle target temperatures are set to zero
  4734. if (code_seen('S')) {
  4735. safetytimer_inactive_time = code_value() * 1000;
  4736. safetyTimer.start();
  4737. }
  4738. break;
  4739. #endif
  4740. case 92: // M92
  4741. for(int8_t i=0; i < NUM_AXIS; i++)
  4742. {
  4743. if(code_seen(axis_codes[i]))
  4744. {
  4745. if(i == 3) { // E
  4746. float value = code_value();
  4747. if(value < 20.0) {
  4748. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4749. max_jerk[E_AXIS] *= factor;
  4750. max_feedrate[i] *= factor;
  4751. axis_steps_per_sqr_second[i] *= factor;
  4752. }
  4753. axis_steps_per_unit[i] = value;
  4754. }
  4755. else {
  4756. axis_steps_per_unit[i] = code_value();
  4757. }
  4758. }
  4759. }
  4760. break;
  4761. case 110: // M110 - reset line pos
  4762. if (code_seen('N'))
  4763. gcode_LastN = code_value_long();
  4764. break;
  4765. #ifdef HOST_KEEPALIVE_FEATURE
  4766. case 113: // M113 - Get or set Host Keepalive interval
  4767. if (code_seen('S')) {
  4768. host_keepalive_interval = (uint8_t)code_value_short();
  4769. // NOMORE(host_keepalive_interval, 60);
  4770. }
  4771. else {
  4772. SERIAL_ECHO_START;
  4773. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4774. SERIAL_PROTOCOLLN("");
  4775. }
  4776. break;
  4777. #endif
  4778. case 115: // M115
  4779. if (code_seen('V')) {
  4780. // Report the Prusa version number.
  4781. SERIAL_PROTOCOLLNRPGM(FW_VERSION_STR_P());
  4782. } else if (code_seen('U')) {
  4783. // Check the firmware version provided. If the firmware version provided by the U code is higher than the currently running firmware,
  4784. // pause the print and ask the user to upgrade the firmware.
  4785. show_upgrade_dialog_if_version_newer(++ strchr_pointer);
  4786. } else {
  4787. SERIAL_ECHOPGM("FIRMWARE_NAME:Prusa-Firmware ");
  4788. SERIAL_ECHORPGM(FW_VERSION_STR_P());
  4789. SERIAL_ECHOPGM(" based on Marlin FIRMWARE_URL:https://github.com/prusa3d/Prusa-Firmware PROTOCOL_VERSION:");
  4790. SERIAL_ECHOPGM(PROTOCOL_VERSION);
  4791. SERIAL_ECHOPGM(" MACHINE_TYPE:");
  4792. SERIAL_ECHOPGM(CUSTOM_MENDEL_NAME);
  4793. SERIAL_ECHOPGM(" EXTRUDER_COUNT:");
  4794. SERIAL_ECHOPGM(STRINGIFY(EXTRUDERS));
  4795. SERIAL_ECHOPGM(" UUID:");
  4796. SERIAL_ECHOLNPGM(MACHINE_UUID);
  4797. }
  4798. break;
  4799. /* case 117: // M117 display message
  4800. starpos = (strchr(strchr_pointer + 5,'*'));
  4801. if(starpos!=NULL)
  4802. *(starpos)='\0';
  4803. lcd_setstatus(strchr_pointer + 5);
  4804. break;*/
  4805. case 114: // M114
  4806. gcode_M114();
  4807. break;
  4808. case 120: // M120
  4809. enable_endstops(false) ;
  4810. break;
  4811. case 121: // M121
  4812. enable_endstops(true) ;
  4813. break;
  4814. case 119: // M119
  4815. SERIAL_PROTOCOLRPGM(_i("Reporting endstop status"));////MSG_M119_REPORT c=0 r=0
  4816. SERIAL_PROTOCOLLN("");
  4817. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  4818. SERIAL_PROTOCOLRPGM(_n("x_min: "));////MSG_X_MIN c=0 r=0
  4819. if(READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING){
  4820. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4821. }else{
  4822. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4823. }
  4824. SERIAL_PROTOCOLLN("");
  4825. #endif
  4826. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  4827. SERIAL_PROTOCOLRPGM(_n("x_max: "));////MSG_X_MAX c=0 r=0
  4828. if(READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING){
  4829. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4830. }else{
  4831. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4832. }
  4833. SERIAL_PROTOCOLLN("");
  4834. #endif
  4835. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  4836. SERIAL_PROTOCOLRPGM(_n("y_min: "));////MSG_Y_MIN c=0 r=0
  4837. if(READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING){
  4838. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4839. }else{
  4840. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4841. }
  4842. SERIAL_PROTOCOLLN("");
  4843. #endif
  4844. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  4845. SERIAL_PROTOCOLRPGM(_n("y_max: "));////MSG_Y_MAX c=0 r=0
  4846. if(READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING){
  4847. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4848. }else{
  4849. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4850. }
  4851. SERIAL_PROTOCOLLN("");
  4852. #endif
  4853. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  4854. SERIAL_PROTOCOLRPGM(MSG_Z_MIN);
  4855. if(READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING){
  4856. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4857. }else{
  4858. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4859. }
  4860. SERIAL_PROTOCOLLN("");
  4861. #endif
  4862. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  4863. SERIAL_PROTOCOLRPGM(MSG_Z_MAX);
  4864. if(READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING){
  4865. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_HIT));
  4866. }else{
  4867. SERIAL_PROTOCOLRPGM(_T(MSG_ENDSTOP_OPEN));
  4868. }
  4869. SERIAL_PROTOCOLLN("");
  4870. #endif
  4871. break;
  4872. //TODO: update for all axis, use for loop
  4873. #ifdef BLINKM
  4874. case 150: // M150
  4875. {
  4876. byte red;
  4877. byte grn;
  4878. byte blu;
  4879. if(code_seen('R')) red = code_value();
  4880. if(code_seen('U')) grn = code_value();
  4881. if(code_seen('B')) blu = code_value();
  4882. SendColors(red,grn,blu);
  4883. }
  4884. break;
  4885. #endif //BLINKM
  4886. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4887. {
  4888. tmp_extruder = active_extruder;
  4889. if(code_seen('T')) {
  4890. tmp_extruder = code_value();
  4891. if(tmp_extruder >= EXTRUDERS) {
  4892. SERIAL_ECHO_START;
  4893. SERIAL_ECHO(_i("M200 Invalid extruder "));////MSG_M200_INVALID_EXTRUDER c=0 r=0
  4894. break;
  4895. }
  4896. }
  4897. float area = .0;
  4898. if(code_seen('D')) {
  4899. float diameter = (float)code_value();
  4900. if (diameter == 0.0) {
  4901. // setting any extruder filament size disables volumetric on the assumption that
  4902. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4903. // for all extruders
  4904. volumetric_enabled = false;
  4905. } else {
  4906. filament_size[tmp_extruder] = (float)code_value();
  4907. // make sure all extruders have some sane value for the filament size
  4908. filament_size[0] = (filament_size[0] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[0]);
  4909. #if EXTRUDERS > 1
  4910. filament_size[1] = (filament_size[1] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[1]);
  4911. #if EXTRUDERS > 2
  4912. filament_size[2] = (filament_size[2] == 0.0 ? DEFAULT_NOMINAL_FILAMENT_DIA : filament_size[2]);
  4913. #endif
  4914. #endif
  4915. volumetric_enabled = true;
  4916. }
  4917. } else {
  4918. //reserved for setting filament diameter via UFID or filament measuring device
  4919. break;
  4920. }
  4921. calculate_extruder_multipliers();
  4922. }
  4923. break;
  4924. case 201: // M201
  4925. for(int8_t i=0; i < NUM_AXIS; i++)
  4926. {
  4927. if(code_seen(axis_codes[i]))
  4928. {
  4929. max_acceleration_units_per_sq_second[i] = code_value();
  4930. }
  4931. }
  4932. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4933. reset_acceleration_rates();
  4934. break;
  4935. #if 0 // Not used for Sprinter/grbl gen6
  4936. case 202: // M202
  4937. for(int8_t i=0; i < NUM_AXIS; i++) {
  4938. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4939. }
  4940. break;
  4941. #endif
  4942. case 203: // M203 max feedrate mm/sec
  4943. for(int8_t i=0; i < NUM_AXIS; i++) {
  4944. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  4945. }
  4946. break;
  4947. case 204: // M204 acclereration S normal moves T filmanent only moves
  4948. {
  4949. if(code_seen('S')) acceleration = code_value() ;
  4950. if(code_seen('T')) retract_acceleration = code_value() ;
  4951. }
  4952. break;
  4953. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4954. {
  4955. if(code_seen('S')) minimumfeedrate = code_value();
  4956. if(code_seen('T')) mintravelfeedrate = code_value();
  4957. if(code_seen('B')) minsegmenttime = code_value() ;
  4958. if(code_seen('X')) max_jerk[X_AXIS] = max_jerk[Y_AXIS] = code_value();
  4959. if(code_seen('Y')) max_jerk[Y_AXIS] = code_value();
  4960. if(code_seen('Z')) max_jerk[Z_AXIS] = code_value();
  4961. if(code_seen('E')) max_jerk[E_AXIS] = code_value();
  4962. if (max_jerk[X_AXIS] > DEFAULT_XJERK) max_jerk[X_AXIS] = DEFAULT_XJERK;
  4963. if (max_jerk[Y_AXIS] > DEFAULT_YJERK) max_jerk[Y_AXIS] = DEFAULT_YJERK;
  4964. }
  4965. break;
  4966. case 206: // M206 additional homing offset
  4967. for(int8_t i=0; i < 3; i++)
  4968. {
  4969. if(code_seen(axis_codes[i])) add_homing[i] = code_value();
  4970. }
  4971. break;
  4972. #ifdef FWRETRACT
  4973. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4974. {
  4975. if(code_seen('S'))
  4976. {
  4977. retract_length = code_value() ;
  4978. }
  4979. if(code_seen('F'))
  4980. {
  4981. retract_feedrate = code_value()/60 ;
  4982. }
  4983. if(code_seen('Z'))
  4984. {
  4985. retract_zlift = code_value() ;
  4986. }
  4987. }break;
  4988. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4989. {
  4990. if(code_seen('S'))
  4991. {
  4992. retract_recover_length = code_value() ;
  4993. }
  4994. if(code_seen('F'))
  4995. {
  4996. retract_recover_feedrate = code_value()/60 ;
  4997. }
  4998. }break;
  4999. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5000. {
  5001. if(code_seen('S'))
  5002. {
  5003. int t= code_value() ;
  5004. switch(t)
  5005. {
  5006. case 0:
  5007. {
  5008. autoretract_enabled=false;
  5009. retracted[0]=false;
  5010. #if EXTRUDERS > 1
  5011. retracted[1]=false;
  5012. #endif
  5013. #if EXTRUDERS > 2
  5014. retracted[2]=false;
  5015. #endif
  5016. }break;
  5017. case 1:
  5018. {
  5019. autoretract_enabled=true;
  5020. retracted[0]=false;
  5021. #if EXTRUDERS > 1
  5022. retracted[1]=false;
  5023. #endif
  5024. #if EXTRUDERS > 2
  5025. retracted[2]=false;
  5026. #endif
  5027. }break;
  5028. default:
  5029. SERIAL_ECHO_START;
  5030. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  5031. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  5032. SERIAL_ECHOLNPGM("\"(1)");
  5033. }
  5034. }
  5035. }break;
  5036. #endif // FWRETRACT
  5037. #if EXTRUDERS > 1
  5038. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5039. {
  5040. if(setTargetedHotend(218)){
  5041. break;
  5042. }
  5043. if(code_seen('X'))
  5044. {
  5045. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  5046. }
  5047. if(code_seen('Y'))
  5048. {
  5049. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  5050. }
  5051. SERIAL_ECHO_START;
  5052. SERIAL_ECHORPGM(MSG_HOTEND_OFFSET);
  5053. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  5054. {
  5055. SERIAL_ECHO(" ");
  5056. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  5057. SERIAL_ECHO(",");
  5058. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  5059. }
  5060. SERIAL_ECHOLN("");
  5061. }break;
  5062. #endif
  5063. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5064. {
  5065. if(code_seen('S'))
  5066. {
  5067. feedmultiply = code_value() ;
  5068. }
  5069. }
  5070. break;
  5071. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5072. {
  5073. if(code_seen('S'))
  5074. {
  5075. int tmp_code = code_value();
  5076. if (code_seen('T'))
  5077. {
  5078. if(setTargetedHotend(221)){
  5079. break;
  5080. }
  5081. extruder_multiply[tmp_extruder] = tmp_code;
  5082. }
  5083. else
  5084. {
  5085. extrudemultiply = tmp_code ;
  5086. }
  5087. }
  5088. calculate_extruder_multipliers();
  5089. }
  5090. break;
  5091. #ifndef _DISABLE_M42_M226
  5092. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5093. {
  5094. if(code_seen('P')){
  5095. int pin_number = code_value(); // pin number
  5096. int pin_state = -1; // required pin state - default is inverted
  5097. if(code_seen('S')) pin_state = code_value(); // required pin state
  5098. if(pin_state >= -1 && pin_state <= 1){
  5099. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  5100. {
  5101. if (sensitive_pins[i] == pin_number)
  5102. {
  5103. pin_number = -1;
  5104. break;
  5105. }
  5106. }
  5107. if (pin_number > -1)
  5108. {
  5109. int target = LOW;
  5110. st_synchronize();
  5111. pinMode(pin_number, INPUT);
  5112. switch(pin_state){
  5113. case 1:
  5114. target = HIGH;
  5115. break;
  5116. case 0:
  5117. target = LOW;
  5118. break;
  5119. case -1:
  5120. target = !digitalRead(pin_number);
  5121. break;
  5122. }
  5123. while(digitalRead(pin_number) != target){
  5124. manage_heater();
  5125. manage_inactivity();
  5126. lcd_update();
  5127. }
  5128. }
  5129. }
  5130. }
  5131. }
  5132. break;
  5133. #endif //_DISABLE_M42_M226
  5134. #if NUM_SERVOS > 0
  5135. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5136. {
  5137. int servo_index = -1;
  5138. int servo_position = 0;
  5139. if (code_seen('P'))
  5140. servo_index = code_value();
  5141. if (code_seen('S')) {
  5142. servo_position = code_value();
  5143. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  5144. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5145. servos[servo_index].attach(0);
  5146. #endif
  5147. servos[servo_index].write(servo_position);
  5148. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  5149. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  5150. servos[servo_index].detach();
  5151. #endif
  5152. }
  5153. else {
  5154. SERIAL_ECHO_START;
  5155. SERIAL_ECHO("Servo ");
  5156. SERIAL_ECHO(servo_index);
  5157. SERIAL_ECHOLN(" out of range");
  5158. }
  5159. }
  5160. else if (servo_index >= 0) {
  5161. SERIAL_PROTOCOL(_T(MSG_OK));
  5162. SERIAL_PROTOCOL(" Servo ");
  5163. SERIAL_PROTOCOL(servo_index);
  5164. SERIAL_PROTOCOL(": ");
  5165. SERIAL_PROTOCOL(servos[servo_index].read());
  5166. SERIAL_PROTOCOLLN("");
  5167. }
  5168. }
  5169. break;
  5170. #endif // NUM_SERVOS > 0
  5171. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  5172. case 300: // M300
  5173. {
  5174. int beepS = code_seen('S') ? code_value() : 110;
  5175. int beepP = code_seen('P') ? code_value() : 1000;
  5176. if (beepS > 0)
  5177. {
  5178. #if BEEPER > 0
  5179. tone(BEEPER, beepS);
  5180. delay(beepP);
  5181. noTone(BEEPER);
  5182. #elif defined(ULTRALCD)
  5183. lcd_buzz(beepS, beepP);
  5184. #elif defined(LCD_USE_I2C_BUZZER)
  5185. lcd_buzz(beepP, beepS);
  5186. #endif
  5187. }
  5188. else
  5189. {
  5190. delay(beepP);
  5191. }
  5192. }
  5193. break;
  5194. #endif // M300
  5195. #ifdef PIDTEMP
  5196. case 301: // M301
  5197. {
  5198. if(code_seen('P')) Kp = code_value();
  5199. if(code_seen('I')) Ki = scalePID_i(code_value());
  5200. if(code_seen('D')) Kd = scalePID_d(code_value());
  5201. #ifdef PID_ADD_EXTRUSION_RATE
  5202. if(code_seen('C')) Kc = code_value();
  5203. #endif
  5204. updatePID();
  5205. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5206. SERIAL_PROTOCOL(" p:");
  5207. SERIAL_PROTOCOL(Kp);
  5208. SERIAL_PROTOCOL(" i:");
  5209. SERIAL_PROTOCOL(unscalePID_i(Ki));
  5210. SERIAL_PROTOCOL(" d:");
  5211. SERIAL_PROTOCOL(unscalePID_d(Kd));
  5212. #ifdef PID_ADD_EXTRUSION_RATE
  5213. SERIAL_PROTOCOL(" c:");
  5214. //Kc does not have scaling applied above, or in resetting defaults
  5215. SERIAL_PROTOCOL(Kc);
  5216. #endif
  5217. SERIAL_PROTOCOLLN("");
  5218. }
  5219. break;
  5220. #endif //PIDTEMP
  5221. #ifdef PIDTEMPBED
  5222. case 304: // M304
  5223. {
  5224. if(code_seen('P')) bedKp = code_value();
  5225. if(code_seen('I')) bedKi = scalePID_i(code_value());
  5226. if(code_seen('D')) bedKd = scalePID_d(code_value());
  5227. updatePID();
  5228. SERIAL_PROTOCOLRPGM(_T(MSG_OK));
  5229. SERIAL_PROTOCOL(" p:");
  5230. SERIAL_PROTOCOL(bedKp);
  5231. SERIAL_PROTOCOL(" i:");
  5232. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  5233. SERIAL_PROTOCOL(" d:");
  5234. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  5235. SERIAL_PROTOCOLLN("");
  5236. }
  5237. break;
  5238. #endif //PIDTEMP
  5239. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5240. {
  5241. #ifdef CHDK
  5242. SET_OUTPUT(CHDK);
  5243. WRITE(CHDK, HIGH);
  5244. chdkHigh = millis();
  5245. chdkActive = true;
  5246. #else
  5247. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  5248. const uint8_t NUM_PULSES=16;
  5249. const float PULSE_LENGTH=0.01524;
  5250. for(int i=0; i < NUM_PULSES; i++) {
  5251. WRITE(PHOTOGRAPH_PIN, HIGH);
  5252. _delay_ms(PULSE_LENGTH);
  5253. WRITE(PHOTOGRAPH_PIN, LOW);
  5254. _delay_ms(PULSE_LENGTH);
  5255. }
  5256. delay(7.33);
  5257. for(int i=0; i < NUM_PULSES; i++) {
  5258. WRITE(PHOTOGRAPH_PIN, HIGH);
  5259. _delay_ms(PULSE_LENGTH);
  5260. WRITE(PHOTOGRAPH_PIN, LOW);
  5261. _delay_ms(PULSE_LENGTH);
  5262. }
  5263. #endif
  5264. #endif //chdk end if
  5265. }
  5266. break;
  5267. #ifdef DOGLCD
  5268. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5269. {
  5270. if (code_seen('C')) {
  5271. lcd_setcontrast( ((int)code_value())&63 );
  5272. }
  5273. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5274. SERIAL_PROTOCOL(lcd_contrast);
  5275. SERIAL_PROTOCOLLN("");
  5276. }
  5277. break;
  5278. #endif
  5279. #ifdef PREVENT_DANGEROUS_EXTRUDE
  5280. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5281. {
  5282. float temp = .0;
  5283. if (code_seen('S')) temp=code_value();
  5284. set_extrude_min_temp(temp);
  5285. }
  5286. break;
  5287. #endif
  5288. case 303: // M303 PID autotune
  5289. {
  5290. float temp = 150.0;
  5291. int e=0;
  5292. int c=5;
  5293. if (code_seen('E')) e=code_value();
  5294. if (e<0)
  5295. temp=70;
  5296. if (code_seen('S')) temp=code_value();
  5297. if (code_seen('C')) c=code_value();
  5298. PID_autotune(temp, e, c);
  5299. }
  5300. break;
  5301. case 400: // M400 finish all moves
  5302. {
  5303. st_synchronize();
  5304. }
  5305. break;
  5306. case 500: // M500 Store settings in EEPROM
  5307. {
  5308. Config_StoreSettings(EEPROM_OFFSET);
  5309. }
  5310. break;
  5311. case 501: // M501 Read settings from EEPROM
  5312. {
  5313. Config_RetrieveSettings(EEPROM_OFFSET);
  5314. }
  5315. break;
  5316. case 502: // M502 Revert to default settings
  5317. {
  5318. Config_ResetDefault();
  5319. }
  5320. break;
  5321. case 503: // M503 print settings currently in memory
  5322. {
  5323. Config_PrintSettings();
  5324. }
  5325. break;
  5326. case 509: //M509 Force language selection
  5327. {
  5328. lang_reset();
  5329. SERIAL_ECHO_START;
  5330. SERIAL_PROTOCOLPGM(("LANG SEL FORCED"));
  5331. }
  5332. break;
  5333. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5334. case 540:
  5335. {
  5336. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  5337. }
  5338. break;
  5339. #endif
  5340. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5341. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5342. {
  5343. float value;
  5344. if (code_seen('Z'))
  5345. {
  5346. value = code_value();
  5347. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  5348. {
  5349. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  5350. SERIAL_ECHO_START;
  5351. SERIAL_ECHOLNRPGM(CAT4(MSG_ZPROBE_ZOFFSET, " ", _T(MSG_OK),PSTR("")));
  5352. SERIAL_PROTOCOLLN("");
  5353. }
  5354. else
  5355. {
  5356. SERIAL_ECHO_START;
  5357. SERIAL_ECHORPGM(MSG_ZPROBE_ZOFFSET);
  5358. SERIAL_ECHORPGM(MSG_Z_MIN);
  5359. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5360. SERIAL_ECHORPGM(MSG_Z_MAX);
  5361. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5362. SERIAL_PROTOCOLLN("");
  5363. }
  5364. }
  5365. else
  5366. {
  5367. SERIAL_ECHO_START;
  5368. SERIAL_ECHOLNRPGM(CAT2(MSG_ZPROBE_ZOFFSET, PSTR(" : ")));
  5369. SERIAL_ECHO(-zprobe_zoffset);
  5370. SERIAL_PROTOCOLLN("");
  5371. }
  5372. break;
  5373. }
  5374. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5375. #ifdef FILAMENTCHANGEENABLE
  5376. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5377. {
  5378. #ifdef PAT9125
  5379. bool old_fsensor_enabled = fsensor_enabled;
  5380. fsensor_enabled = false; //temporary solution for unexpected restarting
  5381. #endif //PAT9125
  5382. st_synchronize();
  5383. float target[4];
  5384. float lastpos[4];
  5385. if (farm_mode)
  5386. {
  5387. prusa_statistics(22);
  5388. }
  5389. feedmultiplyBckp=feedmultiply;
  5390. int8_t TooLowZ = 0;
  5391. float HotendTempBckp = degTargetHotend(active_extruder);
  5392. int fanSpeedBckp = fanSpeed;
  5393. target[X_AXIS]=current_position[X_AXIS];
  5394. target[Y_AXIS]=current_position[Y_AXIS];
  5395. target[Z_AXIS]=current_position[Z_AXIS];
  5396. target[E_AXIS]=current_position[E_AXIS];
  5397. lastpos[X_AXIS]=current_position[X_AXIS];
  5398. lastpos[Y_AXIS]=current_position[Y_AXIS];
  5399. lastpos[Z_AXIS]=current_position[Z_AXIS];
  5400. lastpos[E_AXIS]=current_position[E_AXIS];
  5401. //Restract extruder
  5402. if(code_seen('E'))
  5403. {
  5404. target[E_AXIS]+= code_value();
  5405. }
  5406. else
  5407. {
  5408. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5409. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  5410. #endif
  5411. }
  5412. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5413. //Lift Z
  5414. if(code_seen('Z'))
  5415. {
  5416. target[Z_AXIS]+= code_value();
  5417. }
  5418. else
  5419. {
  5420. #ifdef FILAMENTCHANGE_ZADD
  5421. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  5422. if(target[Z_AXIS] < 10){
  5423. target[Z_AXIS]+= 10 ;
  5424. TooLowZ = 1;
  5425. }else{
  5426. TooLowZ = 0;
  5427. }
  5428. #endif
  5429. }
  5430. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5431. //Move XY to side
  5432. if(code_seen('X'))
  5433. {
  5434. target[X_AXIS]+= code_value();
  5435. }
  5436. else
  5437. {
  5438. #ifdef FILAMENTCHANGE_XPOS
  5439. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  5440. #endif
  5441. }
  5442. if(code_seen('Y'))
  5443. {
  5444. target[Y_AXIS]= code_value();
  5445. }
  5446. else
  5447. {
  5448. #ifdef FILAMENTCHANGE_YPOS
  5449. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  5450. #endif
  5451. }
  5452. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5453. st_synchronize();
  5454. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5455. uint8_t cnt = 0;
  5456. int counterBeep = 0;
  5457. fanSpeed = 0;
  5458. unsigned long waiting_start_time = millis();
  5459. uint8_t wait_for_user_state = 0;
  5460. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5461. while (!(wait_for_user_state == 0 && lcd_clicked())){
  5462. //cnt++;
  5463. manage_heater();
  5464. manage_inactivity(true);
  5465. /*#ifdef SNMM
  5466. target[E_AXIS] += 0.002;
  5467. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5468. #endif // SNMM*/
  5469. //if (cnt == 0)
  5470. {
  5471. #if BEEPER > 0
  5472. if (counterBeep == 500) {
  5473. counterBeep = 0;
  5474. }
  5475. SET_OUTPUT(BEEPER);
  5476. if (counterBeep == 0) {
  5477. WRITE(BEEPER, HIGH);
  5478. }
  5479. if (counterBeep == 20) {
  5480. WRITE(BEEPER, LOW);
  5481. }
  5482. counterBeep++;
  5483. #else
  5484. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  5485. lcd_buzz(1000 / 6, 100);
  5486. #else
  5487. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  5488. #endif
  5489. #endif
  5490. }
  5491. switch (wait_for_user_state) {
  5492. case 0:
  5493. delay_keep_alive(4);
  5494. if (millis() > waiting_start_time + (unsigned long)M600_TIMEOUT * 1000) {
  5495. lcd_display_message_fullscreen_P(_i("Press knob to preheat nozzle and continue."));////MSG_PRESS_TO_PREHEAT c=20 r=4
  5496. wait_for_user_state = 1;
  5497. setTargetHotend(0, 0);
  5498. setTargetHotend(0, 1);
  5499. setTargetHotend(0, 2);
  5500. st_synchronize();
  5501. disable_e0();
  5502. disable_e1();
  5503. disable_e2();
  5504. }
  5505. break;
  5506. case 1:
  5507. delay_keep_alive(4);
  5508. if (lcd_clicked()) {
  5509. setTargetHotend(HotendTempBckp, active_extruder);
  5510. lcd_wait_for_heater();
  5511. wait_for_user_state = 2;
  5512. }
  5513. break;
  5514. case 2:
  5515. if (abs(degTargetHotend(active_extruder) - degHotend(active_extruder)) < 1) {
  5516. lcd_display_message_fullscreen_P(_T(MSG_PRESS_TO_UNLOAD));
  5517. waiting_start_time = millis();
  5518. wait_for_user_state = 0;
  5519. }
  5520. else {
  5521. counterBeep = 20; //beeper will be inactive during waiting for nozzle preheat
  5522. lcd.setCursor(1, 4);
  5523. lcd.print(ftostr3(degHotend(active_extruder)));
  5524. }
  5525. break;
  5526. }
  5527. }
  5528. WRITE(BEEPER, LOW);
  5529. lcd_change_fil_state = 0;
  5530. // Unload filament
  5531. lcd_display_message_fullscreen_P(_T(MSG_UNLOADING_FILAMENT));
  5532. KEEPALIVE_STATE(IN_HANDLER);
  5533. custom_message = true;
  5534. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  5535. if (code_seen('L'))
  5536. {
  5537. target[E_AXIS] += code_value();
  5538. }
  5539. else
  5540. {
  5541. #ifdef SNMM
  5542. #else
  5543. #ifdef FILAMENTCHANGE_FINALRETRACT
  5544. target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5545. #endif
  5546. #endif // SNMM
  5547. }
  5548. #ifdef SNMM
  5549. target[E_AXIS] += 12;
  5550. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500, active_extruder);
  5551. target[E_AXIS] += 6;
  5552. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5553. target[E_AXIS] += (FIL_LOAD_LENGTH * -1);
  5554. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5000, active_extruder);
  5555. st_synchronize();
  5556. target[E_AXIS] += (FIL_COOLING);
  5557. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5558. target[E_AXIS] += (FIL_COOLING*-1);
  5559. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5560. target[E_AXIS] += (bowden_length[snmm_extruder] * -1);
  5561. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5562. st_synchronize();
  5563. #else
  5564. // plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5565. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3500 / 60, active_extruder);
  5566. target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5567. st_synchronize();
  5568. #ifdef TMC2130
  5569. uint8_t tmc2130_current_r_bckp = tmc2130_current_r[E_AXIS];
  5570. tmc2130_set_current_r(E_AXIS, TMC2130_UNLOAD_CURRENT_R);
  5571. #else
  5572. st_current_set(2, 200); //set lower E motor current for unload to protect filament sensor and ptfe tube
  5573. float tmp_motor[3] = DEFAULT_PWM_MOTOR_CURRENT;
  5574. float tmp_motor_loud[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  5575. #endif //TMC2130
  5576. target[E_AXIS] -= 45;
  5577. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 5200 / 60, active_extruder);
  5578. st_synchronize();
  5579. target[E_AXIS] -= 15;
  5580. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5581. st_synchronize();
  5582. target[E_AXIS] -= 20;
  5583. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000 / 60, active_extruder);
  5584. st_synchronize();
  5585. #ifdef TMC2130
  5586. tmc2130_set_current_r(E_AXIS, tmc2130_current_r_bckp);
  5587. #else
  5588. uint8_t silentMode = eeprom_read_byte((uint8_t*)EEPROM_SILENT);
  5589. if(silentMode != SILENT_MODE_POWER) st_current_set(2, tmp_motor[2]); //set E back to normal operation currents
  5590. else st_current_set(2, tmp_motor_loud[2]);
  5591. #endif //TMC2130
  5592. #endif // SNMM
  5593. //finish moves
  5594. st_synchronize();
  5595. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  5596. //disable extruder steppers so filament can be removed
  5597. disable_e0();
  5598. disable_e1();
  5599. disable_e2();
  5600. delay(100);
  5601. WRITE(BEEPER, HIGH);
  5602. counterBeep = 0;
  5603. while(!lcd_clicked() && (counterBeep < 50)) {
  5604. if(counterBeep > 5) WRITE(BEEPER, LOW);
  5605. delay_keep_alive(100);
  5606. counterBeep++;
  5607. }
  5608. WRITE(BEEPER, LOW);
  5609. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5610. lcd_change_fil_state = lcd_show_fullscreen_message_yes_no_and_wait_P(_i("Was filament unload successful?"), false, true);////MSG_UNLOAD_SUCCESSFUL c=20 r=2
  5611. if (lcd_change_fil_state == 0) lcd_show_fullscreen_message_and_wait_P(_i("Please open idler and remove filament manually."));////MSG_CHECK_IDLER c=20 r=4
  5612. //lcd_return_to_status();
  5613. lcd_update_enable(true);
  5614. //Wait for user to insert filament
  5615. lcd_wait_interact();
  5616. //load_filament_time = millis();
  5617. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5618. #ifdef PAT9125
  5619. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_start();
  5620. #endif //PAT9125
  5621. // printf_P(PSTR("M600 PAT9125 filament_autoload_enabled=%d, old_fsensor_enabled=%d, fsensor_M600=%d"), filament_autoload_enabled, old_fsensor_enabled, fsensor_M600);
  5622. while(!lcd_clicked())
  5623. {
  5624. manage_heater();
  5625. manage_inactivity(true);
  5626. #ifdef PAT9125
  5627. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600) && fsensor_check_autoload())
  5628. {
  5629. tone(BEEPER, 1000);
  5630. delay_keep_alive(50);
  5631. noTone(BEEPER);
  5632. break;
  5633. }
  5634. #endif //PAT9125
  5635. /*#ifdef SNMM
  5636. target[E_AXIS] += 0.002;
  5637. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5638. #endif // SNMM*/
  5639. }
  5640. #ifdef PAT9125
  5641. if (filament_autoload_enabled && (old_fsensor_enabled || fsensor_M600)) fsensor_autoload_check_stop();
  5642. #endif //PAT9125
  5643. //WRITE(BEEPER, LOW);
  5644. KEEPALIVE_STATE(IN_HANDLER);
  5645. #ifdef SNMM
  5646. display_loading();
  5647. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5648. do {
  5649. target[E_AXIS] += 0.002;
  5650. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5651. delay_keep_alive(2);
  5652. } while (!lcd_clicked());
  5653. KEEPALIVE_STATE(IN_HANDLER);
  5654. /*if (millis() - load_filament_time > 2) {
  5655. load_filament_time = millis();
  5656. target[E_AXIS] += 0.001;
  5657. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1000, active_extruder);
  5658. }*/
  5659. //Filament inserted
  5660. //Feed the filament to the end of nozzle quickly
  5661. st_synchronize();
  5662. target[E_AXIS] += bowden_length[snmm_extruder];
  5663. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5664. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5665. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5666. target[E_AXIS] += 40;
  5667. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5668. target[E_AXIS] += 10;
  5669. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5670. #else
  5671. target[E_AXIS] += FILAMENTCHANGE_FIRSTFEED;
  5672. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5673. #endif // SNMM
  5674. //Extrude some filament
  5675. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5676. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5677. //Wait for user to check the state
  5678. lcd_change_fil_state = 0;
  5679. lcd_loading_filament();
  5680. tone(BEEPER, 500);
  5681. delay_keep_alive(50);
  5682. noTone(BEEPER);
  5683. while ((lcd_change_fil_state == 0)||(lcd_change_fil_state != 1)){
  5684. lcd_change_fil_state = 0;
  5685. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5686. lcd_alright();
  5687. KEEPALIVE_STATE(IN_HANDLER);
  5688. switch(lcd_change_fil_state){
  5689. // Filament failed to load so load it again
  5690. case 2:
  5691. #ifdef SNMM
  5692. display_loading();
  5693. do {
  5694. target[E_AXIS] += 0.002;
  5695. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 500, active_extruder);
  5696. delay_keep_alive(2);
  5697. } while (!lcd_clicked());
  5698. st_synchronize();
  5699. target[E_AXIS] += bowden_length[snmm_extruder];
  5700. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 3000, active_extruder);
  5701. target[E_AXIS] += FIL_LOAD_LENGTH - 60;
  5702. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 1400, active_extruder);
  5703. target[E_AXIS] += 40;
  5704. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 400, active_extruder);
  5705. target[E_AXIS] += 10;
  5706. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 50, active_extruder);
  5707. #else
  5708. target[E_AXIS]+= FILAMENTCHANGE_FIRSTFEED ;
  5709. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EFEED, active_extruder);
  5710. #endif
  5711. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5712. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5713. lcd_loading_filament();
  5714. break;
  5715. // Filament loaded properly but color is not clear
  5716. case 3:
  5717. target[E_AXIS]+= FILAMENTCHANGE_FINALFEED ;
  5718. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 2, active_extruder);
  5719. lcd_loading_color();
  5720. break;
  5721. // Everything good
  5722. default:
  5723. lcd_change_success();
  5724. lcd_update_enable(true);
  5725. break;
  5726. }
  5727. }
  5728. //Not let's go back to print
  5729. fanSpeed = fanSpeedBckp;
  5730. //Feed a little of filament to stabilize pressure
  5731. target[E_AXIS]+= FILAMENTCHANGE_RECFEED;
  5732. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_EXFEED, active_extruder);
  5733. //Retract
  5734. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT;
  5735. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5736. //plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], 70, active_extruder); //should do nothing
  5737. //Move XY back
  5738. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_XYFEED, active_extruder);
  5739. //Move Z back
  5740. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_ZFEED, active_extruder);
  5741. target[E_AXIS]= target[E_AXIS] - FILAMENTCHANGE_FIRSTRETRACT;
  5742. //Unretract
  5743. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], FILAMENTCHANGE_RFEED, active_extruder);
  5744. //Set E position to original
  5745. plan_set_e_position(lastpos[E_AXIS]);
  5746. //Recover feed rate
  5747. feedmultiply=feedmultiplyBckp;
  5748. char cmd[9];
  5749. sprintf_P(cmd, PSTR("M220 S%i"), feedmultiplyBckp);
  5750. enquecommand(cmd);
  5751. lcd_setstatuspgm(_T(WELCOME_MSG));
  5752. custom_message = false;
  5753. custom_message_type = 0;
  5754. #ifdef PAT9125
  5755. fsensor_enabled = old_fsensor_enabled; //temporary solution for unexpected restarting
  5756. if (fsensor_M600)
  5757. {
  5758. cmdqueue_pop_front(); //hack because M600 repeated 2x when enqueued to front
  5759. st_synchronize();
  5760. while (!is_buffer_empty())
  5761. {
  5762. process_commands();
  5763. cmdqueue_pop_front();
  5764. }
  5765. KEEPALIVE_STATE(IN_HANDLER);
  5766. fsensor_enable();
  5767. fsensor_restore_print_and_continue();
  5768. }
  5769. #endif //PAT9125
  5770. }
  5771. break;
  5772. #endif //FILAMENTCHANGEENABLE
  5773. case 601: {
  5774. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE;
  5775. }
  5776. break;
  5777. case 602: {
  5778. if(lcd_commands_type == 0) lcd_commands_type = LCD_COMMAND_LONG_PAUSE_RESUME;
  5779. }
  5780. break;
  5781. #ifdef PINDA_THERMISTOR
  5782. case 860: // M860 - Wait for PINDA thermistor to reach target temperature.
  5783. {
  5784. int set_target_pinda = 0;
  5785. if (code_seen('S')) {
  5786. set_target_pinda = code_value();
  5787. }
  5788. else {
  5789. break;
  5790. }
  5791. LCD_MESSAGERPGM(_T(MSG_PLEASE_WAIT));
  5792. SERIAL_PROTOCOLPGM("Wait for PINDA target temperature:");
  5793. SERIAL_PROTOCOL(set_target_pinda);
  5794. SERIAL_PROTOCOLLN("");
  5795. codenum = millis();
  5796. cancel_heatup = false;
  5797. bool is_pinda_cooling = false;
  5798. if ((degTargetBed() == 0) && (degTargetHotend(0) == 0)) {
  5799. is_pinda_cooling = true;
  5800. }
  5801. while ( ((!is_pinda_cooling) && (!cancel_heatup) && (current_temperature_pinda < set_target_pinda)) || (is_pinda_cooling && (current_temperature_pinda > set_target_pinda)) ) {
  5802. if ((millis() - codenum) > 1000) //Print Temp Reading every 1 second while waiting.
  5803. {
  5804. SERIAL_PROTOCOLPGM("P:");
  5805. SERIAL_PROTOCOL_F(current_temperature_pinda, 1);
  5806. SERIAL_PROTOCOLPGM("/");
  5807. SERIAL_PROTOCOL(set_target_pinda);
  5808. SERIAL_PROTOCOLLN("");
  5809. codenum = millis();
  5810. }
  5811. manage_heater();
  5812. manage_inactivity();
  5813. lcd_update();
  5814. }
  5815. LCD_MESSAGERPGM(_T(MSG_OK));
  5816. break;
  5817. }
  5818. case 861: // M861 - Set/Read PINDA temperature compensation offsets
  5819. if (code_seen('?')) { // ? - Print out current EEPROM offset values
  5820. uint8_t cal_status = calibration_status_pinda();
  5821. int16_t usteps = 0;
  5822. cal_status ? SERIAL_PROTOCOLLN("PINDA cal status: 1") : SERIAL_PROTOCOLLN("PINDA cal status: 0");
  5823. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5824. for (uint8_t i = 0; i < 6; i++)
  5825. {
  5826. if(i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &usteps);
  5827. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5828. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5829. SERIAL_PROTOCOLPGM(", ");
  5830. SERIAL_PROTOCOL(35 + (i * 5));
  5831. SERIAL_PROTOCOLPGM(", ");
  5832. SERIAL_PROTOCOL(usteps);
  5833. SERIAL_PROTOCOLPGM(", ");
  5834. SERIAL_PROTOCOL(mm * 1000);
  5835. SERIAL_PROTOCOLLN("");
  5836. }
  5837. }
  5838. else if (code_seen('!')) { // ! - Set factory default values
  5839. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5840. int16_t z_shift = 8; //40C - 20um - 8usteps
  5841. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT, &z_shift);
  5842. z_shift = 24; //45C - 60um - 24usteps
  5843. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 2, &z_shift);
  5844. z_shift = 48; //50C - 120um - 48usteps
  5845. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 4, &z_shift);
  5846. z_shift = 80; //55C - 200um - 80usteps
  5847. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 6, &z_shift);
  5848. z_shift = 120; //60C - 300um - 120usteps
  5849. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + 8, &z_shift);
  5850. SERIAL_PROTOCOLLN("factory restored");
  5851. }
  5852. else if (code_seen('Z')) { // Z - Set all values to 0 (effectively disabling PINDA temperature compensation)
  5853. eeprom_write_byte((uint8_t*)EEPROM_CALIBRATION_STATUS_PINDA, 1);
  5854. int16_t z_shift = 0;
  5855. for (uint8_t i = 0; i < 5; i++) EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + i * 2, &z_shift);
  5856. SERIAL_PROTOCOLLN("zerorized");
  5857. }
  5858. else if (code_seen('S')) { // Sxxx Iyyy - Set compensation ustep value S for compensation table index I
  5859. int16_t usteps = code_value();
  5860. if (code_seen('I')) {
  5861. byte index = code_value();
  5862. if ((index >= 0) && (index < 5)) {
  5863. EEPROM_save_B(EEPROM_PROBE_TEMP_SHIFT + index * 2, &usteps);
  5864. SERIAL_PROTOCOLLN("OK");
  5865. SERIAL_PROTOCOLLN("index, temp, ustep, um");
  5866. for (uint8_t i = 0; i < 6; i++)
  5867. {
  5868. usteps = 0;
  5869. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i - 1) * 2, &usteps);
  5870. float mm = ((float)usteps) / axis_steps_per_unit[Z_AXIS];
  5871. i == 0 ? SERIAL_PROTOCOLPGM("n/a") : SERIAL_PROTOCOL(i - 1);
  5872. SERIAL_PROTOCOLPGM(", ");
  5873. SERIAL_PROTOCOL(35 + (i * 5));
  5874. SERIAL_PROTOCOLPGM(", ");
  5875. SERIAL_PROTOCOL(usteps);
  5876. SERIAL_PROTOCOLPGM(", ");
  5877. SERIAL_PROTOCOL(mm * 1000);
  5878. SERIAL_PROTOCOLLN("");
  5879. }
  5880. }
  5881. }
  5882. }
  5883. else {
  5884. SERIAL_PROTOCOLPGM("no valid command");
  5885. }
  5886. break;
  5887. #endif //PINDA_THERMISTOR
  5888. #ifdef LIN_ADVANCE
  5889. case 900: // M900: Set LIN_ADVANCE options.
  5890. gcode_M900();
  5891. break;
  5892. #endif
  5893. case 907: // M907 Set digital trimpot motor current using axis codes.
  5894. {
  5895. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5896. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) st_current_set(i,code_value());
  5897. if(code_seen('B')) st_current_set(4,code_value());
  5898. if(code_seen('S')) for(int i=0;i<=4;i++) st_current_set(i,code_value());
  5899. #endif
  5900. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  5901. if(code_seen('X')) st_current_set(0, code_value());
  5902. #endif
  5903. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  5904. if(code_seen('Z')) st_current_set(1, code_value());
  5905. #endif
  5906. #ifdef MOTOR_CURRENT_PWM_E_PIN
  5907. if(code_seen('E')) st_current_set(2, code_value());
  5908. #endif
  5909. }
  5910. break;
  5911. case 908: // M908 Control digital trimpot directly.
  5912. {
  5913. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  5914. uint8_t channel,current;
  5915. if(code_seen('P')) channel=code_value();
  5916. if(code_seen('S')) current=code_value();
  5917. digitalPotWrite(channel, current);
  5918. #endif
  5919. }
  5920. break;
  5921. #ifdef TMC2130
  5922. case 910: // M910 TMC2130 init
  5923. {
  5924. tmc2130_init();
  5925. }
  5926. break;
  5927. case 911: // M911 Set TMC2130 holding currents
  5928. {
  5929. if (code_seen('X')) tmc2130_set_current_h(0, code_value());
  5930. if (code_seen('Y')) tmc2130_set_current_h(1, code_value());
  5931. if (code_seen('Z')) tmc2130_set_current_h(2, code_value());
  5932. if (code_seen('E')) tmc2130_set_current_h(3, code_value());
  5933. }
  5934. break;
  5935. case 912: // M912 Set TMC2130 running currents
  5936. {
  5937. if (code_seen('X')) tmc2130_set_current_r(0, code_value());
  5938. if (code_seen('Y')) tmc2130_set_current_r(1, code_value());
  5939. if (code_seen('Z')) tmc2130_set_current_r(2, code_value());
  5940. if (code_seen('E')) tmc2130_set_current_r(3, code_value());
  5941. }
  5942. break;
  5943. case 913: // M913 Print TMC2130 currents
  5944. {
  5945. tmc2130_print_currents();
  5946. }
  5947. break;
  5948. case 914: // M914 Set normal mode
  5949. {
  5950. tmc2130_mode = TMC2130_MODE_NORMAL;
  5951. tmc2130_init();
  5952. }
  5953. break;
  5954. case 915: // M915 Set silent mode
  5955. {
  5956. tmc2130_mode = TMC2130_MODE_SILENT;
  5957. tmc2130_init();
  5958. }
  5959. break;
  5960. case 916: // M916 Set sg_thrs
  5961. {
  5962. if (code_seen('X')) tmc2130_sg_thr[X_AXIS] = code_value();
  5963. if (code_seen('Y')) tmc2130_sg_thr[Y_AXIS] = code_value();
  5964. if (code_seen('Z')) tmc2130_sg_thr[Z_AXIS] = code_value();
  5965. if (code_seen('E')) tmc2130_sg_thr[E_AXIS] = code_value();
  5966. for (uint8_t a = X_AXIS; a <= E_AXIS; a++)
  5967. printf_P(_N("tmc2130_sg_thr[%c]=%d\n"), "XYZE"[a], tmc2130_sg_thr[a]);
  5968. }
  5969. break;
  5970. case 917: // M917 Set TMC2130 pwm_ampl
  5971. {
  5972. if (code_seen('X')) tmc2130_set_pwm_ampl(0, code_value());
  5973. if (code_seen('Y')) tmc2130_set_pwm_ampl(1, code_value());
  5974. if (code_seen('Z')) tmc2130_set_pwm_ampl(2, code_value());
  5975. if (code_seen('E')) tmc2130_set_pwm_ampl(3, code_value());
  5976. }
  5977. break;
  5978. case 918: // M918 Set TMC2130 pwm_grad
  5979. {
  5980. if (code_seen('X')) tmc2130_set_pwm_grad(0, code_value());
  5981. if (code_seen('Y')) tmc2130_set_pwm_grad(1, code_value());
  5982. if (code_seen('Z')) tmc2130_set_pwm_grad(2, code_value());
  5983. if (code_seen('E')) tmc2130_set_pwm_grad(3, code_value());
  5984. }
  5985. break;
  5986. #endif //TMC2130
  5987. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5988. {
  5989. #ifdef TMC2130
  5990. if(code_seen('E'))
  5991. {
  5992. uint16_t res_new = code_value();
  5993. if ((res_new == 8) || (res_new == 16) || (res_new == 32) || (res_new == 64) || (res_new == 128))
  5994. {
  5995. st_synchronize();
  5996. uint8_t axis = E_AXIS;
  5997. uint16_t res = tmc2130_get_res(axis);
  5998. tmc2130_set_res(axis, res_new);
  5999. if (res_new > res)
  6000. {
  6001. uint16_t fac = (res_new / res);
  6002. axis_steps_per_unit[axis] *= fac;
  6003. position[E_AXIS] *= fac;
  6004. }
  6005. else
  6006. {
  6007. uint16_t fac = (res / res_new);
  6008. axis_steps_per_unit[axis] /= fac;
  6009. position[E_AXIS] /= fac;
  6010. }
  6011. }
  6012. }
  6013. #else //TMC2130
  6014. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6015. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  6016. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  6017. if(code_seen('B')) microstep_mode(4,code_value());
  6018. microstep_readings();
  6019. #endif
  6020. #endif //TMC2130
  6021. }
  6022. break;
  6023. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6024. {
  6025. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  6026. if(code_seen('S')) switch((int)code_value())
  6027. {
  6028. case 1:
  6029. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  6030. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  6031. break;
  6032. case 2:
  6033. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  6034. if(code_seen('B')) microstep_ms(4,-1,code_value());
  6035. break;
  6036. }
  6037. microstep_readings();
  6038. #endif
  6039. }
  6040. break;
  6041. case 701: //M701: load filament
  6042. {
  6043. gcode_M701();
  6044. }
  6045. break;
  6046. case 702:
  6047. {
  6048. #ifdef SNMM
  6049. if (code_seen('U')) {
  6050. extr_unload_used(); //unload all filaments which were used in current print
  6051. }
  6052. else if (code_seen('C')) {
  6053. extr_unload(); //unload just current filament
  6054. }
  6055. else {
  6056. extr_unload_all(); //unload all filaments
  6057. }
  6058. #else
  6059. #ifdef PAT9125
  6060. bool old_fsensor_enabled = fsensor_enabled;
  6061. fsensor_enabled = false;
  6062. #endif //PAT9125
  6063. custom_message = true;
  6064. custom_message_type = 2;
  6065. lcd_setstatuspgm(_T(MSG_UNLOADING_FILAMENT));
  6066. // extr_unload2();
  6067. current_position[E_AXIS] -= 45;
  6068. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 5200 / 60, active_extruder);
  6069. st_synchronize();
  6070. current_position[E_AXIS] -= 15;
  6071. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6072. st_synchronize();
  6073. current_position[E_AXIS] -= 20;
  6074. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 1000 / 60, active_extruder);
  6075. st_synchronize();
  6076. lcd_display_message_fullscreen_P(_T(MSG_PULL_OUT_FILAMENT));
  6077. //disable extruder steppers so filament can be removed
  6078. disable_e0();
  6079. disable_e1();
  6080. disable_e2();
  6081. delay(100);
  6082. WRITE(BEEPER, HIGH);
  6083. uint8_t counterBeep = 0;
  6084. while (!lcd_clicked() && (counterBeep < 50)) {
  6085. if (counterBeep > 5) WRITE(BEEPER, LOW);
  6086. delay_keep_alive(100);
  6087. counterBeep++;
  6088. }
  6089. WRITE(BEEPER, LOW);
  6090. st_synchronize();
  6091. while (lcd_clicked()) delay_keep_alive(100);
  6092. lcd_update_enable(true);
  6093. lcd_setstatuspgm(_T(WELCOME_MSG));
  6094. custom_message = false;
  6095. custom_message_type = 0;
  6096. #ifdef PAT9125
  6097. fsensor_enabled = old_fsensor_enabled;
  6098. #endif //PAT9125
  6099. #endif
  6100. }
  6101. break;
  6102. case 999: // M999: Restart after being stopped
  6103. Stopped = false;
  6104. lcd_reset_alert_level();
  6105. gcode_LastN = Stopped_gcode_LastN;
  6106. FlushSerialRequestResend();
  6107. break;
  6108. default:
  6109. printf_P(PSTR("Unknown M code: %s \n"), cmdbuffer + bufindr + CMDHDRSIZE);
  6110. }
  6111. } // end if(code_seen('M')) (end of M codes)
  6112. else if(code_seen('T'))
  6113. {
  6114. int index;
  6115. st_synchronize();
  6116. for (index = 1; *(strchr_pointer + index) == ' ' || *(strchr_pointer + index) == '\t'; index++);
  6117. if ((*(strchr_pointer + index) < '0' || *(strchr_pointer + index) > '9') && *(strchr_pointer + index) != '?') {
  6118. SERIAL_ECHOLNPGM("Invalid T code.");
  6119. }
  6120. else {
  6121. if (*(strchr_pointer + index) == '?') {
  6122. tmp_extruder = choose_extruder_menu();
  6123. }
  6124. else {
  6125. tmp_extruder = code_value();
  6126. }
  6127. snmm_filaments_used |= (1 << tmp_extruder); //for stop print
  6128. #ifdef SNMM_V2
  6129. printf_P(PSTR("T code: %d \n"), tmp_extruder);
  6130. switch (tmp_extruder)
  6131. {
  6132. case 1:
  6133. fprintf_P(uart2io, PSTR("T1\n"));
  6134. break;
  6135. case 2:
  6136. fprintf_P(uart2io, PSTR("T2\n"));
  6137. break;
  6138. case 3:
  6139. fprintf_P(uart2io, PSTR("T3\n"));
  6140. break;
  6141. case 4:
  6142. fprintf_P(uart2io, PSTR("T4\n"));
  6143. break;
  6144. default:
  6145. fprintf_P(uart2io, PSTR("T0\n"));
  6146. break;
  6147. }
  6148. // get response
  6149. uart2_rx_clr();
  6150. while (!uart2_rx_ok())
  6151. {
  6152. //printf_P(PSTR("waiting..\n"));
  6153. delay_keep_alive(100);
  6154. }
  6155. #endif
  6156. #ifdef SNMM
  6157. #ifdef LIN_ADVANCE
  6158. if (snmm_extruder != tmp_extruder)
  6159. clear_current_adv_vars(); //Check if the selected extruder is not the active one and reset LIN_ADVANCE variables if so.
  6160. #endif
  6161. snmm_extruder = tmp_extruder;
  6162. delay(100);
  6163. disable_e0();
  6164. disable_e1();
  6165. disable_e2();
  6166. pinMode(E_MUX0_PIN, OUTPUT);
  6167. pinMode(E_MUX1_PIN, OUTPUT);
  6168. delay(100);
  6169. SERIAL_ECHO_START;
  6170. SERIAL_ECHO("T:");
  6171. SERIAL_ECHOLN((int)tmp_extruder);
  6172. switch (tmp_extruder) {
  6173. case 1:
  6174. WRITE(E_MUX0_PIN, HIGH);
  6175. WRITE(E_MUX1_PIN, LOW);
  6176. break;
  6177. case 2:
  6178. WRITE(E_MUX0_PIN, LOW);
  6179. WRITE(E_MUX1_PIN, HIGH);
  6180. break;
  6181. case 3:
  6182. WRITE(E_MUX0_PIN, HIGH);
  6183. WRITE(E_MUX1_PIN, HIGH);
  6184. break;
  6185. default:
  6186. WRITE(E_MUX0_PIN, LOW);
  6187. WRITE(E_MUX1_PIN, LOW);
  6188. break;
  6189. }
  6190. delay(100);
  6191. #else
  6192. if (tmp_extruder >= EXTRUDERS) {
  6193. SERIAL_ECHO_START;
  6194. SERIAL_ECHOPGM("T");
  6195. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6196. SERIAL_ECHOLNRPGM(_n("Invalid extruder"));////MSG_INVALID_EXTRUDER c=0 r=0
  6197. }
  6198. else {
  6199. boolean make_move = false;
  6200. if (code_seen('F')) {
  6201. make_move = true;
  6202. next_feedrate = code_value();
  6203. if (next_feedrate > 0.0) {
  6204. feedrate = next_feedrate;
  6205. }
  6206. }
  6207. #if EXTRUDERS > 1
  6208. if (tmp_extruder != active_extruder) {
  6209. // Save current position to return to after applying extruder offset
  6210. memcpy(destination, current_position, sizeof(destination));
  6211. // Offset extruder (only by XY)
  6212. int i;
  6213. for (i = 0; i < 2; i++) {
  6214. current_position[i] = current_position[i] -
  6215. extruder_offset[i][active_extruder] +
  6216. extruder_offset[i][tmp_extruder];
  6217. }
  6218. // Set the new active extruder and position
  6219. active_extruder = tmp_extruder;
  6220. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6221. // Move to the old position if 'F' was in the parameters
  6222. if (make_move && Stopped == false) {
  6223. prepare_move();
  6224. }
  6225. }
  6226. #endif
  6227. SERIAL_ECHO_START;
  6228. SERIAL_ECHORPGM(_n("Active Extruder: "));////MSG_ACTIVE_EXTRUDER c=0 r=0
  6229. SERIAL_PROTOCOLLN((int)active_extruder);
  6230. }
  6231. #endif
  6232. }
  6233. } // end if(code_seen('T')) (end of T codes)
  6234. #ifdef DEBUG_DCODES
  6235. else if (code_seen('D')) // D codes (debug)
  6236. {
  6237. switch((int)code_value())
  6238. {
  6239. case -1: // D-1 - Endless loop
  6240. dcode__1(); break;
  6241. case 0: // D0 - Reset
  6242. dcode_0(); break;
  6243. case 1: // D1 - Clear EEPROM
  6244. dcode_1(); break;
  6245. case 2: // D2 - Read/Write RAM
  6246. dcode_2(); break;
  6247. case 3: // D3 - Read/Write EEPROM
  6248. dcode_3(); break;
  6249. case 4: // D4 - Read/Write PIN
  6250. dcode_4(); break;
  6251. case 5: // D5 - Read/Write FLASH
  6252. // dcode_5(); break;
  6253. break;
  6254. case 6: // D6 - Read/Write external FLASH
  6255. dcode_6(); break;
  6256. case 7: // D7 - Read/Write Bootloader
  6257. dcode_7(); break;
  6258. case 8: // D8 - Read/Write PINDA
  6259. dcode_8(); break;
  6260. case 9: // D9 - Read/Write ADC
  6261. dcode_9(); break;
  6262. case 10: // D10 - XYZ calibration = OK
  6263. dcode_10(); break;
  6264. #ifdef TMC2130
  6265. case 2130: // D9125 - TMC2130
  6266. dcode_2130(); break;
  6267. #endif //TMC2130
  6268. #ifdef PAT9125
  6269. case 9125: // D9125 - PAT9125
  6270. dcode_9125(); break;
  6271. #endif //PAT9125
  6272. }
  6273. }
  6274. #endif //DEBUG_DCODES
  6275. else
  6276. {
  6277. SERIAL_ECHO_START;
  6278. SERIAL_ECHORPGM(MSG_UNKNOWN_COMMAND);
  6279. SERIAL_ECHO(CMDBUFFER_CURRENT_STRING);
  6280. SERIAL_ECHOLNPGM("\"(2)");
  6281. }
  6282. KEEPALIVE_STATE(NOT_BUSY);
  6283. ClearToSend();
  6284. }
  6285. void FlushSerialRequestResend()
  6286. {
  6287. //char cmdbuffer[bufindr][100]="Resend:";
  6288. MYSERIAL.flush();
  6289. printf_P(_N("%S: %ld\n%S\n"), _i("Resend"), gcode_LastN + 1, _T(MSG_OK));
  6290. }
  6291. // Confirm the execution of a command, if sent from a serial line.
  6292. // Execution of a command from a SD card will not be confirmed.
  6293. void ClearToSend()
  6294. {
  6295. previous_millis_cmd = millis();
  6296. if ((CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB) || (CMDBUFFER_CURRENT_TYPE == CMDBUFFER_CURRENT_TYPE_USB_WITH_LINENR))
  6297. SERIAL_PROTOCOLLNRPGM(_T(MSG_OK));
  6298. }
  6299. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6300. void update_currents() {
  6301. float current_high[3] = DEFAULT_PWM_MOTOR_CURRENT_LOUD;
  6302. float current_low[3] = DEFAULT_PWM_MOTOR_CURRENT;
  6303. float tmp_motor[3];
  6304. //SERIAL_ECHOLNPGM("Currents updated: ");
  6305. if (destination[Z_AXIS] < Z_SILENT) {
  6306. //SERIAL_ECHOLNPGM("LOW");
  6307. for (uint8_t i = 0; i < 3; i++) {
  6308. st_current_set(i, current_low[i]);
  6309. /*MYSERIAL.print(int(i));
  6310. SERIAL_ECHOPGM(": ");
  6311. MYSERIAL.println(current_low[i]);*/
  6312. }
  6313. }
  6314. else if (destination[Z_AXIS] > Z_HIGH_POWER) {
  6315. //SERIAL_ECHOLNPGM("HIGH");
  6316. for (uint8_t i = 0; i < 3; i++) {
  6317. st_current_set(i, current_high[i]);
  6318. /*MYSERIAL.print(int(i));
  6319. SERIAL_ECHOPGM(": ");
  6320. MYSERIAL.println(current_high[i]);*/
  6321. }
  6322. }
  6323. else {
  6324. for (uint8_t i = 0; i < 3; i++) {
  6325. float q = current_low[i] - Z_SILENT*((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT));
  6326. tmp_motor[i] = ((current_high[i] - current_low[i]) / (Z_HIGH_POWER - Z_SILENT))*destination[Z_AXIS] + q;
  6327. st_current_set(i, tmp_motor[i]);
  6328. /*MYSERIAL.print(int(i));
  6329. SERIAL_ECHOPGM(": ");
  6330. MYSERIAL.println(tmp_motor[i]);*/
  6331. }
  6332. }
  6333. }
  6334. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6335. void get_coordinates()
  6336. {
  6337. bool seen[4]={false,false,false,false};
  6338. for(int8_t i=0; i < NUM_AXIS; i++) {
  6339. if(code_seen(axis_codes[i]))
  6340. {
  6341. bool relative = axis_relative_modes[i] || relative_mode;
  6342. destination[i] = (float)code_value();
  6343. if (i == E_AXIS) {
  6344. float emult = extruder_multiplier[active_extruder];
  6345. if (emult != 1.) {
  6346. if (! relative) {
  6347. destination[i] -= current_position[i];
  6348. relative = true;
  6349. }
  6350. destination[i] *= emult;
  6351. }
  6352. }
  6353. if (relative)
  6354. destination[i] += current_position[i];
  6355. seen[i]=true;
  6356. #if MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6357. if (i == Z_AXIS && SilentModeMenu == SILENT_MODE_AUTO) update_currents();
  6358. #endif //MOTHERBOARD == BOARD_RAMBO_MINI_1_0 || MOTHERBOARD == BOARD_RAMBO_MINI_1_3
  6359. }
  6360. else destination[i] = current_position[i]; //Are these else lines really needed?
  6361. }
  6362. if(code_seen('F')) {
  6363. next_feedrate = code_value();
  6364. #ifdef MAX_SILENT_FEEDRATE
  6365. if (tmc2130_mode == TMC2130_MODE_SILENT)
  6366. if (next_feedrate > MAX_SILENT_FEEDRATE) next_feedrate = MAX_SILENT_FEEDRATE;
  6367. #endif //MAX_SILENT_FEEDRATE
  6368. if(next_feedrate > 0.0) feedrate = next_feedrate;
  6369. if (!seen[0] && !seen[1] && !seen[2] && seen[3])
  6370. {
  6371. // float e_max_speed =
  6372. // printf_P(PSTR("E MOVE speed %7.3f\n"), feedrate / 60)
  6373. }
  6374. }
  6375. }
  6376. void get_arc_coordinates()
  6377. {
  6378. #ifdef SF_ARC_FIX
  6379. bool relative_mode_backup = relative_mode;
  6380. relative_mode = true;
  6381. #endif
  6382. get_coordinates();
  6383. #ifdef SF_ARC_FIX
  6384. relative_mode=relative_mode_backup;
  6385. #endif
  6386. if(code_seen('I')) {
  6387. offset[0] = code_value();
  6388. }
  6389. else {
  6390. offset[0] = 0.0;
  6391. }
  6392. if(code_seen('J')) {
  6393. offset[1] = code_value();
  6394. }
  6395. else {
  6396. offset[1] = 0.0;
  6397. }
  6398. }
  6399. void clamp_to_software_endstops(float target[3])
  6400. {
  6401. #ifdef DEBUG_DISABLE_SWLIMITS
  6402. return;
  6403. #endif //DEBUG_DISABLE_SWLIMITS
  6404. world2machine_clamp(target[0], target[1]);
  6405. // Clamp the Z coordinate.
  6406. if (min_software_endstops) {
  6407. float negative_z_offset = 0;
  6408. #ifdef ENABLE_AUTO_BED_LEVELING
  6409. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  6410. if (add_homing[Z_AXIS] < 0) negative_z_offset = negative_z_offset + add_homing[Z_AXIS];
  6411. #endif
  6412. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  6413. }
  6414. if (max_software_endstops) {
  6415. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  6416. }
  6417. }
  6418. #ifdef MESH_BED_LEVELING
  6419. void mesh_plan_buffer_line(const float &x, const float &y, const float &z, const float &e, const float &feed_rate, const uint8_t extruder) {
  6420. float dx = x - current_position[X_AXIS];
  6421. float dy = y - current_position[Y_AXIS];
  6422. float dz = z - current_position[Z_AXIS];
  6423. int n_segments = 0;
  6424. if (mbl.active) {
  6425. float len = abs(dx) + abs(dy);
  6426. if (len > 0)
  6427. // Split to 3cm segments or shorter.
  6428. n_segments = int(ceil(len / 30.f));
  6429. }
  6430. if (n_segments > 1) {
  6431. float de = e - current_position[E_AXIS];
  6432. for (int i = 1; i < n_segments; ++ i) {
  6433. float t = float(i) / float(n_segments);
  6434. if (saved_printing || (mbl.active == false)) return;
  6435. plan_buffer_line(
  6436. current_position[X_AXIS] + t * dx,
  6437. current_position[Y_AXIS] + t * dy,
  6438. current_position[Z_AXIS] + t * dz,
  6439. current_position[E_AXIS] + t * de,
  6440. feed_rate, extruder);
  6441. }
  6442. }
  6443. // The rest of the path.
  6444. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6445. current_position[X_AXIS] = x;
  6446. current_position[Y_AXIS] = y;
  6447. current_position[Z_AXIS] = z;
  6448. current_position[E_AXIS] = e;
  6449. }
  6450. #endif // MESH_BED_LEVELING
  6451. void prepare_move()
  6452. {
  6453. clamp_to_software_endstops(destination);
  6454. previous_millis_cmd = millis();
  6455. // Do not use feedmultiply for E or Z only moves
  6456. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  6457. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  6458. }
  6459. else {
  6460. #ifdef MESH_BED_LEVELING
  6461. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6462. #else
  6463. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply*(1./(60.f*100.f)), active_extruder);
  6464. #endif
  6465. }
  6466. for(int8_t i=0; i < NUM_AXIS; i++) {
  6467. current_position[i] = destination[i];
  6468. }
  6469. }
  6470. void prepare_arc_move(char isclockwise) {
  6471. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  6472. // Trace the arc
  6473. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  6474. // As far as the parser is concerned, the position is now == target. In reality the
  6475. // motion control system might still be processing the action and the real tool position
  6476. // in any intermediate location.
  6477. for(int8_t i=0; i < NUM_AXIS; i++) {
  6478. current_position[i] = destination[i];
  6479. }
  6480. previous_millis_cmd = millis();
  6481. }
  6482. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6483. #if defined(FAN_PIN)
  6484. #if CONTROLLERFAN_PIN == FAN_PIN
  6485. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  6486. #endif
  6487. #endif
  6488. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  6489. unsigned long lastMotorCheck = 0;
  6490. void controllerFan()
  6491. {
  6492. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  6493. {
  6494. lastMotorCheck = millis();
  6495. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  6496. #if EXTRUDERS > 2
  6497. || !READ(E2_ENABLE_PIN)
  6498. #endif
  6499. #if EXTRUDER > 1
  6500. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  6501. || !READ(X2_ENABLE_PIN)
  6502. #endif
  6503. || !READ(E1_ENABLE_PIN)
  6504. #endif
  6505. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  6506. {
  6507. lastMotor = millis(); //... set time to NOW so the fan will turn on
  6508. }
  6509. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  6510. {
  6511. digitalWrite(CONTROLLERFAN_PIN, 0);
  6512. analogWrite(CONTROLLERFAN_PIN, 0);
  6513. }
  6514. else
  6515. {
  6516. // allows digital or PWM fan output to be used (see M42 handling)
  6517. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6518. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  6519. }
  6520. }
  6521. }
  6522. #endif
  6523. #ifdef TEMP_STAT_LEDS
  6524. static bool blue_led = false;
  6525. static bool red_led = false;
  6526. static uint32_t stat_update = 0;
  6527. void handle_status_leds(void) {
  6528. float max_temp = 0.0;
  6529. if(millis() > stat_update) {
  6530. stat_update += 500; // Update every 0.5s
  6531. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  6532. max_temp = max(max_temp, degHotend(cur_extruder));
  6533. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  6534. }
  6535. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  6536. max_temp = max(max_temp, degTargetBed());
  6537. max_temp = max(max_temp, degBed());
  6538. #endif
  6539. if((max_temp > 55.0) && (red_led == false)) {
  6540. digitalWrite(STAT_LED_RED, 1);
  6541. digitalWrite(STAT_LED_BLUE, 0);
  6542. red_led = true;
  6543. blue_led = false;
  6544. }
  6545. if((max_temp < 54.0) && (blue_led == false)) {
  6546. digitalWrite(STAT_LED_RED, 0);
  6547. digitalWrite(STAT_LED_BLUE, 1);
  6548. red_led = false;
  6549. blue_led = true;
  6550. }
  6551. }
  6552. }
  6553. #endif
  6554. #ifdef SAFETYTIMER
  6555. /**
  6556. * @brief Turn off heating after safetytimer_inactive_time milliseconds of inactivity
  6557. *
  6558. * Full screen blocking notification message is shown after heater turning off.
  6559. * Paused print is not considered inactivity, as nozzle is cooled anyway and bed cooling would
  6560. * damage print.
  6561. *
  6562. * If safetytimer_inactive_time is zero, feature is disabled (heating is never turned off because of inactivity)
  6563. */
  6564. static void handleSafetyTimer()
  6565. {
  6566. #if (EXTRUDERS > 1)
  6567. #error Implemented only for one extruder.
  6568. #endif //(EXTRUDERS > 1)
  6569. if ((PRINTER_ACTIVE) || (!degTargetBed() && !degTargetHotend(0)) || (!safetytimer_inactive_time))
  6570. {
  6571. safetyTimer.stop();
  6572. }
  6573. else if ((degTargetBed() || degTargetHotend(0)) && (!safetyTimer.running()))
  6574. {
  6575. safetyTimer.start();
  6576. }
  6577. else if (safetyTimer.expired(safetytimer_inactive_time))
  6578. {
  6579. setTargetBed(0);
  6580. setTargetHotend(0, 0);
  6581. lcd_show_fullscreen_message_and_wait_P(_i("Heating disabled by safety timer."));////MSG_BED_HEATING_SAFETY_DISABLED c=0 r=0
  6582. }
  6583. }
  6584. #endif //SAFETYTIMER
  6585. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  6586. {
  6587. #ifdef PAT9125
  6588. if (fsensor_enabled && filament_autoload_enabled && !fsensor_M600 && !moves_planned() && !IS_SD_PRINTING && !is_usb_printing && (lcd_commands_type != LCD_COMMAND_V2_CAL))
  6589. {
  6590. if (fsensor_autoload_enabled)
  6591. {
  6592. if (fsensor_check_autoload())
  6593. {
  6594. if (degHotend0() > EXTRUDE_MINTEMP)
  6595. {
  6596. fsensor_autoload_check_stop();
  6597. tone(BEEPER, 1000);
  6598. delay_keep_alive(50);
  6599. noTone(BEEPER);
  6600. loading_flag = true;
  6601. enquecommand_front_P((PSTR("M701")));
  6602. }
  6603. else
  6604. {
  6605. lcd_update_enable(false);
  6606. lcd_implementation_clear();
  6607. lcd.setCursor(0, 0);
  6608. lcd_printPGM(_T(MSG_ERROR));
  6609. lcd.setCursor(0, 2);
  6610. lcd_printPGM(_T(MSG_PREHEAT_NOZZLE));
  6611. delay(2000);
  6612. lcd_implementation_clear();
  6613. lcd_update_enable(true);
  6614. }
  6615. }
  6616. }
  6617. else
  6618. fsensor_autoload_check_start();
  6619. }
  6620. else
  6621. if (fsensor_autoload_enabled)
  6622. fsensor_autoload_check_stop();
  6623. #endif //PAT9125
  6624. #ifdef SAFETYTIMER
  6625. handleSafetyTimer();
  6626. #endif //SAFETYTIMER
  6627. #if defined(KILL_PIN) && KILL_PIN > -1
  6628. static int killCount = 0; // make the inactivity button a bit less responsive
  6629. const int KILL_DELAY = 10000;
  6630. #endif
  6631. if(buflen < (BUFSIZE-1)){
  6632. get_command();
  6633. }
  6634. if( (millis() - previous_millis_cmd) > max_inactive_time )
  6635. if(max_inactive_time)
  6636. kill(_n(""), 4);
  6637. if(stepper_inactive_time) {
  6638. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  6639. {
  6640. if(blocks_queued() == false && ignore_stepper_queue == false) {
  6641. disable_x();
  6642. // SERIAL_ECHOLNPGM("manage_inactivity - disable Y");
  6643. disable_y();
  6644. disable_z();
  6645. disable_e0();
  6646. disable_e1();
  6647. disable_e2();
  6648. }
  6649. }
  6650. }
  6651. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  6652. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  6653. {
  6654. chdkActive = false;
  6655. WRITE(CHDK, LOW);
  6656. }
  6657. #endif
  6658. #if defined(KILL_PIN) && KILL_PIN > -1
  6659. // Check if the kill button was pressed and wait just in case it was an accidental
  6660. // key kill key press
  6661. // -------------------------------------------------------------------------------
  6662. if( 0 == READ(KILL_PIN) )
  6663. {
  6664. killCount++;
  6665. }
  6666. else if (killCount > 0)
  6667. {
  6668. killCount--;
  6669. }
  6670. // Exceeded threshold and we can confirm that it was not accidental
  6671. // KILL the machine
  6672. // ----------------------------------------------------------------
  6673. if ( killCount >= KILL_DELAY)
  6674. {
  6675. kill("", 5);
  6676. }
  6677. #endif
  6678. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  6679. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  6680. #endif
  6681. #ifdef EXTRUDER_RUNOUT_PREVENT
  6682. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  6683. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  6684. {
  6685. bool oldstatus=READ(E0_ENABLE_PIN);
  6686. enable_e0();
  6687. float oldepos=current_position[E_AXIS];
  6688. float oldedes=destination[E_AXIS];
  6689. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6690. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  6691. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  6692. current_position[E_AXIS]=oldepos;
  6693. destination[E_AXIS]=oldedes;
  6694. plan_set_e_position(oldepos);
  6695. previous_millis_cmd=millis();
  6696. st_synchronize();
  6697. WRITE(E0_ENABLE_PIN,oldstatus);
  6698. }
  6699. #endif
  6700. #ifdef TEMP_STAT_LEDS
  6701. handle_status_leds();
  6702. #endif
  6703. check_axes_activity();
  6704. }
  6705. void kill(const char *full_screen_message, unsigned char id)
  6706. {
  6707. printf_P(_N("KILL: %d\n"), id);
  6708. //return;
  6709. cli(); // Stop interrupts
  6710. disable_heater();
  6711. disable_x();
  6712. // SERIAL_ECHOLNPGM("kill - disable Y");
  6713. disable_y();
  6714. disable_z();
  6715. disable_e0();
  6716. disable_e1();
  6717. disable_e2();
  6718. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  6719. pinMode(PS_ON_PIN,INPUT);
  6720. #endif
  6721. SERIAL_ERROR_START;
  6722. SERIAL_ERRORLNRPGM(_i("Printer halted. kill() called!"));////MSG_ERR_KILLED c=0 r=0
  6723. if (full_screen_message != NULL) {
  6724. SERIAL_ERRORLNRPGM(full_screen_message);
  6725. lcd_display_message_fullscreen_P(full_screen_message);
  6726. } else {
  6727. LCD_ALERTMESSAGERPGM(_i("KILLED. "));////MSG_KILLED c=0 r=0
  6728. }
  6729. // FMC small patch to update the LCD before ending
  6730. sei(); // enable interrupts
  6731. for ( int i=5; i--; lcd_update())
  6732. {
  6733. delay(200);
  6734. }
  6735. cli(); // disable interrupts
  6736. suicide();
  6737. while(1)
  6738. {
  6739. #ifdef WATCHDOG
  6740. wdt_reset();
  6741. #endif //WATCHDOG
  6742. /* Intentionally left empty */
  6743. } // Wait for reset
  6744. }
  6745. void Stop()
  6746. {
  6747. disable_heater();
  6748. if(Stopped == false) {
  6749. Stopped = true;
  6750. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6751. SERIAL_ERROR_START;
  6752. SERIAL_ERRORLNRPGM(_T(MSG_ERR_STOPPED));
  6753. LCD_MESSAGERPGM(_T(MSG_STOPPED));
  6754. }
  6755. }
  6756. bool IsStopped() { return Stopped; };
  6757. #ifdef FAST_PWM_FAN
  6758. void setPwmFrequency(uint8_t pin, int val)
  6759. {
  6760. val &= 0x07;
  6761. switch(digitalPinToTimer(pin))
  6762. {
  6763. #if defined(TCCR0A)
  6764. case TIMER0A:
  6765. case TIMER0B:
  6766. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6767. // TCCR0B |= val;
  6768. break;
  6769. #endif
  6770. #if defined(TCCR1A)
  6771. case TIMER1A:
  6772. case TIMER1B:
  6773. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6774. // TCCR1B |= val;
  6775. break;
  6776. #endif
  6777. #if defined(TCCR2)
  6778. case TIMER2:
  6779. case TIMER2:
  6780. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6781. TCCR2 |= val;
  6782. break;
  6783. #endif
  6784. #if defined(TCCR2A)
  6785. case TIMER2A:
  6786. case TIMER2B:
  6787. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6788. TCCR2B |= val;
  6789. break;
  6790. #endif
  6791. #if defined(TCCR3A)
  6792. case TIMER3A:
  6793. case TIMER3B:
  6794. case TIMER3C:
  6795. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6796. TCCR3B |= val;
  6797. break;
  6798. #endif
  6799. #if defined(TCCR4A)
  6800. case TIMER4A:
  6801. case TIMER4B:
  6802. case TIMER4C:
  6803. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6804. TCCR4B |= val;
  6805. break;
  6806. #endif
  6807. #if defined(TCCR5A)
  6808. case TIMER5A:
  6809. case TIMER5B:
  6810. case TIMER5C:
  6811. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6812. TCCR5B |= val;
  6813. break;
  6814. #endif
  6815. }
  6816. }
  6817. #endif //FAST_PWM_FAN
  6818. bool setTargetedHotend(int code){
  6819. tmp_extruder = active_extruder;
  6820. if(code_seen('T')) {
  6821. tmp_extruder = code_value();
  6822. if(tmp_extruder >= EXTRUDERS) {
  6823. SERIAL_ECHO_START;
  6824. switch(code){
  6825. case 104:
  6826. SERIAL_ECHORPGM(_i("M104 Invalid extruder "));////MSG_M104_INVALID_EXTRUDER c=0 r=0
  6827. break;
  6828. case 105:
  6829. SERIAL_ECHO(_i("M105 Invalid extruder "));////MSG_M105_INVALID_EXTRUDER c=0 r=0
  6830. break;
  6831. case 109:
  6832. SERIAL_ECHO(_i("M109 Invalid extruder "));////MSG_M109_INVALID_EXTRUDER c=0 r=0
  6833. break;
  6834. case 218:
  6835. SERIAL_ECHO(_i("M218 Invalid extruder "));////MSG_M218_INVALID_EXTRUDER c=0 r=0
  6836. break;
  6837. case 221:
  6838. SERIAL_ECHO(_i("M221 Invalid extruder "));////MSG_M221_INVALID_EXTRUDER c=0 r=0
  6839. break;
  6840. }
  6841. SERIAL_PROTOCOLLN((int)tmp_extruder);
  6842. return true;
  6843. }
  6844. }
  6845. return false;
  6846. }
  6847. void save_statistics(unsigned long _total_filament_used, unsigned long _total_print_time) //_total_filament_used unit: mm/100; print time in s
  6848. {
  6849. if (eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 1) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 2) == 255 && eeprom_read_byte((uint8_t *)EEPROM_TOTALTIME + 3) == 255)
  6850. {
  6851. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, 0);
  6852. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, 0);
  6853. }
  6854. unsigned long _previous_filament = eeprom_read_dword((uint32_t *)EEPROM_FILAMENTUSED); //_previous_filament unit: cm
  6855. unsigned long _previous_time = eeprom_read_dword((uint32_t *)EEPROM_TOTALTIME); //_previous_time unit: min
  6856. eeprom_update_dword((uint32_t *)EEPROM_TOTALTIME, _previous_time + (_total_print_time/60)); //EEPROM_TOTALTIME unit: min
  6857. eeprom_update_dword((uint32_t *)EEPROM_FILAMENTUSED, _previous_filament + (_total_filament_used / 1000));
  6858. total_filament_used = 0;
  6859. }
  6860. float calculate_extruder_multiplier(float diameter) {
  6861. float out = 1.f;
  6862. if (volumetric_enabled && diameter > 0.f) {
  6863. float area = M_PI * diameter * diameter * 0.25;
  6864. out = 1.f / area;
  6865. }
  6866. if (extrudemultiply != 100)
  6867. out *= float(extrudemultiply) * 0.01f;
  6868. return out;
  6869. }
  6870. void calculate_extruder_multipliers() {
  6871. extruder_multiplier[0] = calculate_extruder_multiplier(filament_size[0]);
  6872. #if EXTRUDERS > 1
  6873. extruder_multiplier[1] = calculate_extruder_multiplier(filament_size[1]);
  6874. #if EXTRUDERS > 2
  6875. extruder_multiplier[2] = calculate_extruder_multiplier(filament_size[2]);
  6876. #endif
  6877. #endif
  6878. }
  6879. void delay_keep_alive(unsigned int ms)
  6880. {
  6881. for (;;) {
  6882. manage_heater();
  6883. // Manage inactivity, but don't disable steppers on timeout.
  6884. manage_inactivity(true);
  6885. lcd_update();
  6886. if (ms == 0)
  6887. break;
  6888. else if (ms >= 50) {
  6889. delay(50);
  6890. ms -= 50;
  6891. } else {
  6892. delay(ms);
  6893. ms = 0;
  6894. }
  6895. }
  6896. }
  6897. void wait_for_heater(long codenum) {
  6898. #ifdef TEMP_RESIDENCY_TIME
  6899. long residencyStart;
  6900. residencyStart = -1;
  6901. /* continue to loop until we have reached the target temp
  6902. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  6903. while ((!cancel_heatup) && ((residencyStart == -1) ||
  6904. (residencyStart >= 0 && (((unsigned int)(millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))))) {
  6905. #else
  6906. while (target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder) && (CooldownNoWait == false))) {
  6907. #endif //TEMP_RESIDENCY_TIME
  6908. if ((millis() - codenum) > 1000UL)
  6909. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  6910. if (!farm_mode) {
  6911. SERIAL_PROTOCOLPGM("T:");
  6912. SERIAL_PROTOCOL_F(degHotend(tmp_extruder), 1);
  6913. SERIAL_PROTOCOLPGM(" E:");
  6914. SERIAL_PROTOCOL((int)tmp_extruder);
  6915. #ifdef TEMP_RESIDENCY_TIME
  6916. SERIAL_PROTOCOLPGM(" W:");
  6917. if (residencyStart > -1)
  6918. {
  6919. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  6920. SERIAL_PROTOCOLLN(codenum);
  6921. }
  6922. else
  6923. {
  6924. SERIAL_PROTOCOLLN("?");
  6925. }
  6926. }
  6927. #else
  6928. SERIAL_PROTOCOLLN("");
  6929. #endif
  6930. codenum = millis();
  6931. }
  6932. manage_heater();
  6933. manage_inactivity();
  6934. lcd_update();
  6935. #ifdef TEMP_RESIDENCY_TIME
  6936. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  6937. or when current temp falls outside the hysteresis after target temp was reached */
  6938. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder) - TEMP_WINDOW))) ||
  6939. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder) + TEMP_WINDOW))) ||
  6940. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS))
  6941. {
  6942. residencyStart = millis();
  6943. }
  6944. #endif //TEMP_RESIDENCY_TIME
  6945. }
  6946. }
  6947. void check_babystep() {
  6948. int babystep_z;
  6949. EEPROM_read_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6950. if ((babystep_z < Z_BABYSTEP_MIN) || (babystep_z > Z_BABYSTEP_MAX)) {
  6951. babystep_z = 0; //if babystep value is out of min max range, set it to 0
  6952. SERIAL_ECHOLNPGM("Z live adjust out of range. Setting to 0");
  6953. EEPROM_save_B(EEPROM_BABYSTEP_Z, &babystep_z);
  6954. lcd_show_fullscreen_message_and_wait_P(PSTR("Z live adjust out of range. Setting to 0. Click to continue."));
  6955. lcd_update_enable(true);
  6956. }
  6957. }
  6958. #ifdef DIS
  6959. void d_setup()
  6960. {
  6961. pinMode(D_DATACLOCK, INPUT_PULLUP);
  6962. pinMode(D_DATA, INPUT_PULLUP);
  6963. pinMode(D_REQUIRE, OUTPUT);
  6964. digitalWrite(D_REQUIRE, HIGH);
  6965. }
  6966. float d_ReadData()
  6967. {
  6968. int digit[13];
  6969. String mergeOutput;
  6970. float output;
  6971. digitalWrite(D_REQUIRE, HIGH);
  6972. for (int i = 0; i<13; i++)
  6973. {
  6974. for (int j = 0; j < 4; j++)
  6975. {
  6976. while (digitalRead(D_DATACLOCK) == LOW) {}
  6977. while (digitalRead(D_DATACLOCK) == HIGH) {}
  6978. bitWrite(digit[i], j, digitalRead(D_DATA));
  6979. }
  6980. }
  6981. digitalWrite(D_REQUIRE, LOW);
  6982. mergeOutput = "";
  6983. output = 0;
  6984. for (int r = 5; r <= 10; r++) //Merge digits
  6985. {
  6986. mergeOutput += digit[r];
  6987. }
  6988. output = mergeOutput.toFloat();
  6989. if (digit[4] == 8) //Handle sign
  6990. {
  6991. output *= -1;
  6992. }
  6993. for (int i = digit[11]; i > 0; i--) //Handle floating point
  6994. {
  6995. output /= 10;
  6996. }
  6997. return output;
  6998. }
  6999. void bed_analysis(float x_dimension, float y_dimension, int x_points_num, int y_points_num, float shift_x, float shift_y) {
  7000. int t1 = 0;
  7001. int t_delay = 0;
  7002. int digit[13];
  7003. int m;
  7004. char str[3];
  7005. //String mergeOutput;
  7006. char mergeOutput[15];
  7007. float output;
  7008. int mesh_point = 0; //index number of calibration point
  7009. float bed_zero_ref_x = (-22.f + X_PROBE_OFFSET_FROM_EXTRUDER); //shift between zero point on bed and target and between probe and nozzle
  7010. float bed_zero_ref_y = (-0.6f + Y_PROBE_OFFSET_FROM_EXTRUDER);
  7011. float mesh_home_z_search = 4;
  7012. float row[x_points_num];
  7013. int ix = 0;
  7014. int iy = 0;
  7015. char* filename_wldsd = "wldsd.txt";
  7016. char data_wldsd[70];
  7017. char numb_wldsd[10];
  7018. d_setup();
  7019. if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS] && axis_known_position[Z_AXIS])) {
  7020. // We don't know where we are! HOME!
  7021. // Push the commands to the front of the message queue in the reverse order!
  7022. // There shall be always enough space reserved for these commands.
  7023. repeatcommand_front(); // repeat G80 with all its parameters
  7024. enquecommand_front_P((PSTR("G28 W0")));
  7025. enquecommand_front_P((PSTR("G1 Z5")));
  7026. return;
  7027. }
  7028. bool custom_message_old = custom_message;
  7029. unsigned int custom_message_type_old = custom_message_type;
  7030. unsigned int custom_message_state_old = custom_message_state;
  7031. custom_message = true;
  7032. custom_message_type = 1;
  7033. custom_message_state = (x_points_num * y_points_num) + 10;
  7034. lcd_update(1);
  7035. mbl.reset();
  7036. babystep_undo();
  7037. card.openFile(filename_wldsd, false);
  7038. current_position[Z_AXIS] = mesh_home_z_search;
  7039. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[Z_AXIS] / 60, active_extruder);
  7040. int XY_AXIS_FEEDRATE = homing_feedrate[X_AXIS] / 20;
  7041. int Z_PROBE_FEEDRATE = homing_feedrate[Z_AXIS] / 60;
  7042. int Z_LIFT_FEEDRATE = homing_feedrate[Z_AXIS] / 40;
  7043. setup_for_endstop_move(false);
  7044. SERIAL_PROTOCOLPGM("Num X,Y: ");
  7045. SERIAL_PROTOCOL(x_points_num);
  7046. SERIAL_PROTOCOLPGM(",");
  7047. SERIAL_PROTOCOL(y_points_num);
  7048. SERIAL_PROTOCOLPGM("\nZ search height: ");
  7049. SERIAL_PROTOCOL(mesh_home_z_search);
  7050. SERIAL_PROTOCOLPGM("\nDimension X,Y: ");
  7051. SERIAL_PROTOCOL(x_dimension);
  7052. SERIAL_PROTOCOLPGM(",");
  7053. SERIAL_PROTOCOL(y_dimension);
  7054. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  7055. while (mesh_point != x_points_num * y_points_num) {
  7056. ix = mesh_point % x_points_num; // from 0 to MESH_NUM_X_POINTS - 1
  7057. iy = mesh_point / x_points_num;
  7058. if (iy & 1) ix = (x_points_num - 1) - ix; // Zig zag
  7059. float z0 = 0.f;
  7060. current_position[Z_AXIS] = mesh_home_z_search;
  7061. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], Z_LIFT_FEEDRATE, active_extruder);
  7062. st_synchronize();
  7063. current_position[X_AXIS] = 13.f + ix * (x_dimension / (x_points_num - 1)) - bed_zero_ref_x + shift_x;
  7064. current_position[Y_AXIS] = 6.4f + iy * (y_dimension / (y_points_num - 1)) - bed_zero_ref_y + shift_y;
  7065. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], XY_AXIS_FEEDRATE, active_extruder);
  7066. st_synchronize();
  7067. if (!find_bed_induction_sensor_point_z(-10.f)) { //if we have data from z calibration max allowed difference is 1mm for each point, if we dont have data max difference is 10mm from initial point
  7068. break;
  7069. card.closefile();
  7070. }
  7071. //memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7072. //dtostrf(d_ReadData(), 8, 5, numb_wldsd);
  7073. //strcat(data_wldsd, numb_wldsd);
  7074. //MYSERIAL.println(data_wldsd);
  7075. //delay(1000);
  7076. //delay(3000);
  7077. //t1 = millis();
  7078. //while (digitalRead(D_DATACLOCK) == LOW) {}
  7079. //while (digitalRead(D_DATACLOCK) == HIGH) {}
  7080. memset(digit, 0, sizeof(digit));
  7081. //cli();
  7082. digitalWrite(D_REQUIRE, LOW);
  7083. for (int i = 0; i<13; i++)
  7084. {
  7085. //t1 = millis();
  7086. for (int j = 0; j < 4; j++)
  7087. {
  7088. while (digitalRead(D_DATACLOCK) == LOW) {}
  7089. while (digitalRead(D_DATACLOCK) == HIGH) {}
  7090. bitWrite(digit[i], j, digitalRead(D_DATA));
  7091. }
  7092. //t_delay = (millis() - t1);
  7093. //SERIAL_PROTOCOLPGM(" ");
  7094. //SERIAL_PROTOCOL_F(t_delay, 5);
  7095. //SERIAL_PROTOCOLPGM(" ");
  7096. }
  7097. //sei();
  7098. digitalWrite(D_REQUIRE, HIGH);
  7099. mergeOutput[0] = '\0';
  7100. output = 0;
  7101. for (int r = 5; r <= 10; r++) //Merge digits
  7102. {
  7103. sprintf(str, "%d", digit[r]);
  7104. strcat(mergeOutput, str);
  7105. }
  7106. output = atof(mergeOutput);
  7107. if (digit[4] == 8) //Handle sign
  7108. {
  7109. output *= -1;
  7110. }
  7111. for (int i = digit[11]; i > 0; i--) //Handle floating point
  7112. {
  7113. output *= 0.1;
  7114. }
  7115. //output = d_ReadData();
  7116. //row[ix] = current_position[Z_AXIS];
  7117. memset(data_wldsd, 0, sizeof(data_wldsd));
  7118. for (int i = 0; i <3; i++) {
  7119. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7120. dtostrf(current_position[i], 8, 5, numb_wldsd);
  7121. strcat(data_wldsd, numb_wldsd);
  7122. strcat(data_wldsd, ";");
  7123. }
  7124. memset(numb_wldsd, 0, sizeof(numb_wldsd));
  7125. dtostrf(output, 8, 5, numb_wldsd);
  7126. strcat(data_wldsd, numb_wldsd);
  7127. //strcat(data_wldsd, ";");
  7128. card.write_command(data_wldsd);
  7129. //row[ix] = d_ReadData();
  7130. row[ix] = output; // current_position[Z_AXIS];
  7131. if (iy % 2 == 1 ? ix == 0 : ix == x_points_num - 1) {
  7132. for (int i = 0; i < x_points_num; i++) {
  7133. SERIAL_PROTOCOLPGM(" ");
  7134. SERIAL_PROTOCOL_F(row[i], 5);
  7135. }
  7136. SERIAL_PROTOCOLPGM("\n");
  7137. }
  7138. custom_message_state--;
  7139. mesh_point++;
  7140. lcd_update(1);
  7141. }
  7142. card.closefile();
  7143. }
  7144. #endif
  7145. void temp_compensation_start() {
  7146. custom_message = true;
  7147. custom_message_type = 5;
  7148. custom_message_state = PINDA_HEAT_T + 1;
  7149. lcd_update(2);
  7150. if (degHotend(active_extruder) > EXTRUDE_MINTEMP) {
  7151. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7152. }
  7153. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7154. current_position[X_AXIS] = PINDA_PREHEAT_X;
  7155. current_position[Y_AXIS] = PINDA_PREHEAT_Y;
  7156. current_position[Z_AXIS] = PINDA_PREHEAT_Z;
  7157. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 3000 / 60, active_extruder);
  7158. st_synchronize();
  7159. while (fabs(degBed() - target_temperature_bed) > 1) delay_keep_alive(1000);
  7160. for (int i = 0; i < PINDA_HEAT_T; i++) {
  7161. delay_keep_alive(1000);
  7162. custom_message_state = PINDA_HEAT_T - i;
  7163. if (custom_message_state == 99 || custom_message_state == 9) lcd_update(2); //force whole display redraw if number of digits changed
  7164. else lcd_update(1);
  7165. }
  7166. custom_message_type = 0;
  7167. custom_message_state = 0;
  7168. custom_message = false;
  7169. }
  7170. void temp_compensation_apply() {
  7171. int i_add;
  7172. int compensation_value;
  7173. int z_shift = 0;
  7174. float z_shift_mm;
  7175. if (calibration_status() == CALIBRATION_STATUS_CALIBRATED) {
  7176. if (target_temperature_bed % 10 == 0 && target_temperature_bed >= 60 && target_temperature_bed <= 100) {
  7177. i_add = (target_temperature_bed - 60) / 10;
  7178. EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + i_add * 2, &z_shift);
  7179. z_shift_mm = z_shift / axis_steps_per_unit[Z_AXIS];
  7180. }else {
  7181. //interpolation
  7182. z_shift_mm = temp_comp_interpolation(target_temperature_bed) / axis_steps_per_unit[Z_AXIS];
  7183. }
  7184. printf_P(_N("\nZ shift applied:%.3f\n"), z_shift_mm);
  7185. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] - z_shift_mm, current_position[E_AXIS], homing_feedrate[Z_AXIS] / 40, active_extruder);
  7186. st_synchronize();
  7187. plan_set_z_position(current_position[Z_AXIS]);
  7188. }
  7189. else {
  7190. //we have no temp compensation data
  7191. }
  7192. }
  7193. float temp_comp_interpolation(float inp_temperature) {
  7194. //cubic spline interpolation
  7195. int n, i, j, k;
  7196. float h[10], a, b, c, d, sum, s[10] = { 0 }, x[10], F[10], f[10], m[10][10] = { 0 }, temp;
  7197. int shift[10];
  7198. int temp_C[10];
  7199. n = 6; //number of measured points
  7200. shift[0] = 0;
  7201. for (i = 0; i < n; i++) {
  7202. if (i>0) EEPROM_read_B(EEPROM_PROBE_TEMP_SHIFT + (i-1) * 2, &shift[i]); //read shift in steps from EEPROM
  7203. temp_C[i] = 50 + i * 10; //temperature in C
  7204. #ifdef PINDA_THERMISTOR
  7205. temp_C[i] = 35 + i * 5; //temperature in C
  7206. #else
  7207. temp_C[i] = 50 + i * 10; //temperature in C
  7208. #endif
  7209. x[i] = (float)temp_C[i];
  7210. f[i] = (float)shift[i];
  7211. }
  7212. if (inp_temperature < x[0]) return 0;
  7213. for (i = n - 1; i>0; i--) {
  7214. F[i] = (f[i] - f[i - 1]) / (x[i] - x[i - 1]);
  7215. h[i - 1] = x[i] - x[i - 1];
  7216. }
  7217. //*********** formation of h, s , f matrix **************
  7218. for (i = 1; i<n - 1; i++) {
  7219. m[i][i] = 2 * (h[i - 1] + h[i]);
  7220. if (i != 1) {
  7221. m[i][i - 1] = h[i - 1];
  7222. m[i - 1][i] = h[i - 1];
  7223. }
  7224. m[i][n - 1] = 6 * (F[i + 1] - F[i]);
  7225. }
  7226. //*********** forward elimination **************
  7227. for (i = 1; i<n - 2; i++) {
  7228. temp = (m[i + 1][i] / m[i][i]);
  7229. for (j = 1; j <= n - 1; j++)
  7230. m[i + 1][j] -= temp*m[i][j];
  7231. }
  7232. //*********** backward substitution *********
  7233. for (i = n - 2; i>0; i--) {
  7234. sum = 0;
  7235. for (j = i; j <= n - 2; j++)
  7236. sum += m[i][j] * s[j];
  7237. s[i] = (m[i][n - 1] - sum) / m[i][i];
  7238. }
  7239. for (i = 0; i<n - 1; i++)
  7240. if ((x[i] <= inp_temperature && inp_temperature <= x[i + 1]) || (i == n-2 && inp_temperature > x[i + 1])) {
  7241. a = (s[i + 1] - s[i]) / (6 * h[i]);
  7242. b = s[i] / 2;
  7243. c = (f[i + 1] - f[i]) / h[i] - (2 * h[i] * s[i] + s[i + 1] * h[i]) / 6;
  7244. d = f[i];
  7245. sum = a*pow((inp_temperature - x[i]), 3) + b*pow((inp_temperature - x[i]), 2) + c*(inp_temperature - x[i]) + d;
  7246. }
  7247. return sum;
  7248. }
  7249. #ifdef PINDA_THERMISTOR
  7250. float temp_compensation_pinda_thermistor_offset(float temperature_pinda)
  7251. {
  7252. if (!temp_cal_active) return 0;
  7253. if (!calibration_status_pinda()) return 0;
  7254. return temp_comp_interpolation(temperature_pinda) / axis_steps_per_unit[Z_AXIS];
  7255. }
  7256. #endif //PINDA_THERMISTOR
  7257. void long_pause() //long pause print
  7258. {
  7259. st_synchronize();
  7260. //save currently set parameters to global variables
  7261. saved_feedmultiply = feedmultiply;
  7262. HotendTempBckp = degTargetHotend(active_extruder);
  7263. fanSpeedBckp = fanSpeed;
  7264. start_pause_print = millis();
  7265. //save position
  7266. pause_lastpos[X_AXIS] = current_position[X_AXIS];
  7267. pause_lastpos[Y_AXIS] = current_position[Y_AXIS];
  7268. pause_lastpos[Z_AXIS] = current_position[Z_AXIS];
  7269. pause_lastpos[E_AXIS] = current_position[E_AXIS];
  7270. //retract
  7271. current_position[E_AXIS] -= DEFAULT_RETRACTION;
  7272. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 400, active_extruder);
  7273. //lift z
  7274. current_position[Z_AXIS] += Z_PAUSE_LIFT;
  7275. if (current_position[Z_AXIS] > Z_MAX_POS) current_position[Z_AXIS] = Z_MAX_POS;
  7276. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 15, active_extruder);
  7277. //set nozzle target temperature to 0
  7278. setTargetHotend(0, 0);
  7279. setTargetHotend(0, 1);
  7280. setTargetHotend(0, 2);
  7281. //Move XY to side
  7282. current_position[X_AXIS] = X_PAUSE_POS;
  7283. current_position[Y_AXIS] = Y_PAUSE_POS;
  7284. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 50, active_extruder);
  7285. // Turn off the print fan
  7286. fanSpeed = 0;
  7287. st_synchronize();
  7288. }
  7289. void serialecho_temperatures() {
  7290. float tt = degHotend(active_extruder);
  7291. SERIAL_PROTOCOLPGM("T:");
  7292. SERIAL_PROTOCOL(tt);
  7293. SERIAL_PROTOCOLPGM(" E:");
  7294. SERIAL_PROTOCOL((int)active_extruder);
  7295. SERIAL_PROTOCOLPGM(" B:");
  7296. SERIAL_PROTOCOL_F(degBed(), 1);
  7297. SERIAL_PROTOCOLLN("");
  7298. }
  7299. extern uint32_t sdpos_atomic;
  7300. #ifdef UVLO_SUPPORT
  7301. void uvlo_()
  7302. {
  7303. unsigned long time_start = millis();
  7304. bool sd_print = card.sdprinting;
  7305. // Conserve power as soon as possible.
  7306. disable_x();
  7307. disable_y();
  7308. #ifdef TMC2130
  7309. tmc2130_set_current_h(Z_AXIS, 20);
  7310. tmc2130_set_current_r(Z_AXIS, 20);
  7311. tmc2130_set_current_h(E_AXIS, 20);
  7312. tmc2130_set_current_r(E_AXIS, 20);
  7313. #endif //TMC2130
  7314. // Indicate that the interrupt has been triggered.
  7315. // SERIAL_ECHOLNPGM("UVLO");
  7316. // Read out the current Z motor microstep counter. This will be later used
  7317. // for reaching the zero full step before powering off.
  7318. uint16_t z_microsteps = 0;
  7319. #ifdef TMC2130
  7320. z_microsteps = tmc2130_rd_MSCNT(Z_TMC2130_CS);
  7321. #endif //TMC2130
  7322. // Calculate the file position, from which to resume this print.
  7323. long sd_position = sdpos_atomic; //atomic sd position of last command added in queue
  7324. {
  7325. uint16_t sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7326. sd_position -= sdlen_planner;
  7327. uint16_t sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7328. sd_position -= sdlen_cmdqueue;
  7329. if (sd_position < 0) sd_position = 0;
  7330. }
  7331. // Backup the feedrate in mm/min.
  7332. int feedrate_bckp = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7333. // After this call, the planner queue is emptied and the current_position is set to a current logical coordinate.
  7334. // The logical coordinate will likely differ from the machine coordinate if the skew calibration and mesh bed leveling
  7335. // are in action.
  7336. planner_abort_hard();
  7337. // Store the current extruder position.
  7338. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E), st_get_position_mm(E_AXIS));
  7339. eeprom_update_byte((uint8_t*)EEPROM_UVLO_E_ABS, axis_relative_modes[3]?0:1);
  7340. // Clean the input command queue.
  7341. cmdqueue_reset();
  7342. card.sdprinting = false;
  7343. // card.closefile();
  7344. // Enable stepper driver interrupt to move Z axis.
  7345. // This should be fine as the planner and command queues are empty and the SD card printing is disabled.
  7346. //FIXME one may want to disable serial lines at this point of time to avoid interfering with the command queue,
  7347. // though it should not happen that the command queue is touched as the plan_buffer_line always succeed without blocking.
  7348. sei();
  7349. plan_buffer_line(
  7350. current_position[X_AXIS],
  7351. current_position[Y_AXIS],
  7352. current_position[Z_AXIS],
  7353. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7354. 95, active_extruder);
  7355. st_synchronize();
  7356. disable_e0();
  7357. plan_buffer_line(
  7358. current_position[X_AXIS],
  7359. current_position[Y_AXIS],
  7360. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7361. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7362. 40, active_extruder);
  7363. st_synchronize();
  7364. disable_e0();
  7365. plan_buffer_line(
  7366. current_position[X_AXIS],
  7367. current_position[Y_AXIS],
  7368. current_position[Z_AXIS] + UVLO_Z_AXIS_SHIFT + float((1024 - z_microsteps + 7) >> 4) / axis_steps_per_unit[Z_AXIS],
  7369. current_position[E_AXIS] - DEFAULT_RETRACTION,
  7370. 40, active_extruder);
  7371. st_synchronize();
  7372. disable_e0();
  7373. disable_z();
  7374. // Move Z up to the next 0th full step.
  7375. // Write the file position.
  7376. eeprom_update_dword((uint32_t*)(EEPROM_FILE_POSITION), sd_position);
  7377. // Store the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7378. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7379. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7380. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7381. // Scale the z value to 1u resolution.
  7382. int16_t v = mbl.active ? int16_t(floor(mbl.z_values[iy*3][ix*3] * 1000.f + 0.5f)) : 0;
  7383. eeprom_update_word((uint16_t*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), *reinterpret_cast<uint16_t*>(&v));
  7384. }
  7385. // Read out the current Z motor microstep counter. This will be later used
  7386. // for reaching the zero full step before powering off.
  7387. eeprom_update_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS), z_microsteps);
  7388. // Store the current position.
  7389. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0), current_position[X_AXIS]);
  7390. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4), current_position[Y_AXIS]);
  7391. eeprom_update_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z), current_position[Z_AXIS]);
  7392. // Store the current feed rate, temperatures, fan speed and extruder multipliers (flow rates)
  7393. EEPROM_save_B(EEPROM_UVLO_FEEDRATE, &feedrate_bckp);
  7394. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND, target_temperature[active_extruder]);
  7395. eeprom_update_byte((uint8_t*)EEPROM_UVLO_TARGET_BED, target_temperature_bed);
  7396. eeprom_update_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED, fanSpeed);
  7397. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0), extruder_multiplier[0]);
  7398. #if EXTRUDERS > 1
  7399. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1), extruder_multiplier[1]);
  7400. #if EXTRUDERS > 2
  7401. eeprom_update_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2), extruder_multiplier[2]);
  7402. #endif
  7403. #endif
  7404. eeprom_update_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY), (uint16_t)extrudemultiply);
  7405. // Finaly store the "power outage" flag.
  7406. if(sd_print) eeprom_update_byte((uint8_t*)EEPROM_UVLO, 1);
  7407. st_synchronize();
  7408. printf_P(_N("stps%d\n"), tmc2130_rd_MSCNT(Z_AXIS));
  7409. disable_z();
  7410. // Increment power failure counter
  7411. eeprom_update_byte((uint8_t*)EEPROM_POWER_COUNT, eeprom_read_byte((uint8_t*)EEPROM_POWER_COUNT) + 1);
  7412. eeprom_update_word((uint16_t*)EEPROM_POWER_COUNT_TOT, eeprom_read_word((uint16_t*)EEPROM_POWER_COUNT_TOT) + 1);
  7413. printf_P(_N("UVLO - end %d\n"), millis() - time_start);
  7414. #if 0
  7415. // Move the print head to the side of the print until all the power stored in the power supply capacitors is depleted.
  7416. current_position[X_AXIS] = (current_position[X_AXIS] < 0.5f * (X_MIN_POS + X_MAX_POS)) ? X_MIN_POS : X_MAX_POS;
  7417. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], 500, active_extruder);
  7418. st_synchronize();
  7419. #endif
  7420. cli();
  7421. volatile unsigned int ppcount = 0;
  7422. SET_OUTPUT(BEEPER);
  7423. WRITE(BEEPER, HIGH);
  7424. for(ppcount = 0; ppcount < 2000; ppcount ++){
  7425. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7426. }
  7427. WRITE(BEEPER, LOW);
  7428. while(1){
  7429. #if 1
  7430. WRITE(BEEPER, LOW);
  7431. for(ppcount = 0; ppcount < 8000; ppcount ++){
  7432. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  7433. }
  7434. #endif
  7435. };
  7436. }
  7437. #endif //UVLO_SUPPORT
  7438. #if (defined(FANCHECK) && defined(TACH_1) && (TACH_1 >-1))
  7439. void setup_fan_interrupt() {
  7440. //INT7
  7441. DDRE &= ~(1 << 7); //input pin
  7442. PORTE &= ~(1 << 7); //no internal pull-up
  7443. //start with sensing rising edge
  7444. EICRB &= ~(1 << 6);
  7445. EICRB |= (1 << 7);
  7446. //enable INT7 interrupt
  7447. EIMSK |= (1 << 7);
  7448. }
  7449. // The fan interrupt is triggered at maximum 325Hz (may be a bit more due to component tollerances),
  7450. // and it takes 4.24 us to process (the interrupt invocation overhead not taken into account).
  7451. ISR(INT7_vect) {
  7452. //measuring speed now works for fanSpeed > 18 (approximately), which is sufficient because MIN_PRINT_FAN_SPEED is higher
  7453. if (fanSpeed < MIN_PRINT_FAN_SPEED) return;
  7454. if ((1 << 6) & EICRB) { //interrupt was triggered by rising edge
  7455. t_fan_rising_edge = millis_nc();
  7456. }
  7457. else { //interrupt was triggered by falling edge
  7458. if ((millis_nc() - t_fan_rising_edge) >= FAN_PULSE_WIDTH_LIMIT) {//this pulse was from sensor and not from pwm
  7459. fan_edge_counter[1] += 2; //we are currently counting all edges so lets count two edges for one pulse
  7460. }
  7461. }
  7462. EICRB ^= (1 << 6); //change edge
  7463. }
  7464. #endif
  7465. #ifdef UVLO_SUPPORT
  7466. void setup_uvlo_interrupt() {
  7467. DDRE &= ~(1 << 4); //input pin
  7468. PORTE &= ~(1 << 4); //no internal pull-up
  7469. //sensing falling edge
  7470. EICRB |= (1 << 0);
  7471. EICRB &= ~(1 << 1);
  7472. //enable INT4 interrupt
  7473. EIMSK |= (1 << 4);
  7474. }
  7475. ISR(INT4_vect) {
  7476. EIMSK &= ~(1 << 4); //disable INT4 interrupt to make sure that this code will be executed just once
  7477. SERIAL_ECHOLNPGM("INT4");
  7478. if (IS_SD_PRINTING) uvlo_();
  7479. }
  7480. void recover_print(uint8_t automatic) {
  7481. char cmd[30];
  7482. lcd_update_enable(true);
  7483. lcd_update(2);
  7484. lcd_setstatuspgm(_i("Recovering print "));////MSG_RECOVERING_PRINT c=20 r=1
  7485. recover_machine_state_after_power_panic(); //recover position, temperatures and extrude_multipliers
  7486. // Lift the print head, so one may remove the excess priming material.
  7487. if (current_position[Z_AXIS] < 25)
  7488. enquecommand_P(PSTR("G1 Z25 F800"));
  7489. // Home X and Y axes. Homing just X and Y shall not touch the babystep and the world2machine transformation status.
  7490. enquecommand_P(PSTR("G28 X Y"));
  7491. // Set the target bed and nozzle temperatures and wait.
  7492. sprintf_P(cmd, PSTR("M109 S%d"), target_temperature[active_extruder]);
  7493. enquecommand(cmd);
  7494. sprintf_P(cmd, PSTR("M190 S%d"), target_temperature_bed);
  7495. enquecommand(cmd);
  7496. enquecommand_P(PSTR("M83")); //E axis relative mode
  7497. //enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7498. // If not automatically recoreverd (long power loss), extrude extra filament to stabilize
  7499. if(automatic == 0){
  7500. enquecommand_P(PSTR("G1 E5 F120")); //Extrude some filament to stabilize pessure
  7501. }
  7502. enquecommand_P(PSTR("G1 E" STRINGIFY(-DEFAULT_RETRACTION)" F480"));
  7503. // Mark the power panic status as inactive.
  7504. eeprom_update_byte((uint8_t*)EEPROM_UVLO, 0);
  7505. /*while ((abs(degHotend(0)- target_temperature[0])>5) || (abs(degBed() -target_temperature_bed)>3)) { //wait for heater and bed to reach target temp
  7506. delay_keep_alive(1000);
  7507. }*/
  7508. printf_P(_N("After waiting for temp:\nCurrent pos X_AXIS:%.3f\nCurrent pos Y_AXIS:%.3f\n"), current_position[X_AXIS], current_position[Y_AXIS]);
  7509. // Restart the print.
  7510. restore_print_from_eeprom();
  7511. printf_P(_N("Current pos Z_AXIS:%.3f\nCurrent pos E_AXIS:%.3f\n"), current_position[Z_AXIS], current_position[E_AXIS]);
  7512. }
  7513. void recover_machine_state_after_power_panic()
  7514. {
  7515. char cmd[30];
  7516. // 1) Recover the logical cordinates at the time of the power panic.
  7517. // The logical XY coordinates are needed to recover the machine Z coordinate corrected by the mesh bed leveling.
  7518. current_position[X_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0));
  7519. current_position[Y_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4));
  7520. // Recover the logical coordinate of the Z axis at the time of the power panic.
  7521. // The current position after power panic is moved to the next closest 0th full step.
  7522. current_position[Z_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z)) +
  7523. UVLO_Z_AXIS_SHIFT + float((1024 - eeprom_read_word((uint16_t*)(EEPROM_UVLO_Z_MICROSTEPS)) + 7) >> 4) / axis_steps_per_unit[Z_AXIS];
  7524. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS)) {
  7525. current_position[E_AXIS] = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7526. sprintf_P(cmd, PSTR("G92 E"));
  7527. dtostrf(current_position[E_AXIS], 6, 3, cmd + strlen(cmd));
  7528. enquecommand(cmd);
  7529. }
  7530. memcpy(destination, current_position, sizeof(destination));
  7531. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7532. print_world_coordinates();
  7533. // 2) Initialize the logical to physical coordinate system transformation.
  7534. world2machine_initialize();
  7535. // 3) Restore the mesh bed leveling offsets. This is 2*9=18 bytes, which takes 18*3.4us=52us in worst case.
  7536. mbl.active = false;
  7537. for (int8_t mesh_point = 0; mesh_point < 9; ++ mesh_point) {
  7538. uint8_t ix = mesh_point % MESH_MEAS_NUM_X_POINTS; // from 0 to MESH_NUM_X_POINTS - 1
  7539. uint8_t iy = mesh_point / MESH_MEAS_NUM_X_POINTS;
  7540. // Scale the z value to 10u resolution.
  7541. int16_t v;
  7542. eeprom_read_block(&v, (void*)(EEPROM_UVLO_MESH_BED_LEVELING+2*mesh_point), 2);
  7543. if (v != 0)
  7544. mbl.active = true;
  7545. mbl.z_values[iy][ix] = float(v) * 0.001f;
  7546. }
  7547. if (mbl.active)
  7548. mbl.upsample_3x3();
  7549. // SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7550. // print_mesh_bed_leveling_table();
  7551. // 4) Load the baby stepping value, which is expected to be active at the time of power panic.
  7552. // The baby stepping value is used to reset the physical Z axis when rehoming the Z axis.
  7553. babystep_load();
  7554. // 5) Set the physical positions from the logical positions using the world2machine transformation and the active bed leveling.
  7555. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  7556. // 6) Power up the motors, mark their positions as known.
  7557. //FIXME Verfiy, whether the X and Y axes should be powered up here, as they will later be re-homed anyway.
  7558. axis_known_position[X_AXIS] = true; enable_x();
  7559. axis_known_position[Y_AXIS] = true; enable_y();
  7560. axis_known_position[Z_AXIS] = true; enable_z();
  7561. SERIAL_ECHOPGM("recover_machine_state_after_power_panic, initial ");
  7562. print_physical_coordinates();
  7563. // 7) Recover the target temperatures.
  7564. target_temperature[active_extruder] = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_HOTEND);
  7565. target_temperature_bed = eeprom_read_byte((uint8_t*)EEPROM_UVLO_TARGET_BED);
  7566. // 8) Recover extruder multipilers
  7567. extruder_multiplier[0] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_0));
  7568. #if EXTRUDERS > 1
  7569. extruder_multiplier[1] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_1));
  7570. #if EXTRUDERS > 2
  7571. extruder_multiplier[2] = eeprom_read_float((float*)(EEPROM_EXTRUDER_MULTIPLIER_2));
  7572. #endif
  7573. #endif
  7574. extrudemultiply = (int)eeprom_read_word((uint16_t*)(EEPROM_EXTRUDEMULTIPLY));
  7575. }
  7576. void restore_print_from_eeprom() {
  7577. float x_rec, y_rec, z_pos;
  7578. int feedrate_rec;
  7579. uint8_t fan_speed_rec;
  7580. char cmd[30];
  7581. char* c;
  7582. char filename[13];
  7583. uint8_t depth = 0;
  7584. char dir_name[9];
  7585. fan_speed_rec = eeprom_read_byte((uint8_t*)EEPROM_UVLO_FAN_SPEED);
  7586. EEPROM_read_B(EEPROM_UVLO_FEEDRATE, &feedrate_rec);
  7587. SERIAL_ECHOPGM("Feedrate:");
  7588. MYSERIAL.println(feedrate_rec);
  7589. depth = eeprom_read_byte((uint8_t*)EEPROM_DIR_DEPTH);
  7590. MYSERIAL.println(int(depth));
  7591. for (int i = 0; i < depth; i++) {
  7592. for (int j = 0; j < 8; j++) {
  7593. dir_name[j] = eeprom_read_byte((uint8_t*)EEPROM_DIRS + j + 8 * i);
  7594. }
  7595. dir_name[8] = '\0';
  7596. MYSERIAL.println(dir_name);
  7597. strcpy(dir_names[i], dir_name);
  7598. card.chdir(dir_name);
  7599. }
  7600. for (int i = 0; i < 8; i++) {
  7601. filename[i] = eeprom_read_byte((uint8_t*)EEPROM_FILENAME + i);
  7602. }
  7603. filename[8] = '\0';
  7604. MYSERIAL.print(filename);
  7605. strcat_P(filename, PSTR(".gco"));
  7606. sprintf_P(cmd, PSTR("M23 %s"), filename);
  7607. enquecommand(cmd);
  7608. uint32_t position = eeprom_read_dword((uint32_t*)(EEPROM_FILE_POSITION));
  7609. SERIAL_ECHOPGM("Position read from eeprom:");
  7610. MYSERIAL.println(position);
  7611. // E axis relative mode.
  7612. enquecommand_P(PSTR("M83"));
  7613. // Move to the XY print position in logical coordinates, where the print has been killed.
  7614. strcpy_P(cmd, PSTR("G1 X")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 0))));
  7615. strcat_P(cmd, PSTR(" Y")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION + 4))));
  7616. strcat_P(cmd, PSTR(" F2000"));
  7617. enquecommand(cmd);
  7618. // Move the Z axis down to the print, in logical coordinates.
  7619. strcpy_P(cmd, PSTR("G1 Z")); strcat(cmd, ftostr32(eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_Z))));
  7620. enquecommand(cmd);
  7621. // Unretract.
  7622. enquecommand_P(PSTR("G1 E" STRINGIFY(2*DEFAULT_RETRACTION)" F480"));
  7623. // Set the feedrate saved at the power panic.
  7624. sprintf_P(cmd, PSTR("G1 F%d"), feedrate_rec);
  7625. enquecommand(cmd);
  7626. if (eeprom_read_byte((uint8_t*)EEPROM_UVLO_E_ABS))
  7627. {
  7628. float extruder_abs_pos = eeprom_read_float((float*)(EEPROM_UVLO_CURRENT_POSITION_E));
  7629. enquecommand_P(PSTR("M82")); //E axis abslute mode
  7630. }
  7631. // Set the fan speed saved at the power panic.
  7632. strcpy_P(cmd, PSTR("M106 S"));
  7633. strcat(cmd, itostr3(int(fan_speed_rec)));
  7634. enquecommand(cmd);
  7635. // Set a position in the file.
  7636. sprintf_P(cmd, PSTR("M26 S%lu"), position);
  7637. enquecommand(cmd);
  7638. // Start SD print.
  7639. enquecommand_P(PSTR("M24"));
  7640. }
  7641. #endif //UVLO_SUPPORT
  7642. ////////////////////////////////////////////////////////////////////////////////
  7643. // save/restore printing
  7644. void stop_and_save_print_to_ram(float z_move, float e_move)
  7645. {
  7646. if (saved_printing) return;
  7647. unsigned char nplanner_blocks;
  7648. unsigned char nlines;
  7649. uint16_t sdlen_planner;
  7650. uint16_t sdlen_cmdqueue;
  7651. cli();
  7652. if (card.sdprinting) {
  7653. nplanner_blocks = number_of_blocks();
  7654. saved_sdpos = sdpos_atomic; //atomic sd position of last command added in queue
  7655. sdlen_planner = planner_calc_sd_length(); //length of sd commands in planner
  7656. saved_sdpos -= sdlen_planner;
  7657. sdlen_cmdqueue = cmdqueue_calc_sd_length(); //length of sd commands in cmdqueue
  7658. saved_sdpos -= sdlen_cmdqueue;
  7659. saved_printing_type = PRINTING_TYPE_SD;
  7660. }
  7661. else if (is_usb_printing) { //reuse saved_sdpos for storing line number
  7662. saved_sdpos = gcode_LastN; //start with line number of command added recently to cmd queue
  7663. //reuse planner_calc_sd_length function for getting number of lines of commands in planner:
  7664. nlines = planner_calc_sd_length(); //number of lines of commands in planner
  7665. saved_sdpos -= nlines;
  7666. saved_sdpos -= buflen; //number of blocks in cmd buffer
  7667. saved_printing_type = PRINTING_TYPE_USB;
  7668. }
  7669. else {
  7670. //not sd printing nor usb printing
  7671. }
  7672. #if 0
  7673. SERIAL_ECHOPGM("SDPOS_ATOMIC="); MYSERIAL.println(sdpos_atomic, DEC);
  7674. SERIAL_ECHOPGM("SDPOS="); MYSERIAL.println(card.get_sdpos(), DEC);
  7675. SERIAL_ECHOPGM("SDLEN_PLAN="); MYSERIAL.println(sdlen_planner, DEC);
  7676. SERIAL_ECHOPGM("SDLEN_CMDQ="); MYSERIAL.println(sdlen_cmdqueue, DEC);
  7677. SERIAL_ECHOPGM("PLANNERBLOCKS="); MYSERIAL.println(int(nplanner_blocks), DEC);
  7678. SERIAL_ECHOPGM("SDSAVED="); MYSERIAL.println(saved_sdpos, DEC);
  7679. //SERIAL_ECHOPGM("SDFILELEN="); MYSERIAL.println(card.fileSize(), DEC);
  7680. {
  7681. card.setIndex(saved_sdpos);
  7682. SERIAL_ECHOLNPGM("Content of planner buffer: ");
  7683. for (unsigned int idx = 0; idx < sdlen_planner; ++ idx)
  7684. MYSERIAL.print(char(card.get()));
  7685. SERIAL_ECHOLNPGM("Content of command buffer: ");
  7686. for (unsigned int idx = 0; idx < sdlen_cmdqueue; ++ idx)
  7687. MYSERIAL.print(char(card.get()));
  7688. SERIAL_ECHOLNPGM("End of command buffer");
  7689. }
  7690. {
  7691. // Print the content of the planner buffer, line by line:
  7692. card.setIndex(saved_sdpos);
  7693. int8_t iline = 0;
  7694. for (unsigned char idx = block_buffer_tail; idx != block_buffer_head; idx = (idx + 1) & (BLOCK_BUFFER_SIZE - 1), ++ iline) {
  7695. SERIAL_ECHOPGM("Planner line (from file): ");
  7696. MYSERIAL.print(int(iline), DEC);
  7697. SERIAL_ECHOPGM(", length: ");
  7698. MYSERIAL.print(block_buffer[idx].sdlen, DEC);
  7699. SERIAL_ECHOPGM(", steps: (");
  7700. MYSERIAL.print(block_buffer[idx].steps_x, DEC);
  7701. SERIAL_ECHOPGM(",");
  7702. MYSERIAL.print(block_buffer[idx].steps_y, DEC);
  7703. SERIAL_ECHOPGM(",");
  7704. MYSERIAL.print(block_buffer[idx].steps_z, DEC);
  7705. SERIAL_ECHOPGM(",");
  7706. MYSERIAL.print(block_buffer[idx].steps_e, DEC);
  7707. SERIAL_ECHOPGM("), events: ");
  7708. MYSERIAL.println(block_buffer[idx].step_event_count, DEC);
  7709. for (int len = block_buffer[idx].sdlen; len > 0; -- len)
  7710. MYSERIAL.print(char(card.get()));
  7711. }
  7712. }
  7713. {
  7714. // Print the content of the command buffer, line by line:
  7715. int8_t iline = 0;
  7716. union {
  7717. struct {
  7718. char lo;
  7719. char hi;
  7720. } lohi;
  7721. uint16_t value;
  7722. } sdlen_single;
  7723. int _bufindr = bufindr;
  7724. for (int _buflen = buflen; _buflen > 0; ++ iline) {
  7725. if (cmdbuffer[_bufindr] == CMDBUFFER_CURRENT_TYPE_SDCARD) {
  7726. sdlen_single.lohi.lo = cmdbuffer[_bufindr + 1];
  7727. sdlen_single.lohi.hi = cmdbuffer[_bufindr + 2];
  7728. }
  7729. SERIAL_ECHOPGM("Buffer line (from buffer): ");
  7730. MYSERIAL.print(int(iline), DEC);
  7731. SERIAL_ECHOPGM(", type: ");
  7732. MYSERIAL.print(int(cmdbuffer[_bufindr]), DEC);
  7733. SERIAL_ECHOPGM(", len: ");
  7734. MYSERIAL.println(sdlen_single.value, DEC);
  7735. // Print the content of the buffer line.
  7736. MYSERIAL.println(cmdbuffer + _bufindr + CMDHDRSIZE);
  7737. SERIAL_ECHOPGM("Buffer line (from file): ");
  7738. MYSERIAL.println(int(iline), DEC);
  7739. for (; sdlen_single.value > 0; -- sdlen_single.value)
  7740. MYSERIAL.print(char(card.get()));
  7741. if (-- _buflen == 0)
  7742. break;
  7743. // First skip the current command ID and iterate up to the end of the string.
  7744. for (_bufindr += CMDHDRSIZE; cmdbuffer[_bufindr] != 0; ++ _bufindr) ;
  7745. // Second, skip the end of string null character and iterate until a nonzero command ID is found.
  7746. for (++ _bufindr; _bufindr < sizeof(cmdbuffer) && cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7747. // If the end of the buffer was empty,
  7748. if (_bufindr == sizeof(cmdbuffer)) {
  7749. // skip to the start and find the nonzero command.
  7750. for (_bufindr = 0; cmdbuffer[_bufindr] == 0; ++ _bufindr) ;
  7751. }
  7752. }
  7753. }
  7754. #endif
  7755. #if 0
  7756. saved_feedrate2 = feedrate; //save feedrate
  7757. #else
  7758. // Try to deduce the feedrate from the first block of the planner.
  7759. // Speed is in mm/min.
  7760. saved_feedrate2 = blocks_queued() ? (block_buffer[block_buffer_tail].nominal_speed * 60.f) : feedrate;
  7761. #endif
  7762. planner_abort_hard(); //abort printing
  7763. memcpy(saved_pos, current_position, sizeof(saved_pos));
  7764. saved_active_extruder = active_extruder; //save active_extruder
  7765. saved_extruder_under_pressure = extruder_under_pressure; //extruder under pressure flag - currently unused
  7766. saved_extruder_relative_mode = axis_relative_modes[E_AXIS];
  7767. cmdqueue_reset(); //empty cmdqueue
  7768. card.sdprinting = false;
  7769. // card.closefile();
  7770. saved_printing = true;
  7771. // We may have missed a stepper timer interrupt. Be safe than sorry, reset the stepper timer before re-enabling interrupts.
  7772. st_reset_timer();
  7773. sei();
  7774. if ((z_move != 0) || (e_move != 0)) { // extruder or z move
  7775. #if 1
  7776. // Rather than calling plan_buffer_line directly, push the move into the command queue,
  7777. char buf[48];
  7778. // First unretract (relative extrusion)
  7779. if(!saved_extruder_relative_mode){
  7780. strcpy_P(buf, PSTR("M83"));
  7781. enquecommand(buf, false);
  7782. }
  7783. //retract 45mm/s
  7784. strcpy_P(buf, PSTR("G1 E"));
  7785. dtostrf(e_move, 6, 3, buf + strlen(buf));
  7786. strcat_P(buf, PSTR(" F"));
  7787. dtostrf(2700, 8, 3, buf + strlen(buf));
  7788. enquecommand(buf, false);
  7789. // Then lift Z axis
  7790. strcpy_P(buf, PSTR("G1 Z"));
  7791. dtostrf(saved_pos[Z_AXIS] + z_move, 8, 3, buf + strlen(buf));
  7792. strcat_P(buf, PSTR(" F"));
  7793. dtostrf(homing_feedrate[Z_AXIS], 8, 3, buf + strlen(buf));
  7794. // At this point the command queue is empty.
  7795. enquecommand(buf, false);
  7796. // If this call is invoked from the main Arduino loop() function, let the caller know that the command
  7797. // in the command queue is not the original command, but a new one, so it should not be removed from the queue.
  7798. repeatcommand_front();
  7799. #else
  7800. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS] + z_move, saved_pos[E_AXIS] + e_move, homing_feedrate[Z_AXIS], active_extruder);
  7801. st_synchronize(); //wait moving
  7802. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7803. memcpy(destination, current_position, sizeof(destination));
  7804. #endif
  7805. }
  7806. }
  7807. void restore_print_from_ram_and_continue(float e_move)
  7808. {
  7809. if (!saved_printing) return;
  7810. // for (int axis = X_AXIS; axis <= E_AXIS; axis++)
  7811. // current_position[axis] = st_get_position_mm(axis);
  7812. active_extruder = saved_active_extruder; //restore active_extruder
  7813. feedrate = saved_feedrate2; //restore feedrate
  7814. axis_relative_modes[E_AXIS] = saved_extruder_relative_mode;
  7815. float e = saved_pos[E_AXIS] - e_move;
  7816. plan_set_e_position(e);
  7817. //first move print head in XY to the saved position:
  7818. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], current_position[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7819. st_synchronize();
  7820. //then move Z
  7821. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS] - e_move, homing_feedrate[Z_AXIS]/13, active_extruder);
  7822. st_synchronize();
  7823. //and finaly unretract (35mm/s)
  7824. plan_buffer_line(saved_pos[X_AXIS], saved_pos[Y_AXIS], saved_pos[Z_AXIS], saved_pos[E_AXIS], 35, active_extruder);
  7825. st_synchronize();
  7826. memcpy(current_position, saved_pos, sizeof(saved_pos));
  7827. memcpy(destination, current_position, sizeof(destination));
  7828. if (saved_printing_type == PRINTING_TYPE_SD) { //was sd printing
  7829. card.setIndex(saved_sdpos);
  7830. sdpos_atomic = saved_sdpos;
  7831. card.sdprinting = true;
  7832. printf_P(PSTR("ok\n")); //dummy response because of octoprint is waiting for this
  7833. }
  7834. else if (saved_printing_type == PRINTING_TYPE_USB) { //was usb printing
  7835. gcode_LastN = saved_sdpos; //saved_sdpos was reused for storing line number when usb printing
  7836. serial_count = 0;
  7837. FlushSerialRequestResend();
  7838. }
  7839. else {
  7840. //not sd printing nor usb printing
  7841. }
  7842. lcd_setstatuspgm(_T(WELCOME_MSG));
  7843. saved_printing = false;
  7844. }
  7845. void print_world_coordinates()
  7846. {
  7847. printf_P(_N("world coordinates: (%.3f, %.3f, %.3f)\n"), current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  7848. }
  7849. void print_physical_coordinates()
  7850. {
  7851. printf_P(_N("physical coordinates: (%.3f, %.3f, %.3f)\n"), st_get_position_mm[X_AXIS], st_get_position_mm[Y_AXIS], st_get_position_mm[Z_AXIS]);
  7852. }
  7853. void print_mesh_bed_leveling_table()
  7854. {
  7855. SERIAL_ECHOPGM("mesh bed leveling: ");
  7856. for (int8_t y = 0; y < MESH_NUM_Y_POINTS; ++ y)
  7857. for (int8_t x = 0; x < MESH_NUM_Y_POINTS; ++ x) {
  7858. MYSERIAL.print(mbl.z_values[y][x], 3);
  7859. SERIAL_ECHOPGM(" ");
  7860. }
  7861. SERIAL_ECHOLNPGM("");
  7862. }
  7863. uint16_t print_time_remaining() {
  7864. uint16_t print_t = PRINT_TIME_REMAINING_INIT;
  7865. if (SilentModeMenu == SILENT_MODE_OFF) print_t = print_time_remaining_normal;
  7866. else print_t = print_time_remaining_silent;
  7867. if ((print_t != PRINT_TIME_REMAINING_INIT) && (feedmultiply != 0)) print_t = 100 * print_t / feedmultiply;
  7868. return print_t;
  7869. }
  7870. uint8_t print_percent_done() {
  7871. //in case that we have information from M73 gcode return percentage counted by slicer, else return percentage counted as byte_printed/filesize
  7872. uint8_t percent_done = 0;
  7873. if (SilentModeMenu == SILENT_MODE_OFF && print_percent_done_normal <= 100) {
  7874. percent_done = print_percent_done_normal;
  7875. }
  7876. else if (print_percent_done_silent <= 100) {
  7877. percent_done = print_percent_done_silent;
  7878. }
  7879. else {
  7880. percent_done = card.percentDone();
  7881. }
  7882. return percent_done;
  7883. }
  7884. static void print_time_remaining_init() {
  7885. print_time_remaining_normal = PRINT_TIME_REMAINING_INIT;
  7886. print_time_remaining_silent = PRINT_TIME_REMAINING_INIT;
  7887. print_percent_done_normal = PRINT_PERCENT_DONE_INIT;
  7888. print_percent_done_silent = PRINT_PERCENT_DONE_INIT;
  7889. }
  7890. #define FIL_LOAD_LENGTH 60